WorldWideScience

Sample records for anisotropic temperature factors

  1. Bootstrap current for tokamak plasma with anisotropic electron temperature

    International Nuclear Information System (INIS)

    The neoclassical bootstrap current for an anisotropic plasma has been studied in a large aspect-ratio tokamak. The enhancement factor due to the temperature anisotropy in the equilibrium electron distribution function is explicitly calculated, and is shown to reach to about 1.5 when the perpendicular temperature is twice as large as the parallel temperature. This bootstrap current is also predicted to have the component proportional to the radial electric field even in an axisymmetric magnetic field. (author)

  2. Temperature and polarization patterns in anisotropic cosmologies

    International Nuclear Information System (INIS)

    We study the coherent temperature and polarization patterns produced in homogeneous but anisotropic cosmological models. We show results for all Bianchi types with a Friedman-Robertson-Walker limit (i.e. Types I, V, VII0, VIIh and IX) to illustrate the range of possible behaviour. We discuss the role of spatial curvature, shear and rotation in the geodesic equations for each model and establish some basic results concerning the symmetries of the patterns produced. We also give examples of the time-evolution of these patterns in terms of the Stokes parameters I, Q and U

  3. Q-factor and absorption enhancement for plasmonic anisotropic nanoparticles

    CERN Document Server

    Liu, Wei; Miroshnichenko, Andrey E

    2016-01-01

    We investigate the scattering and absorption properties of anisotropic metal-dielectric core-shell nanoparticles. It is revealed that the radially anisotropic dielectric layer can accelerate the evanescent decay of the localized resonant surface modes, leading to Q-factor and absorption rate enhancement. Moreover, the absorption cross section can be maximized to reach the single resonance absorption limit. We further show that such artificial anisotropic cladding materials can be realized by isotropic layered structures, which may inspire many applications based on scattering and absorption of plasmonic nanoparticles.

  4. Antiferromagnetism and anisotropic high temperature superconductivity - a further macroscopic study

    International Nuclear Information System (INIS)

    The macroscopic studies of the possible coexistence of antiferromagnetism with anisotropic high temperature superconductivity are reviewed. A modified Ginzburg-Landau energy functional is presented. The temperature condition for such coexistence is estimated in terms of the GL coefficients for the uniform SC and AF. The derived equations with the appropriate boundary conditions are used to study the vortex structure and evaluate the first and second critical fields in the new materials. Applications and comparison with the available data are also presented. (author). 31 refs

  5. Anisotropic dark energy model with a hybrid scale factor

    CERN Document Server

    Mishra, B

    2015-01-01

    Anisotropic dark energy model with dynamic pressure anisotropies along different spatial directions is constructed at the backdrop of a spatially homogeneous diagonal Bianchi type $V$ $(BV)$ space-time in the framework of General Relativity. A time varying deceleration parameter generating a hybrid scale factor is considered to simulate a cosmic transition from early deceleration to late time acceleration. We found that the pressure anisotropies along the $y-$ and $z-$ axes evolve dynamically and continue along with the cosmic expansion without being subsided even at late times. The anisotropic pressure along the $x-$axis becomes equal to the mean fluid pressure. At a late phase of cosmic evolution, the model enters into a phantom region. From a state finder diagnosis, it is found that the model overlaps with $\\Lambda$CDM at late phase of cosmic time.

  6. Charged anisotropic superdense stars with constant stability factor

    Science.gov (United States)

    Newton Singh, Ksh; Pant, Neeraj

    2015-08-01

    In this paper, we have presented charged anisotropic Vlasenko-Pronin solutions and a new charged anisotropic Schwarzschild interior solution of the general relativistic field equations in curvature coordinates. These exact solutions are stable and well behaved in all respects for a wide range of anisotropy parameter and charge parameter. These new solutions can be used to model charged, anisotropic neutron stars and quark stars whose masses are comparatively heavier. An interesting fact of these solutions is that their stability factors are constants. Also, we have presented a new and first solution where radial pressure is greater than transverse pressure (i.e. ). For a neutral solution it reduces to the Schwarzschild interior solution with constant density. Our charged analogue of the Schwarzschild solution has density decreasing outward to the surface of the star which is necessary for a physical star. The EOSs corresponding to the presented solutions are also studied with their stiffness or softness by comparing their compression moduli. Furthermore, these compression moduli are decreasing outwards from the center. We expect this as the core must be very compact compared to its surface.

  7. Giant single-molecule anisotropic magnetoresistance at room temperature.

    Science.gov (United States)

    Li, Ji-Jun; Bai, Mei-Lin; Chen, Zhao-Bin; Zhou, Xiao-Shun; Shi, Zhan; Zhang, Meng; Ding, Song-Yuan; Hou, Shi-Min; Schwarzacher, Walther; Nichols, Richard J; Mao, Bing-Wei

    2015-05-13

    We report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature. Theoretical calculations based on first-principles quantum simulations show that the observed AMR of Fe-TPA-Fe junctions originates from electronic coupling at the TPA-Fe interfaces modified by the magnetic orientation of the Fe electrodes with respect to the direction of current flow. The present study highlights new opportunities for obtaining detailed understanding of mechanisms of charge and spin transport in molecular junctions and the role of interfaces in determining the MR of single-molecule junctions. PMID:25894840

  8. Nuclear modification factor in an anisotropic quark-gluon plasma

    Science.gov (United States)

    Mandal, Mahatsab; Bhattacharya, Lusaka; Roy, Pradip

    2011-10-01

    We calculate the nuclear modification factor (RAA) of light hadrons by taking into account the initial state momentum anisotropy of the quark-gluon plasma (QGP) expected to be formed in relativistic heavy ion collisions. Such an anisotropy can result from the initial rapid longitudinal expansion of the matter. A phenomenological model for the space-time evolution of the anisotropic QGP is used to obtain the time dependence of the anisotropy parameter ξ and the hard momentum scale, phard. The result is then compared with the PHENIX experimental data to constrain the isotropization time scale, τiso for fixed initial conditions (FIC). It is shown that the extracted value of τiso lies in the range 0.5⩽τiso⩽1.5. However, using a fixed final multiplicity (FFM) condition does not lead to any firm conclusion about the extraction of the isotropization time. The present calculation is also extended to contrast with the recent measurement of nuclear modification factor by the ALICE collaboration at s=2.76 TeV. It is argued that in the present approach, the extraction of τiso at this energy is uncertain and, therefore, refinement of the model is necessary. The sensitivity of the results on the initial conditions has been discussed. We also present the nuclear modification factor at Large Hadron Collider (LHC) energies with s=5.5 TeV.

  9. Two-Dimensional Stress Intensity Factor Analysis of Cracks in Anisotropic Bimaterial

    OpenAIRE

    Chia-Huei Tu; Jia-Jyun Dong; Chao-Shi Chen; Chien-Chung Ke; Jyun-Yong Jhan; Hsien Jui Yu

    2013-01-01

    This paper presents a 2D numerical technique based on the boundary element method (BEM) for the analysis of linear elastic fracture mechanics (LEFM) problems on stress intensity factors (SIFs) involving anisotropic bimaterials. The most outstanding feature of this analysis is that it is a singledomain method, yet it is very accurate, efficient, and versatile (i.e., the material properties of the medium can be anisotropic as well as isotropic). A computer program using the BEM formula translat...

  10. Microwave response of anisotropic high-temperature-superconductor crystals

    Science.gov (United States)

    Gough, C. E.; Exon, N. J.

    1994-07-01

    Microwave penetration and losses are derived for the anisotropic normal and superconducting states of single crystals in the shape of thin platelets oriented parallel and perpendicular to the oscillating electromagnetic field. For platelet crystals with the microwave field parallel to the major flat faces, the large anisotropy in the normal state can result in dissipation dominated by microwave field penetration through the thin edges rather than across the main faces. The influence of the extreme anisotropy is also considered for the superconducting state and can account for an anomalous peak in microwave loss below Tc sometimes observed in Bi-Sr-Ca-Cu-O crystals. When crystals are mounted with their flat faces perpendicular to the microwave field, the losses in both the normal and superconducting states are shown to be strongly peaked towards the outer perimeter of the crystals. This makes critical demands on the degree of perfection of such regions, if the microwave measurements are not to be complicated by nonintrinsic effects associated with local imperfections.

  11. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Energy Technology Data Exchange (ETDEWEB)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N., E-mail: trushin@phys.unn.ru; Chuprunov, E. V. [Nizhni Novgorod State University (Russian Federation)

    2013-12-15

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  12. Formation of temperature fields in doped anisotropic crystals under spatially inhomogeneous light beams passing through them

    Science.gov (United States)

    Zaitseva, E. V.; Markelov, A. S.; Trushin, V. N.; Chuprunov, E. V.

    2013-12-01

    The features of formation of thermal fields in potassium dihydrophosphate crystal doped with potassium permanganate under a 532-nm laser beam passing through it have been investigated. Data on the influence of birefringence on the temperature distribution in an anisotropic crystal whose surface is illuminated by a spatially modulated light beam are presented.

  13. The influence of temperature variations on ultrasonic guided waves in anisotropic CFRP plates.

    Science.gov (United States)

    Putkis, O; Dalton, R P; Croxford, A J

    2015-07-01

    Carbon Fibre Reinforced Polymer (CFRP) materials are lightweight and corrosion-resistant and therefore are increasingly used in aerospace, automotive and construction industries. In Structural Health Monitoring (SHM) applications of CFRP materials, ultrasonic guided waves potentially offer large area inspection or inspection from a remote location. This paper addresses the effect of temperature variation on guided wave propagation in highly anisotropic CFRP materials. Temperature variations cause changes in guided wave velocity that can in turn compromise the baseline subtraction procedures employed by many SHM systems for damage detection. A simple model that describes the dependence of elastic properties of the CFRP plates on temperature is presented in this paper. The model can be used to predict anisotropic velocity changes and baseline subtraction performance under varying thermal conditions. The results produced by the model for unidirectional and 0/90 CFRP plates are compared with experimental measurements. PMID:25812468

  14. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    Science.gov (United States)

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics. PMID:16243703

  15. SOL–divertor plasma simulations introducing anisotropic temperature with virtual divertor model

    International Nuclear Information System (INIS)

    A 1D SOL–divertor plasma simulation code by introducing the anisotropic ion temperature with virtual divertor model has been developed. By introducing the anisotropic ion temperature directly, the second-order derivative parallel ion viscosity term in the momentum transport equation can be excluded and the boundary condition at the divertor plate will not be required in the simulation. In order to express the effects of the divertor plate and accompanying sheath implicitly, a virtual divertor model which has artificial sinks for the particle, momentum and energy has been introduced. Periodic boundary condition becomes available by the use of the virtual divertor model. By using this model, SOL–divertor plasmas which satisfy the Bohm condition has been successfully obtained. The dependence of the ion temperature anisotropy on the normalized mean free path of ion and the validity of the parallel ion viscous flux for the Braginskii expression and the limited one are also investigated

  16. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  17. Synthesis of anisotropic nanostructures of silver for its possible applications in glucose and temperature sensing

    International Nuclear Information System (INIS)

    Syntheses of anisotropic nanostructures of silver have been demonstrated by using a simple chemical synthesis route and the roles of temperature and reaction time in the anisotropic growth of the material have been reported. The role of multiple twinned particles in the anisotropic shape evolution and branching growth of synthesized silver nanostructures is demonstrated. The optical absorption and photoluminescence (PL) properties of the non-functionalized silver nanostructures have been studied in the UV–visible wavelength region and there exist two surface plasmon resonance (SPR) peaks, one called transverse surface plasmon resonance (TSPR) peak situated at smaller wavelength at ∼410–415 nm, and another called longitudinal surface plasmon resonance (LSPR) peak appearing at longer wavelength at ∼595–615 nm in the visible region. Intense PL emission spectra centered at ∼410 nm have been observed from the synthesized products obtained at lower temperature, whereas the PL spectra of higher temperature materials are divided into two broad peaks staying >100 nm apart at both sides of 410 nm. It has been demonstrated that the synthesized non-functionalized silver nanostructure can further be utilized for sensing of glucose and temperature. Tyndall effect experiment with the synthesized silver nanostructures dispersed in methanol has been performed and demonstrated the stability of the nanostructures. (paper)

  18. Anisotropic Constitutive Model of Strain-induced Phenomena in Stainless Steels at Cryogenic Temperatures

    CERN Document Server

    Garion, C

    2004-01-01

    A majority of the thin-walled components subjected to intensive plastic straining at cryogenic temperatures are made of stainless steels. The examples of such components can be found in the interconnections of particle accelerators, containing the superconducting magnets, where the thermal contraction is absorbed by thin-walled, axisymetric shells called bellows expansion joints. The stainless steels show three main phenomena induced by plastic strains at cryogenic temperatures: serrated (discontinuous) yielding, gamma->alpha' phase transformation and anisotropic ductile damage. In the present paper, a coupled constitutive model of gamma->alpha' phase transformation and orthotropic ductile damage is presented. A kinetic law of phase transformation, and a kinetic law of evolution of orthotropic damage are presented. The model is extended to anisotropic plasticity comprising a constant anisotropy (texture effect), which can be classically taken into account by the Hill yield surface, and plastic strain induced ...

  19. Influences of temperature and concentrations on morphology of TMAH anisotropic etching for silicon microchannel plate

    Science.gov (United States)

    Liang, Yong-zhao; Duanmu, Qing-duo; Yang, Ji-kai; Wang, Guo-zheng; Chai, Jin; Yu, Fengyuan; Zhang, Yao; Fan, Shu-xiao

    2013-08-01

    Anisotropic etching of monocrystalline silicon plays an important role in Microsystems technology in the recent years. TMAH, as one of the anisotropic etchants, is used to fabricate pores with square cross-section. Careful choice of concentration, isopropyl alcohol additives and temperature of alkaline solution allows for certain crystallographic directions to be preferentially etched. In this way, pores with square, eight-sided (octagonal) or rotated square shapes can be attained and convert to each other. We show the etch selectivity on (100) and (110) planes in TMAH solution with low concentration. The etch rates on (100) and (110) planes at different temperature and concentration has been measured. The results indicated that the perfect orthogonal array of pores with sharp edges and corners can be obtained at more than 40℃ in 1wt% TMAH solution. There is good etch selectivity on (110) surface and the etch rate on (110) surface is slower than (100) surface under the condition.

  20. Dynamic stress intensity factor KⅢ and dynamic crack propagation characteristics of anisotropic materials

    Institute of Scientific and Technical Information of China (English)

    GAO Xin; WANG Han-gong; KANG Xing-wu

    2008-01-01

    Based on the mechanics of anisotropic materials,the dynamic propagation problem of a mode Ⅲ crack in an infinite anisotropic body is investigated.Stress,strain and displacement around the crack tip are expressed as an analytical complex function,which can be represented in power series.Constant coefficients of series are determined by boundary conditions.Expressions of dynamic stress intensity factors for a mode Ⅲ crack are obtained.Components of dynamic stress,dynamic strain and dynamic displacement around the crack tip are derived.Crack propagation characteristics are represented by the mechanical properties of the anisotropic materials,i.e.,crack propagation velocity M and the parameter α.The faster the crack velocity is,the greater the maximums of stress components and dynamic displacement components around the crack tip are.In particular,the parameter α affects stress and dynamic displacement around the crack tip.

  1. Estimation of the anisotropy parameters from imaging moveout of diving wave in a factorized anisotropic medium

    KAUST Repository

    Xu, Shibo

    2016-06-10

    The importance of diving waves is being realized because they provide long-wavelength model information, which can be used to help invert for the reflection information in full-waveform inversion. The factorized model is defined here as a combination of vertical heterogeneity and constant anisotropy, and it admits closed-form description of the traveltime. We have used these resulting analytical formulas to describe the behavior of diving waves in a factorized anisotropic medium, and we used an approximate imaging moveout formulation (residual moveout after imaging) to update the velocity model when the wrong model parameters (isotropic assumption) were used for imaging. We then used these analytical representations of the image moveout to establish a semblance analysis framework to search for the optimal anisotropic parameters. We have also discussed different parameterizations of the factorized medium to find the one that gave the best accuracy in anisotropy parameters estimation.

  2. Anisotropic thermo-mechanical damage modelling for cementitious materials at high temperature

    International Nuclear Information System (INIS)

    The behavior of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to high temperature environment, in application such as fire exposure, smelting plants, nuclear installations. This paper we develop numerical algorithms for the integration of a thermo-mechanical damage model for concrete at high temperature. The model has been derived within the consistent framework of thermodynamics, drawing on the iso-thermal damage of Ortiz and Yazdani and Schreyer and the thermo-mechanical coupling aspects of Simo and Miehe. In addition, account has been taken of the known stress-temperature dependence of concrete through the descriptions of thermal and thermo-mechanical damage, and the thermal softening. Mechanical damage is related directly to compliance, with additional flexibility due to thermal damage. Explicit expressions have been derived for the free energy including elastic energy, damage due to micro-crack formation, thermal-mechanical coupling and thermal energy. The damage function is shown to be flexible in being able to capture the temperature dependent shape and size of failure surfaces: the model generally incorporates features of anisotropic damage, dilatation and inelastic strain responses. In a wider context, the damage model presented forms part of a study aimed at the development of a completely generalized analysis of concrete at transient elevated temperatures, including the coupling of damage, hygral diffusion and heat conduction through the material. Refs. 4 (author)

  3. Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Seinige, H.; Tsoi, M., E-mail: tsoi@physics.utexas.edu [Physics Department, University of Texas at Austin, Austin, Texas 78712 (United States); Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Cao, G. [Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506 (United States); Zhou, J.-S.; Goodenough, J. B. [Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-07

    Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr{sub 2}IrO{sub 4} are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr{sub 2}IrO{sub 4} were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an IrO{sub 2} (ab) plane with angular dependence showing a crossover from four-fold to two-fold symmetry with an increasing magnetic field. Point contact measurement exhibits distinctive anisotropic magnetoresistance (AMR) in comparison to a bulk experiment, imposing intriguing questions about the mechanism of AMR in this material. Temperature-dependent MR measurements show that the MR falls to zero at the Neel temperature, but the temperature dependence of the MR ratio differs qualitatively from that of the resistivity. This AMR study helps to unveil the entanglement between electronic transport and magnetism in Sr{sub 2}IrO{sub 4} while the observed magnetoresistive phenomena can be potentially used to sense the antiferromagnetic order parameter in spintronic applications.

  4. Simulation of the passive UHF devices on the basis of high-temperature superconductors for planar multilayer anisotropic structures

    International Nuclear Information System (INIS)

    The electrodynamic analysis of the arbitrary multilayer medium, including the anisotropic layers and containing the arbitrary form conductors is carried out. Thin layers of the high-temperature superconductor (HTSC) are considered as conductors. Determination of the surface current density is a result of the numerical solution. Accounting for the losses in the HTSC is accomplished on the basis of determining the equivalent surface impedance and using the Leontovich boundary conditions. Anisotropy is accounted for in the determination of the Green spectral dyad for the structure with arbitrary number of the anisotropic or isotropic layers. Calculation of the surface current density distribution demonstrates the correctness of the proposed model

  5. Simulation of the passive UHF devices on the basis of high-temperature superconductors for planar multilayer anisotropic structures

    CERN Document Server

    Gashinova, M S; Kolmakov, Y A; Vendik, I B

    2002-01-01

    The electrodynamic analysis of the arbitrary multilayer medium, including the anisotropic layers and containing the arbitrary form conductors is carried out. Thin layers of the high-temperature superconductor (HTSC) are considered as conductors. Determination of the surface current density is a result of the numerical solution. Accounting for the losses in the HTSC is accomplished on the basis of determining the equivalent surface impedance and using the Leontovich boundary conditions. Anisotropy is accounted for in the determination of the Green spectral dyad for the structure with arbitrary number of the anisotropic or isotropic layers. Calculation of the surface current density distribution demonstrates the correctness of the proposed model

  6. Anomaly in the phase diagram of the spin quantum 1/2 anisotropic Heisenberg antiferromagnet model with Dzyaloshinskii-Moriya interaction: A low temperature analysis

    Science.gov (United States)

    Parente, Walter E. F.; Pacobahyba, J. T. M.; Araújo, Ijanílio G.; Neto, Minos A.; Ricardo de Sousa, J.

    2015-11-01

    We will study phase diagram the quantum spin-1/2 anisotropic Heisenberg antiferromagnet model in the presence of a Dzyaloshinskii-Moriya interaction (D) and a uniform longitudinal (H) magnetic field, where we have observed an anomaly at low temperatures. Using the effective-field theory with a finite cluster N=2 spin (EFT-2) we calculate the phase diagram in the H - D plane on a simple cubic lattice (z=6). We analyzed the cases: anisotropic Heisenberg - case I: (Δ = 1), anisotropic Heisenberg - case II: (Δ = 0.5) and anisotropic Heisenberg - case III: (Δ = 0), where only second order phase transitions are observed.

  7. Calculation of the thermal disadvantage factor for a reactor cell with anisotropic scattering by the Fn method

    International Nuclear Information System (INIS)

    The F sub(N) method is used for the calculation of the thermal disadvantage factor in reactor cells with anisotropic scattering in the moderator. Numerical results were obtained for several reactor cells and compared with the results obtained by other methods. The results confirmed the physical conclusion, that the higher order terms in the expansion of the scattering law have an insignificant effect on the thermal disadvantage factor. (E.G.)

  8. Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Science.gov (United States)

    Reichlová, H.; Novák, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Maryško, M.; Wunderlich, J.; Marti, X.; Jungwirth, T.

    2016-07-01

    We investigate the thickness and temperature dependence of a series of Ni{}0.8Fe{}0.2/Ir{}0.2Mn{}0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet ({{t}}{{FM}}/{{t}}{{AFM}}) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of {{t}}{{FM}}/{{t}}{{AFM}} lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise.

  9. Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy

    International Nuclear Information System (INIS)

    Anisotropic elastic constants of Zr-2.5Nb pressure tube materials were determined by a high temperature resonant ultrasound spectroscopy (RUS). The resonant frequencies were measured using alumina wave-guides and wide band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the axial, radial and circumferential direction of the pressure tube. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ∼500 .deg. C. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the axial or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of shear elastic constants along axial direction and radial direction was observed near 150 .deg. C. This fact corresponds to the crossing of c44 and c66 of single crystal zirconium

  10. Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2014-07-01

    Full Text Available Magnetic nanotubes (NTs are interesting for magnetic memory and magnonic applications. We report magnetotransport experiments on individual 10 to 20 μm long Ni and CoFeB NTs with outer diameters ranging from 160 to 390 nm and film thicknesses of 20 to 40 nm. The anisotropic magnetoresistance (AMR effect studied from 2 K to room temperature (RT amounted to 1.4% and 0.1% for Ni and CoFeB NTs, respectively, at RT. We evaluated magnetometric demagnetization factors of about 0.7 for Ni and CoFeB NTs having considerably different saturation magnetization. The relatively large AMR value of the Ni nanotubes is promising for RT spintronic applications. The large saturation magnetization of CoFeB is useful in different fields such as magnonics and scanning probe microscopy using nanotubes as magnetic tips.

  11. Anisotropic radiation damage by charge exchange neutrals under the high ion temperature discharges in TRIAM-1M

    International Nuclear Information System (INIS)

    Plasma irradiation experiments have been carried out in TRIAM-1M. Thin foil specimens were exposed to a high ion temperature plasma (hydrogen plasma, limiter configuration) and the microstructural evolution was examined by means of transmission electron microscopy. The anisotropic radiation damage due to charge exchange (CX) hydrogen neutrals was clearly shown. This anisotropy could be explained as the effect of gradient B drift. By the comparison with the areal density obtained from hydrogen beam irradiation experiments, the angular dependence of the CX neutrals fluence was estimated quantitatively. The localized formation of energetic CX neutrals at the lower half of the plasma indicates stronger sputtering and radiation damage at the bottom of the torus. (author)

  12. Room-Temperature Perpendicular Exchange Coupling and Tunneling Anisotropic Magnetoresistance in an Antiferromagnet-Based Tunnel Junction

    Science.gov (United States)

    Wang, Y. Y.; Song, C.; Cui, B.; Wang, G. Y.; Zeng, F.; Pan, F.

    2012-09-01

    We investigate the exchange coupling between perpendicular anisotropy (PMA) Co/Pt and IrMn in-plane antiferromagnets (AFMs), as well as tunneling anisotropic magnetoresistance (TAMR) in [Pt/Co]/IrMn/AlOx/Pt tunnel junctions, where Co/Pt magnetization drives rotation of AFM moments with the formation of exchange-spring twisting. When coupled with a PMA ferromagnet, the AFM moments partially rotate with out-of-plane magnetic fields, in contrast with being pinned along the easy direction of IrMn for in-plane fields. Because of the superior thermal tolerance of perpendicular exchange coupling and the stability of moments in ˜6nm-thick IrMn, TAMR gets significantly enhanced up to room temperature. Their use would advance the process towards practical AFM spintronics.

  13. Temperature effect of dynamic anisotropic elastic constants of Zr-2.5Nb pressure tube by resonant ultrasound spectroscopy

    International Nuclear Information System (INIS)

    Dynamic anisotropic elastic constants of CANDU Zr-2.5Nb pressure tube materials were determined by high temperature resonant ultrasound spectroscopy (RUS). The resonance frequencies were measured using a couple of alumina waveguides and wide-band ultrasonic transducers in a small furnace. The rectangular parallelepiped specimens were fabricated along with the longitudinal, radial and transverse direction of the pressure tube. The initial estimates for RUS were obtained from the orientation distribution function by X-ray pole figure and elastic stiffness of single crystal zirconium. A nine elastic stiffness tensor for orthotropic symmetry was determined in the range of room temperature ∼500 deg. C. As the temperature increases, the elastic constant tensor, cij gradually decreases. Higher elastic constants along the transverse direction compared to those along the longitudinal or radial direction are similar to the case of Young's modulus or shear modulus. A crossing of elastic constants along the longitudinal direction and radial direction was observed near 120-150 deg. C. This fact could correlate to the crossing characteristics of c44 and c66 of a zirconium single crystal in the temperature range

  14. Temperature dependence of the anisotropic deformation of Zr-2.5%Nb pressure tube material during micro-indentation

    Science.gov (United States)

    Bose, B.; Klassen, R. J.

    2011-12-01

    The effect of temperature on the anisotropic plastic deformation of textured Zr-2.5%Nb pressure tube material was studied using micro-indentation tests performed in the axial, radial, and transverse directions of the tube over the temperature range from 25 to 400 °C. The ratio of the indentation stress in the transverse direction relative to that in the radial and axial directions was 1.29:1 and 1.26:1 at 25 °C but decreased to 1.22:1 and 1.05:1 at 400 °C. The average activation energy of the obstacles that limit the rate of indentation creep increases, from 0.72 to 1.33 eV, with increasing temperature from 25 to 300 °C and is independent of indentation direction. At temperature between 300 °C and 400 °C the measured activation energy is considerably reduced for indentation creep in the transverse direction relative to that of either the axial or radial directions. We conclude that, over this temperature range, the strength of the obstacles that limit the time-dependent dislocation glide on the pyramidal slip system changes relative to that on the prismatic slip system. These findings provide new data on the temperature dependence of the yield stress and creep rate, particularly in the radial direction, of Zr-2.5%Nb pressure tubes and shed new light on the effect of temperature on the operation of dislocation glide on the prismatic and pyramidal slip systems which ultimately determines the degree of mechanical anisotropy in the highly textured Zr-2.5Nb pressure tube material used in CANDU nuclear reactors.

  15. Highly anisotropic SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature

    International Nuclear Information System (INIS)

    Surfactant-assisted ball milling (SABM) has been shown to be a promising method for preparing rare earth-transition metal (RE-TM) nanoflakes and nanoparticles. In this work, we prepared SmCo5 nanoflakes by SABM at low temperature, and 2-methyl pentane and trioctylamine were specially selected as solvent and surfactant, respectively, due to their low melting points. The effects of milling temperature on the morphology, microstructure and magnetic performance of SmCo5 nanoflakes were investigated systematically. Comparing with the samples milled at room temperature, the SmCo5 nanoflakes prepared at low temperature displayed more homogeneous morphology and lower oxygen content. Remarkably, better crystallinity, better grain alignment and larger remanence ratio were shown in the samples milled at low temperature, which resulted from the distinct microstructure caused by low milling temperature. The differences in structural evolution between the SmCo5 nanoflakes milled at room temperature and low temperature, including the formation of nanocrystalline, grain boundary sliding, grain rotation, et al., were discussed. It was found that lowering the temperature of SABM was a powerful method for the fabrication of RE-TM nanoflakes, which showed better hard magnetic properties and lower oxygen content. This was important for the preparation of high-performance sintered magnets, bonded magnets and nanocomposite magnets. - Highlights: • We prepare SmCo5 nanoflakes by surfactant-assisted ball milling at low temperature. • Better grain alignment and higher remanence ratio are achieved. • The oxygen content is reduced by lowering the milling temperature. • A distinct microstructural evolution caused by low milling temperature is clarified

  16. Suzaku Observation of Abell 1689: Anisotropic Temperature and Entropy Distributions Associated with the Large-Scale Structure

    CERN Document Server

    Kawaharada, Madoka; Umetsu, Keiichi; Takizawa, Motokazu; Matsushita, Kyoko; Fukazawa, Yasushi; Hamana, Takashi; Miyazaki, Satoshi; Nakazawa, Kazuhiro; Ohashi, Takaya

    2010-01-01

    (Abridged) We present results of Suzaku observations of the intracluster medium (ICM) in Abell 1689, combined with complementary analysis of the SDSS data and weak and strong lensing analysis of Subaru/Suprime-Cam and HST/ACS observations. Faint X-ray emission from the ICM around the virial radius is detected at 4.0 sigma significance. We find anisotropic gas temperature and entropy distributions in cluster outskirts correlated with large-scale structure of galaxies. The high temperature and entropy region in the northeastern (NE) outskirts is connected to an overdense filamentary structure. The outskirt regions in contact with low density void environments have low gas temperatures and entropies, deviating from hydrostatic equilibrium. These results suggest that thermalization of the ICM occurs faster along the filamentary structures than the void regions. A joint X-ray and lensing analysis shows that the hydrostatic mass is $\\sim60-90%$ of spherical lensing one but comparable to a triaxial halo mass within ...

  17. Mapping the anisotropic Lande g-factor tensor of 1D GaAs holes in all 3 spatial directions

    Science.gov (United States)

    Hudson, Karina; Srinivasan, Ashwin; Wang, Qingwen; Yeoh, Lareine; Klochan, Oleh; Farrer, Ian; Ritchie, David; Hamilton, Alex

    2014-03-01

    We have studied the Zeeman splitting of 1D holes formed on a (100) GaAs/AlGaAs heterostructure on a single cooldown. The strong spin orbit coupling and 1D confinment give rise to a highly anisotropic spin splitting. By use of the high-symmetry (100) crystal, we eliminate the effects of crystal anisotropy on our measurements. In measuring the spin splitting as a function of angle between the wire and the applied magnetic field, we are able to identify the principle axes of the g-tensor. We show that the principle axes are defined by the potential confining the 1D holes, and are not affected by the crystal axes. We find that g∥⊥ factors parallel and perpendicular to the wire, and g⊥ refers to the g-factor perpendicular to the 2D well.

  18. Drift kinetic Alfvén wave in temperature anisotropic plasma

    International Nuclear Information System (INIS)

    By using the gyrokinetic theory, the kinetic Alfvén waves (KAWs) are discussed to emphasize the drift effects through the density inhomogeneity and the temperature anisotropy on their dispersion characteristics. The dependence of stabilization mechanism of the drift-Alfvén wave instability on the temperature anisotropy is highlighted. The estimate of the growth rate and the threshold condition for a wide range of parameters are also discussed

  19. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    Science.gov (United States)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-11-01

    Monte Carlo computer-simulation techniques are used to elucidate the equilibrium phase behavior as well as the late-stage ordering dynamics of some two-dimensional models with ground-state ordering of a high degeneracy Q. The models are Q-state Potts models with anisotropic grain-boundary potential on triangular lattices-essentially clock models, except that the potential is not a cosine, but a sine function of the angle between neighboring grain orientations. For not too small Q, these models display two thermally driven phase transitions, one which takes the system from a low-temperature Potts-ordered phase to an intermediate phase which lacks conventional long-range order, and another transition which takes the system to the high-temperature disordered phase. The linear nature of the sine potential used makes it a marginal case in the sense that it favors neither hard domain boundaries, like the standard Potts models do, nor a wetting of the boundaries, as the standard clock models do. Thermal fluctuations nevertheless cause wetting to occur for not too small temperatures. Specifically, we have studied models with Q=12 and 48. The models are quenched from infinity to zero as well as finite temperatures within the two low-temperature phases. The order parameter is a nonconserved quantity during these quenches. The nonequilibrium ordering process subsequent to the quench is studied as a function of time by calculating the interfacial energy, ΔE, associated with the entire grain-boundary network. The time evolution of this quantity is shown to obey the growth law, ΔE(t)~t-n, over an extended time range at late times. It is found that the zero-temperature dynamics is characterized by a special exponent value which for the Q=48 model is n~=0.25 in accordance with earlier work. However, for quenches to finite temperatures in the Potts-ordered phase there is a distinct crossover to the classical Lifshitz-Allen-Cahn exponent value, n=(1/2, for both values of Q. This

  20. Anisotropic g-factors and isotropic spin lifetimes in reduced symmetry (100) GaAs/AlGaAs quantum wells

    Energy Technology Data Exchange (ETDEWEB)

    Eldridge, Peter S.; Huebner, J.; Oertel, S.; Oestreich, M. [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany); Henini, M. [School of Physics and Astronomy, University of Nottingham (United Kingdom); Harley, R.T. [School of Physics and Astronomy, University of Southampton (United Kingdom)

    2010-07-01

    Zincblende semiconductor quantum wells grown on (100) substrates possessing low symmetry (C{sub 2v}) provide an interesting medium for the study of electron spin dynamics as the in-plane lifetime and g-factor can be anisotropic. The origin of the expected lifetime anisotropy is interference of bulk (BIA) and structural (SIA) inversion anisotropy terms in the conduction band spin-orbit splitting while that of the g-factor is the effective conduction band electric field. Interpretation of cw Hanle measurements is difficult as the depolarisation half width depends on both g-factor and spin lifetime simultaneously. In this work we investigate separately the in-plane electron spin lifetime and the g-factor in GaAs/AlGaAs quantum wells with alloy asymmetry using time-resolved spin quantum-beat spectroscopy. The measurements show easily detectable in-plane anisotropy of the electron g-factor but no anisotropy of the spin lifetime. The results therefore demonstrate that the electron g-factor can be readily engineered through the effective conduction band electric field but that the SIA splitting in such systems is unmeasurably small.

  1. Room Temperature Ferromagnetic, Anisotropic, Germanium Rich FeGe(001 Alloys

    Directory of Open Access Journals (Sweden)

    Cristian M. Teodorescu

    2013-02-01

    Full Text Available Ferromagnetic FexGe1−x with x = 2%–9% are obtained by Fe deposition onto Ge(001 at high temperatures (500 °C. Low energy electron diffraction (LEED investigation evidenced the preservation of the (1 × 1 surface structure of Ge(001 with Fe deposition. X-ray photoelectron spectroscopy (XPS at Ge 3d and Fe 2p core levels evidenced strong Fe diffusion into the Ge substrate and formation of Ge-rich compounds, from FeGe3 to approximately FeGe2, depending on the amount of Fe deposited. Room temperature magneto-optical Kerr effect (MOKE evidenced ferromagnetic ordering at room temperature, with about 0.1 Bohr magnetons per Fe atom, and also a clear uniaxial magnetic anisotropy with the in-plane  easy magnetization axis. This compound is a good candidate for promising applications in the field of semiconductor spintronics.

  2. Anisotropic Azimuthal Power and Temperature distribution on FuelRod. Impact on Hydride Distribution

    Energy Technology Data Exchange (ETDEWEB)

    Motta, Arthur [Pennsylvania State Univ., State College, PA (United States); Ivanov, Kostadin [Pennsylvania State Univ., State College, PA (United States); Arramova, Maria [Pennsylvania State Univ., State College, PA (United States); Hales, Jason [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-04-29

    The degradation of the zirconium cladding may limit nuclear fuel performance. In the high temperature environment of a reactor, the zirconium in the cladding corrodes, releasing hydrogen in the process. Some of this hydrogen is absorbed by the cladding in a highly inhomogeneous manner. The distribution of the absorbed hydrogen is extremely sensitive to temperature and stress concentration gradients. The absorbed hydrogen tends to concentrate near lower temperatures. This hydrogen absorption and hydride formation can cause cladding failure. This project set out to improve the hydrogen distribution prediction capabilities of the BISON fuel performance code. The project was split into two primary sections, first was the use of a high fidelity multi-physics coupling to accurately predict temperature gradients as a function of r, θ , and z, and the second was to use experimental data to create an analytical hydrogen precipitation model. The Penn State version of thermal hydraulics code COBRA-TF (CTF) was successfully coupled to the DeCART neutronics code. This coupled system was verified by testing and validated by comparison to FRAPCON data. The hydrogen diffusion and precipitation experiments successfully calculated the heat of transport and precipitation rate constant values to be used within the hydrogen model in BISON. These values can only be determined experimentally. These values were successfully implemented in precipitation, diffusion and dissolution kernels that were implemented in the BISON code. The coupled output was fed into BISON models and the hydrogen and hydride distributions behaved as expected. Simulations were conducted in the radial, axial and azimuthal directions to showcase the full capabilities of the hydrogen model.

  3. Prospect for room temperature tunneling anisotropic magnetoresistance effect: Density of statesanisotropies in CoPt systems

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Mašek, Jan; Jungwirth, Tomáš

    2006-01-01

    Roč. 73, č. 2 (2006), 024418/1-024418/4. ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100530 Institutional research plan: CEZ:AV0Z10100521 Keywords : tunneling magnetoresistance * metallic ferromagnets * magnetocrystalline anisotropie s Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  4. Anisotropic dielectric response of lead zirconate crystals in the terahertz and infrared range at low temperature

    Czech Academy of Sciences Publication Activity Database

    Ostapchuk, Tetyana; Kadlec, Christelle; Kužel, Petr; Kroupa, Jan; Železný, Vladimír; Hlinka, Jiří; Petzelt, Jan; Dec, J.

    2014-01-01

    Roč. 87, 10-11 (2014), s. 1129-1137. ISSN 0141-1594 R&D Projects: GA ČR GA13-15110S Institutional support: RVO:68378271 Keywords : antiferroelectrics * infrared and terahertz spectroscopy * lead zirconate * phonons * complex dielectric permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.954, year: 2014

  5. Prediction of the anisotropic properties of energetic materials at elevated pressures and temperatures

    Science.gov (United States)

    Ojeda, Oscar; Cagin, Tahir

    2011-03-01

    Localization of strain and changes under extreme conditions in energetic materials (EM) can cause runaway reactions and unexpected initiation. A clear understanding of the mechanical properties is a perquisite in understanding the interplay between mechanical, chemical and thermodynamic properties that relate sensitivity and EM's before they undergo initiation. We have conducted first principles ground state studies, complemented by atomistic calculations at elevated temperatures and pressures, for energetic commonly used secondary EM's with varying sensitivities. Chemical information found from ab intio methods, and from compression at elevated temperatures show that external conditions relevant to impact and shock behavior can have different effects on the studied systems. These range from changes in local conformation, changes in the hydrogen-bonding network, and more drastically to a full crystallographic transition in which the symmetry of the system undergoes a transformation. Due to the chemical, mechanical and thermodynamic level information that provides, multiscale modeling methods, can then be applied to the understanding of other type of systems and give a clearer understanding of the molecular processes that undergo energetic materials, prior to initiation. Laboratory of Computational Engineering of Nanomaterials.

  6. BARC-35: A 35 group cross-section library with P3-anisotropic scattering matrices and resonance self-shielding factors

    International Nuclear Information System (INIS)

    A 35 group cross-section set with P3-anisotropic scattering matrices and resonance self-shielding factors has been generated from the basic ENDF/B-IV cross-section Library for 57 reactor elements. This library, called BARC35, is considered to be well suited for the neutronics and safety analysis of fission, fusion and hybrid systems. (author)

  7. Anisotropic electron mobility studies on Cl2-NDI single crystals and the role of static and dynamic lattice deformations upon temperature variation

    OpenAIRE

    Hansen, Nis Hauke; May, Falk; Kälblein, Daniel; Schmeiler, Teresa; Lennartz, Christian; Sanchez-Carrera, Roel; Steeger, Alexander; Burschka, Christian; Stolte, Matthias; Würthner, Frank; Brill, Jochen; Pflaum, Jens

    2015-01-01

    The anisotropic electron transport in the (001) plane of sublimation-grown Cl$_{2}$-NDI (naphthalene diimide) single crystals is analysed over a temperature range between 175 K and 300 K. Upon cooling from room temperature to 175 K the electron mobility along the direction of preferred transport monotonously increases from 1.5 cm$^{2}$/Vs to 2.8 cm$^{2}$/Vs according to a distinct temperature relation of $~T^{-1.3}$. At first glance, these characteristics allude to a coherent, i.e. band-like ...

  8. Lattice dynamical appraisal of the anisotropic Debye-Waller factors in graphite lattice

    International Nuclear Information System (INIS)

    The Debye-Waller factors in graphite for the atomic motions within the basal plane and also across the basal planes have been calculated using the various lattice dynamical models available to date and a critical comparison is made with the existing experimental data from X ray and neutron scattering studies. The present study reveals the need for further investigation on the nature of atomic motion across the basal planes. (author). 15 refs, 1 tab

  9. Jacobi polynomials flux moments expansions and factorized kernel approach to the stationary integral anisotropic transport in a finite cylinder

    International Nuclear Information System (INIS)

    A transport method was developed in view of benchmark calculations of the eigenvalues and flux distributions for monoenergetic neutrons anisotropically colliding in a critical cylinder of finite radius and half-height. For the kernels appearing in the system of integral equations for spherical harmonic moments of the angular flux we proposed a factorized form that accounted for the anisotropy of scattering and worked in the original Euclidean space, extending to cylinder geometry, of interest for pratical reactor calculations, a technique previously adopted for the simpler parallelepiped geometry. This treatment of the two-dimensional kernels allows representations typical in one dimensional problems for the matrix formulation to which the problem reduces by the introduction of a corresponding projectional technique. Optimal in view of an appropriate matrix formulation appears also the representation of the unknown spherical harmonics moments in terms of special jacobi polynomials, coinciding with a Legrendre polynomials expansion for the total flux in the case of isotropic scattering. The high accuracy of the results obtained in this case for both eigenvalues and fluxes is finally tested by internal convergence studies and heights as well as for the limiting cases or ratios of radius to height going to zero or to infinity

  10. Self-consistent treatment of the sheath boundary conditions by introducing anisotropic ion temperatures and virtual divertor model

    Science.gov (United States)

    Togo, Satoshi; Takizuka, Tomonori; Nakamura, Makoto; Hoshino, Kazuo; Ibano, Kenzo; Lang, Tee Long; Ogawa, Yuichi

    2016-04-01

    One-dimensional SOL-divertor plasma fluid simulation code which considers anisotropy of ion temperature has been developed so as to deal with sheath theory self-consistently. In our fluid modeling, explicit use of boundary condition for Mach number M at divertor plate, e.g., M = 1, becomes unnecessary. In order to deal with the Bohm condition and the sheath heat transmission factors at divertor plate self-consistently, we introduced a virtual divertor (VD) model which sets an artificial region beyond divertor plates and artificial sinks for particle, momentum and energy there to model the effects of the sheath region in front of the divertor plate. Validity of our fluid model with VD model is confirmed by showing that simulation results agree well with those from a kinetic code regarding the Bohm condition, ion temperature anisotropy and supersonic flow. We also show that the strength of artificial sinks in VD region does not affect profiles in plasma region at least in the steady state and that sheath heat transmission factors can be adjusted to theoretical values by VD model. Validity of viscous flux is also investigated.

  11. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    OpenAIRE

    Jeppesen, Claus; Flyvbjerg, Henrik; Ole G. Mouritsen

    1989-01-01

    Monte Carlo computer-simulation techniques are used to elucidate the equilibrium phase behavior as well as the late-stage ordering dynamics of some two-dimensional models with ground-state ordering of a high degeneracy, Q. The models are Q-state Potts models with anisotropic grain-boundary potential on triangular lattices—essentially clock models, except that the potential is not a cosine, but a sine function of the angle between neighboring grain orientations. For not too small Q, these mode...

  12. Configurational temperature and local properties of the anisotropic Gay-Berne liquid crystal model: Applications to the isotropic liquid/vapor interface and isotropic/nematic transition

    Science.gov (United States)

    Ghoufi, Aziz; Morineau, Denis; Lefort, Ronan; Malfreyt, Patrice

    2011-01-01

    Molecular simulations in the isothermal statistical ensembles require that the macroscopic thermal and mechanical equilibriums are respected and that the local values of these properties are constant at every point in the system. The thermal equilibrium in Monte Carlo simulations can be checked through the calculation of the configurational temperature, {k_BT_{conf}={}/{}}, where nabla _r is the nabla operator of position vector r. As far as we know, T_{conf} was never calculated with the anisotropic Gay-Berne potential, whereas the calculation of T_{conf} is much more widespread with more common potentials (Lennard Jones, electrostatic, …). We establish here an operational expression of the macroscopic and local configurational temperatures, and we investigate locally the isotropic liquid phase, the liquid / vapor interface, and the isotropic-nematic transition by Monte Carlo simulations.

  13. Anisotropic yielding of rocks at high temperatures and pressures: Technical progress report No. 2, 16 December 1987--15 December 1988

    Energy Technology Data Exchange (ETDEWEB)

    Kronenberg, A.K.; Russell, J.E.; Carter, N.L.; Handin, C.J.; Gottschalk, R.R.; Shea, W.T.

    1989-01-01

    Progress has been made towards the quantitative determination of anisotropic yield criteria for several foliated and lineated rocks, towards developing models for their mechanical properties based upon interactions between deformation mechanisms and preexisting fabric elements, and towards the characterization of fabrics resulting from diapiric emplacement of magma bodies within shallow portion of the earth's crust. The suite of extension and compression experiments on Four-mile gneiss is nearly complete. Samples cored along six different orientations have been tested at temperatures ranging from 25/degree/ to 800/degree/C and confining pressures of 0 to 400 MPa at a strain rate of 10/sup /minus/5//s, and we are currently investigating the influence of strain rate on yield strength over the range 10/sup /minus/4/less than or equal to/dot /var epsilon//less than or equal to10/sup /minus/6//s. We have examined deformation microstructures of deformed gneiss samples and identified those processes at the grain scale which are associated with its inelastic response. The orthorhombic anisotropy of fracture strength exhibited by the gneiss may be explained by a simple model involving localized slip within micas and microcracking within the stronger, surrounding framework silicates. Micas appear to interact in much the same way as do Mode II shear cracks, and their density, distribution, and preferred orientation affect the nucleation of microcracks which ultimately lead to failure. Ten material parameters of a generalized anisotropic yield function for Four-mile gneiss at room temperature have been determined using nonlinear fitting methods applied to the completed room temperature data. 45 refs.

  14. Analytical solutions of equation for the order parameter of dense superfluid neutron matter with anisotropic spin-triplet p-wave pairing at finite temperatures

    International Nuclear Information System (INIS)

    The previously derived equations for the components of the order parameter (OP) of dense superfluid neutron matter (SNM) with anisotropic spin-triplet p-wave pairing and with taking into account the effects of magnetic field and finite temperatures are reduced to the single equation for the one-component OP in the limit of zero magnetic field. Here this equation is solved analytically for arbitrary parametrization of the effective Skyrme interaction in neutron matter and as the main results the energy gap (in the energy spectrum of neutrons in SNM) is obtained as nonlinear function of temperature T and density n in two limiting cases: for low temperatures near T = 0 and in the vicinity of phase transition temperature Tc0(n) for dense neutron matter from normal to superfluid state. These solutions for the energy gap are specified for generalized BSk21 and BSk24 parametrizations of the Skyrme forces (with additional terms dependent on density n) and figures are plotted on the interval 0.1n0 < n <2.0n0, where n0 = 0.17 fm-3 is nuclear density.

  15. Water temperature-influential factors, field measurement, and data presentation

    Science.gov (United States)

    Stevens, Herbert H.; Ficke, John F.; Smoot, George F.

    1975-01-01

    This manual contains suggested procedures for collecting and reporting of water-temperature data on streams, lakes and reservoirs, estuaries, and ground water. Among the topics discussed are the selection of equipment and measuring sites, objectives and accuracy of measurements, and data processing and presentation. Background information on the influence of temperature on water quality and the factors influencing water temperature are also presented.

  16. General Expression of Elastic Tensor for Anisotropic Materials

    Institute of Scientific and Technical Information of China (English)

    HUANG Bo

    2005-01-01

    In order to formulate a general expression of elastic tensor for anisotropic materials, a method of tensor derivative is used for determining relationship between fourth-order elastic tensor and second-order structure tensor that has satisfied material symmetrical conditions. From this general expression of elastic tensor, specific expressions of elastic tensor for different anisotropic materials, such as isotropic materials, transverse isotropic materials and orthogonal-anisotropic materials, can be deduced. This expression underlies the scalar description of anisotropic factors, which are used for classifying and analyzing anisotropic materials. Cubic crystals are analyzed macroscopically by means of the general expression and anisotropic factor.

  17. Soil temperature effect in calculating attenuation and retardation factors.

    Science.gov (United States)

    Paraiba, Lourival Costa; Spadotto, Claudio Aparecido

    2002-09-01

    The effect of annual variation of daily average soil temperature, at different depths, in calculating pesticides ranking indexes retardation factor and attenuation factor is presented. The retardation factor and attenuation factor are two site-specific pesticide numbers, frequently used as screening indicator indexes for pesticide groundwater contamination potential. Generally, in the calculation of these two factors are not included the soil temperature effect on the parameters involved in its calculation. It is well known that the soil temperature affects the pesticide degradation rate, water-air partition coefficient and water-soil partition coefficient. These three parameters are components of the retardation factor and attenuation factor and contribute to determine the pesticide behavior in the environment. The Arrhenius equation, van't Hoff equation and Clausius-Clapeyron equation are used in this work for estimating the soil temperature effect on the pesticide degradation rate, water-air partition coefficient and soil-water partition coefficient, respectively. These dependence relationships, between results of calculating attenuation and retardation factors and the soil temperature at different depths, can aid to understand the potential pesticide groundwater contamination on different weather conditions. Numerical results will be presented with pesticides atrazine and lindane in a soil profile with 20 degrees C constant temperature, minimum and maximum surface temperatures varying and spreading in the soil profile between -5 and 30 degrees C and between 15 and 45 degrees C. PMID:12222785

  18. Experimental factors in glass leaching at high temperatures

    International Nuclear Information System (INIS)

    Three factors which may influence the outcome of high temperature tests of glass leaching rates, temperature cycling, solution replacement, and glass drying between runs, have been examined. Solution replacement and glass drying have also been investigated in room temperature tests. An easily leached glass was used throughout. Temperature cycling has a small effect which may be compensated in calculating leach rates. The effect of solution replacement depends on the rate and extent of attack. Glass drying has no effect either at high temperature or at room temperature. (author)

  19. Relaxation of Anisotropic Glasses

    DEFF Research Database (Denmark)

    Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar; Yue, Yuanzheng

    2004-01-01

    Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between the...

  20. Thermodynamics of anisotropic branes

    CERN Document Server

    Ávila, Daniel; Patiño, Leonardo; Trancanelli, Diego

    2016-01-01

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on two independent dimensionless ratios, which are formed out of the black hole temperature, its anisotropy parameter, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  1. Recording and reading temperature tolerance in holographic data storage, in relation to the anisotropic thermal expansion of a photopolymer medium.

    Science.gov (United States)

    Tanaka, Tomiji

    2009-08-01

    In holographic data storage, it is difficult to retrieve data if the temperature difference between recording and reading exceeds 2 K. To widen this tolerance, a compensation method--adjusting the wavelengths and incident directions of the recording and reading beams--has been proposed. In this paper, for the first time, a method for calculating the recording and reading temperature tolerance using this compensation is introduced. To widen the narrow tolerance, typically +/- 10 K, it is effective to increase the coefficient of thermal expansion (CTE) of the substrate or decrease the CTE of the photopolymer. Although reducing the Numerical aperture of the objective lens is also effective, it degrades the recording density. PMID:19654823

  2. Near-Field studies of anisotropic variations and temperature induced structural changes in a supported single lipid bilayer

    OpenAIRE

    Merrell A. Johnson; Decca, Ricardo S.

    2016-01-01

    Temperature controlled Polarization Modulation Near-Field Scanning Optical Microscopy (PM-NSOM) measurements of a single supported $L_{\\beta^{\\prime}}$ 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid bilayer are presented. The effective retardance ($\\Delta S = \\frac{2 \\pi (n_e-n_o)t}{\\lambda}$), where $t$ is the thickness of the bilayer and $\\lambda$ is the wavelength of light used and the direction of the projection of the acyl chains ($\\theta $) were measured simultaneously. From $...

  3. Dynamics of ordering in highly degenerate models with anisotropic grain-boundary potential: Effects of temperature and vortex formation

    DEFF Research Database (Denmark)

    Jeppesen, Claus; Flyvbjerg, Henrik; Mouritsen, Ole G.

    1989-01-01

    universality class, and that all models with nonconserved order parameter, independent of ordering degeneracy and softness and origin of domain boundaries, obey the classical growth law at finite temperatures. In quenches to the Potts-ordered phase vortices and antivortices occur and annihilate mutually...... without pinning the ordering process. The ordering dynamics for quenches into the intermediate phase is also found to be described by an effectively algebraic growth law....

  4. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    International Nuclear Information System (INIS)

    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa2Cu3O7 and Bi2Sr2CaCu2O8. The experiments with YBa2Cu3O7 show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi2Sr2CaCu2O8 single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa2Cu3O7 crystals as a function of the magnetic field. (orig.)

  5. The two-dimensional vibrating reed technique. A study of anisotropic pinning in high-temperature superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Karelina, Anna

    2004-02-18

    In this work the anisotropy of the pinning forces of vortices in a-b plane of high temperature-supraconductors was examined. For this purpose vibrating reed with two degrees of freedom of the oscillation was constructed. The pinning forces were examined in single crystals of YBa{sub 2}Cu{sub 3}O{sub 7} and Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8}. The experiments with YBa{sub 2}Cu{sub 3}O{sub 7} show that at temperatures lower than 78 K the vortices are in a nonequilibrium state. This leads to a flux creep and to a drift of the resonance frequency with time. This prevents the comparison of resonance curves in different directions of oscillations. In Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} single crystals the vortices are in more stable state, but the measurements of the resonance curves in different directions show no indication of the four-fold symmetry. At temperatures below 60 K a strong hysteresis of the resonance frequency and the resonance-oscillation amplitude was found in YBa{sub 2}Cu{sub 3}O{sub 7} crystals as a function of the magnetic field. (orig.)

  6. A modified phase coherence model for the non-linear c-axis V-I characteristics of highly anisotropic, high temperature superconductors

    CERN Document Server

    Luo Sheng; Huang Sai Jun; He Yu Sheng; Li Chun Guang; Zhang Xue Qiang

    2003-01-01

    A modified Ambegaokar-Halperin thermal-fluctuation model has been developed to describe the c-axis V-I characteristics and low-current ohmic resistance of highly anisotropic superconductors in a magnetic field parallel to the c-axis. The model assumes loss of phase coherence across the CuO-planes associated with the correlated motion of pancake vortices in the liquid state. The predicted V-I characteristics in the current-induced transition from the superconducting to the resistive state are in good agreement with measurements on a 2212-BSCCO single crystal as a function of temperature and field, provided the effect of the interlayer capacitance is taken into account. The measurements are consistent with a flux pancake correlation length within the CuO-planes varying as xi sub 0 /(T/T sub 0 - 1) supnu, where xi sub 0 = 1.57 +- 0.08 mu m and nu = 0.50 +- 0.01. Our measurements imply a current-dependent interlayer resistance above and below T sub c.

  7. Effects of the safety factor on ion temperature gradient mode

    International Nuclear Information System (INIS)

    A model for the ion temperature gradient (ITG) driven-instability is derived from Braginskii magnetohydrodynamic equation of ions. The safety factor in toroidal plasma is introduced into the model through the current density. The effects of safety factor or current density on both the instability in perpendicular and parallel wavenumber spectra and the critical stability thresholds are studied. It is shown that the significant value of the safety factor plays an important role in stabilizing the ITG instability. (author)

  8. Rigid protein motion as a model for crystallographic temperature factors

    International Nuclear Information System (INIS)

    The extent to which the librations of rigid molecules can model the crystallographic temperature factor profiles of proteins has been examined. For all proteins considered, including influenza virus hemagglutinin, glutathione reductase, myohemerythrin, myoglobin, and streptavidin, a simple 10-parameter model is found to reproduce qualitatively the patterns of maxima and minima in the isotropic backbone mean-square displacements. Large deviations between the rigid molecule and individual atomic temperature factors are found to be correlated with a region in hemagglutinin for which the refined structural model is unsatisfactory and with errors in the structure in a partially incorrect model of myohemerythrin. For the high-resolution glutathione reductase structure, better results are obtained on treating each of the compact domains in the structure as independent rigid bodies. The method allows for the refinement of reliable temperature factors with the introduction of minimal parameters and may prove useful for the evaluation of models in the early stages of x-ray structure refinement. While these results by themselves do not establish the nature of the underlying displacements, the success of the rigid protein model in reproducing qualitative features of temperature factor profiles suggests that rigid body refinement results should be considered in any interpretation of crystallographic thermal parameters

  9. Anisotropic expansion of a thermal dipolar Bose gas

    CERN Document Server

    Tang, Yijun; Burdick, Nathaniel Q; DiSciacca, Jack M; Petrov, Dmitry S; Lev, Benjamin L

    2016-01-01

    We report on the anisotropic expansion of ultracold bosonic dysprosium gases at temperatures above quantum degeneracy and develop a quantitative theory to describe this behavior. The theory expresses the post-expansion aspect ratio in terms of temperature and microscopic collisional properties by incorporating Hartree-Fock mean-field interactions, hydrodynamic effects, and Bose-enhancement factors. Our results extend the utility of expansion imaging by providing accurate thermometry for dipolar thermal Bose gases, reducing error in expansion thermometry from tens of percent to only a few percent. Furthermore, we present a simple method to determine scattering lengths in dipolar gases, including near a Feshbach resonance, through observation of thermal gas expansion.

  10. Mirage technique in anisotropic solids

    OpenAIRE

    Quelin, X.; Perrin, B; Perrin, Bernard; Louis, G.

    1994-01-01

    Theoretical and experimental analysis of heat diffusion in an anisotropic medium are presented. The solution of the 3D thermal conduction equation in an orthorhombic medium is calculated by the mean of a Fourier transforms method. Experiments were performed on an orthorhombic polydiacetylene single crystal sample. The temperature field at the sample surface was determined using the photothermal probe beam deflection technique. Then the 3 coefficients of the thermal conductivity tensor have be...

  11. Phase space analysis in anisotropic optical systems

    Science.gov (United States)

    Rivera, Ana Leonor; Chumakov, Sergey M.; Wolf, Kurt Bernardo

    1995-01-01

    From the minimal action principle follows the Hamilton equations of evolution for geometric optical rays in anisotropic media. As in classical mechanics of velocity-dependent potentials, the velocity and the canonical momentum are not parallel, but differ by an anisotropy vector potential, similar to that of linear electromagnetism. Descartes' well known diagram for refraction is generalized and a factorization theorem holds for interfaces between two anisotropic media.

  12. Physical factors in cataractogenesis: ambient ultraviolet radiation and temperature

    International Nuclear Information System (INIS)

    A number of environmental cofactors have been implicated in cataracto-genesis. Two have received the greatest attention: ultraviolet radiation (UVR) and ambient temperature. Unfortunately, both temperature and UVR levels vary similarly with geographical latitude. Careful attention to several more refined physical variables and the geometry of exposure may permit investigators to separate the contributory effects of these two physical agents. This paper briefly reviews the available data, estimates the variation of lenticular temperature with ambient temperature, and provides measurements of short-wavelength (UV-B) UVR exposure to the human eye with different meterological conditions. The study attempts to provide epidemiological investigators with more detailed information necessary to perform more accurate studies of cataract and other ocular pathologies that appear to be related to environmental factors. Ocular UV-B radiation exposure levels were measured at nine locations in the USA near 40 degrees latitude at elevations from sea level to 8000 ft. Terrain reflectance is shown to be much more important than terrain elevation; cloud cover and haze may actually increase ocular exposure; and the value of wearing brimmed hats and spectacles varies with the environment. Several avenues for future research are suggested

  13. Separating temperature from other factors in phenological measurements

    Science.gov (United States)

    Schwartz, Mark D.; Hanes, Jonathan M.; Liang, Liang

    2014-09-01

    Phenological observations offer a simple and effective way to measure climate change effects on the biosphere. While some species in northern mixed forests show a highly sensitive site preference to microenvironmental differences (i.e., the species is present in certain areas and absent in others), others with a more plastic environmental response (e.g., Acer saccharum, sugar maple) allow provisional separation of the universal "background" phenological variation caused by in situ (possibly biological/genetic) variation from the microclimatic gradients in air temperature. Moran's I tests for spatial autocorrelation among the phenological data showed significant ( α ≤ 0.05) clustering across the study area, but random patterns within the microclimates themselves, with isolated exceptions. In other words, the presence of microclimates throughout the study area generally results in spatial autocorrelation because they impact the overall phenological development of sugar maple trees. However, within each microclimate (where temperature conditions are relatively uniform) there is little or no spatial autocorrelation because phenological differences are due largely to randomly distributed in situ factors. The phenological responses from 2008 and 2009 for two sugar maple phenological stages showed the relationship between air temperature degree-hour departure and phenological change ranged from 0.5 to 1.2 days earlier for each additional 100 degree-hours. Further, the standard deviations of phenological event dates within individual microclimates (for specific events and years) ranged from 2.6 to 3.8 days. Thus, that range of days is inferred to be the "background" phenological variation caused by factors other than air temperature variations, such as genetic differences between individuals.

  14. Anisotropic Stars II Stability

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2003-01-01

    We investigate the stability of self-gravitating spherically symmetric anisotropic spheres under radial perturbations. We consider both the Newtonian and the full general-relativistic perturbation treatment. In the general-relativistic case, we extend the variational formalism for spheres with isotropic pressure developed by Chandrasekhar. We find that, in general, when the tangential pressure is greater than the radial pressure, the stability of the anisotropic sphere is enhanced when compared to isotropic configurations. In particular, anisotropic spheres are found to be stable for smaller values of the adiabatic index $\\gamma$.

  15. 49 CFR 192.115 - Temperature derating factor (T) for steel pipe.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 3 2010-10-01 2010-10-01 false Temperature derating factor (T) for steel pipe... § 192.115 Temperature derating factor (T) for steel pipe. The temperature derating factor to be used in the design formula in § 192.105 is determined as follows: Gas temperature in degrees...

  16. Averaging anisotropic cosmologies

    International Nuclear Information System (INIS)

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity

  17. Anisotropic Metamaterial Optical Fibers

    CERN Document Server

    Pratap, Dheeraj; Pollock, Justin G; Iyer, Ashwin K

    2014-01-01

    Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders.

  18. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  19. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  20. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  1. Anisotropic Thermal Behavior of Silicone Polymer, DC 745

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Jillian Cathleen [Univ. of Oregon, Eugene, OR (United States). Dept. of Chemistry; Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Torres, Joseph Angelo [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Volz, Heather Michelle [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gallegos, Jennifer Marie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Yang, Dali [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-09-02

    In material applications, it is important to understand how polymeric materials behave in the various environments they may encounter. One factor governing polymer behavior is processing history. Differences in fabrication will result in parts with varied or even unintended properties. In this work, the thermal expansion behavior of silicone DC 745 is studied. Thermomechanical analysis (TMA) is used to determine changes in sample dimension resulting from changes in temperature. This technique can measure thermal events such as the linear coefficient of thermal expansion (CTE), melting, glass transitions, cure shrinkage, and internal relaxations. Using a thermomechanical analyzer (Q400 TMA), it is determined that DC 745 expands anisotropically when heated. This means that the material has a different CTE depending upon which direction is being measured. In this study, TMA experiments were designed in order to confirm anisotropic thermal behavior in multiple DC 745 samples of various ages and lots. TMA parameters such as temperature ramp rate, preload force, and temperature range were optimized in order to ensure the most accurate and useful data. A better understanding of the thermal expansion of DC 745 will allow for more accurate modeling of systems using this material.

  2. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  3. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  4. Anisotropic Ambient Volume Shading.

    Science.gov (United States)

    Ament, Marco; Dachsbacher, Carsten

    2016-01-01

    We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745

  5. Dynamics of Anisotropic Universes

    CERN Document Server

    Pérez, J

    2006-01-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  6. Urban heat : natural and anthropogenic factors influencing urban air temperatures

    NARCIS (Netherlands)

    Theeuwes, N.E.

    2015-01-01

    The urban heat island effect is a phenomenon observed worldwide, i.e. evening and nocturnal temperatures in cities are usually several degrees higher than in the surrounding countryside. The main goal of this thesis is to understand the processes that drive the urban air temperature and the urban he

  7. Storage temperature: A factor of shelf life of dairy products

    OpenAIRE

    Memiši Nurgin R.; Vesković-Moračanin Slavica M.; Škrinjar Marija M.; Iličić Mirela D.; Ač Mira Đ.

    2014-01-01

    An experiment was designed to monitor the durability of certain dairy products stored at proper temperatures (8°C) and elevated temperatures (14°C) within their shelf life. Samples of fermented milk products were tested during 25 days, samples of cheese spread products over 80 days, while soft white cheese samples were analyzed during a storage period of 100 days. In the defined study periods, depending on the type of product, pH and aw value of the product...

  8. Temperature and risk factors for ischaemic heart disease in the Caerphilly prospective study.

    OpenAIRE

    Eldwood, P C; Beswick, A; O'Brien, J. R.; Renaud, S.; Fifield, R; Limb, E. S.; Bainton, D.

    1993-01-01

    OBJECTIVE--To examine the associations between air temperature and risk factors for ischaemic heart disease. METHOD--Data on risk factors are available from up to 2036 men in the Caerphilly Prospective Heart Disease Study. Daily temperatures were obtained from the Meteorological Office. Relations between these were examined by regression. RESULTS--The coldest month of the year has a mean temperature that is 16 degrees C lower than that in the warmest month. A fall in temperature of this magni...

  9. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  10. Anisotropic progressive photon mapping

    Science.gov (United States)

    Liu, XiaoDan; Zheng, ChangWen

    2014-01-01

    Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.

  11. Molecular anisotropic magnetoresistance

    OpenAIRE

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-01-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by $3d$ transition-metal wires. We show that the gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symm...

  12. Extremely Anisotropic Scintillations

    CERN Document Server

    Walker, Mark; Bignall, Hayley

    2008-01-01

    A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late Au...

  13. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Yipeng; Liu, Zengyuan; Victora, R. H., E-mail: victora@umn.edu [MINT Center, Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)

    2015-05-07

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.

  14. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  15. Renormalized anisotropic exchange for representing heat assisted magnetic recording media

    International Nuclear Information System (INIS)

    Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation

  16. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  17. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  18. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  19. Heavy Quark Diffusion in Strongly Coupled Anisotropic Plasmas

    CERN Document Server

    Giataganas, Dimitrios

    2013-01-01

    We study the Langevin diffusion of a relativistic heavy quark in anisotropic strongly coupled theories in the local limit. Firstly, we use the axion space-dependent deformed anisotropic N=4 sYM, where the geometry anisotropy is always prolate, while the pressure anisotropy may be prolate or oblate. For motion along the anisotropic direction we find that the effective temperature for the quark can be larger than the heat bath temperature, in contrast to what happens in the isotropic theory. The longitudinal and transverse Langevin diffusion coefficients depend strongly on the anisotropy, the direction of motion and the transverse direction considered. We analyze the anisotropy effects to the coefficients and compare them to each other and to them of the isotropic theory. To examine the dependence of the coefficients on the type of the geometry, we consider another bottom-up anisotropic model. Changing the geometry from prolate to oblate, certain diffusion coefficients interchange their behaviors. In both aniso...

  20. Bond diluted anisotropic quantum Heisenberg model

    OpenAIRE

    Akıncı, Ümit

    2013-01-01

    Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigat...

  1. Mesoscopic Phase Separation in Anisotropic Superconductors

    OpenAIRE

    V. I. Yukalov; Yukalova, E. P.

    2005-01-01

    General properties of anisotropic superconductors with mesoscopic phase separation are analysed. The main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occurrence of superconductivity in bad conductors. Critical temperature for a...

  2. Model anisotropic quantum Hall states

    OpenAIRE

    Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su

    2012-01-01

    Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...

  3. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A

    2016-01-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  4. Effective Volumetric Factor for Inhomogeneous Temperature in Volumetric Measurements of Gas Absorption and Desorption

    OpenAIRE

    I.V. Drozdov

    2014-01-01

    Accounting of effective volumetric factor for the measurement at inhomogeneous temperature allows to the simplify the measurement process avoiding a pre-calibration with a noble gas. The volumetric correction in form of the volumetric factor is calculated analytically by modeling of the temperature profile in the volumetric apparatus, and provides a quite agreement with the measured results. The calculation can be applied for each volumetric measurement with an inhomogeneous temperature distr...

  5. Anisotropically Inflating Universes

    CERN Document Server

    Barrow, J D; Barrow, John D.; Hervik, Sigbjorn

    2008-01-01

    We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.

  6. Anisotropic Stars Exact Solutions

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2000-01-01

    We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general relativistic treatment of this problem and obtain exact solutions for various form of equations of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.

  7. Wireless energy transfer between anisotropic metamaterials shells

    International Nuclear Information System (INIS)

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted

  8. Storage temperature: A factor of shelf life of dairy products

    Directory of Open Access Journals (Sweden)

    Memiši Nurgin R.

    2014-01-01

    Full Text Available An experiment was designed to monitor the durability of certain dairy products stored at proper temperatures (8°C and elevated temperatures (14°C within their shelf life. Samples of fermented milk products were tested during 25 days, samples of cheese spread products over 80 days, while soft white cheese samples were analyzed during a storage period of 100 days. In the defined study periods, depending on the type of product, pH and aw value of the product, as well as sensory analysis (odor, taste, color and consistency, along with microbiological safety, were investigated. The investigations were performed in accordance with national legislation. The results indicate that the products stored at 14°C showed significant acidity (lower pH value, changed sensory properties, and had an increased number of aerobic bacteria. [Projekat Ministarstva nauke Republike Srbije, br. III 46009: Improvement and development of hygienic and technological procedures in production of foodstuffs of animal origin with the aim of producing high-quality and safe products competitive on the global market

  9. Optics of anisotropic nanostructures

    Science.gov (United States)

    Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo

    2006-07-01

    The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.

  10. Temperature factor for magnetic instability conditions of type - II superconductors

    Science.gov (United States)

    Romanovskii, V.

    2014-10-01

    The macroscopic development of interrelated electrodynamics and thermal states taking place both before and after instability onset in type-II superconductors are studied using the critical state and the flux creep concepts. The physical mechanisms of the non-isothermal formation of the critical state are discussed solving the set of unsteady thermo-electrodynamics equations taking into consideration the unknown moving penetration boundary of the magnetic flux. To make it, the numerical method, which allows to study diffusion phenomena with unknown moving phase-two boundary, is developed. The corresponding non-isothermal flux jump criteria are written. It is proved for the first time that, first, the diffusion phenomena in superconductors have the fission-chain-reaction nature, second, the stability conditions, losses in superconductor and its stable overheating before instability onset are mutually dependent. The results are compared with those following from the existing magnetic instability theory, which does not take into consideration the stable temperature increase of superconductor before the instability onset. It is shown that errors of isothermal approximation are significant for modes closed to adiabatic ones. Therefore, the well-known adiabatic flux jump criterion limits the range of possible stable superconducting states since a correct determination of their stability states must take into account the thermal prehistory of the stable magnetic flux penetration. As a result, the calculation errors in the isothermal approximation will rise when the sweep rate of an external magnetic field or the size of the superconductor’s cross-sectional area increase. The basic conclusions formulated in the framework of the critical state model are verified comparing the experimental results and the numerical analysis of the stability conditions and the temperature dynamics of the helicoid-type superconducting current-carrying element having real voltage

  11. Anisotropic spheres in general relativity

    International Nuclear Information System (INIS)

    A prescription originally conceived for perfect fluids is extended to the case of anisotropic pressures. The method is used to obtain exact analytical solutions of the Einstein equations for spherically symmetric selfgravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. (author). 15 refs

  12. Weibel instability driven by spatially anisotropic density structures

    CERN Document Server

    Tomita, Sara

    2016-01-01

    Observations of afterglows of gamma-ray bursts suggest (GRBs) that post-shock magnetic fields are strongly amplified to about 100 times the shock-compressed value. The Weibel instability appears to play an important role in generating of the magnetic field. However, recent simulations of collisionless shocks in homogeneous plasmas show that the magnetic field generated by the Weibel instability rapidly decays. There must be some density fluctuations in interstellar and circumstellar media. The density fluctuations are anisotropically compressed in the downstream region of relativistic shocks. In this paper, we study the Weibel instability in electron--positron plasmas with the spatially anisotropic density distributions by means of two-dimensional particle-in-cell simulations. We find that large magnetic fields are maintained for a longer time by the Weibel instability driven by the spatially anisotropic density structure. Particles anisotropically escape from the high density region, so that the temperature ...

  13. Bond diluted anisotropic quantum Heisenberg model

    International Nuclear Information System (INIS)

    Effects of the bond dilution on the critical temperatures, phase diagrams and the magnetization behaviors of the isotropic and anisotropic quantum Heisenberg model have been investigated in detail. For the isotropic case, bond percolation threshold values have been determined for several numbers of two (2D) and three (3D) dimensional lattices. In order to investigate the effect of the anisotropy in the exchange interaction on the results obtained for the isotropic model, a detailed investigation has been made on a honeycomb lattice. Some interesting results, such as second order reentrant phenomena in the phase diagrams have been found. - Highlights: • Anisotropic quantum Heisenberg model with bond dilution investigated. • Bond percolation threshold values given for 2D and 3D lattices in isotropic case. • Phase diagrams and ground state magnetizations investigated in detail. • Variation of the bond percolation threshold values with anisotropy determined

  14. The Temperature Dependence of the Debye-Waller Factor of Magnesium

    DEFF Research Database (Denmark)

    Sledziewska-Blocka, D.; Lebech, Bente

    1976-01-01

    The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi-harmonic appro......The temperature dependence of the average Debye-Waller factor for magnesium was measured by means of neutron diffraction spectrometry. The experimental results obtained in the temperature range from 5 to 256 K are compared with theoretical calculations, using the harmonic and quasi...

  15. Averaging anisotropic cosmologies

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2006-01-01

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...

  16. Conformal Ricci and Matter Collineations for Anisotropic Fluid

    CERN Document Server

    Sharif, M

    2007-01-01

    We study the consequences of timelike and spaccelike conformal Ricci and conformal matter collineations for anisotropic fluid in the context of General Relativity. Necessary and sufficient conditions are derived for a spacetime with anisotropic fluid to admit conformal Ricci and conformal matter collineations parallel to u^a and x^a. These conditions for timelike and spacelike conformal Ricci and conformal matter collineations for anisotropic fluid reduce to the conditions of perfect fluid when the heat flux and the traceless anisotropic stress tensor vanish. Further, for $\\alpha=0$ (the conformal factor), we recover the earlier results of Ricci collineations and matter collineations in each case of timelike and spacelike conformal Ricci collineations and conformal matter collineations for the perfect fluid. Thus our results give the generalization of the results already available in the literature. It is worth noticing that the conditions of conformal matter collineations can be derived from the conditions o...

  17. The Influence of the Temperature Factor on Deformability of the Plastic Medium

    Directory of Open Access Journals (Sweden)

    Chygyryns’ky, V. V.

    2006-01-01

    Full Text Available Using the solution of a closed problem of the theory of plasticity some analytic expressions were obtained for determination of the strain parameters of zone of deformation in view of the temperature factor.

  18. Temperature dependent electron Lande g-factor and interband matrix element in GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Huebner, Jens; Doehrmann, Stefanie; Haegele, Daniel; Oestreich, Michael [Institute for Solid State Physics, Gottfried Wilhelm Leibniz University Hannover (Germany)

    2007-07-01

    High precision measurements of the electron Lande g-factor in GaAs are presented using spin quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. Influences of nuclear spin polarization at low temperatures have been fully compensated. Comparing these measurements with available data for the temperature dependent effective mass reveals an unexpected strong temperature dependence of the interband matrix element and resolves a long lasting discrepancy between experiment and kp - theory. The strong decrease of the interband matrix element with increasing temperature is explained by phonon induced fluctuations of the interatomic spacing and adiabatic following of the electrons.

  19. Computer simulations of the anisotropic Josephson junction arrays

    International Nuclear Information System (INIS)

    Using complementary methods, we numerically investigate the anisotropic Josephson junction arrays (AJJAs). For various anisotropic strengths (λ), the Monte Carlo simulation gives a precise measurement of specific heat, magnetization, and magnetic susceptibility; while the resistively shunted-junction dynamical simulation produces the current-voltage characteristics. The critical temperatures obtained from the two approaches are well consistent with each other. We find that, except for the anisotropic limit (λ=0), the quasi-long-range order is always established at a finite temperature. Further, the algebraically decaying spin-spin correlations in the low-temperature region are analyzed in detail. Finally, the full phase diagram of the AJJAs, which sheds some lights to the crossover of the XY model from one dimension to two, is constructed. These predictions are to be confronted with future experiments.

  20. Computer simulations of the anisotropic Josephson junction arrays

    Energy Technology Data Exchange (ETDEWEB)

    Lv Jianping, E-mail: phys.lv@gmail.com [Department of Physics, China University of Mining and Technology, Xuzhou 221116 (China); Zhu Shujing [Department of Physics, Zhejiang University, Hangzhou 310027 (China)

    2012-12-15

    Using complementary methods, we numerically investigate the anisotropic Josephson junction arrays (AJJAs). For various anisotropic strengths ({lambda}), the Monte Carlo simulation gives a precise measurement of specific heat, magnetization, and magnetic susceptibility; while the resistively shunted-junction dynamical simulation produces the current-voltage characteristics. The critical temperatures obtained from the two approaches are well consistent with each other. We find that, except for the anisotropic limit ({lambda}=0), the quasi-long-range order is always established at a finite temperature. Further, the algebraically decaying spin-spin correlations in the low-temperature region are analyzed in detail. Finally, the full phase diagram of the AJJAs, which sheds some lights to the crossover of the XY model from one dimension to two, is constructed. These predictions are to be confronted with future experiments.

  1. High School 9th Grade Students' Understanding Level and Misconceptions about Temperature and Factors Affecting It

    Science.gov (United States)

    Akbas, Yavuz

    2012-01-01

    The purpose of this study is to explore students' understanding levels and misconceptions about temperature and factors affecting it. The concept of the study was chosen from Geography National Curriculum. In this study, a questionnaire was developed after a pilot study with an aim to ascertain the students' understanding levels of temperature and…

  2. Measurement and Prediction Method of Compressibility Factor at High Temperature and High Pressure

    OpenAIRE

    Xiaoxun Zhu; Bochao Xu; Zhonghe Han

    2016-01-01

    In order to get the compressibility factor Z of working fluid under different conditions, experimental measurement method of Z under high pressure and high temperature and data mining method were studied in this paper. Experimental measurement method based on real gas state equation and prediction method based on Least Squares Support Vector Machine were proposed. First, an experimental method for measuring Z at high temperature and high pressure was designed; in this method the temperature, ...

  3. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  4. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  5. Ground-State Density Profiles of One-Dimensional Bose Gases with Anisotropic Transversal Confinement

    Institute of Scientific and Technical Information of China (English)

    HAO Ya-Jiang

    2011-01-01

    We investigate the ground-state density distributions of interacting one-dimensional Bose gases with anisotropic transversal confinement.Combining the exact ground state energy density of homogeneous bose gases with local density approximation,we determine the density distribution in each interacting regime for different anisotropic parameters.It is shown that the transversal anisotropic parameter changes the density distribution obviously,and the observed density profiles on each orientation exhibit a difference of a factor.

  6. Dependence of the Average Lorentz Factor on Temperature in Relativistic Plasmas

    Institute of Scientific and Technical Information of China (English)

    AN Wei-Ke; QIU Xi-Jun; SHI Chun-Hua; ZHU Zhi-Yuan

    2005-01-01

    @@ For the relativistic plasma, how to fix the Lorentz factors of the particles is an important but difficult problem.We resolve this problem by demonstrating the exact relation between the average Lorentz factor and temperature in relativistic plasmas. A rather simple relation is also obtained for the ultra-relativistic case.

  7. Strong anisotropic superconducting behavior in the dichalcogenide SnSe2 intercalated with cobaltocene

    International Nuclear Information System (INIS)

    We present a detailed study of the layered dichalcogenide SnSe2 intercalated with the organometallic donor molecule cobaltocene, which exhibits a superconducting transition at Tc=6 K. The extremely anisotropic superconducting behavior is reflected by an in-plane and off-plane resistivity, which deviate from each other by a factor of 200 just before superconductivity sets in. Furthermore, this strong anisotropy leads to two different superconducting transition temperatures, one goes in line with the in-plane and the other with the off-plane superconductivity. In addition, specific heat studies clearly characterize the intercalated SnSe2 as a bulk superconductor with these two different Tc's. (orig.)

  8. Effects of storage time and temperature on coagulation tests and factors in fresh plasma

    OpenAIRE

    Limin Feng; Ying Zhao; Hongcan Zhao; Zhexin Shao

    2014-01-01

    Coagulation tests and factors measurements have been widely applied in clinical practice. Pre-analytical conditions are very important in laboratory assessment.Here,we aim to determine the effects of storage time and temperature on activated partial thromboplastin time (APTT), fibrinogen (Fbg), prothrombin time (PT), the international normalized ratio (INR), thrombin time (TT), factor VIII activity (FVIII:C), and factor IX activity (FIX:C) in fresh plasma. Seventy-two blood samples were teste...

  9. The Effect of Temperature Dependent Frequency Factor on the Evaluated Trapping Parameters of TSL Glow Curves

    Science.gov (United States)

    Yazici, A. N.; Öztürk, Z.

    1998-01-01

    The effect of temperature dependency on frequency factor and its relationship to trapping parameters is discussed by using the peak shape method. The coefficients appearing in the peak shape formula for the calculation of the activation energy have been determined and tabulated for the symmetry factor mg(X) for x=0.50 and 0.75 of the peak intensity. It is found that significant errors occur in the value of the trapping parameters if the temperature dependecy of the frequency factor is not consider.

  10. The Effect of Temperature Dependent Frequency Factor on the Evaluated Trapping Parameters of TSL Glow Curves

    OpenAIRE

    YAZICI, A. N.; ÖZTÜRK, Z.

    1998-01-01

    The effect of temperature dependency on frequency factor and its relationship to trapping parameters is discussed by using the peak shape method. The coefficients appearing in the peak shape formula for the calculation of the activation energy have been determined and tabulated for the symmetry factor mg(X) for x=0.50 and 0.75 of the peak intensity. It is found that significant errors occur in the value of the trapping parameters if the temperature dependecy of the frequency factor is not con...

  11. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  12. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  13. Application of Anisotropic Texture Components

    OpenAIRE

    Eschner, Th.; Fundenberger, J.-J.

    1997-01-01

    The description of textures in terms of texture components is an established conception in quantitative texture analysis. Recent developments lead to the representation of orientation distribution functions as a weighted sum of model functions, each corresponding to one anisotropic texture component. As was shown previously, an adequate texture description is possible with only a very small number of anisotropic texture components. As a result, textures and texture changes can be described by...

  14. Characteristics of a high T{sub c} superconducting rectangular microstrip patch on uniaxially anisotropic substrate

    Energy Technology Data Exchange (ETDEWEB)

    Benkouda, Siham; Messai, Abderraouf [Electronics Department, University of Constantine 1, 25000 Constantine (Algeria); Amir, Mounir; Bedra, Sami [Electronics Department, University of Batna, 05000 Batna (Algeria); Fortaki, Tarek, E-mail: t_fortaki@yahoo.fr [Electronics Department, University of Batna, 05000 Batna (Algeria)

    2014-07-15

    Highlights: • We model a microstrip antenna with anisotropic substrate and superconductor patch. • The extended full-wave analysis is used to solve for the antenna characteristics. • The accuracy of the method is checked by comparing our results with published data. • Uniaxial anisotropy affects the resonant characteristics of the antenna. • Patch on uniaxial substrate is more advantageous than the one on isotropic medium. - Abstract: Resonant characteristics of a high T{sub c} superconducting rectangular microstrip patch printed on uniaxially anisotropic substrate are investigated using a full-wave spectral analysis in conjunction with the complex resistive boundary condition. The uniaxial medium shows anisotropy of an electric type as well as anisotropy of a magnetic type. Both permittivity and permeability tensors of the substrate are included in the formulation of the dyadic Green’s function of the problem. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate materials. Numerical data of the resonant frequency and bandwidth as a function of electric anisotropy ratio are presented. Variations of the resonant frequency and bandwidth with the magnetic anisotropy ratio are also given. Finally, results showing the influence of the temperature on the resonant frequency and quality factor of the high T{sub c} superconducting rectangular microstrip patch on a uniaxial substrate are also given.

  15. A transitioning universe with anisotropic dark energy

    Science.gov (United States)

    Yadav, Anil Kumar

    2016-08-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  16. A transitioning universe with anisotropic dark energy

    CERN Document Server

    Yadav, Anil Kumar

    2016-01-01

    In this paper, we present a model of transitioning universe with minimal interaction between perfect fluid and anisotropic dark energy in Bianchi I space-time. The two sources are assumed to minimally interacted and therefore their energy momentum tensors are conserved separately. The explicit expression for average scale factor are considered in hybrid form that gives time varying deceleration parameter which describes both the early and late time physical features of universe. We also discuss the physical and geometrical properties of the model derived in this paper. The solution is interesting physically as it explain accelerating universe as well as singularity free universe.

  17. Wireless energy transfer between anisotropic metamaterials shells

    CERN Document Server

    Diaz-Rubio, Ana; Sanchez-Dehesa, Jose

    2013-01-01

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated.

  18. Factors contributing to the temperature beneath plaster or fiberglass cast material

    OpenAIRE

    Hutchinson Mark R; Hutchinson Michael J

    2008-01-01

    Abstract Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints), brands, and thicknes...

  19. High-temperature measurements of Q-factor in rotated X-cut quartz resonators

    Science.gov (United States)

    Fritz, I. J.

    1981-01-01

    The Q-factors of piezoelectric resonators fabricated from natural and synthetic quartz with a 34 deg rotated X-cut orientation were measured at temperatures up to 325 C. The synthetic material, which was purified by electrolysis, retains a higher enough Q to be suitable for high temperature pressure-transducer applications, whereas the natural quartz is excessively lossy above 200 C for this application. The results are compared to results obtained previously at AT-cut resonators.

  20. Form factors in finite volume II:disconnected terms and finite temperature correlators

    OpenAIRE

    Pozsgay, B.; Takacs, G.

    2007-01-01

    Continuing the investigation started in a previous work, we consider form factors of integrable quantum field theories in finite volume, extending our investigation to matrix elements with disconnected pieces. Numerical verification of our results is provided by truncated conformal space approach. Such matrix elements are important in computing finite temperature correlation functions, and we give a new method for generating a low temperature expansion, which we test for the one-point functio...

  1. Temperature and donor concentration dependence of the conduction electron Lande g-factor in silicon

    Science.gov (United States)

    Konakov, Anton A.; Ezhevskii, Alexander A.; Soukhorukov, Andrey V.; Guseinov, Davud V.; Popkov, Sergey A.; Burdov, Vladimir A.

    2013-12-01

    Temperature and donor concentration dependence of the conduction electron g-factor in silicon has been investigated both experimentally and theoretically. We performed electron spin resonance experiments on Si samples doped with different densities of phosphorus and lithium. Theoretical consideration is based on the renormalization of the electron energy in a weak magnetic field by the interaction with possible perturbing agents, such as phonons and impurity centers. In the second-order perturbation theory interaction of the electron subsystem with the lattice vibrations as well as ionized donors results in decreasing the conduction electron g-factor, which becomes almost linear function both of temperature and impurity concentration.

  2. Mathematical model of non-isothermal creep based anisotropic damage

    OpenAIRE

    Галаган, Ю. Н.; Лысенко, С. В.; Львов, Г. И.

    2008-01-01

    А mathematical model of nonisothermic creep for anisotropic damage case is considered. Constitutive relation of creep rate and kinematic equation of damage evolution are assumed temperature dependent. A second range tensor is used for description damage. A technique based on existing experimental curves for the identification of material creep constants is presented.

  3. Quark–gluon plasma phenomenology from anisotropic lattice QCD

    International Nuclear Information System (INIS)

    The FASTSUM collaboration has been carrying out simulations of Nf = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics

  4. Quark–gluon plasma phenomenology from anisotropic lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Skullerud, Jon-Ivar; Kelly, Aoife [Department of Mathematical Physics, Maynooth University, Maynooth, Co Kildare (Ireland); Aarts, Gert; Allton, Chris; Amato, Alessandro; Evans, P. Wynne M.; Hands, Simon [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Burnier, Yannis [Institut de Théorie des Phénomènes Physiques, Ecole Polytechnique Fédérale de Lausanne, CH–1015 Lausanne (Switzerland); Giudice, Pietro [Institut für Theoretische Physik, Universität Münster, D–48149 Münster (Germany); Harris, Tim; Ryan, Sinéad M. [School of Mathematics, Trinity College, Dublin 2 (Ireland); Kim, Seyong [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of); Lombardo, Maria Paola [INFN–Laboratori Nazionali di Frascati, I–00044 Frascati (RM) (Italy); Oktay, Mehmet B. [Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242 (United States); Rothkopf, Alexander [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany)

    2016-01-22

    The FASTSUM collaboration has been carrying out simulations of N{sub f} = 2 + 1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.

  5. Quark-gluon plasma phenomenology from anisotropic lattice QCD

    CERN Document Server

    Skullerud, Jon-Ivar; Allton, Chris; Amato, Alessandro; Burnier, Yannis; Evans, P Wynne M; Giudice, Pietro; Hands, Simon; Harris, Tim; Kelly, Aoife; Kim, Seyong; Lombardo, Maria Paola; Oktay, Mehmet B; Rothkopf, Alexander; Ryan, Sinéad M

    2015-01-01

    The FASTSUM collaboration has been carrying out simulations of N_f=2+1 QCD at nonzero temperature in the fixed-scale approach using anisotropic lattices. Here we present the status of these studies, including recent results for electrical conductivity and charge diffusion, and heavy quarkonium (charm and beauty) physics.

  6. Radiation thermometer with thermotransducer made from anisotropic material

    International Nuclear Information System (INIS)

    Design of a radiation thermometer with a bismuth crystal featuring anisotropic thermoelectric properties is described. For providing the maximum sensitivity its heat receiver is made in the form of a battery made up of narrow strip. The principle of operation of the thermometer optical part is considered. Dependence of the transducer emf on radiating surface temperature is presented

  7. Significance and influence of the ambient temperature as a rate factor of steel reinforcement corrosion

    Indian Academy of Sciences (India)

    V Živica

    2002-10-01

    The rate of corrosion of reinforcement being an electrochemical process, undoubtedly is dependent even on the level of the ambient temperature. Therefore, the ambient temperature seems to be an important factor of the corrosion rate and the durability of the reinforced concrete structures in aggressive environment. The present data on the influence and significance of the ambient temperature in the process of corrosion of reinforcement of the reinforced structures are surprisingly limited and poor. It seems that it is supposed to be a simple increase of corrosion rate when the ambient temperature is increased. The lack of information was a motivation for the present study. It was aimed at the experimental research of the influence of the increase of the ambient temperature on the rate of chloride induced corrosion of steel reinforcement. The results obtained show that the influence of the studied factor is more complex showing an acceleration effect till a temperature of 40°C diversified by the inhibition effects with further increase of the ambient temperature.

  8. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  9. Hysteresis modeling of anisotropic and isotropic nanocrystalline hard magnetic films

    Science.gov (United States)

    Cornejo, D. R.; Azevedo, A.; Rezende, S. M.

    2003-05-01

    In the Hauser model, the magnetic state of a system is obtained by minimizing the so-called total energy function for a statistical set of magnetic domains. In this article, this energetic model of ferromagnetic materials is used in order to calculate hysteresis loops of isotropic and anisotropic nanocrystalline SmCo films at room temperature. A qualitative very good agreement between the calculated and experimental curves is obtained, mainly in the anisotropic case. Also, it has been verified that, under suitable approximations, the free parameters of the model can tie with intrinsic characteristics of the reversal magnetization process.

  10. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  11. Superlens from complementary anisotropic metamaterials

    Science.gov (United States)

    Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.

    2007-12-01

    Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.

  12. Temperature-Related Risk Factors for the Occurrence of Campylobacter in Broilers in Iceland

    Science.gov (United States)

    Introduction A summertime increased risk of Campylobacter is well-established in humans and broilers. Our objective was to identify temperature-related risk factors for the colonization of broiler flocks with Campylobacter in Iceland, with an assumption that flies play a role in the epidemiology an...

  13. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    NARCIS (Netherlands)

    Yuan, M.; Cohen, M.A.; Steele, G.A.

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with

  14. Temperature as a determinant factor for increased and reproducible in vitro pollen germination in Arabidopsis thaliana

    Science.gov (United States)

    Despite much effort, a robust protocol for in vitro germination of Arabidopsis thaliana pollen was still elusive. Here we show that controlled temperatures, a largely disregarded factor in previous studies, and a simple optimized medium, solidified or liquid, yielded pollen germination rates above 8...

  15. Factors contributing to the temperature beneath plaster or fiberglass cast material

    Directory of Open Access Journals (Sweden)

    Hutchinson Mark R

    2008-02-01

    Full Text Available Abstract Background Most cast materials mature and harden via an exothermic reaction. Although rare, thermal injuries secondary to casting can occur. The purpose of this study was to evaluate factors that contribute to the elevated temperature beneath a cast and, more specifically, evaluate the differences of modern casting materials including fiberglass and prefabricated splints. Methods The temperature beneath various types (plaster, fiberglass, and fiberglass splints, brands, and thickness of cast material were measured after they were applied over thermometer which was on the surface of a single diameter and thickness PVC tube. A single layer of cotton stockinette with variable layers and types of cast padding were placed prior to application of the cast. Serial temperature measurements were made as the cast matured and reached peak temperature. Time to peak, duration of peak, and peak temperature were noted. Additional tests included varying the dip water temperature and assessing external insulating factors. Ambient temperature, ambient humidity and dip water freshness were controlled. Results Outcomes revealed that material type, cast thickness, and dip water temperature played key roles regarding the temperature beneath the cast. Faster setting plasters achieved peak temperature quicker and at a higher level than slower setting plasters. Thicker fiberglass and plaster casts led to greater peak temperature levels. Likewise increasing dip-water temperature led to elevated temperatures. The thickness and type of cast padding had less of an effect for all materials. With a definition of thermal injury risk of skin injury being greater than 49 degrees Celsius, we found that thick casts of extra fast setting plaster consistently approached dangerous levels (greater than 49 degrees for an extended period. Indeed a cast of extra-fast setting plaster, 20 layers thick, placed on a pillow during maturation maintained temperatures over 50 degrees of

  16. Thermodynamics and Instabilities of a Strongly Coupled Anisotropic Plasma

    CERN Document Server

    Mateos, David

    2011-01-01

    We extend our analysis of a IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent theta-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics. The phase diagram exhibits homogeneous and inhomogeneous (i.e. mixed) phases. In some regions the homogeneous phase displays instabilities reminiscent of those of weakly coupled plasmas. We comment on similarities with QCD at finite baryon density and with the phenomenon of cavitation.

  17. Dynamical analysis of anisotropic inflation

    Science.gov (United States)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  18. Latest developments in anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo

    2015-01-01

    We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.

  19. Anisotropic hydrodynamics: Motivation and methodology

    International Nuclear Information System (INIS)

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches

  20. Three anisotropic benchmark problems for adaptive finite element methods

    Czech Academy of Sciences Publication Activity Database

    Šolín, Pavel; Čertík, O.; Korous, L.

    2013-01-01

    Roč. 219, č. 13 (2013), s. 7286-7295. ISSN 0096-3003 R&D Projects: GA AV ČR IAA100760702 Institutional support: RVO:61388998 Keywords : benchmark problem * anisotropic solution * boundary layer Subject RIV: BA - General Mathematics Impact factor: 1.600, year: 2013

  1. Generalized anisotropic strange star models for compact stars

    CERN Document Server

    Mauryaa, S K; Dayanandan, Baiju; Jasim, M K; Al-Jamel, Ahmed

    2015-01-01

    We present new anisotropic generalization of Buchdahl [1] type perfect fluid solution by using the method of earlier work [2]. In similar approach we have constructed the new pressure anisotropy factor {\\Delta} by the help both the metric potential e^{\\lambda} and e^{\

  2. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo;

    2016-01-01

    -rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...

  3. A temperature dependent slip factor based thermal model for friction stir welding of stainless steel

    Indian Academy of Sciences (India)

    M Selvaraj

    2013-12-01

    This paper proposes a new slip factor based three-dimensional thermal model to predict the temperature distribution during friction stir welding of 304L stainless steel plates. The proposed model employs temperature and radius dependent heat source to study the thermal cycle, temperature distribution, power required, the effect of process parameters on heat generation per mm length of the weld and peak temperature during the friction stir welding process. Simulations of friction stir welding process were carried out on 304L stainless steel workpieces for various rotational and welding speeds. The predicted thermal cycle, power required and temperature distributions were found to be in good agreement with the experimental results. The heat generation per mm length of weld and peak temperature were found to be directly proportional to rotational speed and inversely proportional to welding speed. The rate of increase in heat generation per mm length of the weld and peak temperature are found to be higher at lower rotational speeds and lower at higher rotational speed. The heat generation during friction stir welding was found to be 80.8 % at shoulder, 16.1 % at pin side and 3.1 % at the bottom of the pin.

  4. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending on...

  5. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  6. Temperature dependence of the calibration factor of radon and radium determination in water samples by SSNTD

    CERN Document Server

    Hunyadi, I; Hakl, J; Baradacs, E; Dezso, Z

    1999-01-01

    The sensitivity of a sup 2 sup 2 sup 6 Ra determination method of water samples by SSNTD was measured as a function of storage temperature during exposure. The method is based on an etched track type radon monitor, which is closed into a gas permeable foil and is immersed in the water sample. The sample is sealed in a glass vessel and stored for an exposure time of 10-30 days. The sensitivity increased more than a factor of two when the storage temperature was raised from 2 deg. C to 30 deg. C. Temperature dependence of the partition coefficient of radon between water and air provides explanation for this dependence. For practical radio- analytical application the temperature dependence of the calibration factor is given by fitting the sensitivity data obtained by measuring sup 2 sup 2 sup 6 Ra standard solutions (in the activity concentration range of 0.1-48.5 kBq m sup - sup 3) at different storage temperatures.

  7. Silicon nitride membrane resonators at millikelvin temperatures with quality factors exceeding 10^8

    OpenAIRE

    Yuan, M; Cohen, M A; G. A. Steele

    2015-01-01

    We study the mechanical dissipation of the fundamental mode of millimeter-sized, high quality-factor (Q) metalized silicon nitride membranes at temperatures down to 14 mK using a three-dimensional optomechanical cavity. Below 200 mK, high-Q modes of the membranes show a diverging increase of Q with decreasing temperature, reaching Q=1.27×108Q=1.27×108 at 14 mK, an order of magnitude higher than that reported before. The ultra-low dissipation makes the membranes highly attractive for the study...

  8. Quantum electrodynamics of inhomogeneous anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-02-01

    In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)

  9. Finite-difference schemes for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: es@cwi.nl [Centrum Wiskunde and Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, Association EURATOM-FOM (Netherlands)

    2014-09-01

    In fusion plasmas diffusion tensors are extremely anisotropic due to the high temperature and large magnetic field strength. This causes diffusion, heat conduction, and viscous momentum loss, to effectively be aligned with the magnetic field lines. This alignment leads to different values for the respective diffusive coefficients in the magnetic field direction and in the perpendicular direction, to the extent that heat diffusion coefficients can be up to 10{sup 12} times larger in the parallel direction than in the perpendicular direction. This anisotropy puts stringent requirements on the numerical methods used to approximate the MHD-equations since any misalignment of the grid may cause the perpendicular diffusion to be polluted by the numerical error in approximating the parallel diffusion. Currently the common approach is to apply magnetic field-aligned coordinates, an approach that automatically takes care of the directionality of the diffusive coefficients. This approach runs into problems at x-points and at points where there is magnetic re-connection, since this causes local non-alignment. It is therefore useful to consider numerical schemes that are tolerant to the misalignment of the grid with the magnetic field lines, both to improve existing methods and to help open the possibility of applying regular non-aligned grids. To investigate this, in this paper several discretization schemes are developed and applied to the anisotropic heat diffusion equation on a non-aligned grid.

  10. Gravity waves signatures from anisotropic preinflation

    International Nuclear Information System (INIS)

    We show that expanding or contracting Kasner universes are unstable due to the amplification of gravitational waves (GW). As an application of this general relativity effect, we consider a preinflationary anisotropic geometry characterized by a Kasner-like expansion, which is driven dynamically towards inflation by a scalar field. We investigate the evolution of linear metric fluctuations around this background, and calculate the amplification of the long-wavelength GW of a certain polarization during the anisotropic expansion (this effect is absent for another GW polarization, and for scalar fluctuations). These GW are superimposed to the usual tensor modes of quantum origin from inflation, and are potentially observable if the total number of inflationary e-folds exceeds the minimum required to homogenize the observable universe only by a small margin. Their contribution to the temperature anisotropy angular power spectrum decreases with the multipole l as l-p, where p depends on the slope of the initial GW power spectrum. Constraints on the long-wavelength GW can be translated into limits on the total duration of inflation and the initial GW amplitude. The instability of classical GW (and zero-vacuum fluctuations of gravitons) during Kasner-like expansion (or contraction) may have other interesting applications. In particular, if GW become nonlinear, they can significantly alter the geometry before the onset of inflation.

  11. Mechanism of a strongly anisotropic Mo-III-CN-Mn-II spin-spin coupling in molecular magnets based on the [Mo(CN)(7)](4-) heptacyanometalate: A new strategy for single-molecule magnets with high blocking temperatures

    OpenAIRE

    Mironov, VS; Chibotaru, Liviu; Ceulemans, Arnout

    2003-01-01

    Unusual spin coupling between Mo-III and Mn-II cyano-bridged ions in bimetallic molecular magnets based on the [Mo-III(CN)(7)](4-) heptacyanometalate is analyzed in terms of the superexchange theory. Due to the orbital degeneracy and strong spin-orbit coupling on Mo-III, the ground state of the pentagonal-bipyramidal [Mo-III(CN)(7)](4-) complex corresponds to an anisotropic Kramers doublet. Using a specially adapted kinetic exchange model we have shown that the Mo-III-CN-Mn-II superexchange i...

  12. From GPE to KPZ: finite temperature dynamical structure factor of the 1D Bose gas

    OpenAIRE

    Kulkarni, Manas; Lamacraft, Austen

    2012-01-01

    We study the finite temperature dynamical structure factor $S(k,\\omega)$ of a 1D Bose gas using numerical simulations of the Gross--Pitaevskii equation appropriate to a weakly interacting system. The lineshape of the phonon peaks in $S(k,\\omega)$ has a width $\\propto |k|^{3/2}$ at low wavevectors. This anomalous width arises from resonant three-phonon interactions, and reveals a remarkable connection to the Kardar--Parisi--Zhang universality class of dynamical critical phenomena.

  13. Dependence of the form factor of ganglioside micelles on a conformational change with temperature

    Science.gov (United States)

    Corti, Mario; Boretta, Marco; Cantù, Laura; Del Favero, Elena; Lesieur, Pierre

    1996-09-01

    The gangliosides GM2, GM1 and GD1b, biological amphiphiles with a double tail hydrophobic part and an oligosaccharide chain headgroup, form micelles in solution. Light scattering experiments have shown that ganglioside micelles which have gone through a temperature cycle have a smaller molecular mass and hydrodynamic radius than those which have been kept at room temperature. This fact has been interpreted with the hypothesis that, with temperature, the ganglioside molecules undergo a conformational change which affects their micellar properties appreciably. Careful small angle X-ray experiments, aimed to confirm the light scattering data and to evidence differences in the micellar internal structure are presented. Ganglioside micelles are quite inhomogeneous particles with respect to X-ray scattering, since there is a large contrast variation between the inner lipid part and the external hydrated sugar layer. Experimental form factors are fitted with a double-shell oblate-ellipsoid model.

  14. Numerical Analysis of Influencing Factors on Temperature Field and Airflow Distribution of the Displacement Ventilation System

    Institute of Scientific and Technical Information of China (English)

    NA Yanling; XING Jincheng; TU Guangbei; YU Songbo

    2005-01-01

    Indoor air quality and thermal comfort are important features of indoor environment. In this paper, a numerical simulation based on the k-ε model of CFD is used to analyze factors such as loading, exterior-protected construction, blowing-in rate that play an important role in the temperature field and airflow field of the displacement ventilation system. Exterior-protected construction has little influence on indoor temperature distribution of displacement ventilation systems and the influence is limited only in a small area near the external wall when the indoor heat source is the main cooling load.The height of a room has little influence on indoor temperature field, and the temperature gradient of active region is basically unchanged. In the system combined with a displacement ventilation system and a cooling system, the height also has little influence. When the cooling load is high,the indoor heat source creates a strong convective plume, which will make the average indoor air age lower, the ventilation efficiency higher and the elimination of pollutant easier. Air supply rate plays an important role in displacement ventilation systems. The increase of air supply rate that can be realized by increasing the air supply velocity and enlarging the area of air inlet will increase the mass capability of the system and diminish the vertical temperature gradient. From the comparison between simulations and experiments, it is concluded that this simulation are creditable.

  15. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  16. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  17. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  18. Surface phonon polaritons on anisotropic piezoelectric superlattices

    Science.gov (United States)

    Chao, Yuanxi; Sheng, Jiteng; Sedlacek, Jonathon A.; Shaffer, James P.

    2016-01-01

    A theoretical study of surface phonon polaritons (SPhPs) on periodically poled lithium niobate and periodically poled lithium tantalate surfaces is presented. We calculate the dielectric response for six different superlattice orientations and the associated SPhP dispersion relations. Our study of SPhPs accounts for the anisotropic nature of the dielectric response of the semi-infinite piezoelectric superlattices. We find that two different types of SPhPs can be supported. The first type consists of real surface dipole oscillations coupled to photons. The second type consists of virtual surface dipole oscillations driven by the incident photons. The dependence of the SPhPs on temperature and superlattice geometry is addressed. The use of these metamaterial excitations is discussed in the context of hybrid quantum systems.

  19. Anisotropic plasmas from axion and dilaton deformations

    CERN Document Server

    Donos, Aristomenis; Sosa-Rodriguez, Omar

    2016-01-01

    We construct black hole solutions of type IIB supergravity that are holographically dual to anisotropic plasmas arising from deformations of an infinite class of four-dimensional CFTs. The CFTs are dual to $AdS_5\\times X_5$, where $X_5$ is an Einstein manifold, and the deformations involve the type IIB axion and dilaton, with non-trivial periodic dependence on one of the spatial directions of the CFT. At low temperatures the solutions approach smooth domain wall solutions with the same $AdS_5\\times X_5$ solution appearing in the far IR. For sufficiently large deformations an intermediate scaling regime appears which is governed by a Lifshitz-like scaling solution. We calculate the DC thermal conductivity and some components of the shear viscosity tensor.

  20. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, J. Y.

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  1. Current collection in an anisotropic plasma

    Science.gov (United States)

    Li, Wei-Wei

    1990-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  2. Current collection in an anisotropic collisionless plasma

    Science.gov (United States)

    Li, Wei-Wei

    1992-01-01

    A general method is given to derive the current-potential relations in anisotropic plasmas. Orbit limit current is assumed. The collector is a conductive sphere or an infinite cylinder. Any distribution which is an arbitrary function of the velocity vector can be considered as a superposition of many mono-energetic beams whose current-potential relations are known. The results for two typical pitch angle distributions are derived and discussed in detail. The general properties of the current potential relations are very similar to that of a Maxwellian plasma except for an effective temperature which varies with the angle between the magnetic field and the charging surface. The conclusions are meaningful to generalized geometries.

  3. Anisotropic phenomena in gauge/gravity duality

    International Nuclear Information System (INIS)

    In this thesis we use gauge/gravity duality to model anisotropic effects realised in nature. Firstly we analyse transport properties in holographic systems with a broken rotational invariance. Secondly we discuss geometries dual to IR fixed points with anisotropic scaling behaviour, which are related to quantum critical points in condensed matter systems. Gauge/gravity duality relates a gravity theory in Anti-de Sitter space to a lower dimensional strongly coupled quantum field theory in Minkowski space. Over the past decade this duality provided many insights into systems at strong coupling, e.g. quark-gluon plasma and condensed matter close to quantum critical points. One very important result computed in this framework is the value of the shear viscosity divided by the entropy density in strongly coupled theories. The quantitative result agrees very well with measurements of the ratio in quark-gluon plasma. However, for isotropic two derivative Einstein gravity it is temperature independent. We show that by breaking the rotational symmetry of a system we obtain a temperature dependent shear viscosity over entropy density. This is important to make contact with real world systems, since substances in nature display such dependence. In addition, we derive various transport properties in strongly coupled anisotropic systems using the gauge/gravity dictionary. The most notable results include an electrical conductivity with Drude behaviour in the low frequency region. This resembles conductors with broken translational invariance. However, we did not implement the breaking explicitly. Furthermore, our analysis shows that this setup models effects, resembling the piezoelectric and exoelectric effects, known from liquid crystals. In a second project we discuss a geometry with non-trivial scaling behaviour in order to model an IR fixed point of condensed matter theories. We construct the UV completion of this geometry and analyse its properties by computing the

  4. Influence of finite conductivity of end walls on spectral and power characteristics of anisotropic dielectric disk resonator

    International Nuclear Information System (INIS)

    The high-Q oscillations of a longitudinal-anisotropic dielectric resonator with the imperfectly conducting end walls are considered. Using the integral equation derived by the authors, the spectral characteristics of such oscillations are studied. A cylindrical anisotropic dielectric resonator with the end walls made from a high-temperature superconductor monocrystal is investigated

  5. Influences of various factors on physical properties of concretes heated to high temperatures

    International Nuclear Information System (INIS)

    It is necessary to take into account the temperature dependence of the physical properties of concrete when the quality of the concrete structures expected to be subjected to high temperature is estimated. However, the adequate data have not been accumulated so far regarding such factors as the materials used and heating conditions. The research was carried out in such background, and the effects that various factors exerted to the physical properties of the concretes of various types subjected to the rapid heating up to 600 deg C are summarized in this paper. Furthermore, the total pore volume was selected as an index of the alteration of concrete due to heating, and the examination was carried out on its relation with the compressive strength, splitting tensile strength and the moduli of elasticity of the concrete subjected to heating. The test conditions, the items studied, and the test results are reported. The compressive strength, the moduli of elasticity and the splitting tensile strength showed remarkable decrease in high temperature heating. The types of cement did not exert much effect, but the types of aggregate affected the properties. (K.I.)

  6. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying

    2012-10-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle-dependent dipole solution, to the leading-order of solid concentration. The angular dependence vanishes for the square lattice, but at high solid concentrations there is a structure-dependent factor that contributes to the leading-order solution. In all cases, Woods formula is found to be accurately valid for the effective bulk modulus, independent of the structures. Numerical evaluations from the solutions are shown to be in excellent agreement with finite-element simulations. © 2012 Elsevier B.V.

  7. Anisotropic de Gennes Narrowing in Confined Fluids.

    Science.gov (United States)

    Nygård, Kim; Buitenhuis, Johan; Kagias, Matias; Jefimovs, Konstantins; Zontone, Federico; Chushkin, Yuriy

    2016-04-22

    The collective diffusion of dense fluids in spatial confinement is studied by combining high-energy (21 keV) x-ray photon correlation spectroscopy and small-angle x-ray scattering from colloid-filled microfluidic channels. We find the structural relaxation in confinement to be slower compared to the bulk. The collective dynamics is wave vector dependent, akin to the de Gennes narrowing typically observed in bulk fluids. However, in stark contrast to the bulk, the structure factor and de Gennes narrowing in confinement are anisotropic. These experimental observations are essential in order to develop a microscopic theoretical description of collective diffusion of dense fluids in confined geometries. PMID:27152823

  8. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.

    Science.gov (United States)

    Zhao, Wei; Luo, Jin; Shan, Shiyao; Lombardi, Jack P; Xu, Yvonne; Cartwright, Kelly; Lu, Susan; Poliks, Mark; Zhong, Chuan-Jian

    2015-09-16

    The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors. PMID:26037089

  9. Highly anisotropic and robust excitons in monolayer black phosphorus.

    Science.gov (United States)

    Wang, Xiaomu; Jones, Aaron M; Seyler, Kyle L; Tran, Vy; Jia, Yichen; Zhao, Huan; Wang, Han; Yang, Li; Xu, Xiaodong; Xia, Fengnian

    2015-06-01

    Semi-metallic graphene and semiconducting monolayer transition-metal dichalcogenides are the most intensively studied two-dimensional materials of recent years. Lately, black phosphorus has emerged as a promising new two-dimensional material due to its widely tunable and direct bandgap, high carrier mobility and remarkable in-plane anisotropic electrical, optical and phonon properties. However, current progress is primarily limited to its thin-film form. Here, we reveal highly anisotropic and strongly bound excitons in monolayer black phosphorus using polarization-resolved photoluminescence measurements at room temperature. We show that, regardless of the excitation laser polarization, the emitted light from the monolayer is linearly polarized along the light effective mass direction and centres around 1.3 eV, a clear signature of emission from highly anisotropic bright excitons. Moreover, photoluminescence excitation spectroscopy suggests a quasiparticle bandgap of 2.2 eV, from which we estimate an exciton binding energy of ∼0.9 eV, consistent with theoretical results based on first principles. The experimental observation of highly anisotropic, bright excitons with large binding energy not only opens avenues for the future explorations of many-electron physics in this unusual two-dimensional material, but also suggests its promising future in optoelectronic devices. PMID:25915195

  10. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth: Extension of the Johnson-Mehl-Avrami-Kolmogorov theory

    OpenAIRE

    Kooi, BJ

    2004-01-01

    Monte Carlo (MC) simulations of isothermal phase transformations were performed based on a temperature- and time-dependent nucleation rate and a temperature-dependent and time-independent anisotropic growth rate (linear growth). One- or two-dimensional anisotropic growth in two-dimensional space is considered and nucleation occurs randomly throughout space. The MC simulations show that parallel growth of anisotropically growing transformation products with identical convex shape can be descri...

  11. Prediction of River Water Temperature and its Dependence on Hydro-Meteorological Factors

    Directory of Open Access Journals (Sweden)

    Aldona Jurgelėnaitė

    2014-07-01

    Full Text Available Rivers will be among the most sensitive of all ecosystems to the effects of climate change as they are heated by processes similar to those warming the Earth's atmosphere. The river water and air temperatures follow each other closely. The life cycle of lotic biota is regulated by two major physical factors: water temperature and hydraulic conditions. Any change in hydraulic pattern that leads to an alteration of the established thermal regime of a lotic ecosystem will ultimately lead to a dramatic change in the composition and survival of lotic biota. In order to assess the impacts of potential climate change on thermal regime of water bodies, it is important to know the long range forecasts for various climatic parameters. For this purpose the modelling of water discharge and forecasting of future changes are performed. This paper provides the long-term changes in the Lithuanian river water temperature according to two models and emissions scenarios. This paper evaluates the changes of warm season (May-October water temperature and heat runoff of Lithuanian rivers (Nemunas, Merkys and Dubysa with different thermal regimes at the end of the 21st century (2071–2100 comparing to the climate normal period (1961-1990 using two climate change models (ECHAM5 and HadCM3 global climate models and the A2 and B1 emissions scenarios and hydrological modelling (HBV model. DOI: http://dx.doi.org/10.5755/j01.erem.68.2.6178

  12. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  13. Temperature dependent Electron Land\\'e g-Factor and Interband Matrix Element in GaAs

    OpenAIRE

    Hübner, J.; Döhrmann, S.; Hägele, D.; Oestreich, M.

    2006-01-01

    Very high precision measurements of the electron Lande g-factor in GaAs are presented using spin-quantum beat spectroscopy at low excitation densities and temperatures ranging from 2.6 to 300 K. In colligation with available data for the temperature dependent effective mass a temperature dependence of the interband matrix element within a common five level kp-theory can model both parameters consistently. A strong decrease of the interband matrix element with increasing temperature consistent...

  14. Extremely high Q-factor mechanical modes in quartz bulk acoustic wave resonators at millikelvin temperature

    Energy Technology Data Exchange (ETDEWEB)

    Goryachev, M.; Creedon, D. L.; Ivanov, E. N.; Tobar, M. E. [ARC Centre of Excellence for Engineered Quantum Systems, University of Western Australia, 35 Stirling Highway, Crawley WA 6009 (Australia); Galliou, S.; Bourquin, R. [Department of Time and Frequency, FEMTO-ST Institute, ENSMM, 26 Chemin de l' Épitaphe, 25000, Besançon (France)

    2014-12-04

    We demonstrate that Bulk Acoustic Wave (BAW) quartz resonator cooled down to millikelvin temperatures are excellent building blocks for hybrid quantum systems with extremely long coherence times. Two overtones of the longitudinal mode at frequencies of 15.6 and 65.4 MHz demonstrate a maximum f.Q product of 7.8×10{sup 16} Hz. With this result, the Q-factor in such devices near the quantum ground state can be four orders of magnitude better than previously attained in other mechanical systems. Tested quartz resonators possess the ultra low acoustic losses crucial for electromagnetic cooling to the phonon ground state.

  15. Black hole at Lovelock gravity with anisotropic fluid

    CERN Document Server

    Aros, Rodrigo; Estrada, Milko; Montecinos, Alejandra

    2016-01-01

    In this work a new family of black hole solutions in Lovelock gravity is discussed. These solutions describe anisotropic fluids which extend to the spatial infinity. Though far from the horizon their geometries approach some previously known black holes solutions the location of the horizons differ. Furthemore, although the masses of these solutions match the masses of those previously known black holes, their temperatures and entropies differ.

  16. A new model for spherically symmetric anisotropic compact star

    CERN Document Server

    Maurya, S K; Dayanandan, Baiju; Ray, Saibal

    2016-01-01

    In this article we obtain a new anisotropic solution for Einstein's field equation of embedding class one metric. The solution is representing the realistic objects such as $Her~X-1$ and $RXJ~1856-37$. We perform detailed investigation of both objects by solving numerically the Einstein field equations under with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if anisotropy is zero everywhere inside the star then the density and pressures will become zero and metric turns out to be flat. We report our results and compare with the above mentioned two compact objects on a number of key aspects: the central density, the surface density onset and the critical scaling behavior, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications...

  17. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    International Nuclear Information System (INIS)

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film

  18. A new model for spherically symmetric anisotropic compact star

    Science.gov (United States)

    Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Ray, Saibal

    2016-05-01

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star.

  19. The effect of anisotropic surface tension on the morphological stability of planar interface during directional solidification

    International Nuclear Information System (INIS)

    This paper considers the effect of the anisotropic surface tension on the morphological stability of the planar interface during directional solidification. When the expression exhibiting the four-fold symmetry is included, the modified absolute stability criterion is obtained by employing the multi-variable expansion method. The linear stability analysis reveals that for the given temperature gradient, as the anisotropic surface tension parameter increases, the stability zone tends to decrease. (cross-disciplinary physics and related areas of science and technology)

  20. Multidisciplinary approach to cylindrical anisotropic metamaterials

    OpenAIRE

    Carbonell Olivares, Jorge; Torrent Martí, Daniel; Diaz Rubio, Ana; Sánchez-Dehesa Moreno-Cid, José

    2011-01-01

    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the...

  1. Effects of temperature, dissolved oxygen and material factor on SCC behavior of low alloy steels in high temperature water

    International Nuclear Information System (INIS)

    Stress corrosion cracking (SCC) susceptibility of heavy-thick low alloy steels was investigated by slow strain rate tensile (SSRT) tests in high temperature water containing various levels of dissolved oxygen (DO) at temperature of 373 K to 593 K. Rolled steels with high sulfur content had SCC susceptibility in the wide region of temperature-DO concentration combination, even in DO<0.005 ppm at 473 K. A forged steel with extremely low sulfur content was almost immune to SCC. SCC maps as functions of temperature and DO concentration were proposed for each steel from the SSRT tests results. (author)

  2. New charged anisotropic compact models

    Science.gov (United States)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  3. Model for Anisotropic Directed Percolation

    OpenAIRE

    Nguyen, V. Lien; Canessa, Enrique

    1997-01-01

    We propose a simulation model to study the properties of directed percolation in two-dimensional (2D) anisotropic random media. The degree of anisotropy in the model is given by the ratio $\\mu$ between the axes of a semi-ellipse enclosing the bonds that promote percolation in one direction. At percolation, this simple model shows that the average number of bonds per site in 2D is an invariant equal to 2.8 independently of $\\mu$. This result suggests that Sinai's theorem proposed originally fo...

  4. Anisotropic spectra of acoustic turbulence

    International Nuclear Information System (INIS)

    We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society

  5. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  6. BRDF Interpolation using Anisotropic Stencils

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    Springfield: Society for Imaging Science and Technology , 2016 - (Imai, F.; Ortiz Segovia, M.; Urban, P.), MMRMA-356.1-MMRMA-356.6 ISSN 2470-1173. [IS&T International Symposium on Electronic Imaging 2016, Measuring, Modeling, and Reproducing Material Appearance 2016. San Francisco (US), 14.2.2016-18.2.2016] R&D Projects: GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * stencil * anisotropic * interpolation Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2016/RO/vavra-0457068.pdf

  7. Correlations among factors of sulfide ores in oxidation process at ambient temperature

    Institute of Scientific and Technical Information of China (English)

    吴超; 李孜军; 周勃

    2004-01-01

    Spontaneous combustion is one of the serious problems in the mining of sulfide ore deposits. The relevant factors, e. G. Oxygen absorption quantity, mass increase, contents of water soluble iron ions and sulfate ion of sulfide ore samples in the oxidation process were investigated both in theory and experiment. The results from the investigation show that there is no general interpretation relation among the oxygen absorption quantity, the contents of sulfate ion and water soluble iron ions during the oxidation process of sulfide ores at ambient temperature.However, there is a linear relationship between the mass increase of the sulfide ore samples in the oxidation process at ambient temperature and the quantity of oxygen absorption. Therefore, the simple and cheap mass scaling method is suitable for predicting the oxygen absorption performance of sulfide ores at ambient temperature in place of the expensive and complicated chemical method used hitherto. Furthermore, combined with other items of breeding-fire test, the mass increase potential can also be used to predict the spontaneous combustion tendency of sulfide ores.

  8. Single-crystal microwires based on doped Bi for anisotropic thermoelectric devices

    International Nuclear Information System (INIS)

    We have investigated the possibility to use a microwire of BiSn to design an anisotropic thermoelectric generator. The glass-coated microwire of pure and Sn-doped bismuth was obtained by the Ulitovsky method; it was a cylindrical single-crystal with orientation (1011) along the wire axis; the C3 axis was inclined at an angle of 70 degrees to the microwire axis. It is found that doping of bismuth wires with tin increases the thermopower anisotropy in comparison with Bi by a factor of 2 - 3 in the temperature range of 200-300 K. For a Bi microwire with a core diameter of 10 μm with a glass coating with outer diameter of 35 μm, the transverse thermopower is ∼ 150 μV/(K*cm); for BiSn, 300 μV/(K*cm). The design of an anisotropic thermogenerator based on BiSn microwire is proposed. The miniature thermogenerator will be efficient for power supply of devices with low useful current. In addition to the considerable thermopower anisotropy of BiSn wires in a glass coating, they exhibit stable thermoelectric properties, high mechanical strength and flexibility, which allows designing thermoelectric devices of various configurations on their basis.

  9. Anisotropic magnetoresistance of GaMnAs ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Vašek, Petr; Svoboda, Pavel; Novák, Vít; Cukr, Miroslav; Výborný, Karel; Jurka, Vlastimil; Stuchlík, Jiří; Orlita, Milan; Maude, D. K.

    2010-01-01

    Roč. 23, č. 6 (2010), 1161-1163. ISSN 1557-1939 R&D Projects: GA AV ČR KAN400100652; GA MŠk MEB020928 Grant ostatní: EU EuroMagNET II(XE) Egide 19535NF Institutional research plan: CEZ:AV0Z10100521 Keywords : GaMnAs * anisotropic magnetoresistance * hydrogenation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2010

  10. Massless Fermions in anisotropic Bianchi type I spacetimes

    CERN Document Server

    Wollensak, Matthias

    2016-01-01

    The behavior of spin - 1/2 - particles in anisotropic Bianchi type I backgrounds is investigated utilizing the concept of differential forms and orthonormal frames. Specializing to the massless case and power law scale factors $\\alpha_j(t) = t^{q_j}$ of the metric where $q_1 = q_2 $, an analytical outcome for the time evolution operator in terms of Bessel functions is presented.

  11. Monte Carlo simulations of phase transformations caused by nucleation and subsequent anisotropic growth : Extension of the Johnson-Mehl-Avrami-Kolmogorov theory

    NARCIS (Netherlands)

    Kooi, BJ

    2004-01-01

    Monte Carlo (MC) simulations of isothermal phase transformations were performed based on a temperature- and time-dependent nucleation rate and a temperature-dependent and time-independent anisotropic growth rate (linear growth). One- or two-dimensional anisotropic growth in two-dimensional space is

  12. Interaction between charged anisotropic macromolecules: Application to rod-like polyelectrolytes

    OpenAIRE

    Chapot, David; Bocquet, Lydéric; Trizac, Emmanuel

    2003-01-01

    In this paper we propose a framework allowing to compute the effective interactions between two anisotropic macromolecules, thereby generalizing the DLVO theory to non spherical finite size colloids. We show in particular that the effective interaction potential remains anisotropic at all distances and provide an expression for the anisotropy factor. We then apply this framework to the case of finite rod-like polyelectrolytes. The calculation of the interaction energy requires the numerical c...

  13. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  14. Soot temperature and KL factor for biodiesel and diesel spray combustion in a constant volume combustion chamber

    KAUST Repository

    Zhang, Ji

    2013-07-01

    This paper presents measurements of the soot temperature and KL factor for biodiesel and diesel combustion in a constant volume chamber using a two-color technique. This technique uses a high-speed camera coupled with two narrowband filters (550. nm and 650. nm, 10. nm FWHM). After calibration, statistical analysis shows that the uncertainty of the two-color temperature is less than 5%, while it is about 50% for the KL factor. This technique is then applied to the spray combustion of biodiesel and diesel fuels under an ambient oxygen concentration of 21% and ambient temperatures of 800, 1000 and 1200. K. The heat release result shows higher energy utilization efficiency for biodiesel compared to diesel under all conditions; meanwhile, diesel shows a higher pressure increase due to its higher heating value. Biodiesel yields a lower temperature inside the flame area, a longer soot lift-off length, and a smaller soot area compared to diesel. Both the KL factor and the total soot with biodiesel are lower than with diesel throughout the entire combustion process, and this difference becomes larger as the ambient temperature decreases. Biodiesel shows approximately 50-100. K lower temperatures than diesel at the quasi-steady stage for 1000 and 1200. K ambient temperature, while diesel shows a lower temperature than biodiesel at 800. K ambient. This result may raise the question of how important the flame temperature is in explaining the higher NO. x emissions often observed during biodiesel combustion. Other factors may also play an important role in controlling NO. x emissions. Both biodiesel and diesel temperature measurements show a monotonic dependence on the ambient temperature. However, the ambient temperature appears to have a more significant effect on the soot formation and oxidation in diesel combustion, while biodiesel combustion soot characteristics shows relative insensitivity to the ambient temperature. © 2013 Elsevier Ltd.

  15. Kinematics of an Ideal Fluid into a Spatially Flat Anisotropic Axisymmetric Universe

    CERN Document Server

    López, Ericsson; Aldás, Franklin

    2016-01-01

    The Standard Cosmological Model assumes that the Universe is, on average, homogeneous and isotropic for large scales (z>1), but this principle has been questioned from the results about Cosmic Microwave Background. This radiation has anomalies that are not explained from the Standard Model, such as temperature fluctuations in the order of 10-5K or aligning polar moments. These anomalies could be explained by anisotropic cosmological models. We propose a transformation to spherical coordinates considering different temporal scale factors in the Cartesian axes, from which a reducible to flat spatial Friedmann-Lemaitre-Robertson-Walker metric is obtained. In the model, we consider the axisymmetric case and analyze the cinematic behavior of an ideal fluid at rest.

  16. Environmental factors affecting the low temperature isomerization of homohopanes in acidic peat deposits, central China

    Science.gov (United States)

    Huang, Xianyu; Meyers, Philip A.; Xue, Jiantao; Gong, Linfeng; Wang, Xinxin; Xie, Shucheng

    2015-04-01

    Progressively more evidence reveals the abundant occurrence of the C31 homohopane with a 17α, 21β-configuration (C31 αβ) in immature peats. This compound is commonly considered to be an indicator of thermal maturity in petroleum source rocks, but in peats it has also been interpreted to reflect the oxidation and subsequent decarboxylation reactions of bacteriohopanepolyols with microbially mediated epimerization at C-17 that is catalyzed by the acidic peat conditions. To learn more about the environmental factors that affect the low-temperature isomerization of homohopanes, we investigated the distribution patterns of homohopanes in a well-studied peat core from the Dajiuhu peatland, central China, together with data from modern surface peat samples from Dajiuhu and three other locations. From comparison with paleotemperature and paleohydrologic records in the peat core, we hypothesize that the ratio of C31 αβ hopane relative to the ββ isomer (C31 αβ/ββ) is mainly influenced on a centennial to millennial timescale by ambient temperature with a secondary effect from redox conditions that are defined by peatland water levels. The surface peat samples revealed that relatively high C31 αβ/ββ values occurred under pH < 6. These results suggest that pH is indeed an important factor in the low-temperature isomerization of C31 homohopanes, although the magnitude of the pH effect may be less than those of ambient temperature and redox conditions. In both surface peat and peat horizons from the Dajiuhu peatland, the amount of the C31 αβ compound with R configuration relative to that with S configuration (C31 R/S) varied closely with C31 αβ/ββ, suggesting that the epimerization at both C-17 and C-22 may happen synchronously and at similar rates. This study reveals that the isomerization of homohopanes has the potential to reflect paleoenvironmental changes in acidic peat deposits. In addition, acidic peat samples investigated in this and previous studies

  17. ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS

    Institute of Scientific and Technical Information of China (English)

    Hyeonbae Kang; Kyoungsun Kim

    2007-01-01

    In this paper we present a systematic way of computing the polarization tensors,anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.

  18. Anisotropic weak Hardy spaces and interpolation theorems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.

  19. Characterization of anisotropic acoustic metamaterial slabs

    Science.gov (United States)

    Park, Jun Hyeong; Lee, Hyung Jin; Kim, Yoon Young

    2016-01-01

    In an anisotropic acoustic metamaterial, the off-diagonal components of its effective mass density tensor should be considered in order to describe the anisotropic behavior produced by arbitrarily shaped inclusions. However, few studies have been carried out to characterize anisotropic acoustic metamaterials. In this paper, we propose a method that uses the non-diagonal effective mass density tensor to determine the behavior of anisotropic acoustic metamaterials. Our method accurately evaluates the effective properties of anisotropic acoustic metamaterials by separately dealing with slabs made of single and multiple unit cells along the thickness direction. To determine the effective properties, the reflection and transmission coefficients of an acoustic metamaterial slab are calculated, and then the wave vectors inside of the slab are determined using these coefficients. The effective material properties are finally determined by utilizing the spatial dispersion relation of the anisotropic acoustic metamaterial. Since the dispersion relation of an anisotropic acoustic metamaterial is explicitly used, its effective properties can be easily determined by only using a limited number of normal and oblique plane wave incidences into a metamaterial slab, unlike existing approaches requiring a large number of wave incidences. The validity of the proposed method is verified by conducting wave simulations for anisotropic acoustic metamaterial slabs with Z-shaped elastic inclusions of tilted principal material axes.

  20. Magnetic phase diagram of the anisotropic double-exchange model: a Monte Carlo study

    International Nuclear Information System (INIS)

    The magnetic phase diagram of highly anisotropic double-exchange model systems is investigated as a function of the ratio of the anisotropic hopping integrals, i.e., tc/tab, on a three-dimensional lattice by using Monte Carlo calculations. The magnetic domain structure at low temperature is found to be a generic property of the strong anisotropy region. Moreover, the tc/tab ratio is crucial in determining the anisotropic charge transport due to the relative spin orientation of the magnetic domains. As a result, we show the anisotropic hopping integral is the most likely cause of the magnetic domain structure. It is noted that the competition between the reduced interlayer double-exchange coupling and the thermal frustration of the ordered two-dimensional ferromagnetic layer seems to be crucial in understanding the properties of layered manganites

  1. Highly anisotropic thermal conductivity of arsenene: An ab initio study

    Science.gov (United States)

    Zeraati, Majid; Vaez Allaei, S. Mehdi; Abdolhosseini Sarsari, I.; Pourfath, Mahdi; Donadio, Davide

    2016-02-01

    Elemental two-dimensional (2D) materials exhibit intriguing heat transport and phononic properties. Here we have investigated the lattice thermal conductivity of newly proposed arsenene, the 2D honeycomb structure of arsenic, using ab initio calculations. Solving the Boltzmann transport equation for phonons, we predict a highly anisotropic thermal conductivity of 30.4 and 7.8 W/mK along the zigzag and armchair directions, respectively, at room temperature. Our calculations reveal that phonons with mean free paths between 20 nm and 1 μ m provide the main contribution to the large thermal conductivity in the zigzag direction; mean free paths of phonons contributing to heat transport in the armchair directions range between 20 and 100 nm. The obtained anisotropic thermal conductivity and feasibility of synthesis, in addition to high electron mobility reported elsewhere, make arsenene a promising material for nanoelectronic applications and thermal management.

  2. Anisotropic Upper Critical Field of Iron-Based Superconductors

    Science.gov (United States)

    Huang, Ruiqi; She, Weilong

    2016-09-01

    The upper critical field and its anisotropy are the easiest properties to examine in the research of iron-based superconductors. Based on warped cylindrical Fermi surface models, we investigate the temperature and angle dependence of the upper critical field in detail by employing the quasi-classical formalism of the Werthamer-Helfand-Hohenberg (WHH) theory. Our numerical results reveal the anisotropy of the upper critical field, which may be caused by an anisotropic gap function (e.g., d-wave pairing) or an anisotropic Fermi surface, respectively. Further, according to our analysis, this anisotropy can be modulated by the deformation of the Fermi surface and will be strongly suppressed by the Pauli paramagnetic effect.

  3. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible. PMID:26783634

  4. Gravity Waves Signatures from Anisotropic pre-Inflation

    CERN Document Server

    Gumrukcuoglu, A E; Peloso, Marco

    2008-01-01

    We show that expanding or contracting Kasner universes are unstable due to the amplification of gravitational waves (GW). As an application of this general relativity effect, we consider a pre-inflationary anisotropic geometry characterized by a Kasner-like expansion, which is driven dynamically towards inflation by a scalar field. We investigate the evolution of linear metric fluctuations around this background, and calculate the amplification of the long-wavelength GW of a certain polarization during the anisotropic expansion (this effect is absent for another GW polarization, and for scalar fluctuations). These GW are superimposed to the usual tensor modes of quantum origin from inflation, and are potentially observable if the total number of inflationary e-folds exceeds the minimum required to homogenize the observable universe only by a small margin. Their contribution to the temperature anisotropy angular power spectrum decreases with the multipole l as l^(-p), where p depends on the slope of the initia...

  5. Multidisciplinary approach to cylindrical anisotropic metamaterials

    International Nuclear Information System (INIS)

    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. (paper)

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  8. Designing anisotropic inflation with form fields

    Science.gov (United States)

    Ito, Asuka; Soda, Jiro

    2015-12-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  9. Low temperature resistivity, thermoelectricity, and power factor of Nb doped anatase TiO2

    Science.gov (United States)

    Jaćimović, J.; Gaál, R.; Magrez, A.; Piatek, J.; Forró, L.; Nakao, S.; Hirose, Y.; Hasegawa, T.

    2013-01-01

    The resistivity of a very high quality anatase TiO2 doped with 6% of Nb was measured from 300 K down to 40 mK. No sign of superconductivity was detected. Instead, a minute quantity of cation vacancies resulted in a Kondo scattering. Measurements of thermo-electric power and resistivity were extended up to 600 K. The calculated power factor has a peak value of 14 μW/(K2cm) at 350 K, which is comparable to that of Bi2Te3 [Venkatasubramanian et al., Nature 413, 597 (2001)], the archetype thermolectrics. Taking the literature value for the thermal conductivity of Nb doped TiO2 thin films, the calculated figure of merit (ZT) is in the range of 0.1 above 300 K. This value is encouraging for further engineering of the material in order to reach ZT of 1 suitable for high temperature thermoelectrics.

  10. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... we propose that the fluid effect on mechanical properties of highly porous chalk may be the result of liquid‐solid friction. Applying a different strain or stress rate is influencing the rock strength and needs to be included. The resulting function is shown to relate to the material dependent and...... rate independent b-factor used when describing the time dependent mechanical properties of soft rock or soils. As a consequence it is then possible to further characterize the material constant from the porosity and permeability of the rock as well as from pore fluid density and viscosity which is...

  11. Surface temperature-controlling factors during transaction of Mexican monsoon in the Sonoran Desert, North-West Mexico

    Science.gov (United States)

    Tereshchenko, I.; Zolotokrilin, A.; Titkova, T.; Brito, L.; Monzon, C.

    2009-12-01

    Correlation between albedo and dry land surface temperature can serve as an indicator of processes, which control the temperature. The term dry land is used in reference to arid, semi-arid and dry subhumid regions, whose humidification coefficient ranges between 0.05 and 0.65 according to United Nations Convention to combat desertification in those countries experiencing serious drought and desertification, particularly in Africa. Geneva, 1994. The three main competing factors of underlying surface temperature control are an inherent feature of dry lands: first - radiation, second - evapotranspiration, third - aerodynamic control. This study is focused on seasonal cycle of parameters, which control surface temperature in the Sonora desert (North-West Mexico). The understanding of this process is important for monitoring of desertification. This is so because in a certain year, the time span of the period, during which the radiation factor is predominant, is an important factor in the desertification process. One indirect characteristic of prevalence of the radiation factor is Normalized Difference Vegetation Index (NDVI), which is an indicator of green phytomass. The main features of the ratio between albedo and surface temperature are discussed in terms of analysis of monthly means (albedo, temperature, NDVI) in the state of Sonora (29-32N, 111-115W), in particular, within the box 30-31N, 112-113W. The analysis of synchronous time series of albedo, surface temperature and NDVI has shown that the dominating temperature-controlling factors can switch within the year in the study area. The radiation factor is dominant in dry months (April - May) and the surface temperature is negatively correlated with albedo. This can cause generation of positive albedo-precipitation feedback, which in turn contributes to the desertification process.

  12. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  13. Anisotropic invariance in minisuperspace models

    Science.gov (United States)

    Chagoya, Javier; Sabido, Miguel

    2016-06-01

    In this paper we introduce invariance under anisotropic transformations to cosmology. This invariance is one of the key ingredients of the theory of quantum gravity at a Lifshitz point put forward by Hořava. We find that this new symmetry in the minisuperspace introduces characteristics to the model that can be relevant in the ultraviolet regime. For example, by canonical quantization we find a Schrödinger-type equation which avoids the problem of frozen time in quantum cosmology. For simple cases we obtain solutions to this quantum equation in a Kantowski–Sachs (KS) minisuperspace. At the classical level, we study KS and Friedmann–Robertson–Walker cosmologies, obtaining modifications to the solutions of general relativity that can be relevant in the early Universe.

  14. Anisotropic microstructure near the sun

    International Nuclear Information System (INIS)

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 R· [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ''background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 R· which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a 'Maltese Cross' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 R·, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 R· contributes to

  15. The Anisotropic Geometrodynamics For Cosmology

    Science.gov (United States)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  16. Factors affecting process temperature and biogas production in small-scale rural biogas digesters in winter in northern Vietnam

    DEFF Research Database (Denmark)

    Cuong, Pham Hung; Vu, C.C.; Sommer, Sven G.;

    2014-01-01

    and 180 cm, biogas production and methane (CH4) concentration in biogas from August to February. In parallel the temperature of the air (100 cm above ground), in the slurry mixing tank and in the soil (10, 100, 140, and 180 cm depth) was measured by thermocouple. The influent amount was measured daily...... and the influent chemical composition was measured monthly during the whole experimental period. Seasonal variations in air temperature significantly affected the temperature in the soil, mixing tank and digester. Consequently, biogas production, which is temperature dependent, was influenced by the...... season. The main factors determining the internal temperature in the digesters were insulation with Styrofoam, air temperature and temperature of slurry in the mixing tank. Biogas production is low due to the cold climate conditions in winter in Northern Vietnam, but the study proved that storing slurry...

  17. Effect of neutron anisotropic scattering in fast reactor analysis

    International Nuclear Information System (INIS)

    Numerical tests were performed about an effect of a neutron anisotropic scattering on criticality in the Sn transport calculation. The simplest approximation, the consistent P approximation and the extended transport approximation were compared with each other in one-dimensional slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is inadequate to evaluate the effect because it doesn't include the scattering matrices and the self-shielding factors to calculate the group-averaged cross sections weighted by the higher-order moment of angular flux. In the present study, the sub-group method was used to evaluate the group-averaged cross sections. Results showed that the simplest approximation is inadequate and the transport approximation is effective for evaluating the anisotropic scattering. (author)

  18. WEIGHT FUNCTIONS FOR INTERFACE CRACKS IN DISSIMILAR ANISOTROPIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    MA Lifeng; CHEN Yiheng

    2004-01-01

    Bueckner's work conjugate integral customarily adopted for linear elastic materials is established for an interface crack in dissimilar anisotropic materials. The difficulties in separating Stroh's six complex arguments involved in the integral for the dissimilar materials are overcome and then the explicit function representations of the integral are given and studied in detail. It is found that the pseudo-orthogonal properties of the eigenfunction expansion form (EEF) for a crack presented previously in isotropic elastic cases, in isotopic bimaterial cases, and in orthotropic cases are also valid in the present dissimilar arbitrary anisotropic cases. The relation between Bueckner's work conjugate integral and the J-integral in these cases is obtained by introducing a complementary stressdisplacement state. Finally, some useful path-independent integrals and weight functions are proposed for calculating the crack tip parameters such as the stress intensity factors.

  19. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...

  20. Covariance analyses of self-shielding factor and its temperature gradient for uranium-238 neutron capture reaction

    International Nuclear Information System (INIS)

    Covariances of the self-shielding factor and its temperature gradient for the uranium-238 neutron capture reaction have been evaluated from the resonance parameter covariance matrix and the sensitivity of the self-shielding factor and its temperature gradient to the resonance parameters. The resonance parameters and their covariance matrix for uranium-238 were taken from JENDL-3.3, while the sensitivity coefficients were calculated by varying resonance parameters and temperature. A set of computer code modules has been developed for the calculation of the sensitivity coefficients at numerous resonance levels. The present result shows that the correlation among resonance parameters yields a substantial contribution to the standard deviations of the self-shielding factor and its temperature gradient. In addition to the standard deviations of these quantities, their correlation matrices in the JFS-3 70 group structure are also obtained. (author)

  1. Temperature-averaged and total free-free Gaunt factors for $\\kappa$ and Maxwellian distributions of electrons

    CERN Document Server

    de Avillez, Miguel A

    2015-01-01

    Aims. Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by $\\kappa$-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods. We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than $10^{-10}$ in units of $z^2Ry$. We used double and quadruple precisions. The temperature- averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results. The temperature-av...

  2. BcBcJ/ψ vertex form factor at finite temperature in the framework of QCD sum rules approach

    International Nuclear Information System (INIS)

    The strong form factor of the BcBcJ/ψ vertex is calculated in the framework of the QCD sum rules method at finite temperature. Taking into account additional operators appearing at finite temperature, a thermal Wilson expansion is obtained and QCD sum rules are derived. While increasing the temperature, the strong form factor remains unchanged up to T ≅ 100 MeV but slightly increases after this point. After T ≅ 160 MeV, the form factor suddenly decreases up to T ≅ 170 MeV. The obtained result of the coupling constant by fitting the form factor at Q2 = -m2offshell at T = 0 is in a very good agreement with the QCD sum rules calculations in the case of vacuum. Our prediction can be checked in future experiments. (orig.)

  3. Adsorbate migration effects on continuous and discontinuous temperature-dependent transitions in the quality factors of graphene nanoresonators

    International Nuclear Information System (INIS)

    We perform classical molecular dynamics simulation to investigate the mechanisms underpinning the unresolved, experimentally observed temperature-dependent scaling transition in the quality factors of graphene nanomechanical resonators (GNMRs). Our simulations reveal that the mechanism underlying this temperature scaling phenomenon is the out-of-plane migration of adsorbates on GNMRs. Specifically, the migrating adsorbate undergoes frequent collisions with the GNMR, which strongly influences the resulting mechanical oscillation, and thus the quality factors. We also predict a discontinuous transition in the quality factor at a lower critical temperature, which results from the in-plane migration of the adsorbate. Overall, our work clearly demonstrates the strong effect of adsorbate migration on the quality factors of GNMRs. (paper)

  4. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  5. Anisotropic inflation in Gauss-Bonnet gravity

    CERN Document Server

    Lahiri, Sayantani

    2016-01-01

    We study anisotropic inflation with Gauss-Bonnet correction in presence of a massless vector field. In this scenario, exact anisotropic power-law inflation is realized when the inflaton potential, gauge coupling function and the Gauss-Bonnet coupling are exponential functions. We show that anisotropy becomes proportional to two slow-roll parameters of the theory and hence gets enhanced in presence of quadratic curvature corrections. The stability analysis reveals that anisotropic power-law solutions remain stable over a substantially large parameter region.

  6. Rockslides in a changing climate: evaluating rainfall and temperature as triggering factors in southwestern Norway

    Science.gov (United States)

    Dunlop, S.; Hutchinson, D. J.

    2009-04-01

    rockslide database comes with some constraints. Rockslides in the region have been recorded by Transportation Authorities. As a consequence, the data is only available along road or railway corridors. Rockslides that occur away from transportation infrastructure are not recorded and hence the dataset contains substantial spatial data discontinuity. There is also a temporal variance in the data. The county of Sogn og Fjordane has been recording rockslides semi-frequently since the 1970's, but there is a distinct increase in rockslide incidence in 1997, as recording procedures became more detailed and comprehensive. The county of Hordaland had very infrequent recording of rockslides prior to 2000, but since then has kept a very detailed rockslide inventory. Research completed thus far includes statistical analyses to establish relationships between the rockslides and their corresponding climate variables. Preliminary results indicate that short-term antecedent rainfall (less than 7 days before the event) and freeze-thaw cycles have the most important effect on the triggering of rockslides in the region. In fact, a high proportion of rockslides occur when these conditions occur simultaneously, when warm Atlantic storms make landfall during the cold winter months. These storms bring intense rainfall and raise temperatures above freezing levels, thus creating high runoff conditions. This ongoing research includes the study of historical storm events to gain a better understanding of the precise climatic conditions required to initiate rockslides. A primary goal of this research is to use geographic information system (GIS) technology to complete a rockslide hazard susceptibility map of the study area. A statistical approach is proposed, including many of the traditional factors (i.e. layers) used to generate hazard maps, such as: slope angle, slope curvature, geology, land use, etc. Factors related to climate will also be included as trends become apparent from the data analysis

  7. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  8. Anisotropic flow and flow fluctuations at the large hadron collider

    CERN Document Server

    Zhou, You

    One of the fundamental questions in the phenomenology of Quantum Chromodynamics (QCD) is what the properties of matter are at the extreme densities and temperatures where quarks and gluons are in a new state of matter, the so-called Quark Gluon Plasma (QGP). Collisions of high-energy heavy-ions at the CERN Large Hadron Collider (LHC), allow us to create and study the properties of such a system in the laboratory. Anisotropic flow (vn) is strong evidence for the existence of QGP, and has been described as one of the most important observations measured in the ultra-relativistic heavy-ion collisions. In this thesis, the anisotropic flow of not only charged particles but also identified particles are presented. In addition, the investigations of correlations and fluctuations of both flow angle (symmetry plane) and magnitude were discussed. The main goal of this thesis is to understand the nature of anisotropic flow and its response to the initial geometry of the created system as well as its fluctuations.

  9. On the creation of scalar particles in some anisotropic universe

    International Nuclear Information System (INIS)

    Because of an importance of the particle creation (especially, its possible fulfilment of the black-body law with a definite temperature) in an early universe to various other cosmological problems, we study how the creation of scalar particles occurs in the Bianchi-type I anisotropic universe adopted in our previous works on the quantized scalar field. It is shown that, as in a special isotropic case dealt with in recent papers, the creation may occur at the sacrifice of the requirement that the quantization procedure should reproduce the usual theory for a free field in the limit when the anisotropic universe changes into the Minkowski space-time. It is further shown that the creation occurs in accordance with the black-body law only in a 2-dimensional hyper-surface relating to the anisotropic cosmic expansion, provided that we fix two arbitrary constants appearing in a general expression for the Feynman propagator in terms of a procedure similar to that in the isotropic case. A speculation on the isotropization of our model-universe is also made from the standpoint of seeking the attainment of the thermal equilibrium in the whole universe. (author)

  10. Anisotropic Expansion of the Black Hole Universe

    Science.gov (United States)

    Zhang, Tianxi

    2009-01-01

    Recently, Zhang proposed a new cosmological model called black hole universe. According to this model, the universe originated from a hot star-like black hole with several solar masses, and grew up through a supermassive black hole with billion solar masses to the present state of temperature and density with hundred billion-trillion solar masses due to continuously inhaling matter from its outside. The structure of the entire space is similarly hierarchical or layered and the evolution is iterative. In each of iteration a universe passes through birth, growth, and death. The entire life of a universe roughly divides into three periods with different rates of expansion: slowly growing child universe, fast expanding adult universe, and gradually dying aged universe. When one universe expands to die out, a new universe grows up from its inside. On the AAS 211th meeting, the black hole universe model was shown to be consistent with Mach's principle, observations, and Einstein's general relativity. This new cosmological model can explain the cosmic microwave background radiation, quasars, and element abundances with the well-developed physics. Dark energy is not required for the universe to accelerate. Inflation is not necessary because the black hole universe does not have the horizon problem. In this presentation, the author will explain why the expansion of the universe is anisotropic as shown by the observed anisotropy of the Hubble constant. He will also compare the significant differences between the black hole universe and the big bang cosmology.

  11. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. Lovejoy

    2009-02-01

    Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k−5/3 (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero

  12. The second critical density and anisotropic generalised condensation

    Directory of Open Access Journals (Sweden)

    M. Beau

    2010-01-01

    Full Text Available In this letter we discuss the relevance of the 3D Perfect Bose gas (PBG condensation in extremely elongated vessels for the study of anisotropic condensate coherence and the "quasi-condensate". To this end we analyze the case of exponentially anisotropic (van den Berg boxes, when there are two critical densities ρc<ρm for a generalised Bose-Einstein Condensation (BEC. Here ρc is the standard critical density for the PBG. We consider three examples of anisotropic geometry: slabs, squared beams and "cigars" to demonstrate that the "quasi-condensate" which exists in domain ρc<ρ<ρm is in fact the van den Berg-Lewis-Pulé generalised condensation (vdBLP-GC of the type III with no macroscopic occupation of any mode. We show that for the slab geometry the second critical density ρm is a threshold between quasi-two-dimensional (quasi-2D condensate and the three dimensional (3D regime when there is a coexistence of the "quasi-condensate" with the standard one-mode BEC. On the other hand, in the case of squared beams and "cigars" geometries, critical density ρm separates quasi-1D and 3D regimes. We calculate the value of the difference between ρc, ρm (and between corresponding critical temperatures Tm, Tc to show that the observed space anisotropy of the condensate coherence can be described by a critical exponent γ(T related to the anisotropic ODLRO. We compare our calculations with physical results for extremely elongated traps that manifest "quasi-condensate".

  13. Variably saturated flow described with the anisotropic Lattice Boltzmann methods

    OpenAIRE

    Ginzburg, I.

    2006-01-01

    This paper addresses the numerical solution of highly nonlinear parabolic equations with Lattice Boltzmann techniques. They are first developed for generic advection and anisotropic dispersion equations (AADE). Collision configurations handle the anisotropic diffusion forms by using either anisotropic eigenvalue sets or anisotropic equilibrium functions. The coordinate transformation from the orthorhombic (rectangular) discretization grid to the cuboid computational grid is equivalen...

  14. Reinterpreting aircraft measurements in anisotropic scaling turbulence

    Directory of Open Access Journals (Sweden)

    S. J. Hovde

    2009-07-01

    Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.

    We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k-5/3. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.

    Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2

  15. Spatial interpolation approach based on IDW with anisotropic spatial structures

    Science.gov (United States)

    Li, Jia; Duan, Ping; Sheng, Yehua; Lv, Haiyang

    2015-12-01

    In many interpolation methods, with its simple interpolation principle, Inverse distance weighted (IDW) interpolation is one of the most common interpolation method. There are anisotropic spatial structures with actual geographical spatial phenomenon. When the IDW interpolation is used, anisotropic spatial structures should be considered. Geostatistical theory has a characteristics of exploring anisotropic spatial structures. In this paper, spatial interpolation approach based on IDW with anisotropic spatial structures is proposed. The DEM data is tested in this paper to prove reliability of the IDW interpolation considering anisotropic spatial structures. Experimental results show that IDW interpolation considering anisotropic spatial structures can improve interpolation precision when sampling data has anisotropic spatial structures feature.

  16. Biberman 'free-bound' continuum correction factor approximation for line-to-continuum temperature diagnostic of aluminium laser plasma

    International Nuclear Information System (INIS)

    The applicability and versatility of plasma diagnostics to various fields is constrained by numerous challenges. Spectroscopic coefficients are crucial for successful implementation of a particular diagnostic technique. The 'line-to-continuum' technique, which is used to determine the electron temperature (Te), is applicable to a large range of wavelengths and spatio-temporal coordinates within a laser plasma plume via emission spectroscopy. To successfully utilize this technique, a number of spectroscopic coefficients are required. The Biberman 'free-bound' continuum correction factor (ξfb) is a required constant for the line-to-continuum technique which displays a strong temperature and wavelength dependence for λ fb over a discrete temperature range for aluminium is achieved using space- and time-resolved visible emission spectroscopy in the optical range (λ = 350-470 nm). Complementary temperature diagnostics are undertaken to determine the excitation temperature (Texc) and the ionization temperature (Tionz). Convergence in the calculated Texc and Tionz spatial profiles is identified as regions of local thermal equilibrium. Calculated average temperatures (Tavg) over the range T ∼ 20-34 x 103 K are determined and used to approximate values for the Biberman 'free-bound' continuum correction factor for Al III (453 nm) and elucidate its temperature dependence.

  17. Multitracing Anisotropic Non-Gaussianity with Galaxy Shapes

    CERN Document Server

    Chisari, Nora Elisa; Schmidt, Fabian; Spergel, David

    2016-01-01

    Correlations between intrinsic galaxy shapes on large-scales arise due to the effect of the tidal field of the large-scale structure. Anisotropic primordial non-Gaussianity induces a distinct scale-dependent imprint in these tidal alignments on large scales. Motivated by the observational finding that the alignment strength of luminous red galaxies depends on how galaxy shapes are measured, we study the use of two different shape estimators as a multi-tracer probe of intrinsic alignments. We show, by means of a Fisher analysis, that this technique promises a significant improvement on anisotropic non-Gaussianity constraints over a single-tracer method. For future weak lensing surveys, the uncertainty in the anisotropic non-Gaussianity parameter, $A_2$, is forecast to be $\\sigma(A_2)\\approx 50$, $\\sim 40\\%$ smaller than currently available constraints from the bispectrum of the Cosmic Microwave Background. This corresponds to an improvement of a factor of $4-5$ over the uncertainty from a single-tracer analysi...

  18. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.

    Science.gov (United States)

    Ní Annaidh, A; Destrade, M; Gilchrist, M D; Murphy, J G

    2013-08-01

    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made. PMID:23011411

  19. Quantum Fisher information for periodic and quasiperiodic anisotropic XY chains in a transverse field

    Science.gov (United States)

    Liu, X. M.; Du, Z. Z.; Liu, J.-M.

    2016-04-01

    In this work, the concept of quantum Fisher information (QFI) is used to characterize the quantum transitions and factorization transitions in one-dimensional anisotropic XY models with periodic coupling interaction and quasiperiodic one. For the periodic-two model, it is found that the Ising transition and anisotropic transition can be distinctively illustrated by the evolution of QFI and its first-order derivatives, confirmed additionally by the scaling behavior. For the quasiperiodic Fibonacci chain, the number of quantum phase transitions increases from one to the lth Fibonacci number Fl when the anisotropic parameter γ approaches zero. The phase diagram for the approximant Fl=8 is derived as an example. In addition, the factorization transition in the two models can be marked by the correlation quantity defined from the QFI. The present work demonstrates the implication of the QFI as a general fingerprint to characterize the quantum transitions and factorization transitions.

  20. Theory of Compton scattering by anisotropic electrons

    OpenAIRE

    Poutanen, Juri; Vurm, Indrek

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed so...

  1. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  2. Rainbow metric from quantum gravity: anisotropic cosmology

    OpenAIRE

    Assanioussi, Mehdi; Dapor, Andrea

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformatio...

  3. Anisotropic cosmological solutions in massive vector theories

    OpenAIRE

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between...

  4. Anisotropic Stars: Exact Solutions and Stability

    OpenAIRE

    Dev, Krsna; Gleiser, Marcelo

    2004-01-01

    I report on recent work concerning the existence and stability of self-gravitating spheres with anisotropic pressure. After presenting new exact solutions, Chandrasekhar's variational formalism for radial perturbations is generalized to anisotropic objects and applied to investigate their stability. It is shown that anisotropy can not only support stars of mass M and radius R with 2M/R > 8/9 and arbitrarily large surface redshifts, but that stable configurations exist for values of the adiaba...

  5. Anisotropic surface tension of buckled fluid membrane

    OpenAIRE

    Noguchi, Hiroshi

    2011-01-01

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is al...

  6. Highly anisotropic elements for acoustic pentamode applications.

    Science.gov (United States)

    Layman, Christopher N; Naify, Christina J; Martin, Theodore P; Calvo, David C; Orris, Gregory J

    2013-07-12

    Pentamode metamaterials are a class of acoustic metafluids that are characterized by a divergence free modified stress tensor. Such materials have an unconventional anisotropic stiffness and isotropic mass density, which allow themselves to mimic other fluid domains. Here we present a pentamode design formed by an oblique honeycomb lattice and producing customizable anisotropic properties. It is shown that anisotropy in the stiffness can exceed 3 orders of magnitude, and that it can be realistically tailored for transformation acoustic applications. PMID:23889408

  7. Anisotropic fluid spheres in general relativity

    International Nuclear Information System (INIS)

    A procedure is developed to find static solutions for anisotropic fluid spheres from known static solutions for perfect fluid spheres. The method is used to obtain four exact analytical solutions of Einstein's equations for spherically symmetric self-gravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. The physical features of one of the solutions are briefly discussed. Many previously known perfect fluid solutions are derived as particular cases. (author)

  8. On the anisotropic elastic properties of hydroxyapatite.

    Science.gov (United States)

    Katz, J. L.; Ukraincik, K.

    1971-01-01

    Experimental measurements of the isotropic elastic moduli on polycrystalline specimens of hydroxyapatite and fluorapatite are compared with elastic constants measured directly from single crystals of fluorapatite in order to derive a set of pseudo single crystal elastic constants for hydroxyapatite. The stiffness coefficients thus derived are given. The anisotropic and isotropic elastic properties are then computed and compared with similar properties derived from experimental observations of the anisotropic behavior of bone.

  9. Soft particles with anisotropic interactions

    Science.gov (United States)

    Schurtenberger, Peter

    Responsive colloids such as thermo- or pH-sensitive microgels are ideal model systems to investigate the relationship between the nature of interparticle interactions and the plethora of self-assembled structures that can form in colloidal suspensions. They allow for a variation of the form, strength and range of the interaction potential almost at will. While microgels have extensively been used as model systems to investigate various condensed matter problems such as glass formation, jamming or crystallization, they can also be used to study systems with anisotropic interactions. Here we show results from a systematic investigation of the influence of softness and anisotropy on the structural and dynamic properties of strongly interacting suspensions. We focus first on ionic microgels. Due to their large number of internal counterions they possess very large polarisabilities, and we can thus use external electrical ac fields to generate large dipolar contributions to the interparticle interaction potential. This leads to a number of new crystal phases, and we can trigger crystal-crystal phase transitions through the appropriate choice of the field strength. We then show that this approach can be extended to more complex particle shapes in an attempt to copy nature's well documented success in fabricating complex nanostructures such as virus shells via self assembly. European Research Council (ERC-339678-COMPASS).

  10. Transport theory in anisotropic media

    International Nuclear Information System (INIS)

    A theory of particle scattering in anisotropic media is developed. That is, a medium in which the microstructure causes the mean free paths of the particles to become dependent on their direction of motion with respect to some fixed axis. The equation which results is similar to the normal, one-speed Boltzmann transport equation but has cross-sections which are functions of direction. This equation is solved for arbitrary cross-sectional dependence on direction in plane geometry. Four distinct problems are considered: (1) the particle distribution arising from a plane source in an infinite medium, (2) the albedo problem and Milne problem for a half-space and the corresponding 'thick slab' transmission problem, (3) solution of the integral form of the Boltzmann equation for a special case of cross-sectional dependence which leads to results similar to the well-known rod model and (4) the energy spectrum of particles slowing down from a high energy source by elastic collisions. In each of these four problems the influence of the cross-section is seen to be significant in comparison with the conventional constant cross-section results, to which they revert in this limit. Some suggestions about physical applications of the results are made. (author)

  11. Anisotropic diffusion-limited aggregation.

    Science.gov (United States)

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  12. The effective quality factor at low temperatures in dynamic force microscopes with Fabry-Pérot interferometer detection

    Science.gov (United States)

    Hölscher, Hendrik; Milde, Peter; Zerweck, Ulrich; Eng, Lukas M.; Hoffmann, Regina

    2009-06-01

    The oscillation of a cantilever in ultrahigh vacuum dynamic force microscopy is sometimes measured with the help of a Fabry-Pérot interferometer. We show that the photoinduced forces present in such an interferometer can artificially increase or decrease the effective quality factor of the cantilever. We examine this effect on the basis of a PtIr-coated rectangular silicon cantilever at temperatures between 7.7 and 30 K. By measuring resonance curves we demonstrate that the magnitude of the effective quality factor changes with cantilever-fiber distance, laser power, and temperature.

  13. Anisotropic pressure and hyperons in neutron stars

    CERN Document Server

    Sulaksono, A

    2014-01-01

    We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.

  14. Lee-Yang Zeros of Periodic and Quasiperiodic Anisotropic XY Chains in a Transverse Field

    Science.gov (United States)

    Tong, Peiqing; Liu, Xiaoxian

    2006-07-01

    The partition function zeros of the anisotropic XY chain in a complex transverse field are studied analytically and numerically. It is found that the partition function zeros of the periodic and quasiperiodic quantum Ising chain lie on the circle at zero temperature and the radius equal to the values of the critical field. For the periodic and quasiperiodic anisotropic XY chains, the closed curves are split to two or three closed curves as the anisotropic parameter γ decreases at a given ratio of two kinds of exchange interactions. For the isotropic XX case, the partition function zeros lie on the straight segments which are parallel to the real axis and the segments move towards the real axis as the temperature goes to zero.

  15. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  16. Whistler Solitons in Plasma with Anisotropic Hot Electron Admixture

    Science.gov (United States)

    Khazanov, G. V.; Krivorutsky, E. N.; Gallagher, D. L.

    1999-01-01

    The longitudinal and transverse modulation instability of whistler waves in plasma, with a small admixture of hot anisotropic electrons, is discussed. If the hot particles temperature anisotropy is positive, it is found that, in such plasma, longitudinal perturbations can lead to soliton formation for frequencies forbidden in cold plasma. The soliton is enriched by hot particles. The frequency region unstable to transverse modulation in cold plasma in the presence of hot electrons is divided by stable domains. For both cases the role of hot electrons is more significant for whistlers with smaller frequencies.

  17. Self-catalyzed anisotropic growth of GaN spirals

    Science.gov (United States)

    Patsha, Avinash; Sahoo, Prasana; Dhara, S.; Tyagi, A. K.

    2012-06-01

    GaN spirals with homogeneous size are grown using chemical-vapor-deposition technique in a self catalytic process. Raman and photoluminescence (PL) studies reveal wurtzite GaN phase. Nucleation of GaN sphere takes place with the agglomeration Ga clusters and simultaneous reaction with NH3. A growth mechanism involving diffusion limited aggregation process initiating supersaturation and subsequent neck formation along with possible role of thermodynamic fluctuation in different crystalline facets of GaN, is described for the anisotropic spiral structures. Temperature dependent PL spectra show strong excitonic emissions along with the presence of free-to-bound transition.

  18. Factors Affecting Transformation Temperatures in Fe-Mn-Si-Cr-Ni Shape Memory Alloy

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    @@The effects of prestrain and annealing temperature on phase transformation temperatures in Fe14Mn5Si8Cr4Ni shape memory alloy have been studied. The results showed that when the annealing temperature was 673 K, both the Af and the Ms temperatures increased appreciably as the prestrain increased, the As temperature increased slightly with increasing prestrain; the resistivity difference at 303 K between the heating and cooling curve also increased with increasing prestrain, which agreed with the recovery strain. The shape memory effect in Fe-Mn-Si-Cr-Ni shape memory alloy is caused by the stress-induced γ → ε martensite transformation and its reverse transformation. When the prestrain was 10%, the Ms temperature decreased remarkably as the annealing temperature increased.

  19. Temperature-averaged and total free-free Gaunt factors for κ and Maxwellian distributions of electrons

    Science.gov (United States)

    de Avillez, Miguel A.; Breitschwerdt, Dieter

    2015-08-01

    Aims: Optically thin plasmas may deviate from thermal equilibrium and thus, electrons (and ions) are no longer described by the Maxwellian distribution. Instead they can be described by κ-distributions. The free-free spectrum and radiative losses depend on the temperature-averaged (over the electrons distribution) and total Gaunt factors, respectively. Thus, there is a need to calculate and make available these factors to be used by any software that deals with plasma emission. Methods: We recalculated the free-free Gaunt factor for a wide range of energies and frequencies using hypergeometric functions of complex arguments and the Clenshaw recurrence formula technique combined with approximations whenever the difference between the initial and final electron energies is smaller than 10-10 in units of z2Ry. We used double and quadruple precisions. The temperature-averaged and total Gaunt factors calculations make use of the Gauss-Laguerre integration with 128 nodes. Results: The temperature-averaged and total Gaunt factors depend on the κ parameter, which shows increasing deviations (with respect to the results obtained with the use of the Maxwellian distribution) with decreasing κ. Tables of these Gaunt factors are provided. Appendices are available in electronic form at http://www.aanda.org

  20. Assessment of factors that may affect the moisture- and temperature variations in the concrete structures inside nuclear reactor containments

    International Nuclear Information System (INIS)

    Three factors that may affect the climatic conditions inside Swedish nuclear reactor containments are the outdoor climate, the cooling water temperature and the operational state of the reactor. Those factors that have a considerable affect on the climatic conditions will be identified through comparisons to actual conditions during operation inside reactor containments. Knowledge about the impact of the factors on the climatic conditions is essential when developing a model to determine the prevailing and to predict future conditions in the concrete structures. The comparison between a Pressurized Water Reactor and a Boiling Water Reactor showed that there is no clear similarity, with regard to fluctuation of the indoor climate conditions, between the two reactor types. The indoor climate at a Pressurized Water Reactor seemed not to be affected of changes in the operational state, but it follows the fluctuations of the outdoor temperature and to some extent the water temperature. The Boiling water Reactor did not follow the water or outdoor temperature fluctuations. However, at a full power outage during a short period of time during the operational year the temperature drastically decreased. An operational year of a Boiling water reactor can be divided into three periods, where the first represents the yearly power outage, the second represents the autumn-winter-spring period and the third represents the summer period. The operational year of a pressurized water reactor can't easily be divided into stable periods, since the indoor temperature fluctuation follows the outdoor temperature fluctuation. Based on these measurements a simplified model which includes outer factors is possible for a BWR but more difficult for a PWR. (authors)

  1. Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores

    Energy Technology Data Exchange (ETDEWEB)

    Kondo, Atsushi, E-mail: kondoa@cc.tuat.ac.jp; Maeda, Kazuyuki

    2015-01-15

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (α{sub a}=−21×10{sup −6} K{sup −1} and α{sub c}=79×10{sup −6} K{sup −1}) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material are selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF.

  2. Anisotropic thermal expansion of a 3D metal–organic framework with hydrophilic and hydrophobic pores

    International Nuclear Information System (INIS)

    A 3D flexible metal–organic framework (MOF) with 1D hydrophilic and hydrophobic pores shows anisotropic thermal expansion with relatively large thermal expansion coefficient (αa=−21×10−6 K−1 and αc=79×10−6 K−1) between 133 K and 383 K. Temperature change gives deformation of both pores, which expand in diameter and elongate in length on cooling and vice versa. The thermally induced structural change should be derived from a unique framework topology like “lattice fence”. Silica accommodation changes not only the nature of the MOF but also thermal responsiveness of the MOF. Since the hydrophobic pores in the material are selectively blocked by the silica, the MOF with the silica is considered as a hydrophilic microporous material. Furthermore, inclusion of silica resulted in a drastic pore contraction in diameter and anisotropically changed the thermal responsiveness of the MOF. - Graphical abstract: A 3D metal–organic framework with hydrophilic and hydrophobic pores shows anisotropic thermal expansion behavior. The influence of silica filler in the hydrophobic pore was investigated. - Highlights: • Thermally induced structural change of a 3D MOF with a lattice fence topology was investigated. • The structural change was analyzed by synchrotron X-ray diffraction patterns. • Temperature change induces anisotropic thermal expansion/contraction of the MOF. • Silica inclusion anisotropically changes the thermal responsiveness of the MOF

  3. Measurement of the thermal conductivity of thin insulating anisotropic material with a stationary hot strip method

    International Nuclear Information System (INIS)

    This paper presents a method dedicated to the thermal conductivity measurement of thin insulating anisotropic materials. The method is based on three hot-strip-type experiments in which the stationary temperature is measured at the center of the hot strip. A 3D model of the heat transfer in the system is established and simulated to determine the validity of a 2D transfer hypothesis at the center of the hot strip. A simplified 2D model is then developed leading to the definition of a geometrical factor calculable from a polynomial expression. A very simple calculation method enabling the estimation of the directional thermal conductivities from the three stationary temperature measurements and from the geometrical factor is presented. The uncertainties on each conductivity are estimated. The method is then validated by measurements on polyethylene foam and Ayous (anistropic low-density tropical wood); the estimated values of the thermal conductivities are in good agreement with the values estimated using the hot plate and the flash method. The method is finally applied on a thin super-insulating fibrous material for which no other method is able to measure the in-plane conductivity

  4. Dependence of form factors for power and temperature on time and power level at FDR-type reactors

    International Nuclear Information System (INIS)

    In order to test neutron power and fuel temperature form factor variations in a reactor core during operational transients several calculations were performed by means of the dynamics program KINE. This code includes one-dimensional time-dependent feedbacks in order to check-point reactor model calculations. It could be shown that the variation of the form factor was positive or negative dependent on the transient, but not more than 3%. At a hypothetical accident with an unrealistic increase of power by 70% an increase of the form factors by about 10% resulted, which is small compared to the safety margins in quasistationary accident analyses with a point model. (orig.)

  5. Profile correction to electron temperature and enhancement factor in soft x-ray pulse-height-analysis measurements in tokamaks

    International Nuclear Information System (INIS)

    Because soft x-ray pulse-height-analysis (PHA) spectra contain chordal information, the electron temperature and the radiation intensity (enhancement factor) measurements do not represent the local values. Assuming that the profile Ansatz for the electron temperature and density is of the form n/sub eo/[1-(ra)2]/sup α/ and kT/sub eo/[1--(ra)2]/sup β/, we obtain the correction factors for the electron temperature and the enhancement factor as a function of the profile coefficients α and β and the energy at which the evaluation was made. The corrected values of the temperature are typically between 1 to 10% higher than the values derived from the raw chordal spectra. We also correct the measured radiation intensity for the profile effects. Finally, the spectrum distortion due to pulse pile-up effects is evaluated. A set of curves is given from which the distortion of the spectrum can be obtained, if the electron temperature, the Be or Al filter thickness, and the electronic parameters of the acquisition system are known. 7 refs., 23 figs

  6. The enhanced anisotropic properties of the Fe sub 3 sub - sub x M sub x O sub 4 (M = Fe, Co, Mn) films deposited on glass surface from aqueous solutions at low temperature

    CERN Document Server

    Kim, T Y; Kim, Y I; Lee, C S; Park, J C; Kim, D

    2003-01-01

    The enhancement of structural anisotropy and magnetic anisotropy in ferrite films, Fe sub 3 sub - sub x M sub x O sub 4 (M = Fe, Co, Mn), which were deposited on glass substrates from aqueous solutions by thin liquid film (TLF) method at a low temperature (358 K), was compared in x-ray diffraction, conversion electron Moessbauer spectroscopy, and vibrating sample magnetometer measurements. The experimental results showed that the highly coercive Fe sub 3 sub - sub x Co sub x O sub 4 films, maximum coercivity of 0.21 T at room temperature, have a preferential growing direction along the magnetic easy axis of the magnetite, (111). While anisotropy was enhanced by the addition of Co sup 2 sup + ions in the reaction solution, no enhancement was observed in the TLF-films of Fe sub 3 O sub 4 and Fe sub 3 sub - sub x Mn sub x O sub 4. The enhanced anisotropy is probably caused by the extra stabilization energy of the Co sup 2 sup + ions in the octahedral sites of the spinel and the interactions between the Co sup 2 ...

  7. A continuum-mechanical model for the flow of anisotropic polar ice

    CERN Document Server

    Greve, Ralf; Seddik, Hakime

    2009-01-01

    In order to study the mechanical behaviour of polar ice masses, the method of continuum mechanics is used. The newly developed CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is described, which comprises an anisotropic flow law as well as a fabric evolution equation. The flow law is an extension of the isotropic Glen's flow law, in which anisotropy enters via an enhancement factor that depends on the deformability of the polycrystal. The fabric evolution equation results from an orientational mass balance and includes constitutive relations for grain rotation and recrystallization. The CAFFE model fulfills all the fundamental principles of classical continuum mechanics, is sufficiently simple to allow numerical implementations in ice-flow models and contains only a limited number of free parameters. The applicability of the CAFFE model is demonstrated by a case study for the site of the EPICA (European Project for Ice Coring in Antarctica) ice core ...

  8. On the lamb wave propagation in anisotropic laminated composite plates

    International Nuclear Information System (INIS)

    This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.

  9. Anisotropic Cosmological Model in Modified Brans--Dicke Theory

    OpenAIRE

    Rasouli, S. M. M.; Farhoudi, Mehrdad; Sepangi, Hamid R.

    2011-01-01

    It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time whi...

  10. Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions

    Czech Academy of Sciences Publication Activity Database

    Giddings, A.D.; Makarovsky, O. N.; Khalid, M.N.; Yasin, S.; Edmonds, K. W.; Campion, R. P.; Wunderlich, J.; Jungwirth, Tomáš; Williams, D.A.; Gallagher, B. L.; Foxon, C. T.

    2008-01-01

    Roč. 10, č. 8 (2008), 085004/1-085004/9. ISSN 1367-2630 R&D Projects: GA ČR GEFON/06/E002; GA MŠk LC510; GA ČR GA202/05/0575; GA ČR GA202/04/1519 Grant ostatní: EU(XE) IST-015728 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor * nanoconstriction * tunneling anisotropic magnetoresistance, Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2008

  11. Anisotropic magnetoresistance components in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Rushforth, A.W.; Výborný, Karel; King, C.S.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.; Irvine, A.C.; Vašek, Petr; Novák, Vít; Olejník, Kamil; Sinova, J.; Jungwirth, Tomáš; Gallagher, B. L.

    2007-01-01

    Roč. 99, č. 14 (2007), 147207/1-147207/4. ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 Grant ostatní: UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.944, year: 2007

  12. Analysis of stress intensity factor for a Griffith crack opened under constant pressure in a plate with temperature dependent properties

    International Nuclear Information System (INIS)

    Recently, the research on the thermal stress of structural materials has become important with the progress of nuclear reactor technology. In the case of large temperature gradient, the change of the physical properties of materials must be taken into account. The thermal stress analysis for the things with cracks taking the temperature dependence of properties into account has scarcely been carried out. In this report, the general method of solution of three-dimensional problems using perturbation method and the extension of thermo-elastic displacement potential method is shown for the case in which Young's modulus changes according to the exponential function of temperature. Moreover, using this method, the effect of the temperature dependence of properties on the stress intensity factor of the cracks subjected to internal pressure in a strip exposed to linear thermal flow was clarified. In the analysis, Young's modulus, the coefficient of linear thermal expansion and thermal conductivity were assumed to be dependent on temperature. The method of solution, the analysis of stress intensity factor considering the change of properties due to temperature, and the numerical calculation for a square plate with a crack are explained. (Kako, I.)

  13. Subsurface Stress Fields in FCC Single Crystal Anisotropic Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik; Swanson, Gregory R.; Duke, Gregory; Ham-Battista, Gilda

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent high cycle fatigue (HCF) failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and non-crystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is presented for evaluating the subsurface stresses in the elastic half-space, based on the adaptation of a stress function method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis (FEA). Effects of crystal orientation on stress response and fatigue life are examined. Obtaining accurate subsurface stress results for anisotropic single crystal contact problems require extremely refined three-dimensional (3-D) finite element grids, especially in the edge of contact region. Obtaining resolved shear stresses (RSS) on the principal slip planes also involves

  14. Biot Critical Frequency Applied as Common Friction Factor for Chalk with Different Pore Fluids and Temperatures

    DEFF Research Database (Denmark)

    Andreassen, Katrine Alling; Fabricius, Ida Lykke

    2010-01-01

    Injection of water into chalk hydrocarbon reservoirs has lead to mechanical yield and failure. Laboratory experiments on chalk samples correspondingly show that the mechanical properties of porous chalk depend on pore fluid and temperature. Water has a significant softening effect on elastic...... highly influenced by temperature....

  15. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    International Nuclear Information System (INIS)

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg−1.

  16. Dominant factors affecting temperature rise in simulations of human thermoregulation during RF exposure

    Science.gov (United States)

    Laakso, Ilkka; Hirata, Akimasa

    2011-12-01

    Numerical models of the human thermoregulatory system can be used together with realistic voxel models of the human anatomy to simulate the body temperature increases caused by the power absorption from radio-frequency electromagnetic fields. In this paper, the Pennes bioheat equation with a thermoregulatory model is used for calculating local peak temperatures as well as the body-core-temperature elevation in a realistic human body model for grounded plane-wave exposures at frequencies 39, 800 and 2400 MHz. The electromagnetic power loss is solved by the finite-difference time-domain (FDTD) method, and the discretized bioheat equation is solved by the geometric multigrid method. Human thermoregulatory models contain numerous thermophysiological and computational parameters—some of which may be subject to considerable uncertainty—that affect the simulated core and local temperature elevations. The goal of this paper is to find how greatly the computed temperature is influenced by changes in various modelling parameters, such as the skin blood flow rate, models for vasodilation and sweating, and clothing and air movement. The results show that the peak temperature rises are most strongly affected by the modelling of tissue blood flow and its temperature dependence, and mostly unaffected by the central control mechanism for vasodilation and sweating. Almost the opposite is true for the body-core-temperature rise, which is however typically greatly lower than the peak temperature rise. It also seems that ignoring the thermoregulation and the blood temperature increase is a good approximation when the local 10 g averaged specific absorption rate is smaller than 10 W kg-1.

  17. Anisotropic thermal conductivity of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Fang; Yimin Xuan; Qiang Li

    2009-01-01

    Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.

  18. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  19. Daily changes of radon concentration in soil gas under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity

    International Nuclear Information System (INIS)

    This work aims at relating the daily change in the radon concentration in soil gas in a Red Yellow Acrisol (SiBCS) under influence of atmospheric factors: room temperature, soil surface temperature and relative humidity. The 226Ra, 232Th, U content and permeability were also performed. The measurements of radon soil gas were carried out by using an AlphaGUARD monitor. The 226Ra activity concentration was made by Gamma Spectrometry (HPGe); the permeability was carried out using the RADON-JOK permeameter and ICP-MS analysis to 232Th and U content. The soil permeability is 5.0 x 10-12, which is considered average. The 226Ra (22.2 ± 0.3 Bq.m-3); U content (73.4 ± 3.6 Bq.kg-1) and 232Th content (55.3 ± 4.0 Bq.kg-1) were considered above of average concentrations, according to mean values for soils typical (~ 35.0 Bq.kg-1) by UNSCEAR. The results showed a difference of 26.0% between the highest and the lowest concentration of radon in soil gas: at midnight (15.5 ± 1.0 kBq.m-3) and 3:00 pm, the highest mean radon concentration (21.0 ± 1.0 kBq.m-3). The room temperature and surface soil temperature showed equivalent behavior and the surface soil temperature slightly below room temperature during the entire monitoring time. Nevertheless, the relative humidity showed the highest cyclical behavior, showing a higher relationship with the radon concentration in soil gas. (author)

  20. Resource supply overrides temperature as a controlling factor of marine phytoplankton growth.

    Science.gov (United States)

    Marañón, Emilio; Cermeño, Pedro; Huete-Ortega, María; López-Sandoval, Daffne C; Mouriño-Carballido, Beatriz; Rodríguez-Ramos, Tamara

    2014-01-01

    The universal temperature dependence of metabolic rates has been used to predict how ocean biology will respond to ocean warming. Determining the temperature sensitivity of phytoplankton metabolism and growth is of special importance because this group of organisms is responsible for nearly half of global primary production, sustains most marine food webs, and contributes to regulate the exchange of CO2 between the ocean and the atmosphere. Phytoplankton growth rates increase with temperature under optimal growth conditions in the laboratory, but it is unclear whether the same degree of temperature dependence exists in nature, where resources are often limiting. Here we use concurrent measurements of phytoplankton biomass and carbon fixation rates in polar, temperate and tropical regions to determine the role of temperature and resource supply in controlling the large-scale variability of in situ metabolic rates. We identify a biogeographic pattern in phytoplankton metabolic rates, which increase from the oligotrophic subtropical gyres to temperate regions and then coastal waters. Variability in phytoplankton growth is driven by changes in resource supply and appears to be independent of seawater temperature. The lack of temperature sensitivity of realized phytoplankton growth is consistent with the limited applicability of Arrhenius enzymatic kinetics when substrate concentrations are low. Our results suggest that, due to widespread resource limitation in the ocean, the direct effect of sea surface warming upon phytoplankton growth and productivity may be smaller than anticipated. PMID:24921945

  1. Implementation of an anisotropic turbulence model in the COMMIX- 1C/ATM computer code

    International Nuclear Information System (INIS)

    The computer code COMMIX-1C/ATM, which describes single-phase, three-dimensional transient thermofluiddynamic problems, has provided the framework for the extension of the standard k-var-epsilon turbulence model to a six-equation model with additional transport equations for the turbulence heat fluxes and the variance of temperature fluctuations. The new, model, which allows simulation of anisotropic turbulence in stratified shear flows, is referred to as the Anisotropic Turbulence Model (ATM) has been verified with numerical computations of stable and unstable stratified shear flow between parallel plates

  2. Subsurface Stress Fields In Single Crystal (Anisotropic) Contacts

    Science.gov (United States)

    Arakere, Nagaraj K.; Knudsen, Erik C.; Duke, Greg; Battista, Gilda; Swanson, Greg

    2004-01-01

    Single crystal superalloy turbine blades used in high pressure turbomachinery are subject to conditions of high temperature, triaxial steady and alternating stresses, fretting stresses in the blade attachment and damper contact locations, and exposure to high-pressure hydrogen. The blades are also subjected to extreme variations in temperature during start-up and shutdown transients. The most prevalent HCF failure modes observed in these blades during operation include crystallographic crack initiation/propagation on octahedral planes, and noncrystallographic initiation with crystallographic growth. Numerous cases of crack initiation and crack propagation at the blade leading edge tip, blade attachment regions, and damper contact locations have been documented. Understanding crack initiation/propagation under mixed-mode loading conditions is critical for establishing a systematic procedure for evaluating HCF life of single crystal turbine blades. This paper presents analytical and numerical techniques for evaluating two and three dimensional subsurface stress fields in anisotropic contacts. The subsurface stress results are required for evaluating contact fatigue life at damper contacts and dovetail attachment regions in single crystal nickel-base superalloy turbine blades. An analytical procedure is , presented, for evaluating the subsurface stresses in the elastic half-space, using a complex potential method outlined by Lekhnitskii. Numerical results are presented for cylindrical and spherical anisotropic contacts, using finite element analysis. Effects of crystal orientation on stress response and fatigue life are examined.

  3. Anisotropic behaviour of semiconducting tin monosulphoselenide single crystals

    Indian Academy of Sciences (India)

    T H Patel; Rajiv Vaidya; S G Patel

    2003-10-01

    Single crystals of ternary mixed compounds of group IV–VI in the form of a series, SnSSe1- (where = 0, 0.25, 0.50, 0.75 and 1), have been grown using direct vapour transport technique. The grown crystals were characterized by the X-ray diffraction analysis for their structural parameter determination. All the grown crystals were found to be orthorhombic. The microstructure analysis of the grown crystals reveals their layered type growth mechanism. From the Hall effect measurements Hall mobility, Hall coefficient and carrier concentration were calculated with all crystals showing -type nature. The d.c. electrical resistivity measurements perpendicular to -axis (i.e. along the basal plane) in the temperature range 303–453 K were carried out for grown crystals using four-probe method. The d.c. electrical resistivity measurements parallel to -axis (i.e. perpendicular to basal plane) in the temperature range 303–453 K were carried out for the same crystals. The electrical resistivity measurements showed an anisotropic behaviour of electrical resistivity for the grown crystals. The anisotropic behaviour and the effect of change in stoichiometric proportion of S and Se content on the electrical properties of single crystals of the series, SnSSe1- (where = 0, 0.25, 0.50, 0.75 and 1), is presented systematically.

  4. Theory of Compton scattering by anisotropic electrons

    CERN Document Server

    Poutanen, Juri

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...

  5. Anisotropic pseudopotential for polarized dilute quantum gases

    International Nuclear Information System (INIS)

    An anisotropic pseudopotential arising in the context of collisions of two particles polarized by an external field is rigorously derived and its properties are investigated. Such a low-energy pseudopotential may be useful in describing collective properties of dilute quantum gases, such as molecules polarized by an electric field or metastable 3P2 atoms polarized by a magnetic field. The pseudopotential is expressed in terms of the reactance (K) matrix and derivatives of the Dirac δ function. In most applications, it may be represented as a sum of a traditional spherically symmetric contact term and an anisotropic part. The former contribution may be parametrized by a generalized scattering length. The anisotropic part of the pseudopotential may be characterized by the off-diagonal scattering length for dipolar interactions and off-diagonal scattering volume for quadrupolar interactions. The two-body matrix element of the pseudopotential in a basis of plane waves is also derived

  6. Anisotropic inflation in the Finsler spacetime

    International Nuclear Information System (INIS)

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for the quantum fluctuation of the inflation field. It depends not only on the magnitude of the wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and we obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in the angular correlation coefficients if l' = l + 1. The numerical results of the angular correlation coefficients are given describing the anisotropic effect. (orig.)

  7. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  8. Micromechanics and dislocation theory in anisotropic elasticity

    CERN Document Server

    Lazar, Markus

    2016-01-01

    In this work, dislocation master-equations valid for anisotropic materials are derived in terms of kernel functions using the framework of micromechanics. The second derivative of the anisotropic Green tensor is calculated in the sense of generalized functions and decomposed into a sum of a $1/R^3$-term plus a Dirac $\\delta$-term. The first term is the so-called "Barnett-term" and the latter is important for the definition of the Green tensor as fundamental solution of the Navier equation. In addition, all dislocation master-equations are specified for Somigliana dislocations with application to 3D crack modeling. Also the interior Eshelby tensor for a spherical inclusion in an anisotropic material is derived as line integral over the unit circle.

  9. Asymmetric Composite Nanoparticles with Anisotropic Surface Functionalities

    Directory of Open Access Journals (Sweden)

    Donglu Shi

    2009-01-01

    Full Text Available Asymmetric inorganic/organic composite nanoparticles with anisotropic surface functionalities represent a new approach for creating smart materials, requiring the selective introduction of chemical groups to dual components of composite, respectively. Here, we report the synthesis of snowman-like asymmetric silica/polystyrene heterostructure with anisotropic functionalities via a chemical method, creating nanostructure possibly offering two-sided biologic accessibility through the chemical groups. Carboxyl group was introduced to polystyrene component of the snowman-like composites by miniemulsion polymerization of monomer on local surface of silica particles. Moreover, amino group was then grafted to remained silica surface through facile surface modification of the composite nanoparticles. The asymmetric shape of these composites was confirmed by TEM characterization. Moreover, characteristics of anisotropic surface functionalities were indicated by Zeta potential measurement and confocal laser microscopy after being labeled with fluorescent dyes. This structure could find potential use as carriers for biological applications.

  10. Anisotropic inflation in the Finsler spacetime

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xin [Chongqing University, Department of Physics, Chongqing (China); Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Wang, Sai [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Chang, Zhe [Institute of Theoretical Physics, Chinese Academy of Sciences, State Key Laboratory of Theoretical Physics, Beijing (China); Institute of High Energy Physics, Chinese Academy of Sciences, Beijing (China)

    2015-06-15

    We suggest the universe is Finslerian in the stage of inflation. The Finslerian background spacetime breaks rotational symmetry and induces parity violation. The primordial power spectrum is given for the quantum fluctuation of the inflation field. It depends not only on the magnitude of the wavenumber but also on the preferred direction. We derive the gravitational field equations in the perturbed Finslerian background spacetime, and we obtain a conserved quantity outside the Hubble horizon. The angular correlation coefficients are presented in our anisotropic inflation model. The parity violation feature of Finslerian background spacetime requires that the anisotropic effect only appears in the angular correlation coefficients if l' = l + 1. The numerical results of the angular correlation coefficients are given describing the anisotropic effect. (orig.)

  11. Tomato plants acclimate better to elevated temperature and high light than to treatment with each factor separately.

    Science.gov (United States)

    Gerganova, Milena; Popova, Antoaneta V; Stanoeva, Daniela; Velitchkova, Maya

    2016-07-01

    The influence of two factors - high temperature and high light intensity, acting separately or simultaneously on the pigment composition, fluorescent characteristics, membrane integrity and synthesis of protective substances was investigated in tomato plants (Solanum lycopersicum cv. M 82). Moderate elevated temperatures (38/29 °C) were applied under optimum or high light intensity for 2 and 6 days and after that the plants are allowed to recover for 5 days at optimum conditions. Parameters of chlorophyll fluorescence were used to evaluate the alterations of photosystem I and photosystem II activity and malondialdehyde content was determined as a measure of stress-induced peroxidation of membrane lipids. The response of treated plants to high light and elevated temperature was estimated by analyzing the accumulation of anthocyanins. Both stress factors exhibit different impact on studied parameters - high light intensity influences considerably quantum yield of photosystem II and photochemical quenching that is compensated to some extent when applied at elevated temperature. High temperature reduces strongly non-photochemical quenching. Data obtained show that after two days under particular conditions, the plants tend to acclimate, but this is achieved after longer treatment - 6 days. During the recovery period the activity of photosystem I and the quantum yield of photosystem II recover almost completely, while the values of non-photochemical quenching although slightly higher, did not reach the levels at the beginning of treatment. PMID:27038602

  12. On the factors affecting the high temperature insulator-metal transition in rare-earth manganites

    OpenAIRE

    Bhattacharya, Dipten; Das, Pintu; A Pandey; Raychaudhuri, A. K.; Chakraborty, Amitava; Ojha, V. N.

    2000-01-01

    The measurement of resistivity across a wide temperature range - from 15 to 1473 K - in rare-earth manganite series of compounds reveals a very interesting feature : normally observed insulating pattern beyond Tc (Curie Point) gives way to a reentrant metallic pattern around a characteristic temperature T*. The transport activation barrier Ea collapses to zero around T*. T* is found to be dependent on the carrier concentration or the concentration of the Jahn-Teller-active Mn(3+) ions as well...

  13. The anisotropic N=4 super Yang-Mills plasma and its instabilities

    CERN Document Server

    Mateos, David

    2011-01-01

    We present a IIB supergravity solution dual to a spatially anisotropic finite-temperature N=4 super Yang-Mills plasma. The solution is static, possesses an anisotropic horizon, and is completely regular. The full geometry can be viewed as a renormalization group flow from an AdS geometry in the ultraviolet to a Lifshitz-like geometry in the infrared. The anisotropy can be equivalently understood as resulting from a position-dependent theta-term or from a non-zero number density of dissolved D7-branes. The holographic stress tensor is conserved and anisotropic. The presence of a conformal anomaly plays an important role in the thermodynamics of the system. We construct the phase diagram, which exhibits homogeneous and inhomogeneous (i.e. mixed) phases, and comment on similarities with QCD at finite baryon density. At low densities the homogeneous phase displays several instabilities reminiscent of instabilities of weakly coupled plasmas.

  14. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)

    2011-07-01

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  15. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    International Nuclear Information System (INIS)

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  16. Bouncing Anisotropic Universes with Varying Constants

    CERN Document Server

    Barrow, John D

    2013-01-01

    We examine the evolution of a closed, homogeneous and anisotropic cosmology subject to a variation of the fine structure 'constant', \\alpha, within the context of the theory introduced by Bekenstein, Sandvik, Barrow and Magueijo, which generalises Maxwell's equations and general relativity. The variation of \\alpha permits an effective ghost scalar field, whose negative energy density becomes dominant at small length scales, leading to a bouncing cosmology. A thermodynamically motivated coupling which describes energy exchange between the effective ghost field and the radiation field leads to an expanding, isotropizing sequence of bounces. In the absence of entropy production we also find solutions with stable anisotropic oscillations around a static universe.

  17. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  18. Anisotropic Stars: Exact Solutions and Stability

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2004-01-01

    I report on recent work concerning the existence and stability of self-gravitating spheres with anisotropic pressure. After presenting new exact solutions, Chandrasekhar's variational formalism for radial perturbations is generalized to anisotropic objects and applied to investigate their stability. It is shown that anisotropy can not only support stars of mass M and radius R with 2M/R > 8/9 and arbitrarily large surface redshifts, but that stable configurations exist for values of the adiabatic index smaller than the corresponding isotropic value.

  19. Evolution of multidimensional flat anisotropic cosmological models

    International Nuclear Information System (INIS)

    We study the dynamics of a flat multidimensional anisotropic cosmological model filled with an anisotropic fluidlike medium. By an appropriate choice of variables, the dynamical equations reduce to a two-dimensional dynamical system. We present a detailed analysis of the time evolution of this system and the conditions of the existence of spacetime singularities. We investigate the conditions under which violent, exponential, and power-law inflation is possible. We show that dimensional reduction cannot proceed by anti-inflation (rapid contraction of internal space). Our model indicates that it is very difficult to achieve dimensional reduction by classical means

  20. CAVITATION BIFURCATION FOR COMPRESSIBLE ANISOTROPIC HYPERELASTIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    ChengChangjun; RenJiusheng

    2004-01-01

    The effect of material anisotropy on the bifurcation for void tormation in anisotropic compressible hyperelastic materials is examined. Numerical solutions are obtained in an anisotropic sphere, whose material is transversely isotropic in the radial direction. It is shown that the bifurcation may occur either to the right or to the left, depending on the degree of material anisotropy. The deformation and stress contribution in the sphere before cavitation are different from those after cavitation. The stability of solutions is discussed through a comparison of energy.

  1. Relativistic Solutions of Anisotropic Compact Objects

    CERN Document Server

    Paul, Bikash Chandra

    2016-01-01

    We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.

  2. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  3. Ultrahigh-Q modes in anisotropic 2D photonic crystal

    International Nuclear Information System (INIS)

    In this work, we design a two-dimensional photonic crystal cavity made with a substrate of an anisotropic material. We consider triangular lattice photonic crystal made from air holes in tellurium. The cavity itself is then created by three missing holes in the centre. Using the three-dimensional finite-difference time-domain simulation and optimization of the geometrical parameters and the symmetric displacement of the edge air holes on the quality factor, the cavity’s structural parameters yield an ultrahigh-Q mode cavity with quality factor Q = 2.95 × 1011 for a filling factor r/a = 0.45 and lateral displacement of 10 nm. This shows great enhancement compared with previous studies in which silicon material has been used. The designed structure can be helpful in a number of applications associated with photonic crystal cavities, including quantum information processing, filters, and nanoscale sensors. (paper)

  4. Transition from one- to two-dimensional island growth on metal (110) surfaces induced by anisotropic corner rounding

    International Nuclear Information System (INIS)

    We propose a kinetic model to describe the temperature dependence of the shape of islands formed during submonolayer epitaxy on anisotropic metal surfaces. Our model reveals that open-quotes anisotropic corner roundingclose quotes is the key atomic process responsible for a transition in island shape, from chain structures at lower temperatures, to compact islands at higher temperatures. Exploiting data for the temperature and flux scaling of the island density, we analyze such behavior observed experimentally in Cu/Pd(110) epitaxy, estimating activation barriers of 0.45 and 0.3 eV for anisotropic terrace diffusion, and 0.65 eV for the slow corner-rounding process. copyright 1997 The American Physical Society

  5. Psychophysics of a nociceptive test in the mouse: ambient temperature as a key factor for variation.

    Directory of Open Access Journals (Sweden)

    Ivanne Pincedé

    Full Text Available BACKGROUND: The mouse is increasingly used in biomedical research, notably in behavioral neurosciences for the development of tests or models of pain. Our goal was to provide the scientific community with an outstanding tool that allows the determination of psychophysical descriptors of a nociceptive reaction, which are inaccessible with conventional methods: namely the true threshold, true latency, conduction velocity of the peripheral fibers that trigger the response and latency of the central decision-making process. METHODOLOGY/PRINCIPAL FINDINGS: Basically, the procedures involved heating of the tail with a CO(2 laser, recording of tail temperature with an infrared camera and stopping the heating when the animal reacted. The method is based mainly on the measurement of three observable variables, namely the initial temperature, the heating rate and the temperature reached at the actual moment of the reaction following random variations in noxious radiant heat. The initial temperature of the tail, which itself depends on the ambient temperature, very markedly influenced the behavioral threshold, the behavioral latency and the conduction velocity of the peripheral fibers but not the latency of the central decision-making. CONCLUSIONS/SIGNIFICANCE: We have validated a psychophysical approach to nociceptive reactions for the mouse, which has already been described for rats and Humans. It enables the determination of four variables, which contribute to the overall latency of the response. The usefulness of such an approach was demonstrated by providing new fundamental findings regarding the influence of ambient temperature on nociceptive processes. We conclude by challenging the validity of using as "pain index" the reaction time of a behavioral response to an increasing heat stimulus and emphasize the need for a very careful control of the ambient temperature, as a prevailing environmental source of variation, during any behavioral testing of

  6. Energy driven cascade recognition for selective detection of nucleic acids with high discrimination factor at room temperature.

    Science.gov (United States)

    Zhang, Zhang; Li, Jun Long; Yao, Juan; Wang, Ting; Yin, Dan; Xiang, Yu; Chen, Zhongping; Xie, Guoming

    2016-05-15

    In this article, we demonstrated a cascade recognition strategy for the detection of single strand nucleic acid with high discrimination factor at room temperature. The cascade recognition strategy contains a toehold mediated strand displacement and a double-toehold mediated double strand displacement reaction, thus enable the high ability to discern point mutation of target. The discrimination factor of the model target is between 45 and 109, with the medium of 70. This strategy is homogeneous, easy operation, enzyme-free, isothermal, and can be easily adapted to high-throughput devices without the need of designing complicated instruments. PMID:26745796

  7. The Importance of Water Temperature Fluctuations in Relation to the Hydrological Factor. Case Study – Bistrita River Basin (Romania

    Directory of Open Access Journals (Sweden)

    Cojoc Gianina Maria

    2014-10-01

    Full Text Available The increase in most components of the climate over the past 50 years, including air and water temperature, is a real phenomenon, as attested by the numerous specialized researches according to IPCC (2013. The water temperature is one of the most important climatic components in analyzing the hydrological regime of the Bistrita River (Romania. The thermal regime of the Bistrita River basin and the frost phenomena associated with the risk factor are particularly important and frequently appear in this area. In recent years, under the Siret Water Basin Administration, this parameter was permanently monitored, so we could do an analysis, which shows that the water temperature fluctuations, influenced by air temperature, lead to the emergence of the ice jam phenomenon. The present study aims to analyze the water temperature, as compared to the air temperature, and the effect of these components on the liquid flow regime (the values were recorded at the hydrological stations on the main course of the Bistrita River. The negative effects resulted from the ice jam phenomenon require developing methods of damage prevention and defense. The frost phenomena recorded after the construction of the Bicaz dam are analyzed in this article

  8. Implicit and explicit secular equations for Rayleigh waves in two-dimensional anisotropic media

    Czech Academy of Sciences Publication Activity Database

    Červ, Jan; Plešek, Jiří

    2013-01-01

    Roč. 50, č. 7 (2013), s. 1105-1117. ISSN 0165-2125 R&D Projects: GA ČR(CZ) GAP101/11/0288 Institutional support: RVO:61388998 Keywords : Rayleigh waves * secular equations * anisotropic materials * composites Subject RIV: BE - Theoretical Physics Impact factor: 1.303, year: 2013 http://www.sciencedirect.com/science/article/pii/S0165212513000838

  9. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer

    Czech Academy of Sciences Publication Activity Database

    Gould, C.; Rüster, C.; Jungwirth, Tomáš; Girgis, E.; Schott, G. M.; Giraud, R.; Brunner, K.; Schmidt, G.; Molenkamp, L. W.

    2004-01-01

    Roč. 93, č. 11 (2004), 117203/1-117203/4. ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor spintronic s * tunneling anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  10. Quarkonium states in an anisotropic quark-gluon plasma

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yun

    2009-09-10

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  11. Quarkonium states in an anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    In this work we study the properties of quarkonium states in a quark-gluon plasma which, due to expansion and non-zero viscosity, exhibits a local anisotropy in momentum space. We determine the hard-loop resummed gluon propagator in an anisotropic QCD plasma in general linear gauges and define a potential between heavy quarks from the Fourier transform of its static limit. This potential which arises due to one-gluon exchange describes the force between a quark and anti-quark at short distances. It is closer to the vacuum potential as compared to the isotropic Debye screened potential which indicates the reduced screening in an anisotropic QCD plasma. In addition, angular dependence appears in the potential; we find that there is stronger attraction on distance scales on the order of the inverse Debye mass for quark pairs aligned along the direction of anisotropy than for transverse alignment. The potential at long distances, however, is non-perturbative and modeled as a QCD string which is screened at the same scale as the Coulomb field. At asymptotic separation the potential energy is non-zero and inversely proportional to the temperature. With a phenomenological potential model which incorporates the different behaviors at short and long distances, we solve the three-dimensional Schroedinger equation. Our numerical results show that quarkonium binding is stronger at non-vanishing viscosity and expansion rate, and that the anisotropy leads to polarization of the P-wave states. Furthermore, we determine viscosity corrections to the imaginary part of the heavy-quark potential in the weak-coupling hard-loop approximation. The imaginary part is found to be smaller (in magnitude) than at vanishing viscosity. This implies a smaller decay width of quarkonium bound states in an anisotropic plasma. (orig.)

  12. Effect of interpolation error in pre-processing codes on calculations of self-shielding factors and their temperature derivatives

    International Nuclear Information System (INIS)

    The authors investigate the effect of interpolation error in the pre-processing codes LINEAR, RECENT and SIGMA1 on calculations of self-shielding factors and their temperature derivatives. They consider the 2.0347 to 3.3546 keV energy region for /sup 238/U capture, which is the NEACRP benchmark exercise on unresolved parameters. The calculated values of temperature derivatives of self-shielding factors are significantly affected by interpolation error. The sources of problems in both evaluated data and codes are identified and eliminated in the 1985 version of these codes. This paper helps to (1) inform code users to use only 1985 versions of LINEAR, RECENT, and SIGMA1 and (2) inform designers of other code systems where they may have problems and what to do to eliminate their problems

  13. Quantum transport in Dirac materials: Signatures of tilted and anisotropic Dirac and Weyl cones

    Science.gov (United States)

    Trescher, Maximilian; Sbierski, Björn; Brouwer, Piet W.; Bergholtz, Emil J.

    2015-03-01

    We calculate conductance and noise for quantum transport at the nodal point for arbitrarily tilted and anisotropic Dirac or Weyl cones. Tilted and anisotropic dispersions are generic in the absence of certain discrete symmetries, such as particle-hole and lattice point group symmetries. Whereas anisotropy affects the conductance g , but leaves the Fano factor F (the ratio of shot noise power and current) unchanged, a tilt affects both g and F . Since F is a universal number in many other situations, this finding is remarkable. We apply our general considerations to specific lattice models of strained graphene and a pyrochlore Weyl semimetal.

  14. Imaging the anisotropic nonlinear Meissner effect in unconventional superconductors

    International Nuclear Information System (INIS)

    We present measurements on the anisotropic nonlinear Meissner effect (aNLME). Using a laser scanning microscope we have directly imaged this effect in a self-resonant spiral patterned from a thin film of the dx2-y2 superconductor YBa2Cu3O7-δ. The spiral is excited at one of its resonant frequencies while a focused laser spot is scanned across its surface. The local illumination by the laser gives rise to a detectable change in the resonant properties. At low temperatures, the aNLME causes a direction dependent contribution to the critical current density. This makes it possible to image the directions of nodes and anti-nodes of the superconducting order parameter and the contribution of Andreev bound states associated with them. These two contributions to the photoresponse can be distinguished by their temperature dependence, which is consistent with theoretical predictions.

  15. Thermal Stresses in an Anisotropic Thin Plate Subjected to Moving Plane Heat Sources

    Directory of Open Access Journals (Sweden)

    Malak Naji

    2014-04-01

    Full Text Available The aim of this study is to numerically simulate the plane moving heat source through anisotropic mild steal thin plate. Heat conduction problems in anisotropic material, where the thermal conductivity varies with direction and involving a moving heat source have several industrial applications, such like metal cutting, flame or laser hardening of metals, welding and others. The parabolic heat conduction model is used for the prediction of the temperature history. The temperature distribution inside the plate is determined from the solution of heat equation. Thus, the heat equation is solved numerically using finite deference method and the temperature distributions are determined. The thermal stresses in this case are, also, investigated and computed numerically. It is found that the thermal conductivity ratio affect in both temperature and thermal stresses distributions, in additional to the speed and heat source intensity.

  16. Bayesian analysis of anisotropic cosmologies: Bianchi VII_h and WMAP

    CERN Document Server

    McEwen, J D; Feeney, S M; Peiris, H V; Lasenby, A N

    2013-01-01

    We perform a definitive analysis of Bianchi VII_h cosmologies with WMAP observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky, masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky, masked W-band map of WMAP 9-year observations. In addition to the physically motivated Bianchi VII_h model, we examine phenomenological models considered in previous studies, in which the Bianchi VII_h parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fit Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evi...

  17. Effects of obstetric factors and storage temperatures on the yield of endothelial colony forming cells from umbilical cord blood

    OpenAIRE

    Coldwell, Kate E.; Lee, Stephanie J.; Kean, Jennifer; Khoo, Cheen P.; Tsaknakis, Grigorios; Smythe, Jon; Watt, Suzanne M

    2011-01-01

    As umbilical cord blood (UCB) is a rich source of endothelial colony-forming cells (ECFC), our aim was twofold: (1) to examine potential obstetric selection criteria for achieving the highest ECFC yields from UCB units, and (2) to determine whether transient storage temperatures of fresh UCB and cryopreservation of UCB units affected ECFC yield and function. ECFC quality was assessed before and after cryopreservation by their clonogenic proliferative potential. Of the 20 factors examined, pla...

  18. Updated thermal capture cross sections for Z=1-60 and the temperature dependence of the Wescott factors

    International Nuclear Information System (INIS)

    The thermal radiative capture cross sections of the stable isotopes for elements Z=1-60 are re-evaluated by taking into consideration new measurements reported in the literature since the last publication of the Neutron Cross Section compendia. In addition, the temperature dependence of the Westcott factors for the capture cross section of 35Cl, 113Cd, 124Xe, and 157Gd are computed by adopting the most recent ENDF/B-VI release 7. (author)

  19. SURFACE TEMPERATURE FIELD MODEL AND INFLUENCE FACTORS OF HF CVD DIAMOND FILMS ON WC–Co ALLOYS

    OpenAIRE

    SHA LIU; JING QIU ZHANG

    2006-01-01

    The surface temperature field model of hot filament chemical vapor deposition (HF CVD) diamond films on WC–Co alloys was constructed and calculated by taking into account the influences of both thermal source properties and physical properties of substrates. Under the certain conditions of some parameters, the effects of the influence factors such as the maximum specific heat flux (qm), the heat conductivity coefficient (λ) of the substrate and the substrate height (h) on the surface temperat...

  20. Factors affecting the wettability of different surface materials with vegetable oil at high temperatures and its relation to cleanability

    DEFF Research Database (Denmark)

    Ashokkumar, Saranya; Adler-Nissen, Jens; Møller, Per

    2012-01-01

    different levels of roughness. The cosine of the contact angle of olive oil on different surface materials rises linearly with increasing temperature. Among the materials analyzed, polymers (PTFE, silicone) gave the lowest cosθ values. Studies of the effect of roughness and surface flaws on wettability......The main aim of the work was to investigate the wettability of different surface materials with vegetable oil (olive oil) over the temperature range of 25–200°C to understand the differences in cleanability of different surfaces exposed to high temperatures in food processes. The different surface...... contact angle and cleanability. In addition to surface wettability with oil many other factors such as roughness and surface defects play an essential role in determining their cleanability....

  1. Dynamic Temperature Rise Mechanism and Some Controlling Factors of Wet Clutch Engagement

    Directory of Open Access Journals (Sweden)

    Zhang Zhigang

    2016-01-01

    Full Text Available The friction transmission model of wet clutch is established to analyze the friction transmission mechanism of its engagement. The model is developed by applying both the average flow model and the elastic contact model between the friction disk and separator plate. The key components during wet clutch engagement are the separator plate, friction disk, and lubricant. The one-dimension transient models of heat transfer in radial direction for the three components are built on the basis of the heat transfer theory and the conservation law of energy. The friction transmission model and transient heat transfer models are coupled and solved by using the Runge-Kutta numerical method, and the radial temperature distribution and their detailed parametric study for the three components are conducted separately. The simulation results show that the radial temperature for the three components rises with the increase of radius in engagement. The changes in engagement pressure, lubricant viscosity, friction lining permeability, combined surface roughness RMS, equivalent elasticity modulus, difference between dynamic and static friction coefficients, and lubricant flow have important influence on the temperature rise characteristics. The proposed models can get better understanding of the dynamic temperature rise characteristics of wet clutch engagement.

  2. Phase transitions of an anisotropic N=4 super Yang-Mills plasma via holography

    OpenAIRE

    Banks, Elliot

    2016-01-01

    Black hole solutions of type IIB supergravity were previously found that are dual to N=4 supersymmetric Yang-Mills plasma with an anisotropic spatial deformation. In the zero temperature limit, these black holes approach a Liftshitz like scaling solution in the IR. It was recently shown that these black holes are unstable, and at low temperatures there is a new class of black hole solutions that are thermodynamically preferred. We extend this analysis, by considering consistent truncations of...

  3. Albedo and constant source problems for extremely anisotropic scattering

    International Nuclear Information System (INIS)

    The half-space albedo problem and the constant source problem have been solved for a combination of the linearly anisotropic scattering and Inoenue's scattering functions. The linear transport equation for extremely anisotropic scattering kernel can be converted into an equivalent equation with a linearly anisotropic scattering kernel and the modified FN method can be used for albedo calculations. (orig.)

  4. Nucleation in suspensions of anisotropic colloids

    NARCIS (Netherlands)

    Schilling, T.; Frenkel, D.

    2005-01-01

    We report Monte Carlo studies of liquid crystal nucleation in two types of anisotropic colloidal systems: hard rods and hard ellipsoids. In both cases we find that nucleation pathways differ strongly from the pathways in systems of spherical particles. Short hard rods show an effect of self-poisonin

  5. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments are...

  6. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik;

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...

  7. A generalized anisotropic deformation formulation for geomaterials

    Science.gov (United States)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  8. Boundedness of the Anisotropic Maximal and Anisotropic Singular Integral Operators in Generalized Morrey Spaces

    Institute of Scientific and Technical Information of China (English)

    Vagif S. GULIYEV; Rza Ch. MUSTAFAYEV

    2011-01-01

    In this paper we give the conditions on the pair (ω1,ω2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,ω1 to another Mp,ω2,1 < p < oo,and from the space M1,ω1 to the weak space W M1,ω2.

  9. EFFECTS OF NEUTRINO ELECTROMAGNETIC FORM FACTORS ON NEUTRINO INTERACTION WITH FINITE TEMPERATURE ELECTRON MATTERS

    Directory of Open Access Journals (Sweden)

    Anto Sulaksono

    2011-11-01

    Full Text Available The differential cross-section of neutrino interaction with dense and warm electron gasses has been calculated by takinginto account the neutrino electromagnetic form factors. The significant effect of electromagnetic properties of neutrinocan be found if the neutrino dipole moment, μ ν , is ≥ 5.10-9 μB and neutrino charge radius, Rv, is ≥ 5.10-6 MeV-1. Theimportance of the retarded correction, detailed balance and Pauli blocking factors is shown and analyzed. Many-bodyeffects on the target matter which are included via random phase approximation (RPA correlation as well as photoneffective mass are also investigated.

  10. Comparison of models for the free-free Gaunt factor at low temperatures and frequencies

    International Nuclear Information System (INIS)

    We perform calculations for the free-free Gaunt factor at electron and photon energies below 1 Ry in the dipole approximation to the radiation field for a variety of representations of the scattering potential. We consider the static-exchange, static-exchange + model polarization, model exchange, and static models. Within each model, the resulting Schroedinger equation is solved exactly using a linear algebraic prescription. We investigate the rare gas and alkali systems. We find great sensitivity to the models for energies below four electron volts (4 eV). Above this energy, the Gaunt factors for the various models come into better agreement. 31 refs., 3 figs., 1 tab

  11. Influence of temperature on symptom expression, detection of host factors in virus infected Piper nigrum L.

    Science.gov (United States)

    Umadevi, P; Bhat, A I; Krishnamurthy, K S; Anandaraj, M

    2016-05-01

    Expression of symptoms in black pepper plants (Piper nigrum) infected with Piper yellow mottle virus (PYMoV) vary depending on the season, being high during summer months. Here, we explored the influence of temperature on symptom expression in PYMoV infected P. nigrum. Our controlled environment study revealed increase in virus titer, total proteins, IAA and reducing sugars when exposed to temperature stress. There was change in the 2-D separated protein before and after exposure. The 2-D proteomics LC-MS identified host and viral proteins suggesting virus-host interaction during symptom expression. The analysis as well as detection of host biochemical compounds may help in understanding the detailed mechanisms underlying the viral replication and damage to the crop, and thereby plan management strategies. PMID:27319055

  12. On the Controlling Factor of Catalyst Temperature in C3H8-Air Mixture

    Institute of Scientific and Technical Information of China (English)

    Goro ONUMA; Mitsuaki TANABE; Kiyoshi AOKI

    2001-01-01

    Catalytic combustion of propane-air mixture was investigated. Platinum catalysts over a flat stainless steel with y alumina washcoat were employed. The employed burner has three catalysts set parallel to the mixture flow, spaced at an interval of 5, 10 and 15 mm. Both experiment and numerical simulation were made at inlet temperature of 553 K, inlet velocity of 3 to 7 rn/s and equivalence ratio of 0.3 to 0.5. In the numerical simulation, two-dimensional,steady state model was developed to calculate the temperature and species concentration in gas-phase. In this model,chemical reaction on the catalyst surface and that in the gas phase were assumed to occur in three-steps. The numerical results show good agreement with experimental results. It was found that the properties of the catalyst strongly affect the catalyst surface temperature. Especially, the thermal conductivity of catalyst has a great effect,while the emissivity of catalyst has less effect.

  13. Temperature regulates hypoxia-inducible factor-1 (HIF-1) in a poikilothermic vertebrate, crucian carp (Carassius carassius).

    Science.gov (United States)

    Rissanen, Eeva; Tranberg, Hanna K; Sollid, Jørund; Nilsson, Göran E; Nikinmaa, Mikko

    2006-03-01

    Hypoxia-inducible transcription factor-1 (HIF-1) is a master regulator of hypoxia-induced gene responses. To find out whether HIF-1 function is involved in gene expression changes associated with temperature acclimation as well as in hypoxia adaptation in poikilotherms, we studied HIF-1 DNA binding activity and HIF-1alpha expression in normoxia and during hypoxia (0.7 mg l(-1) O2) in crucian carp at temperatures of 26, 18 and 8 degrees C. Temperature had a marked influence on HIF-1 in normoxia. Although HIF-1alpha mRNA levels remained unaltered, cold acclimation (8 degrees C) increased HIF-1alpha protein amounts in the liver, gills and heart and HIF-1 DNA binding activity in the heart, gills and kidney of crucian carp by two- to threefold compared to warm acclimated fish (26 degrees C). In the heart and kidney HIF-1 activity was already significantly increased in the 18 degrees C acclimated fish. Temperature also affected hypoxic regulation of HIF-1. Although hypoxia initially increased amounts of HIF-1alpha protein in all studied tissues at every temperature, except for liver at 18 degrees C, HIF-1 activity increased only in the heart of 8 degrees C acclimated and in the gills of 18 degrees C acclimated fish. At 8 degrees C HIF-1alpha mRNA levels increased transiently in the gills after 6 h of hypoxia and in the kidney after 48 h of hypoxia. In the gills at 26 degrees C HIF-1alpha mRNA levels increased after 6 h of hypoxia and remained above normoxic levels for up to 48 h of hypoxia. These results show that HIF-1 is involved in controlling gene responses to both oxygen and temperature in crucian carp. No overall transcriptional control mechanism has been described for low temperature acclimation in poikilotherms, but the present results suggest that HIF-1 could have a role in such regulation. Moreover, this study highlights interaction of the two prime factors defining metabolism, temperature and oxygen, in the transcriptional control of metabolic homeostasis in

  14. Simulation study on light propagation in an anisotropic turbulence field of entrainment zone.

    Science.gov (United States)

    Yuan, Renmin; Sun, Jianning; Luo, Tao; Wu, Xuping; Wang, Chen; Fu, Yunfei

    2014-06-01

    The convective atmospheric boundary layer was modeled in the water tank. In the entrainment zone (EZ), which is at the top of the convective boundary layer (CBL), the turbulence is anisotropic. An anisotropy coefficient was introduced in the presented anisotropic turbulence model. A laser beam was set to horizontally go through the EZ modeled in the water tank. The image of two-dimensional (2D) light intensity fluctuation was formed on the receiving plate perpendicular to the light path and was recorded by the CCD. The spatial spectra of both horizontal and vertical light intensity fluctuations were analyzed. Results indicate that the light intensity fluctuation in the EZ exhibits strong anisotropic characteristics. Numerical simulation shows there is a linear relationship between the anisotropy coefficients and the ratio of horizontal to vertical fluctuation spectra peak wavelength. By using the measured temperature fluctuations along the light path at different heights, together with the relationship between temperature and refractive index, the one-dimensional (1D) refractive index fluctuation spectra were derived. The anisotropy coefficients were estimated from the 2D light intensity fluctuation spectra modeled by the water tank. Then the turbulence parameters can be obtained using the 1D refractive index fluctuation spectra and the corresponding anisotropy coefficients. These parameters were used in numerical simulation of light propagation. The results of numerical simulations show this approach can reproduce the anisotropic features of light intensity fluctuations in the EZ modeled by the water tank experiment. PMID:24921536

  15. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    Science.gov (United States)

    Zhao, Y. Y.; Wang, J.; Hu, F. X.; Liu, Y.; Kuang, H.; Wu, R. R.; Sun, J. R.; Shen, B. G.

    2016-05-01

    The electric field control of magnetization in both (100)- and (011)-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/3)0.7Ti0.3O3(PSMO/PMN-PT) heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100)-PSMO/PMN-PT film. On the other hand, for (011)-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  16. The unique effect of in-plane anisotropic strain in the magnetization control by electric field

    Directory of Open Access Journals (Sweden)

    Y. Y. Zhao

    2016-05-01

    Full Text Available The electric field control of magnetization in both (100- and (011-Pr0.7Sr0.3MnO3/Pb(Mg1/3Nb2/30.7Ti0.3O3(PSMO/PMN-PT heterostructures were investigated. It was found that the in-plane isotropic strain induced by electric field only slightly reduces the magnetization at low temperature in (100-PSMO/PMN-PT film. On the other hand, for (011-PSMO/PMN-PT film, the in-plane anisotropic strain results in in-plane anisotropic, nonvolatile change of magnetization at low-temperature. The magnetization, remanence and coercivity along in-plane [100] direction are suppressed by the electric field while the ones along [01-1] direction are enhanced, which is ascribed to the extra effective magnetic anisotropy induced by the electric field via anisotropic piezostrains. More interestingly, such anisotropic modulation behaviors are nonvolatile, demonstrating a memory effect.

  17. Theoretical Research on Thermal Shock Resistance of Ultra-High Temperature Ceramics Focusing on the Adjustment of Stress Reduction Factor

    Directory of Open Access Journals (Sweden)

    Daining Fang

    2013-02-01

    Full Text Available The thermal shock resistance of ceramics depends on not only the mechanical and thermal properties of materials, but also the external constraint and thermal condition. So, in order to study the actual situation in its service process, a temperature-dependent thermal shock resistance model for ultra-high temperature ceramics considering the effects of the thermal environment and external constraint was established based on the existing theory. The present work mainly focused on the adjustment of the stress reduction factor according to different thermal shock situations. The influences of external constraint on both critical rupture temperature difference and the second thermal shock resistance parameter in either case of rapid heating or cooling conditions had been studied based on this model. The results show the necessity of adjustment of the stress reduction factor in different thermal shock situations and the limitations of the applicable range of the second thermal shock resistance parameter. Furthermore, the model was validated by the finite element method.

  18. Growth, condition factor, and bioenergetics modeling link warmer stream temperatures below a small dam to reduced performance of juvenile steelhead

    Science.gov (United States)

    Sauter, S.T.; Connolly, P.J.

    2010-01-01

    We investigated the growth and feeding performance of juvenile steelhead Oncorhynchus mykiss using field measures and bioenergetics modeling. Juvenile steelhead populations were sampled from mid-June through August 2004 at study sites upstream and downstream of Hemlock Dam. The growth and diet of juvenile steelhead were determined for a warm (summer) and subsequent (late summer) transitional period at each study site. Empirical data on the growth and diet of juvenile steelhead and mean daily temperatures were used in a bioenergetics model to estimate the proportion of maximum consumption achieved by juvenile steelhead by site and period. Modeled estimates of feeding performance were better for juvenile steelhead at the upstream compared to the downstream site during both periods. The median condition factor of juvenile steelhead did not change over the summer at the upstream site, but showed a significant decline over time at the downstream site. A negative trend in median condition factor at the downstream site supported bioenergetics modeling results that suggested the warmer stream temperatures had a negative impact on juvenile steelhead. Bioenergetics modeling predicted a lower feeding performance for juvenile steelhead rearing downstream compared to upstream of Hemlock Dam although food availability appeared to be limited at both study sites during the warm period. Warmer water temperatures, greater diel variation, and change in diel pattern likely led to the reduced feeding performance and reduced growth, which could have affected the overall survival of juvenile steelhead downstream of Hemlock Dam. ?? 2010 by the Northwest Scientific Association.

  19. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    International Nuclear Information System (INIS)

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow

  20. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    Science.gov (United States)

    Wakabayashi, Masamitsu; Yokojima, Satoshi; Fukaminato, Tuyoshi; Ohtani, Hiroyuki; Nakamura, Shinichiro

    2015-04-01

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  1. Anisotropic elliptical dichroism and influence of imperfection of circular polarization upon anisotropic circular dichroism

    Energy Technology Data Exchange (ETDEWEB)

    Wakabayashi, Masamitsu [Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Yokojima, Satoshi, E-mail: yokojima@toyaku.ac.jp [Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachiouji-shi, Tokyo 192-0392 (Japan); RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan); Fukaminato, Tuyoshi [Research Institute for Electronic Science, Hokkaido University, N20, W10, Kita-ku, Sapporo 001-0020 (Japan); PRESTO, Japan Science and Technology Agency (JST), Sanbancho, Chiyoda-ku, Tokyo 102-0075 (Japan); Ohtani, Hiroyuki [Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501 (Japan); Nakamura, Shinichiro, E-mail: snakamura@riken.jp [RIKEN, Research Cluster for Innovation, Nakamura Lab, 2-1 Hirosawa, Wako, Saitama 351-0198 (Japan)

    2015-04-21

    In spite of the importance of anisotropic circular dichroism, in practice, it is difficult to get rid of the artifacts that arise from the imperfection of the circular polarization. Undesirable linear dichroism, interference of two orthogonal polarization states, and linear birefringence prevent us from making accurate measurements. We propose a theoretical method for evaluating the contributions of the first two, which are thought to be the main artifacts when specimens are not thick enough. Using the time-dependent perturbation theory and taking into account the direction of light propagation toward an orientationally fixed molecule, we formulated the transition probability of systems perturbed by arbitrarily polarized light and the absorption difference associated with two kinds of polarized light. We also formulated, as an extension of the dissymmetry factor of circular dichroism, a newly defined dissymmetry factor associated with two arbitrary polarization states. Furthermore, we considered a mixed-state of photon ensemble in which polarization states distribute at a certain width around a certain average. Although the purity of polarization and ellipticity does not correspond immediately, by considering the mixed state it is possible to treat them consistently. We used quantum statistical mechanics to describe the absorption difference for two kinds of photon ensembles and applied the consequent formula to examine the reported experimental results of single-molecule chiroptical responses under discussion in the recent past. The artifacts are theoretically suggested to be sensitive to the incident direction of elliptically polarized light and to the oriented systems, the ellipticity, and the orientation of ellipse. The mixed state has little, if any, effect when the polarization state distribution is narrow.

  2. Anisotropic thermal expansion of Ni, Pd and Pt germanides and silicides

    Science.gov (United States)

    Geenen, F. A.; Knaepen, W.; Moens, F.; Brondeel, L.; Leenaers, A.; Van den Berghe, S.; Detavernier, C.

    2016-07-01

    Silicon or germanium-based transistors are nowadays used in direct contact with silicide or germanide crystalline alloys for semiconductor device applications. Since these compounds are formed at elevated temperatures, accurate knowledge of the thermal expansion of both substrate and the contact is important to address temperature depending effects such as thermal stress. Here we report the linear coefficients of thermal expansion of Ni-, Pd- and Pt-based mono-germanides, mono-silicides and di-metal-silicides as determined by powder-based x-ray diffraction between 300 and 1225 K. The investigated mono-metallic compounds, all sharing the MnP crystal structure, as well as Pd2Si and Pt2Si exhibit anisotropic expansion. By consequence, this anisotropic behaviour should be taken into account for evaluating the crystal unit’s cell at elevated temperatures.

  3. Effects of anisotropic thermal conductivity in magnetohydrodynamics simulations of a reversed-field pinch.

    Science.gov (United States)

    Onofri, M; Malara, F; Veltri, P

    2010-11-19

    A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity. PMID:21231314

  4. Escape factors for Paschen 2p–1s emission lines in low-temperature Ar, Kr, and Xe plasmas

    Science.gov (United States)

    Zhu, Xi-Ming; Cheng, Zhi-Wen; Pu, Yi-Kang; Czarnetzki, Uwe

    2016-06-01

    Radiation trapping phenomenon is often observed when investigating low-temperature plasmas. Photons emitted from the upper excited states may be reabsorbed by the lower states before they leave the plasmas. In order to account for this effect in the modelling and optical diagnostics of plasmas, either an ‘escape factor’ of a function of the optical depth or a strict solution of the radiation transfer equation can be employed. However, the former is more convenient in comparison and thus is widely adopted. Previous literatures have provided several simple expressions of the escape factor for the uniform plasmas. The emission line profiles are assumed to be dominated by the Doppler broadening, and the line splitting due to the hyperfine structure is not considered. This kind of expression is only valid for small atoms, e.g. Ar in low-pressure uniform discharges. Actually, the excited state density in many of the low-temperature plasmas is non-uniform and the emission line profile can be significantly influenced by the collisional broadening at medium and high pressures. In these cases, a new escape factor equation should be calculated. In this work, we study the escape factor equations for the often used 2p–1s transitions (Paschen’s notation) of the Ar, Kr, and Xe atoms. Possible non-uniform density profiles are considered. In addition, we include the line splitting due to the hyperfine structure for Kr and Xe. For the low-pressure plasmas, an escape factor expression mainly based on the Gaussian line profile is given and particularly verified by an experiment in a low-pressure capacitive discharge. For the high-pressure plasmas, an equation based on the Voigt line profile is also calculated. In this way, the new escape factor expression is ready for use in the modelling of the Ar, Kr, and Xe plasmas from low to atmospheric pressure.

  5. Factors affecting sorption of nitro explosives to biochar: pyrolysis temperature, surface treatment, competition, and dissolved metals.

    Science.gov (United States)

    Oh, Seok-Young; Seo, Yong-Deuk

    2015-05-01

    The application of rice straw-derived biochar for removing nitro explosives, including 2,4-dinitrotoluene (DNT), 2,4,6-trinitrotoluene (TNT), and hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), from contaminated water was investigated through batch experiments. An increase in the pyrolysis temperature from 250 to 900°C in general led to higher pH, surface area, cation exchange capacity (CEC), point of zero charge, and C:O ratio of biochar. The maximum sorption capacity estimated by a mixed sorption-partition model increased when pyrolysis temperatures were elevated from 250 to 900°C, indicating that C content and aromaticity of biochar were strongly related to the sorption of nitro explosives to biochar. Surface treatment with acid or oxidant increased the sorption capacity of biochar for the two strong π-acceptor compounds (DNT and TNT) but not for RDX. However, the enhancement of sorption capacity was not directly related to increased surface area and CEC. Compared with single-sorption systems, coexistence of explosives or cationic metals resulted in decreased sorption of each explosive to biochar, suggesting that sorption of nitro explosives and cationic metals to electron-rich portions in biochar was competitive. Our results suggest that π-π electron donor acceptor interactions are main sorption mechanisms and that changing various conditions can enhance or reduce the sorption of nitro explosives to biochar. PMID:26024263

  6. The time of day differently influences fatigue and locomotor activity: is body temperature a key factor?

    Science.gov (United States)

    Machado, Frederico Sander Mansur; Rodovalho, Gisele Vieira; Coimbra, Cândido Celso

    2015-03-01

    The aim of this study was to verify the possible interactions between exercise capacity and spontaneous locomotor activity (SLA) during the oscillation of core body temperature (Tb) that occurs during the light/dark cycle. Wistar rats (n=11) were kept at an animal facility under a light/dark cycle of 14/10h at an ambient temperature of 23°C and water and food ad libitum. Initially, in order to characterize the daily oscillation in SLA and Tb of the rats, these parameters were continuously recorded for 24h using an implantable telemetric sensor (G2 E-Mitter). The animals were randomly assigned to two progressive exercise test protocols until fatigue during the beginning of light and dark-phases. Fatigue was defined as the moment rats could not keep pace with the treadmill. We assessed the time to fatigue, workload and Tb changes induced by exercise. Each test was separated by 3days. Our results showed that exercise capacity and heat storage were higher during the light-phase (pexercise performance and spontaneous locomotor activity are not directly associated, both are strongly influenced by daily cycles of light and dark. PMID:25479573

  7. Influence of various stabilizing factors on an elemental sulfur emulsion during high-temperature leaching of nickel-pyrrhotine concentrates

    Science.gov (United States)

    Naftal', M. N.; Naboichenko, S. S.; Salimzhanova, E. V.; Bol'shakova, O. V.; Saverskaya, T. P.

    2015-03-01

    It is shown that the problems of decomposition of the three-phase sulfur emulsions that form during hydrothermal oxidation of pyrrhotine and the choice of conditions of their stabilization represent one of the main problems of the theory and practice of the pressure oxidizing leaching (POL) of nickel-pyrrhotine concentrates (NPCs) carried out at high temperatures. The character and the degree of influence of a number of stabilizing factors (mixing intensity, consumption of commercial lignosulphonates (LSNs), amount of added gangue) on the particle size distribution of elemental sulfur during POL of NPCs, which have different contents of the main components, are studied. Mathematical statistics is used to derive regression equations and response surfaces to describe the dependence of the extraction of elemental sulfur into hard-to-float particle size classes (-10 µm, +150 µm) on the factors under study. It is found that the key factor that determines the particle size distribution of elemental sulfur is the consumption of LSN surfactants during high-temperature leaching of NPCs irrespective of the chemical-mineralogical composition. A pronounced synergetic effect of a positive influence of LSN and a rock-containing addition is experimentally detected during leaching of high-sulfur NPC.

  8. Factoring

    OpenAIRE

    Lenstra, Arjen K.

    1994-01-01

    Factoring, finding a non-trivial factorization of a composite positive integer, is believed to be a hard problem. How hard we think it is, however, changes almost on a daily basis. Predicting how hard factoring will be in the future, an important issue for cryptographic applications of composite numbers, is therefore a challenging task. The author presents a brief survey of general purpose integer factoring algorithms and their implementations

  9. Sensitivity analysis of power depression and axial power factor effect on fuel pin to temperature and related properties distribution

    International Nuclear Information System (INIS)

    The presented paper is a preliminary step to evaluate the effect of radial and axial distribution of power generation on thermal analysis of whole fuel pin model with large L/D ratio. The model takes into account both radial and axial distribution of power generation due to power depression and core geometry, temperature and microstructure dependent on thermal conductivity. The microstructure distribution and the gap conductance for typical steady-state situation are given for the sensitivity analysis. The temperature and thermal conductivity distribution along the radial and axial directions obtained by different power distribution is used to indicate the sensitivity of power depression and power factor on thermal aspect. The evaluation is made for one step of incremental time and steady state approach is used. The analysis has been performed using a finite element-finite difference model. The result for typical reactor fuel shows that the sensitivity is too important to be omitted in thermal model

  10. Development of the three-dimensional Numerical Generation of Response Factors (NGRF) method of conductive temperatures in passive cooling earth-contact components

    Energy Technology Data Exchange (ETDEWEB)

    Zoras, S.; Kosmopoulos, P. [Laboratory of Environmental and Energy Design, Department of Environmental Engineering, Polytechnic School of Xanthi, Democritus University of Thrace, Vasilisis Sofias 12, 67100 Xanthi (Greece)

    2009-06-15

    This paper reports on the development and application of a method for the numerical prediction of temperatures within passive cooling components. In previous studies the basic idea was presented in an alternate form for the prediction of earth-contact heat transfer. The new method is demonstrated to be fast, accurate and flexible as a result of incorporating elements of the response factor method into a finite volume technique based numerical model. Initially, a 'pre-processing' procedure is required to generate a certain number of hours for use as a time series by the response factor technique in the second stage of the method. It is here shown that even a reduced number of temperature response factors, e.g. 50 h, is sufficient to obtain accurate predictions of the component's hourly temperature profile up to 1 year ahead. This study develops the equations addressing temperature profiles in structural components. The 'state of the art' of the presented method corresponds in the way that the conductive temperature response factors are calculated being numerically in the three-dimensional space. The method solves the three-dimensional earth-contact temperature profiles, which interact with indoors and outdoors temperature profiles. Once the numerical temperature response factors time series of an earth-contact component's grid node have been generated then its future thermal performance due to any surrounding temperature variation can be predicted fast and accurately. The structural earth-contact passive cooling components' response factors are generated by a three-dimensional numerical model, with no need of past experimental data and stored to be used at any time in future. The method is given the name NGRF (Numerical Generation of Response Factors). The way that the temperature response factors are determined in the three-dimensional space targets in the improvement of the prediction of earth-contact temperature profiles

  11. Metallurgical factors affecting the toughness of 316L SMA weldments at cryogenic temperatures

    International Nuclear Information System (INIS)

    The effects of delta ferrite content, ferrite morphology, carbon content, and sensitization on the fracture toughness and tensile properties of AWS/E316L and E316 shielded metal arc (SMA) weldments at 295, 76, and 40K are reported. The SMA test welds were evaluated, eight made with E316L and two with E316 electrodes. All of the weldments had excellent toughness at room temperature. At 760K, only the E316L weld with low ferrite had acceptable (to ASME Standards) toughness. Large decreases in toughness at 760K and 40K were related to increasing ferrite content. Decreases in Charpy impact energy at 760K were also related to coarsened ferrite morphology caused by reduced cooling rates, to increased carbon content and to the sensitization heat treatment. The tensile-yield strength increased with ferrite content, especially at 40K. Ferrite content generally effected the ultimate tensile strength or ductility only in a minor way

  12. Coagulation Factor and Hemostatic Protein Content of Canine Plasma after Storage of Whole Blood at Ambient Temperature

    OpenAIRE

    Walton, J.E.; Hale, A. S.; Brooks, M. B.; Boag, A.K.; Barnett, W.; Dean, R.

    2014-01-01

    Background Standard practice in canine blood banking is to produce fresh frozen plasma (FFP) by separating and freezing plasma produced from blood within 8 hours of collection. Within canine blood donation programs, this can limit the number of units collected. Hypothesis/Objectives The aim was to compare the coagulation factor and hemostatic protein content (CF&HPC) of plasma produced from blood stored at ambient temperature for 8, 12, and 24 hours. Another aim was to compare the CF&HPC betw...

  13. Mapping temperature-induced conformational changes in the Escherichia coli heat shock transcription factor sigma 32 by amide hydrogen exchange

    DEFF Research Database (Denmark)

    Rist, Wolfgang; Jørgensen, Thomas J D; Roepstorff, Peter;

    2003-01-01

    degrees C, indicating that sigma 32 adopts a highly flexible structure. At 42 degrees C we observed a slow correlated exchange of 30 additional amide hydrogens and localized it to a helix-loop-helix motif within domain sigma 2 that is responsible for the recognition of the -10 region in heat shock......Stress conditions such as heat shock alter the transcriptional profile in all organisms. In Escherichia coli the heat shock transcription factor, sigma 32, out-competes upon temperature up-shift the housekeeping sigma-factor, sigma 70, for binding to core RNA polymerase and initiates heat shock...... gene transcription. To investigate possible heat-induced conformational changes in sigma 32 we performed amide hydrogen (H/D) exchange experiments under optimal growth and heat shock conditions combined with mass spectrometry. We found a rapid exchange of around 220 of the 294 amide hydrogens at 37...

  14. Factors influencing the formation of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine: Temperature, alcoholic degree, and amino acids concentration.

    Science.gov (United States)

    Bordiga, M; Lorenzo, C; Pardo, F; Salinas, M R; Travaglia, F; Arlorio, M; Coïsson, J D; Garde-Cerdán, T

    2016-04-15

    The validation of a HPLC-PDA-MS/MS chromatographic method for the quali/quantitative characterization of histaminol, hydroxytyrosol, tyrosol, and tryptophol in wine has been described and discussed. Four standards showed a good linearity with high correlation coefficient values (over 0.9989) and LOD and LOQ were 0.001-0.015 mg/L and 0.004-0.045 mg/L, respectively. Furthermore, this study reported how factors such as temperature, alcoholic degree, and amino acids concentration are able to influence the formation of these four alcohols in Monastrell wines. The quantification values of these alcohols has been detected both at the half and end of alcoholic fermentation, and at the end of malolactic fermentation. In relation to interactions between factors, several significant variations emerged (p ⩽ 0.001). The impact of amino acids supplementation in Monastrell must it has been demonstrated, mainly in regards to histaminol and tryptophol. PMID:26675839

  15. Anisotropic hydrodynamics for conformal Gubser flow

    CERN Document Server

    Strickland, Michael; Ryblewski, Radoslaw

    2015-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equa...

  16. Rainbow metric from quantum gravity: anisotropic cosmology

    CERN Document Server

    Assanioussi, Mehdi

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  17. Anisotropic fluid from nonlocal tidal effects

    CERN Document Server

    Culetu, Hristu

    2014-01-01

    The Shiromizu et al. \\cite{SMS} covariant decomposition formalism is used to find out the brane properties rooted from the 5-dimensional Witten bubble spacetime. The non-local tensor $E_{ab}$ generated by the 5-dimensional Weyl tensor gives rise at an anisotropic energy-momentum tensor on the brane with negative energy density and $p = \\rho/3$ as equation of state. The tidal acceleration is towards the brane and that is in accordance with the negative energy density on the brane. The anisotropic fluid has vanishing "bulk" viscosity but the shear viscosity coefficient is $r$- and $t$- dependent. The brane is endowed with an apparent horizon which is exactly the radial null geodesic.

  18. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli

    2013-04-01

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  19. Anisotropic Long-Range Spin Systems

    CERN Document Server

    Defenu, Nicolò; Ruffo, Stefano

    2016-01-01

    We consider anisotropic long-range interacting spin systems in $d$ dimensions. The interaction between the spins decays with the distance as a power law with different exponents in different directions: we consider an exponent $d_{1}+\\sigma_1$ in $d_1$ directions and another exponent $d_{2}+\\sigma_2$ in the remaining $d_2\\equiv d-d_1$ ones. We introduce a low energy effective action with non analytic power of the momenta. As a function of the two exponents $\\sigma_1$ and $\\sigma_2$ we show the system to have three different regimes, two where it is actually anisotropic and one where the isotropy is finally restored. We determine the phase diagram and provide estimates of the critical exponents as a function of the parameters of the system, in particular considering the case of one of the two $\\sigma$'s fixed and the other varying. A discussion of the physical relevance of our results is also presented.

  20. Anisotropic cosmology in K-essence theory

    International Nuclear Information System (INIS)

    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid (p = γρ) modeling the usual matter content and include the particular form of potential V(φ) = constant = 2Λ. The classical solutions for any γ ≠ 1 and Λ = 0 are found in closed form, using a time transformation. We also present the solution when Λ ≠ 0 including particular values in the barotropic parameter. We present the possible isotropization of the cosmological model Bianchi I using the ratio between the anisotropic parameters and the volume of the universe and show that this tend to a constant or to zero for different cases

  1. New formulation of leading order anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo

    2014-01-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)--dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)--dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, {the new form of anisotropic hydrodynamics leads to better agree...

  2. Anisotropic brane gravity with a confining potential

    CERN Document Server

    Heydari-Fard, M

    2007-01-01

    We consider an anisotropic brane world with Bianchi type I and V geometries where the mechanism of confining the matter on the brane is through the use of a confining potential. The resulting equations on the anisotropic brane are modified by an extra term that may be interpreted as the x-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. We obtain the general solution of the field equations in an exact parametric form for both Bianchi type I and V space-times. In the special case of a Bianchi type I the solutions of the field equations are obtained in an exact analytic form. Finally, we study the behavior of the observationally important parameters.

  3. Anisotropic brane gravity with a confining potential

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: m-heydarifard@sbu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: hr-sepangi@sbu.ac.ir

    2007-05-24

    We consider an anisotropic brane world with Bianchi type I and V geometries where the mechanism of confining the matter on the brane is through the use of a confining potential. The resulting equations on the anisotropic brane are modified by an extra term that may be interpreted as the x-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. We obtain the general solution of the field equations in an exact parametric form for both Bianchi type I and V space-times. In the special case of a Bianchi type I the solutions of the field equations are obtained in an exact analytic form. Finally, we study the behavior of the observationally important parameters.

  4. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...... investigated, it is found that isotropic plasticity can only predict surface instabilities if non-associated plastic flow is accounted for. However, for anisotropic plasticity a surface instability is observed for associated plastic flow if the principal axes of anisotropy coincide with the directions...... of principal overall strain. For other orientations surface instabilities are seen when non-associated plastic flow is taken into account. Compared to tension, smaller compressive deformations are needed in order to initiate a surface instability....

  5. Selective optical transmission in anisotropic multilayers structure

    International Nuclear Information System (INIS)

    We developed a Green's function method to study theoretically a single-defect photonic crystal composed of anisotropic dielectric materials. This structure can trap light of a given frequency range and filter only a certain frequency light with a very high quality. It is shown that the defect modes appear as peaks in the transmission spectrum. Their intensities and frequency positions depend on the incidence angle and the orientation of the principal axes of layers consisting of the superlattice and the layer defect. Our structure offers a great variety of possibilities for creating and controlling the number and transmitted intensities of defect modes. It can be a good candidate for realizing a selective electromagnetic filter. In addition to this filtration process, the defective anisotropic photonic crystal can be used to switch the modes when appropriate geometry is selected. (author)

  6. Heat Conductance is Strongly Anisotropic for Pristine Silicon Nanowires

    DEFF Research Database (Denmark)

    Markussen, Troels; Jauho, Antti-Pekka; Brandbyge, Mads

    2008-01-01

    We compute atomistically the heat conductance for ultrathin pristine silicon nanowires (SiNWs) with diameters ranging from 1 to 5 nm. The room temperature thermal conductance is found to be highly anisotropic: wires oriented along the 110 direction have 50−75% larger conductance than wires oriented...... along the 100 and 111 directions. We show that the anisotropies can be qualitatively understood and reproduced from the bulk phonon band structure. Ab initio density functional theory (DFT) is used to study the thinnest wires, but becomes computationally prohibitive for larger diameters, where we...... instead use the Tersoff empirical potential model (TEP). For the smallest wires, the thermal conductances obtained from DFT and TEP calculations agree within 10%. The presented results could be relevant for future phonon-engineering of nanowire devices....

  7. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    Energy Technology Data Exchange (ETDEWEB)

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-02-19

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency.

  8. Photothermal method for absorption measurements in anisotropic crystals

    Science.gov (United States)

    Stubenvoll, M.; Schäfer, B.; Mann, K.; Novak, O.

    2016-02-01

    A measurement system for quantitative determination of both surface and bulk contributions to the photo-thermal absorption has been extended to anisotropic optical media. It bases upon a highly sensitive Hartmann-Shack wavefront sensor, accomplishing precise on-line monitoring of wavefront deformations of a collimated test beam transmitted perpendicularly through the laser-irradiated side of a cuboid sample. Caused by the temperature dependence of the refractive index as well as thermal expansion, the initially plane wavefront of the test beam is distorted. Sign and magnitude depend on index change and expansion. By comparison with thermal theory, a calibration of the measurement is possible, yielding a quantitative absolute measure of bulk and surface absorption losses from the transient wavefront distortion. Results for KTP and BBO single crystals are presented.

  9. Stroh-like formalism for Kirchhoff anisotropic thermoelastic plates

    Directory of Open Access Journals (Sweden)

    Wang Xu

    2013-01-01

    Full Text Available A Stroh-like formalism is developed for the heat conduction and the coupled stretching and bending deformations of a laminated anisotropic thermoelastic thin plate based on Kirchhoff theory. For the heat conduction problem, a Stroh-like quartic formalism is developed. Twodimensional generalized temperature and heat flux function vectors are introduced. The structure of the introduced 4x4 fundamental plate matrix for heat conduction is the same as that of the 8x8 fundamental elasticity matrix in the Stroh sextic formalism for generalized plane strain elasticity. Consequently, the orthogonality and closure relations for heat conduction in thin plates is established. For the thermoelastic problem, an inhomogeneous particular solution is derived rigorously. We obtain an octet formalism in which the general solution is composed of the well-known homogeneous solution developed by Cheng and Reddy (isothermal case and the inhomogeneous particular solution arising from the thermal effect.

  10. Scaling rules for critical current density in anisotropic biaxial superconductors

    Science.gov (United States)

    Li, Yingxu; Kang, Guozheng; Gao, Yuanwen

    2016-06-01

    Recent researches highlight the additional anisotropic crystallographic axis within the superconducting plane of high temperature superconductors (HTS), demonstrating the superconducting anisotropy of HTS is better understood in the biaxial frame than the previous uniaxial coordinates within the superconducting layer. To quantitatively evaluate the anisotropy of flux pinning and critical current density in HTS, we extend the scaling rule for single-vortex collective pinning in uniaxial superconductors to account for flux-bundle collective pinning in biaxial superconductors. The scaling results show that in a system of random uncorrected point defects, the field dependence of the critical current density is described by a unified function with the scaled magnetic field of the isotropic superconductor. The obtained angular dependence of the critical current density depicts the main features of experimental observations, considering possible corrections due to the strong-pinning interaction.

  11. Crossing Statistics of Anisotropic Stochastic Surface

    CERN Document Server

    Nezhadhaghighi, M Ghasemi; Yasseri, T; Allaei, S M Vaez

    2015-01-01

    We use crossing statistics and its generalization to determine the anisotropic direction imposed on a stochastic fields in $(2+1)$Dimension. This approach enables us to examine not only the rotational invariance of morphology but also we can determine the Gaussianity of underlying stochastic field in various dimensions. Theoretical prediction of up-crossing statistics (crossing with positive slope at a given threshold $\\alpha$ of height fluctuation), $\

  12. Analyzing and Predicting Anisotropic Effects of BRDFs

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří

    New York: ACM, 2015, s. 25-32. ISBN 978-1-4503-3812-7. [ACM SIGGRAPH Symposium on Applied Perception. Tubingen (DE), 13.09.2015-14.09.2015] R&D Projects: GA ČR(CZ) GA14-10911S; GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * anisotropic * shape * illumination * measure Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2015/RO/filip-0448393.pdf

  13. Symmetry analysis for anisotropic field theories

    Energy Technology Data Exchange (ETDEWEB)

    Parra, Lorena; Vergara, J. David [Instituto de Ciencias Nucleares, UNAM, Circuito Exterior s/n, Ciudad Universitaria. Delg. Coyoacan. C.P. 04510 Mexico DF (Mexico)

    2012-08-24

    The purpose of this paper is to study with the help of Noether's theorem the symmetries of anisotropic actions for arbitrary fields which generally depend on higher order spatial derivatives, and to find the corresponding current densities and the Noether charges. We study in particular scale invariance and consider the cases of higher derivative extensions of the scalar field, electrodynamics and Chern-Simons theory.

  14. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  15. Relativistic Bottomonium Spectrum from Anisotropic Lattices

    OpenAIRE

    Liao, X.; Manke, T.

    2001-01-01

    We report on a first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretisation in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04-0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativisti...

  16. Dynamical 3-Space: Anisotropic Brownian Motion Experiment

    OpenAIRE

    Cahill R. T.

    2015-01-01

    In 2014 Jiapei Dai reported evidence of anisotropic Brownian motion of a toluidine blue colloid solution in water. In 2015 Felix Scholkmann analysed the Dai data and detected a sidereal time dependence, indicative of a process driving the preferred Brownian mo- tion diffusion direction to a star-based preferred direction. Here we further analyse the Dai data and extract the RA and Dec of that preferred direction, and relate the data to previous determinations from NASA Spacecr...

  17. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  18. Massively parallel computation on anisotropic meshes

    OpenAIRE

    Digonnet, Hugues; Silva, Luisa; Coupez, Thierry

    2013-01-01

    In this paper, we present developments done to obtain efficient parallel computations on supercomputers up to 8192 cores. While most massively parallel computation are shown using regular grid it is less common to see massively parallel computation using anisotropic adapted unstructured meshes. We will present here two mains components done to reach very large scale calculation up to 10 billions unknowns using a muligrid method over unstructured mesh running on 8192 cores. We firstly focus on...

  19. Experimental compaction of anisotropic granular media

    OpenAIRE

    Ribière, Philippe; RICHARD, Patrick; Bideau, Daniel; Delannay, Renaud

    2005-01-01

    We report on experiments to measure the temporal and spatial evolution of packin g arrangements of anisotropic and weakly confined granular material, using high-resolution $\\gamma$-ray adsorption. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical solicitation s evolve to a dense state. We find that the packing fraction evolution is slowed by the grain anisotropy but, as for spherically shaped grains, can be well...

  20. Temperature factor for magnetic instability conditions of type – II superconductors

    International Nuclear Information System (INIS)

    Highlights: • Electrodynamics and thermal diffusion phenomena in superconductors have the fission-chain-reaction nature. • There exist nontrivial relations between stability conditions, allowable losses and stable superconductor’s overheating. • The magnetic stability conditions are direct consequence of the states when the heat releases exceeds the critical energy. • The critical energy of magnetic instability depends on the nature of an external disturbance. • The non-isothermal magnetic instability conditions of the critical state are formulated. - Abstract: The macroscopic development of interrelated electrodynamics and thermal states taking place both before and after instability onset in type-II superconductors are studied using the critical state and the flux creep concepts. The physical mechanisms of the non-isothermal formation of the critical state are discussed solving the set of unsteady thermo-electrodynamics equations taking into consideration the unknown moving penetration boundary of the magnetic flux. To make it, the numerical method, which allows to study diffusion phenomena with unknown moving phase-two boundary, is developed. The corresponding non-isothermal flux jump criteria are written. It is proved for the first time that, first, the diffusion phenomena in superconductors have the fission-chain-reaction nature, second, the stability conditions, losses in superconductor and its stable overheating before instability onset are mutually dependent. The results are compared with those following from the existing magnetic instability theory, which does not take into consideration the stable temperature increase of superconductor before the instability onset. It is shown that errors of isothermal approximation are significant for modes closed to adiabatic ones. Therefore, the well-known adiabatic flux jump criterion limits the range of possible stable superconducting states since a correct determination of their stability states must

  1. Anisotropic power-law k-inflation

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...

  2. Anisotropic Friedel oscillations inside the domain wall

    Energy Technology Data Exchange (ETDEWEB)

    Ghanbary, R. [Department of Physics, Payame Noor University, Urmia (Iran, Islamic Republic of); Phirouznia, A. [Department of Physics, Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of); Condensed Matter Computational Research Lab. Azarbaijan Shahid Madani University, 53714-161 Tabriz (Iran, Islamic Republic of)

    2015-12-01

    The influence of the non-collinear magnetic configuration on Friedel oscillations is investigated theoretically. Specifically the influence of the magnetic configuration on the induced electric charge in a Néel type domain wall (DW) has been obtained. The well-known Levy and Zhang eigenstates for a linear DW have been employed. Then the dielectric function of this magnetic system has been obtained within the random phase approximation. Results of the current work demonstrate that magnetic configuration of the system manifests itself in the electric properties such as induced charge distribution. Meanwhile the anisotropy of the induced charge distribution in the real space provides a measurable way for the determination of the DW orientation. In addition anisotropy of the dielectric function in k-space arises as a result of the anisotropy of the magnetic configuration. Therefore the orientation of the magnetic DW could also be captured by full optical measurements. - Highlights: • Dielectric function of a non-collinear magnetic structure. • Anisotropic dielectric function in k-space. • Anisotropic optical absorption. • Anisotropic Friedel oscillations in non-collinear magnetic structures.

  3. Anisotropic cosmological solutions in massive vector theories

    CERN Document Server

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...

  4. ARTc: Anisotropic reflectivity and transmissivity calculator

    Science.gov (United States)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  5. Exercise hyperthermia as a factor limiting physical performance - Temperature effect on muscle metabolism

    Science.gov (United States)

    Kozlowski, S.; Brzezinska, Z.; Kruk, B.; Kaciuba-Uscilko, H.; Greenleaf, J. E.

    1985-01-01

    The effect of trunk cooling on the muscle contents of ATP, ADP, AMP, creatine phosphate (CrP), and creatine, as well as of glycogen, some glycolytic intermediates, pyruvate, and lactate were assessed in 11 fasted dogs exercised at 20 C on treadmill to exhaustion. Without cooling, dogs were able to run 57 min, and their rectal (Tre) and muscle (Tm) temperatures increased to 41.8 and 43.0 C, respectively. Cooling with ice packs prolonged the ability to run by 45 percent, and resulted in lower Tre (by 1.1 C) and Tm (by 1.2 C). Depletion of muscle content of total high-energy phosphates (ATP + CrP) and glycogen, and increases in contents of AMP, pyruvate, and lactate were lower in cooled dogs than in non-cooled dogs. The muscle content of lactiate correlated positively with TM. These results indicate that hypothermia accelerates glycolysis, and shifts the equilibrium between high- and low-energy phosphates in favor of the latter. The adverse effect of hypothermia on muscle metabolism may be relevant to the limitation of endurance.

  6. Regression analysis in modeling of air surface temperature and factors affecting its value in Peninsular Malaysia

    Science.gov (United States)

    Rajab, Jasim Mohammed; Jafri, Mohd. Zubir Mat; Lim, Hwee San; Abdullah, Khiruddin

    2012-10-01

    This study encompasses air surface temperature (AST) modeling in the lower atmosphere. Data of four atmosphere pollutant gases (CO, O3, CH4, and H2O) dataset, retrieved from the National Aeronautics and Space Administration Atmospheric Infrared Sounder (AIRS), from 2003 to 2008 was employed to develop a model to predict AST value in the Malaysian peninsula using the multiple regression method. For the entire period, the pollutants were highly correlated (R=0.821) with predicted AST. Comparisons among five stations in 2009 showed close agreement between the predicted AST and the observed AST from AIRS, especially in the southwest monsoon (SWM) season, within 1.3 K, and for in situ data, within 1 to 2 K. The validation results of AST with AST from AIRS showed high correlation coefficient (R=0.845 to 0.918), indicating the model's efficiency and accuracy. Statistical analysis in terms of β showed that H2O (0.565 to 1.746) tended to contribute significantly to high AST values during the northeast monsoon season. Generally, these results clearly indicate the advantage of using the satellite AIRS data and a correlation analysis study to investigate the impact of atmospheric greenhouse gases on AST over the Malaysian peninsula. A model was developed that is capable of retrieving the Malaysian peninsulan AST in all weather conditions, with total uncertainties ranging between 1 and 2 K.

  7. Curved ray tracing method for one-dimensional radiative transfer in the linear-anisotropic scattering medium with graded index

    International Nuclear Information System (INIS)

    The curved ray tracing method (CRT) is extended to radiative transfer in the linear-anisotropic scattering medium with graded index from non-scattering medium. In this paper, the CRT is presented to solve one-dimensional radiative transfer in the linear-anisotropic scattering gray medium with a linear refractive index and two black boundaries. The predicted temperature distributions and radiative heat flux at radiative equilibrium are determined by the proposed method, and numerical results are compared with the data in references. The results show that the CRT has a good accuracy for radiative transfer in the linear-anisotropic scattering medium with graded index and the dimensionless emissive power and dimensionless radiative heat flux depend on the dimensionless refractive index gradient. It can also be seen that the dimensionless refractive index gradient has important effects on the temperature discontinuity at the boundaries.

  8. Simulations of MHD Instabilities in Intracluster Medium Including Anisotropic Thermal Conduction

    CERN Document Server

    Bogdanovic, Tamara; Balbus, Steven A; Parrish, Ian J

    2009-01-01

    We perform a suite of simulations of cooling cores in clusters of galaxies in order to investigate the effect of the recently discovered heat flux buoyancy instability (HBI) on the evolution of cores. Our models follow the 3-dimensional magnetohydrodynamics (MHD) of cooling cluster cores and capture the effects of anisotropic heat conduction along the lines of magnetic field, but do not account for the cosmological setting of clusters or the presence of AGN. Our model clusters can be divided into three groups according to their final thermodynamical state: catastrophically collapsing cores, isothermal cores, and an intermediate group whose final state is determined by the initial configuration of magnetic field. Modeled cores that are reminiscent of real cluster cores show evolution towards thermal collapse on a time scale which is prolonged by a factor of ~2-10 compared with the zero-conduction cases. The principal effect of the HBI is to re-orient field lines to be perpendicular to the temperature gradient....

  9. A spin-on photosensitive polymeric etch protection mask for anisotropic wet etching of silicon

    International Nuclear Information System (INIS)

    Newly developed photosensitive etch protection materials have key advantages over standard photoresists typically used in today's MEMS applications. Using these new materials eliminates the need for silicon nitride (SiN) masks deposited via CVD processes, which require significant investments in processing equipment, utilize extreme processing conditions and contribute to an overall decrease in throughput. This new technology will enhance throughput by reducing the number of process steps and simplify the process flow with minimal impact on overall undercut performance. The polymeric coating serves as a SiN mask replacement for etching silicon substrates in alkaline anisotropic etchants such as KOH and TMAH. The undercut performance observed is larger than that of SiN when etched in KOH, but when alternative alkaline etchants such as TMAH are used, the undercut is identical (1–2% with respect to etch depth). Various factors, such as primer bake, topcoat final cure temperature, etchant concentration and substrate surface conditions, have all been shown to affect undercut results. An additional advantage of this new technology is that it can be easily reworked/removed by solvents, plasma etch, Nano-Strip®, Piranha and RCA cleaning solutions depending on where the removal takes place in the process

  10. Quantitative Permeability Prediction for Anisotropic Porous Media

    Science.gov (United States)

    Sheng, Q.; Thompson, K. E.

    2012-12-01

    Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD

  11. Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature

    International Nuclear Information System (INIS)

    A general master equation is derived to describe an electromechanical single-dot transistor in the Coulomb blockade regime. In the equation, Fermi distribution functions in the two leads are taken into account, which allows one to study the system as a function of bias voltage and temperature of the leads. Furthermore, we treat the coherent interaction mechanism between electron tunneling events and the dynamics of excited vibrational modes. Stationary solutions of the equation are numerically calculated. We show that current through the oscillating island at low temperature appears to have step-like characteristics as a function of the bias voltage and the steps depend on the mean phonon number of the oscillator. At higher temperatures the current steps would disappear and this event is accompanied by the emergence of thermal noise of the charge transfer. When the system is mainly in the ground state, the zero frequency Fano factor of current manifests sub-Poissonian noise and when the system is partially driven into its excited states it exhibits super-Poissonian noise. The difference in the current noise would almost be removed for the situation in which the dissipation rate of the oscillator is much larger than the bare tunneling rates of electrons. (paper)

  12. Current-oscillator correlation and Fano factor spectrum of quantum shuttle with finite bias voltage and temperature.

    Science.gov (United States)

    Lai, Wenxi; Cao, Yunshan; Ma, Zhongshui

    2012-05-01

    A general master equation is derived to describe an electromechanical single-dot transistor in the Coulomb blockade regime. In the equation, Fermi distribution functions in the two leads are taken into account, which allows one to study the system as a function of bias voltage and temperature of the leads. Furthermore, we treat the coherent interaction mechanism between electron tunneling events and the dynamics of excited vibrational modes. Stationary solutions of the equation are numerically calculated. We show that current through the oscillating island at low temperature appears to have step-like characteristics as a function of the bias voltage and the steps depend on the mean phonon number of the oscillator. At higher temperatures the current steps would disappear and this event is accompanied by the emergence of thermal noise of the charge transfer. When the system is mainly in the ground state, the zero frequency Fano factor of current manifests sub-Poissonian noise and when the system is partially driven into its excited states it exhibits super-Poissonian noise. The difference in the current noise would almost be removed for the situation in which the dissipation rate of the oscillator is much larger than the bare tunneling rates of electrons. PMID:22469613

  13. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...

  14. Anisotropic square lattice Potts ferromagnet: renormalization group treatment

    International Nuclear Information System (INIS)

    The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q -< 4). The b = 2 and b = 3 approximate correlation lenght critical exponent ν is calculated for all values of q and compared with den Nijs conjecture. The same calculation is performed, for all values of b, for the exponent ν(d=1) associated to the one-dimensional limit and the exact result ν (d=1) = 1 is recovered in the limit b → infinite. (Author)

  15. Low-Q whispering gallery modes in anisotropic metamaterial shells

    CERN Document Server

    Díaz-Rubio, Ana; Torrent, Daniel; Sánchez-Dehesa, José

    2013-01-01

    Anisotropic and inhomogeneous metamaterial shells are studied in order to exploit all their resonant mode richness. These multilayer structures are based on a cylindrical distribution of radially dependent constitutive parameters including an inner void cavity. Shell, cavity and whispering gallery modes are characterized, and special attention is paid to the latter ones. The whispering gallery modes are created at the boundary layers of the shell with the background and energy localization is produced with highly radiative characteristics. These low-Q resonant states have frequencies that are independent of the shell thickness. However, their quality factors can be controlled by the number of layers forming the shell, which allows confining electromagnetic waves at the interface layers (internal or external), and make them suitable for the harvesting of electromagnetic energy.

  16. Gelation of anisotropic silica colloids with thermoreversible short-range interactions

    Science.gov (United States)

    Murphy, Ryan; Wagner, Norman

    Colloidal suspensions containing anisotropic particles are widely used in particle-based technologies including pharmaceuticals, consumer products, and coatings. The rheological properties of colloidal suspensions are known to be affected by particle shape; however, the combined influence of particle shape and attraction strength is not quantitatively understood for dynamic arrest transitions such as gelation. A model system of anisotropic silica colloids with thermoreversible, short-range attractions was developed to quantify the effect of particle shape and attractions on the gelation behavior. This tunable model system aims to map a fundamental state diagram for anisotropic particle suspensions as a function of particle shape, volume fraction, and interaction strength. Macroscopic rheological properties of thermoreversible gels were explored to determine the influence of particle shape on the gel transition. Neutron and x-ray scattering methods further probed the underlying fluid and gel microstructure at various temperatures, volume fractions, and aspect ratios. Linking these fundamental macroscopic and microscopic measurements will provide practical insight into particle technologies and manufacturing processes containing anisotropic colloidal suspensions.

  17. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    CERN Document Server

    Takezawa, Akihiro

    2014-01-01

    The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...

  18. Testing different formulations of leading-order anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo; Florkowski, Wojciech; Strickland, Michael

    2015-01-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform the detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general, formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  19. Testing different formulations of leading-order anisotropic hydrodynamics

    Science.gov (United States)

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2016-02-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to that found using previous, less general formulations of anisotropic hydrodynamics. In addition, we find that, when compared to a state-of-the-art second-order viscous hydrodynamics framework, leading-order anisotropic hydrodynamics better reproduces the exact solution for the pressure anisotropy and gives comparable results for the bulk pressure evolution. Finally, we compare the transport coefficients obtained using linearized anisotropic hydrodynamics with results obtained using second-order viscous hydrodynamics.

  20. Large scale behavior of a two-dimensional model of anisotropic branched polymers.

    Science.gov (United States)

    Knežević, Milan; Knežević, Dragica

    2013-10-28

    We study critical properties of anisotropic branched polymers modeled by semi-directed lattice animals on a triangular lattice. Using the exact transfer-matrix approach on strips of quite large widths and phenomenological renormalization group analysis, we obtained pretty good estimates of various critical exponents in the whole high-temperature region, including the point of collapse transition. Our numerical results suggest that this collapse transition belongs to the universality class of directed percolation. PMID:24182076

  1. Large scale behavior of a two-dimensional model of anisotropic branched polymers

    Science.gov (United States)

    Knežević, Milan; Knežević, Dragica

    2013-10-01

    We study critical properties of anisotropic branched polymers modeled by semi-directed lattice animals on a triangular lattice. Using the exact transfer-matrix approach on strips of quite large widths and phenomenological renormalization group analysis, we obtained pretty good estimates of various critical exponents in the whole high-temperature region, including the point of collapse transition. Our numerical results suggest that this collapse transition belongs to the universality class of directed percolation.

  2. Deep anisotropic dry etching of silicon microstructures by high-density plasmas

    OpenAIRE

    Blauw, M.A.

    2004-01-01

    This thesis deals with the dry etching of deep anisotropic microstructures in monocrystalline silicon by high-density plasmas. High aspect ratio trenches are necessary in the fabrication of sensitive inertial devices such as accellerometers and gyroscopes. The etching of silicon in fluorine-based plasmas is isotropic. To obtain anisotropy the addition of sidewall passivation is necessary. This is achieved with both oxygen passivation at low temperatures and fluorocarbon passivation at room te...

  3. Kinematics of an Ideal Fluid into a Spatially Flat Anisotropic Axisymmetric Universe

    OpenAIRE

    López, Ericsson; Llerena, Mario; Aldás, Franklin

    2016-01-01

    The Standard Cosmological Model assumes that the Universe is, on average, homogeneous and isotropic for large scales (z>1), but this principle has been questioned from the results about Cosmic Microwave Background. This radiation has anomalies that are not explained from the Standard Model, such as temperature fluctuations in the order of 10-5K or aligning polar moments. These anomalies could be explained by anisotropic cosmological models. We propose a transformation to spherical coordinates...

  4. A new method for quantifying anisotropic martensitic transformation strains accumulated during constrained cooling

    OpenAIRE

    Mark, A. F.; Moat, R.; Forsey, A.; Abdolvand, H; Withers, P.J.

    2014-01-01

    Martensitic phase transformations during welding can play a major role in determining the final residual stresses and they can be anisotropic if the transformation occurs under stress. Traditionally, the Satoh test has been used to quantify the response, but it suffers from the fact that the temperature is not uniform along the specimen length, making it difficult to interpret the data. This shortcoming is overcome in our new experimental method using digital image correlation (DIC) to quanti...

  5. Fronts of Stress Wave in Anisotropic Piezoelectric Media

    Institute of Scientific and Technical Information of China (English)

    刘颖; 刘凯欣; 高凌天

    2004-01-01

    The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.

  6. Probing the anisotropic expansion history of the universe using CMBR

    International Nuclear Information System (INIS)

    We have proposed a technique to detect any anisotropic expansion in the universe from the beginning of inflation to the last scattering. Any anisotropic expansion in the universe would deform the shape of the primordial density perturbations in the universe, and a shape analysis of the super-horizon fluctuations in CMBR will detect this shape deformation. Using this analysis, we have constrainted any anisotropic expansion in the universe to be less than 35%

  7. Testing different formulations of leading-order anisotropic hydrodynamics

    OpenAIRE

    Tinti, Leonardo; Ryblewski, Radoslaw; Florkowski, Wojciech; Strickland, Michael

    2015-01-01

    A recently obtained set of the equations for leading-order (3+1)D anisotropic hydrodynamics is tested against exact solutions of the Boltzmann equation with the collisional kernel treated in the relaxation time approximation. In order to perform the detailed comparisons, the new anisotropic hydrodynamics equations are reduced to the boost-invariant and transversally homogeneous case. The agreement with the exact solutions found using the new anisotropic hydrodynamics equations is similar to t...

  8. Relativistic modelling of stable anisotropic super-dense star

    CERN Document Server

    Maurya, S K; Jasim, M K

    2015-01-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al.[1] algorithm. The anisotropic fluid spheres so obtained join continuously to Schwarzschild exterior solution across the pressure free boundary.It is observed that most of the new anisotropic solutions are well behaved and utilized to construct the super-dense star models such as neutron star and pulsars.

  9. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  10. Gilbert damping and anisotropic magnetoresistance in iron-based alloys

    Science.gov (United States)

    Berger, L.

    2016-07-01

    We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.

  11. Anisotropic magnetic properties of the KMo4O6

    Science.gov (United States)

    Andrade, M.; Maffei, M. L.; Dos Santos, C. A. M.; Ferreira, B.; Sartori, A. F.

    2012-02-01

    Electrical resistivity measurements in the tetragonal KMo4O6 single crystals show a metal-insulator transition (MIT) near 100K. Magnetization measurements as a function of temperature show no evidence of magnetic ordering at this MIT [1]. Single crystals of KMo4O6 were obtained by electrolysis of a melt with a molar ratio of K2MoO4:MoO3 = 6:1. The process were carried out at 930 C with a current of 20-25mA for 52h in argon atmosphere. After that, electrodes were removed from the melt alloying the crystals to cool down to room temperature rapidly. Scanning Electron Microscopy (SEM) showed that the black single crystals were grown on the platinum cathode. Typical dimensions of the single crystals are 1x0.2x0.2mm^3. X-ray diffractometry confirmed that the single crystals have KMo4O6 tetragonal crystalline structure with space group P4. Magnetization measurements were performed parallel and perpendicular to the c-axis from 2 to 300K. The results show anisotropic behavior between both directions. Furthermore, the temperature independence of the magnetization at high temperature and the upturn at low temperature are observed in agreement with previous results [1]. MxH curves measured at several temperatures show nonlinear behavior and a small magnetic ordering. The magnetic ordering seems to be related to the MIT near 100K. This material is based upon support by FAPESP (2009/14524-6 and 2009/54001-6) and CNPq/NSF (490182/2009-7). M. Andrade is CAPES fellow and C.A.M. dos Santos is CNPq fellow. [4pt] [1] K. V. Ramanujachary et al., J. Sol. State Chem.102 (1993) 69.

  12. Temperature-related risk factors associated with the colonization of broiler-chicken flocks with Campylobacter spp. in Iceland, 2001-2004

    Science.gov (United States)

    Our objective was to identify temperature-related risk factors associated with the colonization of broiler-chicken flocks with Campylobacter spp. in Iceland, with an underlying assumption that at minimum ambient temperatures, flies (Musca domestica) play a role in the epidemiology and seasonality of...

  13. High Q-factor Sapphire Whispering Gallery Mode Microwave Resonator at Single Photon Energies and milli-Kelvin Temperatures

    CERN Document Server

    Creedon, Daniel L; Farr, Warrick; Martinis, John M; Duty, Timothy L; Tobar, Michael E

    2011-01-01

    The microwave properties of a crystalline sapphire dielectric whispering gallery mode resonator have been measured at very low excitation strength (E/hf=1) and low temperatures (T = 30 mK). The measurements were sensitive enough to observe saturation due to a highly detuned electron spin resonance, which limited the loss tangent of the material to about 2e-8 measured at 13.868 and 13.259 GHz. Small power dependent frequency shifts were also measured which correspond to an added magnetic susceptibility of order 1e-9. This work shows that quantum limited microwave resonators with Q-factors > 1e8 are possible with the implementation of a sapphire whispering gallery mode system.

  14. Self-organized motion in anisotropic swarms

    Institute of Scientific and Technical Information of China (English)

    Tianguang CHU; Long WANG; Tongwen CHEN

    2003-01-01

    This paper considers an anisotropic swarm model with a class of attraction and repulsion functions. It is shown that the members of the swarm will aggregate and eventually form a cohesive cluster of finite size around the swarm center. Moreover,It is also proved that under certain conditions, the swarm system can be completely stable, i. e., every solution converges to the equilibrium points of the system. The model and results of this paper extend a recent work on isotropic swarms to more general cases and provide further insight into the effect of the interaction pattern on self-organized motion in a swarm system.

  15. BRDF Slices: Accurate Adaptive Anisotropic Appearance Acquisition

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Vávra, Radomír; Haindl, Michal; Žid, Pavel; Krupička, Mikuláš; Havran, V.

    New York: IEEE Computer Society Conference Publishing Services, 2013, s. 1468-1473. ISBN 978-0-7695-4990-3. ISSN 2160-7508. [Computer Vision and Pattern Recognition. Portland, OR (US), 23.06.2013-28.06.2013] R&D Projects: GA ČR GAP103/11/0335 Grant ostatní: EC FP7, European Reintegration Grant(BE) 239294 Institutional support: RVO:67985556 Keywords : BRDF slices * adaptive anisotropic material appearance * measurement device Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2013/RO/filip-0393865.pdf

  16. Some analytical models of anisotropic strange stars

    Science.gov (United States)

    Murad, Mohammad Hassan

    2016-01-01

    Over the years of the concept of local isotropy has become a too stringent condition in modeling relativistic self-gravitating objects. Taking local anisotropy into consideration, in this work, some analytical models of relativistic anisotropic charged strange stars have been developed. The Einstein-Maxwell gravitational field equations have been solved with a particular form of one of the metric potentials. The radial pressure and the energy density have been assumed to follow the usual linear equation of state of strange quark matter, the MIT bag model.

  17. Gauge Field Optics with Anisotropic Media

    CERN Document Server

    Liu, Fu

    2014-01-01

    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

  18. Theory of Random Anisotropic Magnetic Alloys

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1976-01-01

    A mean-field-crystal-field theory is developed for random, multicomponent, anisotropic magnetic alloys. It is specially applicable to rare-earth alloys. A discussion is given of multicritical points and phase transitions between various states characterized by order parameters with different....... Quantitative agreement can be obtained by increasing the interaction between different alloy elements, in particular for alloys with very different axial anisotropy, e.g., Tb-Tm. A model system consisting of a singlet-singlet and singlet-doublet alloy is discussed in detail. A simple procedure to include...

  19. Anisotropic perturbations due to dark energy

    CERN Document Server

    Battye, R A; Battye, Richard A.; Moss, Adam

    2006-01-01

    A variety of observational tests seem to suggest that the universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with $P/\\rho=-2/3$, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  20. Anisotropic flow in striped superhydrophobic channels

    CERN Document Server

    Zhou, Jiajia; Schmid, Friederike; Vinogradova, Olga I

    2012-01-01

    We report results of dissipative particle dynamics simulations and develop a semi-analytical theory and of an anisotropic flow in a parallel-plate channel with two superhydrophobic striped walls. Our approach is valid for any local slip at the gas sectors and an arbitrary distance between the plates, ranging from a thick to a thin channel. It allows us to optimize area fractions, slip lengths, channel thickness and texture orientation to maximize a transverse flow. Our results may be useful for extracting effective slip tensors from global measurements, such as the permeability of a channel, in experiments or simulations, and may also find applications in passive microfluidic mixing.

  1. Generalized model for anisotropic compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Deb, Debabrata

    2016-01-01

    In the present investigation an exact generalized model for anisotropic compact stars of embedding class one is sought for under general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model present here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates $RXJ~1856-37$, $SAX~J~1808.4-3658~(SS1)$ and $SAX~J~1808.4-3658~(SS2)$ are concerned.

  2. On Radiative Fluids in Anisotropic Spacetimes

    CERN Document Server

    Shogin, Dmitry

    2016-01-01

    We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the Universe. Also, we show that, in constrast to the mathematical fluid models widely used before, the radiative fluid does approach local thermal equilibrium at late times, although very slowly, due to the cosmological expansion.

  3. Conformally flat anisotropic spheres in general relativity

    CERN Document Server

    Herrera, L; Ospina, J F; Fuenmayor, E

    2001-01-01

    The condition for the vanishing of the Weyl tensor is integrated in the spherically symmetric case. Then, the resulting expression is used to find new, conformally flat, interior solutions to Einstein equations for locally anisotropic fluids. The slow evolution of these models is contrasted with the evolution of models with similar energy density or radial pressure distribution but non-vanishing Weyl tensor, thereby bringing out the different role played by the Weyl tensor, the local anisotropy of pressure and the inhomogeneity of the energy density in the collapse of relativistic spheres.

  4. Effective Acquisition of Dense Anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Filip, Jiří; Vávra, Radomír; Havlíček, Michal

    Stockholm : IEEE Computer Society, 2014, s. 2047-2052. ISBN 978-1-4799-5208-3. ISSN 1051-4651. [ICPR 2014 - The 22nd International Conference on Pattern Recognition. Stockholm (SE), 24.08.2014-28.08.2014] R&D Projects: GA ČR(CZ) GA14-10911S; GA ČR(CZ) GA14-02652S; GA ČR GAP103/11/0335 Institutional support: RVO:67985556 Keywords : BRDF * measurement * anisotropic * goniometer Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2014/RO/filip-0431132.pdf

  5. Neutron scattering facility for the measurement of light quenching factors of low-temperature dark matter detectors

    International Nuclear Information System (INIS)

    Most direct dark matter search experiments aim at the detection of WIMPs (Weakly Interacting Massive Particles). To cover a large mass range, scintillating multi-material single crystals (e.g. CaWO4, NaI, TeO2) are of special interest. Operated as low-temperature detectors, each particle interaction produces a scintillation light and a phonon signal simultaneously in these crystals. Since the ratio of the two quantities depends on the type of particle interaction, it is possible to discriminate the electron and different types of nuclear recoils. The signal region for each type of interaction is quantified by the quenching factor (QF). At the Maier-Leibnitz Laboratorium in Garching, a dedicated neutron scattering facility has been set up to characterize scintillating multi-material target crystals and measure the bulk QFs of the different nuclei. A detector operated at mK temperatures is irradiated by mono-energetic neutrons (∼11 MeV). Both the phonon and the scintillation light signals are read out. The neutron's time of flight measurement at fixed scattering angle allows to identify the recoiling nucleus and to determine its QF.

  6. Identification, classification, and expression profiles of heat shock transcription factors in tea plant (Camellia sinensis) under temperature stress.

    Science.gov (United States)

    Liu, Zhi-Wei; Wu, Zhi-Jun; Li, Xing-Hui; Huang, Ying; Li, Hui; Wang, Yong-Xin; Zhuang, Jing

    2016-01-15

    In vascular plants, heat shock transcription factors (Hsfs) regulate heat stress response by regulating the expression of heat shock proteins. This study systematically and comprehensively analyzed the Hsf family in tea plant [Camellia sinensis (L.) O. Kuntze]. A total of 16 CsHsfs were identified from the transcriptome database of tea plant and analyzed for their phylogenetic relationships, motifs, and physicochemical characteristics. On the basis of the phylogenetic comparison of tea plant with Arabidopsis thaliana, Populus trichocarpa, Theobroma cacao, and Oryza sativa, the CsHsfs were classified into three classes, namely, A (56.25%), B (37.50%), and C (6.25%). Heat mapping showed that the expression profiles of CsHsf genes under non-stress conditions varied among four tea plant cultivars, namely, 'Yunnanshilixiang', 'Chawansanhao', 'Ruchengmaoyecha', and 'Anjibaicha'. Six CsHsf genes (CsHsfA1a, CsHsfA1b, CsHsfA6, CsHsfB1, CsHsfB2b, and CsHsfC1) were selected from classes A, B, and C to analyze the expression profiles of CsHsf genes through quantitative real-time PCR in 'Yingshuang', 'Anjibaicha', and 'Yunnanshilixiang' under high (38 °C) or low (4 °C) temperature stress. Temperature stress positively or negatively regulated all of the selected CsHsf genes, and the expression levels evidently varied even among CsHsf genes belonging to the same class. This study provided a relatively detailed summary of Hsfs in tea plant and may serve as a reference for further studies on the mechanism of temperature stress regulation by CsHsfs. PMID:26431998

  7. Anisotropic magnetotransport behavior in electronic phase-separated La0.67Ca0.33MnO3 (LCMO) films under anisotropic strain

    Science.gov (United States)

    Hu, Longqian; Yu, Liuqi; von Molnar, Stephan; Xiong, Peng; Wang, Lingfei; Wu, Wenbin

    2015-03-01

    Anisotropic transport measurements have been performed on LCMO films grown on NdGaO3(001) substrates. Three samples from a film 48 nm thick were post-annealed for 1.5h, 5h and 20h to produce increasing degrees of anisotropic strain, which promotes electronic phase separation (PS). As demonstrated previously, the presence and growth of antiferromagnetic insulating (AFI) regions in the samples can be controlled by the strain, resulting in a state of coexisting ferromagnetic metallic (FMM) and AFI domains. To study the effects of the strain anisotropy on the PS and formation of the AFI states, we carried out simultaneous magnetotransport measurements along the two orthogonal in-plane directions using an L-bar geometry. Substantial anisotropy in the temperature and magnetic field dependent resistivity between the two directions was observed, implying the formation of the AFI states has an orientation preference under the anisotropic strain. These differences are dramatically enhanced with increasing strain. Furthermore, accompanying the emergence of the AFI states, a glass-like behavior signified by time relaxation was observed in the field-dependent resistivity, which provides new insight into the dynamics of the phase-separated AFI and FMM domains. Work supported by NSF Grant DMR-1308613.

  8. Phase space diffusion and anisotropic pick-up ion distributions in the solar wind: an injection study

    Science.gov (United States)

    Chalov, S. V.; Fahr, H. J.

    1998-07-01

    Pick-up ions are produced all over the interplanetary space by ionization of neutral interstellar atoms. Over the last decade it was generally expected that after pick-up these ions quickly are isotropized in the velocity space comoving with the solar wind by strong pitch-angle scattering, though not assimilating to the thermodynamic state of solar wind ions. Recent studies of pick-up ion data obtained with plasma analyzers on AMPTE and ULYSSES have, however, revealed that during extended time periods substantially anisotropic distributions prevail. In this paper we want to improve the understanding of the evolutionary behaviour of pick-up ions in interplanetary phase space by an pick-up ion injection study taking into account all relevant diffusion terms describing pitch angle scattering, adiabatic cooling, drifts and energy diffusion. For particles injected at 1 AU the resulting distribution function stays substantially anisotropic up to distances of the order of 6 AU, unless increased isotropic turbulence levels and non-dissipative wave spectra are considered. The average bulk velocity of pick-up ions within this distance range is smaller than the solar wind velocity by factors of between 0.6 and 1.0. Pick-ups are shown to substantially become spread out from that solar wind parcel into which they were originally injected. Derivations of interstellar gas parameters using pick-up ion flux data can only be dared with additional care in the interpretation. As a consequence the location of the LISM helium cone axis and the LISM helium temperature are faked in the associated He(+) pick-up ion flux pattern.

  9. TECATE - a code for anisotropic thermoelasticity in high-average-power laser technology. Phase 1 final report

    International Nuclear Information System (INIS)

    This report describes a totally Eulerian code for anisotropic thermoelasticity (code name TECATE) which may be used in evaluations of prospective crystal media for high-average-power lasers. The present TECATE code version computes steady-state distributions of material temperatures, stresses, strains, and displacement fields in 2-D slab geometry. Numerous heat source and coolant boundary condition options are available in the TECATE code for laser design considerations. Anisotropic analogues of plane stress and plane strain evaluations can be executed for any and all crystal symmetry classes. As with all new and/or large physics codes, it is likely that some code imperfections will emerge at some point in time

  10. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2006-01-01

    Roč. 97, č. 7 (2006), 077201/1-077201/4. ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant ostatní: EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006

  11. Metabolic fingerprinting of gilthead seabream (Sparus aurata liver to track interactions between dietary factors and seasonal temperature variations

    Directory of Open Access Journals (Sweden)

    Tomé S. Silva

    2014-08-01

    Full Text Available Farmed gilthead seabream is sometimes affected by a metabolic syndrome, known as the “winter disease”, which has a significant economic impact in the Mediterranean region. It is caused, among other factors, by the thermal variations that occur during colder months and there are signs that an improved nutritional status can mitigate the effects of this thermal stress. For this reason, a trial was undertaken where we assessed the effect of two different diets on gilthead seabream physiology and nutritional state, through metabolic fingerprinting of hepatic tissue. For this trial, four groups of 25 adult gilthead seabream were reared for 8 months, being fed either with a control diet (CTRL, low-cost commercial formulation or with a diet called “Winter Feed” (WF, high-cost improved formulation. Fish were sampled at two time-points (at the end of winter and at the end of spring, with liver tissue being taken for FT-IR spectroscopy. Results have shown that seasonal temperature variations constitute a metabolic challenge for gilthead seabream, with hepatic carbohydrate stores being consumed over the course of the inter-sampling period. Regarding the WF diet, results point towards a positive effect in terms of performance and improved nutritional status. This diet seems to have a mitigating effect on the deleterious impact of thermal shifts, confirming the hypothesis that nutritional factors can affect the capacity of gilthead seabream to cope with seasonal thermal variations and possibly contribute to prevent the onset of “winter disease”.

  12. Covariances of resonance self-shielding factor and its temperature gradient for uncertainty evaluation of doppler reactivity

    International Nuclear Information System (INIS)

    Uncertainty of Doppler reactivity is theoretically formulated and then uncertainties of self-shielding factor f(T) and its temperature gradient α due to errors of resonance parameters were evaluated from NJOY output. In the course of evaluation, serious investigation on numerical differentiation method was made for so-called two or three-point model, significance of figure of NJOY output and acceptable digits for computers. The f(T) and α uncertainties based on JENDL-3.3 covariance file were evaluated by using computer code system ERRORF newly developed for present work as a modular code system consisting of NJOY for effective cross section and f-factor calculations, REPCHANGE for parameter change and FTOALPHA for covariance calculation. Sensitivity analysis was made for 235U, 238U, 239Pu and 240Pu based on JAERI Fast set-3 70 group structure. Importance of off-diagonal terms was emphasized in the uncertainty evaluation. Resultant sensitivity coefficients are provided for the uncertainty evaluation of Doppler reactivity. (author)

  13. The Influence of the Packing Factor on the Fuel Temperature Hot Spots in a Particle-Bed GCFR

    International Nuclear Information System (INIS)

    In the recent past the so-called GCFR has been again a subject of study by the international scientific community. This type of reactors, although still in a preliminary stage of development, is a very interesting perspective because combines the positive characteristics common to all the fast reactors with those of the reactors cooled by helium. Up to now, almost all the analyses on the GCFR thermodynamic aspects have been performed starting from a global point of view: generally the core has been modelled as a porous medium and only the global parameters have been taken into account. The local effects have been included in adhoc corrective peak factors. The analyses carried out in the present research will be devoted to the characterization of the local effects, on a microscopic scale. In order to have reliable global nuclear and thermal-fluid-dynamic data, the performed analyses will be based on simulations previously performed using the RELAP5-3D code, assuming as input parameters the ETDR core ones. For each considered case, the variation ranges of the evaluated parameters have been estimated on the basis of the best and the worst cases. To summarize the obtained results, even in transient conditions, the variations of the considered input parameters are less significant for the local output values if compared to those due to the assumed packing factor. As a consequence, in a more general core calculation, the obtained local temperature (and velocity) values will have to be corrected by a proper factor that would have to take into account the results of this research.

  14. Relativistic Heavy Quark Spectrum On Anisotropic Lattices

    CERN Document Server

    Liao, X

    2003-01-01

    We report a fully relativistic quenched calculation of the heavy quark spectrum, including both charmonium and bottomonium, using anisotropic lattice QCD. We demonstrate that a fully relativistic treatment of a heavy quark system is well-suited to address the large systematic errors in non-relativistic calculations. In addition, the anisotropic lattice formulation is a very efficient framework for calculations requiring high temporal resolutions. A detailed excited charmonium spectrum is obtained, including both the exotic hybrids (with JPC = 1−+ , 0+−, 2+−) and orbitally excited mesons (with orbital angular momentum up to 3). Using three different lattice spacings (0.197, 0.131, and 0.092 fm), we perform a continuum extrapolation of the spectrum. The lowest lying exotic hybrid 1−+ lies at 4.428(41) GeV, slightly above the D**D (S + P wave) threshold of 4.287 GeV. Another two exotic hybrids 0+− and 2 +− are determined to be 4.70(17) GeV and 4.895(88)...

  15. Anisotropic pressure and hyperons in neutron stars

    International Nuclear Information System (INIS)

    We study the effects of anisotropic pressure (AI-P) on properties of the neutron stars (NSs) with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of AI-P on NS matter is to increase the stiffness of the equation of state EOS, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of AI-P model h ≤ 0.8 [L. Herrera and W. Barreto, Phys. Rev. D 88 (2013) 084022.] and Λ ≤ -1.15 [D. D. Doneva and S. S. Yazadjiev, Phys. Rev. D 85 (2012) 124023.]. The radius of the corresponding NS at M = 1.4 M⊙ is more than 13 km, while the effect of AI-P on the minimum mass of NS is insignificant. Furthermore, due to the AI-P in the NS, the maximum mass limit of higher than 2.1 M⊙ cannot rule out the presence of hyperons in the NS core. (author)

  16. Electrically Anisotropic Layered Perovskite Single Crystal

    KAUST Repository

    Li, Ting-You

    2016-04-01

    Organic-inorganic hybrid perovskites (OIHPs), which are promising materials for electronic and optoelectronic applications (1-10), have made into layered organic-inorganic hybrid perovskites (LOIHPs). These LOIHPs have been applied to thin-film transistors, solar cells and tunable wavelength phosphors (11-18). It is known that devices fabricated with single crystal exhibit the superior performance, which makes the growth of large-sized single crystals critical for future device applications (19-23). However, the difficulty in growing large-sized LOIHPs single crystal with superior electrical properties limits their practical applications. Here, we report a method to grow the centimeter-scaled LOIHP single crystal of [(HOC2H4NH3)2PbI4], demonstrating the potentials in mass production. After that, we reveal anisotropic electrical and optoelectronic properties which proved the carrier propagating along inorganic framework. The carrier mobility of in-inorganic-plane (in-plane) devices shows the average value of 45 cm2 V–1 s–1 which is about 100 times greater than the record of LOIHP devices (15), showing the importance of single crystal in device application. Moreover, the LOIHP single crystals show its ultra-short carrier lifetime of 42.7 ps and photoluminescence quantum efficiency (PLQE) of 25.4 %. We expect this report to be a start of LOIHPs for advanced applications in which the anisotropic properties are needed (24-25), and meets the demand of high-speed applications and fast-response applications.

  17. Gravitomagnetic Instabilities in Anisotropically Expanding Fluids

    Science.gov (United States)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas

    Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.

  18. Testing anisotropic string compactifications in the lab

    International Nuclear Information System (INIS)

    We derive type IIB vacua which are very promising to put string theory to experimental test. These are Calabi-Yau compactifications with a 4D fibration over a 2D base. The moduli are fixed in such a way to obtain a very anisotropic configuration where the size of the 2D base is exponentially larger than the size of the 4D fibre. These provide stringy realisations of the supersymmetric large extra dimensions scenario and extensions of the ADD scenario which are characterised by TeV-scale strings and two micron-sized extra dimensions. We also study the phenomenological properties of hidden Abelian gauge bosons which mix kinetically with the ordinary photon and get a mass via the Green-Schwarz mechanism. We show that anisotropic compactifications lead naturally to dark forces for an intermediate string scale or even to a hidden CMB for the extreme case of TeV-scale strings. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  19. On Backus average for generally anisotropic layers

    CERN Document Server

    Bos, Len; Slawinski, Michael A; Stanoev, Theodore

    2016-01-01

    In this paper, following the Backus (1962) approach, we examine expressions for elasticity parameters of a homogeneous generally anisotropic medium that is long-wave-equivalent to a stack of thin generally anisotropic layers. These expressions reduce to the results of Backus (1962) for the case of isotropic and transversely isotropic layers. In over half-a-century since the publications of Backus (1962) there have been numerous publications applying and extending that formulation. However, neither George Backus nor the authors of the present paper are aware of further examinations of mathematical underpinnings of the original formulation; hence, this paper. We prove that---within the long-wave approximation---if the thin layers obey stability conditions then so does the equivalent medium. We examine---within the Backus-average context---the approximation of the average of a product as the product of averages, and express it as a proposition in terms of an upper bound. In the presented examination we use the e...

  20. Vortex dynamics in supraconductors in the presence of anisotropic pinning

    International Nuclear Information System (INIS)

    Vortex dynamics in two different classes of superconductors with anisotropic unidirected pinning sites was experimentally investigated by magnetoresistivity measurements: YBCO-films with unidirected twins and Nb-films deposited on faceted Al2O3 substrate surfaces. For the interpretation of the experimental results a theoretical model based on the Fokker-Planck equation was used. It was proved by X-ray measurements that YBCO films prepared on (001) NdGaO3 substrates exhibit only one twin orientation in contrast to YBCO films grown on (100) SrTiO3 substrates. The magnetoresistivity measurements of the YBCO films with unidirected twin boundaries revealed the existence of two new magnetoresistivity components, which is a characteristic feature of a guided vortex motion: an odd longitudinal component with respect to the magnetic field sign reversal and an even transversal component. However, due to the small coherence length in YBCO and the higher density of point-like defects comparing to high-quality YBCO single crystals, the strength of the isotropic point pinning was comparable with the strength of the pinning produced by twins. This smeared out all e ects caused by the pinning anisotropy. The behaviour of the odd longitudinal component was found to be independent of the transport current direction with respect to the twin planes. The magnetoresistivity measurements of faceted Nb films demonstrated the appearance of an odd longitudinal and even transversal component of the magnetoresistivity. The temperature and magnetic field dependences of all relevant magnetoresistivity components were measured. The angles between the average vortex velocity vector and the transport current direction calculated from the experimental data for the different transport current orientations with respect to the facet ridges showed that the vortices moved indeed along the facet ridges. An anomalous Hall effect, i.e. a sign change of the odd transversal magnetoresistivity, has been found

  1. Warped, anisotropic wormhole/soliton configurations in vacuum 5D gravity

    International Nuclear Information System (INIS)

    In this paper we apply the anholonomic frames method developed in previous work to construct and study anisotropic vacuum field configurations in 5D gravity. Starting with an off-diagonal 5D metric, parametrized in terms of several ansatz functions, we show that using anholonomic frames greatly simplifies the resulting Einstein field equations. These simplified equations contain an interesting freedom in that one can choose one of the ansatz functions and then determine the remaining ansatz functions in terms of this choice. As examples we take one of the ansatz functions to be a solitonic solution of either the Kadomtsev-Petviashvili equation or the sine-Gordon equation. There are several interesting physical consequences of these solutions. First, a certain subclass of the solutions discussed in this paper has an exponential warp factor similar to that of the Randall-Sundrum model. However, the warp factor depends on more than just the fifth coordinate. In addition the warp factor arises from anisotropic vacuum solutions rather than from any explicit matter. Second, the solitonic character of these solutions might allow them to be interpreted either as gravitational models for particles (i.e. analogous to the 't Hooft-Polyakov monopole, but in the context of gravity), or as nonlinear, anisotropic gravitational waves

  2. Homogeneous, anisotropic three-manifolds of topologically massive gravity

    International Nuclear Information System (INIS)

    We present a new class of exact solutions of Deser, Jackiw, and Templeton's theory (DJT) of topologically massive gravity which consists of homogeneous, anisotropic manifolds. In these solutions the coframe is given by the left-invariant 1-forms of 3-dimensional Lie algebras up to constant scale factors. These factors are fixed in terms of the DJT coupling constant μm which is the constant of proportionality between the Einstein and Cotton tensors in 3-dimensions. Differences between the scale factors result in anisotropy which is a common feature of topologically massive 3-manifolds. We have found that only Bianchi Types VI, VIII, and IX lead to nontrivial solutions. Among these, a Bianchi Type IX, squashed 3-sphere solution of the Euclideanized DJT theory has finite action, Bianchi Type VIII, IX solutions can variously be embedded in the de Sitter/anti-de Sitter space. That is, some DJT 3-manifolds that we shall present here can be regarded as the basic constitent of anti-de Sitter space which is the ground state solution in higher dimensional generalizations of Einstein's general relativity. copyright 1989 Academic Press, Inc

  3. Anisotropic Cosmological Model in Modified Brans--Dicke Theory

    CERN Document Server

    Rasouli, S M M; Sepangi, Hamid R

    2011-01-01

    It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time while scale factor of extra dimension is constant, and scalar field depends on time and fifth coordinate, then in general, one will encounter inconsistencies in field equations. Then, we assume the scale factors and scalar field depend on time and extra coordinate as separated variables in power law forms. Hence, we find a few classes of solutions in 5D spacetime through which, we probe the one which leads to a generalized Kasner relations among Kasner parameters. The induced scalar potential is found to be in power law or i...

  4. B{sub c}B{sub c}J/ψ vertex form factor at finite temperature in the framework of QCD sum rules approach

    Energy Technology Data Exchange (ETDEWEB)

    Yazici, E.; Sundu, H.; Veliev, E.V. [Kocaeli University, Department of Physics, Izmit (Turkey)

    2016-02-15

    The strong form factor of the B{sub c}B{sub c}J/ψ vertex is calculated in the framework of the QCD sum rules method at finite temperature. Taking into account additional operators appearing at finite temperature, a thermal Wilson expansion is obtained and QCD sum rules are derived. While increasing the temperature, the strong form factor remains unchanged up to T ≅ 100 MeV but slightly increases after this point. After T ≅ 160 MeV, the form factor suddenly decreases up to T ≅ 170 MeV. The obtained result of the coupling constant by fitting the form factor at Q{sub 2} = -m{sup 2}{sub offshell} at T = 0 is in a very good agreement with the QCD sum rules calculations in the case of vacuum. Our prediction can be checked in future experiments. (orig.)

  5. Thermoviscoplastic behaviors of anisotropic shape memory elastomeric composites for cold programmed non-affine shape change

    Science.gov (United States)

    Mao, Yiqi; Robertson, Jaimee M.; Mu, Xiaoming; Mather, Patrick T.; Jerry Qi, H.

    2015-12-01

    Shape memory polymers (SMPs) can fix a temporary shape and recover their permanent shape upon activation by an external stimulus. Most SMPs require programming at above their transition temperatures, normally well above the room temperature. In addition, most SMPs are programmed into shapes that are affine to the high temperature deformation. Recently, a cold-programmed anisotropic shape memory elastomeric composite was developed and showed interesting low temperature stretching induced shape memory behavior. There, simple, uniaxial stretching at low temperature transformed the composites into curled temporary shapes upon unloading. The exact geometry of the curled state depended on the microstructure of the composite, and the curled shape showed no affinity to the deformed shape. Heating the sample recovered the sample back to its original shape. This new composite consisted of an elastomeric matrix reinforced by aligned amorphous polymer fibers. By utilizing the plastic-like behavior of the amorphous polymer phase at low temperatures, a temporary shape could be fixed upon unloading since the induced plastic-like strain resists the recovery of the elastomer matrix. After heating to a high temperature, the permanent shape was recovered when the amorphous polymer softened and the elastomer matrix contracted. To set a theoretical foundation for capturing the cold-programmed shape memory effects and the dramatic non-affine shape change of this composite, a 3D anisotropic thermoviscoelastic constitutive model is developed in this paper. In this model, the matrix is modeled as a hyperelastic solid, and the amorphous phase of the fibrous mat is considered as a nonlinear thermoviscoplastic solid, whose viscous flow resistance is sensitive to both temperature and stress. The plastic-deformation like behavior demonstrated in the fiber is treated as nonlinear viscoplasticity with extremely high viscosity or long relaxation time at zero-stress state at low temperature. The

  6. Low temperature anomalies in the lattice parameters of rare earth compounds and UPd3

    International Nuclear Information System (INIS)

    Using a low temperature diffractometer, intermediate valence effects and crystal defects can be identified from the temperature dependence of the lattice parameters and the Debye-Waller factor. For polycrystalline powder samples the measuring error are too large. For intermediate valence systems the relative change in the 4f-level population probability can be calculated together with the anisotropic effects on the lattice parameters and on the unit cell colume. Pronounced effects on the lattice parameters can be observed in the case of RE Cu2Si2 compounds with crystal fields. (DG)

  7. Modeling and Measurements of CMUTs with Square Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian;

    2013-01-01

    The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic ...

  8. Long-Range Surface Plasmons on Highly Anisotropic Dielectric Substrates

    Science.gov (United States)

    Gumen, L.; Nagaraj; Neogi, A.; Krokhin, A.

    We calculate the propagation length of surface plasmons in metal-dielectric structures with anisotropic substrates. We show that the Joule losses can be minimized by appropriate orientation of the optical axis of a birefringent substrate and that the favorable orientation of the axis depends on ω. A simple Kronig-Penney model for anisotropic plasmonic crystal is also proposed.

  9. A BEM FOR TRANSIENT HEAT CONDUCTION PROBLEM OF ANISOTROPIC FGM

    OpenAIRE

    Azis, Mohammad Ivan

    2014-01-01

    A boundary element method (BEM) for the solution of a certain class of nonlinear parabolic initial boundary value problems for a certain class of anisotropic functionally graded media is derived. The method is then used to obtain numerical values for some particular transient 2-D heat conduction problems for anisotropic functionally graded materials (FGM).

  10. Anisotropic conductivity tensor imaging using magnetic induction tomography

    International Nuclear Information System (INIS)

    Magnetic induction tomography aims to reconstruct the electrical conductivity distribution of the human body using non-contact measurements. The potential of the method has been demonstrated by various simulation studies and a number of phantom experiments. These studies have all relied on models having isotropic distributions of conductivity, although the human body has a highly heterogeneous structure with partially anisotropic properties. Therefore, whether the conventional modeling approaches used so far are appropriate for clinical applications or not is still an open question. To investigate the problem, we performed a simulation study to investigate the feasibility of (1) imaging anisotropic perturbations within an isotropic medium and (2) imaging isotropic perturbations inside a partially anisotropic background. The first is the case for the imaging of anomalies that have anisotropic characteristics and the latter is the case e.g. in lung imaging where an anisotropic skeletal muscle tissue surrounds the lungs and the rib cage. An anisotropic solver based on the singular value decomposition was used to attain conductivity tensor images to be compared with the ones obtained from isotropic solvers. The results indicate the importance of anisotropic modeling in order to obtain satisfactory reconstructions, especially for the imaging of the anisotropic anomalies, and address the resolvability of the conductivity tensor components

  11. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    Interpolation theory is the foundation of finite element methods.In this paper,after reviewing some existed interpolation theorems of anisotropic finite element methods,we present a new way to analyse the interpolation error of anisotropic elements based on Newton’s formula of polynomial interpolation as well as its applications.

  12. Interpolation theory of anisotropic finite elements and applications

    Institute of Scientific and Technical Information of China (English)

    CHEN ShaoChun; XIAO LiuChao

    2008-01-01

    Interpolation theory is the foundation of finite element methods. In this paper, after reviewing some existed interpolation theorems of anisotropic finite element methods, we present a new way to analyse the interpolation error of anisotropic elements based on Newton's formula of polynomial interpolation as well as its applications.

  13. Anisotropic Dark Energy and the Generalized Second Law of Thermodynamics

    OpenAIRE

    M. Sharif; Khanum, Farida

    2011-01-01

    We consider a Bianchi type $I$ model in which anisotropic dark energy is interacting with dark matter and anisotropic radiation. With this scenario, we investigate the validity of the generalized second law of thermodynamics. It is concluded that the validity of this law depends on different parameters like shear, skewness and equation of state.

  14. Anisotropic dark energy and the generalized second law of thermodynamics

    International Nuclear Information System (INIS)

    We consider a Bianchi type I model in which anisotropic dark energy is interacting with dark matter and anisotropic radiation. With this scenario, we investigate the validity of the generalized second law of thermodynamics. It is concluded that the validity of this law depends on different parameters such as shear, skewness and equation of state.

  15. Coulomb drag in anisotropic systems: a theoretical study on a double-layer phosphorene

    Science.gov (United States)

    Saberi-Pouya, S.; Vazifehshenas, T.; Farmanbar, M.; Salavati-fard, T.

    2016-07-01

    We theoretically study the Coulomb drag resistivity in a double-layer electron system with highly anisotropic parabolic band structure using Boltzmann transport theory. As an example, we consider a double-layer phosphorene on which we apply our formalism. This approach, in principle, can be tuned for other double-layered systems with paraboloidal band structures. Our calculations show the rotation of one layer with respect to another layer can be considered a way of controlling the drag resistivity in such systems. As a result of rotation, the off-diagonal elements of the drag resistivity tensor have non-zero values at any temperature. In addition, we show that the anisotropic drag resistivity is very sensitive to the direction of momentum transfer between two layers due to highly anisotropic inter-layer electron–electron interaction and also the plasmon modes. In particular, the drag anisotropy ratio, {ρyy}/{ρxx} , can reach up to ∼ 3 by changing the temperature. Furthermore, our calculations suggest that including the local field correction in the dielectric function changes the results significantly. Finally, We examine the dependence of drag resistivity and its anisotropy ratio on various parameters like inter-layer separation, electron density, short-range interaction and insulating substrate/spacer.

  16. Axisymmetric toroidal equilibrium with flow and anisotropic pressure

    International Nuclear Information System (INIS)

    Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs

  17. Estudio de la anisotropía de una fuente de Am-Be de 111 GBq

    OpenAIRE

    Méndez Villafañe, Roberto; Gallego Díaz, Eduardo F.; Lorente Fillol, Alfredo; Ibáñez, Sviatovslav; Guerrero Araque, Jorge Enrique

    2011-01-01

    Se ha estudiado la anisotropía de una fuente de Am-Be de 111 GBq (3Ci) mediante el uso de un pequeño motor que permite girar paso a paso la fuente situada en su posición de irradiación habitual. Las medidas se han realizado con un contador proporcional de 3He alojado en el interior de una esfera moderadora de 8” correspondiente a un sistema de espectrometría de esferas Bonner. Se reportan los resultados obtenidos y el factor de anisotropía determinado para esta fuente.

  18. Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  19. Patterning monolayer graphene with zigzag edges on hexagonal boron nitride by anisotropic etching

    Science.gov (United States)

    Wang, Guole; Wu, Shuang; Zhang, Tingting; Chen, Peng; Lu, Xiaobo; Wang, Shuopei; Wang, Duoming; Watanabe, Kenji; Taniguchi, Takashi; Shi, Dongxia; Yang, Rong; Zhang, Guangyu

    2016-08-01

    Graphene nanostructures are potential building blocks for nanoelectronic and spintronic devices. However, the production of monolayer graphene nanostructures with well-defined zigzag edges remains a challenge. In this paper, we report the patterning of monolayer graphene nanostructures with zigzag edges on hexagonal boron nitride (h-BN) substrates by an anisotropic etching technique. We found that hydrogen plasma etching of monolayer graphene on h-BN is highly anisotropic due to the inert and ultra-flat nature of the h-BN surface, resulting in zigzag edge formation. The as-fabricated zigzag-edged monolayer graphene nanoribbons (Z-GNRs) with widths below 30 nm show high carrier mobility and width-dependent energy gaps at liquid helium temperature. These high quality Z-GNRs are thus ideal structures for exploring their valleytronic or spintronic properties.

  20. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized.......In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...

  1. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized.......In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...

  2. Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics

    CERN Document Server

    Hopkins, Philip F

    2016-01-01

    We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect), and turbulent 'eddy diffusion.' We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV) as well as smoothed-particle hydrodynamics (SPH). We show the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators ...

  3. Casimir-Polder force between anisotropic nanoparticles and gently curved surfaces

    Science.gov (United States)

    Bimonte, Giuseppe; Emig, Thorsten; Kardar, Mehran

    2015-07-01

    The Casimir-Polder interaction between an anisotropic particle and a surface is orientation dependent. We study novel orientational effects that arise due to curvature of the surface for distances much smaller than the radii of curvature by employing a derivative expansion. For nanoparticles we derive a general short distance expansion of the interaction potential in terms of their dipolar polarizabilities. Explicit results are presented for nano-spheroids made of SiO2 and gold, both at zero and at finite temperatures. The preferred orientation of the particle is strongly dependent on curvature, temperature, as well as material properties.

  4. Anisotropic thermopower of the organic metal, β-(BEDT-TTF)2I3

    DEFF Research Database (Denmark)

    Mortensen, Kell; Williams, J.M.; Wang, H.H.

    1985-01-01

    Thermopower of the ambient pressure organic superconductor β-(BEDT-TTF)2I3 has been studied. Measurements performed on, respectively, crystals of needle formed morphology and on flake-like crystals with hexagon shape showed equal thermopower results. S was measured along the a-axis as well as along...... the b′-axis. Marked anisotropy is observed in the entire temperature region studied. The temperature dependence, as represented by dS/dT, is, however, nearly isotropic. On the basis of an analysis of anisotropic thermopower we attribute the isotropic part of S to a term depending on the bond...

  5. Wellbore stability analysis in carbonate reservoir considering anisotropic behaviour

    Science.gov (United States)

    Alves, José; Guevara, Nestor; Coelho, Lucia; Baud, Patrick

    2010-05-01

    Carbonate reservoirs represent a major part of the world oil and gas reserves. In particular, recent discoveries in the pre-salt offshore Brazil place big challenges to exploration and production under high temperatures and pressures (HTHP). During production, the extraction of hydrocarbons reduces pore pressure and thus causes an increase in the effective stress and mechanical compaction in the reservoir. The compactive deformation and failure may be spatially extensive or localized to the vicinity of the wellbore, but in either case the consequences can be economically severe involving surface subsidence, well failure and various production problems. The analysis of wellbore stability and more generally of deformation and failure in carbonate environments hinges upon a relevant constitutive modeling of carbonate rocks over a wide range of porosities, in particular, observed microstructure of samples suggests anisotropic behaviour. In this study, we performed a wellbore stability analysis for a lateral wellbore junction in three dimensions. The complex geometry for the wellbore junction was modeled with tetrahedral finite elements considering a rate independent elastic-plastic isotropic material that presented linear behavior during elastic strain and associated flow rule. A finite element model simulating drilling and production phases were done for field conditions from a deep water reservoir in Campos basin, offshore Brazil. In this context, several scenarios were studied considering true 3D orientation for both in situ stresses and geometry of the wellbore junction itself. We discussed the impact of constitutive modeling, considering anisotropic ductile damage and pressure sensitiveness on the wellbore stability. Parameter values for the analysis were based based on experimental data on two micritic porous carbonates. Series of conventional triaxial experiments were performed at room temperature in dry and wet conditions on samples of Comiso and Tavel

  6. Investigation of anisotropic thermal transport in cross-linked polymers

    Science.gov (United States)

    Simavilla, David Nieto

    Thermal transport in lightly cross-linked polyisoprene and polybutadine subjected to uniaxial elongation is investigated experimentally. We employ two experimental techniques to assess the effect that deformation has on this class of materials. The first technique, which is based on Forced Rayleigh Scattering (FRS), allows us to measure the two independent components of the thermal diffusivity tensor as a function of deformation. These measurements along with independent measurements of the tensile stress and birefringence are used to evaluate the stress-thermal and stress-optic rules. The stress-thermal rule is found to be valid for the entire range of elongations applied. In contrast, the stress-optic rule fails for moderate to large stretch ratios. This suggests that the degree of anisotropy in thermal conductivity depends on both orientation and tension in polymer chain segments. The second technique, which is based on infrared thermography (IRT), allows us to measure anisotropy in thermal conductivity and strain induced changes in heat capacity. We validate this method measurements of anisotropic thermal conductivity by comparing them with those obtained using FRS. We find excellent agreement between the two techniques. Uncertainty in the infrared thermography method measurements is estimated to be about 2-5 %. The accuracy of the method and its potential application to non-transparent materials makes it a good alternative to extend current research on anisotropic thermal transport in polymeric materials. A second IRT application allows us to investigate the dependence of heat capacity on deformation. We find that heat capacity increases with stretch ratio in polyisoprene specimens under uniaxial extension. The deviation from the equilibrium value of heat capacity is consistent with an independent set of experiments comparing anisotropy in thermal diffusivity and conductivity employing FRS and IRT techniques. We identify finite extensibility and strain

  7. Anisotropic estimates for sub-elliptic operators

    Institute of Scientific and Technical Information of China (English)

    John; BLAND; Tom; DUCHAMP

    2008-01-01

    In the 1970’s,Folland and Stein studied a family of subelliptic scalar operators L_λwhich arise naturally in the(?)_b-complex.They introduced weighted Sobolev spaces as the natural spaces for this complex,and then obtained sharp estimates for(?)b in these spaces using integral kernels and approximate inverses.In the 1990’s,Rumin introduced a differential complex for compact contact manifolds,showed that the Folland-Stein operators are central to the analysis for the corresponding Laplace operator,and derived the necessary estimates for the Laplacian from the Folland Stein analysis. In this paper,we give a self-contained derivation of sharp estimates in the anisotropic Folland-Stein spaces for the operators studied by Rumin using integration by parts and a modified approach to bootstrapping.

  8. Anisotropic magnetism in field-structured composites

    International Nuclear Information System (INIS)

    Magnetic field-structured composites (FSCs) are made by structuring magnetic particle suspensions in uniaxial or biaxial (e.g., rotating) magnetic fields, while polymerizing the suspending resin. A uniaxial field produces chainlike particle structures, and a biaxial field produces sheetlike particle structures. In either case, these anisotropic structures affect the measured magnetic hysteresis loops, with the magnetic remanence and susceptibility increased significantly along the axis of the structuring field, and decreased slightly orthogonal to the structuring field, relative to the unstructured particle composite. The coercivity is essentially unaffected by structuring. We present data for FSCs of magnetically soft particles, and demonstrate that the altered magnetism can be accounted for by considering the large local fields that occur in FSCs. FSCs of magnetically hard particles show unexpectedly large anisotropies in the remanence, and this is due to the local field effects in combination with the large crystalline anisotropy of this material. (c) 2000 The American Physical Society

  9. Anisotropic star on pseudo-spheroidal spacetime

    Science.gov (United States)

    Ratanpal, B. S.; Thomas, V. O.; Pandya, D. M.

    2016-02-01

    A new class of exact solutions of Einstein's field equations representing anisotropic distribution of matter on pseudo-spheroidal spacetime is obtained. The parameters appearing in the model are restricted through physical requirements of the model. It is found that the models given in the present work is compatible with observational data of a wide variety of compact objects like 4U 1820-30, PSR J1903+327, 4U 1608-52, Vela X-1, PSR J1614-2230, SMC X-4, Cen X-3. A particular model of pulsar PSR J1614-2230 is studied in detail and found that it satisfies all physical requirements needed for physically acceptable model.

  10. Recent developments in anisotropic heterogeneous shell theory

    CERN Document Server

    Grigorenko, Alexander Ya; Grigorenko, Yaroslav M; Vlaikov, Georgii G

    2016-01-01

    This volume focuses on the relevant general theory and presents some first applications, namely those based on classical shell theory. After a brief introduction, during which the history and state-of-the-art are discussed, the first chapter presents the mechanics of anisotropic heterogeneous shells, covering all relevant assumptions and the basic relations of 3D elasticity, classical and refined shell models. The second chapter examines the numerical techniques that are used, namely discrete orthogonalization, spline-collocation and Fourier series, while the third highlights applications based on classical theory, in particular, the stress-strain state of shallow shells, non-circular shells, shells of revolution, and free vibrations of conical shells. The book concludes with a summary and an outlook bridging the gap to the second volume.

  11. Hypergratings: nanophotonics in planar anisotropic metamaterials.

    Science.gov (United States)

    Thongrattanasiri, Sukosin; Podolskiy, Viktor A

    2009-04-01

    We present a technique capable of producing subwavelength focal spots in planar nonresonant structures not limited to the near-field of the source. The approach combines the diffraction gratings that generate the high-wave-vector-number modes and planar slabs of homogeneous anisotropic metamaterials that propagate these waves and combine them at the subwavelength focal spots. In a sense, the technique combines the benefits of Fresnel lens, near-field zone plates, hyperlens, and superlens and at the same time resolves their fundamental limitations. Several realizations of the proposed technique for visible, near-IR, and mid-IR frequencies are proposed, and their performance is analyzed theoretically and numerically. Generalizations of the developed approach for subdiffractional imaging and on-chip photonics are suggested. PMID:19340161

  12. Penta-quark in Anisotropic Lattice QCD

    CERN Document Server

    Ishii, N; Iida, H; Oka, M; Okiharu, F; Suganuma, H

    2005-01-01

    Penta-quark (5Q) baryons are studied using anisotropic lattice QCD for high-precision measurement of temporal correlators. A non-NK-type interpolating field is employed to study the 5Q states with J^P=1/2^{\\pm} and I=0. In J^P=1/2^+ channel, the lowest-lying state is found at m_{5Q} \\simeq 2.25 GeV, which is too massive to be identified as the Theta^+(1540). In J^P=1/2^- channel, the lowest-lying state is found at m_{5Q} \\simeq 1.75 GeV. To distinguish a compact 5Q resonance state from an NK scattering state, a new method with ``hybrid boundary condition (HBC)'' is proposed. As a result of the HBC analysis, the observed state in the negative-parity channel turns out to be an $NK$ scattering state.

  13. Observable effects of anisotropic bubble nucleation

    CERN Document Server

    Blanco-Pillado, Jose J

    2010-01-01

    Our universe may have formed via bubble nucleation in an eternally-inflating background. Furthermore, the background may have a compact dimension--the modulus of which tunnels out of a metastable minimum during bubble nucleation--which subsequently grows to become one of our three large spatial dimensions. Then the reduced symmetry of the background is equivalent to anisotropic initial conditions in our bubble universe. We compute the inflationary spectrum in such a scenario and, as a first step toward understanding the effects of anisotropy, project it onto spherical harmonics. The resulting spectrum exhibits anomalous multipole correlations, their relative amplitude set by the present curvature parameter, which extend to arbitrarily large multipole moments. This raises the possibility of future detection, if slow-roll inflation does not last too long within our bubble. A full understanding of the observational signal must account for the effects of background anisotropy on photon free streaming, and is left...

  14. Adiabatic theory for anisotropic cold molecule collisions

    International Nuclear Information System (INIS)

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment 4He(1s2s 3S) + HD(1s2) → 4He(1s2) + HD+(1s) + e− [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings

  15. Adiabatic theory for anisotropic cold molecule collisions.

    Science.gov (United States)

    Pawlak, Mariusz; Shagam, Yuval; Narevicius, Edvardas; Moiseyev, Nimrod

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment (4)He(1s2s (3)S) + HD(1s(2)) → (4)He(1s(2)) + HD(+)(1s) + e(-) [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings. PMID:26298122

  16. Adiabatic theory for anisotropic cold molecule collisions

    Energy Technology Data Exchange (ETDEWEB)

    Pawlak, Mariusz [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń (Poland); Shagam, Yuval; Narevicius, Edvardas [Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100 (Israel); Moiseyev, Nimrod [Schulich Faculty of Chemistry, Technion–Israel Institute of Technology, Haifa 32000 (Israel); Faculty of Physics, Technion–Israel Institute of Technology, Haifa 32000 (Israel)

    2015-08-21

    We developed an adiabatic theory for cold anisotropic collisions between slow atoms and cold molecules. It enables us to investigate the importance of the couplings between the projection states of the rotational motion of the atom about the molecular axis of the diatom. We tested our theory using the recent results from the Penning ionization reaction experiment {sup 4}He(1s2s {sup 3}S) + HD(1s{sup 2}) → {sup 4}He(1s{sup 2}) + HD{sup +}(1s) + e{sup −} [Lavert-Ofir et al., Nat. Chem. 6, 332 (2014)] and demonstrated that the couplings have strong effect on positions of shape resonances. The theory we derived provides cross sections which are in a very good agreement with the experimental findings.

  17. Anisotropic Shock Propagation in Single Crystals

    Energy Technology Data Exchange (ETDEWEB)

    Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P

    2005-05-26

    Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively.

  18. Anisotropic thermal conductivity in sheared polypropylene

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Shao Cong; Tanner, Roger I. [The University of Sydney, Rheology Research Group, School of Aerospace, Mechanical and Mechatronic Engineering, Sydney, NSW (Australia)

    2006-01-01

    We discuss the anisotropy of the thermal conductivity tensor in polymer flow in this paper. Isotactic polypropylene (iPP) specimens were deformed by injection moulding at high shear rates and by steady shear at low shear rates, and were then quenched. The thermal conductivities parallel and perpendicular to the shear direction were measured using modulated differential scanning calorimetry (MDSC) in accordance with the ASTM E1952-01. The measured results showed that the thermal conductivity of the sheared polymer was anisotropic with an increase in the shear direction. The thermal conductivity can be regarded as varying either with the strain or the stress, as suggested by Van den Brule (1989). In addition to the Van den Brule mechanism, crystallization during flow also changes the thermal conductivity and this effect may often be dominant. Suggestions for procedures in processing computations, based on both effects, are given. (orig.)

  19. Electrodynamic features of anisotropic hard superconductors

    CERN Document Server

    Voloshin, I F; Fisher, L M; Aksenov, A V; Yampolskij, V A

    2001-01-01

    The low-frequency electromagnetic response of the superconducting plates, which are characterized by strong anisotropy of the current-carrying capacity in the sample plane, is experimentally and theoretically studied. The measurements are carried out on the polycrystalline textured plates of the Y-123 system as well as on the monocrystal. It is shown that the form of curves describing the dependence of the q relative losses on the h sub 0 alternate field amplitudes is highly sensitive to the h sub 0 vector orientation in the sample plane. The q(h sub 0) dependence by the h sub 0 orientation along one of the main directions of the current anisotropic critical density symmetry the q(h sub 0) dependence is characterized by the single dimensional maximum. Two dimensional maxima are observed on the q(h sub 0) curve by the h sub 0 significant deviation from the main directions

  20. Anisotropic photon migration in human skeletal muscle

    International Nuclear Information System (INIS)

    It is demonstrated in the short head of the human biceps brachii of 16 healthy subjects (12 males and 4 females) that near infrared photon migration is anisotropic. The probability for a photon to travel along the direction of the muscle fibres is higher (∼0.4) than that of travelling along a perpendicular axis (∼0.3) while in the adipose tissue the probability is the same (∼0.33) in all directions. Considering that the muscle fibre orientation is different depending on the type of muscle considered, and that inside a given skeletal muscle the orientation may change, the present findings in part might explain the intrasubject variability observed in the physiological parameters measured by near infrared spectroscopy techniques. In other words, the observed regional differences might not only be physiological differences but also optical artefacts. (note)