WorldWideScience

Sample records for anisotropy probe wmapobservations

  1. Anisotropies in the cosmic neutrino background after Wilkinson Microwave Anisotropy Probe five-year data

    International Nuclear Information System (INIS)

    De Bernardis, Francesco; Pagano, Luca; Melchiorri, Alessandro; Serra, Paolo; Cooray, Asantha

    2008-01-01

    We search for the presence of cosmological neutrino background (CNB) anisotropies in recent Wilkinson Microwave Anisotropy Probe (WMAP) five-year data using their signature imprinted on modifications to the cosmic microwave background (CMB) anisotropy power spectrum. By parameterizing the neutrino background anisotropies with the speed viscosity parameter c vis , we find that the WMAP five-year data alone provide only a weak indication for CNB anisotropies with c vis 2 >0.06 at the 95% confidence level. When we combine CMB anisotropy data with measurements of galaxy clustering, the SN-Ia Hubble diagram, and other cosmological information, the detection increases to c vis 2 >0.16 at the same 95% confidence level. Future data from Planck, combined with a weak lensing survey such as the one expected with DUNE from space, will be able to measure the CNB anisotropy parameter at about 10% accuracy. We discuss the degeneracy between neutrino background anisotropies and other cosmological parameters such as the number of effective neutrinos species and the dark energy equation of state

  2. Global universe anisotropy probed by the alignment of structures in the cosmic microwave background.

    Science.gov (United States)

    Wiaux, Y; Vielva, P; Martínez-González, E; Vandergheynst, P

    2006-04-21

    We question the global universe isotropy by probing the alignment of local structures in the cosmic microwave background (CMB) radiation. The original method proposed relies on a steerable wavelet decomposition of the CMB signal on the sphere. The analysis of the first-year Wilkinson Microwave Anisotropy Probe data identifies a mean preferred plane with a normal direction close to the CMB dipole axis, and a mean preferred direction in this plane, very close to the ecliptic poles axis. Previous statistical anisotropy results are thereby synthesized, but further analyses are still required to establish their origin.

  3. Large-scale Cosmic-Ray Anisotropy as a Probe of Interstellar Turbulence

    Energy Technology Data Exchange (ETDEWEB)

    Giacinti, Gwenael; Kirk, John G. [Max-Planck-Institut für Kernphysik, Postfach 103980, D-69029 Heidelberg (Germany)

    2017-02-01

    We calculate the large-scale cosmic-ray (CR) anisotropies predicted for a range of Goldreich–Sridhar (GS) and isotropic models of interstellar turbulence, and compare them with IceTop data. In general, the predicted CR anisotropy is not a pure dipole; the cold spots reported at 400 TeV and 2 PeV are consistent with a GS model that contains a smooth deficit of parallel-propagating waves and a broad resonance function, though some other possibilities cannot, as yet, be ruled out. In particular, isotropic fast magnetosonic wave turbulence can match the observations at high energy, but cannot accommodate an energy dependence in the shape of the CR anisotropy. Our findings suggest that improved data on the large-scale CR anisotropy could provide a valuable probe of the properties—notably the power-spectrum—of the interstellar turbulence within a few tens of parsecs from Earth.

  4. Mass amplifying probe for sensitive fluorescence anisotropy detection of small molecules in complex biological samples.

    Science.gov (United States)

    Cui, Liang; Zou, Yuan; Lin, Ninghang; Zhu, Zhi; Jenkins, Gareth; Yang, Chaoyong James

    2012-07-03

    Fluorescence anisotropy (FA) is a reliable and excellent choice for fluorescence sensing. One of the key factors influencing the FA value for any molecule is the molar mass of the molecule being measured. As a result, the FA method with functional nucleic acid aptamers has been limited to macromolecules such as proteins and is generally not applicable for the analysis of small molecules because their molecular masses are relatively too small to produce observable FA value changes. We report here a molecular mass amplifying strategy to construct anisotropy aptamer probes for small molecules. The probe is designed in such a way that only when a target molecule binds to the probe does it activate its binding ability to an anisotropy amplifier (a high molecular mass molecule such as protein), thus significantly increasing the molecular mass and FA value of the probe/target complex. Specifically, a mass amplifying probe (MAP) consists of a targeting aptamer domain against a target molecule and molecular mass amplifying aptamer domain for the amplifier protein. The probe is initially rendered inactive by a small blocking strand partially complementary to both target aptamer and amplifier protein aptamer so that the mass amplifying aptamer domain would not bind to the amplifier protein unless the probe has been activated by the target. In this way, we prepared two probes that constitute a target (ATP and cocaine respectively) aptamer, a thrombin (as the mass amplifier) aptamer, and a fluorophore. Both probes worked well against their corresponding small molecule targets, and the detection limits for ATP and cocaine were 0.5 μM and 0.8 μM, respectively. More importantly, because FA is less affected by environmental interferences, ATP in cell media and cocaine in urine were directly detected without any tedious sample pretreatment. Our results established that our molecular mass amplifying strategy can be used to design aptamer probes for rapid, sensitive, and selective

  5. Probing pre-inflationary anisotropy with directional variations in the gravitational wave background

    Energy Technology Data Exchange (ETDEWEB)

    Furuya, Yu; Niiyama, Yuki; Sendouda, Yuuiti, E-mail: furuya@tap.st.hirosaki-u.ac.jp, E-mail: niiyama@tap.st.hirosaki-u.ac.jp, E-mail: sendouda@hirosaki-u.ac.jp [Graduate School of Science and Technology, Hirosaki University, 3 Bunkyocho, Hirosaki, Aomori 036-8561 (Japan)

    2017-01-01

    We perform a detailed analysis on a primordial gravitational-wave background amplified during a Kasner-like pre-inflationary phase allowing for general triaxial anisotropies. It is found that the predicted angular distribution map of gravitational-wave intensity on large scales exhibits topologically distinctive patterns according to the degree of the pre-inflationary anisotropy, thereby serving as a potential probe for the pre-inflationary early universe with future all-sky observations of gravitational waves. We also derive an observational limit on the amplitude of such anisotropic gravitational waves from the B -mode polarisation of the cosmic microwave background.

  6. Mapping the CMB with the Wilkinson Microwave Anisotropy Probe

    Science.gov (United States)

    Hinshaw, Gary F.

    2007-01-01

    The data from the Wilkinson Microwave Anisotropy Probe (WMAP) satellite provide detailed full-sky maps of the cosmic microwave background temperature anisotropy and new full-sky maps of the polarization. Together, the data provide a wealth of cosmological information, including the age of the universe, the epoch when the first stars formed, and the overall composition of baryonic matter, dark matter, and dark energy. The results also provide constraints on the period of inflationary expansion in the very first moments of time. These and other aspects of the mission results will be discussed and commented on. WMAP, part of NASA's Explorers program, was launched on June 30,200 1. The WMAP satellite was produced in a partnership between the Goddard Space Flight Center and Princeton University. The WMAP team also includes researchers at the Johns Hopkins University; the Canadian Institute of Theoretical Astrophysics; University of Texas; University of Chicago; Brown University; University of British Columbia; and University of California, Los Angeles.

  7. B-mode contamination by synchrotron emission from 3-yr Wilkinson Microwave Anisotropy Probe data

    NARCIS (Netherlands)

    Carretti, E.; Bernardi, G.; Cortiglioni, S.

    2006-01-01

    We study the contamination of the B-mode of the cosmic microwave background polarization (CMBP) by Galactic synchrotron in the lowest emission regions of the sky. The 22.8-GHz polarization map of the 3-yr Wilkinson Microwave Anisotropy Probe (WMAP) data release is used to identify and analyse such

  8. Constraints on CPT violation from Wilkinson Microwave Anisotropy Probe three year polarization data: A wavelet analysis

    International Nuclear Information System (INIS)

    Cabella, Paolo; Silk, Joseph; Natoli, Paolo

    2007-01-01

    We perform a wavelet analysis of the temperature and polarization maps of the cosmic microwave background (CMB) delivered by the Wilkinson Microwave Anisotropy Probe experiment in search for a parity-violating signal. Such a signal could be seeded by new physics beyond the standard model, for which the Lorentz and CPT symmetries may not hold. Under these circumstances, the linear polarization direction of a CMB photon may get rotated during its cosmological journey, a phenomenon also called cosmological birefringence. Recently, Feng et al. have analyzed a subset of the Wilkinson Microwave Anisotropy Probe and BOOMERanG 2003 angular power spectra of the CMB, deriving a constraint that mildly favors a nonzero rotation. By using wavelet transforms we set a tighter limit on the CMB photon rotation angle Δα=-2.5±3.0 (Δα=-2.5±6.0) at the one (two) σ level, consistent with a null detection

  9. Anisotropy and vortex behaviour in BiSrCaCuO thin films and multilayers probed by columnar pinning centers

    International Nuclear Information System (INIS)

    Raffy, H.; Murrills, C.D.; Pomar, A.; Stiufiuc, G.; Stiufiuc, R.; Li, Z.Z.

    2006-01-01

    In this paper we review typical mixed state transport results obtained on a variety of Bi 2 Sr 2 Ca n-1 Cu n O y thin films and artificial multilayers, which allowed us to cover the range from low to high anisotropy. The vortex behaviour, 2D or 3D, probed by the pinning properties of columnar defects, is shown to be highly dependant on the anisotropy, and therefore on the microstructure of the system. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  10. The Atacama Cosmology Telescope: Calibration with the Wilkinson Microwave Anisotropy Probe Using Cross-Correlations

    Science.gov (United States)

    Hajian, Amir; Acquaviva, Viviana; Ade, Peter A. R.; Aguirre, Paula; Amiri, Mandana; Appel, John William; Barrientos, L. Felipe; Battistelli, Elia S.; Bond, John R.; Brown, Ben; hide

    2011-01-01

    We present a new calibration method based on cross-correlations with the Wilkinson Microwave Anisotropy Probe (WMAP) and apply it to data from the Atacama Cosmology Telescope (ACT). ACT's observing strategy and mapmaking procedure allows an unbiased reconstruction of the modes in the maps over a wide range of multipoles. By directly matching the ACT maps to WMAP observations in the multipole range of 400 cosmological parameters estimated from the ACT power spectra. We also present a combined map based on ACT and WMAP data that has a high signal-to-noise ratio over a wide range of multipoles.

  11. Spacecraft Charging and the Microwave Anisotropy Probe Spacecraft

    Science.gov (United States)

    Timothy, VanSant J.; Neergaard, Linda F.

    1998-01-01

    The Microwave Anisotropy Probe (MAP), a MIDEX mission built in partnership between Princeton University and the NASA Goddard Space Flight Center (GSFC), will study the cosmic microwave background. It will be inserted into a highly elliptical earth orbit for several weeks and then use a lunar gravity assist to orbit around the second Lagrangian point (L2), 1.5 million kilometers, anti-sunward from the earth. The charging environment for the phasing loops and at L2 was evaluated. There is a limited set of data for L2; the GEOTAIL spacecraft measured relatively low spacecraft potentials (approx. 50 V maximum) near L2. The main area of concern for charging on the MAP spacecraft is the well-established threat posed by the "geosynchronous region" between 6-10 Re. The launch in the autumn of 2000 will coincide with the falling of the solar maximum, a period when the likelihood of a substorm is higher than usual. The likelihood of a substorm at that time has been roughly estimated to be on the order of 20% for a typical MAP mission profile. Because of the possibility of spacecraft charging, a requirement for conductive spacecraft surfaces was established early in the program. Subsequent NASCAP/GEO analyses for the MAP spacecraft demonstrated that a significant portion of the sunlit surface (solar cell cover glass and sunshade) could have nonconductive surfaces without significantly raising differential charging. The need for conductive materials on surfaces continually in eclipse has also been reinforced by NASCAP analyses.

  12. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS

    International Nuclear Information System (INIS)

    Hinshaw, G.; Halpern, M.; Larson, D.; Bennett, C. L.; Weiland, J. L.; Komatsu, E.; Spergel, D. N.; Dunkley, J.; Nolta, M. R.; Hill, R. S.; Odegard, N.; Page, L.; Jarosik, N.; Smith, K. M.; Gold, B.; Kogut, A.; Wollack, E.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present cosmological parameter constraints based on the final nine-year Wilkinson Microwave Anisotropy Probe (WMAP) data, in conjunction with a number of additional cosmological data sets. The WMAP data alone, and in combination, continue to be remarkably well fit by a six-parameter ΛCDM model. When WMAP data are combined with measurements of the high-l cosmic microwave background anisotropy, the baryon acoustic oscillation scale, and the Hubble constant, the matter and energy densities, Ω b h 2 , Ω c h 2 , and Ω Λ , are each determined to a precision of ∼1.5%. The amplitude of the primordial spectrum is measured to within 3%, and there is now evidence for a tilt in the primordial spectrum at the 5σ level, confirming the first detection of tilt based on the five-year WMAP data. At the end of the WMAP mission, the nine-year data decrease the allowable volume of the six-dimensional ΛCDM parameter space by a factor of 68,000 relative to pre-WMAP measurements. We investigate a number of data combinations and show that their ΛCDM parameter fits are consistent. New limits on deviations from the six-parameter model are presented, for example: the fractional contribution of tensor modes is limited to r k = -0.0027 +0.0039 -0.0038 ; the summed mass of neutrinos is limited to Σm ν eff = 3.84 ± 0.40, when the full data are analyzed. The joint constraint on N eff and the primordial helium abundance, Y He , agrees with the prediction of standard big bang nucleosynthesis. We compare recent Planck measurements of the Sunyaev-Zel'dovich effect with our seven-year measurements, and show their mutual agreement. Our analysis of the polarization pattern around temperature extrema is updated. This confirms a fundamental prediction of the standard cosmological model and provides a striking illustration of acoustic oscillations and adiabatic initial conditions in the early universe

  13. PROBING THE EPOCH OF PRE-REIONIZATION BY CROSS-CORRELATING COSMIC MICROWAVE AND INFRARED BACKGROUND ANISOTROPIES

    International Nuclear Information System (INIS)

    Atrio-Barandela, F.; Kashlinsky, A.

    2014-01-01

    The epoch of first star formation and the state of the intergalactic medium (IGM) at that time are not directly observable with current telescopes. The radiation from those early sources is now part of the cosmic infrared background (CIB) and, as these sources ionize the gas around them, the IGM plasma would produce faint temperature anisotropies in the cosmic microwave background (CMB) via the thermal Sunyaev-Zeldovich (TSZ) effect. While these TSZ anisotropies are too faint to be detected, we show that the cross-correlation of maps of source-subtracted CIB fluctuations from Euclid, with suitably constructed microwave maps at different frequencies, can probe the physical state of the gas during reionization and test/constrain models of the early CIB sources. We identify the frequency-combined, CMB-subtracted microwave maps from space- and ground-based instruments to show that they can be cross-correlated with the forthcoming all-sky Euclid CIB maps to detect the cross-power at scales ∼5'-60' with signal-to-noise ratios (S/Ns) of up to S/N ∼ 4-8 depending on the contribution to the Thomson optical depth during those pre-reionization epochs (Δτ ≅ 0.05) and the temperature of the IGM (up to ∼10 4 K). Such a measurement would offer a new window to explore the emergence and physical properties of these first light sources

  14. Counting probe

    International Nuclear Information System (INIS)

    Matsumoto, Haruya; Kaya, Nobuyuki; Yuasa, Kazuhiro; Hayashi, Tomoaki

    1976-01-01

    Electron counting method has been devised and experimented for the purpose of measuring electron temperature and density, the most fundamental quantities to represent plasma conditions. Electron counting is a method to count the electrons in plasma directly by equipping a probe with the secondary electron multiplier. It has three advantages of adjustable sensitivity, high sensitivity of the secondary electron multiplier, and directional property. Sensitivity adjustment is performed by changing the size of collecting hole (pin hole) on the incident front of the multiplier. The probe is usable as a direct reading thermometer of electron temperature because it requires to collect very small amount of electrons, thus it doesn't disturb the surrounding plasma, and the narrow sweep width of the probe voltage is enough. Therefore it can measure anisotropy more sensitively than a Langmuir probe, and it can be used for very low density plasma. Though many problems remain on anisotropy, computer simulation has been carried out. Also it is planned to provide a Helmholtz coil in the vacuum chamber to eliminate the effect of earth magnetic field. In practical experiments, the measurement with a Langmuir probe and an emission probe mounted to the movable structure, the comparison with the results obtained in reverse magnetic field by using a Helmholtz coil, and the measurement of ionic sound wave are scheduled. (Wakatsuki, Y.)

  15. A SEARCH FOR CONCENTRIC CIRCLES IN THE 7 YEAR WILKINSON MICROWAVE ANISOTROPY PROBE TEMPERATURE SKY MAPS

    International Nuclear Information System (INIS)

    Wehus, I. K.; Eriksen, H. K.

    2011-01-01

    In this Letter, we search for concentric circles with low variance in cosmic microwave background sky maps. The detection of such circles would hint at new physics beyond the current cosmological concordance model, which states that the universe is isotropic and homogeneous, and filled with Gaussian fluctuations. We first describe a set of methods designed to detect such circles, based on matched filters and χ 2 statistics, and then apply these methods to the best current publicly available data, the 7 year Wilkinson Microwave Anisotropy Probe (WMAP) temperature sky maps. We compare the observations with an ensemble of 1000 Gaussian ΛCDM simulations. Based on these tests, we conclude that the WMAP sky maps are fully compatible with the Gaussian and isotropic hypothesis as measured by low-variance ring statistics.

  16. Absorption anisotropy studies of polymethine dyes

    International Nuclear Information System (INIS)

    Lepkowicz, Richard S.; Cirloganu, Claudiu M.; Przhonska, Olga V.; Hagan, David J.; Van Stryland, Eric W.; Bondar, Mikhail V.; Slominsky, Yuriy L.; Kachkovski, Alexei D.; Mayboroda, Elena I.

    2004-01-01

    The determination of the spectral position of the excited states and orientation of the transition dipole moments of polymethine molecules is experimentally measured using two methods: the steady-state fluorescence anisotropy method, and a two-color polarization-resolved pump-probe method. This novel use of the pump-probe method is described in detail and a comparison to the fluorescence method is given. Quantum-chemical modeling on the effects of the bridge structure in the polymethine chromophore on the linear absorption spectrum is also discussed

  17. Dark matter electron anisotropy. A universal upper limit

    International Nuclear Information System (INIS)

    Borriello, Enrico; Maccione, Luca; Cuoco, Alessandro

    2010-12-01

    Indirect searches of particle Dark Matter (DM) with high energy Cosmic Rays (CR) are affected by large uncertainties, coming both from the DM side, and from poor understanding of the astrophysical backgrounds. We show that, on the contrary, the DM intrinsic degree of anisotropy in the arrival directions of high energy CR electrons and positrons does not suffer from these unknowns. Furthermore, if contributions from possible local sources are neglected, the intrinsic DM anisotropy sets the maximum degree of total anisotropy. As a consequence, if some anisotropy larger than the DM upper bound is detected, its origin could not be ascribed to DM, and would constitute an unambiguous evidence for the presence of astrophysical local discrete sources of high energy electrons and positrons. The Fermi-LAT will be able to probe such scenarios in the next years. (orig.)

  18. Transverse susceptibility as a probe of the magnetocrystalline anisotropy-driven phase transition in Pr0.5Sr0.5CoO3

    Science.gov (United States)

    Frey Huls, N. A.; Bingham, N. S.; Phan, M. H.; Srikanth, H.; Stauffer, D. D.; Leighton, C.

    2011-01-01

    Half-doped Pr1-xSrxCoO3 (x=0.5) displays anomalous magnetism, most notably manifest in the field-cooled magnetization versus temperature curves under different applied cooling fields. Recently, an explanation was advanced that a magnetocrystalline anisotropy transition driven by a structural transition at 120 K is the origin of this behavior. In this paper, we further elucidate the nature of the magnetic anisotropy across the low-temperature phase transition in this material by means of transverse susceptibility (TS) measurements performed using a self-resonant tunnel diode oscillator. TS probes magnetic materials by means of a small radio frequency oriented transverse to a dc field that sweeps from positive to negative saturation. TS scans as a function of field clearly reveal peaks associated with the anisotropy (HK) and switching fields (HS). When peak position is examined as a function of temperature, ˜120 K the signature of a ferromagnetic-to-ferromagnetic phase transition is evident as a sharp feature in HK and a corresponding cusp in HS. A third TS peak (not previously observed in other classes of magnetic oxides such as manganites and spinel ferrites) is found to be correlated with the crossover field (Hcr) in the unconventional magnetization versus temperature [M(T)] behavior. We observe a strong temperature dependence of Hcr at ˜120 K using this technique, which suggests the magnetic-field-influenced magnetocrystalline anisotropy transition. We show the switching between the high-field magnetization state and the low-field magnetization state associated with the magnetocrystalline anisotropy transition is irreversible when the magnetic field is recycled. Finally, we demonstrate that the TS peak magnitude indicates easy axis switching associated with this phase transition, even in these polycrystalline samples. Our results further confirm that TS provides new insights into the magnetic behavior of complex oxides.

  19. Search for Cosmic-Ray Electron and Positron Anisotropies with Seven Years of Fermi Large Area Telescope Data

    International Nuclear Information System (INIS)

    Abdollahi, S.; Ackermann, M.; Ajello, M.; Albert, A.; Atwood, W. B.

    2017-01-01

    We present the Large Area Telescope on board the Fermi Gamma-ray Space Telescope that has collected the largest ever sample of high-energy cosmic-ray electron and positron events since the beginning of its operation. Potential anisotropies in the arrival directions of cosmic-ray electrons or positrons could be a signature of the presence of nearby sources. We use almost seven years of data with energies above 42 GeV processed with the Pass 8 reconstruction. The present data sample can probe dipole anisotropies down to a level of 10"-"3. We take into account systematic effects that could mimic true anisotropies at this level. We present a detailed study of the event selection optimization of the cosmic-ray electrons and positrons to be used for anisotropy searches. Since no significant anisotropies have been detected on any angular scale, we present upper limits on the dipole anisotropy. Lastly, the present constraints are among the strongest to date probing the presence of nearby young and middle-aged sources.

  20. First-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Galactic Signal Contamination from Sidelobe Pickup

    Science.gov (United States)

    Barnes, C.; Hill, R. S.; Hinshaw, G.; Page, L.; Bennett, C. L.; Halpern, M.; Jarosik, N.; Kogut, A.; Limon, M.; Meyer, S. S.; Tucker, G. S.; Wollack, E.; Wright, E. L.

    2003-09-01

    Since the Galactic center is ~1000 times brighter than fluctuations in the cosmic microwave background (CMB), CMB experiments must carefully account for stray Galactic pickup. We present the level of contamination due to sidelobes for the first-year CMB maps produced by the Wilkinson Microwave Anisotropy Probe (WMAP) observatory. For each radiometer, full 4π sr antenna gain patterns are determined from a combination of numerical prediction and ground-based and space-based measurements. These patterns are convolved with the WMAP first-year sky maps and observatory scan pattern to generate the expected sidelobe signal contamination, for both intensity and polarized microwave sky maps. When the main beams are outside of the Galactic plane, we find rms values for the expected sidelobe pickup of 15, 2.1, 2.0, 0.3, and 0.5 μK for the K, Ka, Q, V, and W bands, respectively. Except for at the K band, the rms polarized contamination is the Galactic pickup are presented. WMAP is the result of a partnership between Princeton University and the NASA Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  1. Magnetic Barkhausen Noise Measurements Using Tetrapole Probe Designs

    Science.gov (United States)

    McNairnay, Paul

    A magnetic Barkhausen noise (MBN) testing system was developed for Defence Research and Development Canada (DRDC) to perform MBN measurements on the Royal Canadian Navy's Victoria class submarine hulls that can be correlated with material properties, including residual stress. The DRDC system was based on the design of a MBN system developed by Steven White at Queen's University, which was capable of performing rapid angular dependent measurements through the implementation of a flux controlled tetrapole probe. In tetrapole probe designs, the magnetic excitation field is rotated in the surface plane of the sample under the assumption of linear superposition of two orthogonal magnetic fields. During the course of this work, however, the validity of flux superposition in ferromagnetic materials, for the purpose of measuring MBN, was brought into question. Consequently, a study of MBN anisotropy using tetrapole probes was performed. Results indicate that MBN anisotropy measured under flux superposition does not simulate MBN anisotropy data obtained through manual rotation of a single dipole excitation field. It is inferred that MBN anisotropy data obtained with tetrapole probes is the result of the magnetic domain structure's response to an orthogonal magnetization condition and not necessarily to any bulk superposition magnetization in the sample. A qualitative model for the domain configuration under two orthogonal magnetic fields is proposed to describe the results. An empirically derived fitting equation, that describes tetrapole MBN anisotropy data, is presented. The equation describes results in terms of two largely independent orthogonal fields, and includes interaction terms arising due to competing orthogonally magnetized domain structures and interactions with the sample's magnetic easy axis. The equation is used to fit results obtained from a number of samples and tetrapole orientations and in each case correctly identifies the samples' magnetic easy axis.

  2. Small-scale cosmic microwave background anisotropies as probe of the geometry of the universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.; Sugiyama, Naoshi

    1994-01-01

    We perform detailed calculations of cosmic microwave background (CMB) anisotropies in a cold dark matter (CDM)-dominated open universe with primordial adiabatic density perturbations for a variety of reionization histories. The CMB anisotropies depend primarily on the geometry of the universe, which in a matter-dominated universe is determined by Omega and the optical depth to the surface of last scattering. In particular, the location on the primary Doppler peak depends primarily on Omega and is fairly insensitive to the other unknown parameters, such as Omega(sub b), h, Lambda, and the shape of the power spectrum. Therefore, if the primordial density perturbations are adiabatic, measurements of CMB anisotropies on small scales may be used to determine Omega.

  3. Nine-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Final Maps and Results

    Science.gov (United States)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jaorsik, N.; Hinshaw, G.; Odegard, N.; Smith, K. M.; Hill, R. S.; Gold, B.; Halpern, M; hide

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail.We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground reduced are presented.We nowimplement an optimal C(exp -1)1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained Lambda-CDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N(sub eff) = 3.84 +/- 0.40). The model fit also implies that the age of the universe is (sub 0) = 13.772 +/- 0.059 Gyr, and the fit Hubble constant is H(sub 0) = 69.32 +/- 0.80 km/s/ Mpc. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n(sub s) = 0.9608+/-0.0080); and the universe is close to flat/Euclidean (Omega = -0.0027+0.0039/-0.0038). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six

  4. Five-Year Wilkinson Microwave Anisotropy Probe Observations: Beam Maps and Window Functions

    Science.gov (United States)

    Hill, R. S.; Weiland, J. L.; Odegard, N.; Wollack, E.; Hinshaw, G.; Larson, D.; Bennett, C. L.; Halpern, M.; Page, L.; Dunkley, J.; Gold, B.; Jarosik, N.; Kogut, A.; Limon, M.; Nolta, M. R.; Spergel, D. N.; Tucker, G. S.; Wright, E. L.

    2009-02-01

    Cosmology and other scientific results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission require an accurate knowledge of the beam patterns in flight. While the degree of beam knowledge for the WMAP one-year and three-year results was unprecedented for a CMB experiment, we have significantly improved the beam determination as part of the five-year data release. Physical optics fits are done on both the A and the B sides for the first time. The cutoff scale of the fitted distortions on the primary mirror is reduced by a factor of ~2 from previous analyses. These changes enable an improvement in the hybridization of Jupiter data with beam models, which is optimized with respect to error in the main beam solid angle. An increase in main-beam solid angle of ~1% is found for the V2 and W1-W4 differencing assemblies. Although the five-year results are statistically consistent with previous ones, the errors in the five-year beam transfer functions are reduced by a factor of ~2 as compared to the three-year analysis. We present radiometry of the planet Jupiter as a test of the beam consistency and as a calibration standard; for an individual differencing assembly, errors in the measured disk temperature are ~0.5%. WMAP is the result of a partnership between Princeton University and NASA's Goddard Space Flight Center. Scientific guidance is provided by the WMAP Science Team.

  5. Plasma currents and anisotropy in the tail-dipole transition region

    Science.gov (United States)

    Artemyev, A.; Zhang, X. J.; Angelopoulos, V.; Runov, A.

    2017-12-01

    Using conjugated THEMIS and Van Allen Probes observations in the nightside magnetosphere, we examine statistically plasma and magnetic field characteristics at multiple locations simultaneously across the 3-10 RE region (i.e., across the tail-dipole transition region, whose location depends on tail flux loading and the strength of global convection). We find that the spatial distributions of ion and electron anisotropies vary significantly but systematically with radial distance and geomagnetic activity. For low Kp (4), the anisotropy profiles for ions and electrons reverse: ions are isotropic closer to the Earth and field-aligned in the tail, whereas electrons are transversely anisotropic closer to Earth but isotropic in the tail. Using the measured plasma anisotropy radial profiles we estimate the currents from curvature drifts and compare them with diamagnetic currents. We also discuss the implications of the observed plasma anisotropies for the presence and spatial distribution of field-aligned electric fields.

  6. Highly anisotropic mobility in solution processed TIPS-pentacene film studied by independently driven four GaIn probes

    Science.gov (United States)

    Yoshimoto, Shinya; Takahashi, Kohtaro; Suzuki, Mitsuharu; Yamada, Hiroko; Miyahara, Ryosuke; Mukai, Kozo; Yoshinobu, Jun

    2017-08-01

    We have studied in-plane anisotropy in the field-effect mobility of solution-processed organic semiconductor 6,13-bis(triisopropylsilylethynyl)pentacene by using independently driven four gallium indium (Ga-In) probes. Liquid-metal Ga-In probes are highly effective for reproducible conductivity measurements of organic thin films. We demonstrated that a high mobility anisotropy of 44 was obtained by using a square four-probe method and a feedback circuit to keep the channel potential constant. The present method minimized the influences of the contact resistance and the insensitivity of anisotropy in a linear arrangement in two-dimensional field-effect transistors.

  7. Slow aggregation of lysozyme in alkaline pH monitored in real time employing the fluorescence anisotropy of covalently labelled dansyl probe.

    Science.gov (United States)

    Homchaudhuri, Lopamudra; Kumar, Satish; Swaminathan, Rajaram

    2006-04-03

    The onset of hen egg white lysozyme aggregation on exposure to alkaline pH of 12.2 and subsequent slow growth of soluble lysozyme aggregates (at 298 K) was directly monitored by steady-state and time-resolved fluorescence anisotropy of covalently attached dansyl probe over a period of 24 h. The rotational correlation time accounting for tumbling of lysozyme in solution (40 microM) increased from approximately 3.6 ns (in pH 7) to approximately 40ns on exposure to pH 12.2 over a period of 6 h and remained stable thereafter. The growth of aggregates was strongly concentration dependent, irreversible after 60 min and inhibited by the presence of 0.9 M l-arginine in the medium. The day old aggregates were resistant to denaturation by 6 M guanidine.HCl. Our results reveal slow segmental motion of the dansyl probe in day old aggregates in the absence of L-arginine (0.9 M), but a much faster motion in its presence, when growth of aggregates is halted.

  8. Effect of defects, magnetocrystalline anisotropy, and shape anisotropy on magnetic structure of iron thin films by magnetic force microscopy

    Directory of Open Access Journals (Sweden)

    Ke Xu

    2017-05-01

    Full Text Available Microstructures of magnetic materials, including defects and crystallographic orientations, are known to strongly influence magnetic domain structures. Measurement techniques such as magnetic force microscopy (MFM thus allow study of correlations between microstructural and magnetic properties. The present work probes effects of anisotropy and artificial defects on the evolution of domain structure with applied field. Single crystal iron thin films on MgO substrates were milled by Focused Ion Beam (FIB to create different magnetically isolated squares and rectangles in [110] crystallographic orientations, having their easy axis 45° from the sample edge. To investigate domain wall response on encountering non-magnetic defects, a 150 nm diameter hole was created in the center of some samples. By simultaneously varying crystal orientation and shape, both magnetocrystalline anisotropy and shape anisotropy, as well as their interaction, could be studied. Shape anisotropy was found to be important primarily for the longer edge of rectangular samples, which exaggerated the FIB edge effects and provided nucleation sites for spike domains in non-easy axis oriented samples. Center holes acted as pinning sites for domain walls until large applied magnetic fields. The present studies are aimed at deepening the understanding of the propagation of different types of domain walls in the presence of defects and different crystal orientations.

  9. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, C. L.; Larson, D.; Weiland, J. L. [Department of Physics and Astronomy, The Johns Hopkins University, 3400 North Charles Street, Baltimore, MD 21218-2686 (United States); Jarosik, N.; Page, L. [Department of Physics, Jadwin Hall, Princeton University, Princeton, NJ 08544-0708 (United States); Hinshaw, G.; Halpern, M. [Department of Physics and Astronomy, University of British Columbia, Vancouver, BC V6T 1Z1 (Canada); Odegard, N.; Hill, R. S. [ADNET Systems, Inc., 7515 Mission Drive, Suite A100, Lanham, MD 20706 (United States); Smith, K. M. [Perimeter Institute for Theoretical Physics, Waterloo, ON N2L 2Y5 (Canada); Gold, B. [School of Physics and Astronomy, University of Minnesota, 116 Church Street S.E., Minneapolis, MN 55455 (United States); Komatsu, E. [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, D-85741 Garching (Germany); Nolta, M. R. [Canadian Institute for Theoretical Astrophysics, 60 St. George Street, University of Toronto, Toronto, ON M5S 3H8 (Canada); Spergel, D. N. [Department of Astrophysical Sciences, Peyton Hall, Princeton University, Princeton, NJ 08544-1001 (United States); Wollack, E.; Kogut, A. [Code 665, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Dunkley, J. [Oxford Astrophysics, Denys Wilkinson Building, Keble Road, Oxford OX1 3RH (United Kingdom); Limon, M. [Columbia Astrophysics Laboratory, 550 West 120th Street, Mail Code 5247, New York, NY 10027-6902 (United States); Meyer, S. S. [Departments of Astrophysics and Physics, KICP and EFI, University of Chicago, Chicago, IL 60637 (United States); Tucker, G. S., E-mail: cbennett@jhu.edu [Department of Physics, Brown University, 182 Hope Street, Providence, RI 02912-1843 (United States); and others

    2013-10-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C {sup –1} weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N {sub eff} = 3.84 ± 0.40). The model fit also implies that the age of the universe is t {sub 0} = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H {sub 0} = 69.32 ± 0.80 km s{sup –1} Mpc{sup –1}. Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n{sub s} = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω{sub k} = -0.0027{sup +0.0039}{sub -0.0038}). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor

  10. NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: FINAL MAPS AND RESULTS

    International Nuclear Information System (INIS)

    Bennett, C. L.; Larson, D.; Weiland, J. L.; Jarosik, N.; Page, L.; Hinshaw, G.; Halpern, M.; Odegard, N.; Hill, R. S.; Smith, K. M.; Gold, B.; Komatsu, E.; Nolta, M. R.; Spergel, D. N.; Wollack, E.; Kogut, A.; Dunkley, J.; Limon, M.; Meyer, S. S.; Tucker, G. S.

    2013-01-01

    We present the final nine-year maps and basic results from the Wilkinson Microwave Anisotropy Probe (WMAP) mission. The full nine-year analysis of the time-ordered data provides updated characterizations and calibrations of the experiment. We also provide new nine-year full sky temperature maps that were processed to reduce the asymmetry of the effective beams. Temperature and polarization sky maps are examined to separate cosmic microwave background (CMB) anisotropy from foreground emission, and both types of signals are analyzed in detail. We provide new point source catalogs as well as new diffuse and point source foreground masks. An updated template-removal process is used for cosmological analysis; new foreground fits are performed, and new foreground-reduced CMB maps are presented. We now implement an optimal C –1 weighting to compute the temperature angular power spectrum. The WMAP mission has resulted in a highly constrained ΛCDM cosmological model with precise and accurate parameters in agreement with a host of other cosmological measurements. When WMAP data are combined with finer scale CMB, baryon acoustic oscillation, and Hubble constant measurements, we find that big bang nucleosynthesis is well supported and there is no compelling evidence for a non-standard number of neutrino species (N eff = 3.84 ± 0.40). The model fit also implies that the age of the universe is t 0 = 13.772 ± 0.059 Gyr, and the fit Hubble constant is H 0 = 69.32 ± 0.80 km s –1 Mpc –1 . Inflation is also supported: the fluctuations are adiabatic, with Gaussian random phases; the detection of a deviation of the scalar spectral index from unity, reported earlier by the WMAP team, now has high statistical significance (n s = 0.9608 ± 0.0080); and the universe is close to flat/Euclidean (Ω k = -0.0027 +0.0039 -0.0038 ). Overall, the WMAP mission has resulted in a reduction of the cosmological parameter volume by a factor of 68,000 for the standard six-parameter ΛCDM model

  11. Electron anisotropy: A tool to discriminate dark matter in cosmic rays

    International Nuclear Information System (INIS)

    Borriello, Enrico; Maccione, Luca; Cuoco, Alessandro

    2012-01-01

    Indirect searches of particle Dark Matter (DM) with high energy Cosmic Rays (CR) are typically affected by large uncertainties. We show that, on the contrary, the DM intrinsic degree of anisotropy in the arrival directions of high energy CR electrons and positrons (CRE) is basically model independent and offers a straightforward criterion to discriminate among CRE from DM or from local discrete sources, like e.g. pulsars. In particular, in absence of the latter, DM sets the maximum degree of total anisotropy. As a consequence, if a larger anisotropy is detected, this would constitute an unambiguous evidence for the presence of astrophysical local discrete CRE sources. The Fermi-LAT will be able to probe such scenarios in the next years.

  12. An investigation of Oxygen adsorption on W(110) using reflectance anisotropy spectroscopy

    International Nuclear Information System (INIS)

    Zeybek, O.

    2004-01-01

    The probe of metal surface electronic structure and results of the oxidation of a BCC material and the first Joint Density of States interpretation of the spectrum from same metal have been presented. The surface sensitivity of RAS has been exploited when applied to a cubic single crystal to study the surface electronic structure of W(110) and the resulting chemisorption-induced changes upon exposure to oxygen. Oxidation of the surface is monitored until a final exposure of 10 Langmuirs is reached. A decrease of reflectance anisotropy signal is obtained with increasing oxygen coverage on the substrate and a coverage of ∼0.75 ML results in zero anisotropy over the reflectance anisotropy energy range

  13. An investigation of Oxygen adsorption on W(110) using reflectance anisotropy spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zeybek, O [Department of Physics, Balikesir University, Balikesir (Turkey)

    2004-07-01

    The probe of metal surface electronic structure and results of the oxidation of a BCC material and the first Joint Density of States interpretation of the spectrum from same metal have been presented. The surface sensitivity of RAS has been exploited when applied to a cubic single crystal to study the surface electronic structure of W(110) and the resulting chemisorption-induced changes upon exposure to oxygen. Oxidation of the surface is monitored until a final exposure of 10 Langmuirs is reached. A decrease of reflectance anisotropy signal is obtained with increasing oxygen coverage on the substrate and a coverage of {approx}0.75 ML results in zero anisotropy over the reflectance anisotropy energy range.

  14. Simultaneous determination of glycols based on fluorescence anisotropy

    International Nuclear Information System (INIS)

    Garcia Sanchez, F.; Navas Diaz, A.; Lopez Guerrero, M.M.

    2007-01-01

    Simultaneous determination of non-fluorescent glycols in mixtures without separation or chemical transformation steps is described. Two methods based in the measure of fluorescence anisotropy of a probe such as fluorescein dissolved in the analyte or analyte mixtures are described. In the first method, the anisotropy spectra of pure and mixtures of analytes are used to quantitative determination (if the fluorophor concentration is in a range where fluorescence intensity is proportional to concentration). In the second method, a calibration curve anisotropy-concentration based on the application of the Perrin equation is established. The methods presented here are capable of directly resolving binary mixtures of non-fluorescent glycols on the basis of differences on the fluorescence anisotropy of a fluorescence tracer. Best analytical performances were obtained by application of the method based on Perrin equation. This method is simple, rapid and allows the determination of mixtures of glycols with reasonable accuracy and precision. Detection limits are limited by the quantum yield and anisotropy values of the tracer in the solvents. Recovery values are related to the differences in anisotropy values of the tracer in the pure solvents. Mixtures of glycerine/ethylene glycol (GL/EG), ethylene glycol/1,2-propane diol (EG/1,2-PPD) and polyethylene glycol 400/1,2-propane diol (PEG 400/1,2-PPD) were analysed and recovery values are within 95-120% in the Perrin method. Relative standard deviation are in the range 1.3-2.9% and detection limits in the range 3.9-8.9%

  15. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Science.gov (United States)

    Doughty, Christopher E; Wolf, Adam

    2016-01-01

    Sagan et al. (1993) used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993) could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993) noted a red edge in the reflectance spectrum, indicative of photosynthesis) as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position) which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  16. Detecting 3D Vegetation Structure with the Galileo Space Probe: Can a Distant Probe Detect Vegetation Structure on Earth?

    Directory of Open Access Journals (Sweden)

    Christopher E Doughty

    Full Text Available Sagan et al. (1993 used the Galileo space probe data and first principles to find evidence of life on Earth. Here we ask whether Sagan et al. (1993 could also have detected whether life on Earth had three-dimensional structure, based on the Galileo space probe data. We reanalyse the data from this probe to see if structured vegetation could have been detected in regions with abundant photosynthetic pigments through the anisotropy of reflected shortwave radiation. We compare changing brightness of the Amazon forest (a region where Sagan et al. (1993 noted a red edge in the reflectance spectrum, indicative of photosynthesis as the planet rotates to a common model of reflectance anisotropy and found measured increase of surface reflectance of 0.019 ± 0.003 versus a 0.007 predicted from only anisotropic effects. We hypothesize the difference was due to minor cloud contamination. However, the Galileo dataset had only a small change in phase angle (sun-satellite position which reduced the observed anisotropy signal and we demonstrate that theoretically if the probe had a variable phase angle between 0-20°, there would have been a much larger predicted change in surface reflectance of 0.1 and under such a scenario three-dimensional vegetation structure on Earth could possibly have been detected. These results suggest that anisotropic effects may be useful to help determine whether exoplanets have three-dimensional vegetation structure in the future, but that further comparisons between empirical and theoretical results are first necessary.

  17. Late time CMB anisotropies constrain mini-charged particles

    Energy Technology Data Exchange (ETDEWEB)

    Burrage, C.; Redondo, J.; Ringwald, A. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Jaeckel, J. [Univ. of Durham, Inst. for Particle Physics Phenomenology (United Kingdom)

    2009-09-15

    Observations of the temperature anisotropies induced as light from the CMB passes through large scale structures in the late universe are a sensitive probe of the interactions of photons in such environments. In extensions of the Standard Model which give rise to mini-charged particles, photons propagating through transverse magnetic fields can be lost to pair production of such particles. Such a decrement in the photon flux would occur as photons from the CMB traverse the magnetic fields of galaxy clusters. Therefore late time CMB anisotropies can be used to constrain the properties of mini- charged particles. We outline how this test is constructed, and present new constraints on mini-charged particles from observations of the Sunyaev-Zel'dovich effect in the Coma cluster. (orig.)

  18. Direct fluorescence anisotropy assay for cocaine using tetramethylrhodamine-labeled aptamer.

    Science.gov (United States)

    Liu, Yingxiong; Zhao, Qiang

    2017-06-01

    Development of simple, sensitive, and rapid method for cocaine detection is important in medicine and drug abuse monitoring. Taking advantage of fluorescence anisotropy and aptamer, this study reports a direct fluorescence anisotropy (FA) assay for cocaine by employing an aptamer probe with tetramethylrhodamine (TMR) labeled on a specific position. The binding of cocaine and the aptamer causes a structure change of the TMR-labeled aptamer, leading to changes of the interaction between labeled TMR and adjacent G bases in aptamer sequence, so FA of TMR varies with increasing of cocaine. After screening different labeling positions of the aptamer, including thymine (T) bases and terminals of the aptamer, we obtained a favorable aptamer probe with TMR labeled on the 25th base T in the sequence, which exhibited sensitive and significant FA-decreasing responses upon cocaine. Under optimized assay conditions, this TMR-labeled aptamer allowed for direct FA detection of cocaine as low as 5 μM. The maximum FA change reached about 0.086. This FA method also enabled the detection of cocaine spiked in diluted serum and urine samples, showing potential for applications. Graphical Abstract The binding of cocaine to the TMR-labeled aptamer causes conformation change and alteration of the intramolecular interaction between TMR and bases of aptamer, leading to variance of fluorescence anisotropy (FA) of TMR, so direct FA analyis of cocaine is achieved.

  19. A review of the analysis of complex time-resolved fluorescence anisotropy data

    International Nuclear Information System (INIS)

    Smith, Trevor A; Ghiggino, Kenneth P

    2015-01-01

    Time-resolved fluorescence anisotropy measurements (TRAMs) are widely used to probe the dynamics of the various processes that can lead to the depolarisation of emission following photoselection by polarised excitation. The most commonly investigated of these emission depolarising phenomena is molecular rotational motion, but TRAMs are very useful for determining the kinetics of a host of other processes. In this paper we review several examples for which we have observed in our laboratories initially unexpectedly complex temporal behaviour of the time-resolved fluorescence anisotropy signal from relatively ‘simple’ chemical systems. In certain circumstances the anisotropy (i) decays on timescales when superficially it might be thought it should remain constant, (ii) shows marked ‘dip and rise’ behaviour in its intensity, or (iii) can change sign as the anisotropy evolves in time. Fundamentally simple processes, including molecular rotational motion, energy migration and excited state photophysics, can cause such behaviour. (topical review)

  20. Structural anisotropy in amorphous SnO2 film probed by X-ray absorption spectroscopy

    Science.gov (United States)

    Zhu, Q.; Ma, Q.; Buchholz, D. B.; Chang, R. P. H.; Bedzyk, M. J.; Mason, T. O.

    2013-07-01

    Polarization-dependent X-ray absorption measurements reveal the existence of structural anisotropy in amorphous (a-) SnO2 film. The anisotropy is readily seen for the second neighbor interaction whose magnitude differs along three measured directions. The differences can be well accounted for by 10%-20% variation in the Debye-Waller factor. Instead of a single Gaussian distribution found in crystalline SnO2, the Sn-O bond distribution is bimodal in a-SnO2 whose separation shows a weak angular dependence. The oxygen vacancies, existing in the a-SnO2 film in the order of 1021 cm-3, distribute preferentially along the film surface direction.

  1. Reconstruction of CMB temperature anisotropies with primordial CMB induced polarization in galaxy clusters

    Science.gov (United States)

    Liu, Guo-Chin; Ichiki, Kiyotomo; Tashiro, Hiroyuki; Sugiyama, Naoshi

    2016-07-01

    Scattering of cosmic microwave background (CMB) radiation in galaxy clusters induces polarization signals determined by the quadrupole anisotropy in the photon distribution at the location of clusters. This `remote quadrupole' derived from the measurements of the induced polarization in galaxy clusters provides an opportunity to reconstruct local CMB temperature anisotropies. In this Letter, we develop an algorithm of the reconstruction through the estimation of the underlying primordial gravitational potential, which is the origin of the CMB temperature and polarization fluctuations and CMB induced polarization in galaxy clusters. We found a nice reconstruction for the quadrupole and octopole components of the CMB temperature anisotropies with the assistance of the CMB induced polarization signals. The reconstruction can be an important consistency test on the puzzles of CMB anomalies, especially for the low-quadrupole and axis-of-evil problems reported in Wilkinson Microwave Anisotropy Probe and Planck data.

  2. Magnetic anisotropy in (Ga,Mn)As: Influence of epitaxial strain and hole concentration

    Science.gov (United States)

    Glunk, M.; Daeubler, J.; Dreher, L.; Schwaiger, S.; Schoch, W.; Sauer, R.; Limmer, W.; Brandlmaier, A.; Goennenwein, S. T. B.; Bihler, C.; Brandt, M. S.

    2009-05-01

    We present a systematic study on the influence of epitaxial strain and hole concentration on the magnetic anisotropy in (Ga,Mn)As at 4.2 K. The strain was gradually varied over a wide range from tensile to compressive by growing a series of (Ga,Mn)As layers with 5% Mn on relaxed graded (In,Ga)As/GaAs templates with different In concentration. The hole density, the Curie temperature, and the relaxed lattice constant of the as-grown and annealed (Ga,Mn)As layers turned out to be essentially unaffected by the strain. Angle-dependent magnetotransport measurements performed at different magnetic-field strengths were used to probe the magnetic anisotropy. The measurements reveal a pronounced linear dependence of the uniaxial out-of-plane anisotropy on both strain and hole density. Whereas the uniaxial and cubic in-plane anisotropies are nearly constant, the cubic out-of-plane anisotropy changes sign when the magnetic easy axis flips from in-plane to out-of-plane. The experimental results for the magnetic anisotropy are quantitatively compared with calculations of the free energy based on a mean-field Zener model. Almost perfect agreement between experiment and theory is found for the uniaxial out-of-plane and cubic in-plane anisotropy parameters of the as-grown samples. In addition, magnetostriction constants are derived from the anisotropy data.

  3. Protein rotational dynamics investigated with a dual EPR/optical molecular probe. Spin-labeled eosin.

    Science.gov (United States)

    Cobb, C E; Hustedt, E J; Beechem, J M; Beth, A H

    1993-01-01

    An acyl spin-label derivative of 5-aminoeosin (5-SLE) was chemically synthesized and employed in studies of rotational dynamics of the free probe and of the probe when bound noncovalently to bovine serum albumin using the spectroscopic techniques of fluorescence anisotropy decay and electron paramagnetic resonance (EPR) and their long-lifetime counterparts phosphorescence anisotropy decay and saturation transfer EPR. Previous work (Beth, A. H., Cobb, C. E., and J. M. Beechem, 1992. Synthesis and characterization of a combined fluorescence, phosphorescence, and electron paramagnetic resonance probe. Society of Photo-Optical Instrumentation Engineers. Time-Resolved Laser Spectroscopy III. 504-512) has shown that the spin-label moiety only slightly altered the fluorescence and phosphorescence lifetimes and quantum yields of 5-SLE when compared with 5-SLE whose nitroxide had been reduced with ascorbate and with the diamagnetic homolog 5-acetyleosin. In the present work, we have utilized time-resolved fluorescence anisotropy decay and linear EPR spectroscopies to observe and quantitate the psec motions of 5-SLE in solution and the nsec motions of the 5-SLE-bovine serum albumin complex. Time-resolved phosphorescence anisotropy decay and saturation transfer EPR studies have been carried out to observe and quantitate the microseconds motions of the 5-SLE-albumin complex in glycerol/buffer solutions of varying viscosity. These latter studies have enabled a rigorous comparison of rotational correlation times obtained from these complementary techniques to be made with a single probe. The studies described demonstrate that it is possible to employ a single molecular probe to carry out the full range of fluorescence, phosphorescence, EPR, and saturation transfer EPR studies. It is anticipated that "dual" molecular probes of this general type will significantly enhance capabilities for extracting dynamics and structural information from macromolecules and their functional

  4. Magnetization switching behavior with competing anisotropies in epitaxial Co3FeN /MnN exchange-coupled bilayers

    Science.gov (United States)

    Hajiri, T.; Yoshida, T.; Jaiswal, S.; Filianina, M.; Borie, B.; Ando, H.; Asano, H.; Zabel, H.; Kläui, M.

    2016-11-01

    We report unusual magnetization switching processes and angular-dependent exchange bias effects in fully epitaxial Co3FeN /MnN bilayers, where magnetocrystalline anisotropy and exchange coupling compete, probed by longitudinal and transverse magneto-optic Kerr effect (MOKE) magnetometry. The MOKE loops show multistep jumps corresponding to the nucleation and propagation of 90∘ domain walls in as-grown bilayers. By inducing exchange coupling, we confirm changes of the magnetization switching process due to the unidirectional anisotropy field of the exchange coupling. Taking into account the experimentally obtained values of the fourfold magnetocrystalline anisotropy, the unidirectional anisotropy field, the exchange-coupling constant, and the uniaxial anisotropy including its direction, the calculated angular-dependent exchange bias reproduces the experimental results. These results demonstrate the essential role of the competition between magnetocrystalline anisotropy and exchange coupling for understanding and tailoring exchange-coupling phenomena usable for engineering switching in fully epitaxial bilayers made of tailored materials.

  5. Correlated adiabatic and isocurvature cosmic microwave background fluctuations in the wake of the results from the wilkinson microwave anisotropy probe.

    Science.gov (United States)

    Väliviita, Jussi; Muhonen, Vesa

    2003-09-26

    In general correlated models, in addition to the usual adiabatic component with a spectral index n(ad1) there is another adiabatic component with a spectral index n(ad2) generated by entropy perturbation during inflation. We extend the analysis of a correlated mixture of adiabatic and isocurvature cosmic microwave background fluctuations of the Wilkinson Microwave Anisotropy Probe (WMAP) group, who set the two adiabatic spectral indices equal. Allowing n(ad1) and n(ad2) to vary independently we find that the WMAP data favor models where the two adiabatic components have opposite spectral tilts. Using the WMAP data only, the 2sigma upper bound for the isocurvature fraction f(iso) of the initial power spectrum at k(0)=0.05 Mpc(-1) increases somewhat, e.g., from 0.76 of n(ad2)=n(ad1) models to 0.84 with a prior n(iso)<1.84 for the isocurvature spectral index.

  6. Global imaging of the Earth's deep interior: seismic constraints on (an)isotropy, density and attenuation

    NARCIS (Netherlands)

    Trampert, J.; Fichtner, A.

    2013-01-01

    Seismic tomography is the principal tool to probe the deep interior of the Earth. Models of seismic anisotropy induced by crystal alignment provide insight into the underlying convective motion, and variations of density allow us to discriminate between thermal and compositional heterogeneities.

  7. Shape anisotropy: tensor distance to anisotropy measure

    Science.gov (United States)

    Weldeselassie, Yonas T.; El-Hilo, Saba; Atkins, M. S.

    2011-03-01

    Fractional anisotropy, defined as the distance of a diffusion tensor from its closest isotropic tensor, has been extensively studied as quantitative anisotropy measure for diffusion tensor magnetic resonance images (DT-MRI). It has been used to reveal the white matter profile of brain images, as guiding feature for seeding and stopping in fiber tractography and for the diagnosis and assessment of degenerative brain diseases. Despite its extensive use in DT-MRI community, however, not much attention has been given to the mathematical correctness of its derivation from diffusion tensors which is achieved using Euclidean dot product in 9D space. But, recent progress in DT-MRI has shown that the space of diffusion tensors does not form a Euclidean vector space and thus Euclidean dot product is not appropriate for tensors. In this paper, we propose a novel and robust rotationally invariant diffusion anisotropy measure derived using the recently proposed Log-Euclidean and J-divergence tensor distance measures. An interesting finding of our work is that given a diffusion tensor, its closest isotropic tensor is different for different tensor distance metrics used. We demonstrate qualitatively that our new anisotropy measure reveals superior white matter profile of DT-MR brain images and analytically show that it has a higher signal to noise ratio than fractional anisotropy.

  8. Elastic anisotropy of crystals

    Directory of Open Access Journals (Sweden)

    Christopher M. Kube

    2016-09-01

    Full Text Available An anisotropy index seeks to quantify how directionally dependent the properties of a system are. In this article, the focus is on quantifying the elastic anisotropy of crystalline materials. Previous elastic anisotropy indices are reviewed and their shortcomings discussed. A new scalar log-Euclidean anisotropy measure AL is proposed, which overcomes these deficiencies. It is based on a distance measure in a log-Euclidean space applied to fourth-rank elastic tensors. AL is an absolute measure of anisotropy where the limiting case of perfect isotropy yields zero. It is a universal measure of anisotropy applicable to all crystalline materials. Specific examples of strong anisotropy are highlighted. A supplementary material provides an anisotropy table giving the values of AL for 2,176 crystallite compounds.

  9. On the origin of high transient anisotropies: An exemplification in a Cd-porphyrin

    International Nuclear Information System (INIS)

    Liang, Yu; Klinger, Melanie; Unterreiner, Andreas-Neil; Schalk, Oliver

    2013-01-01

    Transient anisotropy is a widely used spectroscopic method to access the polarization dynamics of a molecular sample. In this contribution, we present results on 5,10,15,20-tetraphenyl-porphyrinato cadmium (II) in tetrahydrofuran which exhibits values exceeding the typical range between 0.4 and −0.2 in dependence of the probe wavelength. These findings are explained by varying contributions from excited state absorption and ground state bleaching/stimulated emission. Model calculations show that time zero values and time decays are complex values that often do not correlate with the underlying physical processes. As a consequence, the interpretation of anisotropy experiments necessitates extreme care

  10. Anisotropy in "isotropic diffusion" measurements due to nongaussian diffusion

    DEFF Research Database (Denmark)

    Jespersen, Sune Nørhøj; Olesen, Jonas Lynge; Ianuş, Andrada

    2017-01-01

    Designing novel diffusion-weighted NMR and MRI pulse sequences aiming to probe tissue microstructure with techniques extending beyond the conventional Stejskal-Tanner family is currently of broad interest. One such technique, multidimensional diffusion MRI, has been recently proposed to afford...... model-free decomposition of diffusion signal kurtosis into terms originating from either ensemble variance of isotropic diffusivity or microscopic diffusion anisotropy. This ability rests on the assumption that diffusion can be described as a sum of multiple Gaussian compartments, but this is often...

  11. Magnetic anisotropy and magnetization switching in ferromagnetic GaMnAs

    Energy Technology Data Exchange (ETDEWEB)

    Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2007-07-01

    Characteristic features of semiconductor spintronics such as the anisotropic magnetoresistance or the spin-polarization of charge carriers are intimately connected with the macroscopic magnetization in a ferromagnetic semiconductor. The orientation of the magnetization is controlled by magnetic anisotropy which predominantly ar ises from crystal symmetry, sample geometry, and strain. A detailed knowledge of this anisotropy is indispensable for the design of novel spintronic devices. In this talk, angle-dependent magnetotransport is demonstrated to be an excellent tool for probing magnetic anisotropy as an alternative to the standard ferromagnetic-resonance method. Moreover, its ability to trace the movement of the magnetization vector in a variable external magnetic field makes it ideally suitable f or studying magnetization switching, a potential basic effect in future logical devices. Experimental data recorded from a variety of different GaMnAs samples a re analyzed by means of model calculations which are based on a series expansion of the resistivity tensor, a numerical minimization of the free enthalpy with respect to the magnetization orientation, and the assumption that the GaMnAs laye rs under study consist of single ferromagnetic domains.

  12. Quantitative assessment of submicron scale anisotropy in tissue multifractality by scattering Mueller matrix in the framework of Born approximation

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-04-01

    A number of tissue-like disordered media exhibit local anisotropy of scattering in the scaling behavior. Scaling behavior contains wealth of fractal or multifractal properties. We demonstrate that the spatial dielectric fluctuations in a sample of biological tissue exhibit multifractal anisotropy. Multifractal anisotropy encoded in the wavelength variation of the light scattering Mueller matrix and manifesting as an intriguing spectral diattenuation effect. We developed an inverse method for the quantitative assessment of the multifractal anisotropy. The method is based on the processing of relevant Mueller matrix elements in Fourier domain by using Born approximation, followed by the multifractal analysis. The approach promises for probing subtle micro-structural changes in biological tissues associated with the cancer and precancer, as well as for non-destructive characterization of a wide range of scattering materials.

  13. Fourier-transform infrared anisotropy in cross and parallel sections of tendon and articular cartilage

    Directory of Open Access Journals (Sweden)

    Bidthanapally Aruna

    2008-10-01

    Full Text Available Abstract Background Fourier Transform Infrared Imaging (FTIRI is used to investigate the amide anisotropies at different surfaces of a three-dimensional cartilage or tendon block. With the change in the polarization state of the incident infrared light, the resulting anisotropic behavior of the tissue structure is described here. Methods Thin sections (6 μm thick were obtained from three different surfaces of the canine tissue blocks and imaged at 6.25 μm pixel resolution. For each section, infrared imaging experiments were repeated thirteen times with the identical parameters except a 15° increment of the analyzer's angle in the 0° – 180° angular space. The anisotropies of amide I and amide II components were studied in order to probe the orientation of the collagen fibrils at different tissue surfaces. Results For tendon, the anisotropy of amide I and amide II components in parallel sections is comparable to that of regular sections; and tendon's cross sections show distinct, but weak anisotropic behavior for both the amide components. For articular cartilage, parallel sections in the superficial zone have the expected infrared anisotropy that is consistent with that of regular sections. The parallel sections in the radial zone, however, have a nearly isotropic amide II absorption and a distinct amide I anisotropy. Conclusion From the inconsistency in amide anisotropy between superficial to radial zone in parallel section results, a schematic model is used to explain the origins of these amide anisotropies in cartilage and tendon.

  14. Pressure tuning of anisotropy barrier in Fe8 SMMs probed using high frequency EPR

    Science.gov (United States)

    Thirunavukkuarasu, Komalavalli; Beedle, Christopher; Tozer, Stanley; Hill, Stephen

    2014-03-01

    Single-molecule magnets (SMMs) are spin systems with large spin ground state where quantum phenomena such as tunneling of magnetization via a considerable anisotropy barrier manifest. One such SMM that has been extensively studied is [Fe8O2(OH)12(tacn)6]Br8.9H2O, also known as Fe8, with a giant spin ground state of S=10. The eight Fe atoms bridged by the ligands form a butterfly structure where six Fe atoms have spins up and two spins down in the simplest model. This structure in fact gives rise to geometrical spin frustration effects within the cluster. By varying the interaction between the spins, manipulation of quantum tunneling in SMMs may be achieved. Typically, the manipulation of spin interactions is realized using chemical methods. As an alternative approach, we employ high pressure to induce changes in the ligand-field environment of the Fe atoms. In this presentation, the pressure-dependent changes in the anisotropy barrier in single crystal Fe8 SMMs investigated by high frequency electron paramagnetic resonance measurements will be discussed.

  15. Exchange anisotropy as a probe of antiferromagnetism in expanded face-centered-tetragonal Mn(001) layers

    NARCIS (Netherlands)

    Kohlhepp, J.T.; Wieldraaijer, H.; Jonge, de W.J.M.

    2006-01-01

    Manganese (Mn) grows coherent and with an expanded metastable face-centered-tetragonal (e-fct) structure on ultrathin fct Co(001)/Cu(001) template layers. From the temp. dependence of the obsd. unidirectional Mn/Co interface exchange anisotropy, an antiferromagnetic state with a blocking temp.

  16. Higher-order anisotropies in the blast-wave model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Cimerman, Jakub [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Comenius University, FMPI, Bratislava (Slovakia); Tomasik, Boris [Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Univerzita Mateja Bela, FPV, Banska Bystrica (Slovakia); Csanad, Mate; Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary)

    2017-08-15

    We formulate a generalisation of the blast-wave model which is suitable for the description of higher-order azimuthal anisotropies of the hadron production. The model includes anisotropy in the density profile as well as an anisotropy in the transverse expansion velocity field. We then study how these two kinds of anisotropies influence the single-particle distributions and the correlation radii of two-particle correlation functions. Particularly we focus on the third-order anisotropy and consideration is given averaging over different orientations of the event plane. (orig.)

  17. Exhaustive Study of Cosmic Microwave Background Anisotropies in Quintessential Scenarios

    CERN Document Server

    Brax, P; Riazuelo, A; Brax, Philippe; Martin, Jerome; Riazuelo, Alain

    2000-01-01

    Recent high precision measurements of the CMB anisotropies performed by the BOOMERanG and MAXIMA-1 experiments provide an unmatched set of data allowing to probe different cosmological models. Among these scenarios, motivated by the recent measurements of the luminosity distance versus redshift relation for type Ia supernovae, is the quintessence hypothesis. It consists in assuming that the acceleration of the Universe is due to a scalar field whose final evolution is insensitive to the initial conditions. Within this framework we investigate the cosmological perturbations for two well-motivated potentials: the Ratra-Peebles and the SUGRA tracking potentials. We show that the solutions of the perturbed equations possess an attractor and that, as a consequence, the insensitivity to the initial conditions is preserved at the perturbed level. Then, we study the predictions of these two models for structure formation and CMB anisotropies and investigate the general features of the multipole moments in the presenc...

  18. Exchange anisotropy pinning of a standing spin-wave mode

    Science.gov (United States)

    Magaraggia, R.; Kennewell, K.; Kostylev, M.; Stamps, R. L.; Ali, M.; Greig, D.; Hickey, B. J.; Marrows, C. H.

    2011-02-01

    Standing spin waves in a thin film are used as sensitive probes of interface pinning induced by an antiferromagnet through exchange anisotropy. Using coplanar waveguide ferromagnetic resonance, pinning of the lowest energy spin-wave thickness mode in Ni80Fe20/Ir25Mn75 exchange-biased bilayers was studied for a range of Ir25Mn75 thicknesses. We show that pinning of the standing mode can be used to amplify, relative to the fundamental resonance, frequency shifts associated with exchange bias. The shifts provide a unique “fingerprint” of the exchange bias and can be interpreted in terms of an effective ferromagnetic film thickness and ferromagnet-antiferromagnet interface anisotropy. Thermal effects are studied for ultrathin antiferromagnetic Ir25Mn75 thicknesses, and the onset of bias is correlated with changes in the pinning fields. The pinning strength magnitude is found to grow with cooling of the sample, while the effective ferromagnetic film thickness simultaneously decreases. These results suggest that exchange bias involves some deformation of magnetic order in the interface region.

  19. Structure in the lowermost mantle from seismic anisotropy

    Science.gov (United States)

    Walpole, J.; Wookey, J. M.; Nowacki, A.; Walker, A.; Kendall, J. M.; Masters, G.; Forte, A. M.

    2017-12-01

    Anisotropy is well established in D'' and places important constraints on the nature and dynamics of this elusive region. We present the results of a recent study probing anisotropy in D'', over a large area, using shear wave splitting on core-reflected ScS phases. Our dataset contains laterally continuous coverage beneath a large swath of east Asia - extending about 3000 km along the CMB - from south-east Asia to the north-east Pacific. The centre of this area represents a large down-welling core for subduction that has occurred over several super-continent cycles. In the centre of this region we observe a clear VSV}>V{SH fabric, in direct conflict with the prevailing view that fast, `cold', regions are associated with VSH}>V{SV fabric. Furthermore, systematic rotation of the fast axis traces out an apparent dome-like feature extending over thousands of km, albeit complicated by some short-scale variability. The dataset also samples regions where slab material may be actively impinging on the CMB; and a region corresponding to the edge of the Pacific LLSVP. We interpret our results in light of a combined computational geodynamic-petrofabric-seismic study designed to test the possibility that anisotropy is caused by the lattice preferred orientation of post-perovskite. We take into account the important finite-frequency effects of wave propagation in our synthetics by using the SPECFEM3D_GLOBE code; this can lead to drastically different results when compared to the less accurate ray theory.

  20. Probing in-plane anisotropy in few-layer ReS2 using low frequency noise measurement

    Science.gov (United States)

    Mitra, Richa; Jariwala, Bhakti; Bhattacharya, Arnab; Das, Anindya

    2018-04-01

    ReS2, a layered two-dimensional material popular for its in-plane anisotropic properties, is emerging as one of the potential candidates for flexible electronics and ultrafast optical applications. It is an n-type semiconducting material having a layer independent bandgap of 1.55 eV. In this paper we have characterized the intrinsic electronic noise level of few-layer ReS2 for the first time. Few-layer ReS2 field effect transistor devices show a 1/f nature of noise for frequency ranging over three orders of magnitude. We have also observed that not only the electrical response of the material is anisotropic; the noise level is also dependent on direction. In fact the noise is found to be more sensitive towards the anisotropy. This fact has been explained by evoking the theory where the Hooge parameter is not a constant quantity, but has a distinct power law dependence on mobility along the two-axes direction. The anisotropy in 1/f noise measurement will pave the way to quantify the anisotropic nature of two-dimensional (2D) materials, which will be helpful for the design of low-noise transistors in future.

  1. CMB statistical anisotropy from noncommutative gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Shiraishi, Maresuke; Ricciardone, Angelo [Dipartimento di Fisica e Astronomia ' ' G. Galilei' ' , Università degli Studi di Padova, via Marzolo 8, I-35131, Padova (Italy); Mota, David F. [Institute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo (Norway); Arroja, Frederico, E-mail: maresuke.shiraishi@pd.infn.it, E-mail: d.f.mota@astro.uio.no, E-mail: angelo.ricciardone@pd.infn.it, E-mail: arroja@pd.infn.it [INFN, Sezione di Padova, via Marzolo 8, I-35131, Padova (Italy)

    2014-07-01

    Primordial statistical anisotropy is a key indicator to investigate early Universe models and has been probed by the cosmic microwave background (CMB) anisotropies. In this paper, we examine tensor-mode CMB fluctuations generated from anisotropic gravitational waves, parametrised by P{sub h}(k) = P{sub h}{sup (0)}(k) [ 1 + ∑{sub LM} f{sub L}(k) g{sub LM} Y{sub LM} ( k-circumflex )], where P{sub h}{sup (0)}(k) is the usual scale-invariant power spectrum. Such anisotropic tensor fluctuations may arise from an inflationary model with noncommutativity of fields. It is verified that in this model, an isotropic component and a quadrupole asymmetry with f{sub 0}(k) = f{sub 2}(k) ∝ k{sup -2} are created and hence highly red-tilted off-diagonal components arise in the CMB power spectra, namely ℓ{sub 2} = ℓ{sub 1} ± 2 in TT, TE, EE and BB, and ℓ{sub 2} = ℓ{sub 1} ± 1 in TB and EB. We find that B-mode polarisation is more sensitive to such signals than temperature and E-mode polarisation due to the smallness of large-scale cosmic variance and we can potentially measure g{sub 00} = 30 and g{sub 2M} = 58 at 68% CL in a cosmic-variance-limited experiment. Such a level of signal may be measured in a PRISM like experiment, while the instrumental noise contaminates it in the Planck experiment. These results imply that it is impossible to measure the noncommutative parameter if it is small enough for the perturbative treatment to be valid. Our formalism and methodology for dealing with the CMB tensor statistical anisotropy are general and straightforwardly applicable to other early Universe models.

  2. Probing anisotropies of gravitational-wave backgrounds with a space-based interferometer: Geometric properties of antenna patterns and their angular power

    International Nuclear Information System (INIS)

    Kudoh, Hideaki; Taruya, Atsushi

    2005-01-01

    We discuss the sensitivity to anisotropies of stochastic gravitational-wave backgrounds (GWBs) observed via space-based interferometer. In addition to the unresolved galactic binaries as the most promising GWB source of the planned Laser Interferometer Space Antenna (LISA), the extragalactic sources for GWBs might be detected in the future space missions. The anisotropies of the GWBs thus play a crucial role to discriminate various components of the GWBs. We study general features of antenna pattern sensitivity to the anisotropies of GWBs beyond the low-frequency approximation. We show that the sensitivity of space-based interferometer to GWBs is severely restricted by the data combinations and the symmetries of the detector configuration. The spherical harmonic analysis of the antenna pattern functions reveals that the angular power of the detector response increases with frequency and the detectable multipole moments with effective sensitivity h eff ∼10 -20 Hz -1/2 may reach l∼8-10 at f∼f * =10 mHz in the case of the single LISA detector. However, the cross correlation of optimal interferometric variables is blind to the monopole (l=0) intensity anisotropy, and also to the dipole (l=1) in some case, irrespective of the frequency band. Besides, all the self-correlated signals are shown to be blind to the odd multipole moments (l=odd), independently of the frequency band

  3. Strain-induced fermi contour anisotropy of GaAs 2D holes.

    Science.gov (United States)

    Shabani, J; Shayegan, M; Winkler, R

    2008-03-07

    We report measurements of magnetoresistance commensurability peaks, induced by a square array of antidots, in GaAs (311)A two-dimensional holes as a function of applied in-plane strain. The data directly probe the shapes of the Fermi contours of the two spin subbands that are split thanks to the spin-orbit interaction and strain. The experimental results are in quantitative agreement with the predictions of accurate energy band calculations, and reveal that the majority spin subband has a severely distorted Fermi contour whose anisotropy can be tuned with strain.

  4. Magnetocrystalline Anisotropy of Magnetic Grains in Co80Pt20:Oxide Thin Films Probed by X-ray Magnetic Circular Dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, W.; Morton, S. A.; Wong, P. K. J.; Arenholz, E.; Lu, B.; Cheng, T. Y.; Xu, Y. B.; Laan, G. van der; Hu, X.F

    2011-01-12

    Using angle-dependent x-ray magnetic circular dichroism, we have measured magnetic hysteresis loops at the Co L2,3 edges of oxide-doped Co80Pt20 thin films. The magnetocrystalline anisotropy energy (MAE) of the Co atoms, which is the main source of the magnetocrystalline anisotropy of the CoPt magnetic grains, has been determined directly from these element-specific hysteresis loops. When the oxide volume fraction (OVF) is increased from 16.6% to 20.7%, the Co MAE has been found to decrease from 0.117 meV/atom to 0.076 meV/atom. While a larger OVF helps one to achieve a smaller grain size, it reduces the magnetocrystalline anisotropy, as demonstrated unambiguously from the direct Co MAE measurements. Our results suggest that those Co80Pt20:oxide films with an OVF between 19.1% and 20.7% are suitable candidates for high-density magnetic recording.

  5. Higher-order anisotropies in the Buda-Lund model: Disentangling flow and density field anisotropies

    Energy Technology Data Exchange (ETDEWEB)

    Loekoes, Sandor [Eoetvoes Lorand University, Budapest (Hungary); Csanad, Mate [Eoetvoes Lorand University, Budapest (Hungary); Stony Brook University, Stony Brook, NY (United States); Tomasik, Boris [Univerzita Mateja Bela, Banska Bystrica (Slovakia); Czech Technical University in Prague, FNSPE, Prague (Czech Republic); Csoergo, Tamas [Wigner RCP, Budapest (Hungary); KRF, Gyoengyoes (Hungary)

    2016-10-15

    The Buda-Lund hydro model describes an expanding ellipsoidal fireball, and fits the observed elliptic flow and oscillating HBT radii successfully. Due to fluctuations in energy depositions, the fireball shape however fluctuates on an event-by-event basis. The transverse plane asymmetry can be translated into a series of multipole anisotropy coefficients. These anisotropies then result in measurable momentum-space anisotropies, to be measured with respect to their respective symmetry planes. In this paper we detail an extension of the Buda-Lund model to multipole anisotropies and investigate the resulting flow coefficients and oscillations of HBT radii. (orig.)

  6. Steady-state acceptor fluorescence anisotropy imaging under evanescent excitation for visualisation of FRET at the plasma membrane.

    Directory of Open Access Journals (Sweden)

    Viviane Devauges

    Full Text Available We present a novel imaging system combining total internal reflection fluorescence (TIRF microscopy with measurement of steady-state acceptor fluorescence anisotropy in order to perform live cell Förster Resonance Energy Transfer (FRET imaging at the plasma membrane. We compare directly the imaging performance of fluorescence anisotropy resolved TIRF with epifluorescence illumination. The use of high numerical aperture objective for TIRF required correction for induced depolarization factors. This arrangement enabled visualisation of conformational changes of a Raichu-Cdc42 FRET biosensor by measurement of intramolecular FRET between eGFP and mRFP1. Higher activity of the probe was found at the cell plasma membrane compared to intracellularly. Imaging fluorescence anisotropy in TIRF allowed clear differentiation of the Raichu-Cdc42 biosensor from negative control mutants. Finally, inhibition of Cdc42 was imaged dynamically in live cells, where we show temporal changes of the activity of the Raichu-Cdc42 biosensor.

  7. Large-angle cosmic microwave background anisotropies in an open universe

    Science.gov (United States)

    Kamionkowski, Marc; Spergel, David N.

    1994-01-01

    If the universe is open, scales larger than the curvature scale may be probed by observation of large-angle fluctuations in the cosmic microwave background (CMB). We consider primordial adiabatic perturbations and discuss power spectra that are power laws in volume, wavelength, and eigenvalue of the Laplace operator. Such spectra may have arisen if, for example, the universe underwent a period of `frustated' inflation. The resulting large-angle anisotropies of the CMB are computed. The amplitude generally increases as Omega is decreased but decreases as h is increased. Interestingly enough, for all three Ansaetze, anisotropies on angular scales larger than the curvature scale are suppressed relative to the anisotropies on scales smaller than the curvature scale, but cosmic variance makes discrimination between various models difficult. Models with 0.2 approximately less than Omega h approximately less than 0.3 appear compatible with CMB fluctuations detected by Cosmic Background Explorer Satellite (COBE) and the Tenerife experiment and with the amplitude and spectrum of fluctuations of galaxy counts in the APM, CfA, and 1.2 Jy IRAS surveys. COBE normalization for these models yields sigma(sub 8) approximately = 0.5 - 0.7. Models with smaller values of Omega h when normalized to COBE require bias factors in excess of 2 to be compatible with the observed galaxy counts on the 8/h Mpc scale. Requiring that the age of the universe exceed 10 Gyr implies that Omega approximately greater than 0.25, while requiring that from the last-scattering term in the Sachs-Wolfe formula, large-angle anisotropies come primarily from the decay of potential fluctuations at z approximately less than 1/Omega. Thus, if the universe is open, COBE has been detecting temperature fluctuations produced at moderate redshift rather than at z approximately 1300.

  8. Heterogeneous seismic anisotropy in the transition zone and uppermost lower mantle: evidence from South America, Izu-Bonin and Japan

    Science.gov (United States)

    Lynner, Colton; Long, Maureen D.

    2015-06-01

    Measurements of seismic anisotropy are commonly used to constrain deformation in the upper mantle. Observations of anisotropy at mid-mantle depths are, however, relatively sparse. In this study we probe the anisotropic structure of the mid-mantle (transition zone and uppermost lower mantle) beneath the Japan, Izu-Bonin, and South America subduction systems. We present source-side shear wave splitting measurements for direct teleseismic S phases from earthquakes deeper than 300 km that have been corrected for the effects of upper mantle anisotropy beneath the receiver. In each region, we observe consistent splitting with delay times as large as 1 s, indicating the presence of anisotropy at mid-mantle depths. Clear splitting of phases originating from depths as great as ˜600 km argues for a contribution from anisotropy in the uppermost lower mantle as well as the transition zone. Beneath Japan, fast splitting directions are perpendicular or oblique to the slab strike and do not appear to depend on the propagation direction of the waves. Beneath South America and Izu-Bonin, splitting directions vary from trench-parallel to trench-perpendicular and have an azimuthal dependence, indicating lateral heterogeneity. Our results provide evidence for the presence of laterally variable anisotropy and are indicative of variable deformation and dynamics at mid-mantle depths in the vicinity of subducting slabs.

  9. Extracting foreground-obscured μ-distortion anisotropies to constrain primordial non-Gaussianity

    Science.gov (United States)

    Remazeilles, M.; Chluba, J.

    2018-04-01

    Correlations between cosmic microwave background (CMB) temperature, polarization and spectral distortion anisotropies can be used as a probe of primordial non-Gaussianity. Here, we perform a reconstruction of μ-distortion anisotropies in the presence of Galactic and extragalactic foregrounds, applying the so-called Constrained ILC component separation method to simulations of proposed CMB space missions (PIXIE, LiteBIRD, CORE, PICO). Our sky simulations include Galactic dust, Galactic synchrotron, Galactic free-free, thermal Sunyaev-Zeldovich effect, as well as primary CMB temperature and μ-distortion anisotropies, the latter being added as correlated field. The Constrained ILC method allows us to null the CMB temperature anisotropies in the reconstructed μ-map (and vice versa), in addition to mitigating the contaminations from astrophysical foregrounds and instrumental noise. We compute the cross-power spectrum between the reconstructed (CMB-free) μ-distortion map and the (μ-free) CMB temperature map, after foreground removal and component separation. Since the cross-power spectrum is proportional to the primordial non-Gaussianity parameter, fNL, on scales k˜eq 740 Mpc^{-1}, this allows us to derive fNL-detection limits for the aforementioned future CMB experiments. Our analysis shows that foregrounds degrade the theoretical detection limits (based mostly on instrumental noise) by more than one order of magnitude, with PICO standing the best chance at placing upper limits on scale-dependent non-Gaussianity. We also discuss the dependence of the constraints on the channel sensitivities and chosen bands. Like for B-mode polarization measurements, extended coverage at frequencies ν ≲ 40 GHz and ν ≳ 400 GHz provides more leverage than increased channel sensitivity.

  10. Measurements of the cosmic-ray electron and positron spectrum and anisotropies with the Fermi LAT

    Science.gov (United States)

    Loparco, F.; Fermi LAT Collaboration

    2017-12-01

    The Large Area Telescope (LAT) onboard the Fermi satellite is a pair-conversion telescope for high-energy gamma rays of astrophysical origin. Although it was designed to be a high-sensitivity gamma-ray telescope, the LAT has proved to be an excellent electron/positron detector. It has been operating in low Earth orbit since June 2008 and has collected more than 16 million cosmic-ray electron and positron (CRE) events in its first seven years of operation. The huge data sample collected by the LAT enables a precise measurement of the CRE energy spectrum up to the TeV region. A search for anisotropies in the arrival directions of CREs was also performed. The upper limits on the dipole anisotropy probe the presence of nearby young and middle-aged CRE sources.

  11. Constraining the Mechanism of D" Anisotropy: Diversity of Observation Types Required

    Science.gov (United States)

    Creasy, N.; Pisconti, A.; Long, M. D.; Thomas, C.

    2017-12-01

    A variety of different mechanisms have been proposed as explanations for seismic anisotropy at the base of the mantle, including crystallographic preferred orientation of various minerals (bridgmanite, post-perovskite, and ferropericlase) and shape preferred orientation of elastically distinct materials such as partial melt. Investigations of the mechanism for D" anisotropy are usually ambiguous, as seismic observations rarely (if ever) uniquely constrain a mechanism. Observations of shear wave splitting and polarities of SdS and PdP reflections off the D" discontinuity are among our best tools for probing D" anisotropy; however, typical data sets cannot constrain a unique scenario suggested by the mineral physics literature. In this work, we determine what types of body wave observations are required to uniquely constrain a mechanism for D" anisotropy. We test multiple possible models based on both single-crystal and poly-phase elastic tensors provided by mineral physics studies. We predict shear wave splitting parameters for SKS, SKKS, and ScS phases and reflection polarities off the D" interface for a range of possible propagation directions. We run a series of tests that create synthetic data sets by random selection over multiple iterations, controlling the total number of measurements, the azimuthal distribution, and the type of phases. We treat each randomly drawn synthetic dataset with the same methodology as in Ford et al. (2015) to determine the possible mechanism(s), carrying out a grid search over all possible elastic tensors and orientations to determine which are consistent with the synthetic data. We find is it difficult to uniquely constrain the starting model with a realistic number of seismic anisotropy measurements with only one measurement technique or phase type. However, having a mix of SKS, SKKS, and ScS measurements, or a mix of shear wave splitting and reflection polarity measurements, dramatically increases the probability of uniquely

  12. Direct observation of in-plane anisotropy of the superconducting critical current density in Ba (Fe1-xCox) 2As2 crystals

    Science.gov (United States)

    Hecher, J.; Ishida, S.; Song, D.; Ogino, H.; Iyo, A.; Eisaki, H.; Nakajima, M.; Kagerbauer, D.; Eisterer, M.

    2018-01-01

    The phase diagram of iron-based superconductors exhibits structural transitions, electronic nematicity, and magnetic ordering, which are often accompanied by an electronic in-plane anisotropy and a sharp maximum of the superconducting critical current density (Jc) near the phase boundary of the tetragonal and the antiferromagnetic-orthorhombic phase. We utilized scanning Hall-probe microscopy to visualize the Jc of twinned and detwinned Ba (Fe1-xCox) 2As2 (x =5 %-8 % ) crystals to compare the electronic normal state properties with superconducting properties. We find that the electronic in-plane anisotropy continues into the superconducting state. The observed correlation between the electronic and the Jc anisotropy agrees qualitatively with basic models, however, the Jc anisotropy is larger than predicted from the resistivity data. Furthermore, our measurements show that the maximum of Jc at the phase boundary does not vanish when the crystals are detwinned. This shows that twin boundaries are not responsible for the large Jc, suggesting an exotic pinning mechanism.

  13. Measurement of the dark matter velocity anisotropy profile in galaxy clusters

    International Nuclear Information System (INIS)

    Host, Ole

    2009-01-01

    Dark matter halos contribute the major part of the mass of galaxy clusters and the formation of these cosmological structures have been investigated in numerical simulations. Observations have been found to be in good agreement with the numerical predictions regarding the spatial distribution of dark matter, i.e. the mass profile. However, the dynamics of dark matter in halos has so far proved a greater challenge to probe observationally. We have used observations of 16 relaxed galaxy clusters to show that the dark matter velocity dispersion is larger along the radial direction than along the tangential, and that the magnitude of this velocity anisotropy β varies with radius. This measurement implies that the collective behaviour of dark matter particles is fundamentally different from that of baryonic particles and constrains the self-interaction per unit mass. The radial variation of the anisotropy velocity agrees with the predictions so that, on cluster scales, there is now excellent agreement between numerical predictions and observations regarding the phase space of dark matter.

  14. Large-scale anisotropy in the extragalactic gamma-ray background as a probe for cosmological antimatter

    Science.gov (United States)

    Gao, Yi-Tian; Stecker, Floyd W.; Gleiser, Marcelo; Cline, David B.

    1990-01-01

    Intrinsic anisotropies in the extragalactic gamma-ray background (EGB), which should be detectable with the forthcoming Gamma Ray Observatory, can be used to examine some of the mechanisms proposed to explain its origin, one of which, the baryon-symmetric big bang (BSBB) model, is investigated here. In this simulation, large domains containing matter and antimatter galaxies produce gamma rays by annihilation at the domain boundaries. This mechanism can produce mountain-chain-shaped angular fluctuations in the EGB flux.

  15. Evaluation of anisotropy of J c in silver-sheathed Bi-2223 tape

    International Nuclear Information System (INIS)

    Himeda, Y.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.

    2005-01-01

    The magnetic field angle dependence of J c was measured by four probe method and DC magnetization method. The latter measurement was used for the specimen before and after bending to break the intergrain current in order to investigate only the intragrain current. It was found that the intragrain critical current density could be increased by a factor 2.7 in a parallel magnetic field when the c-axis misorientation could be improved. From the field angle dependence of the intragrain critical current density, the anisotropy parameter was estimated as 20.4

  16. Primordial anisotropies in gauged hybrid inflation

    Science.gov (United States)

    Akbar Abolhasani, Ali; Emami, Razieh; Firouzjahi, Hassan

    2014-05-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations.

  17. Primordial anisotropies in gauged hybrid inflation

    International Nuclear Information System (INIS)

    Abolhasani, Ali Akbar; Emami, Razieh; Firouzjahi, Hassan

    2014-01-01

    We study primordial anisotropies generated in the model of gauged hybrid inflation in which the complex waterfall field is charged under a U(1)gauge field. Primordial anisotropies are generated either actively during inflation or from inhomogeneities modulating the surface of end of inflation during waterfall transition. We present a consistent δN mechanism to calculate the anisotropic power spectrum and bispectrum. We show that the primordial anisotropies generated at the surface of end of inflation do not depend on the number of e-folds and therefore do not produce dangerously large anisotropies associated with the IR modes. Furthermore, one can find the parameter space that the anisotropies generated from the surface of end of inflation cancel the anisotropies generated during inflation, therefore relaxing the constrains on model parameters imposed from IR anisotropies. We also show that the gauge field fluctuations induce a red-tilted power spectrum so the averaged power spectrum from the gauge field can change the total power spectrum from blue to red. Therefore, hybrid inflation, once gauged under a U(1) field, can be consistent with the cosmological observations

  18. Theoretical analysis of a dual-probe scanning tunneling microscope setup on graphene.

    Science.gov (United States)

    Settnes, Mikkel; Power, Stephen R; Petersen, Dirch H; Jauho, Antti-Pekka

    2014-03-07

    Experimental advances allow for the inclusion of multiple probes to measure the transport properties of a sample surface. We develop a theory of dual-probe scanning tunneling microscopy using a Green's function formalism, and apply it to graphene. Sampling the local conduction properties at finite length scales yields real space conductance maps which show anisotropy for pristine graphene systems and quantum interference effects in the presence of isolated impurities. Spectral signatures in the Fourier transforms of real space conductance maps include characteristics that can be related to different scattering processes. We compute the conductance maps of graphene systems with different edge geometries or height fluctuations to determine the effects of nonideal graphene samples on dual-probe measurements.

  19. Theory of Langmuir probes in anisotropic plasmas

    International Nuclear Information System (INIS)

    Sudit, I.D.; Woods, R.C.

    1994-01-01

    A theory has been developed for electron retardation by Langmuir probes of several geometries in a general anisotropic plasma with arbitrary probe orientation and valid for any sheath thickness. Electron densities and electron velocity distribution functions (EVDFs) are obtained from the second derivative of probe I-V curves, as in Druyvesteyn's original method, which was developed for isotropic plasmas. Fedorov had extended the latter method in the context of a thin sheath approximation, to axisymmetric plasmas, in which the EVDF is expanded in a series of Legendary polynomials. In the present work an expansion in a series of spherical harmonics is employed, and the coordinate transformations are handled using the irreducible representation of the three dimensional rotation group. It is shown that the Volterra integral equations that must be solved to obtain the expansion coefficients of the EVDF from the second derivative data are no more complicated in the general case that hose for the axisymmetric plasma. Furthermore in the latter case the results can be shown to be equivalent to Fedrov's thin sheath expression. For the case of planar probes a formulation based on first derivatives of the I-V curves has been obtained. If data is obtained at enough different probe orientation of a one sided planar disc probe, any number of spherical harmonic coefficient functions may be obtained by inverting a set of linear equations and the complete EVDF deduced. For a cylindrical probe or a two-sided planar disc probe the integration of the second derivative of the probe current gives the exact electron density with any arbitrary probe orientation and any degree of plasma anisotropy

  20. Anisotropy in the deep Earth

    Science.gov (United States)

    Romanowicz, Barbara; Wenk, Hans-Rudolf

    2017-08-01

    Seismic anisotropy has been found in many regions of the Earth's interior. Its presence in the Earth's crust has been known since the 19th century, and is due in part to the alignment of anisotropic crystals in rocks, and in part to patterns in the distribution of fractures and pores. In the upper mantle, seismic anisotropy was discovered 50 years ago, and can be attributed for the most part, to the alignment of intrinsically anisotropic olivine crystals during large scale deformation associated with convection. There is some indication for anisotropy in the transition zone, particularly in the vicinity of subducted slabs. Here we focus on the deep Earth - the lower mantle and core, where anisotropy is not yet mapped in detail, nor is there consensus on its origin. Most of the lower mantle appears largely isotropic, except in the last 200-300 km, in the D″ region, where evidence for seismic anisotropy has been accumulating since the late 1980s, mostly from shear wave splitting measurements. Recently, a picture has been emerging, where strong anisotropy is associated with high shear velocities at the edges of the large low shear velocity provinces (LLSVPs) in the central Pacific and under Africa. These observations are consistent with being due to the presence of highly anisotropic MgSiO3 post-perovskite crystals, aligned during the deformation of slabs impinging on the core-mantle boundary, and upwelling flow within the LLSVPs. We also discuss mineral physics aspects such as ultrahigh pressure deformation experiments, first principles calculations to obtain information about elastic properties, and derivation of dislocation activity based on bonding characteristics. Polycrystal plasticity simulations can predict anisotropy but models are still highly idealized and neglect the complex microstructure of polyphase aggregates with strong and weak components. A promising direction for future progress in understanding the origin of seismic anisotropy in the deep mantle

  1. THE NEAR-INFRARED BACKGROUND INTENSITY AND ANISOTROPIES DURING THE EPOCH OF REIONIZATION

    Energy Technology Data Exchange (ETDEWEB)

    Cooray, Asantha; Gong Yan; Smidt, Joseph [Department of Physics and Astronomy, University of California, Irvine, CA 92697 (United States); Santos, Mario G. [CENTRA, Instituto Superior Tecnico, Technical University of Lisbon, Lisboa 1049-001 (Portugal)

    2012-09-01

    A fraction of the extragalactic near-infrared (near-IR) background light involves redshifted photons from the ultraviolet (UV) emission from galaxies present during reionization at redshifts above 6. The absolute intensity and the anisotropies of the near-IR background provide an observational probe of the first-light galaxies and their spatial distribution. We estimate the extragalactic background light intensity during reionization by accounting for the stellar and nebular emission from first-light galaxies. We require the UV photon density from these galaxies to generate a reionization history that is consistent with the optical depth to electron scattering from cosmic microwave background measurements. We also require the bright-end luminosity function (LF) of galaxies in our models to reproduce the measured Lyman-dropout LFs at redshifts of 6-8. The absolute intensity is about 0.1-0.4 nW m{sup -2} sr{sup -1} at the peak of its spectrum at {approx}1.1 {mu}m. We also discuss the anisotropy power spectrum of the near-IR background using a halo model to describe the galaxy distribution. We compare our predictions for the anisotropy power spectrum to existing measurements from deep near-IR imaging data from Spitzer/IRAC, Hubble/NICMOS, and AKARI. The predicted rms fluctuations at tens of arcminute angular scales are roughly an order of magnitude smaller than the existing measurements. While strong arguments have been made that the measured fluctuations do not have an origin involving faint low-redshift galaxies, we find that measurements in the literature are also incompatible with galaxies present during the era of reionization. The measured near-IR background anisotropies remain unexplained with an unknown origin.

  2. Electrical probe measurements in low and high pressure discharges

    International Nuclear Information System (INIS)

    Andersson, D.

    1976-11-01

    The construction of an apparatus for automatic determination of electron distributions is described, whereafter measurements of electron energy distributions before and after a stationary plasma sheath in a low pressure mercury discharge are presented. The sheath appears at a constriction of the discharge tube. The measurements have been made with a spheric probe, using the second-derivative method, and the results show that the energy distribution on the anode side of the sheath is a sum of a thermal population and an accelerated distribution. Near the sheath the accelerated electrons suffice to carry the discharge current, but far from it the current must be carried by an anisotropy in the thermal part of the distribution function. A comparison is made with calculated distributions. The cross-sections for electron-neutral and Coulomb collisions are not sufficient to account for the damping of the accelerated population, suggesting the presence of a plasma instability. In order to study the distribution function of the axial velocity component, preliminary measurements of the first derivative of the current to a plane probe have been made. Such measurements yield information about the anisotropy and the current transport, and may perhaps shed some light on the phenomenon of current limitation. Some measurements on a TIG welding arc are also described. (Auth.)

  3. Elliptic azimutal anisotropy of electrons from heavy-flavour decays in Pb-Pb collisions at a SNN = 2.76 TeV

    CERN Document Server

    Moreira De Godoy, Denise Aparecida

    This thesis presents measurements of the elliptic azimuthal anisotropy of electrons from heavy-flavour decays with the A Large Ion Collider Experiment (ALICE). The measurement is performed for the first time in Pb-Pb collisions at center-of-mass energy per colliding nucleon pair psNN = 2.76 TeV at the Large Hadron Collider (LHC). In heavy-ion collisions at ultrarelativistic energies sufficiently high temperature and/or energy density can be achieved to form the Quark-Gluon Plasma (QGP), the state of matter predicted by Quantum Chromodynamics (QCD) in which quarks and gluons are deconfined from hadrons. One of the most important probes of the QGP formation is the elliptic azimuthal anisotropy, which is quantified by the second harmonic v2 of the particle azimuthal angle distribution with respect to the angle of the reaction plane, which is defined by the impact parameter direction and the beam direction. In addition, heavy quarks (charm and beauty) serve as a sensitive probe of the QGP properties since they ar...

  4. Independent sources of anisotropy in visual orientation representation: a visual and a cognitive oblique effect.

    Science.gov (United States)

    Balikou, Panagiota; Gourtzelidis, Pavlos; Mantas, Asimakis; Moutoussis, Konstantinos; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2015-11-01

    The representation of visual orientation is more accurate for cardinal orientations compared to oblique, and this anisotropy has been hypothesized to reflect a low-level visual process (visual, "class 1" oblique effect). The reproduction of directional and orientation information also leads to a mean error away from cardinal orientations or directions. This anisotropy has been hypothesized to reflect a high-level cognitive process of space categorization (cognitive, "class 2," oblique effect). This space categorization process would be more prominent when the visual representation of orientation degrades such as in the case of working memory with increasing cognitive load, leading to increasing magnitude of the "class 2" oblique effect, while the "class 1" oblique effect would remain unchanged. Two experiments were performed in which an array of orientation stimuli (1-4 items) was presented and then subjects had to realign a probe stimulus within the previously presented array. In the first experiment, the delay between stimulus presentation and probe varied, while in the second experiment, the stimulus presentation time varied. The variable error was larger for oblique compared to cardinal orientations in both experiments reproducing the visual "class 1" oblique effect. The mean error also reproduced the tendency away from cardinal and toward the oblique orientations in both experiments (cognitive "class 2" oblique effect). The accuracy or the reproduced orientation degraded (increasing variable error) and the cognitive "class 2" oblique effect increased with increasing memory load (number of items) in both experiments and presentation time in the second experiment. In contrast, the visual "class 1" oblique effect was not significantly modulated by any one of these experimental factors. These results confirmed the theoretical predictions for the two anisotropies in visual orientation reproduction and provided support for models proposing the categorization of

  5. Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance measurements

    International Nuclear Information System (INIS)

    Guermazi, M; Kanoun, O; Derbel, N

    2013-01-01

    Experimental procedure is a decisive part in in-vitro bioimpedance measurement in order to get reproducible measurements. An electrode configuration is proposed to avoid several disadvantages produced by needle electrodes and circular non-penetrating electrode. The proposed electrode geometry reduces the influence of anisotropy and allows simultaneously a good probe contacting. We propose an experimental method to avoid the appearance of bacteria and to reduce water loss in meat during experiment post-mortem. The results show that electrode configuration with the developed experimental method have ensured reproducible measurements during a long period of 14 days post-mortem.

  6. Reduction of anisotropy influence and contacting effects in in-vitro bioimpedance measurements

    Science.gov (United States)

    Guermazi, M.; Kanoun, O.; Derbel, N.

    2013-04-01

    Experimental procedure is a decisive part in in-vitro bioimpedance measurement in order to get reproducible measurements. An electrode configuration is proposed to avoid several disadvantages produced by needle electrodes and circular non-penetrating electrode. The proposed electrode geometry reduces the influence of anisotropy and allows simultaneously a good probe contacting. We propose an experimental method to avoid the appearance of bacteria and to reduce water loss in meat during experiment post-mortem. The results show that electrode configuration with the developed experimental method have ensured reproducible measurements during a long period of 14 days post-mortem.

  7. Flow-induced elastic anisotropy of metallic glasses

    International Nuclear Information System (INIS)

    Sun, Y.H.; Concustell, A.; Carpenter, M.A.; Qiao, J.C.; Rayment, A.W.; Greer, A.L.

    2016-01-01

    As-cast bulk metallic glasses are isotropic, but anisotropy can be induced by thermomechanical treatments. For example, the diffraction halo in the structure function S(Q) observed in transmission becomes elliptical (rather than circular) after creep in uniaxial tension or compression. Published studies associate this with frozen-in anelastic strain and bond-orientational anisotropy. Results so far are inconsistent on whether viscoplastic flow of metallic glasses can induce anisotropy. Preliminary diffraction data suggest that the anisotropy, if any, is very low, while measurements of the elastic properties suggest that there is induced anisotropy, opposite in sign to that due to anelastic strain. We study three bulk metallic glasses, Ce 65 Al 10 Cu 20 Co 5 , La 55 Ni 10 Al 35 , and Pd 40 Ni 30 Cu 10 P 20 . By using resonant ultrasound spectroscopy to determine the full elasticity tensor, the effects of relaxation and rejuvenation can be reliably separated from uniaxial anisotropy (of either sign). The effects of viscoplastic flow in tension are reported for the first time. We find that viscoplastic flow of bulk metallic glasses, particularly in tension, can induce significant anisotropy that is distinct from that associated with frozen-in anelastic strain. The conditions for inducing such anisotropy are explored in terms of the Weissenberg number (ratio of relaxation times for primary relaxation and for shear strain rate). There is a clear need for further work to characterize the structural origins of flow-induced anisotropy and to explore the prospects for improved mechanical and other properties through induced anisotropy.

  8. Magnetic anisotropies in SmCo thin films

    International Nuclear Information System (INIS)

    Chen, K.

    1993-01-01

    A systemic study of the deposition processes and magnetic properties for the Sm-Co film system has been carried out. Films of Sm-Co system with various magnetic anisotropies have been synthesized through sputter deposition in both crystalline and amorphous phases. The origins of various anisotropies have been studied. Thermalized sputter deposition process control was used to synthesize Fe enriched Sm-Co films with rhombohedral Th 2 Zn 17 type structure. The film exhibited unusually strong textures with the crystallographic c axes of the crystallites aligned in the film plane. A large anisotropy was resulted with easy axis in the film plane. A well defined and large in-the-film-plane anisotropy of exceptionally high value of 3.3 x 10 6 erg/cm 3 has been obtained in the amorphous SmCo films by applying a magnetic field in the film plane during deposition. It was found that the in-the-film-plane anisotropy depended essentially on the applied field and Sm concentration. For films not synthesized through thermallized sputtering, the easy axis of the film could reoriented. A perpendicular anisotropy was also presented in the film synthesized through thermallized sputtering deposition. A large in-plane anisotropy was obtained in films deposited above ambient temperatures. It was concluded that the surface induced short range ordering was the origin of the in-the-film-phase anisotropy observed in amorphous film deposited in the presence of a magnetic field. The formation mechanism was different from that of the short range ordering induced by field annealing. The perpendicular anisotropy was shown to be growth induced. Large in-plane anisotropy in amorphous films was resulted form partial crystallization in the film. Both the formation of growth induced structure and partial crystallization in the film prevented the formation of the pair ordering and decreased in-the-film-plane anisotropy

  9. Anisotropy of acoustic properties in paratellurite

    International Nuclear Information System (INIS)

    Parygin, Vladimir N.

    1996-01-01

    One of the peculiarities of the TeO 2 crystal consists of its strong acoustic anisotropy. This anisotropy demonstrates itself by acoustic energy walk-off and anisotropic distortion of an acoustic beam. Four constants completely characterise the acoustic anisotropy of the medium. In this paper these constants are calculated for various directions of the acoustic beam in crystal. (authors)

  10. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    Science.gov (United States)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  11. Neurite density imaging versus imaging of microscopic anisotropy in diffusion MRI: A model comparison using spherical tensor encoding.

    Science.gov (United States)

    Lampinen, Björn; Szczepankiewicz, Filip; Mårtensson, Johan; van Westen, Danielle; Sundgren, Pia C; Nilsson, Markus

    2017-02-15

    In diffusion MRI (dMRI), microscopic diffusion anisotropy can be obscured by orientation dispersion. Separation of these properties is of high importance, since it could allow dMRI to non-invasively probe elongated structures such as neurites (axons and dendrites). However, conventional dMRI, based on single diffusion encoding (SDE), entangles microscopic anisotropy and orientation dispersion with intra-voxel variance in isotropic diffusivity. SDE-based methods for estimating microscopic anisotropy, such as the neurite orientation dispersion and density imaging (NODDI) method, must thus rely on model assumptions to disentangle these features. An alternative approach is to directly quantify microscopic anisotropy by the use of variable shape of the b-tensor. Along those lines, we here present the 'constrained diffusional variance decomposition' (CODIVIDE) method, which jointly analyzes data acquired with diffusion encoding applied in a single direction at a time (linear tensor encoding, LTE) and in all directions (spherical tensor encoding, STE). We then contrast the two approaches by comparing neurite density estimated using NODDI with microscopic anisotropy estimated using CODIVIDE. Data were acquired in healthy volunteers and in glioma patients. NODDI and CODIVIDE differed the most in gray matter and in gliomas, where NODDI detected a neurite fraction higher than expected from the level of microscopic diffusion anisotropy found with CODIVIDE. The discrepancies could be explained by the NODDI tortuosity assumption, which enforces a connection between the neurite density and the mean diffusivity of tissue. Our results suggest that this assumption is invalid, which leads to a NODDI neurite density that is inconsistent between LTE and STE data. Using simulations, we demonstrate that the NODDI assumptions result in parameter bias that precludes the use of NODDI to map neurite density. With CODIVIDE, we found high levels of microscopic anisotropy in white matter

  12. Lowermost mantle anisotropy near the eastern edge of the Pacific LLSVP: constraints from SKS-SKKS splitting intensity measurements

    Science.gov (United States)

    Deng, Jie; Long, Maureen D.; Creasy, Neala; Wagner, Lara; Beck, Susan; Zandt, George; Tavera, Hernando; Minaya, Estela

    2017-08-01

    Seismic anisotropy has been documented in many portions of the lowermost mantle, with particularly strong anisotropy thought to be present along the edges of large low shear velocity provinces (LLSVPs). The region surrounding the Pacific LLSVP, however, has not yet been studied extensively in terms of its anisotropic structure. In this study, we use seismic data from southern Peru, northern Bolivia and Easter Island to probe lowermost mantle anisotropy beneath the eastern Pacific Ocean, mostly relying on data from the Peru Lithosphere and Slab Experiment and Central Andean Uplift and Geodynamics of High Topography experiments. Differential shear wave splitting measurements from phases that have similar ray paths in the upper mantle but different ray paths in the lowermost mantle, such as SKS and SKKS, are used to constrain anisotropy in D″. We measured splitting for 215 same station-event SKS-SKKS pairs that sample the eastern Pacific LLSVP at the base of the mantle. We used measurements of splitting intensity(SI), a measure of the amount of energy on the transverse component, to objectively and quantitatively analyse any discrepancies between SKS and SKKS phases. While the overall splitting signal is dominated by the upper-mantle anisotropy, a minority of SKS-SKKS pairs (∼10 per cent) exhibit strongly discrepant splitting between the phases (i.e. the waveforms require a difference in SI of at least 0.4), indicating a likely contribution from lowermost mantle anisotropy. In order to enhance lower mantle signals, we also stacked waveforms within individual subregions and applied a waveform differencing technique to isolate the signal from the lowermost mantle. Our stacking procedure yields evidence for substantial splitting due to lowermost mantle anisotropy only for a specific region that likely straddles the edge of Pacific LLSVP. Our observations are consistent with the localization of deformation and anisotropy near the eastern boundary of the Pacific LLSVP

  13. Molecular anisotropy effects in carbon K-edge scattering: depolarized diffuse scattering and optical anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Stone, Kevin H.

    2014-07-14

    Some polymer properties, such as conductivity, are very sensitive to short- and intermediate-range orientational and positional ordering of anisotropic molecular functional groups, and yet means to characterize orientational order in disordered systems are very limited. We demonstrate that resonant scattering at the carbon K-edge is uniquely sensitive to short-range orientation correlations in polymers through depolarized scattering at high momentum transfers, using atactic polystyrene as a well-characterized test system. Depolarized scattering is found to coexist with unpolarized fluorescence, and to exhibit pronounced anisotropy. We also quantify the spatially averaged optical anisotropy from low-angle reflectivity measurements, finding anisotropy consistent with prior visible, x-ray absorption, and theoretical studies. The average anisotropy is much smaller than that in the depolarized scattering and the two have different character. Both measurements exhibit clear spectral signatures from the phenyl rings and the polyethylene-like backbone. Discussion focuses on analysis considerations and prospects for using this depolarized scattering for studies of disorder in soft condensed matter.

  14. Magnetic anisotropy of Ni/Cr multilayers

    International Nuclear Information System (INIS)

    Kang, S.; Xia, H.

    1997-01-01

    The magnetic anisotropy of Ni/Cr multilayers has been investigated by using vibrating sample magnetometer (VSM) and ferromagnetic resonance techniques (FMR). The FMR spectra are obtained as a function of the orientation of the applied magnetic field from in-plane to out-of-plane. The results are fitted theoretically to determine the magnetic anisotropy. From VSM and FMR, a positive value for Ni/Cr interface anisotropy is obtained, which favours a perpendicular easy axis. The possible mechanism for the perpendicular anisotropy has been discussed and it may be attributed to the magnetostriction, caused by intrinsic stress due to lattice mismatch. (orig.). With 005 figs., 001 tabs

  15. Elastic anisotropy of polycrystalline Au films: Modeling and respective contributions of X-ray diffraction, nanoindentation and Brillouin light scattering

    International Nuclear Information System (INIS)

    Faurie, D.; Djemia, P.; Le Bourhis, E.; Renault, P.-O.; Roussigne, Y.; Cherif, S.M.; Brenner, R.; Castelnau, O.; Patriarche, G.; Goudeau, Ph.

    2010-01-01

    Elastic properties of non-textured and {1 1 1}-fiber-textured gold thin films were investigated experimentally by several complementary techniques, namely in situ tensile testing under X-ray diffraction (XRD), nanoindentation and Brillouin light scattering (BLS). Specimens were probed along different directions to reveal the strong effects of elastic anisotropy at the (local) grain and (global) film scales. XRD allows the investigation of both local and global anisotropies, while BLS and nanoindentation are limited to global analyses. A micromechanical model, based on the self-consistent scheme, and accounting for the actual microstructure of the films, is applied to interpret experimental data. Although different types of elastic constants can be determined with the used experimental techniques (static/dynamic, local/global), a good agreement is obtained, showing that comparison of these techniques is feasible when carried out carefully. In particular, the use of a micromechanical model to estimate the effects of the local elastic anisotropy at the film scale is unavoidable. The presented results show that XRD, BLS and nanoindentation should capture anisotropic texture effects on elastic constants measurements for materials with a Zener anisotropy index larger than 2. Conversely, the actual texture of a given specimen should be taken into account for a proper analysis of elastic constants measurements using those three experimental techniques.

  16. Electron temperature anisotropy modeling and its effect on anisotropy-magnetic field coupling in an underdense laser heated plasma

    Energy Technology Data Exchange (ETDEWEB)

    Morreeuw, J.P.; Dubroca, B. [CEA Centre d' Etudes Scientifiques et Techniques d' Aquitaine, 33 - Le Barp (France); Sangam, A.; Dubroca, B.; Charrier, P.; Tikhonchuk, V.T. [Bordeaux-1 Univ., CELIA, 33 - Talence (France); Sangam, A.; Dubroca, B.; Charrier, P. [Bordeaux-1 Univ., MAB, 33 - Talence (France)

    2006-06-15

    The laser interaction with an underdense plasma leads to an anisotropic laser heating of electrons. This temperature anisotropy gradient in turn is the source of an early magnetic field, which has an important effect on the plasma evolution, due to the thermal flux reduction. We describe the temperature anisotropy by an evolution equation including the anisotropy-magnetic field coupling and observe a rather efficient magnetic field generation. However at high anisotropy levels, a small-scale instability emerges, leading to a serious problem in numerical calculations. We introduce the kinetics effects, which fix the problem by the anisotropy diffusion through the heat flux tensor. A constant-coefficient Fokker-Planck model in the 2-dimensional geometry allows us to derive an anisotropy diffusion term. The diffusion coefficient is fitted from the kinetic theory of the collisional anisotropic (Weibel) instability growth rate. Such an anisotropy diffusion term wipes out the unphysical instability without any undesirable smoothing. This diffusion along with the viscosity term leads also to a quite good restitution of the Weibel instability growth rate and to the short wavelength cutoff, even in a weakly collisional situation. This allows us to use such a model to predict the emergence of the Weibel instability as well as its saturation. (authors)

  17. Study on diffusion anisotropy of cerebral ischemia using diffusion weighted echo-planar MRI

    International Nuclear Information System (INIS)

    Kajima, Toshio

    1997-01-01

    Focal cerebral ischemia was produced by occlusion of the intracranial main cerebral artery with a silicone cylinder in Wistar rats. Diffusion-weighted echo-planar images (DW-EPls) using the motion-probing gradient (MPG) method were acquired at 1-3 hours and 24-48 hours after occlusion. Apparent diffusion coefficients (ADCs) were calculated from these images in ischemic lesions and in normal unoccluded regions. Results were as follows. Ischemic lesions could be detected on the DW-EPIs at 1 hour after occlusion. The ADC of water in the brain tissue was smaller than that of free water as a result of restricted diffusion. Anisotropic diffusion that probably can be attributed to the myelin sheath was observed in the normal white matter. In the ischemic lesions, the ADC decreased rapidly within 1-3 hours after occlusion and then decreased gradually after 24-48 hours. In the ischemic white matter, diffusion anisotropy disappeared at 24-48 hours after occlusion. Diffusion-weighted imaging may have applications in the examination of pathophysiological mechanisms in cerebral ischemia by means of evaluation of ADC and diffusion anisotropy. (author)

  18. Dispersion of the electron g factor anisotropy in InAs/InP self-assembled quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Belykh, V. V., E-mail: vasilii.belykh@tu-dortmund.de [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); P.N. Lebedev Physical Institute of the Russian Academy of Sciences, Moscow 119991 (Russian Federation); Yakovlev, D. R.; Bayer, M. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation); Schindler, J. J. [Experimentelle Physik 2, Technische Universität Dortmund, D-44221 Dortmund (Germany); Bree, J. van; Koenraad, P. M.; Silov, A. Yu., E-mail: A.Y.Silov@tue.nl [Department of Applied Physics and COBRA Research Institute, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands); Averkiev, N. S. [Ioffe Institute, Russian Academy of Sciences, 194021 St. Petersburg (Russian Federation)

    2016-08-28

    The electron g factor in an ensemble of InAs/InP quantum dots with emission wavelengths around 1.4 μm is measured using time-resolved pump-probe Faraday rotation spectroscopy in different magnetic field orientations. Thereby, we can extend recent single dot photoluminescence measurements significantly towards lower optical transition energies through 0.86 eV. This allows us to obtain detailed insight into the dispersion of the recently discovered g factor anisotropy in these infrared emitting quantum dots. We find with decreasing transition energy over a range of 50 meV a strong enhancement of the g factor difference between magnetic field normal and along the dot growth axis, namely, from 1 to 1.7. We argue that the g factor cannot be solely determined by the confinement energy, but the dot asymmetry underlying this anisotropy therefore has to increase with increasing dot size.

  19. The Cosmic Microwave Background Anisotropy

    Science.gov (United States)

    Bennett, C. L.

    1994-12-01

    The properties of the cosmic microwave background radiation provide unique constraints on the history and evolution of the universe. The first detection of anisotropy of the microwave radiation was reported by the COBE Team in 1992, based on the first year of flight data. The latest analyses of the first two years of COBE data are reviewed in this talk, including the amplitude of the microwave anisotropy as a function of angular scale and the statistical nature of the fluctuations. The two-year results are generally consistent with the earlier first year results, but the additional data allow for a better determination of the key cosmological parameters. In this talk the COBE results are compared with other observational anisotropy results and directions for future cosmic microwave anisotropy observations will be discussed. The National Aeronautics and Space Administration/Goddard Space Flight Center (NASA/GSFC) is responsible for the design, development, and operation of the Cosmic Background Explorer (COBE). Scientific guidance is provided by the COBE Science Working Group.

  20. Anisotropy of the cosmic background radiation

    International Nuclear Information System (INIS)

    Silk, J.

    1988-01-01

    The characteristics of the cosmic microwave background radiation (CBR) are reviewed, focusing on intrinsic anisotropies caused by primordial matter fluctuations. The basic elements of the CBR are outlined and the contributions to anisotropy at different angular scales are discussed. Possible fluctuation spectra that can generate the observed large-scale structure of the universe through gravitational instability and nonlinear evolution are examined and compared with observational searches for cosmic microwave anisotropies. 21 refs

  1. Anisotropies of the cosmic microwave background in nonstandard cold dark matter models

    Science.gov (United States)

    Vittorio, Nicola; Silk, Joseph

    1992-01-01

    Small angular scale cosmic microwave anisotropies in flat, vacuum-dominated, cold dark matter cosmological models which fit large-scale structure observations and are consistent with a high value for the Hubble constant are reexamined. New predictions for CDM models in which the large-scale power is boosted via a high baryon content and low H(0) are presented. Both classes of models are consistent with current limits: an improvement in sensitivity by a factor of about 3 for experiments which probe angular scales between 7 arcmin and 1 deg is required, in the absence of very early reionization, to test boosted CDM models for large-scale structure formation.

  2. Dual-probe spectroscopic fingerprints of defects in graphene

    DEFF Research Database (Denmark)

    Settnes, Mikkel; Power, Stephen; Petersen, Dirch Hjorth

    2014-01-01

    (e.g., an extended graphene sheet). Applying this method, we study the transport anisotropies in pristine graphene sheets, and analyze the spectroscopic fingerprints arising from quantum interference around single-site defects, such as vacancies and adatoms. Furthermore, we demonstrate that the dual......-probe setup is a useful tool for characterizing the electronic transport properties of extended defects or designed nanostructures. In particular, we show that nanoscale perforations, or antidots, in a graphene sheet display Fano-type resonances with a strong dependence on the edge geometry of the perforation....

  3. Anisoft - Advanced Treatment of Magnetic Anisotropy Data

    Science.gov (United States)

    Chadima, M.

    2017-12-01

    Since its first release, Anisoft (Anisotropy Data Browser) has gained a wide popularity in magnetic fabric community mainly due to its simple and user-friendly interface enabling very fast visualization of magnetic anisotropy tensors. Here, a major Anisoft update is presented transforming a rather simple data viewer into a platform offering an advanced treatment of magnetic anisotropy data. The updated software introduces new enlarged binary data format which stores both in-phase and out-of-phase (if measured) susceptibility tensors (AMS) or tensors of anisotropy of magnetic remanence (AMR) together with their respective confidence ellipses and values of F-tests for anisotropy. In addition to the tensor data, a whole array of specimen orientation angles, orientation of mesoscopic foliation(s) and lineation(s) is stored for each record enabling later editing or corrections. The input data may be directly acquired by AGICO Kappabridges (AMS) or Spinner Magnetometers (AMR); imported from various data formats, including the long-time standard binary ran-format; or manually created. Multiple anisotropy files can be combined together or split into several files by manual data selection or data filtering according to their values. Anisotropy tensors are conventionally visualized as principal directions (eigenvectors) in equal-area projection (stereoplot) together with a wide array of quantitative anisotropy parameters presented in histograms or in color-coded scatter plots showing mutual relationship of up to three quantitative parameters. When dealing with AMS in variable low fields, field-independent and field-dependent components of anisotropy can be determined (Hrouda 2009). For a group of specimens, individual principal directions can be contoured, or a mean tensor and respective confidence ellipses of its principal directions can be calculated using either the Hext-Jelinek (Jelinek 1978) statistics or the Bootstrap method (Constable & Tauxe 1990). Each graphical

  4. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Gabriel A De Erausquin

    2013-03-01

    Full Text Available Schizophrenia is a common, severe and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI. Indices commonly derived from DTI include (a mean diffusivity, independent of direction, (b fractional anisotropy (FA or relative anisotropy (RA, (c axial diffusivity, and (d radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes, and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased fractional anisotropy in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  5. Impacts of dark matter particle annihilation on recombination and the anisotropies of the cosmic microwave background

    International Nuclear Information System (INIS)

    Zhang Le; Chen Xuelei; Lei Yian; Si Zongguo

    2006-01-01

    The recombination history of the Universe provides a useful tool for constraining the annihilation of dark matter particles. Even a small fraction of dark matter particles annihilated during the cosmic dark age can provide sufficient energy to affect the ionization state of the baryonic gas. Although this effect is too small for neutralinos, lighter dark matter particle candidates, e.g. with mass of 1-100 MeV, which was proposed recently to explain the observed excess of positrons in the galactic center, may generate observable differences in the cosmic microwave background (CMB) temperature and polarization anisotropies. The annihilations at the era of recombination affects mainly the CMB anisotropy at small angular scales (large l), and is distinctively different from the effect of early reionization. We perform a multiparameter analysis of the CMB data, including both the Wilkinson Microwave Anisotropy Probe (WMAP) first year and three year data, and the ACBAR, Boomerang, CBI, and VSA data. Assuming that the observed excess of e + e - pairs in the galactic center region is produced by dark matter annihilation, and that a sizable fraction of the energy produced in the annihilation is deposited in the baryonic gas during recombination, we obtain a 95% dark matter mass limit of M<8 MeV with the current data set

  6. Daytime Thermal Anisotropy of Urban Neighbourhoods: Morphological Causation

    Directory of Open Access Journals (Sweden)

    E. Scott Krayenhoff

    2016-01-01

    Full Text Available Surface temperature is a key variable in boundary-layer meteorology and is typically acquired by remote observation of emitted thermal radiation. However, the three-dimensional structure of cities complicates matters: uneven solar heating of urban facets produces an “effective anisotropy” of surface thermal emission at the neighbourhood scale. Remotely-sensed urban surface temperature varies with sensor view angle as a consequence. The authors combine a microscale urban surface temperature model with a thermal remote sensing model to predict the effective anisotropy of simplified neighbourhood configurations. The former model provides detailed surface temperature distributions for a range of “urban” forms, and the remote sensing model computes aggregate temperatures for multiple view angles. The combined model’s ability to reproduce observed anisotropy is evaluated against measurements from a neighbourhood in Vancouver, Canada. As in previous modeling studies, anisotropy is underestimated. Addition of moderate coverages of small (sub-facet scale structure can account for much of the missing anisotropy. Subsequently, over 1900 sensitivity simulations are performed with the model combination, and the dependence of daytime effective thermal anisotropy on diurnal solar path (i.e., latitude and time of day and blunt neighbourhood form is assessed. The range of effective anisotropy, as well as the maximum difference from nadir-observed brightness temperature, peak for moderate building-height-to-spacing ratios (H/W, and scale with canyon (between-building area; dispersed high-rise urban forms generate maximum anisotropy. Maximum anisotropy increases with solar elevation and scales with shortwave irradiance. Moreover, it depends linearly on H/W for H/W < 1.25, with a slope that depends on maximum off-nadir sensor angle. Decreasing minimum brightness temperature is primarily responsible for this linear growth of maximum anisotropy. These

  7. Modeling elastic anisotropy in strained heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2017-09-20

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the [Formula: see text] [Formula: see text] on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to [Formula: see text] facets on the surface.

  8. Modeling elastic anisotropy in strained heteroepitaxy

    Science.gov (United States)

    Krishna Dixit, Gopal; Ranganathan, Madhav

    2017-09-01

    Using a continuum evolution equation, we model the growth and evolution of quantum dots in the heteroepitaxial Ge on Si(0 0 1) system in a molecular beam epitaxy unit. We formulate our model in terms of evolution due to deposition, and due to surface diffusion which is governed by a free energy. This free energy has contributions from surface energy, curvature, wetting effects and elastic energy due to lattice mismatch between the film and the substrate. In addition to anisotropy due to surface energy which favors facet formation, we also incorporate elastic anisotropy due to an underlying crystal lattice. The complicated elastic problem of the film-substrate system subjected to boundary conditions at the free surface, interface and the bulk substrate is solved by perturbation analysis using a small slope approximation. This permits an analysis of effects at different orders in the slope and sheds new light on the observed behavior. Linear stability analysis shows the early evolution of the instability towards dot formation. The elastic anisotropy causes a change in the alignment of dots in the linear regime, whereas the surface energy anisotropy changes the dot shapes at the nonlinear regime. Numerical simulation of the full nonlinear equations shows the evolution of the surface morphology. In particular, we show, for parameters of the Ge0.25 Si0.75 on Si(0 0 1), the surface energy anisotropy dominates the shapes of the quantum dots, whereas their alignment is influenced by the elastic energy anisotropy. The anisotropy in elasticity causes a further elongation of the islands whose coarsening is interrupted due to facets on the surface.

  9. Middle-energy electron anisotropies in the auroral region

    Directory of Open Access Journals (Sweden)

    P. Janhunen

    2004-01-01

    Full Text Available Field-aligned anisotropic electron distribution functions of T > T type are observed on auroral field lines at both low and high altitudes. We show that typically the anisotropy is limited to a certain range of energies, often below 1keV, although sometimes extending to slightly higher energies as well. Almost always there is simultaneously an isotropic electron distribution at higher energies. Often the anisotropies are up/down symmetrical, although cases with net upward or downward electron flow also occur. For a statistical analysis of the anisotropies we divide the energy range into low (below 100eV, middle (100eV–1keV and high (above 1keV energies and develop a measure of anisotropy expressed in density units. The statistical magnetic local time and invariant latitude distribution of the middle-energy anisotropies obeys that of the average auroral oval, whereas the distributions of the low and high energy anisotropies are more irregular. This suggests that it is specifically the middle-energy anisotropies that have something to do with auroral processes. The anisotropy magnitude decreases monotonically with altitude, as one would expect, because electrons have high mobility along the magnetic field and thus, the anisotropy properties spread rapidly to different altitudes.

    Key words. Magnetospheric physics (auroral phenomena. Space plasma physics (wave-particle interactions; changed particle motion and acceleration

  10. Surface energy anisotropy of tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R; Grenga, H E [Georgia Inst. of Tech., Atlanta (USA). School of Chemical Engineering

    1976-10-01

    Field-ion microscopy was used to study the faceting behavior and/or surface energy anisotropy of tungsten in vacuum and in hydrogen. In vacuum below 1700 K the activation energy for (110) facet growth agreed with values previously reported for surface diffusion on tungsten. The observed anisotropy values at 0.5 Tsub(m), where Tsub(m) is the absolute melting temperature of tungsten (approximately 3680 K), were different from those previously reported at higher temperatures and more nearly agreed with broken bond calculations based on Mie potential using m=5, n=8, and a 1.5% lattice expansion. Hydrogen appeared to have a negligible effect on surface energy anisotropy, but did preferentially increase surface diffusion rates on (310) regions.

  11. Transference of Fermi Contour Anisotropy to Composite Fermions.

    Science.gov (United States)

    Jo, Insun; Rosales, K A Villegas; Mueed, M A; Pfeiffer, L N; West, K W; Baldwin, K W; Winkler, R; Padmanabhan, Medini; Shayegan, M

    2017-07-07

    There has been a surge of recent interest in the role of anisotropy in interaction-induced phenomena in two-dimensional (2D) charged carrier systems. A fundamental question is how an anisotropy in the energy-band structure of the carriers at zero magnetic field affects the properties of the interacting particles at high fields, in particular of the composite fermions (CFs) and the fractional quantum Hall states (FQHSs). We demonstrate here tunable anisotropy for holes and hole-flux CFs confined to GaAs quantum wells, via applying in situ in-plane strain and measuring their Fermi wave vector anisotropy through commensurability oscillations. For strains on the order of 10^{-4} we observe significant deformations of the shapes of the Fermi contours for both holes and CFs. The measured Fermi contour anisotropy for CFs at high magnetic field (α_{CF}) is less than the anisotropy of their low-field hole (fermion) counterparts (α_{F}), and closely follows the relation α_{CF}=sqrt[α_{F}]. The energy gap measured for the ν=2/3 FQHS, on the other hand, is nearly unaffected by the Fermi contour anisotropy up to α_{F}∼3.3, the highest anisotropy achieved in our experiments.

  12. Nanopatterning reconfigurable magnetic landscapes via thermally assisted scanning probe lithography

    Science.gov (United States)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    2016-06-01

    The search for novel tools to control magnetism at the nanoscale is crucial for the development of new paradigms in optics, electronics and spintronics. So far, the fabrication of magnetic nanostructures has been achieved mainly through irreversible structural or chemical modifications. Here, we propose a new concept for creating reconfigurable magnetic nanopatterns by crafting, at the nanoscale, the magnetic anisotropy landscape of a ferromagnetic layer exchange-coupled to an antiferromagnetic layer. By performing localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are reversibly patterned without modifying the film chemistry and topography. This opens unforeseen possibilities for the development of novel metamaterials with finely tuned magnetic properties, such as reconfigurable magneto-plasmonic and magnonic crystals. In this context, we experimentally demonstrate spatially controlled spin wave excitation and propagation in magnetic structures patterned with the proposed method.

  13. Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex

    International Nuclear Information System (INIS)

    Wang Yun-Peng; Du Lu-Chao; Zhu Gang-Bei; Wang Zhuan; Weng Yu-Xiang

    2015-01-01

    Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C_9 symmetry in membrane to C_2 symmetry in solution. (atomic and molecular physics)

  14. Synchronous Measurement of Ultrafast Anisotropy Decay of the B850 in Bacterial LH2 Complex

    Science.gov (United States)

    Wang, Yun-Peng; Du, Lu-Chao; Zhu, Gang-Bei; Wang, Zhuan; Weng, Yu-Xiang

    2015-02-01

    Ultrafast anisotropic decay is a prominent parameter revealing ultrafast energy and electron transfer; however, it is difficult to be determined reliably owing to the requirement of a simultaneous availability of the parallel and perpendicular polarized decay kinetics. Nowadays, any measurement of anisotropic decay is a kind of approach to the exact simultaneity. Here we report a novel method for a synchronous ultrafast anisotropy decay measurement, which can well determine the anisotropy, even at a very early time, as the rising phase of the excitation laser pulse. The anisotropic decay of the B850 in bacterial light harvesting antenna complex LH2 of Rhodobacter sphaeroides in solution at room temperature with coherent excitation is detected by this method, which shows a polarization response time of 30 fs, and the energy transfer from the initial excitation to the bacteriochlorophylls in B850 ring takes about 70 fs. The anisotropic decay that is probed at the red side of the absorption spectrum, such as 880 nm, has an initial value of 0.4, corresponding to simulated emission, while the blue side with an anisotropy of 0.1 contributes to the ground-state bleaching. Our results show that the coherent excitation covering the whole ring might not be realized owing to the symmetry breaking of LH2: from C9 symmetry in membrane to C2 symmetry in solution.

  15. A Bayesian method to quantify azimuthal anisotropy model uncertainties: application to global azimuthal anisotropy in the upper mantle and transition zone

    Science.gov (United States)

    Yuan, K.; Beghein, C.

    2018-04-01

    Seismic anisotropy is a powerful tool to constrain mantle deformation, but its existence in the deep upper mantle and topmost lower mantle is still uncertain. Recent results from higher mode Rayleigh waves have, however, revealed the presence of 1 per cent azimuthal anisotropy between 300 and 800 km depth, and changes in azimuthal anisotropy across the mantle transition zone boundaries. This has important consequences for our understanding of mantle convection patterns and deformation of deep mantle material. Here, we propose a Bayesian method to model depth variations in azimuthal anisotropy and to obtain quantitative uncertainties on the fast seismic direction and anisotropy amplitude from phase velocity dispersion maps. We applied this new method to existing global fundamental and higher mode Rayleigh wave phase velocity maps to assess the likelihood of azimuthal anisotropy in the deep upper mantle and to determine whether previously detected changes in anisotropy at the transition zone boundaries are robustly constrained by those data. Our results confirm that deep upper-mantle azimuthal anisotropy is favoured and well constrained by the higher mode data employed. The fast seismic directions are in agreement with our previously published model. The data favour a model characterized, on average, by changes in azimuthal anisotropy at the top and bottom of the transition zone. However, this change in fast axes is not a global feature as there are regions of the model where the azimuthal anisotropy direction is unlikely to change across depths in the deep upper mantle. We were, however, unable to detect any clear pattern or connection with surface tectonics. Future studies will be needed to further improve the lateral resolution of this type of model at transition zone depths.

  16. Slow electron contribution to inelastic reflection anisotropy

    International Nuclear Information System (INIS)

    Podsvirov, O.A.; Kuznetsov, Yu.A.

    1980-01-01

    Investigated is electron contribution with low energy (up to 1 keV) to the anisotropy of electron inelastic reflection (IRE) from silicon monocrystal (111) within 12-50 keV energy range of primary electrons. Experimental data on IRE anisotropy are presented: delay curves for silicon monocrystal, permitting to separate electrons with the energy up to 1 keV, dependences of IRE anisotropy on the energy of primary electrons for the systems - monocrystalline silicon-amorphous silicon film and delay curves for such systems (film thickness varies from 20 to 2000 A). Suggested is a phenomenologic model, permitting to take into account the contribution of slow electrons to IRE anisotropy: it is supposed, that three groups of electrons take part in the formation of the latter: elastic and inelastic reflected electrons, slow electrons, excited by primary electrons and slow electrons, generated by the reverse flow of the scattered electrons. Contribution of electrons, different by origin, to IRE anisotropy is evaluated in accordance with the experimental data on the basis of this model. It is stated, that slow electrons constitute approximately one half of the IRE anisotropy value, the contribution of both groups of slow electrons being approximately equal

  17. Stable magnetization of iron filled carbon nanotube MFM probes in external magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Wolny, Franziska; Weissker, Uhland; Muehl, Thomas; Lutz, Matthias U; Mueller, Christian; Leonhardt, Albrecht; Buechner, Bernd, E-mail: f.wolny@ifw-dresden.d [Leibniz Institute for Solid State and Materials Research (IFW) Dresden, Helmholtzstrasse 20, 01069 Dresden (Germany)

    2010-01-01

    We present results on the application of an iron filled carbon nanotube (Fe-CNT) as a probe for magnetic force microscopy (MFM) in an external magnetic field. If an external field is applied parallel to the sample surface, conventional ferromagnetically coated MFM probes often have the disadvantage that the magnetization of the coating turns towards the direction of the applied field. Then it is difficult to distinguish the effect of the external field on the sample from those on the MFM probe. The Fe-CNT MFM probe has a large shape anisotropy due to the high aspect ratio of the enclosed iron nanowire. Thanks to this the direction of the magnetization stays mainly oriented along the long nanotube axis in in-plane fields up to our experimental limit of 250 mT. Thus, the quality of the MFM images remains unchanged. Apart from this, it is shown that Fe-CNT MFM probe yields a very good magnetic resolution of about 25 nm due to the small diameter of the iron filling.

  18. Determination of elastic anisotropy of rocks from P- and S-wave velocities: numerical modelling and lab measurements

    Science.gov (United States)

    Svitek, Tomáš; Vavryčuk, Václav; Lokajíček, Tomáš; Petružálek, Matěj

    2014-12-01

    The most common type of waves used for probing anisotropy of rocks in laboratory is the direct P wave. Information potential of the measured P-wave velocity, however, is limited. In rocks displaying weak triclinic anisotropy, the P-wave velocity depends just on 15 linear combinations of 21 elastic parameters, called the weak-anisotropy parameters. In strong triclinic anisotropy, the P-wave velocity depends on the whole set of 21 elastic parameters, but inversion for six of them is ill-conditioned and these parameters are retrieved with a low accuracy. Therefore, in order to retrieve the complete elastic tensor accurately, velocities of S waves must also be measured and inverted. For this purpose, we developed a lab facility which allows the P- and S-wave ultrasonic sounding of spherical rock samples in 132 directions distributed regularly over the sphere. The velocities are measured using a pair of P-wave sensors with the transmitter and receiver polarized along the radial direction and using two pairs of S-wave sensors with the transmitter and receiver polarized tangentially to the spherical sample in mutually perpendicular directions. We present inversion methods of phase and ray velocities for elastic parameters describing general triclinic anisotropy. We demonstrate on synthetic tests that the inversion becomes more robust and stable if the S-wave velocities are included. This applies even to the case when the velocity of the S waves is measured in a limited number of directions and with a significantly lower accuracy than that of the P wave. Finally, we analyse velocities measured on a rock sample from the Outokumpu deep drill hole, Finland. We present complete sets of elastic parameters of the sample including the error analysis for several levels of confining pressure ranging from 0.1 to 70 MPa.

  19. Relationship between electrical conductivity anisotropy and fabric anisotropy in granular materials during drained triaxial compressive tests: a numerical approach

    Science.gov (United States)

    Niu, Qifei; Revil, André; Li, Zhaofeng; Wang, Yu-Hsing

    2017-07-01

    The anisotropy of granular media and its evolution during shearing are important aspects required in developing physics-based constitutive models in Earth sciences. The development of relationships between geoelectrical properties and the deformation of porous media has applications to the monitoring of faulting and landslides. However, such relationships are still poorly understood. In this study, we first investigate the definition of the electrical conductivity anisotropy tensor of granular materials in presence of surface conductivity of the grains. Fabric anisotropy is related to the components of the fabric tensor. We define an electrical anisotropy factor based on the Archie's exponent second-order symmetric tensor m of granular materials. We use numerical simulations to confirm a relationship between the evolution of electrical and fabric anisotropy factors during shearing. To realize the simulations, we build a virtual laboratory in which we can easily perform synthetic experiments. We first simulate drained compressive triaxial tests of loose and dense granular materials (porosity 0.45 and 0.38, respectively) using the discrete element method. Then, the electrical conductivity tensor of a set of deformed synthetic samples is computed using the finite-difference method. The numerical results show that shear strains are responsible for a measurable anisotropy in the bulk conductivity of granular media. The observed electrical anisotropy response, during shearing, is distinct for dense and loose synthetic samples. Electrical and fabric anisotropy factors exhibit however a unique linear correlation, regardless of the shear strain and the initial state (porosity) of the synthetic samples. The practical implication of this finding confirms the usefulness of the electrical conductivity method in studying the fabric tensor of granular media. This result opens the door in using time-lapse electrical resistivity to study non-intrusively the evolution of anisotropy

  20. Stable indications of relic gravitational waves in Wilkinson Microwave Anisotropy Probe data and forecasts for the Planck mission

    International Nuclear Information System (INIS)

    Zhao, W.; Baskaran, D.; Grishchuk, L. P.

    2009-01-01

    The relic gravitational waves are the cleanest probe of the violent times in the very early history of the Universe. They are expected to leave signatures in the observed cosmic microwave background anisotropies. We significantly improved our previous analysis [W. Zhao, D. Baskaran, and L. P. Grishchuk, Phys. Rev. D 79, 023002 (2009)] of the 5-year WMAP TT and TE data at lower multipoles l. This more general analysis returned essentially the same maximum likelihood result (unfortunately, surrounded by large remaining uncertainties): The relic gravitational waves are present and they are responsible for approximately 20% of the temperature quadrupole. We identify and discuss the reasons by which the contribution of gravitational waves can be overlooked in a data analysis. One of the reasons is a misleading reliance on data from very high multipoles l and another a too narrow understanding of the problem as the search for B modes of polarization, rather than the detection of relic gravitational waves with the help of all correlation functions. Our analysis of WMAP5 data has led to the identification of a whole family of models characterized by relatively high values of the likelihood function. Using the Fisher matrix formalism we formulated forecasts for Planck mission in the context of this family of models. We explore in detail various 'optimistic', 'pessimistic', and 'dream case' scenarios. We show that in some circumstances the B-mode detection may be very inconclusive, at the level of signal-to-noise ratio S/N=1.75, whereas a smarter data analysis can reveal the same gravitational wave signal at S/N=6.48. The final result is encouraging. Even under unfavorable conditions in terms of instrumental noises and foregrounds, the relic gravitational waves, if they are characterized by the maximum likelihood parameters that we found from WMAP5 data, will be detected by Planck at the level S/N=3.65.

  1. Origin of perpendicular magnetic anisotropy in Co/Ni multilayers

    Science.gov (United States)

    Arora, M.; Hübner, R.; Suess, D.; Heinrich, B.; Girt, E.

    2017-07-01

    We studied the variation in perpendicular magnetic anisotropy of (111) textured Au /N ×[Co /Ni ]/Au films as a function of the number of bilayer repeats N . The ferromagnetic resonance and superconducting quantum interference device magnetometer measurements show that the perpendicular magnetic anisotropy of Co/Ni multilayers first increases with N for N ≤10 and then moderately decreases for N >10 . The model we propose reveals that the decrease of the anisotropy for N reduction in the magnetoelastic and magnetocrystalline anisotropies. A moderate decrease in the perpendicular magnetic anisotropy for N >10 is due to the reduction in the magnetocrystalline and the surface anisotropies. To calculate the contribution of magnetoelastic anisotropy in the Co/Ni multilayers, in-plane and out-of-plane x-ray diffraction measurements are performed to determine the spacing between Co/Ni (111) and (220) planes. The magnetocrystalline bulk anisotropy is estimated from the difference in the perpendicular and parallel g factors of Co/Ni multilayers that are measured using the in-plane and out-of-plane ferromagnetic resonance measurements. Transmission electron microscopy has been used to estimate the multilayer film roughness. These values are used to calculate the roughness-induced surface and magnetocrystalline anisotropy coefficients as a function of N .

  2. On the origin of reflectance-anisotropy oscillations during GaAs (0 0 1) homoepitaxy

    Science.gov (United States)

    Ortega-Gallegos, J.; Guevara-Macías, L. E.; Ariza-Flores, A. D.; Castro-García, R.; Lastras-Martínez, L. F.; Balderas-Navarro, R. E.; López-Estopier, R. E.; Lastras-Martínez, A.

    2018-05-01

    We report on the first spectroscopic study of reflectance-anisotropy (RA) oscillations during molecular beam epitaxy (MBE) GaAs homoepitaxy. Real-time RA spectra measured during epitaxial growth were carried out with a recently developed rapid RA multichannel spectrometer with 100 ms per spectrum acquisition time. An analysis of the time-resolved RA spectra shows that RA oscillations are mostly due to the periodic modulation of the surface orthorhombic strain associated to surface reconstruction. Results reported here demonstrate the power of real-time RA spectroscopy as a probe for the study of epitaxial growth processes. In particular, given its sub monolayer surface-strain sensitivity, RA spectroscopy results a very convenient tool to study epitaxial growth mechanisms in real-time with sub monolayer resolution. This capability allows for real-time RA spectroscopy to be used as a probe for the in situ, real-time control of epitaxial growth, with the additional advantage of operating in higher pressure systems such as CVD, where RHEED monitoring cannot be implemented.

  3. Seismic Anisotropy of Soft Sands, Offshore Western AUstralia

    Science.gov (United States)

    Urosevic, M.; Gurevich, B.

    2007-05-01

    Seismic anisotropy is commonly measured in sand shale environment. Intrinsic polar anisotropy of the shale and its effect on seismic data processing and analysis is well established and reasonably well understood. In sandstone, azimuthal anisotropy is often detected and is typically connected to an in situ stress regime and the brittleness of the rock. This type of anisotropy, commonly referred to as fractured induced anisotropy, has been widely and extensively studied as it directly affects both permeability and the strength of the rock. Hence fracture induced anisotropy is not only important for hydrocarbon exploration but also for geotechnical studies, underground mining, etc. Interestingly, in the last few years azimuthal anisotropy has also been detected in soft, poorly consolidated clean sands, mainly by cross-dipole sonic log measurements. This is somewhat surprising as in such soft, typically highly porous and permeable rocks stress induced fractures are unlikely to be abundant. In this study we analyse the anisotropy in such sand class using well-log measurements, three-component VSP data, as well as 2D and 3D surface seismic (reflection) data. High-quality cross-dipole sonic log measurements showed significant shear wave splitting over unconsolidated, highly porous and permeable sand interval. The shear wave anisotropy was computed to be around 10-15%. This is commonly seen as an indication that the rock is fractured and that the fractures are likely to be open. However, image log data over the same sand section suggested dilute most likely non-conductive fractures. Analysis of the shear wave splitting in VSP data also suggested low fracture density. The frequency content of the direct fast and slow shear waves on the VSP data was very similar, not supporting the presence of open fluid saturated fractures. Unfortunately, the evidence from the VSP data is not very compelling because the reservoir is thin compared to the wavelength and sampling interval of

  4. Relative sensitivity of formability to anisotropy

    International Nuclear Information System (INIS)

    Logan, R.W.; Maker, B.N.

    1997-01-01

    This work compares the relative importance of material anisotropy in sheet forming as compared to other material and process variables. The comparison is made quantitative by the use of normalized dependencies of depth to failure (forming limit is reached) on various measures of anisotropy, as well as strain and rate sensitivity, friction, and tooling. Comparisons are made for a variety of forming processes examined previously in the literature as well as two examples of complex stampings in this work. 7 The examples rover a range from nearly pure draw to nearly pure stretch situations, and show that for materials following a quadratic yield criterion, anisotropy is among the most sensitive parameters influencing formability. For materials following higher-exponent yield criteria, the dependency is milder but is still of the order of most other process parameters. However, depending on the particular forming operation, it is shown that in some cases anisotropy may be ignored, whereas in others its consideration is crucial to a good quality analysis

  5. Cosmic-ray anisotropy studies with IceCube

    Science.gov (United States)

    McNally, Frank

    2014-03-01

    The IceCube neutrino observatory detects tens of billions of energetic muons per year produced by cosmic-ray interactions with the atmosphere. The size of this sample has allowed IceCube to observe a significant anisotropy in arrival direction for cosmic rays with median energies between 20 and 400 TeV. This anisotropy is characterized by a large scale structure of per-mille amplitude accompanied by structures with smaller amplitudes and with typical angular sizes between 10° and 20°. IceTop, the surface component of IceCube, has observed a similar anisotropy in the arrival direction distribution of cosmic rays, extending the study to PeV energies. The better energy resolution of IceTop allows for additional studies of the anisotropy, for example a comparison of the energy spectrum in regions of a cosmic-ray excess or deficit to the rest of the sky. We present an update on the cosmic-ray anisotropy observed with IceCube and IceTop and the results of first studies of the energy spectrum at locations of cosmic-ray excess or deficit.

  6. Anisotropy effects in magnetic hyperthermia: A comparison between spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Khurshid, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu; Nemati, Z.; Phan, M. H.; Mukherjee, P.; Srikanth, H., E-mail: khurshid@usf.edu, E-mail: sharihar@usf.edu [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); Alonso, J. [Department of Physics, University of South Florida, Tampa, Florida 33620 (United States); BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Fdez-Gubieda, M. L.; Barandiarán, J. M. [BCMaterials Edificio No. 500, Parque Tecnológico de Vizcaya, Derio 48160 (Spain); Depto. Electricidad y Electrónica, Universidad del País Vasco, Leioa 48940 (Spain)

    2015-05-07

    Spherical and cubic exchange-coupled FeO/Fe{sub 3}O{sub 4} nanoparticles, with different FeO:Fe{sub 3}O{sub 4} ratios, have been prepared by a thermal decomposition method to probe anisotropy effects on their heating efficiency. X-ray diffraction and transmission electron microscopy reveal that the nanoparticles are composed of FeO and Fe{sub 3}O{sub 4} phases, with an average size of ∼20 nm. Magnetometry and transverse susceptibility measurements show that the effective anisotropy field is 1.5 times larger for the cubes than for the spheres, while the saturation magnetization is 1.5 times larger for the spheres than for the cubes. Hyperthermia experiments evidence higher values of the specific absorption rate (SAR) for the cubes as compared to the spheres (200 vs. 135 W/g at 600 Oe and 310 kHz). These observations point to an important fact that the saturation magnetization is not a sole factor in determining the SAR and the heating efficiency of the magnetic nanoparticles can be improved by tuning their effective anisotropy.

  7. Methods for Probing New Physics at High Energies

    Science.gov (United States)

    Denton, Peter B.

    This dissertation covers two broad topics. The title, " Methods for Probing New Physics at High Energies," hopefully encompasses both of them. The first topic is located in part I of this work and is about integral dispersion relations. This is a technique to probe for new physics at energy scales near to the machine energy of a collider. For example, a hadron collider taking data at a given energy is typically only sensitive to new physics occurring at energy scales about a factor of five to ten beneath the actual machine energy due to parton distribution functions. This technique is sensitive to physics happening directly beneath the machine energy in addition to the even more interesting case: directly above. Precisely where this technique is sensitive is one of the main topics of this area of research. The other topic is located in part II and is about cosmic ray anisotropy at the highest energies. The unanswered questions about cosmic rays at the highest energies are numerous and interconnected in complicated ways. What may be the first piece of the puzzle to fall into place is determining their sources. This work looks to determine if and when the use of spherical harmonics becomes sensitive enough to determine these sources. The completed papers for this work can be found online. For part I on integral dispersion relations see reference published in Physical Review D. For part II on cosmic ray anisotropy, there are conference proceedings published in the Journal of Physics: Conference Series. The analysis of the location of an experiment on anisotropy reconstruction is, and the comparison of different experiments' abilities to reconstruct anisotropies is published in The Astrophysical Journal and the Journal of High Energy Astrophysics respectively. While this dissertation is focused on three papers completed with Tom Weiler at Vanderbilt University, other papers were completed at the same time. The first was with Nicusor Arsene, Lauretiu Caramete, and

  8. What does anisotropy measure? Insights from increased and decreased anisotropy in selective fiber tracts in schizophrenia.

    Science.gov (United States)

    Alba-Ferrara, L M; de Erausquin, Gabriel A

    2013-01-01

    Schizophrenia is a common, severe, and chronically disabling mental illness of unknown cause. Recent MRI studies have focused attention on white matter abnormalities in schizophrenia using diffusion tensor imaging (DTI). Indices commonly derived from DTI include (1) mean diffusivity, independent of direction, (2) fractional anisotropy (FA) or relative anisotropy (RA), (3) axial diffusivity, and (4) radial diffusivity. In cerebral white matter, contributions to these indices come from fiber arrangements, degree of myelination, and axonal integrity. Relatively pure deficits in myelin result in a modest increase in radial diffusivity, without affecting axial diffusivity and with preservation of anisotropy. Although schizophrenia is not characterized by gross abnormalities of white matter, it does involve a profound dysregulation of myelin-associated gene expression, reductions in oligodendrocyte numbers, and marked abnormalities in the ultrastructure of myelin sheaths. Since each oligodendrocyte myelinates as many as 40 axon segments, changes in the number of oligodendrocytes (OLG), and/or in the integrity of myelin sheaths, and/or axoglial contacts can have a profound impact on signal propagation and the integrity of neuronal circuits. Whereas a number of studies have revealed inconsistent decreases in anisotropy in schizophrenia, we and others have found increased FA in key subcortical tracts associated with the circuits underlying symptom generation in schizophrenia. We review data revealing increased anisotropy in dopaminergic tracts in the mesencephalon of schizophrenics and their unaffected relatives, and discuss the possible biological underpinnings and physiological significance of this finding.

  9. COSMIC-RAY TRANSPORT AND ANISOTROPIES

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Peter L. [MPI for Radioastronomy, Auf dem Huegel 69, D-53121 Bonn (Germany); Becker Tjus, Julia; Mandelartz, Matthias [Ruhr-Universitaet Bochum, Fakultaet fuer Physik and Astronomie, Theoretische Physik I, D-44780 Bochum (Germany); Seo, Eun-Suk [Department of Physics, University of Maryland, College Park, MD 20742 (United States)

    2013-05-10

    We show that the large-scale cosmic-ray anisotropy at {approx}10 TeV can be explained by a modified Compton-Getting effect in the magnetized flow field of old supernova remnants. Cosmic rays arrive isotropically to the flow field and are then carried along with the flow to produce a large-scale anisotropy in the arrival direction. This approach suggests an optimum energy scale for detecting the anisotropy. Two key assumptions are that propagation is based on turbulence following a Kolmogorov law and that cosmic-ray interactions are dominated by transport via cosmic-ray-excited magnetic irregularities through the stellar wind of an exploding star and its shock shell. A prediction is that the amplitude is smaller at lower energies due to incomplete sampling of the velocity field and also smaller at larger energies due to smearing.

  10. Shape-induced anisotropy in antiferromagnetic nanoparticles

    International Nuclear Information System (INIS)

    Gomonay, O.; Kondovych, S.; Loktev, V.

    2014-01-01

    High fraction of the surface atoms considerably enhances the influence of size and shape on the magnetic and electronic properties of nanoparticles. Shape effects in ferromagnetic nanoparticles are well understood and allow us to set and control the parameters of a sample that affect its magnetic anisotropy during production. In the present paper we study the shape effects in the other widely used magnetic materials – antiferromagnets, – which possess vanishingly small or zero macroscopic magnetization. We take into account the difference between the surface and bulk magnetic anisotropy of a nanoparticle and show that the effective magnetic anisotropy depends on the particle shape and crystallographic orientation of its faces. The corresponding shape-induced contribution to the magnetic anisotropy energy is proportional to the particle volume, depends on magnetostriction, and can cause formation of equilibrium domain structure. Crystallographic orientation of the nanoparticle surface determines the type of domain structure. The proposed model allows us to predict the magnetic properties of antiferromagnetic nanoparticles depending on their shape and treatment. - Highlights: • We demonstrate that the shape effects in antiferromagnetic nanoparticles stem from the difference of surface and bulk magnetic properties combined with strong magnetoelastic coupling. • We predict shape-induced anisotropy in antiferromagnetic particles with large aspect ratio. • We predict different types of domain structures depending on the orientation of the particle faces

  11. Electrical resistivity characterization of anisotropy in the Biscayne Aquifer.

    Science.gov (United States)

    Yeboah-Forson, Albert; Whitman, Dean

    2014-01-01

    Electrical anisotropy occurs when electric current flow varies with azimuth. In porous media, this may correspond to anisotropy in the hydraulic conductivity resulting from sedimentary fabric, fractures, or dissolution. In this study, a 28-electrode resistivity imaging system was used to investigate electrical anisotropy at 13 sites in the Biscayne Aquifer of SE Florida using the rotated square array method. The measured coefficient of electrical anisotropy generally ranged from 1.01 to 1.12 with values as high as 1.36 found at one site. The observed electrical anisotropy was used to estimate hydraulic anisotropy (ratio of maximum to minimum hydraulic conductivity) which ranged from 1.18 to 2.83. The largest values generally were located on the Atlantic Coastal Ridge while the lowest values were in low elevation areas on the margin of the Everglades to the west. The higher values of anisotropy found on the ridge may be due to increased dissolution rates of the oolitic facies of the Miami formation limestone compared with the bryozoan facies to the west. The predominate trend of minimum resistivity and maximum hydraulic conductivity was E-W/SE-NW beneath the ridge and E-W/SW-NE farther west. The anisotropy directions are similar to the predevelopment groundwater flow direction as indicated in published studies. This suggests that the observed anisotropy is related to the paleo-groundwater flow in the Biscayne Aquifer. © 2013, National Ground Water Association.

  12. Non-Gaussianity and the Cosmic Microwave Background Anisotropies

    Directory of Open Access Journals (Sweden)

    N. Bartolo

    2010-01-01

    microwave background (CMB anisotropies. We first show how to set the initial conditions at second order for the CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post inflationary evolution of the CMB anisotropies at second order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples. We also offer a brief summary of other secondary effects. This paper requires basic knowledge of the theory of cosmological perturbations at the linear level.

  13. Probing Protein Multidimensional Conformational Fluctuations by Single-Molecule Multiparameter Photon Stamping Spectroscopy

    Science.gov (United States)

    2015-01-01

    Conformational motions of proteins are highly dynamic and intrinsically complex. To capture the temporal and spatial complexity of conformational motions and further to understand their roles in protein functions, an attempt is made to probe multidimensional conformational dynamics of proteins besides the typical one-dimensional FRET coordinate or the projected conformational motions on the one-dimensional FRET coordinate. T4 lysozyme hinge-bending motions between two domains along α-helix have been probed by single-molecule FRET. Nevertheless, the domain motions of T4 lysozyme are rather complex involving multiple coupled nuclear coordinates and most likely contain motions besides hinge-bending. It is highly likely that the multiple dimensional protein conformational motions beyond the typical enzymatic hinged-bending motions have profound impact on overall enzymatic functions. In this report, we have developed a single-molecule multiparameter photon stamping spectroscopy integrating fluorescence anisotropy, FRET, and fluorescence lifetime. This spectroscopic approach enables simultaneous observations of both FRET-related site-to-site conformational dynamics and molecular rotational (or orientational) motions of individual Cy3-Cy5 labeled T4 lysozyme molecules. We have further observed wide-distributed rotational flexibility along orientation coordinates by recording fluorescence anisotropy and simultaneously identified multiple intermediate conformational states along FRET coordinate by monitoring time-dependent donor lifetime, presenting a whole picture of multidimensional conformational dynamics in the process of T4 lysozyme open-close hinge-bending enzymatic turnover motions under enzymatic reaction conditions. By analyzing the autocorrelation functions of both lifetime and anisotropy trajectories, we have also observed the dynamic and static inhomogeneity of T4 lysozyme multidimensional conformational fluctuation dynamics, providing a fundamental

  14. Elastic Anisotropy of Basalt

    Science.gov (United States)

    Becker, K.; Shapiro, S.; Stanchits, S.; Dresen, G.; Kaselow, A.; Vinciguerra, S.

    2005-12-01

    Elastic properties of rocks are sensitive to changes of the in-situ stress and damage state. In particular, seismic velocities are strongly affected by stress-induced formation and deformation of cracks or shear-enhanced pore collapse. The effect of stress on seismic velocities as a result of pore space deformation in isotropic rock at isostatic compression may be expressed by the equation: A+K*P-B*exp (-D*P) (1), where P=Pc-Pp is the effective pressure, the pure difference between confining pressure and pore pressure. The parameter A, K, B and D describe material constants determined using experimental data. The physical meaning of the parameters is given by Shapiro (2003, in Geophysics Vol.68(Nr.2)). Parameter D is related to the stress sensitivity of the rock. A similar relation was derived by Shapiro and Kaselow (2005, in Geophysics in press) for weak anisotropic rocks under arbitrary load. They describe the stress dependent anisotropy in terms of Thomson's (1986, in Geophysics, Vol. 51(Nr.10)) anisotropy parameters ɛ and γ as a function of stress in the case of an initially isotropic rock: ɛ ∝ E2-E3, γ ∝ E3-E2 (2) with Ei=exp (D*Pi). The exponential terms Ei are controlled by the effective stress components Pi. To test this relation, we have conducted a series of triaxial compression tests on dry samples of initially isotropic Etnean Basalt in a servo-controlled MTS loading frame equipped with a pressure cell. Confining pressure was 60, 40 and 20 MPa. Samples were 5 cm in diameter and 10 cm in length. Elastic anisotropy was induced by axial compression of the samples through opening and growth of microcracks predominantly oriented parallel to the sample axis. Ultrasonic P- and S- wave velocities were monitored parallel and normal to the sample axis by an array of 20 piezoceramic transducers glued to the surface. Preamplified full waveform signals were stored in two 12 channel transient recorders. According to equation 2 the anisotropy parameters are

  15. A perturbative DFT approach for magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Khoo, Khoong Hong; Laskowski, Robert, E-mail: rolask@ihpc.a-star.edu.sg

    2017-04-15

    We develop a perturbative formalism for computing magnetocrystalline anisotropy within density functional theory and the magnetic force theorem. Instead of computing eigenvalues of the spin–orbit Hamiltonian for selected spin polarizations, as in the conventional “force theorem” approach, we show that the effect can be cast into a redefined form of the spin–orbit operator. This allows to separate the large eigenvalue shift due to spin-orbit interaction common for both polarizations from the much smaller magnetic anisotropy splitting. As a consequence the anisotropy splitting may by considered as a perturbation.

  16. Determination of the out-of-plane anisotropy contributions (first and second anisotropy terms) in amorphous Nd-Co thin films by micromagnetic numerical simulations

    Science.gov (United States)

    Alvarez-Prado, L. M.; Cid, R.; Morales, R.; Diaz, J.; Vélez, M.; Rubio, H.; Hierro-Rodriguez, A.; Alameda, J. M.

    2018-06-01

    Amorphous Nd-Co thin films exhibit stripe shaped periodic magnetic domains with local out-of-plane magnetization components due to their perpendicular magnetic anisotropy. This anisotropy has been quantified in a fairly simple way by reproducing the experimental magnetization curves by means of micromagnetic numerical simulations. The simulations show that the first (K1) and second (K2) anisotropy constants must be used to properly describe the variation of the stripe domains with the in plane applied magnetic field. A strong temperature dependence of both K1 and K2 has been obtained between 10 K and room temperature. This anisotropy behavior is characteristic of two magnetically coupled 3d-4f sublattices with competing anisotropies.

  17. Magnetic anisotropies of (Ga,Mn)As films and nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Hoffmann, Frank

    2011-02-02

    In this work the magnetic anisotropies of the diluted magnetic semiconductor (Ga,Mn)As were investigated experimentally. (Ga,Mn)As films show a superposition of various magnetic anisotropies which depend sensitively on various parameters such as temperature, carrier concentration or lattice strain. However, the anisotropies of lithographically prepared (Ga,Mn)As elements differ significantly from an unpatterned (Ga,Mn)As film. In stripe-shaped structures this behaviour is caused by anisotropic relaxation of the compressive lattice strain. In order to determine the magnetic anisotropies of individual (Ga,Mn)As nanostructures a combination of ferromagnetic resonance and time-resolved scanning Kerr microscopy was employed in this thesis. In addition, local changes of the magnetic anisotropy in circular and rectangular structures were visualized by making use of spatially resolved measurements. Finally, also the influence of the laterally inhomogeneous magnetic anisotropies on the static magnetic properties, such as coercive fields, was investigated employing spatially resolved static MOKE measurements on individual (Ga,Mn)As elements. (orig.)

  18. Polarized Neutron Diffraction to Probe Local Magnetic Anisotropy of a Low-Spin Fe(III) Complex.

    Science.gov (United States)

    Ridier, Karl; Mondal, Abhishake; Boilleau, Corentin; Cador, Olivier; Gillon, Béatrice; Chaboussant, Grégory; Le Guennic, Boris; Costuas, Karine; Lescouëzec, Rodrigue

    2016-03-14

    We have determined by polarized neutron diffraction (PND) the low-temperature molecular magnetic susceptibility tensor of the anisotropic low-spin complex PPh4 [Fe(III) (Tp)(CN)3]⋅H2O. We found the existence of a pronounced molecular easy magnetization axis, almost parallel to the C3 pseudo-axis of the molecule, which also corresponds to a trigonal elongation direction of the octahedral coordination sphere of the Fe(III) ion. The PND results are coherent with electron paramagnetic resonance (EPR) spectroscopy, magnetometry, and ab initio investigations. Through this particular example, we demonstrate the capabilities of PND to provide a unique, direct, and straightforward picture of the magnetic anisotropy and susceptibility tensors, offering a clear-cut way to establish magneto-structural correlations in paramagnetic molecular complexes. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Supernovae anisotropy power spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Ghodsi, Hoda; Baghram, Shant [Department of Physics, Sharif University of Technology, P.O. Box 11155-9161, Tehran (Iran, Islamic Republic of); Habibi, Farhang, E-mail: h.ghodsi@mehr.sharif.ir, E-mail: baghram@sharif.edu, E-mail: habibi@lal.in2p3.fr [LAL-IN2P3/CNRS, BP 34, 91898 Orsay Cedex (France)

    2017-10-01

    We contribute another anisotropy study to this field of research using Type Ia supernovae (SNe Ia). In this work, we utilise the power spectrum calculation method and apply it to both the current SNe Ia data and simulation. Using the Union2.1 data set at all redshifts, we compare the spectrum of the residuals of the observed distance moduli to that expected from an isotropic universe affected by the Union2.1 observational uncertainties at low multipoles. Through this comparison we find a dipolar anisotropy with tension of less that 2σ towards l = 171° ± 21° and b = −26° ± 28° which is mainly induced by anisotropic spatial distribution of the SNe with z > 0.2 rather than being a cosmic effect. Furthermore, we find a tension of ∼ 4σ at ℓ = 4 between the two spectra. Our simulations are constructed with the characteristics of the upcoming surveys like the Large Synoptic Survey Telescope (LSST), which shall bring us the largest SNe Ia collection to date. We make predictions for the amplitude of a possible dipolar anisotropy that would be detectable by future SNe Ia surveys.

  20. Non-Gaussianity and the Cosmic Microwave Background Anisotropies

    CERN Document Server

    Bartolo, N; Riotto, A

    2010-01-01

    We review in a pedagogical way the present status of the impact of non-Gaussianity (NG) on the Cosmic Microwave Background (CMB) anisotropies. We first show how to set the initial conditions at second-order for the (gauge invariant) CMB anisotropies when some primordial NG is present. However, there are many sources of NG in CMB anisotropies, beyond the primordial one, which can contaminate the primordial signal. We mainly focus on the NG generated from the post-inflationary evolution of the CMB anisotropies at second-order in perturbation theory at large and small angular scales, such as the ones generated at the recombination epoch. We show how to derive the equations to study the second-order CMB anisotropies and provide analytical computations to evaluate their contamination to primordial NG (complemented with numerical examples). We also offer a brief summary of other secondary effects. This review requires basic knowledge of the theory of cosmological perturbations at the linear level.

  1. Evaluation of electrical resistivity anisotropy in geological mapping ...

    African Journals Online (AJOL)

    user

    Key words: Electrical resistivity anisotropy, radial vertical electrical sounding, anisotropy polygons. INTRODUCTION ... electrical resistivity survey in the geological interpretation ... resistivity and other electrical or electromagnetic based.

  2. Primordial statistical anisotropy generated at the end of inflation

    International Nuclear Information System (INIS)

    Yokoyama, Shuichiro; Soda, Jiro

    2008-01-01

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum

  3. Primordial statistical anisotropy generated at the end of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Shuichiro [Department of Physics and Astrophysics, Nagoya University, Aichi 464-8602 (Japan); Soda, Jiro, E-mail: shu@a.phys.nagoya-u.ac.jp, E-mail: jiro@tap.scphys.kyoto-u.ac.jp [Department of Physics, Kyoto University, Kyoto 606-8501 (Japan)

    2008-08-15

    We present a new mechanism for generating primordial statistical anisotropy of curvature perturbations. We introduce a vector field which has a non-minimal kinetic term and couples with a waterfall field in a hybrid inflation model. In such a system, the vector field gives fluctuations of the end of inflation and hence induces a subcomponent of curvature perturbations. Since the vector has a preferred direction, the statistical anisotropy could appear in the fluctuations. We present the explicit formula for the statistical anisotropy in the primordial power spectrum and the bispectrum of curvature perturbations. Interestingly, there is the possibility that the statistical anisotropy does not appear in the power spectrum but does appear in the bispectrum. We also find that the statistical anisotropy provides the shape dependence to the bispectrum.

  4. Solvent induced supramolecular anisotropy in molecular gels

    Energy Technology Data Exchange (ETDEWEB)

    Rogers, Michael A., E-mail: mroger09@uoguelph.ca [Department of Food Science, University of Guelph, Guelph, Ontario, N3C3X9 (Canada); Corradini, Maria G. [Department of Food Science, University of Massachusetts Amherst, Amherst, MA, 01003 (United States); Emge, Thomas [Department of Chemistry and Biochemistry, Rutgers University, New Brunswick, NJ, 08901 (United States)

    2017-06-15

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  5. Solvent induced supramolecular anisotropy in molecular gels

    International Nuclear Information System (INIS)

    Rogers, Michael A.; Corradini, Maria G.; Emge, Thomas

    2017-01-01

    Herein is the first report of solvent induced anisotropy in 12-hydroxystearic acid self-assembled fibrillar networks. Increasing the chain length of polar solvent, such as nitriles and ketones, tailored the anisotropy of the fibrillar aggregates. 12HSA molecular gels, comprised of alkanes, exhibited an isotropic fibrillar network irrespective of the alkane chain length. In polar solvents, anisotropy, observed using 2D powder x-ray diffraction profiles, is correlated to a fibrillar supramolecular morphologies in long chain nitriles and ketones while sphereulitic crystals are correlated to x-ray diffraction patterns with an isotropic scatter intensity in short chain ketones and nitriles. These changes directly modify the final physical properties of the gels. - Highlights: • 12-HSA self-assembles into crystalline supramolecular morphologies depending on the solvent. • Alkanes, short chain nitriles and ketones led to 12-HSA displaying supramolecular isotropy. • In long chain nitriles and ketones, 12-HSA displays supramolecular anisotropy.

  6. Cellulose and the Control of Growth Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Tobias I. Baskin

    2004-04-01

    The authors research aims to understand morphogenesis, focusing on growth anisotropy, a process that is crucial to make organs with specific and heritable shapes. For the award, the specific aims were to test hypotheses concerning how growth anisotropy is controlled by cell wall structure, particularly by the synthesis and alignment of cellulose microfibrils, the predominant mechanical element in the cell wall. This research has involved characterizing the basic physiology of anisotropic expansion, including measuring it at high resolution; and second, characterizing the relationship between growth anisotropy, and cellulose microfibrils. Important in this relationship and also to the control of anisotropic expansion are structures just inside the plasma membrane called cortical microtubules, and the research has also investigated their contribution to controlling anisotropy and microfibril alignment. In addition to primary experimental papers, I have also developed improved methods relating to these objectives as well as written relevant reviews. Major accomplishments in each area will now be described.

  7. Cosmic microwave background anisotropies in multiconnected flat spaces

    International Nuclear Information System (INIS)

    Riazuelo, Alain; Weeks, Jeffrey; Uzan, Jean-Philippe; Lehoucq, Roland; Luminet, Jean-Pierre

    2004-01-01

    This article investigates the signature of the seventeen multiconnected flat spaces in cosmic microwave background (CMB) maps. For each such space it recalls a fundamental domain and a set of generating matrices, and then goes on to find an orthonormal basis for the set of eigenmodes of the Laplace operator on that space. The basis eigenmodes are expressed as linear combinations of eigenmodes of the simply connected Euclidean space. A preceding work, which provides a general method for implementing multiconnected topologies in standard CMB codes, is then applied to simulate CMB maps and angular power spectra for each space. Unlike in the 3-torus, the results in most multiconnected flat spaces depend on the location of the observer. This effect is discussed in detail. In particular, it is shown that the correlated circles on a CMB map are generically not back to back, so that negative search of back-to-back circles in the Wilkinson Microwave Anisotropy Probe data does not exclude a vast majority of flat or nearly flat topologies

  8. CMB anisotropies interpolation

    NARCIS (Netherlands)

    Zinger, S.; Delabrouille, Jacques; Roux, Michel; Maitre, Henri

    2010-01-01

    We consider the problem of the interpolation of irregularly spaced spatial data, applied to observation of Cosmic Microwave Background (CMB) anisotropies. The well-known interpolation methods and kriging are compared to the binning method which serves as a reference approach. We analyse kriging

  9. Quantifying seismic anisotropy induced by small-scale chemical heterogeneities

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are usually used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, seismic anisotropy observed in tomographic models provides important constraints on the geometry of mantle deformation associated with thermal convection and plate tectonics. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. In this paper, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1-D and 2-D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, that is, varying as 1/k, with k the wavenumber of these heterogeneities. The 1-D toy models correspond to simple layered media. In the 2-D case, our models depict marble-cake patterns in which an anomaly in shear wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, that is, apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1-D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1-D and 2-D media. In addition, we predict that 10 per cent of chemical heterogeneities in 2-D marble-cake models can

  10. Comparison of species-resolved energy spectra from ACE EPAM and Van Allen Probes RBSPICE

    Science.gov (United States)

    Patterson, J.; Manweiler, J. W.; Armstrong, T. P.; Lanzerotti, L. J.; Gerrard, A. J.; Gkioulidou, M.

    2013-12-01

    We present a comparison between energy spectra measured by the Advanced Composition Explorer (ACE) Electron Proton Alpha Monitor (EPAM) instrument and the Van Allen Probe Ion Composition Experiment (RBSPICE) for two significant and distinct events in early 2013. The first is an impulsive solar particle event on March 17th. While intense, this event presented no significant surprises in terms of its composition or anisotropy characteristics, thus providing a good baseline for response of the trapped radiation belts as observed by the Van Allen Probes. The second solar event occurred late May 22nd and early May 23rd. This event has a much greater concentration of medium and heavy ions than the St. Patrick's Day event, as well as having very peculiar energy spectra with evidence of two distinct populations. During the St. Patrick's Day Event, the energy spectra for helium, carbon, oxygen, neon, silicon, and iron all show the same spectral power law slope -3.1. The event shows strong anisotropy with intensities differing by a factor of four for both protons and Z>1 ions. The late May event also has strong anisotropy, and in the same directions as the St. Patrick's Day Event, but with very different composition and energy spectra. The spectra are much harder with power law spectral slopes of -0.5. Additionally, there is a significant spectral bump at 3 MeV/nuc for helium that is not present in the spectra of the heavier ions. The intensities of the heavier ions, however, show an increase that is an order of magnitude greater than the increase seen for helium. The March 17 RBSPICE observations show multiple injection events lasting for less than an hour each during the Van Allen Probes B apogees. These injections are seen in protons as well as Helium and only somewhat observed in Oxygen. Spectral slopes for the observations range from approximately -5 during quiet times to double peaked events with a spectral slope of approximately -2 at the beginning of the injection

  11. Optical anisotropy of quasi-1D rare-earth silicide nanostructures on Si(001)

    Energy Technology Data Exchange (ETDEWEB)

    Chandola, S., E-mail: sandhya.chandola@isas.de [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Speiser, E.; Esser, N. [Leibniz-Institut für Analytische Wissenschaften – ISAS – e.V., Schwarzschildstraße 8, 12489 Berlin (Germany); Appelfeller, S.; Franz, M.; Dähne, M. [Institut für Festkörperphysik, Technische Universität Berlin, Hardenbergstraße 36, 10623 Berlin (Germany)

    2017-03-31

    Highlights: • Reflectance anisotropy spectroscopy (RAS) is capable of distinguishing optically between the semiconducting wetting layer and the metallic nanowires of rare earth (Tb and Dy) silicide nanostructures grown on vicinal Si(001). • The spectra of the wetting layer show a distinctive line shape with a large peak appearing at 3.8 eV, which is assigned to the formation of 2 × 3 and 2 × 4-like subunits of the 2 × 7 reconstruction. The spectra of the metallic nanowires show peaks at the E{sub 1} and E{sub 2} transitions of bulk Si which is assigned to strong substrate strain induced by the nanowires. • The optical anisotropy of the Tb nanowires is larger than for the Dy nanowires, which is related to the preferential formation of more strained bundles as well as larger areas of clean Si surfaces in the case of Tb. • RAS is shown to be a powerful addition to surface science techniques for studying the formation of rare-earth silicide nanostructures. Its surface sensitivity and rapidity of response make it an ideal complement to the slower but higher resolution of scanning probes of STM and AFM. - Abstract: Rare earth metals are known to interact strongly with Si(001) surfaces to form different types of silicide nanostructures. Using STM to structurally characterize Dy and Tb silicide nanostructures on vicinal Si(001), it will be shown that reflectance anisotropy spectroscopy (RAS) can be used as an optical fingerprint technique to clearly distinguish between the formation of a semiconducting two-dimensional wetting layer and the metallic one-dimensional nanowires. Moreover, the distinctive spectral features can be related to structural units of the nanostructures. RAS spectra of Tb and Dy nanostructures are found to show similar features.

  12. The effect of anisotropy on the thermodynamics of the interacting holographic dark energy model

    Science.gov (United States)

    Hossienkhani, H.; Jafari, A.; Fayaz, V.; Ramezani, A. H.

    2018-02-01

    By considering a holographic model for the dark energy in an anisotropic universe, the thermodynamics of a scheme of dark matter and dark energy interaction has been investigated. The results suggest that when holographic dark energy and dark matter evolve separately, each of them remains in thermodynamic equilibrium, therefore the interaction between them may be viewed as a stable thermal fluctuation that brings a logarithmic correction to the equilibrium entropy. Also the relation between the interaction term of the dark components and this thermal fluctuation has been obtained. Additionally, for a cosmological interaction as a free function, the anisotropy effects on the generalized second law of thermodynamics have been studied. By using the latest observational data on the holographic dark energy models as the unification of dark matter and dark energy, the observational constraints have been probed. To do this, we focus on observational determinations of the Hubble expansion rate H( z). Finally, we evaluate the anisotropy effects (although low) on various topics, such as the evolution of the statefinder diagnostic, the distance modulus and the spherical collapse from the holographic dark energy model and compare them with the results of the holographic dark energy of the Friedmann-Robertson-Walker and Λ CDM models.

  13. Positron probe to study the freezing of nanodroplets

    International Nuclear Information System (INIS)

    Pujari, P.K.

    2010-01-01

    Positron is an excellent in situ probe to study the phase behavior of fluid confined in nanodomains. The study of phase behavior (freezing/melting) of nano confined fluid or nanodroplet has great relevance in fundamental research as well as applications in nano-tribology, nanofabrication, membrane separation, interfacial adhesion and lubrication. It is seen that the properties of freezing/melting of nanodroplets are different from their bulk behavior due to the combined effects of finite size, surface force, surface anisotropy, pore disorder and reduced dimensionality. We have used positron annihilation spectroscopy (PAS) to study the freezing/melting behavior of different organic liquids like benzene, ethylene glycol and isopropanol confined in nanopores of ZSM5 zeolite and silica gel

  14. Anisotropy of magnetoviscous effect in structure-forming ferrofluids

    Science.gov (United States)

    Sreekumari, Aparna; Ilg, Patrick

    2015-07-01

    The magnetoviscous effect, change in viscosity with change in magnetic field strength, and the anisotropy of the magnetoviscous effect, change in viscosity with orientation of magnetic field, have been a focus of interest for four decades. A satisfactory understanding of the microscopic origin of anisotropy of the magnetoviscous effect in magnetic fluids is still a matter of debate and a field of intense research. Here, we present an extensive simulation study to understand the relation between the anisotropy of the magnetoviscous effect and the underlying change in microstructures of ferrofluids. Our results indicate that field-induced chainlike structures respond very differently depending on their orientation relative to the direction of an externally applied shear flow, which leads to a pronounced anisotropy of viscosity. In this work, we focus on three exemplary values of dipolar interaction strengths which correspond to weak, intermediate, and strong interactions between dipolar colloidal particles. We compare our simulation results with an experimental study on cobalt-based ferrofluids as well as with an existing theoretical model called the chain model. A nonmonotonic behavior in the anisotropy of the magnetoviscous effect is observed with increasing dipolar interaction strength and is explained in terms of microstructure formation.

  15. Magnetic anisotropy of ultrafine 316L stainless steel fibers

    Energy Technology Data Exchange (ETDEWEB)

    Shyr, Tien-Wei, E-mail: twshyr@fcu.edu.tw [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Huang, Shih-Ju [Department of Fiber and Composite Materials, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan, ROC (China); Wur, Ching-Shuei [Department of Physics, National Cheng Kung University, No. 1, University Road, Tainan 70101, Taiwan, ROC (China)

    2016-12-01

    An as-received 316L stainless steel fiber with a diameter of 20 μm was drawn using a bundle drawing process at room temperature to form ultrafine stainless steel fibers with diameters of 12, 8, and 6 μm. The crystalline phases of the fibers were analyzed using the X-ray diffraction (XRD) profile fitting technique. The grain sizes of γ-austenite and α′-martensite were reduced to nanoscale sizes after the drawing process. XRD analysis and focused ion beam-scanning electron microscope observations showed that the newly formed α′-martensitic grains were closely arrayed in the drawing direction. The magnetic property was measured using a superconducting quantum interference device vibrating sample magnetometer. The magnetic anisotropy of the fibers was observed by applying a magnetic field parallel and perpendicular to the fiber axis. The results showed that the microstructure anisotropy including the shape anisotropy, magnetocrystalline anisotropy, and the orientation of the crystalline phases strongly contributed to the magnetic anisotropy. - Highlights: • The martensitic transformation of the 316L SS fiber occurred during the cold drawn. • The grain sizes of γ-austenite and α′-martensite were reduced to the nanoscale. • The newly formed martensitic grains were closely arrayed in the drawing direction. • The drawing process caused the magnetic easy axis to be aligned with the fiber axis. • The microstructure anisotropy strongly contributed to the magnetic anisotropy.

  16. Momentum anisotropy at freeze out

    International Nuclear Information System (INIS)

    Feld, S.; Borghini, N.; Lang, C.

    2017-01-01

    The transition from a hydrodynamical modeling to a particle-based approach is a crucial element of the description of high-energy heavy-ion collisions. Assuming this “freeze out” happens instantaneously at each point of the expanding medium, we show that the local phase-space distribution of the emitted particles is asymmetric in momentum space. This suggests the use of anisotropic hydrodynamics for the last stages of the fluid evolution. We discuss how observables depend on the amount of momentum-space anisotropy at freeze out and how smaller or larger anisotropies allow for different values of the freeze-out temperature. (paper)

  17. Magnetic transitions and phases in random-anisotropy magnets

    International Nuclear Information System (INIS)

    Sellmyer, D.J.; Nafis, S.; O'Shea, M.J.

    1988-01-01

    The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed

  18. Magnetic transitions and phases in random-anisotropy magnets

    Science.gov (United States)

    Sellmyer, D. J.; Nafis, S.; O'Shea, M. J.

    1988-04-01

    The generality and universality of the Ising spin-glass-like phase transitions observed in several rare-earth, random-anisotropy magnets are discussed. Some uncertainties and practical problems in determining critical exponents are considered, and a comparison is made to insulating spin glasses and crystalline spin glasses where an apparent anisotropy-induced crossover from Heisenberg to Ising-like behavior is seen. The observation of a reentrant transition in a weak anisotropy system and its correlation with the theory of Chudnovsky, Saslow, and Serota [Phys. Rev. B 33, 251 (1986)] for the correlated spin glass is discussed.

  19. Canonical Transform Method for Treating Strongly Anisotropy Magnets

    DEFF Research Database (Denmark)

    Cooke, J. F.; Lindgård, Per-Anker

    1977-01-01

    An infinite-order perturbation approach to the theory of magnetism in magnets with strong single-ion anisotropy is given. This approach is based on a canonical transformation of the system into one with a diagonal crystal field, an effective two-ion anisotropy, and reduced ground-state corrections....... A matrix-element matching procedure is used to obtain an explicit expression for the spin-wave energy to second order. The consequences of this theory are illustrated by an application to a simple example with planar anisotropy and an external magnetic field. A detailed comparison between the results...

  20. Scattering of light from small nematic spheres with radial dielectric anisotropy

    International Nuclear Information System (INIS)

    Karacali, H.; Risser, S.M.; Ferris, K.F.

    1997-01-01

    We have calculated the scattering cross sections of small anisotropic nematic droplets embedded in a polymer matrix as a function of the dielectric constants of the nematic and the polymer. We have derived the general form for the Helmholtz wave equation for a droplet which has spatially varying radial anisotropy, and have explicitly solved this equation for three distinct models of the dielectric anisotropy, including one model where the anisotropy increases linearly with droplet radius. Numerical calculations of the scattering amplitudes for droplets much smaller than the wavelength of the incident radiation show that droplets with continual variation in the dielectric anisotropy have much larger scattering amplitude than droplets with fixed anisotropy. The scattering from droplets with linearly varying anisotropy exhibits a scattering minimum for much smaller polymer dielectric constants than the other models. These results show that the scattering from small anisotropic droplets is sensitive to details of the internal structure and anisotropy of the droplet. copyright 1997 The American Physical Society

  1. How to probe transverse magnetic anisotropy of a single-molecule magnet by electronic transport?

    Science.gov (United States)

    Misiorny, M.; Burzuri, E.; Gaudenzi, R.; Park, K.; Leijnse, M.; Wegewijs, M.; Paaske, J.; Cornia, A.; van der Zant, H.

    We propose an approach for in-situ determination of the transverse magnetic anisotropy (TMA) of an individual molecule by electronic transport measurements, see Phys. Rev. B 91, 035442 (2015). We study a Fe4 single-molecule magnet (SMM) captured in a gateable junction, a unique tool for addressing the spin in different redox states of a molecule. We show that, due to mixing of the spin eigenstates of the SMM, the TMA significantly manifests itself in transport. We predict and experimentally observe the pronounced intensity modulation of the Coulomb peak amplitude with the magnetic field in the linear-response transport regime, from which the TMA parameter E can be estimated. Importantly, the method proposed here does not rely on the small induced tunnelling effects and, hence, works well at temperatures and electron tunnel broadenings by far exceeding the tunnel splittings and even E itself. We deduce that the TMA for a single Fe4 molecule captured in a junction is substantially larger than the bulk value. Work supported by the Polish Ministry of Science and Education as `Iuventus Plus' project (IP2014 030973) in years 2015-2016.

  2. Electronic, magnetic, and magnetocrystalline anisotropy properties of light lanthanides

    Science.gov (United States)

    Hackett, Timothy A.; Baldwin, D. J.; Paudyal, D.

    2017-11-01

    Theoretical understanding of interactions between localized and mobile electrons and the crystal environment in light lanthanides is important because of their key role in much needed magnetic anisotropy in permanent magnet materials that have a great impact in automobile and wind turbine applications. We report electronic, magnetic, and magnetocrystalline properties of these basic light lanthanide elements studied from advanced density functional theory (DFT) calculations. We find that the inclusion of onsite 4f electron correlation and spin orbit coupling within the full-potential band structure is needed to understand the unique magnetocrystalline properties of these light lanthanides. The onsite electron correlation, spin orbit coupling, and full potential for the asphericity of charge densities must be taken into account for the proper treatment of 4f states. We find the variation of total energy as a function of lattice constants that indicate multiple structural phases in Ce contrasting to a single stable structure obtained in other light lanthanides. The 4f orbital magnetic moments are partially quenched as a result of crystalline electric field splitting that leads to magnetocrystalline anisotropy. The charge density plots have similar asphericity and environment in Pr and Nd indicating similar magnetic anisotropy. However, Ce and Sm show completely different asphericity and environment as both orbital moments are significantly quenched. In addition, the Fermi surface structures exemplified in Nd indicate structural stability and unravel a cause of anisotropy. The calculated magnetocrystalline anisotropy energy (MAE) reveals competing c-axis and in-plane anisotropies, and also predicts possibilities of unusual structural deformations in light lanthanides. The uniaxial magnetic anisotropy is obtained in the double hexagonal closed pack structures of the most of the light lanthanides, however, the anisotropy is reduced or turned to planar in the low symmetry

  3. The 100th anniversary of the four-point probe technique: the role of probe geometries in isotropic and anisotropic systems

    International Nuclear Information System (INIS)

    Miccoli, I; Edler, F; Pfnür, H; Tegenkamp, C

    2015-01-01

    The electrical conductivity of solid-state matter is a fundamental physical property and can be precisely derived from the resistance measured via the four-point probe technique excluding contributions from parasitic contact resistances. Over time, this method has become an interdisciplinary characterization tool in materials science, semiconductor industries, geology, physics, etc, and is employed for both fundamental and application-driven research. However, the correct derivation of the conductivity is a demanding task which faces several difficulties, e.g. the homogeneity of the sample or the isotropy of the phases. In addition, these sample-specific characteristics are intimately related to technical constraints such as the probe geometry and size of the sample. In particular, the latter is of importance for nanostructures which can now be probed technically on very small length scales. On the occasion of the 100th anniversary of the four-point probe technique, introduced by Frank Wenner, in this review we revisit and discuss various correction factors which are mandatory for an accurate derivation of the resistivity from the measured resistance. Among others, sample thickness, dimensionality, anisotropy, and the relative size and geometry of the sample with respect to the contact assembly are considered. We are also able to derive the correction factors for 2D anisotropic systems on circular finite areas with variable probe spacings. All these aspects are illustrated by state-of-the-art experiments carried out using a four-tip STM/SEM system. We are aware that this review article can only cover some of the most important topics. Regarding further aspects, e.g. technical realizations, the influence of inhomogeneities or different transport regimes, etc, we refer to other review articles in this field. (topical review)

  4. The signal of mantle anisotropy in the coupling of normal modes

    Science.gov (United States)

    Beghein, Caroline; Resovsky, Joseph; van der Hilst, Robert D.

    2008-12-01

    We investigate whether the coupling of normal mode (NM) multiplets can help us constrain mantle anisotropy. We first derive explicit expressions of the generalized structure coefficients of coupled modes in terms of elastic coefficients, including the Love parameters describing radial anisotropy and the parameters describing azimuthal anisotropy (Jc, Js, Kc, Ks, Mc, Ms, Bc, Bs, Gc, Gs, Ec, Es, Hc, Hs, Dc and Ds). We detail the selection rules that describe which modes can couple together and which elastic parameters govern their coupling. We then focus on modes of type 0Sl - 0Tl+1 and determine whether they can be used to constrain mantle anisotropy. We show that they are sensitive to six elastic parameters describing azimuthal anisotropy, in addition to the two shear-wave elastic parameters L and N (i.e. VSV and VSH). We find that neither isotropic nor radially anisotropic mantle models can fully explain the observed degree two signal. We show that the NM signal that remains after correction for the effect of the crust and mantle radial anisotropy can be explained by the presence of azimuthal anisotropy in the upper mantle. Although the data favour locating azimuthal anisotropy below 400km, its depth extent and distribution is still not well constrained by the data. Consideration of NM coupling can thus help constrain azimuthal anisotropy in the mantle, but joint analyses with surface-wave phase velocities is needed to reduce the parameter trade-offs and improve our constraints on the individual elastic parameters and the depth location of the azimuthal anisotropy.

  5. Current sheets and pressure anisotropy in the reconnection exhaust

    International Nuclear Information System (INIS)

    Le, A.; Karimabadi, H.; Roytershteyn, V.; Egedal, J.; Ng, J.; Scudder, J.; Daughton, W.; Liu, Y.-H.

    2014-01-01

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma

  6. Current sheets and pressure anisotropy in the reconnection exhaust

    Energy Technology Data Exchange (ETDEWEB)

    Le, A.; Karimabadi, H.; Roytershteyn, V. [SciberQuest, Inc., Del Mar, California 92014 (United States); Egedal, J. [University of Wisconsin–Madison, Madison, Wisconsin 53706 (United States); Ng, J. [PPPL, Princeton University, Princeton, New Jersey 08543 (United States); Scudder, J. [University of Iowa, Iowa City, Iowa 52242 (United States); Daughton, W.; Liu, Y.-H. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)

    2014-01-15

    A particle-in-cell simulation shows that the exhaust during anti-parallel reconnection in the collisionless regime contains a current sheet extending 100 inertial lengths from the X line. The current sheet is supported by electron pressure anisotropy near the X line and ion anisotropy farther downstream. Field-aligned electron currents flowing outside the magnetic separatrices feed the exhaust current sheet and generate the out-of-plane, or Hall, magnetic field. Existing models based on different mechanisms for each particle species provide good estimates for the levels of pressure anisotropy. The ion anisotropy, which is strong enough to reach the firehose instability threshold, is also important for overall force balance. It reduces the outflow speed of the plasma.

  7. Novel surface anisotropy term in the FMR spectra of amorphous microwires

    International Nuclear Information System (INIS)

    Gutowski, M.W.; Zuberek, R.; Zhukov, A.

    2004-01-01

    Some recent publications on ferromagnetic resonance in amorphous wires mention presumably a new kind of anisotropy, called there circumferential anisotropy, as an explanation of various observed spectral features. In this paper, we argue that there is no special reason to speak of the new kind of anisotropy, since the observed spectra can be well described in terms of more traditional uniaxial and surface anisotropies alone

  8. Optical second-harmonic and reflectance-anisotropy spectroscopy of molecular adsorption at Si(001) step-edges

    Energy Technology Data Exchange (ETDEWEB)

    Ehlert, Robert; Kwon, Jinhee; Downer, Michael C. [University of Texas at Austin, Department of Physics, Austin, TX 78712-1081 (United States)

    2008-07-01

    Reflectance-anisotropy spectroscopy (RAS) and spectroscopic second harmonic generation (SHG) are used to probe a single-domain reconstructed stepped Si(001) surface offcut 6 toward[110] before and after dissociative adsorption of H{sub 2} at the D{sub B} step edges. Preliminary analysis with a simplified bond hyperpolarizability model supports the mutual consistency of RA and SHG spectra and suggests that hydrogen termination redistributes oscillator strength from the chemically active step dangling bond into the step back bonds. The data provide a benchmark for first-principles calculations of the optical response of stepped Si surfaces to step edge molecular adsorption. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  9. EFFECT OF SANDSTONE ANISOTROPY ON ITS HEAT AND MOISTURE TRANSPORT PROPERTIES

    Directory of Open Access Journals (Sweden)

    Jan Fořt

    2015-09-01

    Full Text Available Each type of natural stone has its own geological history, formation conditions, different chemical and mineralogical composition, which influence its possible anisotropy. Knowledge in the natural stones anisotropy represents crucial information for the process of stone quarrying, its correct usage and arrangement in building applications. Because of anisotropy, many natural stones exhibit different heat and moisture transport properties in various directions. The main goal of this study is to analyse several anisotropy indices and their effect on heat transport and capillary absorption. For the experimental determination of the anisotropy effect, five types of sandstone coming from different operating quarries in the Czech Republic are chosen. These materials are often used for restoration of culture heritage monuments as well as for other building applications where they are used as facing slabs, facade panels, decoration stones, paving, etc. For basic characterization of studied materials, determination of their bulk density, matrix density and total open porosity is done. Chemical composition of particular sandstones is analysed by X-Ray Fluorescence. Anisotropy is examined by the non-destructive measurement of velocity of ultrasonic wave propagation. On the basis of ultrasound testing data, the relative anisotropy, total anisotropy and anisotropy coefficient are calculated. Then, the measurement of thermal conductivity and thermal diffusivity in various directions of samples orientation is carried out. The obtained results reveal significant differences between the parameters characterizing the heat transport in various directions, whereas these values are in accordance with the indices of anisotropy. Capillary water transport is described by water absorption coefficient measured using a sorption experiment, which is performed for distilled water and 1M NaCl water solution.  The measured data confirm the effect of anisotropy which is

  10. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY. II. TRANSIENT FEATURES AND RIGIDITY DEPENDENCE

    International Nuclear Information System (INIS)

    Florinski, V.; Roux, J. A. le; Stone, E. C.; Cummings, A. C.

    2015-01-01

    In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle’s Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion’s rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout

  11. ENERGETIC PARTICLE ANISOTROPIES AT THE HELIOSPHERIC BOUNDARY. II. TRANSIENT FEATURES AND RIGIDITY DEPENDENCE

    Energy Technology Data Exchange (ETDEWEB)

    Florinski, V.; Roux, J. A. le [Department of Space Sciences, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Stone, E. C.; Cummings, A. C. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States)

    2015-04-10

    In the preceding paper, we showed that large second-order anisotropies of heliospheric ions measured by the Voyager 1 space probe during the August 2012 boundary crossing event could be explained by a magnetic shear across the heliopause preventing particles streaming along the magnetic field from escaping the inner heliosheath. According to Stone et al., the penetration distance of heliospheric ions into the outer heliosheath had a strong dependence on the particle’s Larmor radius. By comparing hydrogen, helium, and oxygen ions with the same energy per nucleon, these authors argued that this effect must be attributed to larger cyclotron radii of heavier species rather than differences in velocity. We propose that gradient drift in a nonuniform magnetic field was the cause of both the large second-order anisotropies and the spatial differentiation based on the ion’s rigidity. A latitudinal gradient of magnetic field strength of about 10% per AU between 2012.7 and 2012.9 could have provided drift motion sufficient to match both LECP and CRS Voyager 1 observations. We explain the transient intensity dropout observed prior to the heliocliff using flux tube structures embedded in the heliosheath and magnetically connected to interstellar space. Finally, this paper reports a new indirect measurement of the plasma radial velocity at the heliopause on the basis of the time difference between two cosmic-ray telescopes measuring the same intensity dropout.

  12. The influence of anisotropy on capture zone analysis

    International Nuclear Information System (INIS)

    Hansen, K.

    1995-01-01

    Approximately 50,000 gallons of various grades of gasoline and aviation fuel were leaked into silty clay overburden overlying phyllite of the Wissahickon Formation. Pumping tests and measurements of water table recovery from recovery and production wells suggested that elliptical cones of depression were caused by anisotropic groundwater flow in steeply dipping fractures trending between N60 degree E and N75 degree E which were formed by weathered metamorphic foliation. Fracture trace analysis, outcrop measurements, borehole camera surveys, straddle packer testing, and test excavations supported this conceptual model for hydraulic conductivity. Using both quantitative and semi-quantitative methods, the magnitude of anisotropy was calculated from both pumping tests and water table recovery data. Calculated anisotropies showed variations related to the particular method of analysis. Simulations of capture zones using numerical techniques indicated that anisotropic conditions had produced actual capture zones influenced by groundwater flow not orthogonal to equipotential lines. Capture zone shapes were significantly distorted along the primary axis of anisotropy within the range of variation in anisotropy (n) measured by the different analysis methods. Using the mean value of anisotropy from this site (n = 14), actual recovery well capture areas were subsequently corrected for anisotropic effects. The use of capture areas corrected for the mean value of anisotropy enabled more effective placement of subsequent recovery wells. The relatively consistent foliation of rocks in the Wissahickon Formation suggested that capture zone correction should be considered when developing recovery strategies in aquifer systems where anisotropic conditions are likely

  13. Large Friction Anisotropy of a Polydiacetylene Monolayer

    International Nuclear Information System (INIS)

    Burns, A.R.; Carpick, R.W.; Sasaki, D.Y.

    1999-01-01

    Friction force microscopy measurements of a polydiacetylene monolayer film reveal a 300% friction anisotropy that is correlated with the film structure. The film consists of a monolayer of the red form of N-(2-ethanol)- 10,12 pentacosadiynamide, prepared on a Langmuir trough and deposited on a mica substrate. As confirmed by atomic force microscopy and fluorescence microscopy, the monolayer consists of domains of linearly oriented conjugated backbones with pendant hydrocarbon side chains above and below the backbones. Maximum friction occurs when the sliding direction is perpendicular to the backbone. We propose that the backbones impose anisotropic packing of the hydrocarbon side chains which leads to the observed friction anisotropy. Friction anisotropy is therefore a sensitive, optically-independent indicator of polymer backbone direction and monolayer structural properties

  14. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  15. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    International Nuclear Information System (INIS)

    Biermann, Mark L; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W S

    2003-01-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain

  16. Inflationary gravity waves in light of recent cosmic microwave background anisotropies data

    International Nuclear Information System (INIS)

    Melchiorri, Alessandro; Oedman, Carolina J.

    2003-01-01

    One of the major predictions of inflation is the existence of a stochastic background of cosmological gravitational waves (GW). These gravitational waves can induce significant temperature anisotropies in the cosmic microwave background (CMB) on the angular scales recently probed by the Archeops experiment. Here, we perform a combined analysis of Archeops together with information from other CMB experiments and/or cosmological data sets, in order to constrain the amplitude of the GW background. We find that, for a scale-invariant GW background, the ratio of tensor-scalar perturbations at the CMB quadrupole is now constrained to be r≤0.43 at 95% C.L., while the bound on the spectral index of primordial density fluctuations is n S =0.97 -0.12 +0.10 . We discuss the implications for future GW detections through CMB polarization measurements

  17. Effects of Low Anisotropy on Generalized Ghost Dark Energy in Galileon Gravity

    Science.gov (United States)

    Hossienkhani, H.; Fayaz, V.; Jafari, A.; Yousefi, H.

    2018-04-01

    The definition of the Galileon gravity form is extended to the Brans-Dicke theory. Given, the framework of the Galileon theory, the generalized ghost dark energy model in an anisotropic universe is investigated. We study the cosmological implications of this model. In particular, we obtain the equation of state and the deceleration parameters and a differential equation governing the evolution of this dark energy in Bianchi type I model. We also probe observational constraints by using the latest observational data on the generalized ghost dark energy models as the unification of dark matter and dark energy. In order to do so, we focus on observational determinations of the Hubble expansion rate (namely, the expansion history) H(z). As a result, we show the influence of the anisotropy (although low) on the evolution of the universe in the statefinder diagrams for Galileon gravity.

  18. Thermodynamics of strong coupling superconductors including the effect of anisotropy

    Science.gov (United States)

    Daams, J. M.; Carbotte, J. P.

    1981-05-01

    The thermodynamics of several elemental superconductors is computed from isotropic Eliashberg theory formulated on the imaginary frequency axis. A symmary of the available experimental literature is presented and a comparison with theory is given. The small disagreements that are found are all in the direction expected from anisotropy effects. We calculate the effect of a small amount of model anisotropy on the critical temperature, critical field, and high-temperature specific heat from an exact solution of the anisotropic Eliashberg equations. These are the first such results below the critical temperature; unlike previous analytical work, we include retardation, anisotropy in the mass enhancement, and the effect of the Coulomb repulsion in enhancing anisotropy, all of which are significant. We derive a new formula independent of any model anisotropy for the rate of decrease with impurity lifetime of the critical temperature. Finally we demonstrate how the commonly used formulas of Markowitz and Kadanoff and of Clem may give entirely misleading estimates of the gap anisotropy when used to interpret certain experiments.

  19. TeV Cosmic-Ray Anisotropy from the Magnetic Field at the Heliospheric Boundary

    Energy Technology Data Exchange (ETDEWEB)

    López-Barquero, V. [Department of Physics, University of Wisconsin, Madison, Wisconsin 53706 (United States); Xu, S. [Department of Astronomy, School of Physics, Peking University, Beijing 100871 (China); Desiati, P. [Wisconsin IceCube Particle Astrophysics Center (WIPAC), University of Wisconsin, Madison, WI 53703 (United States); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Pogorelov, N. V. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States); Yan, H. [DESY, Platanenallee 6, D-15738 Zeuthen (Germany)

    2017-06-10

    We performed numerical calculations to test the suggestion by Desiati and Lazarian that the anisotropies of TeV cosmic rays may arise from their interactions with the heliosphere. For this purpose, we used a magnetic field model of the heliosphere and performed direct numerical calculations of particle trajectories. Unlike earlier papers testing the idea, we did not employ time-reversible techniques that are based on Liouville’s theorem. We showed numerically that for scattering by the heliosphere, the conditions of Liouville’s theorem are not satisfied, and the adiabatic approximation and time-reversibility of the particle trajectories are not valid. Our results indicate sensitivity to the magnetic structure of the heliospheric magnetic field, and we expect that this will be useful for probing this structure in future research.

  20. Strength and strain anisotropy of olkiluoto mica gneiss

    International Nuclear Information System (INIS)

    Hakala, M.; Kuula, H.; Hudson, J.

    2006-10-01

    An anisotropy in the elastic moduli values of intact rock with a ratio of more than 1.3∼1.5 has been reported to have an effect on the calculated magnitudes and orientations of the in situ principal stress components as measured by the overcoring method. Work related to the on-going site investigation for a deep radioactive waste repository at the Olkiluoto site in Western Finland has shown that the migmatic mica gneiss is anisotropic which could therefore affect the interpretation of overcoring stress measurement results. This paper includes a summary of the theory of anisotropy concerning the intact rock moduli via the strain compliance matrix, a description of the core sample testing methods, and interpretation of results for the migmatic mica gneiss from two site investigation boreholes. In this case study, 19 specimens were tested and the results showed a modulus anisotropy of about 1.4. Because such anisotropy is high enough to produce significant errors in the estimation of the in situ principal stresses, it is recommended to take this into account in the interpretation of the stress measurement results, both in the context of the current work in Finland and in other projects where similar anisotropy is encountered. (orig.)

  1. Effective anisotropy through traveltime and amplitude matching

    KAUST Repository

    Wang, Hui

    2014-08-05

    Introducing anisotropy to seismic wave propagation reveals more realistic physics of our Earth\\'s subsurface as compared to the isotropic assumption. However wavefield modeling, the engine of seismic inverse problems, in anisotropic media still suffers from computational burdens, in particular with complex anisotropy such as transversely isotropic (TI) and Orthorhombic anisotropy. We develop effective isotropic velocity and density models to package the effects of anisotropy such that the wave propagation behavior using these effective models approximate those of the original anisotropic model. We build these effective models through the high frequency asymptotic approximation based on the eikonal and transport equations. We match the geometrical behavior of the wave-fields, given by traveltimes, from the anisotropic and isotropic eikonal equations. This matching yields the effective isotropic velocity that approximates the kinematics of the anisotropic wavefield. Equivalently, we calculate the effective densities by equating the anisotropic and isotropic transport equations. The effective velocities and densities are then fed into the isotropic acoustic variable density wave equation to obtain cheaper anisotropic wavefields. We justify our approach by testing it on an elliptical anisotropic model. The numerical results demonstrate a good matching of both traveltime and amplitude between anisotropic and effective isotropic wavefields.

  2. Phenomenological description of anisotropy effects in some ferromagnetic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Shopova, Diana V., E-mail: sho@issp.bas.bg [TCCM Research Group, Institute of Solid State Physics, Bulgarian Academy of Sciences, BG-1784 Sofia (Bulgaria); Todorov, Michail D. [Department of Applied Mathematics and Computer Science, Technical University of Sofia, 1000 Sofia (Bulgaria)

    2015-07-03

    We study phenomenologically the role of anisotropy in ferromagnetic superconductors UGe{sub 2}, URhGe, and UCoGe for the description of their phase diagrams. We use the Ginzburg–Landau free energy in its uniform form as we will consider only spatially independent solutions. This is an expansion of previously derived results where the effect of Cooper-pair and crystal anisotropies is not taken into account. The three compounds are separately discussed with the special stress on UGe{sub 2}. The main effect comes from the strong uniaxial anisotropy of magnetization while the anisotropy of Cooper pairs and crystal anisotropy only slightly change the phase diagram in the vicinity of Curie temperature. The limitations of this approach are also discussed. - Highlights: • Anisotropic Landau energy for description of ferromagnetic superconductors is proposed. • Meissner phases are described with their existence and stability conditions. • The application of the model to UGe{sub 2} is discussed. • The limitations to apply the model for description of experimental data are explained.

  3. Ab initio studies of magnetic anisotropy energy in highly Co-doped ZnO

    Energy Technology Data Exchange (ETDEWEB)

    Łusakowski, A., E-mail: lusak@ifpan.edu.pl [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668 Warsaw (Poland); Szuszkiewicz, W. [Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, PL-02668 Warsaw (Poland); Faculty of Mathematics and Natural Sciences, University of Rzeszów, ul. S. Pigonia 1, PL-35959 Rzeszów (Poland)

    2017-03-15

    Density functional theory (DFT) calculations of the energy of magnetic anisotropy for diluted magnetic semiconductor (Zn,Co)O were performed using OpenMX package with fully relativistic pseudopotentials. The analysis of the band spin-orbit interaction and the magnetic ion's surrounding on magnetic anisotropy have been provided. As a result, the calculations show that the magnetic anisotropy in (Zn,Co)O solid solution, mainly of the single ion anisotropy type has been caused by Co ions. - Highlights: • The magnetic anisotropy in (Zn,Co)O is mainly due to anisotropy of single cobalt ion. • The magnetic anisotropy of (Zn,Co)O strongly depends on the nearest neighborhood of magnetic ion including local lattice deformations. • For (Zn,Co)O the energy of magnetic anisotropy is described by second order terms in magnetization.

  4. Stress-induced magnetic anisotropy in nanocrystalline alloys

    International Nuclear Information System (INIS)

    Varga, L.K.; Gercsi, Zs.; Kovacs, Gy.; Kakay, A.; Mazaleyrat, F.

    2003-01-01

    Stress-annealing experiments were extended to both nanocrystalline alloy families, Finemet and Nanoperm (Hitperm), and, for comparison, to amorphous Fe 62 Nb 8 B 30 alloy. For both Finemet and bulk amorphous, stress-annealing results in a strong induced transversal anisotropy (flattening of hysteresis loop) but yields longitudinal induced anisotropy (square hysteresis loop) in Nanoperm and Hitperm. These results are interpreted in terms of back-stress theory

  5. A sensitive fluorescent probe for the polar solvation dynamics at protein-surfactant interfaces.

    Science.gov (United States)

    Singh, Priya; Choudhury, Susobhan; Singha, Subhankar; Jun, Yongwoong; Chakraborty, Sandipan; Sengupta, Jhimli; Das, Ranjan; Ahn, Kyo-Han; Pal, Samir Kumar

    2017-05-17

    Relaxation dynamics at the surface of biologically important macromolecules is important taking into account their functionality in molecular recognition. Over the years it has been shown that the solvation dynamics of a fluorescent probe at biomolecular surfaces and interfaces account for the relaxation dynamics of polar residues and associated water molecules. However, the sensitivity of the dynamics depends largely on the localization and exposure of the probe. For noncovalent fluorescent probes, localization at the region of interest in addition to surface exposure is an added challenge compared to the covalently attached probes at the biological interfaces. Here we have used a synthesized donor-acceptor type dipolar fluorophore, 6-acetyl-(2-((4-hydroxycyclohexyl)(methyl)amino)naphthalene) (ACYMAN), for the investigation of the solvation dynamics of a model protein-surfactant interface. A significant structural rearrangement of a model histone protein (H1) upon interaction with anionic surfactant sodium dodecyl sulphate (SDS) as revealed from the circular dichroism (CD) studies is nicely corroborated in the solvation dynamics of the probe at the interface. The polarization gated fluorescence anisotropy of the probe compared to that at the SDS micellar surface clearly reveals the localization of the probe at the protein-surfactant interface. We have also compared the sensitivity of ACYMAN with other solvation probes including coumarin 500 (C500) and 4-(dicyanomethylene)-2-methyl-6-(p-dimethylamino-styryl)-4H-pyran (DCM). In comparison to ACYMAN, both C500 and DCM fail to probe the interfacial solvation dynamics of a model protein-surfactant interface. While C500 is found to be delocalized from the protein-surfactant interface, DCM becomes destabilized upon the formation of the interface (protein-surfactant complex). The timescales obtained from this novel probe have also been compared with other femtosecond resolved studies and molecular dynamics simulations.

  6. Electrical anisotropy in the presence of oceans—a sensitivity study

    Science.gov (United States)

    Cembrowski, Marcel; Junge, Andreas

    2018-05-01

    Electrical anisotropy in the presence of oceans is particularly relevant at continent-ocean subduction zones (e.g. Cascadian and Andean Margin), where seismic anisotropy has been found with trench-parallel or perpendicular fast direction. The identification of electrical anisotropy at such locations sheds new light on the relation between seismic and electrical anisotropies. At areas confined by two opposite oceans, for example the Pyrenean Area and Central America, we demonstrate that the superposed responses of both oceans generate a uniform and large phase split of the main phase tensor axes. The pattern of the tipper arrows is comparatively complicated and it is often difficult to associate their length and orientation to the coast effect. On the basis of simple forward models involving opposite oceans and anisotropic layers, we show that both structures generate similar responses. In the case of a deep anisotropic layer, the resistivity and phase split generated by the oceans alone will be increased or decreased depending on the azimuth of the conducting horizontal principal axes. The 3-D isotropic inversion of the anisotropic forward responses reproduces the input data reasonably well. The anisotropy is explained by large opposed conductors outside the station grid and by tube-like elongated conductors representing a macroscopic anisotropy. If the conductive direction is perpendicular to the shorelines, the anisotropy is not recovered by 3-D isotropic inversion.

  7. Seismic anisotropy in the upper mantle beneath the MAGIC array, mid-Atlantic Appalachians: Constraints from SKS splitting and quasi-Love wave propagation

    Science.gov (United States)

    Aragon, J. C.; Long, M. D.; Benoit, M. H.; Servali, A.

    2016-12-01

    North America's eastern passive continental margin has been modified by several cycles of supercontinent assembly. Its complex surface geology and distinct topography provide evidence of these events, while also raising questions about the extent of deformation in the continental crust, lithosphere, and mantle during past episodes of rifting and mountain building. The Mid-Atlantic Geophysical Integrative Collaboration (MAGIC) is an EarthScope and GeoPRISMS-funded project that involves a collaborative effort among seismologists, geodynamicists, and geomorphologists. One component of the project is a broadband seismic array consisting of 28 instruments in a linear path from coastal Virginia to western Ohio, which operated between October 2013 and October 2016. A key science question addressed by the MAGIC project is the geometry of past lithospheric deformation and present-day mantle flow beneath the Appalachians, which can be probed using observations of seismic anisotropy Here we present observations of SKS splitting and quasi-Love wave arrivals from stations of the MAGIC array, which together constrain seismic anisotropy in the upper mantle. SKS splitting along the array reveals distinct regions of upper mantle anisotropy, with stations in and to the west of the range exhibiting fast directions parallel to the strike of the mountains. In contrast, weak splitting and null SKS arrivals dominate eastern stations in the coastal plain. Documented Love-to-Rayleigh wave scattering for surface waves originating the magnitude 8.3 Illapel, Chile earthquakes in September 2015 provides complementary constraints on anisotropy. These quasi-Love wave arrivals suggest a pronounced change in upper mantle anisotropy at the eastern edge of present-day Appalachian topography. Together, these observations increase our understanding of the extent of lithospheric deformation beneath North America associated with Appalachian orogenesis, as well as the pattern of present-day mantle flow

  8. Quarkonium dissociation by anisotropy

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2013-01-01

    We compute the screening length for quarkonium mesons moving through an anisotropic, strongly coupled mathcal{N} = 4 super Yang-Mills plasma by means of its gravity dual. We present the results for arbitrary velocities and orientations of the mesons, as well as for arbitrary values of the anisotropy. The anisotropic screening length can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. For generic motion we find that: (i) mesons dissociate above a certain critical value of the anisotropy, even at zero temperature; (ii) there is a limiting velocity for mesons in the plasma, even at zero temperature; (iii) in the ultra-relativistic limit the screening length scales as (1 - v 2)ɛ with ɛ = 1 /2, in contrast with the isotropic result ɛ = 1 /4.

  9. Ginzburg-Landau theory of the superheating field anisotropy of layered superconductors

    Science.gov (United States)

    Liarte, Danilo B.; Transtrum, Mark K.; Sethna, James P.

    2016-10-01

    We investigate the effects of material anisotropy on the superheating field of layered superconductors. We provide an intuitive argument both for the existence of a superheating field, and its dependence on anisotropy, for κ =λ /ξ (the ratio of magnetic to superconducting healing lengths) both large and small. On the one hand, the combination of our estimates with published results using a two-gap model for MgB2 suggests high anisotropy of the superheating field near zero temperature. On the other hand, within Ginzburg-Landau theory for a single gap, we see that the superheating field shows significant anisotropy only when the crystal anisotropy is large and the Ginzburg-Landau parameter κ is small. We then conclude that only small anisotropies in the superheating field are expected for typical unconventional superconductors near the critical temperature. Using a generalized form of Ginzburg Landau theory, we do a quantitative calculation for the anisotropic superheating field by mapping the problem to the isotropic case, and present a phase diagram in terms of anisotropy and κ , showing type I, type II, or mixed behavior (within Ginzburg-Landau theory), and regions where each asymptotic solution is expected. We estimate anisotropies for a number of different materials, and discuss the importance of these results for radio-frequency cavities for particle accelerators.

  10. Probing interaction and spatial curvature in the holographic dark energy model

    International Nuclear Information System (INIS)

    Li, Miao; Li, Xiao-Dong; Wang, Shuang; Wang, Yi; Zhang, Xin

    2009-01-01

    In this paper we place observational constraints on the interaction and spatial curvature in the holographic dark energy model. We consider three kinds of phenomenological interactions between holographic dark energy and matter, i.e., the interaction term Q is proportional to the energy densities of dark energy (ρ Λ ), matter (ρ m ), and matter plus dark energy (ρ m +ρ Λ ). For probing the interaction and spatial curvature in the holographic dark energy model, we use the latest observational data including the type Ia supernovae (SNIa) Constitution data, the shift parameter of the cosmic microwave background (CMB) given by the five-year Wilkinson Microwave Anisotropy Probe (WMAP5) observations, and the baryon acoustic oscillation (BAO) measurement from the Sloan Digital Sky Survey (SDSS). Our results show that the interaction and spatial curvature in the holographic dark energy model are both rather small. Besides, it is interesting to find that there exists significant degeneracy between the phenomenological interaction and the spatial curvature in the holographic dark energy model

  11. Submicron scale tissue multifractal anisotropy in polarized laser light scattering

    Science.gov (United States)

    Das, Nandan Kumar; Dey, Rajib; Chakraborty, Semanti; Panigrahi, Prasanta K.; Meglinski, Igor; Ghosh, Nirmalya

    2018-03-01

    The spatial fluctuations of the refractive index within biological tissues exhibit multifractal anisotropy, leaving its signature as a spectral linear diattenuation of scattered polarized light. The multifractal anisotropy has been quantitatively assessed by the processing of relevant Mueller matrix elements in the Fourier domain, utilizing the Born approximation and subsequent multifractal analysis. The differential scaling exponent and width of the singularity spectrum appear to be highly sensitive to the structural multifractal anisotropy at the micron/sub-micron length scales. An immediate practical use of these multifractal anisotropy parameters was explored for non-invasive screening of cervical precancerous alterations ex vivo, with the indication of a strong potential for clinical diagnostic purposes.

  12. Consequences of elastic anisotropy in patterned substrate heteroepitaxy.

    Science.gov (United States)

    Dixit, Gopal Krishna; Ranganathan, Madhav

    2018-06-13

    The role of elastic anisotropy on quantum dot formation and evolution on a pre-patterned substrate is evaluated within the framework of a continuum model. We first extend the formulation for surface evolution to take elastic anisotropy into account. Using a small slope approximation, we derive the evolution equation and show how it can be numerically implemented up to linear and second order for stripe and egg-carton patterned substrates using an accurate and efficient procedure. The semi--infinite nature of the substrate is used to solve the elasticity problem subject to other boundary conditions at the free surface and at the film--substrate interface. The positioning of the quantum dots with respect to the peaks and valleys of the pattern is explained by a competition between the length scale of the pattern and the wavelength of the Asaro--Tiller--Grinfeld instability, which is also affected by the elastic anisotropy. The alignment of dots is affected by a competition between the elastic anisotropy of the film and the pattern orientation. A domain of pattern inversion, wherein the quantum dots form exclusively in the valleys of the patterns is identified as a function of the average film thickness and the elastic anisotropy, and the time--scale for this inversion as function of height is analyzed. © 2018 IOP Publishing Ltd.

  13. Anisotropy analysis of low cement concrete by ultrasonic measurements and image analysis

    Directory of Open Access Journals (Sweden)

    Martinović Sanja P.

    2016-01-01

    Full Text Available The analized material was high alumina low cement castable sintered at three different temperatures. Influence of initial material anisotropy on the thermal shock resistance as well as changes of anisotropy level during the thermal shock were studied. Water quench test was used as an experimental method for the thermal stability testing. Surface anisotropy was analysed by image analysis and structural anisotropy using ultrasonic measurements. The results pointed out that the highest homogeinity and the lowest surface and structural anisotropy was for the samples sintered at 1600ºC. Surface anistoropy had prevailing infuence on behavior of material during the thermal shock, but the structural anisotropy should not be neglected. [Projekat Ministarstva nauke Republike Srbije, br. TR 33007

  14. Anisotropy of domain wall resistance

    Science.gov (United States)

    Viret; Samson; Warin; Marty; Ott; Sondergard; Klein; Fermon

    2000-10-30

    The resistive effect of domain walls in FePd films with perpendicular anisotropy was studied experimentally as a function of field and temperature. The films were grown directly on MgO substrates, which induces an unusual virgin magnetic configuration composed of 60 nm wide parallel stripe domains. This allowed us to carry out the first measurements of the anisotropy of domain wall resistivity in the two configurations of current perpendicular and parallel to the walls. At 18 K, we find 8.2% and 1.3% for the domain wall magnetoresistance normalized to the wall width (8 nm) in these two respective configurations. These values are consistent with the predictions of Levy and Zhang.

  15. D" anisotropy and slip systems in post-perovskite

    Science.gov (United States)

    Nowacki, Andy; Wookey, James; Kendall, J.-Michael

    2010-05-01

    The lowermost few hundred kilometres of the Earth's mantle-known as D″-form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a large (~2%) increase in S-wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (V S) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. The MgSiO3-post-perovskite mineral phase is the most compelling explanation for observations of anisotropy, though an outstanding question is how post-perovskite and other mineral phases may deform to produce this: different mechanisms are possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can determine the other with the seismic anisotropy which is created. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW > 5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained-only one azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The same but with a tilted axis is possible (TTI) and would be consistent with inclusions of seismically

  16. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Herawati, Ida, E-mail: ida.herawati@students.itb.ac.id; Winardhi, Sonny; Priyono, Awali [Mining and Petroleum Engineering Faculty, Institut Teknologi Bandung, Bandung, 40132 (Indonesia)

    2015-09-30

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented.

  17. Estimation of anisotropy parameters in organic-rich shale: Rock physics forward modeling approach

    International Nuclear Information System (INIS)

    Herawati, Ida; Winardhi, Sonny; Priyono, Awali

    2015-01-01

    Anisotropy analysis becomes an important step in processing and interpretation of seismic data. One of the most important things in anisotropy analysis is anisotropy parameter estimation which can be estimated using well data, core data or seismic data. In seismic data, anisotropy parameter calculation is generally based on velocity moveout analysis. However, the accuracy depends on data quality, available offset, and velocity moveout picking. Anisotropy estimation using seismic data is needed to obtain wide coverage of particular layer anisotropy. In anisotropic reservoir, analysis of anisotropy parameters also helps us to better understand the reservoir characteristics. Anisotropy parameters, especially ε, are related to rock property and lithology determination. Current research aims to estimate anisotropy parameter from seismic data and integrate well data with case study in potential shale gas reservoir. Due to complexity in organic-rich shale reservoir, extensive study from different disciplines is needed to understand the reservoir. Shale itself has intrinsic anisotropy caused by lamination of their formed minerals. In order to link rock physic with seismic response, it is necessary to build forward modeling in organic-rich shale. This paper focuses on studying relationship between reservoir properties such as clay content, porosity and total organic content with anisotropy. Organic content which defines prospectivity of shale gas can be considered as solid background or solid inclusion or both. From the forward modeling result, it is shown that organic matter presence increases anisotropy in shale. The relationships between total organic content and other seismic properties such as acoustic impedance and Vp/Vs are also presented

  18. Colour-coded fractional anisotropy images: differential visualisation of white-matter tracts - preliminary experience

    International Nuclear Information System (INIS)

    Murata, T.; Higano, S.; Tamura, H.; Mugikura, S.; Takahashi, S.

    2002-01-01

    Diffusion-tensor analysis allows quantitative assessment of diffusion anisotropy. Fractional anisotropy (FA) is commonly used to quantify anisotropy. One of the limitations of FA imaging is, however, that it does not contain information about the directionality of anisotropy and it is therefore difficult to identify white-matter tracts on FA images. Our purpose was to describe a simple method of making composite images containing information about both magnitude and direction of diffusion anisotropy. The composite colour-coded FA images enabled us to identify different adjacent fibre bundles of similar degrees of diffusion anisotropy, and might be helpful in assessment of these fasciculi. (orig.)

  19. Role of the magnetic anisotropy in organic spin valves

    Directory of Open Access Journals (Sweden)

    V. Kalappattil

    2017-09-01

    Full Text Available Magnetic anisotropy plays an important role in determining the magnetic functionality of thin film based electronic devices. We present here, the first systematic study of the correlation between magnetoresistance (MR response in organic spin valves (OSVs and magnetic anisotropy of the bottom ferromagnetic electrode over a wide temperature range (10 K–350 K. The magnetic anisotropy of a La0.67Sr0.33MnO3 (LSMO film epitaxially grown on a SrTiO3 (STO substrate was manipulated by reducing film thickness from 200 nm to 20 nm. Substrate-induced compressive strain was shown to drastically increase the bulk in-plane magnetic anisotropy when the LSMO became thinner. In contrast, the MR response of LSMO/OSC/Co OSVs for many organic semiconductors (OSCs does not depend on either the in-plane magnetic anisotropy of the LSMO electrodes or their bulk magnetization. All the studied OSV devices show a similar temperature dependence of MR, indicating a similar temperature-dependent spinterface effect irrespective of LSMO thickness, resulting from the orbital hybridization of carriers at the OSC/LSMO interface.

  20. Measurements of magnetic anisotropy in sickle cells

    International Nuclear Information System (INIS)

    Salvo Souza, L.H. de.

    1982-03-01

    Room temperature magnetic measurements in deoxigenated sickle cells showed the existence of magnetic anisotropy, Δchi=1,29 x 10 -3 . This effect was supposed paramagnetic and considered to be due to the iron atoms of the hemoglobin molecules which are one over the other, forming ordered chains inside the erythrocytes. Low temperature (liquid He - 4,2K) measurements of the magnetic anisotropy of sickle cells and normal red blood cells diluted in a cryoprotector was made to confirm the paramagnetic origin of the fenomena. For that purpose it was used a superconductor magnetometer coupled to a SQUID, developed in the 'Laboratorio do Estado Solido do Departamento de Fisica da PUC-RJ'. The results obtained seem to confirm the expected paramagnetic anisotropy and, furthermore, suggest the presence of magnetic interactions among the iron atoms in the sickle cells samples. (Author) [pt

  1. Bianchi-V string cosmological model with dark energy anisotropy

    Science.gov (United States)

    Mishra, B.; Tripathy, S. K.; Ray, Pratik P.

    2018-05-01

    The role of anisotropic components on the dark energy and the dynamics of the universe is investigated. An anisotropic dark energy fluid with different pressures along different spatial directions is assumed to incorporate the effect of anisotropy. One dimensional cosmic strings aligned along x-direction supplement some kind of anisotropy. Anisotropy in the dark energy pressure is found to evolve with cosmic expansion at least at late times. At an early phase, the anisotropic effect due to the cosmic strings substantially affect the dynamics of the accelerating universe.

  2. Plasma sheet pressure anisotropies

    International Nuclear Information System (INIS)

    Stiles, G.S.; Hones, E.W. Jr; Bame, S.J.; Asbridge, J.R.

    1978-01-01

    The ecliptic plane components of the pressure tensors for low-energy ( or =1.2 approximately 25% of the time. Due to the low energy density of the electrons, however, this anisotropy is not itself sufficient to balance the tension of the magnetic field

  3. Large Magnetic Anisotropy in HfMnP

    Science.gov (United States)

    Parker, David; Lamichhane, Tej; Taufour, Valentin; Masters, Morgan; Thimmaiah, Srinivasa; Bud'Ko, Ser'gey; Canfield, Paul

    We present a theoretical and experimental study of two little-studied manganese phosphide ferromagnets, HfMnP and ZrMnP, with Curie temperatures above room temperature. We find an anisotropy field in HfMnP approaching 10 T - larger than that of the permanent magnet workhorse NdFeB magnets. From theory we determine the source of this anisotropy. Our results show the potential of 3d-element-based magnetic materials for magnetic applications.

  4. Linking strain anisotropy and plasticity in copper metallization

    International Nuclear Information System (INIS)

    Murray, Conal E.; Jordan-Sweet, Jean; Priyadarshini, Deepika; Nguyen, Son

    2015-01-01

    The elastic anisotropy of copper leads to significant variation in the x-ray elastic constants (XEC), which link diffraction-based strain measurements to stress. An accurate depiction of the mechanical response in copper thin films requires a determination of an appropriate grain interaction model that lies between Voigt and Reuss limits. It is shown that the associated XEC weighting fraction, x*, between these limits provides a metric by which strain anisotropy can be quantified. Experimental values of x*, as determined by a linear regression scheme of diffraction data collected from multiple reflections, reveal the degree of strain anisotropy and its dependence on plastic deformation induced during in-situ and ex-situ thermal treatments

  5. Pump probe spectroscopy of quasiparticle dynamics in cuprate superconductors

    International Nuclear Information System (INIS)

    Segre, Gino P.

    2001-01-01

    Pump probe spectroscopy is used to examine the picosecond response of a BSCCO thin film, and two YBCO crystals in the near infrared. The role of pump fluence and temperature have been closely examined in an effort to clarify the mechanism by which the quasiparticles rejoin the condensate. BSCCO results suggest that the recombination behavior is consistent with the d-wave density of states in that quasiparticles appear to relax to the nodes immediately before they rejoin the condensate. The first substantial investigation of polarized pump probe response in detwinned YBCO crystals is also reported. Dramatic doping dependent anisotropies along the a and b axes are observed in time and temperature resolved studies. Among many results, we highlight the discovery of an anomalous temperature and time dependence of a- axis response in optimally doped YBCO. We also report on the first observation of the photoinduced response in a magnetic field. We find the amplitude of the response, and in some cases, the dynamics considerably changed with the application of a 6T field. Finally, we speculate on two of the many theoretical directions stimulated by our results. We find that the two-fluid model suggests a mechanism to explain how changes at very low energies are visible to a high-energy probe. Also discussed are basic recombination processes which may play a role in the observed decay

  6. Scaling-based prediction of magnetic anisotropy in grain-oriented steels

    Directory of Open Access Journals (Sweden)

    Najgebauer Mariusz

    2017-06-01

    Full Text Available The paper presents the scaling-based approach to analysis and prediction of magnetic anisotropy in grain-oriented steels. Results of the anisotropy scaling indicate the existence of two universality classes. The hybrid approach to prediction of magnetic anisotropy, combining the scaling analysis with the ODFs method, is proposed. This approach is examined in prediction of angular dependencies of magnetic induction as well as magnetization curves for the 111-35S5 steel. It is shown that it is possible to predict anisotropy of magnetic properties based on measurements in three arbitrary directions for φ = 0°, 60° and 90°. The relatively small errors between predicted and measured values of magnetic induction are obtained.

  7. Cleavable DNA-protein hybrid molecular beacon: A novel efficient signal translator for sensitive fluorescence anisotropy bioassay.

    Science.gov (United States)

    Hu, Pan; Yang, Bin

    2016-01-15

    Due to its unique features such as high sensitivity, homogeneous format, and independence on fluorescent intensity, fluorescence anisotropy (FA) assay has become a hotspot of study in oligonucleotide-based bioassays. However, until now most FA probes require carefully customized structure designs, and thus are neither generalizable for different sensing systems nor effective to obtain sufficient signal response. To address this issue, a cleavable DNA-protein hybrid molecular beacon was successfully engineered for signal amplified FA bioassay, via combining the unique stable structure of molecular beacon and the large molecular mass of streptavidin. Compared with single DNA strand probe or conventional molecular beacon, the DNA-protein hybrid molecular beacon exhibited a much higher FA value, which was potential to obtain high signal-background ratio in sensing process. As proof-of-principle, this novel DNA-protein hybrid molecular beacon was further applied for FA bioassay using DNAzyme-Pb(2+) as a model sensing system. This FA assay approach could selectively detect as low as 0.5nM Pb(2+) in buffer solution, and also be successful for real samples analysis with good recovery values. Compatible with most of oligonucleotide probes' designs and enzyme-based signal amplification strategies, the molecular beacon can serve as a novel signal translator to expand the application prospect of FA technology in various bioassays. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Magnetic anisotropy of YFe.sub.3./sub. compound

    Czech Academy of Sciences Publication Activity Database

    Bolyachkin, A.S.; Neznakhin, D.S.; Garaeva, T.V.; Andreev, Alexander V.; Bartashevich, M. I.

    2017-01-01

    Roč. 426, Mar (2017), s. 740-743 ISSN 0304-8853 R&D Projects: GA ČR GA16-03593S Institutional support: RVO:68378271 Keywords : magnetic anisotropy * magnetization anisotropy * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  9. Limits on the ions temperature anisotropy in turbulent intracluster medium

    Energy Technology Data Exchange (ETDEWEB)

    Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy

    2016-05-15

    Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.

  10. Magnetoresistance of nanogranular Ni/NiO controlled by exchange anisotropy

    International Nuclear Information System (INIS)

    Del Bianco, L.; Spizzo, F.; Tamisari, M.; Allia, P.

    2013-01-01

    A link between exchange anisotropy and magnetoresistance has been found to occur in a Ni/NiO sample consisting of Ni nanocrystallites (mean size ∼13 nm, Ni content ∼33 vol%) dispersed in a NiO matrix. This material shows metallic-type electric conduction and isotropic spin-dependent magnetoresistance as well as exchange bias effect. The latter is the outcome of an exchange anisotropy arising from the contact interaction between the Ni phase and the NiO matrix. Combined analysis of magnetization M(H) and magnetoresistance MR(H) loops measured in the 5–250 K temperature range after zero-field-cooling (ZFC) and after field-cooling (FC) from 300 K reveals that the magnetoresistance is influenced by exchange anisotropy, which is triggered by the FC process and can be modified in strength by varying the temperature. Compared to the ZFC case, the exchange anisotropy produces a horizontal shift of the FC MR(H) loop along with a reduction of the MR response associated to the reorientation of the Ni moments. A strict connection between magnetoresistance and remanent magnetization of FC loops on one side and the exchange field on the other, ruled by exchange anisotropy, is indicated. - Highlights: • Nanogranular Ni/NiO with giant magnetoresistance (MR) and exchange bias effect. • Exchange anisotropy produces a shift of the field-cooled MR(H) loop and reduces MR. • MR, remanence of field-cooled loops and exchange field are three correlated quantities. • It is possible to control MR of nanogranular systems through the exchange anisotropy

  11. Cylindrical magnetization model for glass-coated microwires with circular anisotropy: Statics

    International Nuclear Information System (INIS)

    Torrejon, J.; Thiaville, A.; Adenot-Engelvin, A.L.; Vazquez, M.; Acher, O.

    2011-01-01

    The static magnetization profile of glass-coated microwires with effective circular anisotropy is investigated using micromagnetics. In this family of microwires, the ferromagnetic nucleus with an amorphous character presents a magnetic structure composed of an inner region with axial domains and an outer region with circular domains, due to magnetoelastic anisotropy. A one-dimensional micromagnetic model is developed, taking into account both the exchange and magnetoelastic anisotropy energies, and solved quasi analytically. The total energy, magnetization profiles and magnetization curves are investigated as a function of radius and anisotropy constant of the nucleus. This work represents a fundamental study of the magnetization process in these amorphous microwires and provides guidelines for the production of microwires with tailored magnetic properties. En passant, the nucleation problem in an infinite cylinder, introduced by W.F. Brown, is revisited. - Research highlights: → Magnetic microwires with circular anisotropy are studied by micromagnetic model. → The ratio R/Δ is a fundamental quantity to determine the magnetic structure. → Reduction of diameter and anisotropy favours the growth of axial core.

  12. Effective field theory of statistical anisotropies for primordial bispectrum and gravitational waves

    Energy Technology Data Exchange (ETDEWEB)

    Rostami, Tahereh; Karami, Asieh; Firouzjahi, Hassan, E-mail: t.rostami@ipm.ir, E-mail: karami@ipm.ir, E-mail: firouz@ipm.ir [School of Astronomy, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2017-06-01

    We present the effective field theory studies of primordial statistical anisotropies in models of anisotropic inflation. The general action in unitary gauge is presented to calculate the leading interactions between the gauge field fluctuations, the curvature perturbations and the tensor perturbations. The anisotropies in scalar power spectrum and bispectrum are calculated and the dependence of these anisotropies to EFT couplings are presented. In addition, we calculate the statistical anisotropy in tensor power spectrum and the scalar-tensor cross correlation. Our EFT approach incorporates anisotropies generated in models with non-trivial speed for the gauge field fluctuations and sound speed for scalar perturbations such as in DBI inflation.

  13. Magnetic anisotropy of lecithin membranes. A new anisotropy susceptometer

    OpenAIRE

    Scholz, F.; Boroske, E.; Helfrich, W.

    1984-01-01

    Cylindrical giant vesicles prepared from egg lecithin and 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) are oriented in an external magnetic field and observed by phase contrast microscopy. The anisotropic part of the diamagnetic susceptibility of the lecithin membrane is determined from the distribution of angles between the magnetic field and the long cylinder axis due to thermal fluctuations. The anisotropy of DMPC is found to be larger by a factor of 2 than that of egg lecithin. This...

  14. Deformation in D″ Beneath North America From Anisotropy

    Science.gov (United States)

    Nowacki, A. J.; Wookey, J.; Kendall, J. M.

    2009-12-01

    The lowermost few hundred kilometres of the Earth's mantle—known as D″—form the boundary between it and the core below, control the Earth's convective system, and are the site of probable large thermochemical heterogeneity. Seismic observations of D″ show a strong heterogeneity in seismic wave velocity and significant seismic anisotropy (the variation of wave speed with direction) are present in many parts of the region. On the basis of continuous regions of fast shear velocity (VS) anomalies in global models, it is also proposed as the resting place of subducted slabs, notably the Farallon beneath North America. A phase change of MgSiO3-perovskite (pv) to a post-perovskite (ppv) structure at near-core-mantle boundary (CMB) conditions is a compelling mechanism to explain the seismic features of D″. An outstanding question is how this and other mineral phases may deform to produce anisotropy, with different mechanisms possible. With knowledge either of mantle flow or which slip system is responsible for causing deformation, we can potentially determine the other with observations of the resulting seismic anisotropy. We investigate the dynamics at the CMB beneath North America using differential shear wave splitting in S and ScS phases from earthquakes of magnitude MW>5.5 in South and Central America, Hawaii the Mid-Atlantic Ridge and East Pacific Rise. They are detected on ~500 stations in North America, giving ~700 measurements of anisotropy in D″. We achieve this by correcting for anisotropy in the upper mantle (UM) beneath both the source and receiver. The measurements cover three regions beneath western USA, the Yucatan peninsula and Florida. In each case, two different, crossing ray paths are used, so that the style of anisotropy can be constrained—a single azimuth cannot distinguish differing cases. Our results showing ~1% anisotropy dependent on azimuth are not consistent with transverse isotropy with a vertical symmetry axis (VTI) anywhere. The

  15. Procedure for measurement of anisotropy factor for neutron sources

    International Nuclear Information System (INIS)

    Creazolla, Prycylla Gomes

    2017-01-01

    Radioisotope neutron sources allow the production of reference fields for calibration of neutron detectors for radiation protection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in source encapsulation and in the radioactive material concentration produce differences in its neutron emission rate, relative to the source axis, this effect is called anisotropy. In this study, is describe a procedure for measuring the anisotropy factor of neutron sources performed in the Laboratório de Metrologia de Neutrons (LN) using a Precision Long Counter (PLC) detector. A measurement procedure that takes into account the anisotropy factor of neutron sources contributes to solve some issues, particularly with respect to the high uncertainties associated with neutron dosimetry. Thus, a bibliographical review was carried out based on international standards and technical regulations specific to the area of neutron fields, and were later reproduced in practice by means of the procedure for measuring the anisotropy factor in neutron sources of the LN. The anisotropy factor is determined as a function of the angle of 90° in relation to the cylindrical axis of the source. This angle is more important due to its high use in measurements and also of its higher neutron emission rate if compared with other angles. (author)

  16. Fluorescense Anisotropy Studies of Molecularly Imprinted Polymer Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yin-Chu; Wang, Zheming; Yan, Mingdi; Prahl, Scott A.

    2005-08-03

    Molecularly imprinted polymers (MIPs) are used as recognition elements in biochemical sensors. In a fluorescence-based MIP sensor system, it is difficult to distinguish the analyte fluorescence from the background fluorescence of the polymer itself. We studied steady-state fluorescence anisotropy of anthracene imprinted in a polymer (polyurethane) matrix. Vertically polarized excitation light was incident on MIP films coated on silicon wafers; vertically and horizontally polarized emission was measured. We compared the fluorescence anisotropy of MIPs with imprinted molecules, MIPs with the imprinted molecules extracted, MIPs with rebound molecules, and nonimprinted control polymers (without binding cavities). It is shown that differences in fluorescence anisotropy between the polymers and imprinted fluorescent molecules may provide a means to discriminate the fluorescence of analyte from that of the background polymer.

  17. Ion temperature anisotropy limitation in high beta plasmas

    International Nuclear Information System (INIS)

    Scime, Earl E.; Keiter, Paul A.; Balkey, Matthew M.; Boivin, Robert F.; Kline, John L.; Blackburn, Melanie; Gary, S. Peter

    2000-01-01

    Measurements of parallel and perpendicular ion temperatures in the Large Experiment on Instabilities and Anisotropies (LEIA) space simulation chamber display an inverse correlation between the upper bound on the ion temperature anisotropy and the parallel ion beta (β=8πnkT/B 2 ). Fluctuation measurements indicate the presence of low frequency, transverse, electromagnetic waves with wave numbers and frequencies that are consistent with predictions for Alfven Ion Cyclotron instabilities. These observations are also consistent with in situ spacecraft measurements in the Earth's magnetosheath and with a theoretical/computational model that predicts that such an upper bound on the ion temperature anisotropy is imposed by scattering from enhanced fluctuations due to growth of the Alfven ion cyclotron instability. (c) 2000 American Institute of Physics

  18. Anisotropy of self-diffusion and α-zirconium radiation growth problems

    International Nuclear Information System (INIS)

    Smirnov, E.A.; Subbotin, A.V.

    1996-01-01

    Temperature dependence of α-zirconium seft-diffusion anisotropy coefficients is obtained within the framework of linear extrapolation of self-diffusion anisotropy characteristics for metal HCP with c/a ration of [ru

  19. Scaling of coercivity in a 3d random anisotropy model

    Energy Technology Data Exchange (ETDEWEB)

    Proctor, T.C., E-mail: proctortc@gmail.com; Chudnovsky, E.M., E-mail: EUGENE.CHUDNOVSKY@lehman.cuny.edu; Garanin, D.A.

    2015-06-15

    The random-anisotropy Heisenberg model is numerically studied on lattices containing over ten million spins. The study is focused on hysteresis and metastability due to topological defects, and is relevant to magnetic properties of amorphous and sintered magnets. We are interested in the limit when ferromagnetic correlations extend beyond the size of the grain inside which the magnetic anisotropy axes are correlated. In that limit the coercive field computed numerically roughly scales as the fourth power of the random anisotropy strength and as the sixth power of the grain size. Theoretical arguments are presented that provide an explanation of numerical results. Our findings should be helpful for designing amorphous and nanosintered materials with desired magnetic properties. - Highlights: • We study the random-anisotropy model on lattices containing up to ten million spins. • Irreversible behavior due to topological defects (hedgehogs) is elucidated. • Hysteresis loop area scales as the fourth power of the random anisotropy strength. • In nanosintered magnets the coercivity scales as the six power of the grain size.

  20. Symmetry mismatch-driven perpendicular magnetic anisotropy for perovskite/brownmillerite heterostructures.

    Science.gov (United States)

    Zhang, Jing; Zhong, Zhicheng; Guan, Xiangxiang; Shen, Xi; Zhang, Jine; Han, Furong; Zhang, Hui; Zhang, Hongrui; Yan, Xi; Zhang, Qinghua; Gu, Lin; Hu, Fengxia; Yu, Richeng; Shen, Baogen; Sun, Jirong

    2018-05-15

    Grouping different transition metal oxides together by interface engineering is an important route toward emergent phenomenon. While most of the previous works focused on the interface effects in perovskite/perovskite heterostructures, here we reported on a symmetry mismatch-driven spin reorientation toward perpendicular magnetic anisotropy in perovskite/brownmillerite heterostructures, which is scarcely seen in tensile perovskite/perovskite heterostructures. We show that alternately stacking perovskite La 2/3 Sr 1/3 MnO 3 and brownmillerite LaCoO 2.5 causes a strong interface reconstruction due to symmetry discontinuity at interface: neighboring MnO 6 octahedra and CoO 4 tetrahedra at the perovskite/brownmillerite interface cooperatively relax in a manner that is unavailable for perovskite/perovskite interface, leading to distinct orbital reconstructions and thus the perpendicular magnetic anisotropy. Moreover, the perpendicular magnetic anisotropy is robust, with an anisotropy constant two orders of magnitude greater than the in-plane anisotropy of the perovskite/perovskite interface. The present work demonstrates the great potential of symmetry engineering in designing artificial materials on demand.

  1. Role of Ta-spacer layer on tuning the tilt angle magnetic anisotropy of L1{sub 1}-CoPt/Ta/NiFe exchange springs

    Energy Technology Data Exchange (ETDEWEB)

    Saravanan, P., E-mail: psdrdo@gmail.com [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India); Talapatra, A.; Mohanty, J. [Department of Physics, Indian Institute of Technology Hyderabad, Hyderabad 502285 (India); Hsu, Jen-Hwa, E-mail: jhhsu@phys.ntu.edu.tw [Department of Physics, National Taiwan University, Taipei 106, Taiwan (China); Kamat, S.V. [Defence Metallurgical Research Laboratory, Hyderabad 500058 (India)

    2017-06-15

    Highlights: • Role of Ta-spacer layer in L1{sub 1}-CoPt(10 nm)/Ta//NiFe(4 nm) trilayers was investigated. • Domain size increased at the expense of magnetic phase contrast with increasing t{sub Ta}. • Tilt angle magnetization increased from 43° to 77° upon increasing t{sub Ta} (0–2.5 nm). • Micromagnetic studies confirmed the existence of tilted magnetic anisotropy. • Ta-spacer is effective in preserving competing anisotropies of CoPt and NiFe-layers. - Abstract: L1{sub 1}-CoPt/Ta/NiFe trilayers are chosen as model films for probing the role of spacer layer on tuning the tilt angle magnetization (θ{sub M}) in such exchange springs. For this purpose, a non-magnetic layer (Ta) with varying thickness (t{sub Ta}) from 0 to 2.5 nm was inserted between 10-nm thick CoPt film exhibiting strong perpendicular magnetic anisotropy (PMA) and 4-nm thick NiFe film having in-plane magnetic anisotropy (IMA). With the insertion of Ta-spacer, the magnetic hysteresis loops become more and more tilted as t{sub Ta} increases. Upon increasing the t{sub Ta} from 0 to 2.5 nm, the estimated SQR{sub ⊥} (=M{sub r⊥}/M{sub s⊥}) from the M–H loops is found to decrease moderately; while the θ{sub M} increases significantly from 43° to 77°. MFM images revealed maze-like domain patterns and the domain size tends to increase at the expense of magnetic phase contrast with increasing t{sub Ta}. Micro-magnetic simulation of tilt in the anisotropy axis with respect to the bare CoPt-layer showed a trend similar to that of those observed with the M–H loops obtained by VSM measurements. The results of present study suggest that the insertion of Ta-spacer is not only beneficial in terms of preserving the competing anisotropies such as PMA and IMA of CoPt and NiFe-layers respectively through weakened exchange coupling; but also, act as an appropriate means for realizing tunable tilted magnetic anisotropy in the L1{sub 1}-CoPt/NiFe exchange springs.

  2. Mechanical Anisotropy and Pressure Induced Structural Changes in Piroxicam Crystals Probed by In Situ Indentation and Raman Spectroscopy

    Science.gov (United States)

    Manimunda, Praveena; Hintsala, Eric; Asif, Syed; Mishra, Manish Kumar

    2017-01-01

    The ability to correlate mechanical and chemical characterization techniques in real time is both lacking and powerful tool for gaining insights into material behavior. This is demonstrated through use of a novel nanoindentation device equipped with Raman spectroscopy to explore the deformation-induced structural changes in piroxicam crystals. Mechanical anisotropy was observed in two major faces ( 0bar{1}1 ) and (011), which are correlated to changes in the interlayer interaction from in situ Raman spectra recorded during indentation. The results of this study demonstrate the considerable potential of an in situ Raman nanoindentation instrument for studying a variety of topics, including stress-induced phase transformation mechanisms, mechanochemistry, and solid state reactivity under mechanical forces that occur in molecular and pharmaceutical solids.

  3. Flexibility of Enzymes Suspended in Organic Solvents Probed by Time-Resolved Fluorescence Anisotropy. Evidence That Enzyme Activity and Enantioselectivity Are Directly Related to Enzyme Flexibility

    NARCIS (Netherlands)

    Broos, Jaap; Visser, Antonie J.W.G.; Engbersen, Johan F.J.; Verboom, Willem; Hoek, Arie van; Reinhoudt, David N.

    1995-01-01

    A time-resolved fluorescence anisotropy study on the molecular flexibility of active-site labeled anthraniloyl-α-chymotrypsin, dansylsubtilisin Carlsberg, and native subtilisin Carlsberg, suspended in organic solvents, is described. The internal rotational mobility of the fluorophore in the

  4. Spectroscopic ellipsometry investigations of optical anisotropy in obliquely deposited hafnia thin films

    Energy Technology Data Exchange (ETDEWEB)

    Tokas, R. B., E-mail: tokasstar@gmail.com; Jena, Shuvendu; Thakur, S.; Sahoo, N. K. [Atomic & Molecular Physics Division, Bhabha Atomic Research Centre, Trombay, Mumbai-85 (India); Haque, S. Maidul; Rao, K. Divakar [Photonics & Nanotechnology Section, Atomic & Molecular Physics Division, Bhabha Atomic Research Centre facility, Visakhapatnam-530012 (India)

    2016-05-23

    In present work, HfO{sub 2} thin films have been deposited at various oblique incidences on Si substrates by electron beam evaporation. These refractory oxide films exhibited anisotropy in refractive index predictably due to special columnar microstructure. Spectroscopic ellipsometry being a powerful tool for optical characterization has been employed to investigate optical anisotropy. It was observed that the film deposited at glancing angle (80°) exhibits the highest optical anisotropy. Further, anisotropy was noticed to decrease with lower values of deposition angles while effective refractive index depicts opposite trend. Variation in refractive index and anisotropy has been explained in light of atomic shadowing during growth of thin films at oblique angles.

  5. Induced anisotropy in amorphous Sm-Co sputtered films

    International Nuclear Information System (INIS)

    Chen, K.; Hegde, H.; Cadieu, F.J.

    1992-01-01

    The variation of the in-the-film-plane anisotropy constant, K u , with composition and the magnitude of the field, H s , applied in plane during the sputter deposition of amorphous Sm x Co 1-x , 0.08≤x≤0.40, thin films has been studied. We demonstrate here that with a large H s , 5.0 kOe, a well defined and large in-the-film-plane anisotropy can be obtained. An exceptionally high value of K u =3.3x10 6 erg/cm 3 has been obtained. For the loop measured along the in-plane hard direction, the opening of the loop was undetectable, and the loop along the easy axis was a perfect rectangle. For certain conditions, the anisotropy field measured perpendicular to the film plane when corrected for demagnetization (N d =4π) was the same as that for the in-plane measurements. It is concluded that surface induced short range ordering was the origin of the anisotropy observed in amorphous films deposited in a magnetic field. The formation mechanism is different from that of the short range ordering induced by field annealing

  6. Nanomagnets with high shape anisotropy and strong crystalline anisotropy: perspectives on magnetic force microscopy

    International Nuclear Information System (INIS)

    Campanella, H; Llobet, J; Esteve, J; Plaza, J A; Jaafar, M; Vázquez, M; Asenjo, A; Del Real, R P

    2011-01-01

    We report on a new approach for magnetic imaging, highly sensitive even in the presence of external, strong magnetic fields. Based on FIB-assisted fabricated high-aspect-ratio rare-earth nanomagnets, we produce groundbreaking magnetic force tips with hard magnetic character where we combine a high aspect ratio (shape anisotropy) together with strong crystalline anisotropy (rare-earth-based alloys). Rare-earth hard nanomagnets are then FIB-integrated to silicon microcantilevers as highly sharpened tips for high-field magnetic imaging applications. Force resolution and domain reversing and recovery capabilities are at least one order of magnitude better than for conventional magnetic tips. This work opens new, pioneering research fields on the surface magnetization process of nanostructures based either on relatively hard magnetic materials—used in magnetic storage media—or on materials like superparamagnetic particles, ferro/antiferromagnetic structures or paramagnetic materials.

  7. DETECTION OF ANOMALOUS MICROWAVE EMISSION IN THE PLEIADES REFLECTION NEBULA WITH WILKINSON MICROWAVE ANISOTROPY PROBE AND THE COSMOSOMAS EXPERIMENT

    Energy Technology Data Exchange (ETDEWEB)

    Genova-Santos, R.; Rebolo, R.; Rubino-Martin, J. A.; Lopez-Caraballo, C. H.; Hildebrandt, S. R. [Instituto de Astrofisica de Canarias, C/Via Lactea s/n, E-38200 La Laguna, Tenerife (Spain)

    2011-12-10

    We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1 Degree-Sign radius around R.A. = 56.{sup 0}24, decl. = 23.{sup 0}78 (J2000) is 2.15 {+-} 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected H{alpha} template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 {+-} 0.12 Jy (17.7{sigma}). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 {mu}m data, is found to be 4.36 {+-} 0.17 {mu}K (MJy sr{sup -1}){sup -1}, a value considerably lower than in typical AME clouds, which present emissivities of {approx}20 {mu}K (MJy sr{sup -1}){sup -1}, although higher than the 0.2 {mu}K (MJy sr{sup -1}){sup -1} of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A{sub V} {approx} 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact

  8. DETECTION OF ANOMALOUS MICROWAVE EMISSION IN THE PLEIADES REFLECTION NEBULA WITH WILKINSON MICROWAVE ANISOTROPY PROBE AND THE COSMOSOMAS EXPERIMENT

    International Nuclear Information System (INIS)

    Génova-Santos, R.; Rebolo, R.; Rubiño-Martín, J. A.; López-Caraballo, C. H.; Hildebrandt, S. R.

    2011-01-01

    We present evidence for anomalous microwave emission (AME) in the Pleiades reflection nebula, using data from the seven-year release of the Wilkinson Microwave Anisotropy Probe and from the COSMOSOMAS (Cosmological Structures on Medium Angular Scales) experiment. The flux integrated in a 1° radius around R.A. = 56. 0 24, decl. = 23. 0 78 (J2000) is 2.15 ± 0.12 Jy at 22.8 GHz, where AME is dominant. COSMOSOMAS data show no significant emission, but allow one to set upper limits of 0.94 and 1.58 Jy (99.7% confidence level), respectively, at 10.9 and 14.7 GHz, which are crucial to pin down the AME spectrum at these frequencies, and to discard any other emission mechanisms which could have an important contribution to the signal detected at 22.8 GHz. We estimate the expected level of free-free emission from an extinction-corrected Hα template, while the thermal dust emission is characterized from infrared DIRBE data and extrapolated to microwave frequencies. When we deduct the contribution from these two components at 22.8 GHz, the residual flux, associated with AME, is 2.12 ± 0.12 Jy (17.7σ). The spectral energy distribution from 10 to 60 GHz can be accurately fitted with a model of electric dipole emission from small spinning dust grains distributed in two separated phases of molecular and atomic gas, respectively. The dust emissivity, calculated by correlating the 22.8 GHz data with 100 μm data, is found to be 4.36 ± 0.17 μK (MJy sr –1 ) –1 , a value considerably lower than in typical AME clouds, which present emissivities of ∼20 μK (MJy sr –1 ) –1 , although higher than the 0.2 μK (MJy sr –1 ) –1 of the translucent cloud LDN 1780, where AME has recently been claimed. The physical properties of the Pleiades nebula, in particular its low extinction A V ∼ 0.4, indicate that this is indeed a much less opaque object than those where AME has usually been studied. This fact, together with the broad knowledge of the stellar content of this region

  9. Geodynamic Constraints on the Sources of Seismic Anisotropy Beneath Madagascar

    Science.gov (United States)

    Rajaonarison, T. A.; Stamps, D. S.; Fishwick, S.

    2017-12-01

    The rheological structure of the lithosphere-asthenosphere system controls the degree in which the mantle drives surface motions. Seismic anisotropy is a proxy to infer information about previous tectonic events imprinted in lithospheric structures and/or asthenospheric flow pattern in regions absent of active volcanism, however, distinguishing between the shallow and deeper sources, respectively, remains ambiguous. Madagascar is an ideal natural laboratory to study the sources of anisotropy and the rheological implications for lithosphere-asthenosphere system because 1) active volcanism is minimal or absent, 2) there are well-exposed tectonic fabrics for comparison, and 3) numerous geological and geophysical observations provides evidence of present-day tectonic activities. Recent studies suggest new seismic anisotropy observations in southern Madagascar are sourced from both fossilized lithospheric structure and asthenospheric flow driven by rigid lithospheric plate motion. In this work we compare geodynamic simulations of the lithosphere-asthenosphere system with seismic anisotropy data set that includes all of Madagascar. We use the numerical code Advanced Solver for Problems in Earth's ConvecTion (ASPECT) to calculate instantaneous deformation in the lithosphere and edge-driven convective flow in the asthenosphere accounting for variations in buoyancy forces and temperature dependent viscosity. The initial temperature conditions are based on interpretations from high resolution regional surface wave tomography. We assume visco-plastic rheology for a uniform crust, dislocation creep for a laterally varying mantle lithospheric structure, and diffusion creep for the asthenosphere. To test for the source of anisotropy we compare our velocity solution azimuths with azimuths of anisotropy at 25 km depth intervals. Calculated asthenospheric flow aligns with measured seismic anisotropy with a 15° WRMS at 175 km depth and possibly down to 250 km suggesting the

  10. The role of layer-induced anisotropy in seismic exploration

    NARCIS (Netherlands)

    Hake, J.H.

    1993-01-01

    In this thesis we focus on anisotropy caused by fine layering. We analyse the conditions that must be satisfied so that fine layering is equivalent to anisotropy. In the long-wavelength (or quasi-static) approximation an interval of thickness H, consisting of a sequence of layers, is effectively

  11. The role of layer-induced anisotropy in seismic exploration

    NARCIS (Netherlands)

    Hake, J.H.

    1992-01-01

    184In this thesis we focus on anisotropy caused by fine layering. We analyse the conditions that must be satisfied so that fine layering is equivalent to anisotropy. In the long-wavelength (or quasi-static) approximation an interval of thickness H, consisting of a sequence of layers, is

  12. Tuning the Magnetic Anisotropy at a Molecule-Metal Interface

    DEFF Research Database (Denmark)

    Bairagi, K.; Bellec, A.; Repain, V.

    2015-01-01

    We demonstrate that a C60 overlayer enhances the perpendicular magnetic anisotropy of a Co thin film, inducing an inverse spin reorientation transition from in plane to out of plane. The driving force is the C60/Co interfacial magnetic anisotropy that we have measured quantitatively in situ...

  13. Synergy and destructive interferences between local magnetic anisotropies in binuclear complexes

    Energy Technology Data Exchange (ETDEWEB)

    Guihéry, Nathalie; Ruamps, Renaud [Laboratoire de Chimie et Physique Quantiques, UMR5625, University of Toulouse 3, Paul Sabatier, 118 route de Narbonne, 31062 Toulouse (France); Maurice, Rémi [SUBATECH, IN2P3/EMN Nantes/University of Nantes, 4 rue Alfred Kastler, BP 20722 44307, Nantes, Cedex 3 (France); Graaf, Coen de [University Rovira i Virgili, Marcelli Domingo s/n, 43007 Tarragona (Spain)

    2015-12-31

    Magnetic anisotropy is responsible for the single molecule magnet behavior of transition metal complexes. This behavior is characterized by a slow relaxation of the magnetization for low enough temperatures, and thus for a possible blocking of the magnetization. This bistable behavior can lead to possible technological applications in the domain of data storage or quantum computing. Therefore, the understanding of the microscopic origin of magnetic anisotropy has received a considerable interest during the last two decades. The presentation focuses on the determination of the anisotropy parameters of both mono-nuclear and bi-nuclear types of complexes and on the control and optimization of the anisotropic properties. The validity of the model Hamiltonians commonly used to characterize such complexes has been questioned and it is shown that neither the standard multispin Hamiltonian nor the giant spin Hamiltonian are appropriate for weakly coupled ions. Alternative models have been proposed and used to properly extract the relevant parameters. Rationalizations of the magnitude and nature of both local anisotropies of single ions and the molecular anisotropy of polynuclear complexes are provided. The synergy and interference effects between local magnetic anisotropies are studied in a series of binuclear complexes.

  14. ON THE UNIVERSALITY OF THE GLOBAL DENSITY SLOPE-ANISOTROPY INEQUALITY

    International Nuclear Information System (INIS)

    Van Hese, Emmanuel; Baes, Maarten; Dejonghe, Herwig

    2011-01-01

    Recently, some intriguing results have led to speculations whether the central density slope-velocity dispersion anisotropy inequality (An and Evans) actually holds at all radii for spherical dynamical systems. We extend these studies by providing a complete analysis of the global slope-anisotropy inequality for all spherical systems in which the augmented density is a separable function of radius and potential. We prove that these systems indeed satisfy the global inequality if their central anisotropy is β 0 ≤ 1/2. Furthermore, we present several systems with β 0 >1/2 for which the inequality does not hold, thus demonstrating that the global density slope-anisotropy inequality is not a universal property. This analysis is a significant step toward an understanding of the relation for general spherical systems.

  15. Anisotropy of the Topopah Spring Member Tuff

    International Nuclear Information System (INIS)

    Martin, R.J. III; Boyd, P.J.; Haupt, R.W.; Price, R.H.

    1992-07-01

    Mechanical properties of the tuffaceous rocks within Yucca Mountain are needed for near and far-field modeling of the potential nuclear waste repository. If the mechanical properties are significantly anisotropic (i.e., direction-dependent), a more complex model is required. Relevant data from tuffs tested in earlier studies indicate that elastic and strength properties are anisotropic. This scoping study confirms the elastic anisotropy and concludes some tuffs are transversely isotropic. An approach for sampling and testing the rock to determine the magnitude of the anisotropy is proposed

  16. Modulation of galactic cosmic ray anisotropy in heliomagnetosphere: average sidereal daily variation

    International Nuclear Information System (INIS)

    Nagashima, K.; Morishita, I.; Yasue, S.

    1982-01-01

    The modulation of galactic anisotropy of cosmic rays caused by their deflection in the heliomagnetosphere is formulated. According to the formulation, the average sidereal i-th (2=1,2...) harmonic daily variation produced [from the anisotropy from an arbitrary direction can be expressed] by a linear combination of three basic vectors for unidirectional anisotropy and five basic vectors for bi-directional anisotropy. The general characteristics and main features of the sidereal daily variations in the modulation of the cosmic ray anistropy are presented. (U.K.)

  17. The anisotropy of cosmic ray particles in the energy range 1011-1019 eV

    International Nuclear Information System (INIS)

    Xu Chunxian

    1985-01-01

    A study of the anisotropy of primary cosmic ray is presented. The expression of the anisotropy is derived in a model of statistical discrete sources in an infinite galaxy. Using these derived formulas, the amplitudes of the first harmonic anisotropies caused by eleven supernovea nearby the Earth are estimated individually and the trend of the resultant anisotropy is investigated. It is found that the expected results can account for the power law of Esup(0.5) of the anisotropy above the energy 5 x 10 15 eV. The Compton-getting effect can cause an additional anisotropy which is independent of energy and added to the resultant anisotropy of these discrete sources. It is apparent that the anisotropies available in the low energy range 10 11 - 10 14 eV are caused by the Compton-Getting effect. Taking the differential spectrum index γ = 2.67 measured in the same energy bound we get the streaming velocity of 35 km/s with respect to the cosmic ray background

  18. An estimator for statistical anisotropy from the CMB bispectrum

    International Nuclear Information System (INIS)

    Bartolo, N.; Dimastrogiovanni, E.; Matarrese, S.; Liguori, M.; Riotto, A.

    2012-01-01

    Various data analyses of the Cosmic Microwave Background (CMB) provide observational hints of statistical isotropy breaking. Some of these features can be studied within the framework of primordial vector fields in inflationary theories which generally display some level of statistical anisotropy both in the power spectrum and in higher-order correlation functions. Motivated by these observations and the recent theoretical developments in the study of primordial vector fields, we develop the formalism necessary to extract statistical anisotropy information from the three-point function of the CMB temperature anisotropy. We employ a simplified vector field model and parametrize the bispectrum of curvature fluctuations in such a way that all the information about statistical anisotropy is encoded in some parameters λ LM (which measure the anisotropic to the isotropic bispectrum amplitudes). For such a template bispectrum, we compute an optimal estimator for λ LM and the expected signal-to-noise ratio. We estimate that, for f NL ≅ 30, an experiment like Planck can be sensitive to a ratio of the anisotropic to the isotropic amplitudes of the bispectrum as small as 10%. Our results are complementary to the information coming from a power spectrum analysis and particularly relevant for those models where statistical anisotropy turns out to be suppressed in the power spectrum but not negligible in the bispectrum

  19. Accuracy and sensitivity analysis on seismic anisotropy parameter estimation

    Science.gov (United States)

    Yan, Fuyong; Han, De-Hua

    2018-04-01

    There is significant uncertainty in measuring the Thomsen’s parameter δ in laboratory even though the dimensions and orientations of the rock samples are known. It is expected that more challenges will be encountered in the estimating of the seismic anisotropy parameters from field seismic data. Based on Monte Carlo simulation of vertical transversely isotropic layer cake model using the database of laboratory anisotropy measurement from the literature, we apply the commonly used quartic non-hyperbolic reflection moveout equation to estimate the seismic anisotropy parameters and test its accuracy and sensitivities to the source-receive offset, vertical interval velocity error and time picking error. The testing results show that the methodology works perfectly for noise-free synthetic data with short spread length. However, this method is extremely sensitive to the time picking error caused by mild random noises, and it requires the spread length to be greater than the depth of the reflection event. The uncertainties increase rapidly for the deeper layers and the estimated anisotropy parameters can be very unreliable for a layer with more than five overlain layers. It is possible that an isotropic formation can be misinterpreted as a strong anisotropic formation. The sensitivity analysis should provide useful guidance on how to group the reflection events and build a suitable geological model for anisotropy parameter inversion.

  20. Gaps, tears and seismic anisotropy around the subducting slabs of the Antilles

    Science.gov (United States)

    Schlaphorst, David; Kendall, J.-Michael; Baptie, Brian; Latchman, Joan L.; Tait, Steve

    2017-02-01

    Seismic anisotropy in and beneath the subducting slabs of the Antilles is investigated using observations of shear-wave splitting. We use a combination of teleseismic and local events recorded at three-component broadband seismic stations on every major island in the area to map anisotropy in the crust, the mantle wedge and the slab/sub-slab mantle. To date this is the most comprehensive study of anisotropy in this region, involving 52 stations from 8 seismic networks. Local event delay times (0.21 ± 0.12 s) do not increase with depth, indicating a crustal origin in anisotropy and an isotropic mantle wedge. Teleseismic delay times are much larger (1.34 ± 0.47 s), with fast shear-wave polarisations that are predominantly parallel to trend of the arc. These observations can be interpreted three ways: (1) the presence of pre-existing anisotropy in the subducting slab; (2) anisotropy due to sub-slab mantle flow around the eastern margin of the nearly stationary Caribbean plate; (3) some combination of both mechanisms. However, there are two notable variations in the trench-parallel pattern of anisotropy - trench-perpendicular alignment is observed in narrow regions east of Puerto Rico and south of Martinique. These observations support previously proposed ideas of eastward sublithospheric mantle flow through gaps in the slab. Furthermore, the pattern of anisotropy south of Martinique, near Saint Lucia is consistent with a previously proposed location for the boundary between the North and South American plates.

  1. Lithospheric deformation inferred from electrical anisotropy of magnetotelluric data

    Science.gov (United States)

    Yin, Y.; Wei, W.; Jin, S.; Ye, G.; Unsworth, M. J.; Zhang, L.

    2013-12-01

    In our research, a comprehensive procedure of analyzing and modeling electrical anisotropy for MT data is suggested, based on the field examples of the Great Slave Lake shear zone (GSLsz) in western Canada, the North China Craton (NCC) and the Altyn Tagh fault in northern Tibet. Diverse dimensionality tools are used to distinguish heterogeneity and anisotropy from MT data. In addition to the phase splits and phase tensor polarizations, a combination of the phase tensor and induction arrows is applied to judge anisotropy. The skin depths of specific period band are considered to determine whether these features result from anisotropy or heterogeneity. Specific resistivity structures in the 2-D isotropic inversion models can indicate electrical anisotropy as well, like the dike-like media or a series of conductive ';blobs' can be observed in the 2-D isotropic inversion models of the GSLsz and NCC data. Anisotropic inversions can be undertaken using an improved inversion code based on isotropic code but incorporating a trade-off parameter for electrical anisotropy named anisotropic tau. A series of anisotropic tau have been applied to test its effect and to get a best trade-off between anisotropy and heterogeneity. Then, 2-D and 3-D forward modeling works are undertaken to test the robustness of the major anisotropic features. The anisotropic structures inferred from the inversion models are replaced by various alternating isotropic or anisotropic structures to see if they are required. The fitting of the response curves compared with the field data and corresponding r.m.s misfits can help us choose the best model that can generally illustrate the underground structure. Finally, the analysis and modeling result of the MT data from North China Craton is taken as an example to demonstrate how the electrical anisotropy can be linked with the lithospheric deformation. According to the reliable models we got, there may be an anisotropic layer at the mid-lower crustal to

  2. Seismic anisotropy beneath NW Himalaya using SKS and SKKS Splitting measurements

    Science.gov (United States)

    Biswal, S.; Kumar, S.; Mohanty, W. K.

    2016-12-01

    Seventy six teleseismic earthquakes comprising of both SKS and SKKS were analysed for the NW Himalaya to infer the characteristics of the shear wave splitting parameters in the region. The anisotropy results obtained from the analysis shows upper mantle anisotropy in the study area with the fast axis aligned along a NNE-SSW direction and the average delay times observed at the station ranges from a minimum of 0.3s to a maximum of 1.7s for SKS and SKKS phases. These splitting results obtained for this area shows a parallel trend with motion of the India plate as estimated from NUVEL 1A model in contradiction to the orthogonal E-W trend observed for the NE Himalaya observed at the collision front. The seismic anisotropy observed in this region demarcates a shallow source of anisotropy that may be due to the strain flow in the upper mantle which may be the causative source of the anisotropy in the region.

  3. 3D Anisotropy of Solar Wind Turbulence, Tubes, or Ribbons?

    Science.gov (United States)

    Verdini, Andrea; Grappin, Roland; Alexandrova, Olga; Lion, Sonny

    2018-01-01

    We study the anisotropy with respect to the local magnetic field of turbulent magnetic fluctuations at magnetofluid scales in the solar wind. Previous measurements in the fast solar wind obtained axisymmetric anisotropy, despite that the analysis method allows nonaxisymmetric structures. These results are probably contaminated by the wind expansion that introduces another symmetry axis, namely, the radial direction, as indicated by recent numerical simulations. These simulations also show that while the expansion is strong, the principal fluctuations are in the plane perpendicular to the radial direction. Using this property, we separate 11 yr of Wind spacecraft data into two subsets characterized by strong and weak expansion and determine the corresponding turbulence anisotropy. Under strong expansion, the small-scale anisotropy is consistent with the Goldreich & Sridhar critical balance. As in previous works, when the radial symmetry axis is not eliminated, the turbulent structures are field-aligned tubes. Under weak expansion, we find 3D anisotropy predicted by the Boldyrev model, that is, turbulent structures are ribbons and not tubes. However, the very basis of the Boldyrev phenomenology, namely, a cross-helicity increasing at small scales, is not observed in the solar wind: the origin of the ribbon formation is unknown.

  4. UV-Induced Anisotropy In CdBr2-CdBr2: Cu Nanostructures

    Directory of Open Access Journals (Sweden)

    El-Naggar A. M.

    2015-09-01

    Full Text Available We have found an occurrence of anisotropy in the nanostructure CdBr2-CdBr2: Cu nanocrystalline films. The film thickness was varied from 4 nm up to 80 nm. The films were prepared by successive deposition of the novel layers onto the basic nanocrystals. The detection of anisotropy was performed by occurrence of anisotropy in the polarized light at 633 nm He-Ne laser wavelength. The occurrence of anisotropy was substantially dependent on the film thickness and the photoinduced power density. Possible mechanisms of the observed phenomena are discussed.

  5. Some thoughts on the Musala anisotropy; pitch angle distribution or what else

    International Nuclear Information System (INIS)

    Kota, J.; Somogyi, A.J.

    1977-01-01

    Based on the results obtained in the Musala experiment and in other anisotropy measurements, an attempt is made to explore the three-dimensional structure of cosmic ray anisotropy in the 10 11 - 107M1 4 eV range. (i) It is investigated whether observtions can be reconcilied with a pitch angle distribution. (ii) Assuming that the principal axes of the tensor anisotropy are known, the vector and tensor anisotropies are separated. Discussed are the theoretical implications of the results obtained and possible origins of the second harmonic. (author)

  6. Issues on generating primordial anisotropies at the end of inflation

    Energy Technology Data Exchange (ETDEWEB)

    Emami, Razieh; Firouzjahi, Hassan, E-mail: emami@mail.ipm.ir, E-mail: firouz@mail.ipm.ir [School of Physics, Institute for Research in Fundamental Sciences (IPM), P.O. Box 19395-5531, Tehran (Iran, Islamic Republic of)

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background.

  7. Issues on generating primordial anisotropies at the end of inflation

    International Nuclear Information System (INIS)

    Emami, Razieh; Firouzjahi, Hassan

    2012-01-01

    We revisit the idea of generating primordial anisotropies at the end of inflation in models of inflation with gauge fields. To be specific we consider the charged hybrid inflation model where the waterfall field is charged under a U(1) gauge field so the surface of end of inflation is controlled both by inflaton and the gauge fields. Using δN formalism properly we find that the anisotropies generated at the end of inflation from the gauge field fluctuations are exponentially suppressed on cosmological scales. This is because the gauge field evolves exponentially during inflation while in order to generate appreciable anisotropies at the end of inflation the spectator gauge field has to be frozen. We argue that this is a generic feature, that is, one can not generate observable anisotropies at the end of inflation within an FRW background

  8. Azadioxatriangulenium: exploring the effect of a 20 ns fluorescence lifetime in fluorescence anisotropy measurements

    Science.gov (United States)

    Bogh, Sidsel A.; Bora, Ilkay; Rosenberg, Martin; Thyrhaug, Erling; Laursen, Bo W.; Just Sørensen, Thomas

    2015-12-01

    Azaoxatriangulenium (ADOTA) has been shown to be highly emissive despite a moderate molar absorption coefficient of the primary electronic transition. As a result, the fluorescence lifetime is ~20 ns, longer than all commonly used red fluorescent organic probes. The electronic transitions in ADOTA are highly polarised (r 0  =  0.38), which in combination with the long fluorescence lifetime extents the size-range of biomolecular weights that can be detected in fluorescence polarisation-based experiments. Here, the rotational dynamics of bovine serum albumin (BSA) are monitored with three different ADOTA derivatives, differing only in constitution of the reactive linker. A detailed study of the degree of labelling, the steady-state anisotropy, and the time-resolved anisotropy of the three different ADOTA-BSA conjugates are reported. The fluorescence quantum yields (ϕ fl) of the free dyes in PBS solution are determined to be ~55%, which is reduced to ~20% in the ADOTA-BSA conjugates. Despite the reduction in ϕ fl, a ~20 ns intensity averaged lifetime is maintained, allowing for the rotational dynamics of BSA to be monitored for up to 100 ns. Thus, ADOTA can be used in fluorescence polarisation assays to fill the gap between commonly used organic dyes and the long luminescence lifetime transition metal complexes. This allows for efficient steady-state fluorescence polarisation assays for detecting binding of analytes with molecular weights of up to 100 kDa.

  9. Experimental determination of the anisotropy function for the Model 200 103Pd 'light seed' and derivation of the anisotropy constant based upon the linear quadratic model

    International Nuclear Information System (INIS)

    Yue Ning; Nath, Ravinder

    2002-01-01

    Since the publication of the AAPM Task Group 43 report in 1995, Model 200 103 Pd seed, which has been widely used in prostate seed implants and other brachytherapy procedures, has undergone some changes in its internal geometry resulting from the manufacturer's transition from lower specific activity reactor-produced 103 Pd ('heavy seeds') to higher specific activity accelerator-produced radioactive material ('light seeds'). Based on previously reported theoretical calculations and measurements, the dose rate constants and the radial dose functions of the two types of seeds are nearly the same and have already been reported. In this work, the anisotropy function of the 'light seed' was experimentally measured and an averaging method for the determination of the anisotropy constant from distance-dependent values of anisotropy factors is presented based upon the continuous low dose rate irradiation linear quadratic model for cell killing. The anisotropy function of Model 200 103 Pd 'light seeds' was measured in a Solid Water trade mark sign phantom using 1x1x1 mm micro LiF TLD chips at radial distances of 1, 2, 3, 4, 5, and 6 cm and at angles from 0 to 90 deg. with respect to the longitudinal axis of the seeds. At a radial distance of 1 cm, the measured anisotropy function of the 103 Pd 'light seed' is considerably lower than that of the 103 Pd 'heavy seed' reported in the TG 43 report. Our measured values at all radial distances are in excellent agreement with the results of a Monte Carlo simulation reported by Weaver, except for points along and near the seed longitudinal axis. The anisotropy constant of the 103 Pd 'light seed' was calculated using the linear quadratic biological model for cell killing in 30 clinical implants. For the model 200 ''light seed,'' it has a value of 0.865. However, our biological model calculations lead us to conclude that if the anisotropy factors of an interstitial brachytherapy seed vary significantly over radial distances anisotropy

  10. Helically symmetric equilibria with pressure anisotropy and incompressible plasma flow

    Science.gov (United States)

    Evangelias, A.; Kuiroukidis, A.; Throumoulopoulos, G. N.

    2018-02-01

    We derive a generalized Grad-Shafranov equation governing helically symmetric equilibria with pressure anisotropy and incompressible flow of arbitrary direction. Through the most general linearizing ansatz for the various free surface functions involved therein, we construct equilibrium solutions and study their properties. It turns out that pressure anisotropy can act either paramegnetically or diamagnetically, the parallel flow has a paramagnetic effect, while the non-parallel component of the flow associated with the electric field has a diamagnetic one. Also, pressure anisotropy and flow affect noticeably the helical current density.

  11. [Cosmic Microwave Background (CMB) Anisotropies

    Science.gov (United States)

    Silk, Joseph

    1998-01-01

    One of the main areas of research is the theory of cosmic microwave background (CMB) anisotropies and analysis of CMB data. Using the four year COBE data we were able to improve existing constraints on global shear and vorticity. We found that, in the flat case (which allows for greatest anisotropy), (omega/H)0 less than 10(exp -7), where omega is the vorticity and H is the Hubble constant. This is two orders of magnitude lower than the tightest, previous constraint. We have defined a new set of statistics which quantify the amount of non-Gaussianity in small field cosmic microwave background maps. By looking at the distribution of power around rings in Fourier space, and at the correlations between adjacent rings, one can identify non-Gaussian features which are masked by large scale Gaussian fluctuations. This may be particularly useful for identifying unresolved localized sources and line-like discontinuities. Levin and collaborators devised a method to determine the global geometry of the universe through observations of patterns in the hot and cold spots of the CMB. We have derived properties of the peaks (maxima) of the CMB anisotropies expected in flat and open CDM models. We represent results for angular resolutions ranging from 5 arcmin to 20 arcmin (antenna FWHM), scales that are relevant for the MAP and COBRA/SAMBA space missions and the ground-based interferometer. Results related to galaxy formation and evolution are also discussed.

  12. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-04-01

    Strain anisotropy was investigated at temperatures in the range 293 to 1117K in circular tensile specimens prepared from rolled Zircaloy-2 plate so that their tensile axes were parallel to and transverse to the rolling direction. The strain anisotropy factor for both types of specimen increased markedly in the high alpha phase region above 923K reaching a maximum at circa 1070K. Above this temperature in the alpha-plus-beta phase region the strain anisotropy decreased rapidly as the proportion of beta phase increased and was almost non-existent at 1173K. The strain anisotropy was markedly strain dependent, particularly in the high alpha phase region. The study was extended to Zircaloy-4 pressurized water reactor (PWR) 17 x 17 type fuel rod tubing specimens which were strained under biaxial conditions using cooling conditions which promoted uniform diametral strain over most of their lengths (circa 250 mm). In these circumstances the strain anisotropy is manifest by a reduction in length. Measurement of this change along with that in diameter and wall thickness produced data from which the strain anisotropy factor was calculated. The results, although influenced by additional factors discussed in the paper, were similar to those observed in the uniaxial Zircaloy-2 tensile tests. (author)

  13. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2014-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  14. Anisotropy signature in reverse-time migration extended images

    KAUST Repository

    Sava, Paul C.

    2014-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the Earth, i.e., at common-image-point gathers, carry rich information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. However, characterizing the anisotropy influence on such extended images is a challenge. Extended common-image-point gathers are cheap to evaluate since they sample the image at sparse locations indicated by the presence of strong reflectors. Such gathers are also sensitive to velocity error that manifests itself through moveout as a function of space and time lags. Furthermore, inaccurate anisotropy leaves a distinctive signature in common-image-point gathers, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography. It specifically admits a V-shaped residual moveout with the slope of the "V" flanks depending on the anisotropic parameter η regardless of the complexity of the velocity model. It reflects the fourth-order nature of the anisotropy influence on moveout as it manifests itself in this distinct signature in extended images after handling the velocity properly in the imaging process. Synthetic and real data observations support this assertion.

  15. George Smoot, Blackbody, and Anisotropy of the Cosmic Microwave Background

    Science.gov (United States)

    the Cosmic Microwave Background Radiation Resources with Additional Information * Videos 'George Smoot anisotropy of the cosmic microwave background radiation." '1 Smoot previously won the Ernest Orlando . Smoot, blackbody, and anisotropy of the Cosmic Microwave Background (CMB) radiation is available in full

  16. Interfaces anisotropy in single crystal V/Fe/V trilayer

    Energy Technology Data Exchange (ETDEWEB)

    Louis, D. [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Lytvynenko, Ia. [Sumy State University, 2, Rymskogo-Korsakova Street, 40007 Sumy (Ukraine); Hauet, T., E-mail: thomas.hauet@univ-lorraine.fr [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France); Lacour, D.; Hehn, M.; Andrieu, S.; Montaigne, F. [Institut Jean Lamour, UMR CNRS 7198, Université de Lorraine, 54506 Vandoeuvre-lès-Nancy (France)

    2014-12-15

    The value and sign of V/Fe interface anisotropy are investigated. Epitaxial V/Fe/V/Au layers with different iron thicknesses were grown on single-crystalline (001) MgO substrate by ultra-high vacuum molecular beam epitaxy. Magnetometry was used to measure magnetization and out-of-plane anisotropy field. From these values, we quantify the number of dead layers due to V/Fe or Fe/V interfaces, and compare it with the literature. We deduce that dead layers occur mostly at the bottom V/Fe interface. An average value for V/Fe and Fe/V interface anisotropy around 0±0.1 erg/cm{sup 2} (mJ/m{sup 2}) was thus deduced. - Highlights: • In a V/Fe/V stack, dead layers (i.e. overall magnetization reduction) originate mostly from the bottom V/Fe interface. • The average value for V/Fe and Fe/V interface anisotropy in V/Fe/V stack has been quantified as 0±0.1 erg/cm{sup 2} (mJ/m{sup 2})

  17. Giant magnetic anisotropy of rare-earth adatoms and dimers adsorbed by graphene oxide.

    Science.gov (United States)

    Zhang, Kai-Cheng; Li, Yong-Feng; Liu, Yong; Zhu, Yan; Shi, Li-Bin

    2017-05-24

    Nowadays, transition-metal adatoms and dimers with giant magnetic anisotropy have attracted much attention due to their potential applications in data storage, spintronics and quantum computations. Using density-functional calculations, we investigated the magnetic anisotropy of the rare-earth adatoms and dimers adsorbed by graphene oxide. Our calculations reveal that the adatoms of Tm, Er and Sm possess giant magnetic anisotropy, typically larger than 40 meV. When the dimers of (Tm,Er,Sm)-Ir are adsorbed onto graphene oxide, the magnetic anisotropy even exceeds 200 meV. The magnetic anisotropy can be tuned by the external electric field as well as the environment.

  18. No Giant Two-Ion Anisotropy in the Heavy-Rare-Earth Metals

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A new Bose-operator expansion of tensor operators is applied to the heavy-rare-earth metals. The Er data for the cone phase have been analyzed successfully with single-ion anisotropy and isotropic exchange interaction. The Tb data can be understood on the same basis. The previously found large two......-ion anisotropy was due to an inadequate treatment of the large single-ion anisotropy leading to an incorrect expression for the spin-wave energy....

  19. General quadrupolar statistical anisotropy: Planck limits

    Energy Technology Data Exchange (ETDEWEB)

    Ramazanov, S. [Gran Sasso Science Institute (INFN), Viale Francesco Crispi 7, I-67100 L' Aquila (Italy); Rubtsov, G. [Institute for Nuclear Research of the Russian Academy of Sciences, Prospect of the 60th Anniversary of October 7a, 117312 Moscow (Russian Federation); Thorsrud, M. [Faculty of Engineering, Østfold University College, P.O. Box 700, 1757 Halden (Norway); Urban, F.R., E-mail: sabir.ramazanov@gssi.infn.it, E-mail: grisha@ms2.inr.ac.ru, E-mail: mikjel.thorsrud@hiof.no, E-mail: federico.urban@kbfi.ee [National Institute of Chemical Physics and Biophysics, Rävala 10, 10143 Tallinn (Estonia)

    2017-03-01

    Several early Universe scenarios predict a direction-dependent spectrum of primordial curvature perturbations. This translates into the violation of the statistical isotropy of cosmic microwave background radiation. Previous searches for statistical anisotropy mainly focussed on a quadrupolar direction-dependence characterised by a single multipole vector and an overall amplitude g {sub *}. Generically, however, the quadrupole has a more complicated geometry described by two multipole vectors and g {sub *}. This is the subject of the present work. In particular, we limit the amplitude g {sub *} for different shapes of the quadrupole by making use of Planck 2015 maps. We also constrain certain inflationary scenarios which predict this kind of more general quadrupolar statistical anisotropy.

  20. Temperature dependence of the interfacial magnetic anisotropy in W/CoFeB/MgO

    Directory of Open Access Journals (Sweden)

    Kyoung-Min Lee

    2017-06-01

    Full Text Available The interfacial perpendicular magnetic anisotropy in W/CoFeB (1.2 ∼ 3 nm/MgO thin film structures is strongly dependent on temperature, and is significantly reduced at high temperature. The interfacial magnetic anisotropy is generally proportional to the third power of magnetization, but an additional factor due to thermal expansion is required to explain the temperature dependence of the magnetic anisotropy of ultrathin CoFeB films. The reduction of the magnetic anisotropy is more prominent for the thinner films; as the temperature increases from 300 K to 400 K, the anisotropy is reduced ∼50% for the 1.2-nm-thick CoFeB, whereas the anisotropy is reduced ∼30% for the 1.7-nm-thick CoFeB. Such a substantial reduction of magnetic anisotropy at high temperature is problematic for data retention when incorporating W/CoFeB/MgO thin film structures into magneto-resistive random access memory devices. Alternative magnetic materials and structures are required to maintain large magnetic anisotropy at elevated temperatures.

  1. First principles study on the magnetocrystalline anisotropy of Fe–Ga magnetostrictive alloys

    International Nuclear Information System (INIS)

    Lei, Zheng; Cheng-Bao, Jiang; Jia-Xiang, Shang; Hui-Bin, Xu

    2009-01-01

    This paper investigates the electronic structure and magnetocrystalline anisotropy of Fe-Ga magnetostrictive material by means of the full potential-linearized augmented plane-wave method within the generalized gradient approximation. The 3d-orbit splitting of Fe atoms in D0 3 , B2-like and L1 2 crystalline structures of Fe–Ga is calculated with consideration of the crystal field as well as the spin–orbit coupling effect. Because of the frozen orbital angular momenta of the 3d-orbit for Fe atoms in Fe–Ga magnetostrictive alloys and the spin–orbit coupling, the distribution of the electron cloud is not isotropic, which leads to the anisotropy of exchange interaction between the different atoms. A method on estimating the magnetocrystalline anisotropy of Fe–Ga alloys by means of calculating orbit-projected density of states for Fe atoms is performed. The anisotropic distribution of the electron cloud of Fe atoms in these three crystalline structures of Fe–Ga is studied based on the above method showing the highest magnetic anisotropy for B2-like structure. This qualitative method comes closer to physical reality with a vivid physical view, which can evaluate the anisotropy of electron cloud for 3d transition atoms directly. The calculated results are in good agreement with both the previous theoretical computation and the tested value on the magnetic anisotropy constant, which confirms that the electron cloud anisotropy of Fe atoms could well characterize the magnetocrystalline anisotropy of Fe–Ga magnetostrictive material. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  2. Weak-anisotropy approximations of P-wave phase and ray velocities for anisotropy of arbitrary symmetry

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 60, č. 3 (2016), s. 403-418 ISSN 0039-3169 Institutional support: RVO:67985530 Keywords : weak anisotropy * P-wave * phase velocity * ray velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.764, year: 2016

  3. Extremely high thermal conductivity anisotropy of double-walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    Zhaoji Ma

    2017-06-01

    Full Text Available Based on molecular dynamics simulations, we reveal that double-walled carbon nanotubes can possess an extremely high anisotropy ratio of radial to axial thermal conductivities. The mechanism is basically the same as that for the high thermal conductivity anisotropy of graphene layers - the in-plane strong sp2 bonds lead to a very high intralayer thermal conductivity while the weak van der Waals interactions to a very low interlayer thermal conductivity. However, different from flat graphene layers, the tubular structures of carbon nanotubes result in a diameter dependent thermal conductivity. The smaller the diameter, the larger the axial thermal conductivity but the smaller the radial thermal conductivity. As a result, a DWCNT with a small diameter may have an anisotropy ratio of thermal conductivity significantly higher than that for graphene layers. The extremely high thermal conductivity anisotropy allows DWCNTs to be a promising candidate for thermal management materials.

  4. Southern Hemisphere Measurement of the Anisotropy in the CosmicMicrowave Background Radiation

    Energy Technology Data Exchange (ETDEWEB)

    Smoot, George F.; Lubin, Phil M.

    1979-06-01

    A recent measurement of the anisotropy in the Cosmic Background Radiation from the southern hemisphere (Lima, Peru) is essentially in agreement with previous measurements from the northern hemisphere. The net anisotropy can be described as a first order spherical harmonic (Doppler) anisotropy of amplitude 3.1 {+-} 0.4 m{sup o}K with a quadrupole anisotropy of less than 1 m{sup o}K. In addition, measurements of the linear polarization yield an upper limit of 1 m{sup o}K, or one part in 3000, at 95% C.L. for the amplitudes of any spherical harmonic through third order.

  5. Laser-induced nuclear orientation and gamma anisotropy in sodium

    International Nuclear Information System (INIS)

    Pappas, P.G.

    1980-12-01

    The use of laser optical pumping to induce nuclear orientation in several isotopes and one isomer of atomic sodium vapor is described. Essentially complete nuclear polarization, P > 90%, has been achieved in stable 23 Na when pumping with modest laser intensities (I approx. = 10 mW/cm 2 ). The volume of the sample cell was approximately 10 cc, and was filled with a sodium density of about 10'' atoms/cc. Complete coverage of the Doppler distribution was accomplished with the use of trace amounts (less than or equal to 1 torr) of argon buffer gas to induce velocity changing collisions. A theoretical model which accurately predicts the amount of polarization is developed. The orientation of nuclei which are unstable to gamma decay can manifest itself in anisotropic gamma ray emission. This anisotropy can be used to measure isotope and isomer shifts, from which nuclear properties can be derived. Gamma anisotropy was observed in two systems, 22 Na and /sup 24m/Na. From the observed anisotropy in /sup 24m/Na, a negative sign for the g factor is determined. Values are derived for the magnetic moment, μ = 2.56 +- 0.64 nm, and the isomer shift, deltaν/sub 24m/ = 288 +- 191 MHz (D1 line). A model is described which relates various laser and fubber gas parameters to the observed gamma anisotropy lineshape. This model facilitates the extraction of physical parameters from knowledge of the laser frequency at which the anisotropy is a maximum

  6. Controlling the anisotropy and domain structure with oblique deposition and substrate rotation

    Directory of Open Access Journals (Sweden)

    N. Chowdhury

    2014-02-01

    Full Text Available Effect of substrate rotation on anisotropy and domain structure for a thin ferromagnetic film has been investigated in this work. For this purpose Co films with 10 nm thickness have been prepared by sputtering with oblique angle of incidence for various substrate rotations. This method of preparation induces a uniaxial anisotropy due to shadow deposition effect. The magnetization reversal is studied by magneto-optic Kerr effect (MOKE based microscope in the longitudinal geometry. The Co films prepared by rotating the substrate with 10 and 20 rpm weakens the anisotropy but does not completely give isotropic films. But this leads to high dispersion in local grain anisotropy resulting in ripple and labyrinth domains. It is observed that the substrate rotation has moderate effect on uniaxial anisotropy but has significant effect on the magnetization reversal process and the domain structure.

  7. New method for estimating clustering of DNA lesions induced by physical/chemical mutagens using fluorescence anisotropy.

    Science.gov (United States)

    Akamatsu, Ken; Shikazono, Naoya; Saito, Takeshi

    2017-11-01

    We have developed a new method for estimating the localization of DNA damage such as apurinic/apyrimidinic sites (APs) on DNA using fluorescence anisotropy. This method is aimed at characterizing clustered DNA damage produced by DNA-damaging agents such as ionizing radiation and genotoxic chemicals. A fluorescent probe with an aminooxy group (AlexaFluor488) was used to label APs. We prepared a pUC19 plasmid with APs by heating under acidic conditions as a model for damaged DNA, and subsequently labeled the APs. We found that the observed fluorescence anisotropy (r obs ) decreases as averaged AP density (λ AP : number of APs per base pair) increases due to homo-FRET, and that the APs were randomly distributed. We applied this method to three DNA-damaging agents, 60 Co γ-rays, methyl methanesulfonate (MMS), and neocarzinostatin (NCS). We found that r obs -λ AP relationships differed significantly between MMS and NCS. At low AP density (λ AP  < 0.001), the APs induced by MMS seemed to not be closely distributed, whereas those induced by NCS were remarkably clustered. In contrast, the AP clustering induced by 60 Co γ-rays was similar to, but potentially more likely to occur than, random distribution. This simple method can be used to estimate mutagenicity of ionizing radiation and genotoxic chemicals. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Halo assembly bias and the tidal anisotropy of the local halo environment

    Science.gov (United States)

    Paranjape, Aseem; Hahn, Oliver; Sheth, Ravi K.

    2018-05-01

    We study the role of the local tidal environment in determining the assembly bias of dark matter haloes. Previous results suggest that the anisotropy of a halo's environment (i.e. whether it lies in a filament or in a more isotropic region) can play a significant role in determining the eventual mass and age of the halo. We statistically isolate this effect, using correlations between the large-scale and small-scale environments of simulated haloes at z = 0 with masses between 1011.6 ≲ (m/h-1 M⊙) ≲ 1014.9. We probe the large-scale environment, using a novel halo-by-halo estimator of linear bias. For the small-scale environment, we identify a variable αR that captures the tidal anisotropy in a region of radius R = 4R200b around the halo and correlates strongly with halo bias at fixed mass. Segregating haloes by αR reveals two distinct populations. Haloes in highly isotropic local environments (αR ≲ 0.2) behave as expected from the simplest, spherically averaged analytical models of structure formation, showing a negative correlation between their concentration and large-scale bias at all masses. In contrast, haloes in anisotropic, filament-like environments (αR ≳ 0.5) tend to show a positive correlation between bias and concentration at any mass. Our multiscale analysis cleanly demonstrates how the overall assembly bias trend across halo mass emerges as an average over these different halo populations, and provides valuable insights towards building analytical models that correctly incorporate assembly bias. We also discuss potential implications for the nature and detectability of galaxy assembly bias.

  9. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    OpenAIRE

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instan...

  10. Control of the magnetic in-plane anisotropy in off-stoichiometric NiMnSb

    International Nuclear Information System (INIS)

    Gerhard, F.; Schumacher, C.; Gould, C.; Molenkamp, L. W.

    2014-01-01

    NiMnSb is a ferromagnetic half-metal which, because of its rich anisotropy and very low Gilbert damping, is a promising candidate for applications in information technologies. We have investigated the in-plane anisotropy properties of thin, molecular beam epitaxy-grown NiMnSb films as a function of their Mn concentration. Using ferromagnetic resonance to determine the uniaxial and four-fold anisotropy fields, (2K U )/(M s ) and (2K 1 )/(M s ) , we find that a variation in composition can change the strength of the four-fold anisotropy by more than an order of magnitude and cause a complete 90° rotation of the uniaxial anisotropy. This provides valuable flexibility in designing new device geometries

  11. Switching the uniaxial magnetic anisotropy by ion irradiation induced compensation

    Science.gov (United States)

    Yuan, Ye; Amarouche, Teyri; Xu, Chi; Rushforth, Andrew; Böttger, Roman; Edmonds, Kevin; Campion, Richard; Gallagher, Bryan; Helm, Manfred; Jürgen von Bardeleben, Hans; Zhou, Shengqiang

    2018-04-01

    In the present work, the uniaxial magnetic anisotropy of GaMnAsP is modified by helium ion irradiation. According to the micro-magnetic parameters, e.g. resonance fields and anisotropy constants deduced from ferromagnetic resonance measurements, a rotation of the magnetic easy axis from out-of-plane [0 0 1] to in-plane [1 0 0] direction is achieved. From the application point of view, our work presents a novel avenue in modifying the uniaxial magnetic anisotropy in GaMnAsP with the possibility of lateral patterning by using lithography or focused ion beam.

  12. Anisotropy indices and the effects on the hydric behaviour of natural stone

    Science.gov (United States)

    Fort, Rafael; Alvarez de Buergo, Monica; Varas, Maria Jose; Gomez-Heras, Miguel

    2010-05-01

    Building stone is an anisotropic material. Each type of rock (granite, limestone, slate, marble, etc.) has a different anisotropy, which is related to its own geological history, i.e. formation conditions and alteration processes. Knowing the anisotropy of natural stone is a matter of interest for determining the most adequate way to extract it from the quarry, for a better use during its manufacture or processing, to determine the quality of elements to be used as ashlars/masonry or as ornamental elements carving, as well to their arrangement in a structure. At the same time, materiaĺs anisotropy will condition the placing of, for instance, anchorages in dressing stone slabs. Anisotropy of natural stone controls water entry and its mobility, together with atmospheric pollutantśs, processes that favour the stone decay in building works, mainly those that shows a marked directional component, as it is the case of capillary water absorption. Water tends to be absorbed differently along the distinct main anisotropy directions, which are principally marked due to the arrangement and distribution of porosity in the rock. The aim of this study is to perform a comparative analysis of the various anisotropy indices commonly used when dealing with natural stone, determined by ultrasonic propagation techniques, in order to establish how anisotropy (by means of these indices) affect the process of capillary water absorption. Different type of natural stones have been selected, according to their traditional use for the construction of buildings in the region of Madrid (Spain). Their petrophysical properties have been determined (density, porosity, water absorption, etc), as well as ultrasonic transmission velocity has been measured along the three spatial directions of the test specimens (from 50 to 100 for each petrological type). According to this, the stone specimens were classified in different anisotropy levels or classes. Results show that stones with the highest

  13. A two-fluid approximation for calculating the cosmic microwave background anisotropies

    Science.gov (United States)

    Seljak, Uros

    1994-01-01

    We present a simplified treatment for calculating the cosmic microwave background anisotropy power spectrum in adiabatic models. It consists of solving for the evolution of a two-fluid model until the epoch of recombination and then integrating over the sources to obtain the cosmic microwave background (CMB) anisotropy power spectrum. The approximation is useful both for a physical understanding of CMB anisotropies as well as for a quantitative analysis of cosmological models. Comparison with exact calculations shows that the accuracy is typically 10%-20% over a large range of angles and cosmological models, including those with curvature and cosmological constant. Using this approximation we investigate the dependence of the CMB anisotropy on the cosmological parameters. We identify six dimensionless parameters that uniquely determine the anisotropy power spectrum within our approximation. CMB experiments on different angular scales could in principle provide information on all these parameters. In particular, mapping of the Doppler peaks would allow an independent determination of baryon mass density, matter mass density, and the Hubble constant.

  14. Probing VCMA in MTJs with in-plane magnetization

    Directory of Open Access Journals (Sweden)

    M. Williamson

    2017-11-01

    Full Text Available Voltage controlled magnetic anisotropy (VCMA is a novel method to switch magnetizations in low-power and ultra-fast applications based on magnetic tunnel junctions (MTJs. Here we explore the ferromagnetic resonance (FMR technique to probe VCMA in situations where other methods cannot be applied. We quantify VCMA in CoFeB/MgO/CoFeB MTJ nanopillars with in-plane magnetizations where our FMR method is unique in providing direct information about VCMA. We observe a quadratic shift of the FMR resonance field when a voltage bias is applied across the MTJ. The VCMA energy corresponding to the quadratic shift varies with an energy factor of 8.2μJ/m2 for 1 V2/nm2. These results are important for understanding magnetodynamics in MTJ-based applications with in-plane magnetizations.

  15. Deuterium Lamb shift via quenching-radiation anisotropy measurements

    International Nuclear Information System (INIS)

    van Wijngaarden, A.; Drake, G.W.F.

    1978-01-01

    The Lamb shift of a hydrogenic ion can be deduced from the anisotropy in the angular distribution of the 2s/sub 1/2/-1s/sub 1/2/ electric field quenching radiation. The accuracy of our previous anisotropy measurement for deuterium is improved to about +- 150 ppm. The derived Lamb shift is (1059.36 +- 0.16) MHz. The sources of error are carefully analyzed and the prospects for further improvements in the accuracy are discussed

  16. Irradiation creep induced anisotropy in a/2 dislocation populations

    International Nuclear Information System (INIS)

    Gelles, D.S.

    1984-05-01

    The contribution of anisotropy in Burgers vector distribution to irradiation creep behavior has been largely ignored in irradiation creep models. However, findings on Frank loops suggest that it may be very important. Procedures are defined to identify the orientations of a/2 Burgers vectors for dislocations in face-centered cubic crystals. By means of these procedures the anisotropy in Burgers vector populations was determined for three Nimonic PE16 pressurized tube specimens irradiated under stress. Considerable anisotropy in Burgers vector population develops during irradiation creep. It is inferred that dislocation motion during irradiation creep is restricted primarily to a climb of a/2 dislocations on 100 planes. Effect of these results on irradiation creep modeling and deformation induced irradiation growth is considered

  17. Anisotropy of dilepton emission from nuclear collisions

    Energy Technology Data Exchange (ETDEWEB)

    Bratkovskaya, E.L.; Teryaev, O.V. [Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics; Toneev, V.D. [Washington Univ., Seattle, WA (United States). Inst. for Nuclear Theory]|[Joint Inst. for Nuclear Research, Dubna (Russian Federation). Bogolubov Lab. of Theoretical Physics

    1994-11-07

    Attention is paid to studying the angular characteristics of e{sup +}e{sup {minus}} pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed.

  18. Anisotropy of dilepton emission from nuclear collisions

    International Nuclear Information System (INIS)

    Bratkovskaya, E.L.; Teryaev, O.V.; Toneev, V.D.; Joint Inst. for Nuclear Research, Dubna

    1994-01-01

    Attention is paid to studying the angular characteristics of e + e - pairs created in collisions with nuclear targets at intermediate and relativistic energies. Arising due to general spin and angular momentum constraints, the dilepton anisotropy seems to be quite sensitive to the contribution of different sources and may be used for disentangling these sources (or models) as well as an additional signature of a possible chiral symmetry restoration and phase transition of hadrons into the quark-gluon plasma. An anisotropy estimate for some dilepton sources is given and its relevance to the problems mentioned is discussed

  19. Magnetocrystalline and configurational anisotropies in Fe nanostructures

    International Nuclear Information System (INIS)

    Vavassori, P.; Bisero, D.; Carace, F.; Liberati, M.; Di Bona, A.; Gazzadi, G.C.; Valeri, S.

    2005-01-01

    Arrays of single-crystal Fe micron and submicron squares and disks, have been fabricated using a focused ion beam apparatus from a film epitaxially grown on MgO. The hysteresis loops of the patterned areas differ from those of the continuous film as a consequence of the different reversal determined by the lateral confinement of the Fe film. By means of modulated field magneto-optical anisometry measurements we studied the symmetry and the strength of the overall anisotropy. For the smaller square elements we observed a higher-order term in the overall anisotropy with eightfold symmetry arising from the configurational contribution

  20. Stress induced anisotropy in CoFeMn soft magnetic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Leary, A. M., E-mail: leary@cmu.edu; Keylin, V.; McHenry, M. E. [Materials Science and Engineering Department, Carnegie Mellon University, 5000 Forbes Ave., Pittsburgh, Pennsylvania 15213 (United States); Ohodnicki, P. R. [Functional Materials Development Division, National Energy Technology Laboratory (NETL), 626 Cochrans Mill Road, Pittsburgh, Pennsylvania 15236 (United States)

    2015-05-07

    The use of processing techniques to create magnetic anisotropy in soft magnetic materials is a well-known method to control permeability and losses. In nanocomposite materials, field annealing below the Curie temperature results in uniaxial anisotropy energies up to ∼2 kJ/m{sup 3}. Higher anisotropies up to ∼10 kJ/m{sup 3} result after annealing Fe-Si compositions under stress due to residual stress in the amorphous matrix acting on body centered cubic crystals. This work describes near zero magnetostriction Co{sub 80−x−y}Fe{sub x}Mn{sub y}Nb{sub 4}B{sub 14}Si{sub 2} soft magnetic nanocomposites, where x and y < 8 at.% with close packed crystalline grains that show stress induced anisotropies up to ∼50 kJ/m{sup 3} and improved mechanical properties with respect to Fe-Si compositions. Difference patterns measured using transmission X-ray diffraction show evidence of affine strain with respect to the stress axis.

  1. Microwave background anisotropies in quasiopen inflation

    Science.gov (United States)

    García-Bellido, Juan; Garriga, Jaume; Montes, Xavier

    1999-10-01

    Quasiopenness seems to be generic to multifield models of single-bubble open inflation. Instead of producing infinite open universes, these models actually produce an ensemble of very large but finite inflating islands. In this paper we study the possible constraints from CMB anisotropies on existing models of open inflation. The effect of supercurvature anisotropies combined with the quasiopenness of the inflating regions make some models incompatible with observations, and severely reduces the parameter space of others. Supernatural open inflation and the uncoupled two-field model seem to be ruled out due to these constraints for values of Ω0<~0.98. Others, such as the open hybrid inflation model with suitable parameters for the slow roll potential can be made compatible with observations.

  2. Magnetic Anisotropy by Rashba Spin-Orbit Coupling in Antiferromagnetic Thin Films

    Science.gov (United States)

    Ieda, Jun'ichi; Barnes, Stewart E.; Maekawa, Sadamichi

    2018-05-01

    Magnetic anisotropy in an antiferromagnet (AFM) with inversion symmetry breaking (ISB) is investigated. The magnetic anisotropy energy (MAE) resulting from the Rashba spin-orbit and s-d type exchange interactions is determined for two different models of AFMs. The global ISB model, representing the effect of a surface, an interface, or a gating electric field, results in an easy-plane magnetic anisotropy. In contrast, for a local ISB model, i.e., for a noncentrosymmetric AFM, perpendicular magnetic anisotropy (PMA) arises. Both results differ from the ferromagnetic case, in which the result for PMA depends on the band structure and dimensionality. These MAE contributions play a key role in determining the direction of the Néel order parameter in antiferromagnetic nanostructures, and reflect the possibility of electrical-field control of the Néel vector.

  3. Electric anisotropy in high density polyethylene + carbon black composites induced by mechanical deformation

    Energy Technology Data Exchange (ETDEWEB)

    Vigueras-Santiago, E; Hernandez-Lopez, S; Camacho-Lopez, M A; Lara-Sanjuan, O, E-mail: eviguerass@uaemex.m [Laboratorio de Investigacion y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Quimica, UAEM. Paseo Colon esq. con Paseo Tollocan, s/n. C.P. 50000, Toluca (Mexico)

    2009-05-01

    High density polyethylene + carbon black composites with electrical anisotropy was studied. Electrical anisotropy was induced by uniaxial mechanical deformation and injection moulding. We show that anisotropy depends on the carbon black concentration and percentage deformation. Resistivity had the highest anisotropy resistivity around the percolation threshold. Perpendicular resistivity showed two magnitude orders higher than parallel resistivity for injected samples, whereas resistivity showed an inverse behaviour for 100% tensile samples. Both directions were set respect to the deformation axe. Anisotropy could be explained in terms of the molecular deformation (alignment) of the polymer chains as a response of the deformation process originating a redistribution of the carbon black particles in both directions. Alignment of the polymer chains was evidenced by polarized Raman spectroscopy.

  4. Topological mass of magnetic Skyrmions probed by ultrafast dynamic imaging

    International Nuclear Information System (INIS)

    Buettner, Felix

    2013-01-01

    In this thesis, we investigate the GHz dynamics of skyrmionic spin structures by means of pump-probe dynamic imaging to determine the equation of motion that governs the behavior of these technologically relevant spin structures. To achieve this goal, we first designed and optimized a perpendicular magnetic anisotropy CoB/Pt multilayer material for low magnetic pinning, as required for ultrafast pump-probe imaging experiments. Second, we developed an integrated sample design for X-ray holography capable of tracking relative magnetic positional changes down to 3 nm spatial resolution. These advances enabled us to image the trajectory of a single magnetic Skyrmion. We find that the motion is comprised of two gyrotropic modes, one clockwise and one counterclockwise. The existence of two modes shows that Skyrmions are massive quasiparticles. From their derived frequencies we find an inertial mass for the Skyrmion which is a factor of five larger than expected based on existing models for inertia in magnetism. Our results demonstrate that the mass of Skyrmions is based on a novel mechanism emerging from their confined nature, which is a direct consequence of their topology.

  5. Site-specific magnetic anisotropies in R2Fe14B systems

    Science.gov (United States)

    Yoshioka, T.; Tsuchiura, H.

    2018-04-01

    The local magnetic anisotropy of R ions in R2Fe14B (R = Dy, Ho) systems is studied based on a microscopic effective spin model constructed from the information obtained by using first-principles calculations. By taking into account up to 6-th order crystal electric field parameters, the model satisfactory describes the observed magnetization curves and the temperature dependence of anisotropy constants. We found that at low temperatures, the noncollinear structure appears in the Ho2Fe14B system reflecting the local magnetic anisotropy.

  6. Shear-wave splitting observations of mantle anisotropy beneath Alaska

    Science.gov (United States)

    Bellesiles, A. K.; Christensen, D. H.; Entwistle, E.; Litherland, M.; Abers, G. A.; Song, X.

    2009-12-01

    Observations of seismic anisotropy were obtained from three different PASSCAL broadband experiments throughout Alaska, using shear-wave splitting from teleseismic SKS phases. The MOOS (Multidisciplinary Observations Of Subduction), BEAAR (Broadband Experiment Across the Alaska Range), and ARCTIC (Alaska Receiving Cross-Transects for the Inner Core) networks were used along with selected permanent broadband stations operated by AEIC (Alaska Earthquake Information Center) to produce seismic anisotropy results for the state of Alaska along a north south transect from the active subduction zone in the south, through continental Alaska, to the passive margin in the north. The BEAAR network is in-between the ARCTIC and MOOS networks above the subducting Pacific Plate and mantle wedge and shows a tight ~90 degree rotation of anisotropy above the 70km contour of the subducting plate. The southern stations in BEAAR yield anisotropy results that are subparallel to the Pacific Plate motion as it subducts under North America. These stations have an average fast direction of -45 degrees and 1.03 seconds of delay on average. The MOOS network in south central Alaska yielded similar results with an average fast direction of -30 degrees and delay times of .9 seconds. In the north portion of the BEAAR network the anisotropy is along strike of the subduction zone and has an average fast direction of 27 degrees with an average delay time of 1.4 seconds, although the delay times above the mantle wedge range from 1 to 2.5 seconds and are directly correlated to the length of ray path in the mantle wedge. This general trend NE/SW is seen in the ARCTIC stations to the north although the furthest north stations are oriented more NNE compared to those in BEAAR. The average fast direction for the ARCTIC network is 40 degrees with an average delay time of 1.05 seconds. These results show two distinct orientations of anisotropy in Alaska separated by the subducting Pacific Plate.

  7. On the Resolution of Inversion for Orthorhombic Anisotropy

    KAUST Repository

    Kazei, Vladimir

    2017-05-26

    We investigate the resolution of elastic anisotropic inversion for orthorhombic media with P-waves by remapping classic radiation patterns into the wavenumber domain. We show analytically that dynamic linearized inversion (linearized reverse-time migration and full-waveform inversion) for orthorhombic anisotropy based on longitudinal waves is fundamentally sensitive to emph{six} parameters only and density, in which the perturbing effects can be represented by particular anisotropy configuration. Singular value decomposition of spectral sensitivities allows us to provide estimates of the number of parameters one could invert in specific acquisition settings, and with certain parametrization. In most acquisition scenarios, a hierarchical parameterization based on the $P$, and $S$-wave velocities, along with dimensionless parameters that describe the anisotropy as velocity ratio in the radial and azimuthal directions, minimizes the tradeoff and increases the sensitivity of the data to velocity compared to the standard (stiffness, density) parametrization. These features yield more robust velocity estimation, by focusing the inversion on a subset of invertible parameters.

  8. On the Resolution of Inversion for Orthorhombic Anisotropy

    KAUST Repository

    Kazei, Vladimir; Alkhalifah, Tariq Ali

    2017-01-01

    We investigate the resolution of elastic anisotropic inversion for orthorhombic media with P-waves by remapping classic radiation patterns into the wavenumber domain. We show analytically that dynamic linearized inversion (linearized reverse-time migration and full-waveform inversion) for orthorhombic anisotropy based on longitudinal waves is fundamentally sensitive to emph{six} parameters only and density, in which the perturbing effects can be represented by particular anisotropy configuration. Singular value decomposition of spectral sensitivities allows us to provide estimates of the number of parameters one could invert in specific acquisition settings, and with certain parametrization. In most acquisition scenarios, a hierarchical parameterization based on the $P$, and $S$-wave velocities, along with dimensionless parameters that describe the anisotropy as velocity ratio in the radial and azimuthal directions, minimizes the tradeoff and increases the sensitivity of the data to velocity compared to the standard (stiffness, density) parametrization. These features yield more robust velocity estimation, by focusing the inversion on a subset of invertible parameters.

  9. Engineering functional anisotropy in fibrocartilage neotissues.

    Science.gov (United States)

    MacBarb, Regina F; Chen, Alison L; Hu, Jerry C; Athanasiou, Kyriacos A

    2013-12-01

    The knee meniscus, intervertebral disc, and temporomandibular joint (TMJ) disc all possess complex geometric shapes and anisotropic matrix organization. While these characteristics are imperative for proper tissue function, they are seldom recapitulated following injury or disease. Thus, this study's objective was to engineer fibrocartilages that capture both gross and molecular structural features of native tissues. Self-assembled TMJ discs were selected as the model system, as the disc exhibits a unique biconcave shape and functional anisotropy. To drive anisotropy, 50:50 co-cultures of meniscus cells and articular chondrocytes were grown in biconcave, TMJ-shaped molds and treated with two exogenous stimuli: biomechanical (BM) stimulation via passive axial compression and bioactive agent (BA) stimulation via chondroitinase-ABC and transforming growth factor-β1. BM + BA synergistically increased Col/WW, Young's modulus, and ultimate tensile strength 5.8-fold, 14.7-fold, and 13.8-fold that of controls, respectively; it also promoted collagen fibril alignment akin to native tissue. Finite element analysis found BM stimulation to create direction-dependent strains within the neotissue, suggesting shape plays an essential role toward driving in vitro anisotropic neotissue development. Methods used in this study offer insight on the ability to achieve physiologic anisotropy in biomaterials through the strategic application of spatial, biomechanical, and biochemical cues. Copyright © 2013 Elsevier Ltd. All rights reserved.

  10. Swelling-induced optical anisotropy of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate): deswelling kinetics probed by quantitative Mueller matrix polarimetry.

    Science.gov (United States)

    Patil, Nagaraj; Soni, Jalpa; Ghosh, Nirmalya; De, Priyadarsi

    2012-11-29

    Thermodynamically favored polymer-water interactions below the lower critical solution temperature (LCST) caused swelling-induced optical anisotropy (linear retardance) of thermoresponsive hydrogels based on poly(2-(2-methoxyethoxy)ethyl methacrylate). This was exploited to study the macroscopic deswelling kinetics quantitatively by a generalized polarimetry analysis method, based on measurement of the Mueller matrix and its subsequent inverse analysis via the polar decomposition approach. The derived medium polarization parameters, namely, linear retardance (δ), diattenuation (d), and depolarization coefficient (Δ), of the hydrogels showed interesting differences between the gels prepared by conventional free radical polymerization (FRP) and reversible addition-fragmentation chain transfer polymerization (RAFT) and also between dry and swollen state. The effect of temperature, cross-linking density, and polymerization technique employed to synthesize hydrogel on deswelling kinetics was systematically studied via conventional gravimetry and corroborated further with the corresponding Mueller matrix derived quantitative polarimetry characteristics (δ, d, and Δ). The RAFT gels exhibited higher swelling ratio and swelling-induced optical anisotropy compared to FRP gels and also deswelled faster at 30 °C. On the contrary, at 45 °C, deswelling was significantly retarded for the RAFT gels due to formation of a skin layer, which was confirmed and quantified via the enhanced diattenuation and depolarization parameters.

  11. The origin of transverse anisotropy in axially symmetric single molecule magnets.

    Science.gov (United States)

    Barra, Anne-Laure; Caneschi, Andrea; Cornia, Andrea; Gatteschi, Dante; Gorini, Lapo; Heiniger, Leo-Philipp; Sessoli, Roberta; Sorace, Lorenzo

    2007-09-05

    Single-crystal high-frequency electron paramagnetic resonance spectroscopy has been employed on a truly axial single molecule magnet of formula [Mn(12)O(12)(tBu-CH(2)CO(2))16(CH(3)OH)4].CH(3)OH to investigate the origin of the transverse magnetic anisotropy, a crucial parameter that rules the quantum tunneling of the magnetization. The crystal structure, including the absolute structure of the crystal used for EPR experiments, has been fully determined and found to belong to I4 tetragonal space group. The angular dependence of the resonance fields in the crystallographic ab plane shows the presence of high-order tetragonal anisotropy and strong dependence on the MS sublevels with the second-highest-field transition being angular independent. This was rationalized including competing fourth- and sixth-order transverse parameters in a giant spin Hamiltonian which describes the magnetic anisotropy in the ground S = 10 spin state of the cluster. To establish the origin of these anisotropy terms, the experimental results have been further analyzed using a simplified multispin Hamiltonian which takes into account the exchange interactions and the single ion magnetic anisotropy of the Mn(III) centers. It has been possible to establish magnetostructural correlations with spin Hamiltonian parameters up to the sixth order. Transverse anisotropy in axial single molecule magnets was found to originate from the multispin nature of the system and from the breakdown of the strong exchange approximation. The tilting of the single-ion easy axes of magnetization with respect to the 4-fold molecular axis of the cluster plays the major role in determining the transverse anisotropy. Counterintuitively, the projections of the single ion easy axes on the ab plane correspond to hard axes of magnetization.

  12. Azimuthal anisotropy measurements by STAR

    Science.gov (United States)

    Yi, Li

    2014-06-01

    The recent study of centrality and transverse momentum (pT) dependence of inclusive charged hardron elliptic anisotropy (v2) at midrapidity (|η|<1.0) in Au+Au collision at √{sNN}=7.7,11.5,19.6,27, and 39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v2 is mainly due to the average pT increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v3) measurements highly depend on measurement methods; v3 is strongly dependent on Δη. The difference between two- and four-particle cumulants v2{2} and v2{4} for Au+Au and Cu+Cu collision at √{sNN}=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v2{2} and v2{4}.

  13. Determination of plastic anisotropy of zirconium alloys cladding

    International Nuclear Information System (INIS)

    Yamshchikov, N.V.; Prasolov, P.F.; Shestak, V.E.

    1991-01-01

    Method for determining plastic anisotropy of zurconium alloy cladding is described. It is based on consideration of material as a combination of transversal crystallites with known distribution over orientations. Such approach enables to describe cladding resistance to plastic deformation at arbitrary stressed state, using the results of texture investigations and uniaxial tests of samples, cut out of claddings along three directions. Plastic anisotropy of fuel element claddings 9.15 and 13.6 mm in diameter up to several percents of plastic deformation is shown

  14. X-ray absorption anisotropy for polychromatic illumination-Crystal views from inside

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Novikov, D.V.

    2009-01-01

    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms.

  15. Strain-induced recovery of electronic anisotropy in 90°-twisted bilayer phosphorene

    Science.gov (United States)

    Xie, Jiafeng; Luo, Qiangjun; Jia, Lei; Zhang, Z. Y.; Shi, H. G.; Yang, D. Z.; Si, M. S.

    2018-01-01

    It is well known that anisotropy determines the preferred transport direction of carriers. To manipulate the anisotropy is an exciting topic in two-dimensional materials, where the carriers are confined within individual layers. In this work, it is found that uniaxial strain can tune the electronic anisotropy of the 90°-twisted bilayer phosphorene. In this unique bilayer structure, the zigzag direction of one layer corresponds to the armchair one of the other layer and vice versa. Owing to this complementary structure, the directional (zigzag or armchair) deformation response to strain of one layer is opposite to that of the other layer, where the in-plane positive Poisson's ratio plays a key role. As a result, the doubly degenerate highest valence bands split, followed by a recovery of anisotropy. More interestingly, such an anisotropy, namely, the ratio of the effective mass along the Γ \\text- X direction to that along the Γ \\text- Y direction, reaches as high as 6 under a small strain of 1%, and keeps nearly unchanged up to a strain of 3%. In addition, high anisotropy only holds for hole carriers as the conduction band is insensitive to strain. These findings should shed new light on the design of semiconducting devices, where the hole acts as the transport carrier.

  16. Flow stress anisotropy in aluminium

    DEFF Research Database (Denmark)

    Juul Jensen, D.; Hansen, N.

    1990-01-01

    The plastic anisotropy of cold-rolled high purity aluminum (99.996%) and commercially pure aluminum (99.6%) has been investigated. Sample parameters were the initial grain size and the degree of plastic strain (ϵ < 3.00). Flow stresses (0.2% offset) were measured at room temperature by uniaxial t...

  17. Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models

    Energy Technology Data Exchange (ETDEWEB)

    Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)

    2014-04-10

    We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.

  18. Characteristics of trapped proton anisotropy at Space Station Freedom altitudes

    Science.gov (United States)

    Armstrong, T. W.; Colborn, B. L.; Watts, J. W.

    1990-01-01

    The ionizing radiation dose for spacecraft in low-Earth orbit (LEO) is produced mainly by protons trapped in the Earth's magnetic field. Current data bases describing this trapped radiation environment assume the protons to have an isotropic angular distribution, although the fluxes are actually highly anisotropic in LEO. The general nature of this directionality is understood theoretically and has been observed by several satellites. The anisotropy of the trapped proton exposure has not been an important practical consideration for most previous LEO missions because the random spacecraft orientation during passage through the radiation belt 'averages out' the anisotropy. Thus, in spite of the actual exposure anisotropy, cumulative radiation effects over many orbits can be predicted as if the environment were isotropic when the spacecraft orientation is variable during exposure. However, Space Station Freedom will be gravity gradient stabilized to reduce drag, and, due to this fixed orientation, the cumulative incident proton flux will remain anisotropic. The anisotropy could potentially influence several aspects of Space Station design and operation, such as the appropriate location for radiation sensitive components and experiments, location of workstations and sleeping quarters, and the design and placement of radiation monitors. Also, on-board mass could possible be utilized to counteract the anisotropy effects and reduce the dose exposure. Until recently only omnidirectional data bases for the trapped proton environment were available. However, a method to predict orbit-average, angular dependent ('vector') trapped proton flux spectra has been developed from the standard omnidirectional trapped proton data bases. This method was used to characterize the trapped proton anisotropy for the Space Station orbit (28.5 degree inclination, circular) in terms of its dependence on altitude, solar cycle modulation (solar minimum vs. solar maximum), shielding thickness

  19. Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonites

    Science.gov (United States)

    Adam, L.; Frehner, M.; Sauer, K. M.; Toy, V.; Guerin-Marthe, S.; Boulton, C. J.

    2017-12-01

    Reconciling experimental and static-dynamic numerical estimations of seismic anisotropy in Alpine Fault mylonitesLudmila Adam1, Marcel Frehner2, Katrina Sauer3, Virginia Toy3, Simon Guerin-Marthe4, Carolyn Boulton5(1) University of Auckland, New Zealand, (2) ETH Zurich, Switzerland, (3) University of Otago, New Zealand (4) Durham University, Earth Sciences, United Kingdom (5) Victoria University of Wellington, New Zealand Quartzo-feldspathic mylonites and schists are the main contributors to seismic wave anisotropy in the vicinity of the Alpine Fault (New Zealand). We must determine how the physical properties of rocks like these influence elastic wave anisotropy if we want to unravel both the reasons for heterogeneous seismic wave propagation, and interpret deformation processes in fault zones. To study such controls on velocity anisotropy we can: 1) experimentally measure elastic wave anisotropy on cores at in-situ conditions or 2) estimate wave velocities by static (effective medium averaging) or dynamic (finite element) modelling based on EBSD data or photomicrographs. Here we compare all three approaches in study of schist and mylonite samples from the Alpine Fault. Volumetric proportions of intrinsically anisotropic micas in cleavage domains and comparatively isotropic quartz+feldspar in microlithons commonly vary significantly within one sample. Our analysis examines the effects of these phases and their arrangement, and further addresses how heterogeneity influences elastic wave anisotropy. We compare P-wave seismic anisotropy estimates based on millimetres-scale ultrasonic waves under in situ conditions, with simulations that account for micrometre-scale variations in elastic properties of constitutent minerals with the MTEX toolbox and finite-element wave propagation on EBSD images. We observe that the sorts of variations in the distribution of micas and quartz+feldspar within any one of our real core samples can change the elastic wave anisotropy by 10

  20. Seismic anisotropies of the Songshugou peridotites (Qinling orogen, central China) and their seismic implications

    Science.gov (United States)

    Cao, Yi; Jung, Haemyeong; Song, Shuguang

    2018-01-01

    Though extensively studied, the roles of olivine crystal preferred orientations (CPOs or fabrics) in affecting the seismic anisotropies in the Earth's upper mantle are rather complicated and still not fully known. In this study, we attempted to address this issue by analyzing the seismic anisotropies [e.g., P-wave anisotropy (AVp), S-wave polarization anisotropy (AVs), radial anisotropy (ξ), and Rayleigh wave anisotropy (G)] of the Songshugou peridotites (dunite dominated) in the Qinling orogen in central China, based on our previously reported olivine CPOs. The seismic anisotropy patterns of olivine aggregates in our studied samples are well consistent with the prediction for their olivine CPO types; and the magnitude of seismic anisotropies shows a striking positive correlation with equilibrium pressure and temperature (P-T) conditions. Significant reductions of seismic anisotropies (AVp, max. AVs, and G) are observed in porphyroclastic dunite compared to coarse- and fine-grained dunites, as the results of olivine CPO transition (from A-/D-type in coarse-grained dunite, through AG-type-like in porphyroclastic dunite, to B-type-like in fine-grained dunite) and strength variation (weakening: A-/D-type → AG-type-like; strengthening: AG-type-like → B-type-like) during dynamic recrystallization. The transition of olivine CPOs from A-/D-type to B-/AG-type-like in the forearc mantle may weaken the seismic anisotropies and deviate the fast velocity direction and the fast S-wave polarization direction from trench-perpendicular to trench-oblique direction with the cooling and aging of forearc mantle. Depending on the size and distribution of the peridotite body such as the Songshugou peridotites, B- and AG-type-like olivine CPOs can be an additional (despite minor) local contributor to the orogen-parallel fast velocity direction and fast shear-wave polarization direction in the orogenic crust such as in the Songshugou area in Qinling orogen.

  1. Solar energetic particle anisotropies and insights into particle transport

    Energy Technology Data Exchange (ETDEWEB)

    Leske, R. A., E-mail: ral@srl.caltech.edu; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C. [California Institute of Technology, Pasadena, CA 91125 (United States); Wiedenbeck, M. E. [Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109 (United States); Christian, E. R.; Rosenvinge, T. T. von [NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2016-03-25

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  2. Solar energetic particle anisotropies and insights into particle transport

    Science.gov (United States)

    Leske, R. A.; Cummings, A. C.; Cohen, C. M. S.; Mewaldt, R. A.; Labrador, A. W.; Stone, E. C.; Wiedenbeck, M. E.; Christian, E. R.; Rosenvinge, T. T. von

    2016-03-01

    As solar energetic particles (SEPs) travel through interplanetary space, their pitch-angle distributions are shaped by the competing effects of magnetic focusing and scattering. Measurements of SEP anisotropies can therefore reveal information about interplanetary conditions such as magnetic field strength, topology, and turbulence levels at remote locations from the observer. Onboard each of the two STEREO spacecraft, the Low Energy Telescope (LET) measures pitch-angle distributions for protons and heavier ions up to iron at energies of about 2-12 MeV/nucleon. Anisotropies observed using LET include bidirectional flows within interplanetary coronal mass ejections, sunward-flowing particles when STEREO was magnetically connected to the back side of a shock, and loss-cone distributions in which particles with large pitch angles underwent magnetic mirroring at an interplanetary field enhancement that was too weak to reflect particles with the smallest pitch angles. Unusual oscillations in the width of a beamed distribution at the onset of the 23 July 2012 SEP event were also observed and remain puzzling. We report LET anisotropy observations at both STEREO spacecraft and discuss their implications for SEP transport, focusing exclusively on the extreme event of 23 July 2012 in which a large variety of anisotropies were present at various times during the event.

  3. Influence of Elastic Anisotropy on Extended Dislocation Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, B

    1971-09-15

    The interaction forces between the partial dislocations forming an extended dislocation node are calculated using elasticity theory for anisotropic media.s are carried out for nodes of screw, edge and mixed character in Ag, which has an anisotropy ratio A equal to 3, and in a hypothetic material with A = 1 and the same shear modulus as Ag. The results are compared with three previous theories using isotropic elasticity theory. As expected, in Ag the influence of anisotropy is of the same order as the uncertainty due to the dislocation core energy

  4. Strong crustal seismic anisotropy in the Kalahari Craton based on Receiver Functions

    DEFF Research Database (Denmark)

    Thybo, Hans; Soliman, Mohammad Youssof Ahmad; Artemieva, Irina

    2015-01-01

    Earlier seismic studies of the Kalahari Craton in southern Africa infer deformation of upper mantle by flow with fast direction of seismic anisotropy being parallel to present plate motion, and/or report anisotropy frozen into the lithospheric mantle. We present evidence for very strong seismic...... is uniform within tectonic units and parallel to orogenic strike in the Limpopo and Cape fold belts. It is further parallel to the strike of major dyke swarms which indicates that a large part of the observed anisotropy is controlled by lithosphere fabrics and macroscopic effects. The directions of the fast...... that the crust and lithospheric mantle may have been coupled since cratonisation. If so, the apparent match between mantle anisotropy and the present plate motion is coincidental....

  5. Plasma pressure and anisotropy inferred from the Tsyganenkomagnetic field model

    Directory of Open Access Journals (Sweden)

    F. Cao

    Full Text Available A numerical procedure has been developed to deduce the plasma pressure and anisotropy from the Tsyganenko magnetic field model. The Tsyganenko empirical field model, which is based on vast satellite field data, provides a realistic description of magnetic field configuration in the magnetosphere. When the force balance under the static condition is assumed, the electromagnetic J×B force from the Tsyganenko field model can be used to infer the plasma pressure and anisotropy distributions consistent with the field model. It is found that the J×B force obtained from the Tsyganenko field model is not curl-free. The curl-free part of the J×B force in an empirical field model can be balanced by the gradient of the isotropic pressure, while the nonzero curl of the J×B force can only be associated with the pressure anisotropy. The plasma pressure and anisotropy in the near-Earth plasma sheet are numerically calculated to obtain a static equilibrium consistent with the Tsyganenko field model both in the noon-midnight meridian and in the equatorial plane. The plasma pressure distribution deduced from the Tsyganenko 1989 field model is highly anisotropic and shows this feature early in the substorm growth phase. The pressure anisotropy parameter αP, defined as αP=1-PVertP, is typically ~0.3 at x ≈ -4.5RE and gradually decreases to a small negative value with an increasing tailward distance. The pressure anisotropy from the Tsyganenko 1989 model accounts for 50% of the cross-tail current at maximum and only in a highly localized region near xsim-10RE. In comparison, the plasma pressure anisotropy inferred from the Tsyganenko 1987 model is much smaller. We also find that the boundary

  6. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul

    2012-11-04

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  7. Anisotropy of phase transformations in crystallization of polar compounds

    Energy Technology Data Exchange (ETDEWEB)

    Orlov, A M; Belashchenko, D K; Derikova, S A [Krasnoyarskij Inst. Tsvetnykh Metallov (USSR)

    1977-03-01

    Migration of molten inclusions in polar compounds of the type of A/sup 3/B/sup 5/ in the range of 750-950 deg C is characterized by clearly defined anisotropy. The values of the melting-crystallization rate constant for n-type InAs and GaAs conductivity are estimated. The anisotropy of the properties leaves its imprint not only on the drift velocity, but also on the form of the displaced inclusions.

  8. Anisotropy signature in extended images from reverse-time migration

    KAUST Repository

    Sava, Paul; Alkhalifah, Tariq Ali

    2012-01-01

    Reverse-time migration can accurately image complex geologic structures in anisotropic media. Extended images at selected locations in the earth, i.e. at common-image-point gathers (CIPs), carry enough information to characterize the angle-dependent illumination and to provide measurements for migration velocity analysis. Furthermore, inaccurate anisotropy leaves a distinctive signature in CIPs, which can be used to evaluate anisotropy through techniques similar to the ones used in conventional wavefield tomography.

  9. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    Science.gov (United States)

    Tournus, Florent; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-12-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner-Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  10. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-01

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation.

  11. Sizing protein-templated gold nanoclusters by time resolved fluorescence anisotropy decay measurements.

    Science.gov (United States)

    Soleilhac, Antonin; Bertorelle, Franck; Antoine, Rodolphe

    2018-03-15

    Protein-templated gold nanoclusters (AuNCs) are very attractive due to their unique fluorescence properties. A major problem however may arise due to protein structure changes upon the nucleation of an AuNC within the protein for any future use as in vivo probes, for instance. In this work, we propose a simple and reliable fluorescence based technique measuring the hydrodynamic size of protein-templated gold nanoclusters. This technique uses the relation between the time resolved fluorescence anisotropy decay and the hydrodynamic volume, through the rotational correlation time. We determine the molecular size of protein-directed AuNCs, with protein templates of increasing sizes, e.g. insulin, lysozyme, and bovine serum albumin (BSA). The comparison of sizes obtained by other techniques (e.g. dynamic light scattering and small-angle X-ray scattering) between bare and gold clusters containing proteins allows us to address the volume changes induced either by conformational changes (for BSA) or the formation of protein dimers (for insulin and lysozyme) during cluster formation and incorporation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    International Nuclear Information System (INIS)

    Tournus, Florent; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-01-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner–Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  13. Anisotropy evolution of nanoparticles under annealing: Benefits of isothermal remanent magnetization simulation

    Energy Technology Data Exchange (ETDEWEB)

    Tournus, Florent, E-mail: florent.tournus@univ-lyon1.fr; Tamion, Alexandre; Hillion, Arnaud; Dupuis, Véronique

    2016-12-01

    Isothermal remanent magnetization (IRM) combined with Direct current demagnetization (DcD) are powerful tools to qualitatively study the interactions (through the Δm parameter) between magnetic particles in a granular media. For magnetic nanoparticles diluted in a matrix, it is possible to reach a regime where Δm is equal to zero, i.e. where interparticle interactions are negligible: one can then infer the intrinsic properties of nanoparticles through measurements on an assembly, which are analyzed by a combined fit procedure (based on the Stoner–Wohlfarth and Néel models). Here we illustrate the benefits of a quantitative analysis of IRM curves, for Co nanoparticles embedded in amorphous carbon (before and after annealing): while a large anisotropy increase may have been deduced from the other measurements, IRM curves provide an improved characterization of the nanomagnets intrinsic properties, revealing that it is in fact not the case. This shows that IRM curves, which only probe the irreversible switching of nanomagnets, are complementary to widely used low field susceptibility curves.

  14. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals

    Science.gov (United States)

    Jin, Jin-Ling; Zhang, Xiang-Qun; Li, Guo-Ke; Cheng, Zhao-Hua; Zheng, Lin; Lu, Yi

    2011-05-01

    The magnetocaloric effect (MCE) in TbMnO3 single crystals was investigated by isothermal magnetization curves for the ab plane at low temperatures. Large magnetic entropy change, ΔSM = -18.0 J/kg K, and the refrigerant capacity, RC = 390.7 J/kg, are achieved near the ordering temperature of Tb3+ moment (TNTb) under 70 kOe along the a axis. Furthermore, the TbMnO3 single crystal exhibits a giant MCE anisotropy. The difference of ΔSMand RC between the a and b axes is field and temperature dependent, which reaches maximum values of 11.4 J/kg K and 304.1 J/kg, respectively. By taking magnetocrystalline anisotropy into account, the rotating ΔSMwithin the ab plane can be well simulated, indicating that the anisotropy of ΔSMis directly contributed from the magnetocrystalline anisotropy. Our finding for giant MCE anisotropy in TbMnO3 single crystals explores the possibility of using this material for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  15. Ferrimagnetic Properties of Bond Dilution Mixed Blume-Capel Model with Random Single-Ion Anisotropy

    International Nuclear Information System (INIS)

    Liu Lei; Yan Shilei

    2005-01-01

    We study the ferrimagnetic properties of spin 1/2 and spin-1 systems by means of the effective field theory. The system is considered in the framework of bond dilution mixed Blume-Capel model (BCM) with random single-ion anisotropy. The investigation of phase diagrams and magnetization curves indicates the existence of induced magnetic ordering and single or multi-compensation points. Special emphasis is placed on the influence of bond dilution and random single-ion anisotropy on normal or induced magnetic ordering states and single or multi-compensation points. Normal magnetic ordering states take on new phase diagrams with increasing randomness (bond and anisotropy), while anisotropy induced magnetic ordering states are always occurrence no matter whether concentration of anisotropy is large or small. Existence and disappearance of compensation points rely strongly on bond dilution and random single-ion anisotropy. Some results have not been revealed in previous papers and predicted by Neel theory of ferrimagnetism.

  16. The Effects of Plastic Anisotropy in Warm and Hot Forming of Magnesium Sheet Materials

    Science.gov (United States)

    Taleff, Eric M.; Antoniswamy, Aravindha R.; Carpenter, Alexander J.; Yavuz, Emre

    Mg alloy sheet materials often exhibit plastic anisotropy at room temperature as a result of the limited slip systems available in the HCP lattice combined with a commonly strong basal texture. Less well studied is plastic anisotropy developed at the elevated temperatures associated with warm and hot forming. At these elevated temperatures, particularly above 200°C, the activation of additional slip systems significantly increases ductility. However, plastic anisotropy is also induced at elevated temperatures by a strong crystallographic texture, and it can require an accounting in material constitutive models to achieve accurate forming simulations. The type and degree of anisotropy under these conditions depend on both texture and deformation mechanism. The current understanding of plastic anisotropy in Mg AZ31B and ZEK100 sheet materials at elevated temperatures is reviewed in this article. The recent construction of material forming cases is also reviewed with strategies to account for plastic anisotropy in forming simulations.

  17. Variation in the strain anisotropy of Zircaloy with temperature and strain

    International Nuclear Information System (INIS)

    Hindle, E.D.; Worswick, D.

    1984-01-01

    The strong crystallographic texture which is developed during the fabrication of zirconium-based alloys causes pronounced anisotropy in their mechanical properties, particularly deformation. The tendency for circular-section tension specimens with a high concentration of basal poles in one direction to become elliptical when deformed in tension has been used in this study to provide quantitative data on the effects of both strain and temperature on strain anisotropy. Tension tests were carried out over a temperature range of 293 to 1193 K on specimens machined from Zircaloy-2 plate. The strain anisotropy was found to increase markedly at temperatures over 923 K, reaching a maximum in the region of 1070 K. The strain anisotropy increased with increasing strain in this temperature region. The study was extended to Zircaloy-4 pressurized-water reactor fuel cladding by carrying out tube swelling tests and evaluating the axial deformation produced. Although scatter in the test results was higher than that exhibited in the tension tests, the general trend in the data was similar. The effects of the strain anisotropy observed are discussed in relation to the effects of temperature on the ductility of Zircaloy fuel cladding tubes during postulated largebreak loss-of-coolant accidents

  18. Temperature dependence of magnetic anisotropies in ultrathin Fe film on vicinal Si(111)

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yong-Sheng; He, Wei; Ye, Jun; Hu, Bo; Tang, Jin; Zhang, Xiang-Qun [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Cheng, Zhao-Hua, E-mail: zhcheng@aphy.iphy.ac.cn [State Key Laboratory of Magnetism and Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100190 (China)

    2017-05-01

    The temperature dependence of magnetic anisotropy of ultrathin Fe film with different thickness epitaxially grown on vicinal Si(111) substrate has been quantitatively investigated using the anisotropic magnetoresistance(AMR) measurements. Due to the effect of the vicinal substrate, the magnetic anisotropy is the superposition of a four-fold, a two-fold and a weakly six-fold contribution. It is found that the temperature dependence of the first-order magnetocrystalline anisotropies coefficient follows power laws of the reduced magnetization m(T)(=M(T)/M(0)) being consistent with the Callen and Callen's theory. However the temperature dependence of uniaxial magnetic anisotropy (UMA) shows novel behavior that decreases roughly as a function of temperature with different power law for samples with different thickness. We also found that the six-fold magnetocrystalline anisotropy is almost invariable over a wide temperature range. Possible mechanisms leading to the different exponents are discussed.

  19. Magnetic anisotropy and magnetostriction in nanocrystalline Fe–Al alloys obtained by melt spinning technique

    Energy Technology Data Exchange (ETDEWEB)

    García, J.A.; Carrizo, J. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Elbaile, L., E-mail: elbaile@uniovi.es [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Lago-Cachón, D.; Rivas, M. [Depto. de Física de la Universidad de Oviedo, c/Calvo Sotelo s/n, 33007 Oviedo (Spain); Castrillo, D. [Depto. de Ciencias de los Materiales de la Universidad de Oviedo, c/Independencia, 33004 Oviedo (Spain); Pierna, A.R. [Depto. de Ingeniería Química y Medio Ambiente, EUPSS, UPV/EHU, San Sebastián (Spain)

    2014-12-15

    A study about the magnetic anisotropy and magnetostriction in ribbons of composition Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} obtained by the melt spinning technique is presented. The hysteresis loops indicate that the easy magnetization direction lies in both cases on the plane of the ribbon. Torque magnetometry measurements show that the in-plane magnetic anisotropy constant results 10100 J m{sup −3} and 490 J m{sup −3} for the Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} respectively. After a thermal treatment of 2 h at 473 K to remove the residual stresses, the in-plane magnetic anisotropy constants falls down to 2500 J m{sup −3} in the first composition and remains the same in the second one, while the easy direction remains the same. Measurements of the magnetostriction and the residual stresses of both ribbons allow us to explain the above mentioned results about the magnetic anisotropy and to conclude that the residual stresses via magnetostriction are the main source of magnetic anisotropy in the case of Fe{sub 81}Al{sub 19} ribbon but they do not influence this property in the ribbon of composition Fe{sub 70}Al{sub 30}. - Highlights: • The origin of magnetic anisotropy of Fe{sub 81}Al{sub 19} and Fe{sub 70}Al{sub 30} ribbons has been studied. • The magnetic anisotropy lies in the plane of the ribbons. • A huge difference in magnetic anisotropy between two ribbons has been observed. • Magnetostriction and residual stresses explain the magnetic anisotropy in Fe{sub 81}Al{sub 19} ribbon.

  20. Effect of temperature on anisotropy in forming simulations of aluminum alloys

    NARCIS (Netherlands)

    Kurukuri, S.; Miroux, A.; Ghosh, M.; van den Boogaard, Antonius H.

    2009-01-01

    A combined experimental and numerical study of the effect of temperature on anisotropy in warm forming of AA 6016-T4 aluminum was performed. The anisotropy coefficients of the Vegter yield function were calculated from crystal plasticity models with an adequate combination of extra slip systems.

  1. Effect of tilted anisotropy on spin states of strongly anisotropic 2D film

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.

    2012-01-01

    The spin states of a 2D film with a strong easy-plane anisotropy and single-ion tilted anisotropy, the axis of which forms a certain angle with the normal to the film plane are investigated. In this system, an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase can be formed; the realization of these states noticeably depends on the degree of tilted anisotropy.

  2. Small-scale microwave background anisotropies implied by large-scale data

    Science.gov (United States)

    Kashlinsky, A.

    1993-01-01

    In the absence of reheating microwave background radiation (MBR) anisotropies on arcminute scales depend uniquely on the amplitude and the coherence length of the primordial density fluctuations (PDFs). These can be determined from the recent data on galaxy correlations, xi(r), on linear scales (APM survey). We develop here expressions for the MBR angular correlation function, C(theta), on arcminute scales in terms of the power spectrum of PDFs and demonstrate their accuracy by comparing with detailed calculations of MBR anisotropies. We then show how to evaluate C(theta) directly in terms of the observed xi(r) and show that the APM data give information on the amplitude, C(O), and the coherence angle of MBR anisotropies on small scales.

  3. Magnetic anisotropy of nonmodulated Ni-Mn-Ga martensite revisited

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Straka, L.; Novák, Václav; Fähler, S.

    2010-01-01

    Roč. 107, č. 9 (2010), 09A914/1-09A914/3 ISSN 0021-8979 Grant - others:AV ČR(CZ) M100100913 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetic anisotropy of non-modulated martensite * temperature dependence of anisotropy * Ni-Mn-Ga * adaptive martensite Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.064, year: 2010 http://jap.aip.org/resource/1/japiau/v107/i9/p09A914_s1

  4. Flow in the Deep Mantle from Seisimc Anisotropy: Progress and Prospects

    Science.gov (United States)

    Long, M. D.

    2017-12-01

    Observations of seismic anisotropy, or the directional dependence of seismic wavespeeds, provide one some of the most direct constraints on the pattern of flow in the Earth's mantle. In particular, as our understanding of crystallographic preferred orientation (CPO) of olivine aggregates under a range of deformation conditions has improved, our ability to exploit observations of upper mantle anisotropy has led to fundamental discoveries about the patterns of flow in the upper mantle and the drivers of that flow. It has been a challenge, however, to develop a similar framework for understanding flow in the deep mantle (transition zone, uppermost lower mantle, and lowermost mantle), even though there is convincing observational evidence for seismic anisotropy at these depths. Recent progress on the observational front has allowed for an increasingly detailed view of mid-mantle anisotropy (transition zone and uppermost lower mantle), particularly in subduction systems, which may eventually lead to a better understanding of mid-mantle deformation and the dynamics of slab interaction with the surrounding mid-mantle. New approaches to the observation and modeling of lowermost mantle anisotropy, in combination with constraints from mineral physics, are progressing towards interpretive frameworks that allow for the discrimination of different mantle flow geometries in different regions of D". In particular, observational strategies that involve the use of multiple types of body wave phases sampled over a range of propagation azimuths enable detailed forward modeling approaches that can discriminate between different mechanisms for D" anisotropy (e.g., CPO of post-perovskite, bridgmanite, or ferropericlase, or shape preferred orientation of partial melt) and identify plausible anisotropic orientations. We have recently begun to move towards a full waveform modeling approach in this work, which allows for a more accurate simulation for seismic wave propagation. Ongoing

  5. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    Energy Technology Data Exchange (ETDEWEB)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-08-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction.

  6. Understanding the magnetic anisotropy in Fe-Si amorphous alloys

    International Nuclear Information System (INIS)

    Diaz, J.; Hamdan, N.M.; Jalil, P.; Hussain, Z.; Valvidares, S.M.; Alameda, J.M.

    2002-01-01

    The origin of the magnetic anisotropy in a very disordered Fe-Si alloy has been investigated. The alloy containing 40 percent at. Si was prepared in the form of a thin film in a DC magnetron sputtering chamber. Structural disorder was obtained from Extended X-ray Absorption Fine Structure spectroscopy. The uniformity and lack of inhomogeneities at a microscopic level was checked by measuring their transverse magnetic susceptibility and hysteresis loops. The orbital component of the magnetic moment was measured by X-ray Magnetic Circular Dichroism spectroscopy. The orbital moment was extraordinary high, 0.4mB. Such a high value contrasted with the relatively small uniaxial anisotropy energy of the thin film (2kJ/m3). This suggests that the cause of the magnetic anisotropy in this alloy was a small degree of correlation in the orientation of the local orbital moments along a preferential direction

  7. Search for positron anisotropies in cosmic rays with AMS

    Energy Technology Data Exchange (ETDEWEB)

    Machate, Fabian [1. Physikalisches Institut B, RWTH Aachen University (Germany)

    2016-07-01

    The Alpha Magnetic Spectrometer (AMS-02) on the International Space Station has observed a significant excess of cosmic ray positrons over the background expected from secondary production at energies above 10 GeV. Nearby pulsars and annihilating dark matter particles as a primary source of electrons and positrons have been discussed as an explanation. A possible way of distinguishing between pulsar and dark matter origin is the measurement of dipole anisotropies in the positron flux or the positron to electron ratio. Any anisotropy will be reduced by diffusion in galactic magnetic fields to below the percent level. AMS-02 is the leading space-based experiment for cosmic ray detection and well suited for this search. A new analysis procedure for anisotropies using an event sample with large acceptance is presented. It relies on the ability of the Transition Radiation Detector (TRD) to separate positrons from the proton background.

  8. Pressure-anisotropy-induced nonlinearities in the kinetic magnetorotational instability

    Science.gov (United States)

    Squire, J.; Quataert, E.; Kunz, M. W.

    2017-12-01

    In collisionless and weakly collisional plasmas, such as hot accretion flows onto compact objects, the magnetorotational instability (MRI) can differ significantly from the standard (collisional) MRI. In particular, pressure anisotropy with respect to the local magnetic-field direction can both change the linear MRI dispersion relation and cause nonlinear modifications to the mode structure and growth rate, even when the field and flow perturbations are very small. This work studies these pressure-anisotropy-induced nonlinearities in the weakly nonlinear, high-ion-beta regime, before the MRI saturates into strong turbulence. Our goal is to better understand how the saturation of the MRI in a low-collisionality plasma might differ from that in the collisional regime. We focus on two key effects: (i) the direct impact of self-induced pressure-anisotropy nonlinearities on the evolution of an MRI mode, and (ii) the influence of pressure anisotropy on the `parasitic instabilities' that are suspected to cause the mode to break up into turbulence. Our main conclusions are: (i) The mirror instability regulates the pressure anisotropy in such a way that the linear MRI in a collisionless plasma is an approximate nonlinear solution once the mode amplitude becomes larger than the background field (just as in magnetohyrodynamics). This implies that differences between the collisionless and collisional MRI become unimportant at large amplitudes. (ii) The break up of large-amplitude MRI modes into turbulence via parasitic instabilities is similar in collisionless and collisional plasmas. Together, these conclusions suggest that the route to magnetorotational turbulence in a collisionless plasma may well be similar to that in a collisional plasma, as suggested by recent kinetic simulations. As a supplement to these findings, we offer guidance for the design of future kinetic simulations of magnetorotational turbulence.

  9. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    International Nuclear Information System (INIS)

    Blasi, Pasquale; Amato, Elena

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ≤ Z ≤ 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)∝(E/Z) δ , with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as δ A ∝D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10 5 GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)∝E 1/3 . Faster diffusion, for instance with δ = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in the energy

  10. On the molecular anisotropy of liquid crystalline and flexible polymer systems

    Science.gov (United States)

    van Horn, Brett L.

    The demand for products of ever increasing quality or for novel applications has required increasing attention to or manipulation of the anisotropy of manufactured parts. Oriented plastics are used everywhere from recording film to automotive body parts to monofilament fishing line. Liquid crystals are also used in a wide array of applications including their dominance in the flat panel display industry, color changing temperature sensors, and woven bullet resistant fabrics. Anisotropy can also be detrimental, for instance sometimes leading to poor fracture resistance or low yield stress along specific directions. Controlling and measuring anisotropy of materials has become increasingly important, but doing so is wrought with challenges. Measuring physical properties of isotropic liquids, such as water or most oils can be done in a straightforward fashion. Their viscosities and densities, for example, have unique values under a given set of conditions. With anisotropic fluids, like liquid crystals, the viscosity, for instance, will not only depend upon temperature, concentration, etc. but also upon the direction of observation, degree of anisotropy, source of anisotropy, and so forth. This added degree of complexity complicates our ability to define the state of the material at which the measurements are made and generally necessitates the use of more sophisticated measurement strategies or techniques. This work presents techniques and tools for investigating anisotropy in liquid crystalline and stretched polymeric systems. Included are the use of conoscopy for the determination of birefringence and orientation of nematic liquid crystals and stretched polymers, the shear response of flow aligning nematic liquid crystal monodomains, and the design of a novel linear rheometer that allows for in situ optical or scattering investigations.

  11. Azimuthal anisotropy measurements by STAR

    Energy Technology Data Exchange (ETDEWEB)

    Yi, Li

    2014-06-15

    The recent study of centrality and transverse momentum (p{sub T}) dependence of inclusive charged hardron elliptic anisotropy (v{sub 2}) at midrapidity (|η|<1.0) in Au+Au collision at √(s{sub NN})=7.7,11.5,19.6,27, and39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v{sub 2} is mainly due to the average p{sub T} increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v{sub 3}) measurements highly depend on measurement methods; v{sub 3} is strongly dependent on Δη. The difference between two- and four-particle cumulants v{sub 2}{2} and v{sub 2}{4} for Au+Au and Cu+Cu collision at √(s{sub NN})=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v{sub 2}{2} and v{sub 2}{4}.

  12. Azimuthal anisotropy measurements by STAR

    International Nuclear Information System (INIS)

    Yi, Li

    2014-01-01

    The recent study of centrality and transverse momentum (p T ) dependence of inclusive charged hardron elliptic anisotropy (v 2 ) at midrapidity (|η|<1.0) in Au+Au collision at √(s NN )=7.7,11.5,19.6,27, and39 GeV in STAR Beam Energy Scan program is presented. We show that the observed increase of inclusive v 2 is mainly due to the average p T increase with energy. In Au+Au 200 GeV collisions, the triangular anisotropy (v 3 ) measurements highly depend on measurement methods; v 3 is strongly dependent on Δη. The difference between two- and four-particle cumulants v 2 {2} and v 2 {4} for Au+Au and Cu+Cu collision at √(s NN )=62.4 and 200 GeV is used to explore flow fluctuations. Furthermore, by exploiting the symmetry of average flow in pseudorapidity η about midrapidity, the Δη-dependent and independent components are separated using v 2 {2} and v 2 {4}

  13. Diffusion tensor MR microscopy of tissues with low diffusional anisotropy.

    Science.gov (United States)

    Bajd, Franci; Mattea, Carlos; Stapf, Siegfried; Sersa, Igor

    2016-06-01

    Diffusion tensor imaging exploits preferential diffusional motion of water molecules residing within tissue compartments for assessment of tissue structural anisotropy. However, instrumentation and post-processing errors play an important role in determination of diffusion tensor elements. In the study, several experimental factors affecting accuracy of diffusion tensor determination were analyzed. Effects of signal-to-noise ratio and configuration of the applied diffusion-sensitizing gradients on fractional anisotropy bias were analyzed by means of numerical simulations. In addition, diffusion tensor magnetic resonance microscopy experiments were performed on a tap water phantom and bovine articular cartilage-on-bone samples to verify the simulation results. In both, the simulations and the experiments, the multivariate linear regression of the diffusion-tensor analysis yielded overestimated fractional anisotropy with low SNRs and with low numbers of applied diffusion-sensitizing gradients. An increase of the apparent fractional anisotropy due to unfavorable experimental conditions can be overcome by applying a larger number of diffusion sensitizing gradients with small values of the condition number of the transformation matrix. This is in particular relevant in magnetic resonance microscopy, where imaging gradients are high and the signal-to-noise ratio is low.

  14. THE LARGE-SCALE COSMIC-RAY ANISOTROPY AS OBSERVED WITH MILAGRO

    International Nuclear Information System (INIS)

    Abdo, A. A.; Allen, B. T.; Chen, C.; Aune, T.; Berley, D.; Goodman, J. A.; Hopper, B.; Lansdell, C. P.; Casanova, S.; Dingus, B. L.; Hoffman, C. M.; Huentemeyer, P. H.; Ellsworth, R. W.; Fleysher, L.; Fleysher, R.; Kolterman, B. E.; Mincer, A. I.; Gonzalez, M. M.; Linnemann, J. T.; McEnery, J. E.

    2009-01-01

    Results are presented of a harmonic analysis of the large-scale cosmic-ray (CR) anisotropy as observed by the Milagro observatory. We show a two-dimensional display of the sidereal anisotropy projections in right ascension (R.A.) generated by the fitting of three harmonics to 18 separate declination bands. The Milagro observatory is a water Cherenkov detector located in the Jemez mountains near Los Alamos, New Mexico. With a high duty cycle and large field of view, Milagro is an excellent instrument for measuring this anisotropy with high sensitivity at TeV energies. The analysis is conducted using a seven-year data sample consisting of more than 95 billion events, the largest such data set in existence. We observe an anisotropy with a magnitude around 0.1% for CRs with a median energy of 6 TeV. The dominant feature is a deficit region of depth (2.49 ± 0.02 stat. ± 0.09 sys.) x10 -3 in the direction of the Galactic north pole centered at 189 deg R.A. We observe a steady increase in the magnitude of the signal over seven years.

  15. Precision ESR Measurements of Transverse Anisotropy in the Single-molecule Magnet Ni4

    Science.gov (United States)

    Friedman, Jonathan; Collett, Charles; Allao Cassaro, Rafael

    We present a method to precisely determine the transverse anisotropy in a single-molecule magnet (SMM) through electron-spin resonance measurements of a tunnel splitting that arises from the anisotropy via first-order perturbation theory. We demonstrate the technique using the SMM Ni4 diluted via co-crystallization in a diamagnetic isostructural analogue. At 5% dilution, we find markedly narrower resonance peaks than are observed in undiluted samples. Ni4 has a zero-field tunnel splitting of 4 GHz, and we measure that transition at several nearby frequencies using custom loop-gap resonators, allowing a precise determination of the tunnel splitting. Because the transition under investigation arises due to a first-order perturbation from the transverse anisotropy, and lies at zero field, we can relate the splitting to the transverse anisotropy independent of any other Hamiltonian parameters. This method can be applied to other SMMs with zero-field tunnel splittings arising from first-order transverse anisotropy perturbations. NSF Grant No. DMR-1310135.

  16. Energy-based ferromagnetic material model with magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Steentjes, Simon, E-mail: simon.steentjes@iem.rwth-aachen.de [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany); Henrotte, François, E-mail: francois.henrotte@uclouvain.be [Institute of Mechanics Materials and Civil Engineering - UCL, Av. G. Lemaître 4-6, B-1348 Louvain-la-Neuve (Belgium); Hameyer, Kay [Institute of Electrical Machines - RWTH Aachen University, Schinkelstr. 4, D-52056 Aachen (Germany)

    2017-03-01

    Non-oriented soft magnetic materials are commonly assumed to be magnetically isotropic. However, due to the rolling process a preferred direction exists along the rolling direction. This uniaxial magnetic anisotropy, and the related magnetostriction effect, are critical to the accurate calculation of iron losses and magnetic forces in rotating electrical machines. This paper proposes an extension of an isotropic energy-based vector hysteresis model to account for these two effects. - Highlights: • Energy-based vector hysteresis model with magnetic anisotropy. • Two-scale model to account for pinning field distribution. • Pinning force and reluctivity are extended to anisotropic case.

  17. Positive temperature coefficient of magnetic anisotropy in polyvinylidene fluoride (PVDF)-based magnetic composites

    OpenAIRE

    Liu, Yiwei; Wang, Baomin; Zhan, Qingfeng; Tang, Zhenhua; Yang, Huali; Liu, Gang; Zuo, Zhenghu; Zhang, Xiaoshan; Xie, Yali; Zhu, Xiaojian; Chen, Bin; Wang, Junling; Li, Run-Wei

    2014-01-01

    The magnetic anisotropy is decreased with increasing temperature in normal magnetic materials, which is harmful to the thermal stability of magnetic devices. Here, we report the realization of positive temperature coefficient of magnetic anisotropy in a novel composite combining β-phase polyvinylidene fluoride (PVDF) with magnetostrictive materials (magnetostrictive film/PVDF bilayer structure). We ascribe the enhanced magnetic anisotropy of the magnetic film at elevated temperature to the st...

  18. Phase states of a 2D easy-plane ferromagnet with strong inclined anisotropy

    International Nuclear Information System (INIS)

    Fridman, Yu. A.; Klevets, F. N.; Gorelikov, G. A.; Meleshko, A. G.

    2012-01-01

    We investigate the spin states of a 2D film exhibiting easy-axis anisotropy and a strong single-ion inclined anisotropy whose axis forms a certain angle with the normal to the film surface. Such a system may have an angular ferromagnetic phase, a spatially inhomogeneous state, and a quadrupole phase, whose realization depends substantially on the inclined anisotropy and the orientation of the wavevector in the film plane.

  19. Influence of temperature on the Zircaloy-4 plastic anisotropy; Influence de la temperature sur l`anisotropie plastique du Zircaloy-4

    Energy Technology Data Exchange (ETDEWEB)

    Limon, R.; Bechade, J.L.; Lehmann, S.; Maury, R.; Soniak, A. [CEA Centre d`Etudes de Saclay, 91 - Gif-sur-Yvette (France). Direction des Technologies Avancees; Mardon, J.P. [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-La-Defense (France)

    1995-12-31

    In order to improve the comportment modelling of PWR fuel pin, and more precisely their canning tubes, Framatome and the CEA have undertake an important study program of Zircaloy-4 mechanical properties. It includes in particular the study of the plasticity between 20 and 400 degree Celsius. This material being not isotropic because of the zirconium hexagonal crystal network and the texture presented by the canning tubes, its plastic anisotropy has been measured. The obtained results for the canning in *slack* and recrystallized before irradiation Zircaloy-4 are presented and the deformation systems able to explain the observed anisotropy is researched. (O.L.). 6 refs., 4 figs., 1 tab.

  20. A new perspective on anisotropy and multiple energy gaps in superconductors

    International Nuclear Information System (INIS)

    Milkove, K.R.; Bostock, J.; MacVicar, M.L.A.

    1976-01-01

    New perspective on superconducting anisotropy and multiple energy gaps: direct experimental evidence shows that widely accepted anisotropy and multiple energy gap interpretations of tunneling data are consistent with a voltage divider model and may not relate to intrinsic superconducting properties. The model also accounts for other common data anomalies. (author)

  1. Microstructure, Slip Systems and Yield Stress Anisotropy in Plastic Deformation

    DEFF Research Database (Denmark)

    Winther, Grethe; You, Ze Sheng; Lu, Lei

    The highly anisotropic microstructures in nanotwinned copper produced by electrodeposition provide an excellent opportunity to evaluate models for microstructurally induced mechanical anisotropy. A crystal plasticity model originally developed for the integration of deformation induced dislocatio...... boundaries with texture is applied to account for the effects of texture as well as twin and grain boundaries, providing good qualitative agreement with experimental yield stress and yield stress anisotropy data....

  2. Thermal conductivity of carbon felts, insulating materials with a high anisotropy; Conductivite thermique des feutres de carbone, isolants a forte anisotropie

    Energy Technology Data Exchange (ETDEWEB)

    Danes, F.E.; Bardon, J.P. [Centre National de la Recherche Scientifique, 44 - Nantes (France). Lab. de Thermocinetique

    1996-12-31

    Because of their high temperature resistance, carbon felts are used as thermal insulating materials for high temperature applications. The aim of this paper is to present a model that allows to calculate the thermal conductivity of felt fibers taking into account their high anisotropy and the contact resistance of fibers generated by the 3-D constriction phenomena which develop in fibers around each contact point. The study is divided in two parts: the first part concerns the bibliographic study of the different anisotropies of fibers and felts, while the second part presents the proposed conductivity model. (J.S.) 12 refs.

  3. Dynamical vs. geometric anisotropy in relativistic heavy-ion collisions. Which one prevails?

    Energy Technology Data Exchange (ETDEWEB)

    Bravina, L.V. [University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation); Lokhtin, I.P.; Malinina, L.V.; Petrushanko, S.V.; Snigirev, A.M. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); Zabrodin, E.E. [Lomonosov Moscow State University, Skobeltsyn Institute of Nuclear Physics, Moscow (Russian Federation); University of Oslo, Department of Physics, Oslo (Norway); National Research Nuclear University ' ' MEPhI' ' (Moscow Engineering Physics Institute), Moscow (Russian Federation)

    2017-11-15

    We study the influence of geometric and dynamical anisotropies on the development of flow harmonics and, simultaneously, on the second- and third-order oscillations of femtoscopy radii. The analysis is done within the Monte Carlo event generator HYDJET++, which was extended to dynamical triangular deformations. It is shown that the merely geometric anisotropy provides the results which anticorrelate with the experimental observations of either v{sub 2} (or v{sub 3}) or second-order (or third-order) oscillations of the femtoscopy radii. Decays of resonances significantly increase the emitting areas but do not change the phases of the radii oscillations. In contrast to the spatial deformations, the dynamical anisotropy alone provides the correct qualitative description of the flow and the femtoscopy observables simultaneously. However, one needs both types of the anisotropy to match quantitatively the experimental data. (orig.)

  4. Achieving perpendicular anisotropy in half-metallic Heusler alloys for spin device applications

    Science.gov (United States)

    Munira, Kamaram; Romero, Jonathon; Butler, William H.

    2014-05-01

    Various full Heusler alloys are interfaced with MgO and the magnetic properties of the Heusler-MgO junctions are studied. Next to MgO, the cubic Heusler system distorts to a tetragonal one, thereby inducing an anisotropy. The half-metallicity and nature of anisotropy (in-plane or perpendicular) in the Heusler-MgO system is governed mostly by the interface Heusler layers. There is a trend that Mn-O bonding near the MgO-Heusler junction results in perpendicular anisotropy. The ability to remain half-metallic and have perpendicular anisotropy makes some of these alloys potential candidates as free-layers in Spin Transfer Torque Random Access Memory (STT-RAM) devices, particularly, Cr2MnAs-MgO system with MnAs interface layers and Co2MnSi-MgO system with Mn2 interface layers.

  5. Texture and anisotropy analysis of Qusaiba shales

    KAUST Repository

    Kanitpanyacharoen, Waruntorn; Wenk, Hans-Rudolf; Kets, Frans; Lehr, Christian; Wirth, Richard

    2011-01-01

    Scanning and transmission electron microscopy, synchrotron X-ray diffraction, microtomography and ultrasonic velocity measurements were used to characterize microstructures and anisotropy of three deeply buried Qusaiba shales from the Rub

  6. Electric field modulation of magnetic anisotropy and microwave absorption properties in Fe50Ni50/Teflon composite films

    Directory of Open Access Journals (Sweden)

    Zhenjun Xia

    2016-05-01

    Full Text Available Fe50Ni50 nanoparticle films with the size about 6 nm were deposited by a high energetic cluster deposition source. An electric field of about 0 - 40 kV was applied on the sample platform when the films were prepared. The field assisted deposition technique can dramatically induce in-plane magnetic anisotropy. To probe the microwave absorption properties, the Fe50Ni50 nanoparticles were deliberately deposited on the dielectric Teflon sheet. Then the laminated Fe50Ni50/Teflon composites were used to do reflection loss scan. The results prove that the application of electric field is an effective avenue to improve the GHz microwave absorption performance of our magnetic nanoparticles films expressed by the movement of reflection loss peak to high GHz region for the composites.

  7. Quantum Monte Carlo simulation for S=1 Heisenberg model with uniaxial anisotropy

    International Nuclear Information System (INIS)

    Tsukamoto, Mitsuaki; Batista, Cristian; Kawashima, Naoki

    2007-01-01

    We perform quantum Monte Carlo simulations for S=1 Heisenberg model with an uniaxial anisotropy. The system exhibits a phase transition as we vary the anisotropy and a long range order appears at a finite temperature when the exchange interaction J is comparable to the uniaxial anisotropy D. We investigate quantum critical phenomena of this model and obtain the line of the phase transition which approaches a power-law with logarithmic corrections at low temperature. We derive the form of logarithmic corrections analytically and compare it to our simulation results

  8. Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle

    Science.gov (United States)

    Beghein, Caroline; Trampert, Jeannot

    2004-01-01

    The presence of radial anisotropy in the upper mantle, transition zone and top of the lower mantle is investigated by applying a model space search technique to Rayleigh and Love wave phase velocity models. Probability density functions are obtained independently for S-wave anisotropy, P-wave anisotropy, intermediate parameter η, Vp, Vs and density anomalies. The likelihoods for P-wave and S-wave anisotropy beneath continents cannot be explained by a dry olivine-rich upper mantle at depths larger than 220 km. Indeed, while shear-wave anisotropy tends to disappear below 220 km depth in continental areas, P-wave anisotropy is still present but its sign changes compared to the uppermost mantle. This could be due to an increase with depth of the amount of pyroxene relative to olivine in these regions, although the presence of water, partial melt or a change in the deformation mechanism cannot be ruled out as yet. A similar observation is made for old oceans, but not for young ones where VSH> VSV appears likely down to 670 km depth and VPH> VPV down to 400 km depth. The change of sign in P-wave anisotropy seems to be qualitatively correlated with the presence of the Lehmann discontinuity, generally observed beneath continents and some oceans but not beneath ridges. Parameter η shows a similar age-related depth pattern as shear-wave anisotropy in the uppermost mantle and it undergoes the same change of sign as P-wave anisotropy at 220 km depth. The ratio between dln Vs and dln Vp suggests that a chemical component is needed to explain the anomalies in most places at depths greater than 220 km. More tests are needed to infer the robustness of the results for density, but they do not affect the results for anisotropy.

  9. Anisotropies in the cosmic microwave background: Theory

    International Nuclear Information System (INIS)

    Dodelson, S.

    1998-02-01

    Anisotropies in the Cosmic Microwave Background (CMB) contain a wealth of information about the past history of the universe and the present values of cosmological parameters. I online some of the theoretical advances of the last few years. In particular, I emphasize that for a wide class of cosmological models, theorists can accurately calculate the spectrum to better than a percent. The spectrum of anisotropies today is directly related to the pattern of inhomogeneities present at the time of recombination. This recognition leads to a powerful argument that will enable us to distinguish inflationary models from other models of structure formation. If the inflationary models turn out to be correct, the free parameters in these models will be determined to unprecedented accuracy by the upcoming satellite missions

  10. Monte Carlo studies of two-dimensional random-anisotropy magnets

    Science.gov (United States)

    Denholm, D. R.; Sluckin, T. J.

    1993-07-01

    We have carried out a systematic set of Monte Carlo simulations of the Harris-Plischke-Zuckermann lattice model of random magnetic anisotropy on a two-dimensional square lattice, using the classical Metropolis algorithm. We have considered varying temperature T, external magnetic field H (both in the reproducible and irreproducible limits), time scale of the simulation τ in Monte Carlo steps and anisotropy ratio D/J. In the absence of randomness this model reduces to the XY model in two dimensions, which possesses the familiar Kosterlitz-Thouless low-temperature phase with algebraic but no long-range order. In the presence of random anisotropy we find evidence of a low-temperature phase with some disordered features, which might be identified with a spin-glass phase. The low-temperature Kosterlitz-Thouless phase survives at intermediate temperatures for low randomness, but is no longer present for large D/J. We have also studied the high-H approach to perfect order, for which there are theoretical predictions due to Chudnovsky.

  11. Magnetic anisotropy and neutron scattering studies of some rare earth metals

    International Nuclear Information System (INIS)

    Day, R.

    1978-08-01

    The thesis is concerned with magnetic anisotropy of dysprosium and alloys of gadolinium: yttrium, and also neutron scattering studies of dysprosium. The experiments are discussed under the topic headings: magnetic anisotropy, rare earths, torque measurements, elastic neutron scattering, inelastic neutron scattering, dysprosium measurements, and results for the gadolinium: yttrium alloys. (U.K.)

  12. Anisotropy of the rates of propagation of seismic waves on Sakhalin

    Energy Technology Data Exchange (ETDEWEB)

    Telegin, A.N.; Antonova, L.P.; Shmain, M.M.; Trubachev, B.P.

    1983-01-01

    An examination is made of the difference in effective rates of OGT computed from latitudinal and meridional profiles which is explained by anisotropy in velocities of the horizontal plane associated with tectonic conditions. A quantitative investigation of changes in the coefficient of anisotropy can yield additional information about the condition of the rocks.

  13. Weak-anisotropy moveout approximations for P-waves in homogeneous layers of monoclinic or higher anisotropy symmetries

    Czech Academy of Sciences Publication Activity Database

    Farra, V.; Pšenčík, Ivan; Jílek, P.

    2016-01-01

    Roč. 81, č. 2 (2016), C39-C59 ISSN 0016-8033 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : anisotropy * P-wave * travel time * moveout Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 2.391, year: 2016

  14. Diffusive propagation of cosmic rays from supernova remnants in the Galaxy. II: anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Blasi, Pasquale; Amato, Elena, E-mail: blasi@arcetri.astro.it, E-mail: amato@arcetri.astro.it [INAF/Osservatorio Astrofisico di Arcetri, Largo E. Fermi, 5 — 50125 Firenze (Italy)

    2012-01-01

    In this paper we investigate the effects of stochasticity in the spatial and temporal distribution of supernova remnants on the anisotropy of cosmic rays observed at Earth. The calculations are carried out for different choices of the diffusion coefficient D(E) experienced by cosmic rays during propagation in the Galaxy. The propagation and spallation of nuclei (with charge 1 ≤ Z ≤ 26) are taken into account. At high energies (E > 1 TeV) we assume that D(E)∝(E/Z){sup δ}, with δ = 1/3 and δ = 0.6 being the reference scenarios. The large scale distribution of supernova remnants in the Galaxy is modeled following the distribution of pulsars with and without accounting for the spiral structure of the Galaxy. Our calculations allow us to determine the contribution to anisotropy resulting from both the large scale distribution of SNRs in the Galaxy and the random distribution of the nearest remnants. The naive expectation that the anisotropy amplitude scales as δ{sub A}∝D(E) is shown to be a wild oversimplification of reality which does not reflect in the predicted anisotropy for any realistic distribution of the sources. The fluctuations in the anisotropy pattern are dominated by nearby sources, so that predicting or explaining the observed anisotropy amplitude and phase becomes close to impossible. Nevertheless, the results of our calculations, when compared to the data, allow us to draw interesting conclusions in terms of the propagation scenario to be preferred both in terms of the energy dependence of the diffusion coefficient and of the size of the halo. We find that the very weak energy dependence of the anisotropy amplitude below 10{sup 5} GeV, as observed by numerous experiments, as well as the rise at higher energies, can best be explained if the diffusion coefficient is D(E)∝E{sup 1/3}. Faster diffusion, for instance with δ = 0.6, leads in general to an exceedingly large anisotropy amplitude. The spiral structure introduces interesting trends in

  15. Flow stress anisotropy

    DEFF Research Database (Denmark)

    Winther, G.

    1996-01-01

    stress Variation in the rolling plane, which may be as high as 20%, are presented. The traditional Taylor model is applied to the data to account for the effect of texture. However, texture effects alone are not enough to explain all of the observed anisotropy. New models which take the combined effects...... of texture and deformation microstructure into account are presented. The models are based on the Taylor and Sachs models but modified with an anisotropic critical shear stress to account for the effect of the microstructure. The agreement between experimental data and model predictions is definitely better...

  16. Anisotropy Spectra for Enantiomeric Differentiation of Biomolecular Building Blocks

    DEFF Research Database (Denmark)

    Evans, Amanda C.; Meinert, Cornelia; Bredehoft, Jan H.

    2013-01-01

    All biopolymers are composed of homochiral building blocks, and both D-sugars and L-amino acids uniquely constitute life on Earth. These monomers were originally enantiomerically differentiated under prebiotic conditions. Particular progress has recently been made in support of the photochemical...... light. This chapter will: (1) present the theory and configuration of anisotropy spectroscopy; (2) explain experimentally recorded anisotropy spectra of selected chiral biomolecules such as amino acids; and (3) discuss the relevance of these spectra for the investigation of the origin of the molecular...

  17. Symmetry-Breaking Orbital Anisotropy Observed for Detwinned Ba(Fe1-xCox)2As2 above the Spin Density Wave Transition

    International Nuclear Information System (INIS)

    Yi, Ming

    2011-01-01

    Nematicity, defined as broken rotational symmetry, has recently been observed in competing phases proximate to the superconducting phase in the cuprate high temperature superconductors. Similarly, the new iron-based high temperature superconductors exhibit a tetragonal to orthorhombic structural transition (i.e. a broken C 4 symmetry) that either precedes or is coincident with a collinear spin density wave (SDW) transition in undoped parent compounds, and superconductivity arises when both transitions are suppressed via doping. Evidence for strong in-plane anisotropy in the SDW state in this family of compounds has been reported by neutron scattering, scanning tunneling microscopy, and transport measurements. Here we present an angle resolved photoemission spectroscopy study of detwinned single crystals of a representative family of electron-doped iron-arsenide superconductors, Ba(Fe 1-x Co x ) 2 As 2 in the underdoped region. The crystals were detwinned via application of in-plane uniaxial stress, enabling measurements of single domain electronic structure in the orthorhombic state. At low temperatures, our results clearly demonstrate an in-plane electronic anisotropy characterized by a large energy splitting of two orthogonal bands with dominant d xz and d yz character, which is consistent with anisotropy observed by other probes. For compositions x > 0, for which the structural transition (T S ) precedes the magnetic transition (T SDW ), an anisotropic splitting is observed to develop above T SDW , indicating that it is specifically associated with T S . For unstressed crystals, the band splitting is observed close to T S , whereas for stressed crystals the splitting is observed to considerably higher temperatures, revealing the presence of a surprisingly large in-plane nematic susceptibility in the electronic structure.

  18. Whistler waves with electron temperature anisotropy and non-Maxwellian distribution functions

    Directory of Open Access Journals (Sweden)

    M. Usman Malik

    2018-05-01

    Full Text Available The previous works on whistler waves with electron temperature anisotropy narrated the dependence on plasma parameters, however, they did not explore the reasons behind the observed differences. A comparative analysis of the whistler waves with different electron distributions has not been made to date. This paper attempts to address both these issues in detail by making a detailed comparison of the dispersion relations and growth rates of whistler waves with electron temperature anisotropy for Maxwellian, Cairns, kappa and generalized (r, q distributions by varying the key plasma parameters for the problem under consideration. It has been found that the growth rate of whistler instability is maximum for flat-topped distribution whereas it is minimum for the Maxwellian distribution. This work not only summarizes and complements the previous work done on the whistler waves with electron temperature anisotropy but also provides a general framework to understand the linear propagation of whistler waves with electron temperature anisotropy that is applicable in all regions of space plasmas where the satellite missions have indicated their presence.

  19. Magnetic anisotropies in ultrathin bismuth iron garnet films

    International Nuclear Information System (INIS)

    Popova, Elena; Franco Galeano, Andres Felipe; Deb, Marwan; Warot-Fonrose, Bénédicte; Kachkachi, Hamid; Gendron, François; Ott, Frédéric

    2013-01-01

    Ultrathin bismuth iron garnet Bi 3 Fe 5 O 12 films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi 3 Fe 5 O 12 films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi 3 Fe 5 O 12 films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi 3 Fe 5 O 12 were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed

  20. Magnetic anisotropies in ultrathin bismuth iron garnet films

    Energy Technology Data Exchange (ETDEWEB)

    Popova, Elena, E-mail: popova@physique.uvsq.fr [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Franco Galeano, Andres Felipe [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Deb, Marwan [Groupe d' Etude de la Matière Condensée (GEMaC), CNRS/Université de Versailles-Saint-Quentin, 45 Avenue des Etats-Unis, 78035 Versailles (France); Warot-Fonrose, Bénédicte [Centre d' Elaboration de Matériaux et d' Etudes Structurales (CEMES), CNRS, 29 rue Jeanne Marvig, 31055 Toulouse (France); Transpyrenean Associated Laboratory for Electron Microscopy (TALEM), CEMES-INA, CNRS–Universidad de Zaragoza (Spain); Kachkachi, Hamid [Laboratoire PROcédés, Matériaux et Energie Solaire (PROMES), CNRS/Université de Perpignan Via Domitia, 52 Avenue Paul Alduy, 66860 Perpignan (France); Gendron, François [Institut des NanoSciences de Paris (INSP), CNRS/Université Pierre et Marie Curie-Paris 6, 4 place Jussieu, Boîte courrier 840, 75252 Paris Cedex 05 (France); Ott, Frédéric [Laboratoire Léon Brillouin (LLB), CNRS/CEA, Bâtiment 563, CEA Saclay, 91191 Gif sur Yvette Cedex (France); and others

    2013-06-15

    Ultrathin bismuth iron garnet Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on (001)-oriented gadolinium gallium garnet substrates. Film thickness varied from two to three dozens of unit cells. Bi{sub 3}Fe{sub 5}O{sub 12} films grow pseudomorphically on substrates up to a thickness of 20 nm, and then a lattice relaxation occurs. Magnetic properties of the films were studied as a function of bismuth iron garnet thickness. The magnetization and cubic anisotropy decrease with decreasing film thickness. The uniaxial magnetocrystalline anisotropy is constant for all film thicknesses. For two unit cell thick films, the easy magnetization axis changes from in-plane to perpendicular to the plane direction. Such a reorientation takes place as a result of the competition of constant uniaxial perpendicular anisotropy with weakening film magnetization. - Highlights: ► Ultrathin Bi{sub 3}Fe{sub 5}O{sub 12} films were grown epitaxially on structure-matching substrates. ► Magnetic properties of Bi{sub 3}Fe{sub 5}O{sub 12} were studied down to the thickness of 2.5 nm. ► Reorientation of easy magnetization axis as a function of film thickness was observed.

  1. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    International Nuclear Information System (INIS)

    Roldan, Omar

    2017-01-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  2. CMB anisotropies at all orders: the non-linear Sachs-Wolfe formula

    Energy Technology Data Exchange (ETDEWEB)

    Roldan, Omar, E-mail: oaroldan@if.ufrj.br [Instituto de Física, Universidade Federal do Rio de Janeiro, 21941-972, Rio de Janeiro, RJ (Brazil)

    2017-08-01

    We obtain the non-linear generalization of the Sachs-Wolfe + integrated Sachs-Wolfe (ISW) formula describing the CMB temperature anisotropies. Our formula is valid at all orders in perturbation theory, is also valid in all gauges and includes scalar, vector and tensor modes. A direct consequence of our results is that the maps of the logarithmic temperature anisotropies are much cleaner than the usual CMB maps, because they automatically remove many secondary anisotropies. This can for instance, facilitate the search for primordial non-Gaussianity in future works. It also disentangles the non-linear ISW from other effects. Finally, we provide a method which can iteratively be used to obtain the lensing solution at the desired order.

  3. A vector model for off-axis hysteresis loops using anisotropy field

    Energy Technology Data Exchange (ETDEWEB)

    Jamali, Ali, E-mail: alijamal@gwu.edu [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Torre, Edward Della [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States); Cardelli, Ermanno [Department of Engineering, University of Perugia, Perugia (Italy); ElBidweihy, Hatem [Electrical and Computer Engineering Department, United States Naval Academy, Annapolis, MD 21402 (United States); Bennett, Lawrence H. [Electrical and Computer Engineering Department, The George Washington University, Washington, D.C. 20052 (United States)

    2016-11-15

    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner–Wohlfarth model.

  4. Exchange coupling in hybrid anisotropy magnetic multilayers quantified by vector magnetometry

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, C., E-mail: C.Morrison.2@warwick.ac.uk; Miles, J. J.; Thomson, T. [School of Computer Science, University of Manchester, Manchester M13 9PL (United Kingdom); Anh Nguyen, T. N. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Spintronics Research Group, Laboratory for Nanotechnology (LNT), VNU-HCM, Ho Chi Minh City (Viet Nam); Fang, Y.; Dumas, R. K. [Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden); Åkerman, J. [Materials Physics, School of ICT, KTH Royal Institute of Technology, Electrum 229, 164 40 Kista (Sweden); Department of Physics, University of Gothenburg, 412 96 Gothenburg (Sweden)

    2015-05-07

    Hybrid anisotropy thin film heterostructures, where layers with perpendicular and in-plane anisotropy are separated by a thin spacer, are novel materials for zero/low field spin torque oscillators and bit patterned media. Here, we report on magnetization reversal and exchange coupling in a archetypal Co/Pd (perpendicular)-NiFe (in-plane) hybrid anisotropy system studied using vector vibrating sample magnetometry. This technique allows us to quantify the magnetization reversal in each individual magnetic layer, and measure of the interlayer exchange as a function of non-magnetic spacer thickness. At large (>1 nm) spacer thicknesses Ruderman-Kittel-Kasuya-Yosida-like exchange dominates, with orange-peel coupling providing a significant contribution only for sub-nm spacer thickness.

  5. Spin waves in terbium. III. Magnetic anisotropy at zero wave vector

    DEFF Research Database (Denmark)

    Houmann, Jens Christian Gylden; Jensen, J.; Touborg, P.

    1975-01-01

    The energy gap at zero wave vector in the spin-wave dispersion relation of ferromagnetic. Tb has been studied by inelastic neutron scattering. The energy was measured as a function of temperature and applied magnetic field, and the dynamic anisotropy parameters were deduced from the results...... the effects of zero-point deviations from the fully aligned ground state, and we tentatively propose polarization-dependent two-ion couplings as their origin........ The axial anisotropy is found to depend sensitively on the orientation of the magnetic moments in the basal plane. This behavior is shown to be a convincing indication of considerable two-ion contributions to the magnetic anisotropy at zero wave vector. With the exception of the sixfold basal...

  6. A vector model for off-axis hysteresis loops using anisotropy field

    International Nuclear Information System (INIS)

    Jamali, Ali; Torre, Edward Della; Cardelli, Ermanno; ElBidweihy, Hatem; Bennett, Lawrence H.

    2016-01-01

    A model for the off-axis vector magnetization of a distribution of uniaxial particles is presented. Recent work by the authors decomposed the magnetization into two components and modeled the total vector magnetization as their vector sum. In this paper, to account for anisotropy, the direction of the reversible magnetization component is specified by the vector sum of the applied field and an effective anisotropy field. The formulation of the new anisotropy field (AF) model is derived and its results are discussed considering (i) oscillation and rotational modes, (ii) lag angle, and (iii) unitary magnetization. The advantages of the AF model are outlined by comparing its results to the results of the classical Stoner–Wohlfarth model.

  7. MIGHT WE EVENTUALLY UNDERSTAND THE ORIGIN OF THE DARK MATTER VELOCITY ANISOTROPY?

    International Nuclear Information System (INIS)

    Hansen, Steen H.

    2009-01-01

    The density profile of simulated dark matter structures is fairly well-established, and several explanations for its characteristics have been put forward. In contrast, the radial variation of the velocity anisotropy has still not been explained. We suggest a very simple origin, based on the shapes of the velocity distribution functions, which are shown to differ between the radial and tangential directions. This allows us to derive a radial variation of the anisotropy profile which is in good agreement with both simulations and observations. One of the consequences of this suggestion is that the velocity anisotropy is entirely determined once the density profile is known. We demonstrate how this explains the origin of the γ-β relation, which is the connection between the slope of the density profile and the velocity anisotropy. These findings provide us with a powerful tool, which allows us to close the Jeans equations.

  8. Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen

    Science.gov (United States)

    Zhao, Ting Ting; Peng, Zhe Wei; Yuan, Dan; Zhen, Shu Jun; Huang, Cheng Zhi; Li, Yuan Fang

    2018-03-01

    In this contribution, we demonstrated that Cu-based metal-organic gel (Cu-MOG) was able to serve as a novel amplification platform for fluorescence anisotropy (FA) assay for the first time, which was confirmed by the sensitive detection of a common cancer biomarker, prostate specific antigen (PSA). The dye-labeled probe aptamer (PA) product was adsorbed onto the benzimidazole derivative-containing Cu-MOG via electrostatic incorporation and strong π-π stacking interactions, which significantly increased the FA value due to the enlargement of the molecular volume of the PA/Cu-MOG complex. With the introduction of target PSA, the FA value was obviously decreased on account of the specific recognition between PSA and PA which resulted in the detachment of PA from the surface of MOG. The linear range was from 0.5-8 ng/mL, with a detection limit of 0.33 ng/mL. Our work has thus helped to demonstrate promising application of MOG material in the fields of biomolecules analysis and disease diagnosis.

  9. Anisotropies of in-phase, out-of-phase,\

    Czech Academy of Sciences Publication Activity Database

    Hrouda, F.; Chadima, Martin; Ježek, J.; Kadlec, Jaroslav

    2018-01-01

    Roč. 62 (2018) ISSN 0039-3169 Institutional support: RVO:67985530 ; RVO:67985831 Keywords : anisotropy * out-of-phase susceptibility * frequency-dependent susceptibility Subject RIV: DB - Geology ; Mineralogy Impact factor: 0.764, year: 2016

  10. Magnetic anisotropy in the Kitaev model systems Na2IrO3 and RuCl3

    Science.gov (United States)

    Chaloupka, Jiří; Khaliullin, Giniyat

    2016-08-01

    We study the ordered moment direction in the extended Kitaev-Heisenberg model relevant to honeycomb lattice magnets with strong spin-orbit coupling. We utilize numerical diagonalization and analyze the exact cluster ground states using a particular set of spin-coherent states, obtaining thereby quantum corrections to the magnetic anisotropy beyond conventional perturbative methods. It is found that the quantum fluctuations strongly modify the moment direction obtained at a classical level and are thus crucial for a precise quantification of the interactions. The results show that the moment direction is a sensitive probe of the model parameters in real materials. Focusing on the experimentally relevant zigzag phases of the model, we analyze the currently available neutron-diffraction and resonant x-ray-diffraction data on Na2IrO3 and RuCl3 and discuss the parameter regimes plausible in these Kitaev-Heisenberg model systems.

  11. FRACTIONAL ANISOTROPY OF THE FORNIX AND HIPPOCAMPAL ATROPHY IN ALZHEIMER’S DISEASE

    Directory of Open Access Journals (Sweden)

    Kejal eKantarci

    2014-11-01

    Full Text Available Decrease in the directionality of water diffusion measured with fractional anisotropy on diffusion tensor imaging has been linked to loss of myelin and axons in the white matter. Fornix fractional anisotropy is consistently decreased in patients with mild cognitive impairment and Alzheimer’s disease. Furthermore, decreased fornix fractional anisotropy is one of the earliest MRI abnormalities observed in cognitively normal individuals who are at an increased risk for Alzheimer’s disease, such as in pre-symptomatic carriers of familial Alzheimer’s disease mutations and in pre-clinical Alzheimer’s disease. Reductions of fractional anisotropy at these early stages which predicted the decline in memory function. Fornix carries the efferent projections from the CA1 and CA3 pyramidal neurons of the hippocampus and subiculum, connecting these structures to the septal nuclei, anterior thalamic nucleus, mammillary bodies and medial hypothalamus. Fornix also carries the afferent cholinergic and GABAergic projections from the medial septal nuclei and the adjacent diagonal band back to the medial temporal lobe, interconnecting the core limbic structures. Because fornix carries the axons projecting from the hippocampus, integrity of the fornix is in-part linked to the integrity of the hippocampus. In keeping with that, fornix fractional anisotropy is reduced in subjects with hippocampal atrophy, correlating with memory function. The literature on fractional anisotropy reductions in the fornix in the clinical spectrum of Alzheimer’s disease from pre-symptomatic carriers of familial Alzheimer’s disease mutations to pre-clinical Alzheimer’s disease, mild cognitive impairment and dementia stages is reviewed.

  12. Plagioclase-dominated Seismic Anisotropy in the Basin and Range Lower Crust

    Science.gov (United States)

    Bernard, R. E.; Behr, W. M.

    2017-12-01

    Observations of seismic anisotropy have the ability to provide important information on deformation and structures within the lithosphere. While the mechanisms controlling seismic anisotropy in the upper mantle are fairly well understood (i.e., olivine "lattice preferred orientation" or LPO), less is known about the minerals and structures controlling regional lower crustal anisotropy. We use lower crustal xenoliths from young cinder cones in the eastern Mojave/western Basin and Range to investigate mineral LPOs and their effect on seismic anisotropy. Lower crustal gabbros were collected from two areas roughly 80 km apart — the Cima and Deadman Lake Volcanic Fields. Lower crustal fabrics measured using EBSD are dominated by LPOs in plagioclase associated with both plastic deformation and magmatic flow. In all fabric types, plagioclase LPOs produce seismic fast axes oriented perpendicular to the foliation plane. This is in contrast to mantle peridotite xenoliths from the same locations, which preserve olivine LPOs with fast axes aligned parallel to the foliation plane. The orthogonal orientations of mantle and lower crustal fast axes relative to foliation implies that even where fabric development in both layers is coeval and kinematically compatible, their measured anisotropies can be perpendicular to each other, therefore appearing anti-correlated when measured seismically. Furthermore, our observation of plagioclase-dominated LPO and negligible concentrations of mica is at odds with the common assumption that lower crustal anisotropy is dominated by micaceous minerals, whose slow axes reliably align parallel to lineation or flow. In contrast, our data show that for plagioclase, fast axes align perpendicular to flow and the slow axes are variably aligned within the foliation plane. Therefore, for a crustal section dominated by plagioclase LPO with assumed horizontal foliation, there would be a vertical rather than a horizontal axis of symmetry, resulting in a

  13. Empirical evidence for inertial mass anisotropy

    International Nuclear Information System (INIS)

    Heller, M.; Siemieniec, G.

    1985-01-01

    A several attempts at measuring the possible deviations from inertial mass isotropy caused by a non-uniform distribution of matter are reviewed. A simple model of the inertial mass anisotropy and the results of the currently performed measurements concerning this effect are presented. 34 refs. (author)

  14. Cosmology with cosmic microwave background anisotropy

    Indian Academy of Sciences (India)

    Measurements of CMB anisotropy and, more recently, polarization have played a very important role in allowing precise determination of various parameters of the `standard' cosmological model. The expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the ...

  15. Magnetic anisotropy in rare-earth metals

    DEFF Research Database (Denmark)

    Nielsen, Mourits; Bjerrum Møller, Hans; Lindgård, Per-Anker

    1970-01-01

    The magnetic field dependence of the energy of long- wavelength magnons in Tb-10%Ho has been studied by inelastic neutron scattering. The results agree with the `frozen-lattice' model, provided that the second-order magnetoelastic effect is taken into account. The planar anisotropy is almost...

  16. Measurement of the distribution of anisotropy constants in magnetic nanoparticles for hyperthermia applications

    Science.gov (United States)

    McGhie, A. A.; Marquina, C.; O'Grady, K.; Vallejo-Fernandez, G.

    2017-11-01

    In this work, we have applied theoretical calculations to new experimental measurements of the effect of the anisotropy distribution in magnetite nanoparticles, which in turn controls hysteresis heating for hyperthermia applications. Good agreement between theory and experiment is reported where the theoretical calculation is based upon the detailed measurement of the particle elongation generally observed in the nanoparticles. The elongation has been measured from studies via transmission electron microscopy. We find that particle elongation is responsible for the anisotropy dispersion, which can be obtained by analysis and fitting to a measurement of the temperature decay of remanence. A median value of the anisotropy constant of 1.5  ×  105 erg/cc was obtained. A very wide distribution of anisotropy constants is present with a Gaussian standard deviation of 1.5  ×  105 erg/cc. From our measurements, deviations in the value of the saturation magnetisation from particle to particle are most likely the main factor giving rise to this large distribution, with 33% arising from the error in the measured elongation. The lower limit to the anisotropy constant of the nanoparticles is determined by the magnetocrystalline anisotropy of the material, 1.1  ×  105 erg/cc for magnetite, which was studied in this work.

  17. Magnetic Alignment of Block Copolymer Microdomains by Intrinsic Chain Anisotropy.

    Science.gov (United States)

    Rokhlenko, Yekaterina; Gopinadhan, Manesh; Osuji, Chinedum O; Zhang, Kai; O'Hern, Corey S; Larson, Steven R; Gopalan, Padma; Majewski, Paweł W; Yager, Kevin G

    2015-12-18

    We examine the role of intrinsic chain susceptibility anisotropy in magnetic field directed self-assembly of a block copolymer using in situ x-ray scattering. Alignment of a lamellar mesophase is observed on cooling across the disorder-order transition with the resulting orientational order inversely proportional to the cooling rate. We discuss the origin of the susceptibility anisotropy, Δχ, that drives alignment and calculate its magnitude using coarse-grained molecular dynamics to sample conformations of surface-tethered chains, finding Δχ≈2×10^{-8}. From field-dependent scattering data, we estimate that grains of ≈1.2  μm are present during alignment. These results demonstrate that intrinsic anisotropy is sufficient to support strong field-induced mesophase alignment and suggest a versatile strategy for field control of orientational order in block copolymers.

  18. Effects of electrons on the solar wind proton temperature anisotropy

    International Nuclear Information System (INIS)

    Michno, M. J.; Lazar, M.; Schlickeiser, R.; Yoon, P. H.

    2014-01-01

    Among the kinetic microinstabilities, the firehose instability is one of the most efficient mechanisms to restrict the unlimited increase of temperature anisotropy in the direction of an ambient magnetic field as predicted by adiabatic expansion of collision-poor solar wind. Indeed, the solar wind proton temperature anisotropy detected near 1 AU shows that it is constrained by the marginal firehose condition. Of the two types of firehose instabilities, namely, parallel and oblique, the literature suggests that the solar wind data conform more closely to the marginal oblique firehose condition. In the present work, however, it is shown that the parallel firehose instability threshold is markedly influenced by the presence of anisotropic electrons, such that under some circumstances, the cumulative effects of both electron and proton anisotropies could describe the observation without considering the oblique firehose mode.

  19. Seismic anisotropy in deforming salt bodies

    Science.gov (United States)

    Prasse, P.; Wookey, J. M.; Kendall, J. M.; Dutko, M.

    2017-12-01

    Salt is often involved in forming hydrocarbon traps. Studying salt dynamics and the deformation processes is important for the exploration industry. We have performed numerical texture simulations of single halite crystals deformed by simple shear and axial extension using the visco-plastic self consistent approach (VPSC). A methodology from subduction studies to estimate strain in a geodynamic simulation is applied to a complex high-resolution salt diapir model. The salt diapir deformation is modelled with the ELFEN software by our industrial partner Rockfield, which is based on a finite-element code. High strain areas at the bottom of the head-like strctures of the salt diapir show high amount of seismic anisotropy due to LPO development of halite crystals. The results demonstrate that a significant degree of seismic anisotropy can be generated, validating the view that this should be accounted for in the treatment of seismic data in, for example, salt diapir settings.

  20. Anisotropy of mechanical properties of zirconium and zirconium alloys

    International Nuclear Information System (INIS)

    Medrano, R.E.

    1975-01-01

    In studies of technological applications of zirconium to fuel elements of nuclear reactor, it was found that the use of plasticity equations for isotropic materials is not in agreement with experimental results, because of the strong anisotropy of zirconium. The present review describes recent progress on the knowledge of the influence of anisotropy on mechanical properties, after Douglass' review in 1971. The review was written to be selfconsistent, changing drastically the presentation of some of the referenced papers. It is also suggested some particular experiments to improve developments in this area

  1. Effects of Transverse Magnetic Anisotropy on Current-Induced Spin Switching

    OpenAIRE

    Misiorny, Maciej; Barnaś, Józef

    2013-01-01

    Spin-polarized transport through bistable magnetic adatoms or single-molecule magnets (SMMs), which exhibit both uniaxial and transverse magnetic anisotropy, is considered theoretically. The main focus is on the impact of transverse anisotropy on transport characteristics and the adatom's/SMM's spin. In particular, we analyze the role of quantum tunneling of magnetization (QTM) in the mechanism of the current-induced spin switching, and show that the QTM phenomenon becomes revealed as resonan...

  2. Anisotropy of the Mechanical Properties of TbF3 Crystals

    Science.gov (United States)

    Karimov, D. N.; Lisovenko, D. S.; Sizova, N. L.; Sobolev, B. P.

    2018-01-01

    TbF3 (sp. gr. Pnma) crystals up to 40 mm in diameter have been grown from melt by a Bridgman technique. The anisotropy of their mechanical properties is studied for the first time. the technical elasticity constants are calculated, and room-temperature values of Vickers microhardness for the (010) and (100) planes are measured. The shape of indentation impressions is found to correlate with Young's modulus anisotropy for TbF3 crystals.

  3. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng; Fu, Jiecai; Li, Hongli; Zhu, Liu; Hu, Yang; Xia, Weixing; Zhang, Xixiang; Peng, Yong; Zhang, Junli

    2018-01-01

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  4. Direct Observation of Magnetocrystalline Anisotropy Tuning Magnetization Configurations in Uniaxial Magnetic Nanomaterials

    KAUST Repository

    Zhu, Shimeng

    2018-03-20

    Discovering the effect of magnetic anisotropy on the magnetization configurations of magnetic nanomaterials is essential and significant for not only enriching the fundamental knowledge of magnetics but also facilitating the designs of desired magnetic nanostructures for diverse technological applications, such as data storage devices, spintronic devices, and magnetic nanosensors. Herein, we present a direct observation of magnetocrystalline anisotropy tuning magnetization configurations in uniaxial magnetic nanomaterials with hexagonal structure by means of three modeled samples. The magnetic configuration in polycrystalline BaFe12O19 nanoslice is a curling structure, revealing that the effect of magnetocrystalline anisotropy in uniaxial magnetic nanomaterials can be broken by forming an amorphous structure or polycrystalline structure with tiny grains. Both single crystalline BaFe12O19 nanoslice and individual particles of single-particle-chain BaFe12O19 nanowire appear in a single domain state, revealing a dominant role of magnetocrystalline anisotropy in the magnetization configuration of uniaxial magnetic nanomaterials. These observations are further verified by micromagnetic computational simulations.

  5. Correlation between physical structure and magnetic anisotropy of a magnetic nanoparticle colloid

    Science.gov (United States)

    Dennis, C. L.; Jackson, A. J.; Borchers, J. A.; Gruettner, C.; Ivkov, R.

    2018-05-01

    We show the effects of a time-invariant magnetic field on the physical structure and magnetic properties of a colloid comprising 44 nm diameter magnetite magnetic nanoparticles, with a 24 nm dextran shell, in water. Structural ordering in this colloid parallel to the magnetic field occurs simultaneously with the onset of a colloidal uniaxial anisotropy. Further increases in the applied magnetic field cause the nanoparticles to order perpendicular to the field, producing unexpected colloidal unidirectional and trigonal anisotropies. This magnetic behavior is distinct from the cubic magnetocrystalline anisotropy of the magnetite and has its origins in the magnetic interactions among the mobile nanoparticles within the colloid. Specifically, these field-induced anisotropies and colloidal rearrangements result from the delicate balance between the magnetostatic and steric forces between magnetic nanoparticles. These magnetic and structural rearrangements are anticipated to influence applications that rely upon time-dependent relaxation of the magnetic colloids and fluid viscosity, such as magnetic hyperthermia and shock absorption.

  6. Tailoring of magnetic anisotropy of Fe-rich microwires by stress induced anisotropy

    International Nuclear Information System (INIS)

    Zhukov, A.; Zhukova, V.; Larin, V.; Gonzalez, J.

    2006-01-01

    We report on tailoring of magnetic properties and GMI of Fe 69 B 12 Si 14 C 5 glass-coated microwires by stress annealing. The induced magnetic anisotropy field depend on temperature and time of annealing and applied stress. At certain conditions considerable GMI effect (up to 65%) has been achieved. Application of the tensile stress drastically affects the shape of the hysteresis loop of stress-annealed sample and its GMI effect. In this way the shape of the hysteresis loop and GMI effect can by tailored by controllable way

  7. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  8. The spherical segmented Langmuir probe in a flowing thermal plasma: numerical model of the current collection

    Directory of Open Access Journals (Sweden)

    E. Séran

    2005-07-01

    Full Text Available The segmented Langmuir probe (SLP has been recently proposed by one of the authors (Lebreton, 2002 as an instrument to derive the bulk velocity of terrestrial or planetary plasmas, in addition to the electron density and temperature that are routinely measured by Langmuir probes. It is part of the scientific payload on the DEMETER micro-satellite developed by CNES. The basic concept of this probe is to measure the current distribution over the surface using independent collectors under the form of small spherical caps and to use the angular anisotropy of these currents to obtain the plasma bulk velocity in the probe reference frame. In order to determine the SLP capabilities, we have developed a numerical PIC (Particles In Cell model which provides a tool to compute the distribution of the current collected by a spherical probe. Our model is based on the simultaneous determination of the charge densities in the probe sheath and on the probe surface, from which the potential distribution in the sheath region can be obtained. This method is well adapted to the SLP problem and has some advantages since it provides a natural control of the charge neutrality inside the simulation box, allows independent mesh sizes in the sheath and on the probe surface, and can be applied to complex surfaces. We present in this paper initial results obtained for plasma conditions corresponding to a Debye length equal to the probe radius. These plasma conditions are observed along the Demeter orbit. The model results are found to be in very good agreement with those published by Laframboise (1966 for a spherical probe in a thermal non-flowing plasma. This demonstrates the adequacy of the computation method and of the adjustable numerical parameters (size of the numerical box and mesh, time step, number of macro-particles, etc. for the considered plasma-probe configuration. We also present the results obtained in the case of plasma flowing with mesothermal conditions

  9. Measurement of the anisotropy ratios in MgB2 single crystals

    International Nuclear Information System (INIS)

    Kim, Heon-Jung; Kang, Byeongwon; Lee, Hyun-Sook; Lee, Sung-Ik

    2006-01-01

    We present our recent measurements on the anisotropy ratios of MgB 2 single crystals. Our measurements indicate that the anisotropy ratios of the penetration depth and of the upper critical field have different magnitudes and temperature dependences, as predicted by theoretical calculations. These results imply that the two-gap nature can strongly influence the superconducting properties of MgB 2

  10. Origin of perpendicular magnetic anisotropy of SmCo5 thin films with Cu underlayer

    International Nuclear Information System (INIS)

    Sayama, Junichi; Mizutani, Kazuki; Asahi, Toru; Ariake, Jun; Ouchi, Kazuhiro; Osaka, Tetsuya

    2006-01-01

    Effects of the Cu underlayer thickness and the addition of Cu to a Sm-Co layer on magnetic properties and microstructure of SmCo 5 thin films exhibiting perpendicular magnetic anisotropy were studied. The origin of the perpendicular magnetic anisotropy was discussed from these experimental results. A thick Cu underlayer of more than 100 nm brought about high perpendicular magnetic anisotropy leading to the squareness ratio equal to unity. The Cu addition enhanced the perpendicular magnetic anisotropy and reduced the Cu underlayer thickness required to obtain the squareness ratio of unity. X-ray diffractometry showed that the crystalline orientation of the Sm-Co layer did not correlate with that of the Cu underlayer. Auger electron spectroscopy revealed that Cu atoms were diffused up to the Sm-Co layer from the Cu underlayer. From the results, Cu atoms existing in the Sm-Co layer were suggested to be strongly related with an appearance of the perpendicular magnetic anisotropy by introducing the Cu underlayer

  11. Dynamics of elliptic breathers in saturable nonlinear media with linear anisotropy

    International Nuclear Information System (INIS)

    Liang, Guo; Guo, Qi; Shou, Qian; Ren, Zhanmei

    2014-01-01

    We have introduced a class of dynamic elliptic breathers in saturable nonlinear media with linear anisotropy. Two kinds of evolution behavior for the dynamic breathers, rotations and molecule-like librations, are both predicted by the variational approach, and confirmed in numerical simulations. The dynamic elliptic breathers can rotate even though they have no initial orbital angular momentum (OAM). As the media are linear anisotropic, OAM is no longer conserved, and hence the angular velocity is not constant but a periodic function of the propagation distance. When the linear anisotropy is large enough, the dynamic elliptic breathers librate like molecules. The dynamic elliptic breathers are present in media with not only saturable nonlinearity but also nonlocal nonlinearity; indeed, they are universal in nonlinear media with linear anisotropy. (paper)

  12. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    International Nuclear Information System (INIS)

    Zhou, Hengan; Fan, Xiaolong; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng; Gui, Y. S.; Hu, C.-M.

    2014-01-01

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg 1∕3 Nb 2∕3 )O 3 -PbTiO 3 substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time

  13. Magnetic anisotropy of (Sm, Y)2Fe17Ny compounds

    International Nuclear Information System (INIS)

    Lu, Y.; Tegus, O.; Li, Q.A.; Tang, N.; Yu, M.J.; Zhao, R.W.; Kuang, J.P.; Yang, F.M.; Zhou, G.F.; Li, X.; Boer, F.R. de

    1992-01-01

    A study of the crystal structure and the magnetic properties, especially the magnetocrystalline anisotropy of (Sm 1-x Y x ) 2 Fe 17 N y compounds (x = 0, 0.2, 0.4, 0.6, 0.8, and 1.0, 2 2 Zn 17 - or Th 2 Ni 17 -type structure as the original compounds. The Curie temperatures decrease from 750 to 700 K as x increases from 0 to 1. The anisotropy field decreases linearly with increasing yttrium content. The spin reorientation has been investigated by means of high field magnetization measurements, AC-susceptibility measurements and thermomagnetic analysis, combined with X-ray diffraction. The anisotropy constants K 1 , K 2 and K 3 were derived by a phenomenological analysis, using magnetization curves measured in high fields, applied perpendicular to the alignment direction of the powder samples. A tentative spin phase diagram of the series is presented. (orig.)

  14. Optical and mechanical anisotropy of oxide glass fibers

    DEFF Research Database (Denmark)

    Deubener, J.; Yue, Yuanzheng

    2012-01-01

    products [1], whereas stretching (frozen-in strain) results in optical and mechanical anisotropy of glass fibers, which is quantified inter alia by the specific birefringence [2]. The paper will stress the later effects by combining previous results on the structural origins of birefringence...... and anisotropic shrinkage in silica and phosphate fibers with recent studies on relaxation of optical anisotropy in E-glass fibers [3,4].......Upon fiber drawing, glass forming oxide melts are thermally quenched and mechanically stretched. High cooling rates (up to 106 K/min) of quenched glass fibres lead to higher enthalpy state of liquids, thereby, to higher fictive temperature than regular quenching (e.g. 20 K/min) of bulk glass...

  15. Acoustic axes in weak triclinic anisotropy

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2005-01-01

    Roč. 163, č. 2 (2005), s. 629-638 ISSN 0956-540X R&D Projects: GA AV ČR IAA3012309 Institutional research plan: CEZ:AV0Z30120515 Keywords : elastic-wave theory * perturbation methods * seismic anisotropy Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.826, year: 2005

  16. What we learn from CMB Anisotropies

    CERN Multimedia

    CERN. Geneva

    2007-01-01

    George Smoot shared the 2006 Nobel Prize with John Mathere for the discovery of the fluctuations of the cosmic microwave background. In this talk (which will not be the same as the Nobel lecture), he will discuss what we have learned about the universe in the recent past from these anisotropies.

  17. The effect of pressure anisotropy on ballooning modes in tokamak plasmas

    Science.gov (United States)

    Johnston, A.; Hole, M. J.; Qu, Z. S.; Hezaveh, H.

    2018-06-01

    Edge Localised Modes are thought to be caused by a spectrum of magnetohydrodynamic instabilities, including the ballooning mode. While ballooning modes have been studied extensively both theoretically and experimentally, the focus of the vast majority of this research has been on isotropic plasmas. The prevalence of pressure anisotropy in modern tokamaks thus motivates further study of these modes. This paper presents a numerical analysis of ballooning modes in anisotropic equilibria. The investigation was conducted using the newly-developed codes HELENA+ATF and MISHKA-A, which adds anisotropic physics to equilibria and stability analysis. We have examined the impact of anisotropy on the stability of an n = 30 ballooning mode, confirming results conform to previous calculations in the isotropic limit. Growth rates of ballooning modes in equilibria with different levels of anisotropy were then calculated using the stability code MISHKA-A. The key finding was that the level of anisotropy had a significant impact on ballooning mode growth rates. For {T}\\perp > {T}| | , typical of ICRH heating, the growth rate increases, while for {T}\\perp < {T}| | , typical of neutral beam heating, the growth rate decreases.

  18. Origin and spectroscopic determination of trigonal anisotropy in a heteronuclear single-molecule magnet

    Science.gov (United States)

    Sorace, L.; Boulon, M.-E.; Totaro, P.; Cornia, A.; Fernandes-Soares, J.; Sessoli, R.

    2013-09-01

    W-band (ν ≅ 94 GHz) electron paramagnetic resonance (EPR) spectroscopy was used for a single-crystal study of a star-shaped Fe3Cr single-molecule magnet (SMM) with crystallographically imposed trigonal symmetry. The high resolution and sensitivity accessible with W-band EPR allowed us to determine accurately the axial zero-field splitting terms for the ground (S = 6) and first two excited states (S = 5 and S = 4). Furthermore, spectra recorded by applying the magnetic field perpendicular to the trigonal axis showed a π/6 angular modulation. This behavior is a signature of the presence of trigonal transverse magnetic anisotropy terms whose values had not been spectroscopically determined in any SMM prior to this work. Such in-plane anisotropy could only be justified by dropping the so-called “giant spin approach” and by considering a complete multispin approach. From a detailed analysis of experimental data with the two models, it emerged that the observed trigonal anisotropy directly reflects the structural features of the cluster, i.e., the relative orientation of single-ion anisotropy tensors and the angular modulation of single-ion anisotropy components in the hard plane of the cluster. Finally, since high-order transverse anisotropy is pivotal in determining the spin dynamics in the quantum tunneling regime, we have compared the angular dependence of the tunnel splitting predicted by the two models upon application of a transverse field (Berry-phase interference).

  19. Optical anisotropy of Bi2Sr2CaCu2O8

    Science.gov (United States)

    Kim, J. H.; Bozovic, I.; Mitzi, D. B.; Kapitulnik, A.; Harris, J. S., Jr.

    1990-04-01

    The optical anisotropy of Bi2Sr2CaCu2O8 in the 0.08-0.5-eV region is investigated by polarized reflectance measurements on single crystals. A very large anisotropy is found in this spectral region. The in-plane reflectance exhibits metallic behavior, while the c-axis reflectance exhibits insulatorlike behavior. This result is consistent with the large anisotropy found in the resistivity of Bi2Sr2CaCu2O8. Our spectroscopic data suggest that Bi2Sr2CaCu2O8 is a quasi-two-dimensional metal similar to La2-xSrxCuO4.

  20. Heisenberg magnetic chain with single-ion easy-plane anisotropy: Hubbard operators approach

    International Nuclear Information System (INIS)

    Spirin, D.V.; Fridman, Y.A.

    2003-01-01

    We investigate the gap in excitation spectrum of one-dimensional S=1 ferro- and antiferromagnets with easy-plane single-ion anisotropy. The self-consistent modification of Hubbard operators approach which enables to account single-site term exactly is used. For antiferromagnetic model we found Haldane phase that exists up to point D=4J (where D is anisotropy parameter, J is exchange coupling), while quadrupolar phase realizes at larger values of anisotropy. Our results specify those of Golinelli et al. (Phys. Rev. B. 45 (1992) 9798), where similar model was studied. Besides the method gives gap value closer to numerical estimations than usual spin-wave theories

  1. IMPRINT OF A 2 MILLION YEAR OLD SOURCE ON THE COSMIC-RAY ANISOTROPY

    Energy Technology Data Exchange (ETDEWEB)

    Savchenko, V.; Semikoz, D. V. [AstroParticle and Cosmology (APC), Paris (France); Kachelrieß, M. [Institutt for fysikk, NTNU, Trondheim (Norway)

    2015-08-20

    We study numerically the anisotropy of the cosmic-ray (CR) flux emitted by a single source calculating the trajectories of individual CRs. We show that the contribution of a single source to the observed anisotropy is determined solely by the fraction the source contributes to the total CR intensity, its age, and its distance and does not depend on the CR energy at late times. Therefore, the observation of a constant dipole anisotropy indicates that a single source dominates the CR flux in the corresponding energy range. A natural explanation for the plateau between 2–20 TeV observed in the CR anisotropy is thus the presence of a single, nearby source. For the source age of 2 Myr, as suggested by the explanation of the antiproton and positron data from PAMELA and AMS-02 through a local source, we determine the source distance as ∼200 pc. Combined with the contribution of the global CR sea calculated in the escape model, we can explain qualitatively the data for the dipole anisotropy. Our results suggest that the assumption of a smooth CR source distribution should be abandoned between ≃200 GeV and 1 PeV.

  2. Evidence for a Significant Level of Extrinsic Anisotropy Due to Heterogeneities in the Mantle.

    Science.gov (United States)

    Alder, C.; Bodin, T.; Ricard, Y. R.; Capdeville, Y.; Debayle, E.; Montagner, J. P.

    2017-12-01

    Observations of seismic anisotropy are used as a proxy for lattice-preferred orientation (LPO) of anisotropic minerals in the Earth's mantle. In this way, it provides important constraints on the geometry of mantle deformation. However, in addition to LPO, small-scale heterogeneities that cannot be resolved by long-period seismic waves may also produce anisotropy. The observed (i.e. apparent) anisotropy is then a combination of an intrinsic and an extrinsic component. Assuming the Earth's mantle exhibits petrological inhomogeneities at all scales, tomographic models built from long-period seismic waves may thus display extrinsic anisotropy. Here, we investigate the relation between the amplitude of seismic heterogeneities and the level of induced S-wave radial anisotropy as seen by long-period seismic waves. We generate some simple 1D and 2D isotropic models that exhibit a power spectrum of heterogeneities as what is expected for the Earth's mantle, i.e. varying as 1/k, with k the wavenumber of these heterogeneities. The 1D toy models correspond to simple layered media. In the 2D case, our models depict marble-cake patterns in which an anomaly in S-wave velocity has been advected within convective cells. The long-wavelength equivalents of these models are computed using upscaling relations that link properties of a rapidly varying elastic medium to properties of the effective, i.e. apparent, medium as seen by long-period waves. The resulting homogenized media exhibit extrinsic anisotropy and represent what would be observed in tomography. In the 1D case, we analytically show that the level of anisotropy increases with the square of the amplitude of heterogeneities. This relation is numerically verified for both 1D and 2D media. In addition, we predict that 10 % of chemical heterogeneities in 2D marble-cake models can induce more than 3.9 % of extrinsic radial S-wave anisotropy. We thus predict that a non-negligible part of the observed anisotropy in tomographic

  3. Critical Role of Crystalline Anisotropy in the Stability of Cellular Array Structures in Directional Solidification

    International Nuclear Information System (INIS)

    Kopczynski, P.; Rappel, W.; Karma, A.

    1996-01-01

    We calculate numerically the full Floquet-Bloch stability spectrum of cellular array structures in a symmetric model of directional solidification. Our results demonstrate that crystalline anisotropy critically influences the stability of these structures. Without anisotropy, the stability balloon of cells in the plane of wave number and velocity closes near the onset of morphological instability. With a finite, but even small, amount of anisotropy this balloon remains open and a band of stable solutions persists for higher velocities into a deep cell regime. The width of the balloon depends critically on the anisotropy strength. copyright 1996 The American Physical Society

  4. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff Mathiasen, Anne-Gitte

    2013-01-01

    Mobile probing is a method, developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time and space......). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings point...... to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face). The development...

  5. Mobile Probing and Probes

    DEFF Research Database (Denmark)

    Duvaa, Uffe; Ørngreen, Rikke; Weinkouff, Anne-Gitte

    2012-01-01

    Mobile probing is a method, which has been developed for learning about digital work situations, as an approach to discover new grounds. The method can be used when there is a need to know more about users and their work with certain tasks, but where users at the same time are distributed (in time...... and space). Mobile probing was inspired by the cultural probe method, and was influenced by qualitative interview and inquiry approaches. The method has been used in two subsequent projects, involving school children (young adults at 15-17 years old) and employees (adults) in a consultancy company. Findings...... point to mobile probing being a flexible method for uncovering the unknowns, as a way of getting rich data to the analysis and design phases. On the other hand it is difficult to engage users to give in depth explanations, which seem easier in synchronous dialogs (whether online or face2face...

  6. Anisotropy of Single-Crystal Silicon in Nanometric Cutting.

    Science.gov (United States)

    Wang, Zhiguo; Chen, Jiaxuan; Wang, Guilian; Bai, Qingshun; Liang, Yingchun

    2017-12-01

    The anisotropy exhibited by single-crystal silicon in nanometric cutting is very significant. In order to profoundly understand the effect of crystal anisotropy on cutting behaviors, a large-scale molecular dynamics model was conducted to simulate the nanometric cutting of single-crystal silicon in the (100)[0-10], (100)[0-1-1], (110)[-110], (110)[00-1], (111)[-101], and (111)[-12-1] crystal directions in this study. The simulation results show the variations of different degrees in chip, subsurface damage, cutting force, and friction coefficient with changes in crystal plane and crystal direction. Shear deformation is the formation mechanism of subsurface damage, and the direction and complexity it forms are the primary causes that result in the anisotropy of subsurface damage. Structurally, chips could be classified into completely amorphous ones and incompletely amorphous ones containing a few crystallites. The formation mechanism of the former is high-pressure phase transformation, while the latter is obtained under the combined action of high-pressure phase transformation and cleavage. Based on an analysis of the material removal mode, it can be found that compared with the other crystal direction on the same crystal plane, the (100)[0-10], (110)[-110], and (111)[-101] directions are more suitable for ductile cutting.

  7. Temperature dependence of exchange anisotropy in monodisperse cobalt nanoparticles with a cobalt oxide shell

    International Nuclear Information System (INIS)

    Spasova, M.; Wiedwald, U.; Farle, M.; Radetic, T.; Dahmen, U.; Hilgendorff, M.; Giersig, M.

    2004-01-01

    Exchange anisotropy was studied by SQUID magnetometry on an array of monodisperse colloidal nanoparticles consisting of a 7-8 nm diameter FCC Co core covered with a 2-2.5 nm thick FCC CoO shell. Temperature-dependent measurements of the exchange bias field show that the exchange anisotropy vanishes when a magnetic field was applied during cooling below 150 K. The suppression of exchange anisotropy is due to uncompensated interfacial antiferromagnetic spins

  8. Hysteresis, critical fields and superferromagnetism of the film with perpendicular anisotropy

    International Nuclear Information System (INIS)

    Kalita, V.M.; Kulyk, M.M.; Ryabchenko, S.M.

    2016-01-01

    This paper is focused on the analysis of hysteresis and critical phenomena of magnetization reversal of superferromagnetic (SFM) state in nanogranular (NG) Co/Al 2 O 3 film with perpendicular anisotropy. It was demonstrated that the transition from the multidomain SFM state to the homogeneous SFM state, during the magnetization process, occurs critically. The value of the field of critical transition to the homogeneous state depends on the demagnetization field, granular anisotropy and interparticle exchange anisotropy. It turned out that the temperature dependence of the coercive force of the film, despite its SFM state, accords with the Neel–Brown formula for anisotropic single-domain ferromagnetic particles, but has an anomalous angular dependence. It was concluded that domain wall motion affects these features of the coercive field. The domain wall movement may occur due to the overturn of magnetic moments of particles in the boundaries between the superdomains. At the same time, the main factors influencing the coercivity are the anisotropy of the particles, which blocks their magnetic moment reorientation, and demagnetizing factor of the film. Together they lead to the anomalous angular dependence of the coercive field. - Highlights: • The transition from the multidomain SFM to homogeneous SFM state occurs critically. • The value of the critical field depends on the direction of the magnetizing field. • Critical transition field depends on the anisotropy of the interparticle exchange. • Dependence of H c (θ H ) differs from expected one for an ensemble of the particles. • Magnetization reversal occurs by turning the particle's moments in domain borders.

  9. Destabilization of TAE modes by particle anisotropy

    International Nuclear Information System (INIS)

    Wong, H.V.; Berk, H.L.

    1998-01-01

    Plasmas heated by ICRF produce energetic particle distribution functions which are sharply peaked in pitch-angle, and the authors show that at moderate toroidal mode numbers, this anisotropy is a competitive and even dominant instability drive when compared with the universal instability drive due to spatial gradient. The universal drive, acting along, destabilizes only co-propagating waves (i.e., waves propagating in the same toroidal direction as the diamagnetic flow of the energetic particles), but stabilizes counter-propagating waves (i.e., waves propagating in the opposite toroidal direction as the diamagnetic flow of the energetic particles). Nonetheless, the authors show that in a tokamak, it is possible that particle anisotropy can produce a larger linear growth rate for counter-propagating waves, and provide a mechanism for preferred destabilization of the counter-propagating TAE modes that are sometimes experimentally observed

  10. Microwave background anisotropy and decaying-particle models for a flat universe

    International Nuclear Information System (INIS)

    Vittorio, N.; Silk, J.

    1985-01-01

    The fine-scale anisotropy of the cosmic microwave background radiation, induced by primordial scale-invariant adiabatic density fluctuations, has been studied in flat cosmological models dominated by relativistic particles from the recent decay of a massive relic-particle species. We find that, if the relic-particle species consists of massive, unstable neutrinos, there is appreciable, and probably excessive, fine-scale anisotropy in the cosmic microwave background

  11. Topographical Anisotropy and Wetting of Ground Stainless Steel Surfaces

    Directory of Open Access Journals (Sweden)

    Cornelia Bellmann

    2012-12-01

    Full Text Available Microscopic and physico-chemical methods were used for a comprehensive surface characterization of different mechanically modified stainless steel surfaces. The surfaces were analyzed using high-resolution confocal microscopy, resulting in detailed information about the topographic properties. In addition, static water contact angle measurements were carried out to characterize the surface heterogeneity of the samples. The effect of morphological anisotropy on water contact angle anisotropy was investigated. The correlation between topography and wetting was studied by means of a model of wetting proposed in the present work, that allows quantifying the air volume of the interface water drop-stainless steel surface.

  12. Procedures for measurement of anisotropy factor of neutron sources

    International Nuclear Information System (INIS)

    Creazolla, P.G.; Camargo, A.; Astuto, A.; Silva, F.; Pereira, W.W.

    2017-01-01

    Radioisotope sources of neutrons allow the production of reference fields for calibration of neutron measurement devices for radioprotection and analysis purposes. When the emission rate of these sources is isotropic, no correction is necessary. However, variations in the source capsule material and variations in the concentration of the emitting material may produce differences in its neutron emission rate relative to the source axis, this effect is called anisotropy. A proposed procedure for measuring the anisotropy factor of the sources belonging to the IRD/LNMRI/LN Neutron Metrology Laboratory using a Precision Long Counter (PLC) detector will be presented

  13. Anisotropy function for proton-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A.

    1990-01-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp→pp. (author)

  14. Model of coordination melting of crystals and anisotropy of physical and chemical properties of the surface

    Science.gov (United States)

    Bokarev, Valery P.; Krasnikov, Gennady Ya

    2018-02-01

    Based on the evaluation of the properties of crystals, such as surface energy and its anisotropy, the surface melting temperature, the anisotropy of the work function of the electron, and the anisotropy of adsorption, were shown the advantages of the model of coordination melting (MCM) in calculating the surface properties of crystals. The model of coordination melting makes it possible to calculate with an acceptable accuracy the specific surface energy of the crystals, the anisotropy of the surface energy, the habit of the natural crystals, the temperature of surface melting of the crystal, the anisotropy of the electron work function and the anisotropy of the adhesive properties of single-crystal surfaces. The advantage of our model is the simplicity of evaluating the surface properties of the crystal based on the data given in the reference literature. In this case, there is no need for a complex mathematical tool, which is used in calculations using quantum chemistry or modeling by molecular dynamics.

  15. Magnetic anisotropy and order parameter in nanostructured CoPt particles

    Science.gov (United States)

    Komogortsev, S. V.; Iskhakov, R. S.; Zimin, A. A.; Filatov, E. Yu.; Korenev, S. V.; Shubin, Yu. V.; Chizhik, N. A.; Yurkin, G. Yu.; Eremin, E. V.

    2013-10-01

    The correlation of magnetic anisotropy energy with order parameter in the crystallites of CoPt nanostructured particles prepared by thermal decomposition and further annealing has been studied by investigation of the approach magnetization to saturation curves and x-ray powder diffraction pattern profiles. It is shown that magnetic anisotropy energy value in partially ordered CoPt crystallite could be described as an intermediate case between two extremes, corresponding to either single or several c-domains of L10 phase in crystallite.

  16. Quantum Heisenberg antiferromagnetic chains with exchange and single-ion anisotropies

    International Nuclear Information System (INIS)

    Peters, D; Selke, W; McCulloch, I P

    2010-01-01

    Using density matrix renormalization group calculations, ground state properties of the spin-1 Heisenberg chain with exchange and quadratic single-ion anisotropies in an external field are studied, for special choices of the two kinds of anisotropies. In particular, the phase diagram includes antiferromagnetic, spin-liquid (or spin-flop), IS2, and supersolid (or biconical) phases. Especially, new features of the spin-liquid and supersolid phases are discussed. Properties of the quantum chains are compared to those of corresponding classical spin chains.

  17. Validation of Micro-Meso Electrical Relations for Laminates with Varying Anisotropy

    KAUST Repository

    Selvakumaran, Lakshmi

    2015-08-01

    For electrical impedance tomography (EIT) to be useful in monitoring transverse cracks in composites, it is imperative to establish the relation between conductivity and cracking density. Micro to meso scale homogenization has been developed for classical carbon fiber reinforced polymer (CFRP) laminate which provides such a relationship. However, we have shown in previous studies that the detectability of transverse cracks in such CFRP, which are characterized by very anisotropic electrical properties, is poor. Then, it is better to lower the electrical anisotropy, which can be achieved by various technologies including doping the polymeric resin by conductive nanoparticles. However, the validity of mesoscale homogenization for laminates with such low anisotropy has not been tested before. Here, we show that the mesoscale damage indicator is intrinsic for composites with varying anisotropy.

  18. The anisotropy of fluorescence in ring units II: transfer integral fluctuations

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan; Reiter, Michal

    2005-01-01

    The time dependence of the anisotropy of fluorescence after an impulsive excitation in the molecular ring (resembling the B850 ring of the purple bacterium Rhodopseudomonas acidophila) is calculated. Fast fluctuations of the environment are simulated by dynamic disorder and slow fluctuations by static disorder. Without dynamic disorder, modest degrees of static disorder are sufficient to cause the experimentally found initial drop of the anisotropy on a sub-100 fs time scale. In the present investigation we are comparing results for the time-dependent optical anisotropy of the molecular ring for three models of the static disorder: Gaussian disorder in the local energies (Model A), Gaussian disorder in the transfer integrals (Model B) and Gaussian disorder in radial positions of molecules (Model C). Both types of disorder-static and dynamic-are taken into account simultaneously

  19. Electric field controlled reversible magnetic anisotropy switching studied by spin rectification

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Hengan; Fan, Xiaolong, E-mail: fanxiaolong@lzu.edu.cn; Wang, Fenglong; Jiang, Changjun; Rao, Jinwei; Zhao, Xiaobing; Xue, Desheng [Key Laboratory for Magnetism and Magnetic Materials of Ministry of Education, Lanzhou University, Lanzhou 730000 (China); Gui, Y. S.; Hu, C.-M. [Department of Physics and Astronomy, University of Manitoba, Winnipeg, Manitoba R3T 2N2 (Canada)

    2014-03-10

    In this letter, spin rectification was used to study the electric field controlled dynamic magnetic properties of the multiferroic composite which is a Co stripe with induced in-plane anisotropy deposited onto a Pb(Mg{sub 1∕3}Nb{sub 2∕3})O{sub 3}-PbTiO{sub 3} substrate. Due to the coupling between piezoelectric and magnetoelastic effects, a reversible in-plane anisotropy switching has been realized by varying the history of the applied electric field. This merit results from the electric hysteresis of the polarization in the nonlinear piezoelectric regime, which has been proved by a butterfly type electric field dependence of the in-plane anisotropy field. Moreover, the electric field dependent effective demagnetization field and linewidth have been observed at the same time.

  20. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Directory of Open Access Journals (Sweden)

    H. K. Lee

    2016-05-01

    Full Text Available We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La0.7Sr0.3MnO3 (LSMO and Pt capped LSMO thin films on SrTiO3 (001 substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1 × 10−3, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  1. Magnetic anisotropy, damping, and interfacial spin transport in Pt/LSMO bilayers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H. K., E-mail: hankl@uci.edu; Barsukov, I.; Yang, L.; Krivorotov, I. N. [Physics and Astronomy, University of California, Irvine, California 92697 (United States); Swartz, A. G.; Kim, B. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Hwang, H. Y. [Geballe Laboratory for Advanced Materials, Department of Applied Physics, Stanford University, Stanford, California 94305 (United States); Stanford Institute for Materials and Energy Sciences, SLAC National Accelerator Laboratory, Menlo Park, California 94025 (United States)

    2016-05-15

    We report ferromagnetic resonance measurements of magnetic anisotropy and damping in epitaxial La{sub 0.7}Sr{sub 0.3}MnO{sub 3} (LSMO) and Pt capped LSMO thin films on SrTiO{sub 3} (001) substrates. The measurements reveal large negative perpendicular magnetic anisotropy and a weaker uniaxial in-plane anisotropy that are unaffected by the Pt cap. The Gilbert damping of the bare LSMO films is found to be low α = 1.9(1) × 10{sup −3}, and two-magnon scattering is determined to be significant and strongly anisotropic. The Pt cap increases the damping by 50% due to spin pumping, which is also directly detected via inverse spin Hall effect in Pt. Our work demonstrates efficient spin transport across the Pt/LSMO interface.

  2. Detection of zero anisotropy at 5.2 AU during the November 1998 solar particle event: Ulysses Anisotropy Telescopes observations

    Directory of Open Access Journals (Sweden)

    S. Dalla

    Full Text Available For the first time during the mission, the Anisotropy Telescopes instrument on board the Ulysses spacecraft measured constant zero anisotropy of protons in the 1.3-2.2 MeV energy range, for a period lasting more than three days. This measurement was made during the energetic particle event taking place at Ulysses between 25 November and 15 December 1998, an event characterised by constant high proton fluxes within a region delimited by two interplanetary forward shocks, at a distance of 5.2 AU from the Sun and heliographic latitude of 17°S. We present the ATs results for this event and discuss their possible interpretation and their relevance to the issue of intercalibration of the two telescopes.

    Key words: Interplanetary physics (energetic particles - Solar physics, astrophysics and astronomy (energetic particles - Space plasma physics (instruments and techniques

  3. Anisotropy function for proton-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Azhar, I.A. (Punjab Univ., Lahore (Pakistan). Centre for High Energy Physics)

    1990-07-01

    By using the generalized Chou-Yang model and the experimental data on pp elastic scattering at 53 GeV, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction pp{yields}pp. (author).

  4. Ultrafast dissociation: An unexpected tool for probing molecular dynamics

    International Nuclear Information System (INIS)

    Morin, Paul; Miron, Catalin

    2012-01-01

    Highlights: ► Ultrafast dissociation has been investigated by means of XPS and mass spectrometry. ► The interplay between electron relaxation and molecular dynamics is evidenced. ► Extension toward polyatomics, clusters, adsorbed molecules is considered. ► Quantum effects (spectral hole, angular effects) evidence the molecular field anisotropy. -- Abstract: Ultrafast dissociation following core–shell excitation into an antibonding orbital led to the early observation in HBr of atomic Auger lines associated to the decay of dissociated excited atoms. The purpose of this article is to review the very large variety of systems where such a situation has been encountered, extending from simple diatomic molecules toward more complex systems like polyatomics, clusters, or adsorbed molecules. Interestingly, this phenomenon has revealed an extremely rich and powerful tool for probing nuclear dynamics and its subtle interplay with electron relaxation occurring on a comparable time scale. Consequently this review covers a surprisingly large period, starting in 1986 and still ongoing.

  5. Interactive DataBase of Cosmic Ray Anisotropy (DB A10)

    Science.gov (United States)

    Asipenka, A.S.; Belov, A.V.; Eroshenko, E.F.; Klepach, E.G.; Oleneva, V.A.; Yake, V.G.

    Data on the hourly means of cosmic ray density and anisotropy derived by the GSM method over the 1957-2006 are introduced in to MySQL database. This format allowed an access to data both in local and in the Internet. Using the realized combination of script-language Php and My SQL database the Internet project was created on the access for users data on the CR anisotropy in different formats (http://cr20.izmiran.ru/AnisotropyCR/main.htm/). Usage the sheaf Php and MySQL provides fast receiving data even in the Internet since a request and following process of data are accomplished on the project server. Usage of MySQL basis for the storing data on cosmic ray variations give a possibility to construct requests of different structures, extends the variety of data reflection, makes it possible the conformity data to other systems and usage them in other projects.

  6. Two-scale characterization of deformation-induced anisotropy of polycrystalline metals

    International Nuclear Information System (INIS)

    Watanabe, Ikumu; Terada, Kenjiro

    2004-01-01

    The anisotropic macro-scale mechanical behavior of polycrystalline metals is characterized by incorporating the micro-scale constitutive model of single crystal plasticity into the two-scale modeling based on the mathematical homogenization theory. The two-scale simulations are conducted to analyze the macro-scale anisotropy induced by micro-scale plastic deformation of the polycrystalline aggregate. In the simulations, the micro-scale representative volume element (RVE) of a polycrystalline aggregate is uniformly loaded in one direction, unloaded to macroscopically zero stress in a certain stage of deformation and then re-loaded in the different directions. The last re-loading calculations provide different macro-scale responses of the RVE, which can be the appearance of material anisotropy. We then try to examine the effects of the intergranular and intragranular behaviors on the anisotropy by means of various illustrations of plastic deformation process in stead of the use of pole figures for the change of crystallographic orientations

  7. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    International Nuclear Information System (INIS)

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza; Siegal-Gaskins, Jennifer M.

    2014-01-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations

  8. Fermi-LAT γ-ray anisotropy and intensity explained by unresolved radio-loud active galactic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Mauro, Mattia Di; Cuoco, Alessandro; Donato, Fiorenza [Dipartimento di Fisica, Università di Torino, via P. Giuria 1, Torino, 10125 Italy (Italy); Siegal-Gaskins, Jennifer M., E-mail: mattia.dimauro@to.infn.it, E-mail: alessandro.cuoco@to.infn.it, E-mail: donato@to.infn.it, E-mail: jsg@tapir.caltech.edu [California Institute of Technology, 1200 E. California Blvd., Pasadena, CA, 91125 (United States)

    2014-11-01

    Radio-loud active galactic nuclei (AGN) are expected to contribute substantially to both the intensity and anisotropy of the isotropic γ-ray background (IGRB). In turn, the measured properties of the IGRB can be used to constrain the characteristics of proposed contributing source classes. We consider individual subclasses of radio-loud AGN, including low-, intermediate-, and high-synchrotron-peaked BL Lacertae objects, flat-spectrum radio quasars, and misaligned AGN. Using updated models of the γ-ray luminosity functions of these populations, we evaluate the energy-dependent contribution of each source class to the intensity and anisotropy of the IGRB. We find that collectively radio-loud AGN can account for the entirety of the IGRB intensity and anisotropy as measured by the Fermi Large Area Telescope (LAT). Misaligned AGN provide the bulk of the measured intensity but a negligible contribution to the anisotropy, while high-synchrotron-peaked BL Lacertae objects provide the dominant contribution to the anisotropy. In anticipation of upcoming measurements with the Fermi-LAT and the forthcoming Cherenkov Telescope Array, we predict the anisotropy in the broader energy range that will be accessible to future observations.

  9. Remarkable strain-induced magnetic anisotropy in epitaxial Co2MnGa (0 0 1) films

    International Nuclear Information System (INIS)

    Pechan, Michael J.; Yu, Chengtao; Carr, David; Palmstroem, Chris J.

    2005-01-01

    Remarkably large, strain-induced anisotropy is observed in the thin-film Heusler alloy Co 2 MnGa. 30 nm Co 2 MnGa (0 0 1) films have been epitaxially grown on different interlayers/substrates with varied strain, and investigated with ferromagnetic resonance. The film grown on ErAs/InGaAs/InP experiences tension strain, resulting in an out-of-plane strain-induced anisotropy (∼1.1x10 6 erg/cm 3 ) adding to the effects of shape anisotropy. In contrast, the film grown on ScErAs/GaAs, experiences a compression strain, resulting in an out-of-plane strain-induced anisotropy (∼3.3x10 6 erg/cm 3 ) which almost totally cancels the effects of shape anisotropy, thus rendering the film virtually isotropic. This results in the formation of stripe domains in remanence. In addition, small, but well-defined 2-fold and 4-fold in-plane anisotropy coexist in each sample with weak, but interesting strain dependence. Transport measurement shows small (<1%) magnetoresistance effects in the compression film, but negligible magnetoresistance in the relaxed and tension strained samples

  10. Probing the Cosmic X-Ray and MeV Gamma-Ray Background Radiation through the Anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States). School of Natural Sciences; Madejski, Grzegorz M. [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States). Kavli Inst. for Particle Astrophysics and Cosmology; SLAC National Accelerator Lab., Menlo Park, CA (United States); Rikkyo Univ., Tokyo (Japan). Dept. of Physics

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once the future hard X-ray all sky satellites achieve the sensitivity better than 10-12 erg/cm2/s-1 at 10-30 keV or 30-50 keV - although this is beyond the sensitivities of current hard X-ray all sky monitors - angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  11. Probing the cosmic x-ray and MeV gamma ray background radiation through the anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Yoshiyuki [Stanford Univ., CA (United States); Murase, Kohta [Inst. for Advanced Study, Princeton, NJ (United States); Madejski, Grzegorz M. [Stanford Univ., CA (United States); Uchiyama, Yasunobu [Stanford Univ., CA (United States); Rikkyo Univ., Tokyo (Japan)

    2013-09-24

    While the cosmic soft X-ray background is very likely to originate from individual Seyfert galaxies, the origin of the cosmic hard X-ray and MeV gamma-ray background is not fully understood. It is expected that Seyferts including Compton thick population may explain the cosmic hard X-ray background. At MeV energy range, Seyferts having non-thermal electrons in coronae above accretion disks or MeV blazars may explain the background radiation. We propose that future measurements of the angular power spectra of anisotropy of the cosmic X-ray and MeV gamma-ray backgrounds will be key to deciphering these backgrounds and the evolution of active galactic nuclei (AGNs). As AGNs trace the cosmic large-scale structure, spatial clustering of AGNs exists. We show that e-ROSITA will clearly detect the correlation signal of unresolved Seyferts at 0.5-2 keV and 2-10 keV bands and will be able to measure the bias parameter of AGNs at both bands. Once future hard X-ray all sky satellites achieve a sensitivity better than 10–12 erg cm–2 s–1 at 10-30 keV or 30-50 keV—although this is beyond the sensitivities of current hard X-ray all sky monitors—angular power spectra will allow us to independently investigate the fraction of Compton-thick AGNs in all Seyferts. We also find that the expected angular power spectra of Seyferts and blazars in the MeV range are different by about an order of magnitude, where the Poisson term, so-called shot noise, is dominant. Current and future MeV instruments will clearly disentangle the origin of the MeV gamma-ray background through the angular power spectrum.

  12. Analytical model for shape anisotropy in thin-film nanostructured arrays: Interaction effects

    International Nuclear Information System (INIS)

    Alvarez-Sanchez, R.; Costa-Kraemer, J.L.; Briones, F.

    2006-01-01

    When reducing the size of array elements and interelement separations to the nanoscale, long-range magnetostatic interactions become important. A methodology that extends the study of conventional single-element magnetostatics is presented, adding the effect of stacking nanoelements into close proximity in arrays and the consequent interaction effects. This would be very time consuming to model by micromagnetic simulations that are also very vulnerable to artifacts due to cell or boundary condition selection. The proposed method considers an analytical expression valid for short interelement separations and not very costly to evaluate by computational means. This approach allows the quantitative study of shape anisotropy in non-square-shaped arrays. It is also shown how it can be used to find anisotropy compensation conditions, where an anisotropy due to a magnetic element shape can be compensated by the shape anisotropy due to the array. The obtained results can be used to establish a criterion for the minimum number of elements to be considered for a micromagnetic simulation of an array to be realistic depending on the element size and separation

  13. Integrated cosmological probes: concordance quantified

    Energy Technology Data Exchange (ETDEWEB)

    Nicola, Andrina; Amara, Adam; Refregier, Alexandre, E-mail: andrina.nicola@phys.ethz.ch, E-mail: adam.amara@phys.ethz.ch, E-mail: alexandre.refregier@phys.ethz.ch [Department of Physics, ETH Zürich, Wolfgang-Pauli-Strasse 27, CH-8093 Zürich (Switzerland)

    2017-10-01

    Assessing the consistency of parameter constraints derived from different cosmological probes is an important way to test the validity of the underlying cosmological model. In an earlier work [1], we computed constraints on cosmological parameters for ΛCDM from an integrated analysis of CMB temperature anisotropies and CMB lensing from Planck, galaxy clustering and weak lensing from SDSS, weak lensing from DES SV as well as Type Ia supernovae and Hubble parameter measurements. In this work, we extend this analysis and quantify the concordance between the derived constraints and those derived by the Planck Collaboration as well as WMAP9, SPT and ACT. As a measure for consistency, we use the Surprise statistic [2], which is based on the relative entropy. In the framework of a flat ΛCDM cosmological model, we find all data sets to be consistent with one another at a level of less than 1σ. We highlight that the relative entropy is sensitive to inconsistencies in the models that are used in different parts of the analysis. In particular, inconsistent assumptions for the neutrino mass break its invariance on the parameter choice. When consistent model assumptions are used, the data sets considered in this work all agree with each other and ΛCDM, without evidence for tensions.

  14. Probing the probe: AFM tip-profiling via nanotemplates to determine Hamaker constants from phase–distance curves

    International Nuclear Information System (INIS)

    Rodriguez, Raul D.; Lacaze, Emmanuelle; Jupille, Jacques

    2012-01-01

    A method to determine the van der Waals forces from phase–distance curves recorded by atomic force microscopy (AFM) in tapping mode is presented. The relationship between the phase shift and the tip–sample distance is expressed as a function of the product of the Hamaker constant by tip radius. Silica-covered silicon tips are used to probe silica-covered silicon substrate in dry conditions to avoid capillary effects. Tips being assumed spherical, radii are determined in situ by averaging profiles recorded in different directions on hematite nanocrystals acting as nanotemplates, thus accounting for tip anisotropy. Through a series of reproducible measurements performed with tips of various radii (including the in-situ characterization of a damaged tip), a value of (6.3±0.4)×10 −20 J is found for the Hamaker constant of interacting silica surfaces in air, in good agreement with tabulated data. The results demonstrate that the onset of the tip–surface interaction is dominated by the van der Waals forces and that the total force can be modeled in the framework of the harmonic approximation. Based on the tip radius and the Hamaker constant associated to the tip–substrate system, the model is quite flexible. Once the Hamaker constant is known, a direct estimate of the tip size can be achieved whereas when the tip size is known, a quantitative evaluation of the van der Waals force becomes possible on different substrates with a spatial resolution at the nanoscale. -- Highlights: ► Van der Waal forces in tapping mode atomic force microscopy. ► Harmonic approximation model of phase–distance curves probed by simulations. ► Silica tips and surfaces as a model case. ► Tip geometry determined in situ by nanoparticles as nanotemplates. ► Method to derive the Hamaker constant for any tip/surface system.

  15. Evidence for Radial Anisotropy in Earth's Upper Inner Core from Normal Modes

    Science.gov (United States)

    Lythgoe, K.; Deuss, A. F.

    2017-12-01

    The structure of the uppermost inner core is related to solidification of outer core material at the inner core boundary. Previous seismic studies using body waves indicate an isotropic upper inner core, although radial anisotropy has not been considered since it cannot be uniquely determined by body waves. Normal modes, however, do constrain radial anisotropy in the inner core. Centre frequency measurements indicate 2-5 % radial anisotropy in the upper 100 km of the inner core, with a fast direction radially outwards and a slow direction along the inner core boundary. This seismic structure provides constraints on solidification processes at the inner core boundary and appears consistent with texture predicted due to anisotropic inner core growth.

  16. Measuring the Alfvénic nature of the interstellar medium: Velocity anisotropy revisited

    International Nuclear Information System (INIS)

    Burkhart, Blakesley; Lazarian, A.; Leão, I. C.; De Medeiros, J. R.; Esquivel, A.

    2014-01-01

    The dynamics of the interstellar medium (ISM) are strongly affected by turbulence, which shows increased anisotropy in the presence of a magnetic field. We expand upon the Esquivel and Lazarian method to estimate the Alfvén Mach number using the structure function anisotropy in velocity centroid data from Position-Position-Velocity maps. We utilize three-dimensional magnetohydrodynamic simulations of fully developed turbulence, with a large range of sonic and Alfvénic Mach numbers, to produce synthetic observations of velocity centroids with observational characteristics such as thermal broadening, cloud boundaries, noise, and radiative transfer effects of carbon monoxide. In addition, we investigate how the resulting anisotropy-Alfvén Mach number dependency found in Esquivel and Lazarian might change when taking the second moment of the Position-Position-Velocity cube or when using different expressions to calculate the velocity centroids. We find that the degree of anisotropy is related primarily to the magnetic field strength (i.e., Alfvén Mach number) and the line-of-sight orientation, with a secondary effect on sonic Mach number. If the line of sight is parallel to up to ≈45 deg off of the mean field direction, the velocity centroid anisotropy is not prominent enough to distinguish different Alfvénic regimes. The observed anisotropy is not strongly affected by including radiative transfer, although future studies should include additional tests for opacity effects. These results open up the possibility of studying the magnetic nature of the ISM using statistical methods in addition to existing observational techniques.

  17. A joint inversion for shear velocity and anisotropy: the Woodlark Rift, Papua New Guinea

    Science.gov (United States)

    Eilon, Zachary; Abers, Geoffrey A.; Gaherty, James B.

    2016-08-01

    Trade-offs between velocity and anisotropy heterogeneity complicate the interpretation of differential traveltime data and have the potential to bias isotropic tomographic models. By constructing a simple parametrisation to describe an elastic tensor with hexagonal symmetry, we find analytic solutions to the Christoffel equations in terms of fast and slow horizontal velocities that allow us to simultaneously invert differential traveltime data and splitting data from teleseismic S arrivals to recover 3-D velocity and anisotropy structure. This technique provides a constraint on the depth-extent of shallow anisotropy, otherwise absent from interpretations based on SKS splitting alone. This approach is well suited to the young Woodlark Rift, where previous studies have found strong velocity variation and substantial SKS splitting in a continental rift with relatively simple geometry. This study images a low-velocity rift axis with ≤4 per cent spreading-parallel anisotropy at 50-100 km depth that separates regions of pre-existing lithospheric fabric, indicating the synchronous development of extensional crystallographic preferred orientation and lithospheric thinning. A high-velocity slab fragment north of the rift axis is associated with strike-parallel anisotropic fast axes, similar to that seen in the shallow mantle of some subduction zones. In addition to the insights provided by the anisotropy structure, the improvement in fit to the differential traveltime data demonstrates the merit to a joint inversion that accounts for anisotropy.

  18. Layering and temperature-dependent magnetization and anisotropy of naturally produced Ni/NiO multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Pappas, S. D.; Trachylis, D.; Velgakis, M. J. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Kapaklis, V.; Joensson, P. E.; Papaioannou, E. Th. [Department of Physics and Astronomy, Uppsala University, Box 516, SE-751 20 Uppsala (Sweden); Delimitis, A. [Chemical Process Engineering Research Institute (CPERI), Centre for Research and Technology Hellas (CERTH), 57001 Thermi, Thessaloniki (Greece); Poulopoulos, P. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Materials Science Department, University of Patras, 26504 Patras (Greece); Fumagalli, P. [Institut fuer Experimentalphysik, Freie Universitaet Berlin, Arnimallee 14, D-14195 Berlin-Dahlem (Germany); Politis, C. [Laboratory of High-Tech Materials, School of Engineering, University of Patras, 26504 Patras (Greece); Department of Materials Science and Engineering, University of Texas at Arlington, Arlington, Texas 76019 (United States)

    2012-09-01

    Ni/NiO multilayers were grown by magnetron sputtering at room temperature, with the aid of the natural oxidation procedure. That is, at the end of the deposition of each single Ni layer, air is let to flow into the vacuum chamber through a leak valve. Then, a very thin NiO layer ({approx}1.2 nm) is formed. Simulated x-ray reflectivity patterns reveal that layering is excellent for individual Ni-layer thickness larger than 2.5 nm, which is attributed to the intercalation of amorphous NiO between the polycrystalline Ni layers. The magnetization of the films, measured at temperatures 5-300 K, has almost bulk-like value, whereas the films exhibit a trend to perpendicular magnetic anisotropy (PMA) with an unusual significant positive interface anisotropy contribution, which presents a weak temperature dependence. The power-law behavior of the multilayers indicates a non-negligible contribution of higher order anisotropies in the uniaxial anisotropy. Bloch-law fittings for the temperature dependence of the magnetization in the spin-wave regime show that the magnetization in the multilayers decreases faster as a function of temperature than the one of bulk Ni. Finally, when the individual Ni-layer thickness decreases below 2 nm, the multilayer stacking vanishes, resulting in a dramatic decrease of the interface magnetic anisotropy and consequently in a decrease of the perpendicular magnetic anisotropy.

  19. Tailoring of in-plane magnetic anisotropy in polycrystalline cobalt thin films by external stress

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Dileep, E-mail: dkumar@csr.res.in [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Singh, Sadhana [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Vishawakarma, Pramod [School of Nanotechnology, RGPV, Bhopal 462036 (India); Dev, Arun Singh; Reddy, V.R. [UGC-DAE Consortium for Scientic Research, Khandwa Road, Indore 452001 (India); Gupta, Ajay [Amity Center for Spintronic Materials, Amity University, Sector 125, Noida 201303 (India)

    2016-11-15

    Polycrystalline Co films of nominal thickness ~180 Å were deposited on intentionally curved Si substrates. Tensile and compressive stresses of 100 MPa and 150 MPa were induced in the films by relieving the curvature. It has been found that, within the elastic limit, presence of stress leads to an in-plane magnetic anisotropy in the film and its strength increases with increasing stress. Easy axis of magnetization in the films is found to be parallel/ transverse to the compressive /tensile stresses respectively. The origin of magnetic anisotropy in the stressed films is understood in terms of magneto- elastic coupling, where the stress try to align the magnetic moments in order to minimize the magneto-elastic as well as anisotropy energy. Tensile stress is also found to be responsible for the surface smoothening of the films, which is attributed to the movement of the atoms associated with the applied stress. The present work provides a possible way to tailor the magnetic anisotropy and its direction in polycrystalline and amorphous films using external stress. - Highlights: • Tensile and compressive stresses were induced in Co films by removing the bending force from the substrates after film deposition. • Controlled external mechanical stress is found to be responsible for magnetic anisotropies in amorphous and polycrystalline thin films, where crystalline anisotropy is absent. • Tensile stress leads to surface smoothening of the polycrystalline Co films.

  20. The Anisotropy of Replicated Aluminum Foams

    Directory of Open Access Journals (Sweden)

    Eugeny L. Furman

    2014-01-01

    Full Text Available The replication casting process gives the open-cell aluminum foams that can be used in many industrial applications as well as in filtering technology. The essential requirement for filters is the uniformity of filtering degree which is defined by the minimal pore size. However the structure of replication castings is often inhomogeneous and the minimal pore radius is decreasing in the direction of melt infiltration. The objective of this investigation is to study the dynamics of melt impregnation of the porous medium by vacuum suction to identify the possibility of reducing the anisotropy. Theoretical data illustrate the processes at the boundary between melt and gas medium. The experiments were carried out using the replication aluminum samples produced according to commercial technology. It was found that the permeability coefficient varies throughout the height of castings. A method for estimation of pressure on the line of melt movement was proposed. The resistance of NaCl layer and circular vents of the mold causes the inhomogeneity of castings. Finally the ways of minimizing the anisotropy were offered.

  1. Polarimetric study of the optical anisotropy of polymers

    International Nuclear Information System (INIS)

    Sinyavsky, N; Korneva, I

    2017-01-01

    This paper presents the results of an optical anisotropy study of a polymer film and the effect of temperature on birefringence. A method using a polariscope for the quantitative determination of the optical path difference is offered. The research findings are useful to students of physical and engineering specialities studying electromagnetic theory and optics. The described experiments and theoretical approaches are based on prominent aspects of modern optics. This work can be used to teach students the methods of polarimetry, the method of measuring optical anisotropy, and the basics of colorimetry. Students will learn a color description system to demonstrate the interference of polarized light, as well as being able to make a comparison between the numerical simulation and experiment of the interference pattern. (paper)

  2. Effects of scattering anisotropy approximation in multigroup radiation shielding calculations

    International Nuclear Information System (INIS)

    Altiparmakov, D.

    1983-01-01

    Expansion of the scattering cross sections into Legendre series is the usual way of solving neutron transport problems. Because of the large space gradients of the neutron flux, the effects of that approximation become especially remarkable in the radiation shielding calculations. In this paper, a method taking into account the scattering anisotropy is presented. From the point od view of the accuracy and computing rate, the optimal approximation of the scattering anisotropy is established for the basic protective materials on the basis of simple problem calculations. (author)

  3. Banana regime pressure anisotropy in a bumpy cylinder magnetic field

    International Nuclear Information System (INIS)

    Garcia-Perciante, A.L.; Callen, J.D.; Shaing, K.C.; Hegna, C.C.

    2006-01-01

    The pressure anisotropy is calculated for a plasma in a bumpy cylindrical magnetic field in the low collisionality (banana) regime for small magnetic-field modulations (ε≡ΔB/2B parallel is then calculated and is shown to exceed the flux-surface-averaged parallel viscous force parallel > by a factor of O(1/ε). A high-frequency limit (ω>>ν) for the pressure anisotropy is also determined and the calculation is then extended to include the full frequency dependence by using an expansion in Cordey eigenfunctions

  4. Sidereal anisotropy of small air showers observed at Mt. Norikura

    International Nuclear Information System (INIS)

    Nagashima, K.; Sakakibara, S.; Fujimoto, K.; Fujii, Z.; Ueno, H.; Kondo, I.

    1977-01-01

    Observation of small air showers has been continued from August 1970, using a part of the multidirectional cosmic ray telescope at Mt. Norikura. Most significant result obtained from this observation was a sidereal diurnal anisotropy of amplitude 0.051 +- 0.004% with maximum at 1.0 +- 0.5 h, which showed a persistent trend over six years. Based on the results of the observation together with those obtained by Gombosi et al. and Fenton et al., a tentative model of sidereal anisotropies is presented. (author)

  5. Recent advances in anisotropy of magnetic remanence: New software and practical examples

    Czech Academy of Sciences Publication Activity Database

    Chadima, Martin

    -, special issue (2012), s. 59-60 ISSN 1335-2806. [Castle meeting New Trends in Geomagnetism : Paleo, rock and environmental magnetism/13./. 17.06.2012-23.06.2012, Zvolen] Institutional support: RVO:67985831 Keywords : magnetic susceptibility * anisotropy * anisotropy of magnetic susceptibility Subject RIV: DE - Earth Magnetism, Geodesy, Geography http://gauss.savba.sk/GPIweb/conferences/Castle2012/abstrCastle.pdf

  6. Analysis of the magnetic anisotropy in SmCo5 and GdCo5

    International Nuclear Information System (INIS)

    Zhao, T.; Jin, H.; Groessinger, R.; Kou, X.; Kirchmayr, H.R.

    1991-01-01

    The temperature dependence of the magnetic anisotropy constant K 1 for SmCo 5 and GdCo 5 is well reproduced by calculations based on a single-ion model taking into account the anisotropies of the R--Co exchange interaction and the Co-sublattice magnetic moment. The anisotropy of the R--Co exchange interaction plays an important role in reproducing the experimental K 1 (T) for SmCo 5 and GdCo 5 . It is found that the absolute value of the second order crystalline electric field parameter A 0 2 in SmCo 5 decreases monotonically with increasing temperature

  7. Friction Anisotropy with Respect to Topographic Orientation

    Science.gov (United States)

    Yu, Chengjiao; Wang, Q. Jane

    2012-01-01

    Friction characteristics with respect to surface topographic orientation were investigated using surfaces of different materials and fabricated with grooves of different scales. Scratching friction tests were conducted using a nano-indentation-scratching system with the tip motion parallel or perpendicular to the groove orientation. Similar friction anisotropy trends were observed for all the surfaces studied, which are (1) under a light load and for surfaces with narrow grooves, the tip motion parallel to the grooves offers higher friction coefficients than does that perpendicular to them, (2) otherwise, equal or lower friction coefficients are found under this motion. The influences of groove size relative to the diameter of the mating tip (as a representative asperity), surface contact stiffness, contact area, and the characteristic stiction length are discussed. The appearance of this friction anisotropy is independent of material; however, the boundary and the point of trend transition depend on material properties. PMID:23248751

  8. Composite microstructural anisotropies in reservoir rocks: consequences on elastic properties and relation with deformation; Anisotropies microstructurales composites dans les roches reservoir: consequences sur les proprietes elastiques et relation a la deformation

    Energy Technology Data Exchange (ETDEWEB)

    Louis, L.

    2003-10-15

    From diagenesis to tectonic stress induced deformation, rock microstructures always present some anisotropy associated with a preferential orientation, shape or spatial arrangement of its constituents. Considering the consequences anisotropy has on directional transport properties and compliance, as the geological history it carries, this approach has received a particular attention in numerous works. In this work, the microstructural features of various sedimentary rocks were investigated through direct observations and laboratory measurements in naturally deformed and undeformed blocks, samples being considered as effective media. All investigated samples were found to be anisotropic with respect to the physical properties we measured (i.e. ultrasonic P-wave velocity, magnetic susceptibility, electrical conductivity). Considering that P-wave velocities can be described by a second order tensor, we applied to the velocity data the same inversion procedure as the one routinely used in magnetic studies, which provided an efficient tool to estimate and compare these 3D anisotropies with respect to the original sample geographical position. In each case, we tried to identify as thoroughly as possible the microstructural source of the observed anisotropies, first by the mean of existing models, then through direct observations (optic and electronic microscopy). Depending on the rock investigated, anisotropy was found to be controlled by pore shape, intergranular contact distribution, preferentially oriented microcracks interacting with compaction pattern or pressure solution cleavages interacting with each other. The net result of this work is that P-wave velocity anisotropy can express the interaction between different microstructural features as well as their evolution during deformation. (author)

  9. The Basics of Anisotropy-Based Analysis of Discrete Time-Invariant Systems

    Directory of Open Access Journals (Sweden)

    I. R. Belov

    2017-01-01

    Full Text Available When investigating a behavior of dynamical systems, we should take into account the external noises, which have an effect on the system. The article introduces a concept of the anisotropy-based norm of the system as one of the ways to describe the measure of the effect of external disturbances on the system. The definition of the anisotropic norm includes some concepts from information theory, such as relative entropy and anisotropy. The theoretical section at the beginning of the article describes these definitions. The considered norm of the system can be evaluated in several ways. The article examines two methods - in the frequency domain and in the state space. To find the norm in the state space it is necessary to find the solution of the Riccati equation. This problem is rather laborious. So the algorithms to avoid the solution of Riccati equation are used in application of anisotropy-based norm’s evaluation methods. The principle of these algorithms is replacement of Riccati equation by the system of linear matrix inequalities. The software implementation of methods under consideration is designed using the MATLAB packages. The calculation results of the anisotropy-based norm for a given linear discrete system are obtained using this program. The article presents these results as graphs.This article enters into the Master's qualifying work "Basic quality criteria in the theory of linear systems". In this paper we consider various quality criteria, the solution of the optimal control problem for each of them, and compare the results obtained for different criteria. The anisotropy-based norm considered in the article is one of the quality criteria.

  10. Exchange anisotropy and micromagnetic properties of PtMn/NiFe bilayers

    International Nuclear Information System (INIS)

    Pokhil, Taras; Linville, Eric; Mao, Sining

    2001-01-01

    Magnetic microstructure, exchange induced uniaxial and unidirectional anisotropy and structural transformation have been studied in PtMn/NiFe bilayer films and small elements as a function of annealing time. The relationship between the fcc-fct ordering phase transformation in PtMn and the development of exchange induced magnetic properties in PtMn/NiFe bilayers is complicated by the fact that the transformation occurs throughout the entire volume of the PtMn film, while the exchange between the layers is predominantly an interface effect. Consequently, the development of the exchange anisotropy should depend primarily on the character of the structural transformation at the interface between PtMn and NiFe. The purpose of this article is to correlate the volume phase transformation in PtMn to the development of exchange anisotropy and micromagnetic behavior in PtMn/NiFe bilayers. The interface structure can be inferred from the anisotropy and micromagnetic measurements, leading to a model that explains the relationship between the volume and interface transformation structures in PtMn, and magnetic properties of the bilayers. The structure and magnetic properties were characterized by x-ray diffraction, vibrating sample magnetometry, and magnetic force microscopy. [copyright] 2001 American Institute of Physics

  11. Short communication: Multi-scale topographic anisotropy patterns on a Barrier Island

    Science.gov (United States)

    Houser, Chris; Bishop, Michael; Wernette, Phil

    2017-11-01

    Barrier islands exhibit a range of landforms that reflect the complex and varied combination of coastal and aeolian processes realized over the evolution of the island. A detailed analysis of the topography can be used to describe the evolution of a barrier island and provide insight on how it may be affected by a change in sea level, storm activity and wind exposure patterns. Topographic anisotropy, or the directional dependence of relief of landforms, can be used to determine the relative importance of different processes to island evolution at a range of scales. This short communication describes the use of scale-dependent topographic anisotropy to characterize the structure of Santa Rosa Island in northwest Florida. Scale-dependent topographic relief and asymmetry were assessed from a LiDAR-derived DEM from May 2004, a few months before the island experienced widespread erosion and overwash during Hurricane Ivan. This application demonstrates how anisotropy can be used to identify unique scale-dependent structures that can be used to interpret the evolution of this barrier island. Results of this preliminary study further highlight the potential of using topographic anisotropy to controls on barrier island response and recovery to storms as well as island resiliency with sea level rise and storm activity.

  12. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    International Nuclear Information System (INIS)

    Manonukul, Anchalee; Srikudvien, Pathompoom; Tange, Makiko; Puncreobutr, Chedtha

    2016-01-01

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  13. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    International Nuclear Information System (INIS)

    Li Hongyan; Klem, Michael T.; Sebby, Karl B.; Singel, David J.; Young, Mark; Douglas, Trevor; Idzerda, Yves U.

    2009-01-01

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size

  14. Geometry anisotropy and mechanical property isotropy in titanium foam fabricated by replica impregnation method

    Energy Technology Data Exchange (ETDEWEB)

    Manonukul, Anchalee, E-mail: anchalm@mtec.or.th [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Srikudvien, Pathompoom [National Metal and Materials Technology Center (MTEC), National Science and Technology Development Agency (NSTDA), 114 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Tange, Makiko [Taisei Kogyo Thailand Co., Ltd., Room INC2d-409, Innovation Cluster 2 Building, Tower D, 141 Thailand Science Park, Paholyothin Rd., Klong 1, Klong Luang, Pathumthani 12120 (Thailand); Puncreobutr, Chedtha [Department of Metallurgical Engineering, Faculty of Engineering, Chulalongkorn University, Pathumwan, Bangkok 10330 (Thailand)

    2016-02-08

    Polyurethane (PU) foams have both geometry and mechanical property anisotropy. Metal foams, which are manufacturing by investment casting or melt deposition method and using PU foam as a template, also have mechanical property anisotropy. This work studied the mechanical properties in two directions of titanium foam with four different cell sizes fabricated using the replica impregnation method. The two directions are (1) the loading direction parallel to the foaming direction where the cells are elongated (EL direction) and (2) the loading direction perpendicular to the foaming direction where the cell are equiaxed (EQ direction). The results show that the compression responses for both EL and EQ directions are isotropy. Micrographs and X-ray micro-computed tomography show that the degree of geometry anisotropy is not strong enough to results in mechanical property anisotropy.

  15. Determination of anisotropy constants of protein encapsulated iron oxide nanoparticles by electron magnetic resonance

    Energy Technology Data Exchange (ETDEWEB)

    Li Hongyan [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Klem, Michael T.; Sebby, Karl B.; Singel, David J. [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Young, Mark [Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Douglas, Trevor [Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States); Idzerda, Yves U. [Department of Physics, Montana State University, Bozeman, MT 59717 (United States); Center for Bio-Inspired Nanomaterials, Montana State University, Bozeman, MT 59717 (United States)], E-mail: Idzerda@montana.edu

    2009-02-15

    Angle-dependent electron magnetic resonance was performed on 4.9, 8.0, and 19 nm iron oxide nanoparticles encapsulated within protein capsids and suspended in water. Measurements were taken at liquid nitrogen temperature after cooling in a 1 T field to partially align the particles. The angle dependence of the shifts in the resonance field for the iron oxide nanoparticles (synthesized within Listeria-Dps, horse spleen ferritin, and cowpea chlorotic mottle virus) all show evidence of a uniaxial anisotropy. Using a Boltzmann distribution for the particles' easy-axis direction, we are able to use the resonance field shifts to extract a value for the anisotropy energy, showing that the anisotropy energy density increases with decreasing particle size. This suggests that surface anisotropy plays a significant role in magnetic nanoparticles of this size.

  16. Constraints on spacetime anisotropy and Lorentz violation from the GRAAL experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Zhe [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China); Chinese Academy of Sciences, Theoretical Physics Center for Science Facilities, Beijing (China); Wang, Sai [Chinese Academy of Sciences, Institute of High Energy Physics, Beijing (China)

    2013-02-15

    The GRAAL experiment could constrain the variations of the speed of light. The anisotropy of the speed of light may imply that the spacetime is anisotropic. Finsler geometry is a reasonable candidate to deal with the spacetime anisotropy. In this paper, the Lorentz invariance violation (LIV) of the photon sector is investigated in the locally Minkowski spacetime. The locally Minkowski spacetime is a class of flat Finsler spacetime and refers a metric with the anisotropic departure from the Minkowski one. The LIV matrices used to fit the experimental data are represented in terms of these metric deviations. The GRAAL experiment constrains the spacetime anisotropy to be less than 10{sup -14}. In addition, we find that the simplest Finslerian photon sector could be viewed as a geometric representation of the photon sector in the minimal standard model extension (SME). (orig.)

  17. Anisotropy effect on strengths of metamorphic rocks

    Directory of Open Access Journals (Sweden)

    Ahmet Özbek

    2018-02-01

    Full Text Available This paper aims to study the effect of anisotropy on strengths of several metamorphic rocks of southern (Çine submassif of Menderes metamorphic massif in southwest Turkey. Four different metamorphic rocks including foliated phyllite, schist, gneiss and marble (calcschist were selected and examined. Discontinuity surveys were made along lines for each rock and evaluated with DIPS program. L-type Schmidt hammer was applied in the directions parallel and perpendicular to foliation during the field study. Several hand samples and rock blocks were collected during the field study for measurements of dry and saturated densities, dry and saturated unit weights and porosity, and for petrographic analysis and strength determination in laboratory. L- and N-type Schmidt hammers were applied in the directions perpendicular (anisotropy angle of 0° and parallel (anisotropy angle of 90° to the foliation on selected blocks of phyllite, schist, gneiss and marble (calcschist. The phyllite and schist have higher porosity and lower density values than the other rocks. However, coarse crystalline gneiss and marble (calcschist have higher rebound values and strengths, and they are classified as strong–very strong rocks. Generally, the rebound values in the direction perpendicular to the foliation are slightly higher than that in the direction parallel to foliation. Rebound values of N-type Schmidt hammer are higher than the L-type values except for phyllite. Sometimes, the rebound values of laboratory and field applications gave different results. This may result from variable local conditions such as minerals differentiation, discontinuities, water content, weathering degree and thickness of foliated structure.

  18. Angular dependence of magnetization reversal in epitaxial chromium telluride thin films with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Pramanik, Tanmoy, E-mail: pramanik.tanmoy@utexas.edu; Roy, Anupam, E-mail: anupam@austin.utexas.edu; Dey, Rik, E-mail: rikdey@utexas.edu; Rai, Amritesh; Guchhait, Samaresh; Movva, Hema C.P.; Hsieh, Cheng-Chih; Banerjee, Sanjay K.

    2017-09-01

    Highlights: • Perpendicular magnetic anisotropy in epitaxial Cr{sub 2}Te{sub 3} has been investigated. • Presence of a relatively strong second order anisotropy contribution is observed. • Magnetization reversal is explained quantitatively using a 1D defect model. • Relative roles of nucleation and pinning in magnetization reversal are discussed. • Domain structures and switching process are visualized by micromagnetic simulation. - Abstract: We investigate magnetic anisotropy and magnetization reversal mechanism in chromium telluride thin films grown by molecular beam epitaxy. We report existence of strong perpendicular magnetic anisotropy in these thin films, along with a relatively strong second order anisotropy contribution. The angular variation of the switching field observed from the magnetoresistance measurement is explained quantitatively using a one-dimensional defect model. The model reveals the relative roles of nucleation and pinning in the magnetization reversal, depending on the applied field orientation. Micromagnetic simulations are performed to visualize the domain structure and switching process.

  19. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Lee, Mi Jung; Park, Bae Ho; Lee, Changgu; Yoon, Duhee; Cheong, Hyeonsik; Lee, Ki Ho; Son, Young-Woo; Park, Jeong Young; Salmeron, Miquel

    2011-07-29

    Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.

  20. Influence of temperature on the Zircaloy-4 plastic anisotropy

    International Nuclear Information System (INIS)

    Limon, R.; Bechade, J.L.; Lehmann, S.; Maury, R.; Soniak, A.

    1995-01-01

    In order to improve the comportment modelling of PWR fuel pin, and more precisely their canning tubes, Framatome and the CEA have undertake an important study program of Zircaloy-4 mechanical properties. It includes in particular the study of the plasticity between 20 and 400 degree Celsius. This material being not isotropic because of the zirconium hexagonal crystal network and the texture presented by the canning tubes, its plastic anisotropy has been measured. The obtained results for the canning in *slack* and recrystallized before irradiation Zircaloy-4 are presented and the deformation systems able to explain the observed anisotropy is researched. (O.L.). 6 refs., 4 figs., 1 tab

  1. Some implications of the higher harmonics of galatic anisotropy

    International Nuclear Information System (INIS)

    Kota, J.

    1979-06-01

    It is suggested that higher harmonics of the galactic cosmic ray anisotropy detected in the 1-100 TeV range may be attributed to anisotropic pitch angle scattering. The quasi-linear theory of pitch angle diffusion is applied to obtain the ratio of various harmonics as function of the declination of pitch angle axis. It is found that, to match the observations, the axis should point toward moderate declination (20 deg - 40 deg) while the power spectrum of the interstellar magnetic field fluctuations should have a slope steeper than - 1.5. This latter finding is also consistent with the near constant amplitude of anisotropy over two decades of energy. (author)

  2. Role of the substrate on the magnetic anisotropy of magnetite thin films grown by ion-assisted deposition

    International Nuclear Information System (INIS)

    Prieto, Pilar; Prieto, José Emilio; Gargallo-Caballero, Raquel; Marco, José Francisco; Figuera, Juan de la

    2015-01-01

    Graphical abstract: - Highlights: • The magnetic anisotropy of magnetite thin films is controlled by the substrate induced microstructure. • Single-crystal oxide substrates induce fourfold in-plane magnetic anisotropy • MgO and SrTiO_3 substrates show the same magnetic behavior despite its different mismatch with Fe_3O_4 films. • Silicon and glass substrates induce in-plane magnetic isotropy and uniaxial anisotropy, respectively. - Abstract: Magnetite (Fe_3O_4) thin films were deposited on MgO (0 0 1), SrTiO_3 (0 0 1), LaAlO_3 (0 0 1) single crystal substrates as well on as silicon and amorphous glass in order to study the effect of the substrate on their magnetic properties, mainly the magnetic anisotropy. We have performed a structural, morphological and compositional characterization by X-ray diffraction, atomic force microscopy and Rutherford backscattering ion channeling in oxygen resonance mode. The magnetic anisotropy has been investigated by vectorial magneto-optical Kerr effect. The results indicate that the magnetic anisotropy is especially influenced by the substrate-induced microstructure. In-plane isotropy and uniaxial anisotropy behavior have been observed on silicon and glass substrates, respectively. The transition between both behaviors depends on grain size. For LaAlO_3 substrates, in which the lattice mismatch between the Fe_3O_4 films and the substrate is significant, a weak in-plane fourfold magnetic anisotropy is induced. However when magnetite is deposited on MgO (0 0 1) and SrTiO_3 (0 0 1) substrates, a well-defined fourfold in-plane magnetic anisotropy is observed with easy axes along [1 0 0] and [0 1 0] directions. The magnetic properties on these two latter substrates are similar in terms of magnetic anisotropy and coercive fields.

  3. Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet

    International Nuclear Information System (INIS)

    Morgeneyer, T.F.; Besson, J.; Proudhon, H.; Starink, M.J.; Sinclair, I.

    2009-01-01

    Toughness anisotropy of AA2139 (Al-Cu-Mg) in T351 and T8 conditions has been studied via mechanical testing of smooth and notched specimens of different geometries, loaded in the rolling direction (L) or in the transverse direction (T). Fracture mechanisms were investigated via scanning electron microscopy and synchrotron radiation computed tomography. Contributions to failure anisotropy are identified as: (i) anisotropic initial void shape and growth; (ii) plastic behaviour including isotropic/kinematic hardening and plastic anisotropy; and (iii) nucleation at a second population of second-phase particles leading to coalescence via narrow crack regions. A model based in part on the Gurson-Tvergaard-Needleman approach is constructed to describe and predict deformation behaviour, crack propagation and, in particular, toughness anisotropy. Model parameters are fitted using microstructural data and data on deformation and crack propagation for a range of small test samples. Its transferability has been shown by simulating tests of large M(T) samples.

  4. Experimental and numerical analysis of toughness anisotropy in AA2139 Al-alloy sheet

    Energy Technology Data Exchange (ETDEWEB)

    Morgeneyer, T.F., E-mail: thilo.morgeneyer@mines-paristech.fr [Mines ParisTech, Centre des materiaux, CNRS UMR 7633, BP87 91003 Evry Cedex (France)] [Alcan Centre de Recherches de Voreppe, BP 27, 38341 Voreppe Cedex (France); Besson, J.; Proudhon, H. [Mines ParisTech, Centre des materiaux, CNRS UMR 7633, BP87 91003 Evry Cedex (France); Starink, M.J.; Sinclair, I. [Materials Research Group, School of Engineering Sciences, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2009-08-15

    Toughness anisotropy of AA2139 (Al-Cu-Mg) in T351 and T8 conditions has been studied via mechanical testing of smooth and notched specimens of different geometries, loaded in the rolling direction (L) or in the transverse direction (T). Fracture mechanisms were investigated via scanning electron microscopy and synchrotron radiation computed tomography. Contributions to failure anisotropy are identified as: (i) anisotropic initial void shape and growth; (ii) plastic behaviour including isotropic/kinematic hardening and plastic anisotropy; and (iii) nucleation at a second population of second-phase particles leading to coalescence via narrow crack regions. A model based in part on the Gurson-Tvergaard-Needleman approach is constructed to describe and predict deformation behaviour, crack propagation and, in particular, toughness anisotropy. Model parameters are fitted using microstructural data and data on deformation and crack propagation for a range of small test samples. Its transferability has been shown by simulating tests of large M(T) samples.

  5. Anisotropy function for pion-proton elastic scattering

    Energy Technology Data Exchange (ETDEWEB)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-09-01

    By using the generalised Chou-Yang model and the experimental data on ..pi../sup -/p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction ..pi../sup -/p -> ..pi../sup -/p.

  6. Anisotropy function for pion-proton elastic scattering

    International Nuclear Information System (INIS)

    Saleem, Mohammad; Fazal-e-Aleem; Rashid, Haris

    1988-01-01

    By using the generalised Chou-Yang model and the experimental data on π - p elastic scattering at 200 GeV/c, the anisotropy function which reflects the non-isotropic nature of elastic scattering is computed for the reaction π - p → π - p. (author)

  7. Influence of anisotropy and pinning centers on critical current properties in Bi-2212 superconductors

    International Nuclear Information System (INIS)

    Haraguchi, T.; Takayama, S.; Kiuchi, M.; Otabe, E.S.; Matsushita, T.; Yasuda, T.; Okayasu, S.; Uchida, S.; Shimoyama, J.; Kishio, K.

    2006-01-01

    The critical current density in Bi-2212 superconductors with various anisotropies irradiated by heavy ions was investigated in the medium temperature region to understand the effects of defect size and the anisotropy of the superconductor. It was found that the critical current density and the irreversibility field were larger for the specimen with larger defect and/or with smaller anisotropy. Introduction of stronger pinning centers and the optimization of the doping condition to improve the dimensionality are desired for further improvement of the critical current properties

  8. The ab-anisotropy of twinfree YBa2Cu3O7-delta above and below Tc

    NARCIS (Netherlands)

    Dam, B.; Rector, J.; Surdeanu, R.; Wijngaarden, R.J.; Koster, Gertjan; Peerdeman, F.; van Berkum, J.; de Groot, D.G.; Griessen, R.

    1998-01-01

    High quality twin-free c-axis oriented YBa2Cu3O7 films were grown by pulsed laser deposition on NdGaO3. We find resistive anisotropies between 1 < a/b < 1.6. The resistive anisotropy above Tc appears to be correlated to the anisotropy in the critical current below Tc. The normal state properties of

  9. Thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films

    International Nuclear Information System (INIS)

    Silva, E F; Corrêa, M A; Chesman, C; Bohn, F; Della Pace, R D; Plá Cid, C C; Kern, P R; Carara, M; Alves Santos, O; Rodríguez-Suárez, R L; Azevedo, A; Rezende, S M

    2017-01-01

    We investigate the thickness dependence of the magnetic anisotropy and dynamic magnetic response of ferromagnetic NiFe films. We go beyond quasi-static measurements and focus on the dynamic magnetic response by considering three complementary techniques: the ferromagnetic resonance, magnetoimpedance and magnetic permeability measurements. We verify remarkable modifications in the magnetic anisotropy, i.e. the well-known behavior of in-plane uniaxial magnetic anisotropy systems gives place to a complex magnetic behavior as the thickness increases, and splits the films in two groups according to the magnetic properties. We identify magnetoimpedance and magnetic permeability curves with multiple resonance peaks, as well as the evolution of the ferromagnetic resonance absorption spectra, as fingerprints of strong changes of the magnetic properties associated to the vanishing of the in-plane magnetic anisotropy and to the emergence of non-homogeneous magnetization configuration, local anisotropies and out-of-plane anisotropy contribution arisen as a consequence of the non-uniformities of the stress stored in the film as the thickness is increased and/or to the columnar growth of the film. We interpret the experimental results in terms of the structural and morphological properties, quasi-static magnetic behavior, magnetic domain structure and different mechanisms governing the magnetization dynamics at distinct frequency ranges. (paper)

  10. Elastic anisotropy of core samples from the Taiwan Chelungpu Fault Drilling Project (TCDP): direct 3-D measurements and weak anisotropy approximations

    Science.gov (United States)

    Louis, Laurent; David, Christian; Špaček, Petr; Wong, Teng-Fong; Fortin, Jérôme; Song, Sheng Rong

    2012-01-01

    The study of seismic anisotropy has become a powerful tool to decipher rock physics attributes in reservoirs or in complex tectonic settings. We compare direct 3-D measurements of P-wave velocity in 132 different directions on spherical rock samples to the prediction of the approximate model proposed by Louis et al. based on a tensorial approach. The data set includes measurements on dry spheres under confining pressure ranging from 5 to 200 MPa for three sandstones retrieved at a depth of 850, 1365 and 1394 metres in TCDP hole A (Taiwan Chelungpu Fault Drilling Project). As long as the P-wave velocity anisotropy is weak, we show that the predictions of the approximate model are in good agreement with the measurements. As the tensorial method is designed to work with cylindrical samples cored in three orthogonal directions, a significant gain both in the number of measurements involved and in sample preparation is achieved compared to measurements on spheres. We analysed the pressure dependence of the velocity field and show that as the confining pressure is raised the velocity increases, the anisotropy decreases but remains significant even at high pressure, and the shape of the ellipsoid representing the velocity (or elastic) fabric evolves from elongated to planar. These observations can be accounted for by considering the existence of both isotropic and anisotropic crack distributions and their evolution with applied pressure.

  11. DHA-fluorescent probe is sensitive to membrane order and reveals molecular adaptation of DHA in ordered lipid microdomains☆

    Science.gov (United States)

    Teague, Heather; Ross, Ron; Harris, Mitchel; Mitchell, Drake C.; Shaikh, Saame Raza

    2012-01-01

    Docosahexaenoic acid (DHA) disrupts the size and order of plasma membrane lipid microdomains in vitro and in vivo. However, it is unknown how the highly disordered structure of DHA mechanistically adapts to increase the order of tightly packed lipid microdomains. Therefore, we studied a novel DHA-Bodipy fluorescent probe to address this issue. We first determined if the DHA-Bodipy probe localized to the plasma membrane of primary B and immortal EL4 cells. Image analysis revealed that DHA-Bodipy localized into the plasma membrane of primary B cells more efficiently than EL4 cells. We then determined if the probe detected changes in plasma membrane order. Quantitative analysis of time-lapse movies established that DHA-Bodipy was sensitive to membrane molecular order. This allowed us to investigate how DHA-Bodipy physically adapted to ordered lipid microdomains. To accomplish this, we employed steady-state and time-resolved fluorescence anisotropy measurements in lipid vesicles of varying composition. Similar to cell culture studies, the probe was highly sensitive to membrane order in lipid vesicles. Moreover, these experiments revealed, relative to controls, that upon incorporation into highly ordered microdomains, DHA-Bodipy underwent an increase in its fluorescence lifetime and molecular order. In addition, the probe displayed a significant reduction in its rotational diffusion compared to controls. Altogether, DHA-Bodipy was highly sensitive to membrane order and revealed for the first time that DHA, despite its flexibility, could become ordered with less rotational motion inside ordered lipid microdomains. Mechanistically, this explains how DHA acyl chains can increase order upon formation of lipid microdomains in vivo. PMID:22841541

  12. Shale fabric and velocity anisotropy : a study from Pikes Peak Waseca Oil Pool, Saskatchewan

    Energy Technology Data Exchange (ETDEWEB)

    Newrick, R.T.; Lawton, D.C. [Calgary Univ., AB (Canada). Dept. of Geology and Geophysics

    2004-07-01

    The stratigraphic sequence of the Pikes Peaks region in west-central Saskatchewan consists of a thick sequence of shale overlying interbedded sandstones, shale and coal from the Mannville Group. Hydrocarbons exist in the Waseca, Sparky and General Petroleum Formations in the Pikes Peak region. The primary objective of this study was to examine the layering of clay minerals in the shale and to find similarities or differences between samples that may be associated with velocity anisotropy. Anisotropy is of key concern in areas with thick shale sequences. Several processing algorithms include corrections for velocity anisotropy in order for seismic images to be well focused and laterally positioned. This study also estimated the Thomsen parameters of anisotropy through field studies. The relationship between the shale fabric and anisotropy was determined by photographic core samples from Pike Peak using a scanning electron microscope. Shale from two wells in the Waseca Oil Pool demonstrated highly variable fabric over a limited vertical extent. No layering of clay minerals was noted at the sub-centimetre scale. Transverse isotropy of the stratigraphy was therefore considered to be mainly intrinsic. 7 refs., 3 tabs., 9 figs.

  13. Shear-Wave Splitting and Crustal Anisotropy in the Shillong-Mikir Plateau of Northeast India

    Science.gov (United States)

    Bora, Dipok K.; Hazarika, Devajit; Paul, Arpita; Borah, Kajaljyoti; Borgohain, Jayanta Madhab

    2018-01-01

    Seismic anisotropy of crust beneath the Shillong-Mikir Plateau and the surrounding regions of northeast India have been investigated with the help of splitting analysis of S-wave of local earthquakes. We estimate a total 83 pairs of splitting parameters ( Φ and δt) from 67 local shallow focus earthquakes (depth ≤ 32 km) recorded by the 10 broadband seismological stations operated in the study region. The results show delay times ranging from 0.02 to 0.2 s, which correspond to anisotropy up to 4%, suggesting significant strength of anisotropy in the study region. Fast polarization direction ( Φ) in the Shillong Plateau shows mostly NW-SE trend in the western part and NE-SW trend in the northern part. Φs near Kopili fault (KF) follows NW-SE trend. Φ at most of the stations in the study region is consistent with the local stress orientation, suggesting that the anisotropy is mainly caused by preferentially aligned cracks responding to the stress field. On the other hand, anisotropy observed near the KF is due to aligned macroscopic fracture related to strike-slip movement in the fault zone.

  14. Giant enhancement of magnetocrystalline anisotropy in ultrathin manganite films via nanoscale 1D periodic depth modulation

    Science.gov (United States)

    Rajapitamahuni, Anil; Zhang, Le; Singh, Vijay; Burton, John; Koten, Mak; Shield, Jeffrey; Tsymbal, Evgeny; Hong, Xia

    We report a unusual giant enhancement of in-plane magnetocrystalline anisotropy (MCA) in ultrathin colossal magnetoresistive oxide films due to 1D nanoscale periodic depth modulation. High quality epitaxial thin films of La0.67Sr0.33MnO3 (LSMO) of thickness 6 nm were grown on (001) SrTiO3 substrates via off-axis radio frequency magnetron sputtering. The top 2 nm of LSMO films are patterned into periodic nano-stripes using e-beam lithography and reactive ion etching. The resulting structure consists of nano-stripes of 2 nm height and 100-200 nm width on top of a 4 nm thick continuous base layer. We employed planar Hall effect measurements to study the in-plane magnetic anisotropy of the unpatterned and nanopatterned films. The unpatterned films show a biaxial anisotropy with easy axis along [110]. The extracted anisotropy energy density is ~1.1 x 105 erg/cm3, comparable to previously reported values. In the nanopatterned films, a strong uniaxial anisotropy is developed along one of the biaxial easy axes. The corresponding anisotropy energy density is ~5.6 x 106 erg/cm3 within the nano-striped volume, comparable to that of Co. We attribute the observed uniaxial MCA to MnO6 octahedral rotations/tilts and the enhancement in the anisotropy energy density to the strain gradient within the nano-stripes.

  15. Uniaxial anisotropy in magnetite thin film-Magnetization studies

    International Nuclear Information System (INIS)

    Wiechec, A.; Korecki, J.; Handke, B.; Kakol, Z.; Owoc, D.; Antolak, D.A.; Kozlowski, A.

    2006-01-01

    Magnetization and electrical resistivity measurements have been performed on a stoichiometric single crystalline magnetite Fe 3 O 4 thin film (thickness of ca. 500 nm) MBE deposited on MgO (1 0 0) substrate. The aim of these studies was to check the influence of preparation method and sample form (bulk vs. thin film) on magnetic anisotropy properties in magnetite. The film magnetization along versus applied magnetic field has been determined both in the direction parallel and perpendicular to the film surface, and at temperatures above and below the Verwey transition. We have found, in agreement with published results, that the in-plane field of 10 kOe was not sufficient to saturate the sample. This can be understood if some additional factor, on top of the bulk magnetocrystalline anisotropy, is taken into account

  16. General kinetic solution for the Biermann battery with an associated pressure anisotropy generation

    Science.gov (United States)

    Schoeffler, K. M.; Silva, L. O.

    2018-01-01

    Fully kinetic analytic calculations of an initially Maxwellian distribution with arbitrary density and temperature gradients exhibit the development of temperature anisotropies and magnetic field growth associated with the Biermann battery. The calculation, performed by taking a small order expansion of the ratio of the Debye length to the gradient scale, predicts anisotropies and magnetic fields as a function of space given an arbitrary temperature and density profile. These predictions are shown to qualitatively match the values measured from particle-in-cell simulations, where the development of the Weibel instability occurs at the same location and with a wavenumber aligned with the predicted temperature anisotropy.

  17. Cold dark matter and degree-scale cosmic microwave background anisotropy statistics after COBE

    Science.gov (United States)

    Gorski, Krzysztof M.; Stompor, Radoslaw; Juszkiewicz, Roman

    1993-01-01

    We conduct a Monte Carlo simulation of the cosmic microwave background (CMB) anisotropy in the UCSB South Pole 1991 degree-scale experiment. We examine cold dark matter cosmology with large-scale structure seeded by the Harrison-Zel'dovich hierarchy of Gaussian-distributed primordial inhomogeneities normalized to the COBE-DMR measurement of large-angle CMB anisotropy. We find it statistically implausible (in the sense of low cumulative probability F lower than 5 percent, of not measuring a cosmological delta-T/T signal) that the degree-scale cosmological CMB anisotropy predicted in such models could have escaped a detection at the level of sensitivity achieved in the South Pole 1991 experiment.

  18. Magnetic anisotropies in epitaxial Fe3O4/GaAs(100) patterned structures

    International Nuclear Information System (INIS)

    Zhang, W.; Zhang, D.; Yuan, S. J.; Huang, Z. C.; Zhai, Y.; Wong, P. K. J.; Wu, J.; Xu, Y. B.

    2014-01-01

    Previous studies on epitaxial Fe 3 O 4 rings in the context of spin-transfer torque effect have revealed complicated and undesirable domain structures, attributed to the intrinsic fourfold magnetocrystalline anisotropy in the ferrite. In this Letter, we report a viable solution to this problem, utilizing a 6-nm-thick epitaxial Fe 3 O 4 thin film on GaAs(100), where the fourfold magnetocrystalline anisotropy is negligible. We demonstrate that in the Fe 3 O 4 planar wires patterned from our thin film, such a unique magnetic anisotropy system has been preserved, and relatively simple magnetic domain configurations compared to those previous reports can be obtained

  19. Azimuthal anisotropy of jet quenching at LHC

    Indian Academy of Sciences (India)

    Abstract. We analyze the azimuthal anisotropy of jet spectra due to energy loss of hard partons in quark–gluon plasma, created initially in nuclear overlap zone in collisions with non-zero impact parameter. The calculations are performed for semi-central Pb–Pb collisions at LHC energy.

  20. Effect of anisotropy on the entanglement of quantum states in a spin chain

    NARCIS (Netherlands)

    Kartsev, PF; Kashurnikov, VA

    2004-01-01

    The effect of the anisotropy of the interaction of a spin chain in the XXZ Heisenberg model on the concurrence of the states of neighboring sites is studied. When anisotropy increases, the maximum concurrence in a magnetic field increases above the value reached in the absence of the field. The

  1. Detecting gamma-ray anisotropies from decaying dark matter. Prospects for Fermi LAT

    International Nuclear Information System (INIS)

    Ibarra, Alejandro; Tran, David

    2009-09-01

    Decaying dark matter particles could be indirectly detected as an excess over a simple power law in the energy spectrum of the diffuse extragalactic gamma-ray background. Furthermore, since the Earth is not located at the center of the Galactic dark matter halo, the exotic contribution from dark matter decay to the diffuse gamma-ray flux is expected to be anisotropic, offering a complementary method for the indirect search for decaying dark matter particles. In this paper we discuss in detail the expected dipole-like anisotropies in the dark matter signal, taking also into account the radiation from inverse Compton scattering of electrons and positrons from dark matter decay. A different source for anisotropies in the gamma-ray flux are the dark matter density fluctuations on cosmic scales. We calculate the corresponding angular power spectrum of the gamma-ray flux and comment on observational prospects. Finally, we calculate the expected anisotropies for the decaying dark matter scenarios that can reproduce the electron/positron excesses reported by PAMELA and the Fermi LAT, and we estimate the prospects for detecting the predicted gamma-ray anisotropy in the near future. (orig.)

  2. Cosmic ray anisotropy along with interplanetary transients

    Science.gov (United States)

    Mishra, Rajesh Kumar

    The present work deals with the study of first three harmonics of low amplitude anisotropic wave trains of cosmic ray intensity over the period 1991-1994 for Deep River neutron monitoring station. It is observed that the diurnal time of maximum remains in the corotational direction; whereas, the time of maximum for both diurnal and semi-diurnal anisotropy has significantly shifted towards later hours as compared to the quiet day annual average for majority of the LAE events. It is noticed that these events are not caused either by the high-speed solar wind streams or by the sources on the Sun responsible for producing these streams; such as, polar coronal holes. The direction of the tri-diurnal anisotropy shows a good negative correlation with Bz component of interplanetary magnetic field. The occurrence of low amplitude events is dominant for positive polarity of Bz. The Disturbance Storm Time index i.e. Dst remains consistently negative only throughout the entire low amplitude wave train event.

  3. Development and anisotropy of three-dimensional turbulence in a current sheet

    International Nuclear Information System (INIS)

    Onofri, M.; Veltri, P.; Malara, F.

    2007-01-01

    The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field

  4. Temperature dependence of the anisotropy of fluorescence in ring molecular systems

    International Nuclear Information System (INIS)

    Herman, Pavel; Barvik, Ivan

    2007-01-01

    The time dependence of the anisotropy of fluorescence after an impulsive excitation in the molecular ring (resembling the B850 ring of the purple bacterium Rhodopseudomonas acidophila) is calculated. Fast fluctuations of the environment are simulated by dynamic disorder and slow fluctuations by uncorrelated static disorder. Without dynamic disorder modest degrees of static disorder are sufficient to cause the experimentally found initial drop of the anisotropy on a sub-100 fs time scale. In the present investigation we are comparing results for the time-dependent optical anisotropy of the molecular ring for four models of the uncorrelated static disorder: Gaussian disorder in the local energies (model A), Gaussian disorder in the transfer integrals (model B), Gaussian disorder in radial positions of molecules (model C) and Gaussian disorder in angular positions of molecules (model D). Both types of disorder-static and dynamic-are taken into account simultaneously

  5. Plasmonic reflectance anisotropy spectroscopy of metal nanoparticles on a semiconductor surface

    Science.gov (United States)

    Kosobukin, V. A.; Korotchenkov, A. V.

    2016-12-01

    A theory of plasmonic differential anisotropic reflection of light from nanoparticles located near the interface between media is developed. The model of a monolayer consisting of identical ellipsoidal metal particles occupying sites of a rectangular lattice is investigated. Effective plasmonic polarizabilities of nanoparticles in the layer are calculated self-consistently using the Green's function technique in the quasipoint dipole approximation. The local-field effect caused by anisotropic dipole plasmons of particles in the layer and their image dipoles is taken into account. The lately observed resonant reflectance anisotropy spectra of indium nanoclusters on InAs surface are explained by the difference between frequencies of plasmons with the orthogonal polarizations in the surface plane. The difference between the plasmon frequencies is attributed to anisotropy of the particles shape or/and the layer structure; the signs of frequency difference for the two types of anisotropy being different.

  6. Anisotropy of magnetic susceptibility (AMS) studies of Campanian ...

    Indian Academy of Sciences (India)

    trial, paralic and shallow marine strata. It com- prises of lower ... Sillakkudi sandstone was deposited under shallow ..... Jelinek V 1978 Statistical processing of anisotropy of mag- ... reorientation of magnetic fabrics in deep-sea sediments at.

  7. Physical properties of elongated magnetic particles: magnetization and friction coefficient anisotropies.

    Science.gov (United States)

    Vereda, Fernando; de Vicente, Juan; Hidalgo-Alvarez, Roque

    2009-06-02

    Anisotropy counts: A brief review of the main physical properties of elongated magnetic particles (EMPs) is presented. The most important characteristic of an EMP is the additional contribution of shape anisotropy to the total anisotropy energy of the particle, when compared to spherical magnetic particles. The electron micrograph shows Ni-ferrite microrods fabricated by the authors.We present an overview of the main physical properties of elongated magnetic particles (EMPs), including some of their more relevant properties in suspension. When compared to a spherical magnetic particle, the most important characteristic of an EMP is an additional contribution of shape anisotropy to the total anisotropy energy of the particle. Increasing aspect ratios also lead to an increase in both the critical single-domain size of a magnetic particle and its resistance to thermally activated spontaneous reversal of the magnetization. For single-domain EMPs, magnetization reversal occurs primarily by one of two modes, coherent rotation or curling, the latter being facilitated by larger aspect ratios. When EMPs are used to prepare colloidal suspensions, other physical properties come into play, such as their anisotropic friction coefficient and the consequent enhanced torque they experience in a shear flow, their tendency to align in the direction of an external field, to form less dense sediments and to entangle into more intricate aggregates. From a more practical point of view, EMPs are discussed in connection with two interesting types of magnetic colloids: magnetorheological fluids and suspensions for magnetic hyperthermia. Advances reported in the literature regarding the use of EMPs in these two systems are included. In the final section, we present a summary of the most relevant methods documented in the literature for the fabrication of EMPs, together with a list of the most common ferromagnetic materials that have been synthesized in the form of EMPs.

  8. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    International Nuclear Information System (INIS)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia; Plainaki, Christina; National and Kapodistrian Univ. of Athens; Andriopoulou, Maria

    2016-01-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  9. Latitudinal and longitudinal dependence of the cosmic ray diurnal anisotropy during 2001-2014

    Energy Technology Data Exchange (ETDEWEB)

    Tezari, Anastasia; Mavromichalaki, Helen; Katsinis, Dimitrios; Kanellakopoulos, Anastasios; Kolovi, Sofia [National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Plainaki, Christina [INAF-IAPS, Rome (Italy); National and Kapodistrian Univ. of Athens (Greece). Nuclear and Particle Physics Dept.; Andriopoulou, Maria [Austrian Academy of Sciences, Graz (Austria). Space Research Inst.

    2016-07-01

    The diurnal anisotropy of cosmic ray intensity for the time period 2001 to 2014 is studied, covering the maximum and the descending phase of solar cycle 23, the minimum between solar cycles 23 and 24, and the ascending phase and maximum of solar cycle 24. Cosmic ray intensity data from 11 neutron monitor stations located at different places around the Northern Hemisphere obtained from the high-resolution Neutron Monitor Database (NMDB) were used. Special software was developed for the calculations of the amplitude and the phase of the diurnal anisotropy vectors on annual and monthly basis using Fourier analysis and for the creation of the harmonic dial diagrams. The geomagnetic bending for each station was taken into account in our calculations determined from the asymptotic cones of each station via the Tsyganenko96 (Tsyganenko and Stern, 1996) magnetospheric model. From our analysis, it was resulted that there is a different behavior of the diurnal anisotropy vectors during the different phases of the solar cycles depending on the solar magnetic field polarity. The latitudinal and longitudinal distribution of the cosmic ray diurnal anisotropy was also examined by grouping the stations according to their geographic coordinates, and it was shown that diurnal variation is modulated not only by the latitude but also by the longitude of the stations. The diurnal anisotropy during strong events of solar and/or cosmic ray activity is discussed.

  10. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    International Nuclear Information System (INIS)

    Bois-Brochu, Alexandre; Blais, Carl; Tchitembo Goma, Franck Armel; Larouche, Daniel

    2016-01-01

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  11. Modelling of anisotropy for Al-Li 2099 T83 extrusions and effect of precipitate density

    Energy Technology Data Exchange (ETDEWEB)

    Bois-Brochu, Alexandre, E-mail: Alexandre.Bois-Brochu.1@ulaval.ca; Blais, Carl, E-mail: Carl.Blais@gmn.ulaval.ca; Tchitembo Goma, Franck Armel, E-mail: Franck-Armel.Tchitembo-Goma.1@ulaval.ca; Larouche, Daniel, E-mail: Daniel.Larouche@gmn.ulaval.ca

    2016-09-15

    The development of aluminum-lithium alloys for aerospace applications requires a thorough understanding of how processing and product geometry impact their microstructure, texture and mechanical properties. The anisotropy of the mechanical properties is in part related to the deformation texture formed during thermo-mechanical processing. In this study, two different extrusions of Al-Li 2099 T83 were characterized, a cylindrical extrusion and an integrally stiffened panel (ISP). A model is proposed to predict mechanical properties and their anisotropy as a function of the <111> fiber texture. Furthermore, the volume fraction of precipitates was measured in zones of high anisotropy (cylindrical extrusion) and low anisotropy (ISP). Results show that there is no significant difference between the two parts concerning volume fraction of precipitates.

  12. The anisotropy of the cosmic background radiation from local dynamic density perturbations

    International Nuclear Information System (INIS)

    Dyer, C.C.; Ip, P.S.S.

    1988-01-01

    Contrary to the usual assumption, it is shown here that the anisotropy of the cosmic background radiation need not be dominated by perturbations at the last scattering surface. The results of computer simulations are shown in which local dynamic density perturbations, in the form of Swiss cheese holes with finite, uniform density central lumps, are the main source of anisotropy of the cosmic background radiation. (author)

  13. On the Origin of the Large Magnetic Anisotropy of Rare Earth-Cobalt Compounds

    DEFF Research Database (Denmark)

    Szpunar, B.; Lindgård, Per-Anker

    1979-01-01

    Experimental data on the magnetocrystalline anisotropy in Co, YCo5, GdCo5, SmCo5 and Y2Co17 is analysed using a single-ion crystal field and isotropic exchange interaction. The large magnetic anisotropy at high temperatures in the alloys is due to significant deviations in the alloy lattices...

  14. A New Light-Speed Anisotropy Experiment: Absolute Motion and Gravitational Waves Detected

    Directory of Open Access Journals (Sweden)

    Cahill R. T.

    2006-10-01

    Full Text Available Data from a new experiment measuring the anisotropy of the one-way speed of EM waves in a coaxial cable, gives the speed of light as 300,000 +/- 400 (+/- 20 km/s in a measured direction RA=5.5 +/- 2 hrs, Dec=70 +/- 10 Deg S, is shown to be in excellent agreement with the results from seven previous anisotropy experiments, particularly those of Miller (1925/26, and even those of Michelson and Morley (1887. The Miller gas-mode interferometer results, and those from the RF coaxial cable experiments of Torr and Kolen (1983, De Witte (1991 and the new experiment all reveal the presence of gravitational waves, as indicated by the last +/- variations above, but of a kind different from those supposedly predicted by General Relativity. Miller repeated the Michelson-Morley 1887 gas-mode interferometer experiment and againdetected the anisotropy of the speed of light, primarily in the years 1925/1926 atop Mt.Wilson, California. The understanding of the operation of the Michelson interferometer in gas-mode was only achieved in 2002 and involved a calibration for the interferometer that necessarily involved Special Relativity effects and the refractive index of the gas in the light paths. The results demonstrate the reality of the Fitzgerald-Lorentz contraction as an observer independent relativistic effect. A common misunderstanding is that the anisotropy of the speed of light is necessarily in conflict with Special Relativity and Lorentz symmetry - this is explained. All eight experiments and theory show that we have both anisotropy of the speed of light and relativistic effects, and that a dynamical 3-space exists - that absolute motion through that space has been repeatedly observed since 1887. These developments completely change fundamental physics and our understanding of reality. Modern vacuum-mode Michelson interferometers, particularly the long baseline terrestrial versions, are, by design flaw, incapable of detecting the anisotropy effect and the

  15. Electric-regulated enhanced in-plane uniaxial anisotropy in FeGa/PMN-PT composite using oblique pulsed laser deposition

    Science.gov (United States)

    Zhang, Yi; Huang, Chaojuan; Turghun, Mutellip; Duan, Zhihua; Wang, Feifei; Shi, Wangzhou

    2018-04-01

    The FeGa film with in-plane uniaxial magnetic anisotropy was fabricated onto different oriented single-crystal lead magnesium niobate-lead titanate using oblique pulsed laser deposition. An enhanced in-plane uniaxial magnetic anisotropy field of FeGa film can be adjusted from 18 Oe to 275 Oe by tuning the oblique angle and polarizing voltage. The competitive relationship of shape anisotropy and strain anisotropy has been discussed, which was induced by oblique angle and polarizing voltage, respectively. The (100)-oriented and (110)-oriented PMN-PT show completely different characters on voltage-dependent magnetic properties, which could be attributed to various anisotropy directions depended on different strain directions.

  16. Anisotropy of Wood in the Microwave Region

    Science.gov (United States)

    Ziherl, Sasa; Bajc, Jurij; Urankar, Bernarda; Cepic, Mojca

    2010-01-01

    Wood is transparent for microwaves and due to its anisotropic structure has anisotropic dielectric properties. A laboratory experiment that allows for the qualitative demonstration and quantitative measurements of linear dichroism and birefringence in the microwave region is presented. As the proposed experiments are based on the anisotropy (of…

  17. LDA+DMFT Approach to Magnetocrystalline Anisotropy of Strong Magnets

    Directory of Open Access Journals (Sweden)

    Jian-Xin Zhu

    2014-05-01

    Full Text Available The new challenges posed by the need of finding strong rare-earth-free magnets demand methods that can predict magnetization and magnetocrystalline anisotropy energy (MAE. We argue that correlated electron effects, which are normally underestimated in band-structure calculations, play a crucial role in the development of the orbital component of the magnetic moments. Because magnetic anisotropy arises from this orbital component, the ability to include correlation effects has profound consequences on our predictive power of the MAE of strong magnets. Here, we show that incorporating the local effects of electronic correlations with dynamical mean-field theory provides reliable estimates of the orbital moment, the mass enhancement, and the MAE of YCo_{5}.

  18. Measuring the cosmological lepton asymmetry through the CMB anisotropy

    CERN Document Server

    Kinney, W H; Kinney, William H.; Riotto, Antonio

    1999-01-01

    A large lepton asymmetry in the Universe is still a viable possibility and leads to many interesting phenomena such as gauge symmetry nonrestoration at high temperature. We show that a large lepton asymmetry changes the predicted cosmic microwave background (CMB) anisotropy and that any degeneracy in the relic neutrino sea will be measured to a precision of 1% or better when the CMB anisotropy is measured at the accuracy expected to result from the planned satellite missions MAP and Planck. In fact, the current measurements already put an upper limit on the lepton asymmetry of the Universe which is stronger than the one coming from considerations of primordial nucleosynthesis and structure formation.

  19. Accordion-like honeycombs for tissue engineering of cardiac anisotropy

    Science.gov (United States)

    Engelmayr, George C.; Cheng, Mingyu; Bettinger, Christopher J.; Borenstein, Jeffrey T.; Langer, Robert; Freed, Lisa E.

    2008-12-01

    Tissue-engineered grafts may be useful in myocardial repair; however, previous scaffolds have been structurally incompatible with recapitulating cardiac anisotropy. Here, we use microfabrication techniques to create an accordion-like honeycomb microstructure in poly(glycerol sebacate), which yields porous, elastomeric three-dimensional (3D) scaffolds with controllable stiffness and anisotropy. Accordion-like honeycomb scaffolds with cultured neonatal rat heart cells demonstrated utility through: (1) closely matched mechanical properties compared to native adult rat right ventricular myocardium, with stiffnesses controlled by polymer curing time; (2) heart cell contractility inducible by electric field stimulation with directionally dependent electrical excitation thresholds (pthe formation of grafts with aligned heart cells and mechanical properties more closely resembling native myocardium.

  20. Flux and anisotropy of galactic cosmic rays: beyond homogeneous models

    International Nuclear Information System (INIS)

    Bernard, Guilhem

    2013-01-01

    In this thesis I study the consequence of non homogeneously distributed cosmic ray sources in the Milky way. The document starts with theoretical and experimental synthesis. Firstly, I will describe the interstellar medium to understand the mechanism of propagation and acceleration of cosmic rays. Then, the detailed study of cosmic rays diffusion on the galactic magnetic field allows to write a commonly used propagation equation. I will recall the Steady-state solutions of this equation, then I will focus on the time dependant solutions with point-like sources. A statistical study is performed in order to estimate the standard deviation of the flux around its mean value. The computation of this standard deviation leads to mathematical divergences. Thus, I will develop statistical tools to bypass this issue. So i will discuss the effect of the granularity of cosmic ray sources. Its impact on cosmic ray spectrum can explain some recent features observed by the experiments CREAM and PAMELA.Besides, this thesis is focused on the study of the anisotropy of cosmic rays. I will recap experimental methods of measurements, and I will show how to connect theoretical calculation from propagation theories to experimental measurements. Then, the influence of the local environment on the anisotropy measurements will be discussed, particularly the effect of a local diffusion coefficient. Then, I will compute anisotropy and its variance in a framework of point-like local sources with the tools developed in the first part. Finally, the possible influence of local sources on the anisotropy is discussed in the light of the last experimental results. (author) [fr