Quantitative Permeability Prediction for Anisotropic Porous Media
Sheng, Q.; Thompson, K. E.
2012-12-01
Pore-scale modeling as a predictive tool has become an integral to both research and commercial simulation in recent years. Permeability is one of the most important of the many properties that can be simulated. Traditionally, permeability is determined using Darcy's law, based on the assumption that the pressure gradient is aligned with the principal flow direction. However, a wide variety of porous media exhibit anisotropic permeability due to particle orientation or laminated structure. In these types of materials, the direction of fluid flow is not aligned with the pressure gradient (except along the principal directions). Thus, it is desirable to predict the full permeability tensor for anisotropic materials using a first-principles pore-scale approach. In this work, we present a fast method to determine the full permeability tensor and the principal directions using a novel network modeling algorithm. We also test the ability of network modeling (which is an approximate method) to detect anisotropy in various structures. Both computational fluid dynamics (CFD) methods and network modeling have emerged as effective techniques to predict rock properties. CFD models are more rigorous but computationally expensive. Network modeling involves significant approximations but can be orders-of-magnitude more efficient computationally, which is important for both speed and the ability to model larger scales. This work uses network modeling, with simulations performed on two types of anisotropic materials: laminated packings (with layers of different sized particles) and oriented packings (containing particles with preferential orientation). Pore network models are created from the porous media data, and a novel method is used to determine the permeability tensor and principal flow direction using pore network modeling. The method is verified by comparing the calculated principal directions with the known anisotropy and also by comparing permeability with values from CFD
Numerical investigation of nanoparticles transport in anisotropic porous media.
Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu
2015-10-01
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties is an essential feature that exists almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain. PMID:26212784
Numerical investigation of nanoparticles transport in anisotropic porous media
Salama, Amgad
2015-07-13
In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.
Fabric dependence of quasi-waves in anisotropic porous media.
Cardoso, Luis; Cowin, Stephen C
2011-05-01
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed for pure wave modes propagating along a plane of symmetry in an anisotropic medium. Key to this development was the inclusion of the fabric tensor--a quantitative stereological measure of the degree of structural anisotropy of bone--into the linear poroelasticity theory. In the present study, this framework is extended to the propagation of mixed wave modes along an arbitrary direction in anisotropic porous media called quasi-waves. It was found that differences between phase and group velocities are due to the anisotropy of the bone microarchitecture, and that the experimental wave velocities are more accurately predicted by the poroelastic model when the fabric tensor variable is taken into account. This poroelastic wave propagation theory represents an alternative for bone quality assessment beyond BMD. PMID:21568431
Fabric dependence of quasi-waves in anisotropic porous media
Cardoso, Luis; Cowin, Stephen C.
2011-01-01
Assessment of bone loss and osteoporosis by ultrasound systems is based on the speed of sound and broadband ultrasound attenuation of a single wave. However, the existence of a second wave in cancellous bone has been reported and its existence is an unequivocal signature of poroelastic media. To account for the fact that ultrasound is sensitive to microarchitecture as well as bone mineral density (BMD), a fabric-dependent anisotropic poroelastic wave propagation theory was recently developed ...
Institute of Scientific and Technical Information of China (English)
CAI; Ruixian; GOU; Chenhua; ZHANG; Na
2005-01-01
Some algebraically explicit analytical solutions are derived for the anisotropic Brinkman model―an improved Darcy model―describing the natural convection in porous media. Besides their important theoretical meaning (for example, in analyzing the non-Darcy and anisotropic effects on the convection), such analytical solutions can be the benchmark solutions that can promote the development of computational heat and mass transfer. Some solutions considering the anisotropic effect of permeability have been given previously by the authors, and this paper gives solutions including the anisotropic effect of thermal conductivity and the effect of heat sources.
Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media
Chen, J.
2014-06-03
This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.
Generalization of the van der Waals equation for anisotropic fluids in porous media
Holovko, Myroslav; Shmotolokha, Volodymyr
2015-01-01
The generalized van der Waals equation of state for anisotropic liquids in porous media consists of two terms.One of them is based on the equation of state for hard spherocylinders in random porous media obtained from the scaled particle theory.The second term is expressed in terms of the mean value of attractive intermolecular interactions.The obtained equation is used for the investigation of the gas-liquid-nematic phase behavior of a molecular system depending on the anisotropy of molecule...
Computation of the transient flow in zoned anisotropic porous media by the boundary element method
Bruch, E.; Grilli, S.
Results on the application of the BEM to transient two-dimensional flows in zoned anisotropic porous media are presented, including the iterative calculation of the free surface seepage position. The classical BEM equations are discretized by linear, quadratic, or cubic elements, employing special singular numerical quadrature rules. The method is improved by the incorporation of a subregion division. The present technique is shown to be very accurate and to avoid previously encountered oscillation problems.
Mechanical transport and porous media equivalence in anisotropic fracture networks
International Nuclear Information System (INIS)
The objective of this work is to investigate the directional characteristics of hydraulic effective porosity in an effort to understand porous medium equivalence for continuous and discontinuous fracture systems. Continuous systems contain infinitely long fractures. Discontinuous systems consist of fractures with finite lengths. The distribution of apertures (heterogeneity) has a major influence on the degree of porous medium equivalence for distributed continuous and discontinuous systems. When the aperture distribution is narrow, the hydraulic effective porosity is slightly less than the total porosity for continuous systems, and greater than the rock effective porosity for discontinuous systems. However, when heterogeneity is significant, the hydraulic effective porosity is directionally dependent and greater than total porosity for both systems. Non-porous medium behavior ws found to differ for distributed continuous systems and for continuous systems with parallel sets. For the latter systems, hydraulic effective porosity abruptly decreases below total porosity in those particular directions where the hydraulic gradient and the orientation of a fracture set are orthogonal. The results for the continuous systems with parallel sets also demonstrate that a system that behaves like a continuum for fluid flux may not behave like a continuum for mechanical transport. 3 references, 13 figures
Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H.; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick
2014-01-01
The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computat...
De Paoli, Marco; Zonta, Francesco; Soldati, Alfredo
2016-05-01
Solute convection in porous media at high Rayleigh-Darcy numbers has important fundamental features and may also bear implications for geological CO2 sequestration processes. With the aid of direct numerical simulations, we examine the role of anisotropic permeability on the distribution of solutal concentration in fluid saturated porous medium. Our computational analyses span over few decades of Rayleigh-Darcy number and confirm the linear scaling of Nusselt number that was previously found in the literature. In addition, we find that anisotropic permeability γ < 1, i.e., with vertical permeability smaller than horizontal permeability, effectively increases the Nusselt number compared with isotropic conditions. We link this seemingly counterintuitive effect with the occurring modifications to the flow topology in the anisotropic conditions. Finally, we use our data computed for the two-sided configuration (i.e., Dirichlet conditions on upper and lower boundaries) to examine the time evolution of solutal dynamics in the one-sided configuration, and we demonstrate that the finite-time (short-term) amount of CO2 that can be dissolved in anisotropic sedimentary rocks is much larger than in isotropic rocks.
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2009-11-20
Poroelastic analysis usually progresses from assumed knowledge of dry or drained porous media to the predicted behavior of fluid-saturated and undrained porous media. Unfortunately, the experimental situation is often incompatible with these assumptions, especially when field data (from hydrological or oil/gas reservoirs) are involved. The present work considers several different experimental scenarios typified by one in which a set of undrained poroelastic (stiffness) constants has been measured using either ultrasound or seismic wave analysis, while some or all of the dry or drained constants are normally unknown. Drained constants for such a poroelastic system can be deduced for isotropic systems from available data if a complete set of undrained compliance data for the principal stresses are available - together with a few other commonly measured quantities such as porosity, fluid bulk modulus, and grain bulk modulus. Similar results are also developed here for anisotropic systems having up to orthotropic symmetry if the system is granular (i.e., composed of solid grains assembled into a solid matrix, either by a cementation process or by applied stress) and the grains are known to be elastically homogeneous. Finally, the analysis is also fully developed for anisotropic systems with nonhomogeneous (more than one mineral type), but still isotropic, grains - as well as for uniform collections of anisotropic grains as long as their axes of symmetry are either perfectly aligned or perfectly random.
Transverse mixing in three-dimensional nonstationary anisotropic heterogeneous porous media
DEFF Research Database (Denmark)
Cirpka, Olaf; Chiogna, Gabriele; Rolle, Massimo;
2015-01-01
Groundwater plumes originating from continuously emitting sources are typically controlled by transverse mixing between the plume and reactants in the ambient solution. In two-dimensional domains, heterogeneity causes only weak enhancement of transverse mixing in steady-state flows. In three......-dimensional domains, more complex flow patterns are possible because streamlines can twist. In particular, spatially varying orientation of anisotropy can cause steady-state groundwater whirls. We analyze steady-state solute transport in three-dimensional locally isotropic heterogeneous porous media with blockwise...... anisotropic correlation structure, in which the principal directions of anisotropy differ from block to block. For this purpose, we propose a transport scheme that relies on advective transport along streamlines and transverse-dispersive mass exchange between them based on Voronoi tessellation. We compare...
Negara, Ardiansyah
2015-03-04
Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.
Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick
2014-01-01
The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions. PMID:23237543
Yong Wang; Wenzheng Yue; Mo Zhang
2016-01-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those ...
Negara, Ardiansyah
2014-04-21
Carbon dioxide (CO2) sequestration in saline aquifers is considered as one of the most viable and promising ways to reduce CO2 concentration in the atmosphere. CO2 is injected into deep saline formations at supercritical state where its density is smaller than the hosting brine. This motivates an upward motion and eventually CO2 is trapped beneath the cap rock. The trapped CO2 slowly dissolves into the brine causing the density of the mixture to become larger than the host brine. This causes gravitational instabilities that is propagated and magnified with time. In this kind of density-driven flows, the CO2-rich brines migrate downward while the brines with low CO2 concentration move upward. With respect to the properties of the subsurface aquifers, there are instances where saline formations can possess anisotropy with respect to their hydraulic properties. Such anisotropy can have significant effect on the onset and propagation of flow instabilities. Anisotropy is predicted to be more influential in dictating the direction of the convective flow. To account for permeability anisotropy, the method of multipoint flux approximation (MPFA) in the framework of finite differences schemes is used. The MPFA method requires more point stencil than the traditional two-point flux approximation (TPFA). For example, calculation of one flux component requires 6-point stencil and 18-point stencil in 2-D and 3-D cases, respectively. As consequence, the matrix of coefficient for obtaining the pressure fields will be quite complex. Therefore, we combine the MPFA method with the experimenting pressure field technique in which the problem is reduced to solving multitude of local problems and the global matrix of coefficients is constructed automatically, which significantly reduces the complexity. We present several numerical scenarios of density-driven flow simulation in homogeneous, layered, and heterogeneous anisotropic porous media. The numerical results emphasize the
Negara, Ardiansyah
2015-05-01
Anisotropy of hydraulic properties of the subsurface geologic formations is an essential feature that has been established as a consequence of the different geologic processes that undergo during the longer geologic time scale. With respect to subsurface reservoirs, in many cases, anisotropy plays significant role in dictating the direction of flow that becomes no longer dependent only on driving forces like the pressure gradient and gravity but also on the principal directions of anisotropy. Therefore, there has been a great deal of motivation to consider anisotropy into the subsurface flow and transport models. In this dissertation, we present subsurface flow modeling in single and dual continuum anisotropic porous media, which include the single-phase groundwater flow coupled with the solute transport in anisotropic porous media, the two-phase flow with gravity effect in anisotropic porous media, and the natural gas flow in anisotropic shale reservoirs. We have employed the multipoint flux approximation (MPFA) method to handle anisotropy in the flow model. The MPFA method is designed to provide correct discretization of the flow equations for general orientation of the principal directions of the permeability tensor. The implementation of MPFA method is combined with the experimenting pressure field approach, a newly developed technique that enables the solution of the global problem breaks down into the solution of multitude of local problems. The numerical results of the study demonstrate the significant effects of anisotropy of the subsurface formations. For the single-phase groundwater flow coupled with the solute transport modeling in anisotropic porous media, the results shows the strong impact of anisotropy on the pressure field and the migration of the solute concentration. For the two-phase flow modeling with gravity effect in anisotropic porous media, it is observed that the buoyancy-driven flow, which emerges due to the density differences between the
Streamline Simulation of a Two-Phase Flow in Heterogeneous and Anisotropic Porous Media
Cervantes, D.; Salazar, A.; de la Cruz, L.
2013-05-01
numerical errors on the solution. The domain of study is a heterogeneous and anisotropic porous media, with several distributions of injector and producer wells. [1] Muskat, M. and Wyckoff, R.: "Theoretical Analysis of Waterfooding Networks," Trans. AIME (1934) 107, 62-77.
Plouraboué, Franck; Bergeon, Alain; Azaïez, Mejdi
2001-01-01
We show how Lagrangian coordinates provide an effective representation of how difﬁcult non-linear, hyperbolic transport problems in porous media can be dealt with. Recalling Lagrangian description ﬁrst, we then derive some basic but remarkable properties useful for the numerical com- putation of projected transport operators. We furthermore introduce new generalized Lagrangian coordinates with their application to the Darcy–Muskat two-phase ﬂow models. We show how these general...
Wang, Yong; Yue, Wenzheng; Zhang, Mo
2016-06-01
The anisotropic transport of thermal neutron in heterogeneous porous media is of great research interests in many fields. In this paper, it is the first time that a new model based on micron X-ray computed tomography (CT) has been proposed to simultaneously consider both the separation of matrix and pore and the distribution of mineral components. We apply the Monte Carlo method to simulate thermal neutrons transporting through the model along different directions, and meanwhile detect those unreacted thermal neutrons by an array detector on the other side of the model. Therefore, the anisotropy of pore structure can be imaged by the amount of received thermal neutrons, due to the difference of rock matrix and pore-filling fluids in the macroscopic reaction cross section (MRCS). The new model has been verified by the consistent between the simulated data and the pore distribution from X-ray CT. The results show that the evaluation of porosity can be affected by the anisotropy of media. Based on the research, a new formula is developed to describe the correlation between the resolution of array detectors and the quality of imaging. The formula can be further used to analyze the critical resolution and the suitable number of thermal neutrons emitted in each simulation. Unconventionally, we find that a higher resolution cannot always lead to a better image.
Salama, Amgad
2014-09-01
In this work we apply the experimenting pressure field approach to the numerical solution of the single phase flow problem in anisotropic porous media using the multipoint flux approximation. We apply this method to the problem of flow in saturated anisotropic porous media. In anisotropic media the component flux representation requires, generally multiple pressure values in neighboring cells (e.g., six pressure values of the neighboring cells is required in two-dimensional rectangular meshes). This apparently results in the need for a nine points stencil for the discretized pressure equation (27 points stencil in three-dimensional rectangular mesh). The coefficients associated with the discretized pressure equation are complex and require longer expressions which make their implementation prone to errors. In the experimenting pressure field technique, the matrix of coefficients is generated automatically within the solver. A set of predefined pressure fields is operated on the domain through which the velocity field is obtained. Apparently such velocity fields do not satisfy the mass conservation equations entailed by the source/sink term and boundary conditions from which the residual is calculated. In this method the experimenting pressure fields are designed such that the residual reduces to the coefficients of the pressure equation matrix. © 2014 Elsevier B.V. All rights reserved.
International Nuclear Information System (INIS)
Although transport calculations are often formulated in terms of mass-based isotropic distribution coefficients, it is the abundance of reactive surface areas of subsurface materials that controls contaminant adsorption. In water-saturated homogeneous systems devoid of advective fluxes (e.g., batch experiments), the available reactive surface area is similar to the total surface area (as measured by conventional methods such as BET gas adsorption). However, in physically and chemically heterogeneous systems with advective fluxes, the effective reactive surface area (i.e., the surface area that a packet of advecting water interacts with) is smaller than the laboratory measured surface area and is a complex function of advective velocity and the correlation structures of the physical and chemical heterogeneities. Theoretical derivations for an important but simple type of heterogeneity (fine-scale horizontal layering) suggest that the effective reactive surface area is an anisotropic property of the medium and is inversely correlated with the anisotropy in hydraulic conductivity. The implications of reactive transport anisotropy include the concept that the retardation factor should be treated as a directional property rather than being treated as a constant. Furthermore, because of the inverse relationship between effective reactive surface area and hydraulic conductivity, batch adsorption experiments tend to overestimate the retention of contaminants relative to intact natural materials
A review of a selection of papers describing the theory of transport in anisotropic porous media
International Nuclear Information System (INIS)
It is now generally accepted that the dispersion length, as defined in the classical advection-dispersion equation, is scale dependent. This report collects together and reviews some of the seminal papers in which have appeared the models and techniques that have led to our present understanding of solute transport in spatially stochastic media. Thus we examine the early work of Taylor on diffusion, the work of Saffman on capillaries, through to the more recent contributions of Dagan and Gelhar which regard the advective-dispersion equation as having stochastic parameters. The reports discuss these papers highlighting the physical arguments and in places deriving some of the more obscure results. This work is carried out by a cost-sharing contract with the European Atomic Energy Community for a research programme on Management, Storage and Radioactive waste disposal. 34 refs
Fractures in anisotropic media
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Bejan, A
2006-01-01
Provides an introduction to convection in porous media, such as fibrous insulation, geological strata, and catalytic reactors. This third edition covers ""designed"" porous media, the theory of deformable media, modeling viscous dissipation in hyperporous media, and more. It is useful for researchers, practicing engineers and students.
Photon states in anisotropic media
Indian Academy of Sciences (India)
Deepak Kumar
2002-08-01
Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
Saad, Bilal Mohammed
2014-01-01
We study the convergence of a combined finite volume nonconforming finite element scheme on general meshes for a partially miscible two-phase flow model in anisotropic porous media. This model includes capillary effects and exchange between the phase. The diffusion term,which can be anisotropic and heterogeneous, is discretized by piecewise linear nonconforming triangular finite elements. The other terms are discretized by means of a cell-centered finite volume scheme on a dual mesh. The relative permeability of each phase is decentred according the sign of the velocity at the dual interface. The convergence of the scheme is proved thanks to an estimate on the two pressures which allows to show estimates on the discrete time and compactness results in the case of degenerate relative permeabilities. A key point in the scheme is to use particular averaging formula for the dissolution function arising in the diffusion term. We show also a simulation of CO
Energy Technology Data Exchange (ETDEWEB)
Marsden, S.S.
1986-07-01
In 1978 a literature search on selective blocking of fluid flow in porous media was done by Professor S.S. Marsden and two of his graduate students, Tom Elson and Kern Huppy. This was presented as SUPRI Report No. TR-3 entitled ''Literature Preview of the Selected Blockage of Fluids in Thermal Recovery Projects.'' Since then a lot of research on foam in porous media has been done on the SUPRI project and a great deal of new information has appeared in the literature. Therefore we believed that a new, up-to-date search should be done on foam alone, one which would be helpful to our students and perhaps of interest to others. This is a chronological survey showing the development of foam flow, blockage and use in porous media, starting with laboratory studies and eventually getting into field tests and demonstrations. It is arbitrarily divided into five-year time periods. 81 refs.
Energy Technology Data Exchange (ETDEWEB)
Dickenson, Eric [Univ. of California, Davis, CA (United States)
1996-05-01
A novel non-intrusive fluorescence imaging technique is used to study microscopic transport within porous media. The system consists of a column packed with heterogeneous-transparent particles and a refractive index-matched aqueous fluid seeded with fluorescent tracer particles or an organic dye. The flow through the column is illuminated by a planar sheet of laser beam and details of flow and transport through the porous regions can be observed microscopically and qualitative and quantitative transport information can be obtained. Various geometric, flow, and concentration quantities can be determined over a three dimensional volume within the column. The quantities include local and volumetrically averaged porosities, velocity and concentration fields, microscopic and volumetrically averaged dispersive fluxes and the dispersion coefficient. The qualitative and quantitative results will provide a better understanding for modeling of transport in porous media.
Electromagnetism on anisotropic fractal media
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Naff, R.L.
1998-01-01
The late-time macrodispersion coefficients are obtained for the case of flow in the presence of a small-scale deterministic transient in a three-dimensional anisotropic, heterogeneous medium. The transient is assumed to affect only the velocity component transverse to the mean flow direction and to take the form of a periodic function. For the case of a highly stratified medium, these late-time macrodispersion coefficients behave largely as the standard coefficients used in the transport equation. Only in the event that the medium is isotropic is it probable that significant deviations from the standard coefficients would occur.
Nield, Donald A
2013-01-01
Convection in Porous Media, 4th Edition, provides a user-friendly introduction to the subject, covering a wide range of topics, such as fibrous insulation, geological strata, and catalytic reactors. The presentation is self-contained, requiring only routine mathematics and the basic elements of fluid mechanics and heat transfer. The book will be of use not only to researchers and practicing engineers as a review and reference, but also to graduate students and others entering the field. The new edition features approximately 1,750 new references and covers current research in nanofluids, cellular porous materials, strong heterogeneity, pulsating flow, and more. Recognized as the standard reference in the field Includes a comprehensive, 250-page reference list Cited over 2300 times to date in its various editions Serves as an introduction for those entering the field and as a comprehensive reference for experienced researchers Features new sections on nanofluids, carbon dioxide sequestration, and applications...
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander
There is a considerable and ongoing effort aimed at understanding the transport and the deposition of suspended particles in porous media, especially non-Fickian transport and non-exponential deposition of particles. In this work, the influential parameters in filtration models are studied to...... understand their effects on the non-Fickian transport and the non-exponential deposition. The filtration models are validated by the comparisons between the modelling results and the experimental data.The elliptic equation with distributed filtration coefficients may be applied to model non-Fickian transport...... and hyperexponential deposition. The filtration model accounting for the migration of surface associated particles may be applied for non-monotonic deposition....
Nield, Donald A
1992-01-01
This book provides a user-friendly introduction to the topic of convection in porous media The authors as- sume that the reader is familiar with the basic elements of fluid mechanics and heat transfer, but otherwise the book is self-contained The book will be useful both as a review (for reference) and as a tutorial work, suitable as a textbook in a graduate course or seminar The book brings into perspective the voluminous research that has been performed during the last two decades The field has recently exploded because of worldwide concern with issues such as energy self-sufficiency and pollution of the environment Areas of application include the insulation of buildings and equipment, energy storage and recovery, geothermal reservoirs, nuclear waste disposal, chemical reactor engineering, and the storage of heat-generating materials such as grain and coal Geophysical applications range from the flow of groundwater around hot intrusions to the stability of snow against avalanches
Porous media geometry and transports
Adler, Pierre
1992-01-01
The goal of ""Porous Media: Geometry and Transports"" is to provide the basis of a rational and modern approach to porous media. This book emphasizes several geometrical structures (spatially periodic, fractal, and random to reconstructed) and the three major single-phase transports (diffusion, convection, and Taylor dispersion).""Porous Media"" serves various purposes. For students it introduces basic information on structure and transports. Engineers will find this book useful as a readily accessible assemblage of al the major experimental results pertaining to single-phase tr
Transport theory in anisotropic media
International Nuclear Information System (INIS)
A theory of particle scattering in anisotropic media is developed. That is, a medium in which the microstructure causes the mean free paths of the particles to become dependent on their direction of motion with respect to some fixed axis. The equation which results is similar to the normal, one-speed Boltzmann transport equation but has cross-sections which are functions of direction. This equation is solved for arbitrary cross-sectional dependence on direction in plane geometry. Four distinct problems are considered: (1) the particle distribution arising from a plane source in an infinite medium, (2) the albedo problem and Milne problem for a half-space and the corresponding 'thick slab' transmission problem, (3) solution of the integral form of the Boltzmann equation for a special case of cross-sectional dependence which leads to results similar to the well-known rod model and (4) the energy spectrum of particles slowing down from a high energy source by elastic collisions. In each of these four problems the influence of the cross-section is seen to be significant in comparison with the conventional constant cross-section results, to which they revert in this limit. Some suggestions about physical applications of the results are made. (author)
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Anisotropic damage coupled modeling of saturated porous rock
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
It is widely acknowledged that the natural rock mass is anisotropic and its failing type is also non-isotropic. An orthotropic elastic damaged model has been proposed in which the elastic deformation,the damaged deformation and irreversible deformation can be identified respectively. A second rank damage tensor is employed to characterize the induced damage and damage evolution related to the propagation conditions of microcracks. A specific form of the Gibbs free energy function is used to obtain the effective elastic stiffness and the limited scopes of damage parameters are suggested. The model’s parameter determination is proposed by virtue of conventional tri-axial test. Then,the proposed model is developed to simulate the coupled hydraulic mechanical responses and traction behaviors in different loading paths of porous media.
Transport Upscaling in Porous Media
Nedreli, Anette Cathrine
2014-01-01
Numerical models are important for modeling what happens in porous media. In this thesis we will simulate the heat transport in geothermal reservoirs. Because these reservoirs are usually quite large, we will make a model that upgrids the fine scale reservoir into a coarser scale reservoir that has a smaller amount of grid cells. We will look at upgridding based on different indicators; Cartesian, permeability, velocity and time of flight. We need to upscale the energy equation so we can solv...
Simulation of uncompressible fluid flow through a porous media
Energy Technology Data Exchange (ETDEWEB)
Ramirez, A. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico)], E-mail: adaramil@yahoo.com.mx; Gonzalez, J.L. [Instituto Politecnico Nacional (SEPI-ESIQIE-IPN), Unidad Profesional Zacatenco, Laboratorio de Analisis Met. (Edif. ' Z' y Edif. ' 6' P.B.), Mexico City (Mexico); Carrillo, F. [Instituto Politecnico Nacional (SEPI-CICATA-IPN), Unidad Altamira Tamaulipas, Mexico (Mexico); Lopez, S. [Instituto Mexicano del Petroleo (I.M.P.-D.F.), Mexico (Mexico)
2009-02-28
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.
Simulation of uncompressible fluid flow through a porous media
International Nuclear Information System (INIS)
Recently, a great interest has been focused for investigations about transport phenomena in disordered systems. One of the most treated topics is fluid flow through anisotropic materials due to the importance in many industrial processes like fluid flow in filters, membranes, walls, oil reservoirs, etc. In this work is described the formulation of a 2D mathematical model to simulate the fluid flow behavior through a porous media (PM) based on the solution of the continuity equation as a function of the Darcy's law for a percolation system; which was reproduced using computational techniques reproduced using a random distribution of the porous media properties (porosity, permeability and saturation). The model displays the filling of a partially saturated porous media with a new injected fluid showing the non-defined advance front and dispersion of fluids phenomena.
Translation correlations in anisotropically scattering media
Judkewitz, Benjamin; Horstmeyer, Roarke; Vellekoop, Ivo M.; Papadopoulos, Ioannis N.; Yang, Changhuei
2015-08-01
Controlling light propagation across scattering media by wavefront shaping holds great promise for a wide range of communications and imaging applications. But, finding the right shape for the wavefront is a challenge when the mapping between input and output scattered wavefronts (that is, the transmission matrix) is not known. Correlations in transmission matrices, especially the so-called memory effect, have been exploited to address this limitation. However, the traditional memory effect applies to thin scattering layers at a distance from the target, which precludes its use within thick scattering media, such as fog and biological tissue. Here, we theoretically predict and experimentally verify new transmission matrix correlations within thick anisotropically scattering media, with important implications for biomedical imaging and adaptive optics.
A finite difference, multipoint flux numerical approach to flow in porous media: Numerical examples
Osman, Hossam
2012-06-17
It is clear that none of the current available numerical schemes which may be adopted to solve transport phenomena in porous media fulfill all the required robustness conditions. That is while the finite difference methods are the simplest of all, they face several difficulties in complex geometries and anisotropic media. On the other hand, while finite element methods are well suited to complex geometries and can deal with anisotropic media, they are more involved in coding and usually require more execution time. Therefore, in this work we try to combine some features of the finite element technique, namely its ability to work with anisotropic media with the finite difference approach. We reduce the multipoint flux, mixed finite element technique through some quadrature rules to an equivalent cell-centered finite difference approximation. We show examples on using this technique to single-phase flow in anisotropic porous media.
Gauge Field Optics with Anisotropic Media
Liu, Fu
2014-01-01
By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.
Colloid migration in porous media
International Nuclear Information System (INIS)
Retention of radionuclides for long periods near waste repositories depends upon multiple barriers, one of which is adsorption to immobile solid surfaces. Since small particles and colloidal matter have high adsorption capacities per unit mass and can be mobile in subsurface flows, colloidal transport of waste components requires analysis. Theories for predicting colloid migration through porous media have been developed in the filtration literature. The applicability of filtration theories for predicting particle and colloid transport. Emphasis is on suspended matter much smaller than pore sizes, where physical and chemical forces control migration rather than size dependent physical straining. In general, experimentally verifiable theories exist for particle filtration by clean media, and a sensitivity analysis is possible on particle and media properties and fluid flow rate. When particle aggregates accumulate within pores, media permeability decreases, resulting in flow field alteration and possible radionuclide isolation. An analysis of the limited experimental data available indicates that present theories cannot predict long-term colloid transport when permeability reduction occurs. The coupling of colloid attachment processes and the hydrologic flow processes requires more extensive laboratory field research than has currently been carried out. An emphasis on the fundamental mechanisms is necessary to enhance long-term predictability
Propagation of waves in porous media
Çorapçıoplu, M. Yavuz; Tuncay, Kağan
1996-01-01
Wave propagation in porous media is of interest in various diversified areas of science and engineering. The theory of the phenomenon has been studied extensively in soil mechanics, seismology, acoustics, earthquake engineering, ocean engineering, geophysics, and many other disciplines. This review presents a general survey of the literature within the context of porous media mechanics. Following a review of the Biot's theory of wave propagation in linear, elastic, fluid saturated porous medi...
Fundamental Solution of the Anisotropic Porous Medium Equation
Institute of Scientific and Technical Information of China (English)
Bin Heng SONG; Huai Yu JIAN
2005-01-01
We establish the existence of fundamental solutions for the anisotropic porous medium equation, ut = ∑n i=1(umi)xixi in sRn × (0,∞), where m1,m2,..., and mn are positive constants satisfying min1≤i≤n{mi} ≤ 1, Σni=i mi ＞ n -- 2, and max1≤i≤n{mi} ≤1/n+ Σi=1 mi).
Modeling biologically reactive transport in porous media
International Nuclear Information System (INIS)
A one-dimensional biofilm-based reactive transport model is developed to simulate biologically mediated substrate metabolism and contaminant destruction in saturated porous media. The resulting equations are solved by a finite-difference based, three-level, operator-split approach. The numerical solution procedure is stable, easy-to-code, and computationally efficient. As an example problem, biological denitrification and fortuitous CT destruction processes in one-dimensional porous media is studied. The simulation results of the example problem show that the present model can be successfully used to predict biological processes and nutrient/contaminant transport in saturated porous media
Spin and Orbital angular momentum propagation in anisotropic media: theory
Picón, Antonio; Benseny, Albert; Mompart, Jordi; Calvo, Gabriel F.
2011-01-01
This paper is devoted to study the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with a general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing the space-variant-optical-axis phase plates.
Spin and orbital angular momentum propagation in anisotropic media: theory
International Nuclear Information System (INIS)
This paper is devoted to a study of the propagation of light beams carrying orbital angular momentum in optically anisotropic media. We first review some properties of homogeneous anisotropic media, and describe how the paraxial formalism is modified in order to proceed with a new approach dealing with the general setting of paraxial propagation along uniaxial inhomogeneous media. This approach is suitable for describing space-variant optical-axis phase plates
Multiphase flow in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Firoozabadi, A.
1995-02-01
The major goal of this research project was to improve the understanding of the gas-oil two-phase flow in fractured porous media. In addition, miscible displacement was studied to evaluate its promise for enhanced recovery.
On full-tensor permeabilities of porous media from numerical solutions of the Navier-Stokes equation
Wang, Y.
2013-01-01
A numerical method is proposed to compute full-tensor permeability of porous media without artificial simplification. Navier-Stokes (N-S) equation and Darcy\\'s law are combined to design these numerical experiments. This method can successfully detect the permeability values in principle directions of the porous media and the anisotropic degrees. It is found that the same configuration of porous media may possess isotropic features at lower Reynolds numbers while manifesting anisotropic features at higher Reynolds numbers due to the nonlinearity from convection. Anisotropy becomes pronounced especially when convection is dominant. 2013 Yi Wang et al.
Fronts of Stress Wave in Anisotropic Piezoelectric Media
Institute of Scientific and Technical Information of China (English)
刘颖; 刘凯欣; 高凌天
2004-01-01
The characteristic of wave fronts in anisotropic piezoelectric media is analysed by adopting the generalized characteristic theory. Analytical expressions for wave velocities and wave fronts are formulated. Apart from the ordinary characteristics, a new phenomenon, energy velocity funnel, is formed on the wave fronts of quasitransverse waves in anisotropic piezoelectric materials. A three-dimensional representation of wave fronts in anisotropic piezoelectric materials is given for a better understanding of the new phenomena.
Fluid dynamics in porous media with Sailfish
Coelho, Rodrigo C V
2016-01-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through in order to calculate permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualize these concepts, we test the Kozeny--Carman equation, discuss its validity and calculate the Kozeny's constant for our artificial samples.
New permeameter for geologic porous-media
International Nuclear Information System (INIS)
The use of a modified microbore HPLC/SFC system is described as an automated rapid-analysis permeameter for studying the interactions of liquid hazardous-waste leachates with low permeability geologic porous-media(1). Numerous advantages over currently described equipment for permeability and leachate/soil compatibility testing are shown. The system can operate in a constant pressure mode for generating precise and constant hydraulic-gradients on porous media samples, or in a constant flow-rate and mode. Both techniques allow continuous real-time monitoring of permeability changes. The system can also determine when steady-state baseline hydraulic conductivity of the porous media has been achieved and then automatically switch permeants for chemical interaction studies. The instrument continuously monitors and displays permeant flow-rate, permeameter cell pressure-drop and UV-VIS absorbance of contaminant species in solution
Trends in modeling of porous media combustion
Energy Technology Data Exchange (ETDEWEB)
Mujeebu, M. Abdul; Abdullah, M. Zulkifly [Porous Media Combustion Laboratory, School of Mechanical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia); Mohamad, A.A. [College of Engineering, Alfaisal University, Riyadh 11533, P.O. Box 50927 (Saudi Arabia); Bakar, M.Z. Abu [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, 14300 Nibong Tebal, Penang (Malaysia)
2010-12-15
Porous media combustion (PMC) has interesting advantages compared with free flame combustion due to higher burning rates, increased power dynamic range, extension of the lean flammability limits, and low emissions of pollutants. Extensive experimental and numerical works were carried out and are still underway, to explore the feasibility of this interesting technology for practical applications. For this purpose, numerical modeling plays a crucial role in the design and development of promising PMC systems. This article provides an exhaustive review of the fundamental aspects and emerging trends in numerical modeling of gas combustion in porous media. The modeling works published to date are reviewed, classified according to their objectives and presented with general conclusions. Numerical modeling of liquid fuel combustion in porous media is excluded. (author)
Fluid dynamics in porous media with Sailfish
Coelho, Rodrigo C. V.; Neumann, Rodrigo F.
2016-09-01
In this work we show the application of Sailfish to the study of fluid dynamics in porous media. Sailfish is an open-source software based on the lattice-Boltzmann method. This application of computational fluid dynamics is of particular interest to the oil and gas industry and the subject could be a starting point for an undergraduate or graduate student in physics or engineering. We built artificial samples of porous media with different porosities and used Sailfish to simulate the fluid flow through them in order to calculate their permeability and tortuosity. We also present a simple way to obtain the specific superficial area of porous media using Python libraries. To contextualise these concepts, we analyse the applicability of the Kozeny–Carman equation, which is a well-known permeability–porosity relation, to our artificial samples.
Explosion propagation in inert porous media.
Ciccarelli, G
2012-02-13
Porous media are often used in flame arresters because of the high surface area to volume ratio that is required for flame quenching. However, if the flame is not quenched, the flow obstruction within the porous media can promote explosion escalation, which is a well-known phenomenon in obstacle-laden channels. There are many parallels between explosion propagation through porous media and obstacle-laden channels. In both cases, the obstructions play a duel role. On the one hand, the obstruction enhances explosion propagation through an early shear-driven turbulence production mechanism and then later by shock-flame interactions that occur from lead shock reflections. On the other hand, the presence of an obstruction can suppress explosion propagation through momentum and heat losses, which both impede the unburned gas flow and extract energy from the expanding combustion products. In obstacle-laden channels, there are well-defined propagation regimes that are easily distinguished by abrupt changes in velocity. In porous media, the propagation regimes are not as distinguishable. In porous media the entire flamefront is affected, and the effects of heat loss, turbulence and compressibility are smoothly blended over most of the propagation velocity range. At low subsonic propagation speeds, heat loss to the porous media dominates, whereas at higher supersonic speeds turbulence and compressibility are important. This blending of the important phenomena results in no clear transition in propagation mechanism that is characterized by an abrupt change in propagation velocity. This is especially true for propagation velocities above the speed of sound where many experiments performed with fuel-air mixtures show a smooth increase in the propagation velocity with mixture reactivity up to the theoretical detonation wave velocity. PMID:22213663
Renormalized anisotropic exchange for representing heat assisted magnetic recording media
Energy Technology Data Exchange (ETDEWEB)
Jiao, Yipeng; Liu, Zengyuan; Victora, R. H., E-mail: victora@umn.edu [MINT Center, Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota 55455 (United States)
2015-05-07
Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation.
Renormalized anisotropic exchange for representing heat assisted magnetic recording media
International Nuclear Information System (INIS)
Anisotropic exchange has been incorporated in a description of magnetic recording media near the Curie temperature, as would be found during heat assisted magnetic recording. The new parameters were found using a cost function that minimized the difference between atomistic properties and those of renormalized spin blocks. Interestingly, the anisotropic exchange description at 1.5 nm discretization yields very similar switching and magnetization behavior to that found at 1.2 nm (and below) discretization for the previous isotropic exchange. This suggests that the increased accuracy of anisotropic exchange may also reduce the computational cost during simulation
Porous media: Analysis, reconstruction and percolation
DEFF Research Database (Denmark)
Rogon, Thomas Alexander
1995-01-01
Spatial structure of selected porous media has been analysed in terms of the two first spatial moments (i.e. porosity and autocorrelation). Having established directional isotropy in the three spatial planes, multiple geometrical features measured in 2-d are attempted generalized to 3-d using...... in binary fields. Percolation threshold of reconstructed porous media has been determined for different discretizations of a selected model correlation function. Also critical exponents such as the correlation length exponent v, the strength of the infinite network and the mean size of finite...... clusters have been determined. We have obtained results which indicate that the effect of spatial correlation does affect not only the percolation threshold but also the exponents with respect to the values known for random media. We have attempted to predict key percolation values for a continuous medium...
Casimir force between parallel plates separated by anisotropic media
Deng, Gang; Tan, Bao-Hua; Pei, Ling; Hu, Ni; Zhu, Jin-Rong
2015-06-01
The Casimir force between two parallel plates separated by anisotropic media is investigated. We theoretically calculate the Casimir force between two parallel plates when the interspace between the plates is filled with anisotropic media. Our result shows that the anisotropy of the material between the plates can significantly affect the Casimir force, especially the direction of the force. If ignoring the anisotropy of the in-between material makes the force repulsive (attractive), by contrast taking the anisotropy into account may produce an extra attractive (repulsive) force. The physical explanation for this phenomenon is also discussed.
Propagation of shock wave fronts in anisotrope layered media
International Nuclear Information System (INIS)
Propagation of shock waves in layered anisotropic tectonic media is associated with their fronts transformation, scattering, bifurcation and focussing. To investigate these phenomena, a technique based on joint usage of ray theory and theory of stereomechanical impact is elaborated. It is used for computer simulation of dynamical interaction of shock waves with curvilinear interfaces between anisotropic elastic media. Issues are considered which are related to the shock waves fronts surfaces bifurcations and generation of caustics connected with stress concentration and formation of zones where the stresses tend to infinity
Chaotic Mixing in Three Dimensional Porous Media
Lester, Daniel R; Borgne, Tanguy Le
2016-01-01
Under steady flow conditions, the topological complexity inherent to all random 3D porous media imparts complicated flow and transport dynamics. It has been established that this complexity generates persistent chaotic advection via a three-dimensional (3D) fluid mechanical analogue of the baker's map which rapidly accelerates scalar mixing in the presence of molecular di?usion. Hence pore-scale fluid mixing is governed by the interplay between chaotic advection, molecular di?usion and the broad (power-law) distribution of fluid particle travel times which arise from the non-slip condition at pore walls. To understand and quantify mixing in 3D porous media, we consider these processes in a model 3D open porous network and develop a novel stretching continuous time random walk (CTRW) which provides analytic estimates of pore-scale mixing which compare well with direct numerical simulations. We ?nd that chaotic advection inherent to 3D porous media imparts scalar mixing which scales exponentially with longitudi...
Dilution and reactive mixing in three-dimensional helical flows in porous media
Chiogna, Gabriele; Ye, Yu; Grathwohl, Peter; Cirpka, Olaf A.; Rolle, Massimo
2016-04-01
Dilution under steady-state flow and transport conditions in porous media occurs primarily by lateral mass exchange at the fringe of solute plumes. This process controls the fate and transport of scalars in groundwater and in chemical reactors and it is fundamental for the understanding of many reactive processes. Three-dimensional flow fields can be characterized by a complex topological structure, which may greatly influence dilution and dilution enhancement of dissolved plumes, which is quantified by the exponential of the Shannon entropy [1]. In previous works, we identified the necessary conditions to obtain helical flow fields in non-stationary anisotropic heterogeneous porous media [2, 3]. To prove our theoretical findings, we perform steady-state bench-scale experiments with a conservative tracer and we provide a model-based investigation of the results [4]. The relevance of transverse mixing enhancement for the case of reactive solute transport is computed numerically using, as metrics of mixing, the length of a reactive plume undergoing an instantaneous complete bimolecular reaction and its critical dilution index. [1] Cirpka O.A., Chiogna G., Rolle M. and A. Bellin (2015). Transverse mixing in three-dimensional non-stationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI: 10.1002/2014WR015331. [2] Chiogna G., Cirpka O.A., Rolle M. and A. Bellin (2015). Helical flow streamlines in three-dimensional nonstationary anisotropic heterogeneous porous media. Water Resources Research, 51, DOI:10.1002/2014WR015330. [3] Chiogna G., Rolle M., Bellin A. and O.A. Cirpka (2014). Helicity and flow topology in three dimensional porous media. Advances in Water Resources, 73, 134-143, DOI: 10.1016/j.advwatres.2014.06.017. [4] Ye Y., Chiogna G., Cirpka O.A., Grathwohl P., and M. Rolle (2015). Experimental evidence of helical flow in porous media. Phys. Rev. Lett., 115, 194502, DOI: 10.1103/PhysRevLett.115.194502
Heat transfers in porous media. Phase changes
International Nuclear Information System (INIS)
Phase change phenomena in porous media, like all poly-phase processes, are complex and still only partially understood. This article deals only with the liquid-vapor phase change (vaporization-condensation) because of its particular practical importance in numerous domains. Content: 1 - Fixing of a fluid constituent inside a porous matrix; 2 - mathematical modeling; 3 - example of reference situations: phase changes at temperatures below the saturation temperature (vaporization, condensation), phase changes at temperatures above the saturation temperature (condensation, vaporization-boiling); 4 - conclusion. (J.S.)
Porous media fluid transport and pore structure
Dullien, F A L
1992-01-01
This book examines the relationship between transport properties and pore structure of porous material. Models of pore structure are presented with a discussion of how such models can be used to predict the transport properties of porous media. Portions of the book are devoted to interpretations of experimental results in this area and directions for future research. Practical applications are given where applicable, and are expected to be useful for a large number of different fields, including reservoir engineering, geology, hydrogeology, soil science, chemical process engineering, biomedica
Experimental compaction of anisotropic granular media
Ribière, Philippe; RICHARD, Patrick; Bideau, Daniel; Delannay, Renaud
2005-01-01
We report on experiments to measure the temporal and spatial evolution of packin g arrangements of anisotropic and weakly confined granular material, using high-resolution $\\gamma$-ray adsorption. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical solicitation s evolve to a dense state. We find that the packing fraction evolution is slowed by the grain anisotropy but, as for spherically shaped grains, can be well...
Simulation of Tracer Transport in Porous Media: Application to Bentonites
International Nuclear Information System (INIS)
We present a formal framework to describe tracer transport in heterogeneous media, such as porous media like bentonites. In these media, mean field approximation is not valid because there exist some geometrical constraints and the transport is anomalous. (Author)
Inversions for MT data in 2D symmetrical anisotropic media
Institute of Scientific and Technical Information of China (English)
YANG Chang-fu; LIN Chang-you; SUN Chong-chi; LI Qing-he
2005-01-01
In the paper, a 2D symmetrical anisotropic medium whose strike agrees with one of the horizontal principal axes is considered to develop a corresponding inversion technique. In the specified conditions, if we assume an equivalent conductivity anisotropy in both the vertical and dipping directions, i.e., σzz=σyy, the differential equations obtained are formally the same as that for TE and TM modes in the 2D isotropic geoelectrical media. The same inversion technique as that in the 2D isotropic media can be employed to obtain the anisotropic conductivities. It means that the TE and TM inversion results in the isotropic media can be respectively thought as the resistivities in the two principal directions of the symmetrically anisotropic media, which has offered a new approach and a theoretical guidance for interpreting magnetotelluric data. And the inversion technique developed here is used to test the magnetotelluric data in the area of Tianzhu and Yongdeng in Gansu Province, so that the crust anisotropic geoelectrical structures in this region can be obtained.
Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media
Waheed, Umair bin
2014-05-01
Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.
Simulation of penetration into porous geologic media
Energy Technology Data Exchange (ETDEWEB)
Vorobiev, O Y; Liu, B T; Lomov, I N; Antoun, T
2005-05-31
We present a computational study on the penetration of steel projectiles into porous geologic materials. The purpose of the study is to extend the range of applicability of a recently developed constitutive model to simulations involving projectile penetration into geologic media. The constitutive model is non-linear, thermodynamically consistent, and properly invariant under superposed rigid body motions. The equations are valid for large deformations and they are hyperelastic in the sense that the stress tensor is related to a derivative of the Helmholtz free energy. The model uses the mathematical structure of plasticity theory to capture the basic features of the mechanical response of geological materials including the effects of bulking, yielding, damage, porous compaction and loading rate on the material response. The new constitutive model has been successfully used to simulate static laboratory tests under a wide range of triaxial loading conditions, and dynamic spherical wave propagation tests in both dry and saturated geologic media.
Theory of porous media - past and present
Energy Technology Data Exchange (ETDEWEB)
Boer, R. de [Essen Univ. (Germany). Inst. fuer Mechanik
1998-10-01
Porous solids filled with liquid or gas play an important role in engineering, e.g., in material science, petroleum industry, chemical engineering, and soil mechanics as well as in biomechanics. Although porous media are of considerable practical significance the description of their mechanical and thermodynamical behavior has been unsatisfactory for a long time. The theory to describe the complex thermodynamical behavior of such saturated porous solids has come to certain well-founded conclusions only recently. It is the goal of this paper to show the historical development of the porous media theory, which already started in the eighteenth century, formed in some areas by polemic disputes and tragic events in the lifes of the scientists involved. Furthermore, the current state of the research into this subject is discussed, whereby the state of the development of the material independent basic equations and the constitutive theory is illustrated. For a certain class of models general theorems, such as minimum and maximum problems, are derived and the uniqueness of solutions of boundary value problems is proved. (orig.)
Magnetic Fluid Flows in Porous Media
Institute of Scientific and Technical Information of China (English)
LI Ming-Jun; CHEN Liang
2011-01-01
@@ The seepage law under a magnetic field is obtained by up-scaling the flow at the pore scale of rigid porous media,and the macroscopic equivalent model is also obtained.It is proved that the macroscopic mass flow depends on the macroscopic magnetic force and the gradients of pressure and of magnetic pressure, as Zahn and Rosensweig have described in their experiments.The permeability tensor is symmetric and positive.
Unsaturated porous media flow with thermomechanical interaction
Czech Academy of Sciences Publication Activity Database
Albers, B.; Krejčí, Pavel
2016-01-01
Roč. 39, č. 9 (2016), s. 2220-2238. ISSN 0170-4214 R&D Projects: GA ČR(CZ) GA15-12227S Institutional support: RVO:67985840 Keywords : flows in porous media * problems involving hysteresis Subject RIV: BA - General Mathematics Impact factor: 0.918, year: 2014 http://onlinelibrary.wiley.com/ doi /10.1002/mma.3635/abstract
Morphology of diblock copolymers in porous media
Czech Academy of Sciences Publication Activity Database
Maniadis, Panagiotis; Tsimpanogiannis, I. N.; Kober, E.M.; Lookman, T.
2014-01-01
Roč. 112, č. 17 (2014), s. 2297-2309. ISSN 0026-8976 R&D Projects: GA MŠk(CZ) ED1.1.00/02.0068; GA MŠk(CZ) EE2.3.20.0214 Institutional support: RVO:68081723 Keywords : confinement * diblock copolymer s * porous media * self-assembly * self-consistent field theory Subject RIV: BE - Theoretical Physics Impact factor: 1.720, year: 2014
Wave propagation in fractured porous media
Tuncay, Kağan; Çorapçıoplu, M. Yavuz
1996-01-01
A theory of wave propagation in fractured porous media is presented based on the double-porosity concept. The macroscopic constitutive relations and mass and momentum balance equations are obtained by volume averaging the microscale balance and constitutive equations and assuming small deformations. In microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. Momentum transfer terms are expressed in terms of intrinsic and relative permeabilities assuming the vali...
Finite volume hydromechanical simulation in porous media
Nordbotten, Jan Martin
2014-01-01
Cell-centered finite volume methods are prevailing in numerical simulation of flow in porous media. However, due to the lack of cell-centered finite volume methods for mechanics, coupled flow and deformation is usually treated either by coupled finite-volume-finite element discretizations, or within a finite element setting. The former approach is unfavorable as it introduces two separate grid structures, while the latter approach loses the advantages of finite volume methods for the flow equ...
The effect of rotation on the onset of convection in a horizontal anisotropic porous layer
Energy Technology Data Exchange (ETDEWEB)
Malashetty, M.S.; Swamy, Mahantesh [Department of Mathematics, Gulbarga University, Jnana Ganga, Gulbarga 585 106 (India)
2007-10-15
The effect of rotation and anisotropy on the onset of convection in a horizontal porous layer is investigated using a linear theory and a weak nonlinear theory. The linear theory is based on the usual normal mode technique and the nonlinear theory on the truncated Fourier series analysis. Darcy model extended to include time derivative and Coriolis terms with anisotropic permeability is used to describe the flow through porous media. A modified energy equation including the thermal anisotropy is used. The effect of rotation, mechanical and thermal anisotropy parameters and the Prandtl number on the stationary and overstable convection is discussed. It is found that the effect of mechanical anisotropy is to allow the onset of oscillatory convection instead of stationary. It is also found that the existence of overstable motions in case of rotating porous medium is not restricted to a particular range of Prandtl number as compared to the pure viscous fluid case. The steady finite amplitude analysis is performed using truncated Fourier series to find the Nusselt number. The effect of various parameters on heat transfer is investigated. (author)
OPM: The Open Porous Media Initiative
Flemisch, B.; Flornes, K. M.; Lie, K.; Rasmussen, A.
2011-12-01
The principal objective of the Open Porous Media (OPM) initiative is to develop a simulation suite that is capable of modeling industrially and scientifically relevant flow and transport processes in porous media and bridge the gap between the different application areas of porous media modeling, including reservoir mechanics, CO2 sequestration, biological systems, and product development of engineered media. The OPM initiative will provide a long-lasting, efficient, and well-maintained open-source software for flow and transport in porous media built on modern software principles. The suite is released under the GNU General Public License (GPL). Our motivation is to provide a means to unite industry and public research on simulation of flow and transport in porous media. For academic users, we seek to provide a software infrastructure that facilitates testing of new ideas on models with industry-standard complexity, while at the same time giving the researcher control over discretization and solvers. Similarly, we aim to accelerate the technology transfer from academic institutions to professional companies by making new research results available as free software of professional standard. The OPM initiative is currently supported by six research groups in Norway and Germany and funded by existing grants from public research agencies as well as from Statoil Petroleum and Total E&P Norge. However, a full-scale development of the OPM initiative requires substantially more funding and involvement of more research groups and potential end users. In this talk, we will provide an overview of the current activities in the OPM initiative. Special emphasis will be given to the demonstration of the synergies achieved by combining the strengths of individual open-source software components. In particular, a new fully implicit solver developed within the DUNE-based simulator DuMux could be enhanced by the ability to read industry-standard Eclipse input files and to run on
Equilibrium and transfer in porous media 2 transfer laws
Daïan, Jean-François
2014-01-01
A porous medium is composed of a solid matrix and its geometrical complement: the pore space. This pore space can be occupied by one or more fluids. The understanding of transport phenomena in porous media is a challenging intellectual task. This book provides a detailed analysis of the aspects required for the understanding of many experimental techniques in the field of porous media transport phenomena. It is aimed at studentsor engineers who may not be looking specifically to become theoreticians in porous media, but wish to integrate knowledge of porous media with their previous scientif
Quantum electrodynamics of inhomogeneous anisotropic media
Energy Technology Data Exchange (ETDEWEB)
Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)
2015-02-01
In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)
Finite-size anisotropy in statistically uniform porous media
Koza, Zbigniew; Khalili, Arzhang
2009-01-01
Anisotropy of the permeability tensor in statistically uniform porous media of sizes used in typical computer simulations is studied. Although such systems are assumed to be isotropic by default, we show that de facto their anisotropic permeability can give rise to significant changes of transport parameters such as permeability and tortuosity. The main parameter controlling the anisotropy is $a/L$, being the ratio of the obstacle to system size. Distribution of the angle $\\alpha$ between the external force and the volumetric fluid stream is found to be approximately normal, and the standard deviation of $\\alpha$ is found to decay with the system size as $(a/L)^{d/2}$, where $d$ is the space dimensionality. These properties can be used to estimate both anisotropy-related statistical errors in large-scale simulations and the size of the representative elementary volume.
Surface waves in ﬁbre-reinforced anisotropic elastic media
Indian Academy of Sciences (India)
P R Sengupta; Sisir Nath
2001-08-01
The aim of this paper is to investigate surface waves in anisotropic ﬁbre-reinforced solid elastic media. First, the theory of general surface waves has been derived and applied to study the particular cases of surface waves – Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the anisotropic elastic parameters tends to zero. It is important to note that the Rayleigh type of wave velocity in the ﬁbre-reinforced elastic medium increases to a considerable amount in comparison with the Rayleigh wave velocity in isotropic materials.
Anisotropic multiple scattering in diffuse media
Amic, E.; Luck, J. M.; Nieuwenhuizen, T.M.
1996-01-01
The multiple scattering of scalar waves in diffusive media is investigated by means of the radiative transfer equation. This approach amounts to a resummation of the ladder diagrams of the Born series; it does not rely on the diffusion approximation. Quantitative predictions are obtained, concerning various observables pertaining to optically thick slabs, such as the mean angle-resolved reflected and transmitted intensities, and the shape of the enhanced backscattering cone. Special emphasis ...
Analytical solutions of transport problems in anisotropic media
International Nuclear Information System (INIS)
Recently, the problem of neutron transport in anisotropic media has received new attention in connection with safety studies of water reactors and design of gas-cooled systems. In situations presenting large voided regions, as the axial streaming is dominating with respect to the transverse one, the average properties of the homogenized material should physically account for such macroscopic anisotropy. Hence, it is suggested that cell calculations produce anisotropic average cross sections, e.g., axial (σA) and transverse (σT) values. Since material anisotropy is due to leakage, as a first-step approximation, the medium can be considered isotropic with respect to scattering phenomena. Transport codes are currently being adapted to include anisotropic cross sections. An important aspect of code development is the validation of algorithms by analytical benchmarks. For that purpose, the present work is devoted to the fully analytical solution of transport problems in slab geometry
Fluid flow and heat transfer in rotating porous media
Vadasz, Peter
2016-01-01
This Book concentrates the available knowledge on rotating fluid flow and heat transfer in porous media in one single reference. Dr. Vadasz develops the fundamental theory of rotating flow and heat transfer in porous media and introduces systematic classification and identification of the relevant problems. An initial distinction between rotating flows in isothermal heterogeneous porous systems and natural convection in homogeneous non-‐isothermal porous systems provides the two major classes of problems to be considered. A few examples of solutions to selected problems are presented, highlighting the significant impact of rotation on the flow in porous media.
Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy
Alkhalifah, Tariq Ali
2014-04-30
Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.
Wave propagation in layered anisotropic media with application to composites
Nayfeh, AH
1995-01-01
Recent advances in the study of the dynamic behavior of layered materials in general, and laminated fibrous composites in particular, are presented in this book. The need to understand the microstructural behavior of such classes of materials has brought a new challenge to existing analytical tools. This book explores the fundamental question of how mechanical waves propagate and interact with layered anisotropic media. The chapters are organized in a logical sequence depending upon the complexity of the physical model and its mathematical treatment.
Diffusion of oriented particles in porous media
Energy Technology Data Exchange (ETDEWEB)
Haber, René [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Prehl, Janett [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany); Herrmann, Heiko [Centre for Nonlinear Studies, Institute of Cybernetics at Tallinn University of Technology, Akadeemia tee 21, 12618 Tallinn (Estonia); Hoffmann, Karl Heinz, E-mail: hoffmann@physik.tu-chemnitz.de [Institut für Physik, Technische Universität Chemnitz, D-09107 Chemnitz (Germany)
2013-11-29
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.
Diffusion of oriented particles in porous media
International Nuclear Information System (INIS)
Diffusion of particles in porous media often shows subdiffusive behavior. Here, we analyze the dynamics of particles exhibiting an orientation. The features we focus on are geometrical restrictions and the dynamical consequences of the interactions between the local surrounding structure and the particle orientation. This interaction can lead to particles getting temporarily stuck in parts of the structure. Modeling this interaction by a particular random walk dynamics on fractal structures we find that the random walk dimension is not affected while the diffusion constant shows a variety of interesting and surprising features.
Anisotropic parameter inversion in VTI media using diffraction data
Waheed, Umair bin
2013-09-22
Diffracted waves contain useful information regarding the subsurface geometry and velocity. They are particularly valuable for anisotropic media as they inherently possess a wide range of dips necessary to resolve angular dependence of velocity. Using this property of diffraction data to our vantage, we develop an algorithm to invert for effective η model, assuming no prior knowledge of it. The obtained effective η model is then converted to interval η model using Dix-type inversion formula. The effectiveness of this approach is tested on the VTI Marmousi model, which yields good structural match even for a highly complex media such as the Marmousi model.
An efficient wave extrapolation method for anisotropic media with tilt
Waheed, Umair bin
2015-03-23
Wavefield extrapolation operators for elliptically anisotropic media offer significant cost reduction compared with that for the transversely isotropic case, particularly when the axis of symmetry exhibits tilt (from the vertical). However, elliptical anisotropy does not provide accurate wavefield representation or imaging for transversely isotropic media. Therefore, we propose effective elliptically anisotropic models that correctly capture the kinematic behaviour of wavefields for transversely isotropic media. Specifically, we compute source-dependent effective velocities for the elliptic medium using kinematic high-frequency representation of the transversely isotropic wavefield. The effective model allows us to use cheaper elliptic wave extrapolation operators. Despite the fact that the effective models are obtained by matching kinematics using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy trade-off for wavefield computations in transversely isotropic media, particularly for media of low to moderate complexity. In addition, the wavefield solution is free from shear-wave artefacts as opposed to the conventional finite-difference-based transversely isotropic wave extrapolation scheme. We demonstrate these assertions through numerical tests on synthetic tilted transversely isotropic models.
Fluid flow in porous media with rough pore-solid interface
Ghanbarian, Behzad; Hunt, Allen G.; Daigle, Hugh
2016-03-01
Quantifying fluid flow through porous media hinges on the description of permeability, a property of considerable importance in many fields ranging from oil and gas exploration to hydrology. A common building block for modeling porous media permeability is consideration of fluid flow through tubes with circular cross section described by Poiseuille's law in which flow discharge is proportional to the fourth power of the tube's radius. In most natural porous media, pores are neither cylindrical nor smooth; they often have an irregular cross section and rough surfaces. This study presents a theoretical scaling of Poiseuille's approximation for flow in pores with irregular rough cross section quantified by a surface fractal dimension Ds2. The flow rate is a function of the average pore radius to the power 2(3-Ds2) instead of 4 in the original Poiseuille's law. Values of Ds2 range from 1 to 2, hence, the power in the modified Poiseuille's approximation varies between 4 and 2, indicating that flow rate decreases as pore surface roughness (and surface fractal dimension Ds2) increases. We also proposed pore length-radius relations for isotropic and anisotropic fractal porous media. The new theoretical derivations are compared with standard approximations and with experimental values of relative permeability. The new approach results in substantially improved prediction of relative permeability of natural porous media relative to the original Poiseuille equation.
Dynamics of clogging in drying porous media
Kaplan, C. Nadir; Mahadevan, L.
2014-11-01
Drying in porous media pervades a range of phenomena from brine evaporation arrested in porous bricks, causing efflorescence, i.e. salt aggregation on the surface where vapor leaves the medium, to clogging of reservoir rocks via salt precipitation when carbon dioxide is injected for geological storage. During the process of drying, the permeability and porosity of the medium may change due to the solute accumulation as a function of the particle concentration, in turn affecting the evaporation rate and the dynamics of the fluid flow imposed by it. To examine the dynamics of these coupled quantities, we develop a multiphase model of the particulate flow of a saline suspension in a porous medium, induced by evaporation. We further provide dimensional arguments as to how the salt concentration and the resulting change in permeability determine the transition between efflorescence and salt precipitation in the bulk. This research was supported by the Air Force Office of Scientific Research (AFOSR) under Award FA9550-09-1-0669-DOD35CAP and the Kavli Institute for Bionano Science and Technology at Harvard University.
Resonant electromagnetic scattering in anisotropic layered media
International Nuclear Information System (INIS)
The resonant excitation of an electromagnetic guided mode of a slab structure by exterior radiation results in anomalous scattering behavior, including sharp energy-transmission anomalies and field amplification around the frequency of the slab mode. In the case of a periodically layered ambient medium, anisotropy serves to couple the slab mode to radiation. Exact expressions for scattering phenomena are proved by analyzing a pole of the full scattering matrix as it moves off the real frequency axis into the lower half complex plane under a detuning of the wavevector parallel to the slab. The real pole is the frequency of a perfect (infinite Q) guided mode, which becomes lossy as the frequency gains an imaginary part. This work extends results of Shipman and Venakides to evanescent source fields and two-dimensional parallel wavevector and demonstrates by example how the latter allows one to control independently the width and central frequency of a resonance by varying the angle of incidence of the source field. The analysis relies on two nondegeneracy conditions of the complex dispersion relation for slab modes (relating poles of the scattering matrix to wavevector), which were assumed in previous works and are proved in this work for layered media. One of them asserts that the dispersion relation near the wavevector κ and frequency ω of a perfect guided mode is the zero set of a simple eigenvalue ℓ(κ, ω), and the other relates ∂ℓ/∂ω to the total energy of the mode, thereby implying that this derivative is nonzero
Review of enhanced vapor diffusion in porous media
International Nuclear Information System (INIS)
Vapor diffusion in porous media in the presence of its own liquid has often been treated similar to gas diffusion. The gas diffusion rate in porous media is much lower than in free space due to the presence of the porous medium and any liquid present. However, enhanced vapor diffusion has also been postulated such that the diffusion rate may approach free-space values. Existing data and models for enhanced vapor diffusion, including those in TOUGH2, are reviewed in this paper
Upscaling diffusion waves in porous media
Valdés-Parada, Francisco J.; Álvarez Ramírez, José; Ochoa-Tapia, J. Alberto
2016-04-01
The aim of this work is to derive the effective-medium equations and to estimate the related effective diffusivities for diffusion waves in porous media. Effective diffusivities are estimated within the framework of the volume averaging method, where they are obtained from the solution of the associated closure problems in 2D and 3D periodic unit cells. The results showed that the transport of diffusion waves are governed by the diffusion and co-diffusion mechanisms of harmonic waves. In addition, numerical results showed that the effective diffusivities increase with frequency, while the effective co-diffusivities display a resonance-like behavior. Our results also indicate that geometry plays a more significant effect over the predictions of the co-diffusion coefficient at moderate frequencies and it mainly influences the predictions of the direct diffusivity at low frequencies (i . e .,ω∗ ≪ 1).
Shock Electrodeposition in Charged Porous Media
Han, Ji-Hyung
2015-01-01
It is shown that surface conduction in porous media can drastically alter the stability and morphology of electrodeposition at high rates, above the diffusion-limited current. Copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in cellulose nitrate membranes, whose pores are coated with positive or negative charged polymers. Above the limiting current, surface conduction inhibits growth in the positive membrane and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative membrane. The discovery of uniform growth contradicts quasi-steady leaky membrane models, which are in the same universality class as unstable Laplacian growth, and indicates the importance of transient electro-diffusion or electro-osmotic dispersion. Shock electrodeposition could be exploited for high-rate recharging of metal batteries or manufacturing of metal matrix composite coatings.
On a singular incompressible porous media equation
Friedlander, Susan; Sun, Weiran; Vicol, Vlad
2012-01-01
In this paper we study a singularly modified version of the incompressible porous media equation. We investigate the implications for the local well-posedness of the equations by modifying, with a fractional derivative, the constitutive relation between the scalar density and the convecting divergence free velocity vector. Our analysis is motivated by recent work \\cite{CCCGW} where it is shown that for the surface quasi-geostrophic equation such a singular modification of the constitutive law for the velocity, quite surprisingly still yields a locally well-posed problem. In contrast, for the singular active scalar equation discussed in this paper, local well-posedness does not hold for smooth solutions, but it does hold for certain weak solutions.
Percolation theory for flow in porous media
Hunt, Allen; Ghanbarian, Behzad
2014-01-01
This monograph presents, for the first time, a unified and comprehensive introduction to some of the basic transport properties of porous media, such as electrical and hydraulic conductivity, air permeability and diffusion. The approach is based on critical path analysis and the scaling of transport properties, which are individually described as functions of saturation. At the same time, the book supplies a tutorial on percolation theory for hydrologists, providing them with the tools for solving actual problems. In turn, a separate chapter serves to introduce physicists to some of the language and complications of groundwater hydrology necessary for successful modeling. The end-of-chapter problems often indicate open questions, which young researchers entering the field can readily start working on. This significantly revised and expanded third edition includes in particular two new chapters: one on advanced fractal-based models, and one devoted to the discussion of various open issues such as the role of d...
Mechanics of fluids in porous media
Bear, Jacob; Corapcioglu, M. Yavuz
Transport of quantities such as mass component of a phase and/or heat occurs in fields as diversified as petroleum reservoir engineering, groundwater hydraulics, soil mechanics, industrial filtration, water purification, wastewater treatment, soil drainage and irrigation, and geothermal energy production. In all these areas, scientists, engineers, and planners make use of mathematical models; these models describe the relevant transport processes that occur within controlled porous medium domains and enable forecasting of the future behavior of these domains in response to planned activities. The mathematical models, in turn, are based on the understanding of phenomena, often within the void space, and on theories that relate these phenomena to measurable quantities.Because of the pressing needs in areas of practical interest such as the development of groundwater energy storage and geothermal energy production, a vast amount of research in all these fields has contributed, especially in the last two decades, to our understanding and ability to describe transport phenomena in porous media. In recent years these research efforts have been significantly accelerated, attracting scientists from many disciplines. The practical needs of solving boundary value problems in heterogeneous domains, irregular boundaries, coupled phenomena and multiple dependent variables led to the development of a variety of powerful numerical techniques. The realization that fields are highly heterogeneous and that the degree of heterogeneity depends on the scale of the problem led to the introduction of stochastic concepts as an additional tool for the description of phenomena.
Sophia Haussener; Aldo Steinfeld
2012-01-01
High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, conv...
Gaussian beam diffraction in weakly anisotropic inhomogeneous media
International Nuclear Information System (INIS)
Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.
Gaussian beam diffraction in weakly anisotropic inhomogeneous media
Kravtsov, Yu. A.; Berczynski, P.; Bieg, B.
2009-08-01
Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.
Gaussian beam diffraction in weakly anisotropic inhomogeneous media
Energy Technology Data Exchange (ETDEWEB)
Kravtsov, Yu.A., E-mail: kravtsov@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland); Space Research Institute, Russian Academy of Science, Moscow 117 997 (Russian Federation); Berczynski, P., E-mail: pawel.berczynski@ps.p [Institute of Physics, West Pomeranian University of Technology, Szczecin 70-310 (Poland); Bieg, B., E-mail: b.bieg@am.szczecin.p [Institute of Physics, Maritime University of Szczecin, Szczecin 70-500 (Poland)
2009-08-10
Combination of quasi-isotropic approximation (QIA) of geometric optics with paraxial complex geometric optics (PCGO) is suggested, which allows describing both diffraction and polarization evolution of Gaussian electromagnetic beams in weakly anisotropic inhomogeneous media. Combination QIA/PCGO reduces Maxwell equations to the system of the ordinary differential equations of the first order and radically simplifies solution of various problems, related to microwave plasma diagnostics, including plasma polarimetry, interferometry and refractometry in thermonuclear reactors. Efficiency of the method is demonstrated by the example of electromagnetic beam diffraction in a linear layer of magnetized plasma with parameters, modeling tokamak plasma in the project ITER.
Polarization ray tracing in anisotropic optically active media. I. Algorithms
International Nuclear Information System (INIS)
Procedures for performing polarization ray tracing through birefringent media are presented in a form compatible with the standard methods of geometrical ray tracing. The birefringent materials treated include the following: anisotropic optically active materials such as quartz, non-optically active uniaxial materials such as calcite, and isotropic optically active materials such as mercury sulfide and organic liquids. Refraction and reflection algorithms are presented that compute both ray directions and wave directions. Methods for computing polarization modes, refractive indices, optical path lengths, and Fresnel transmission and reflection coefficients are also specified. A numerical example of these algorithms is given for analyzing the field of view of a quartz rotator. 37 refs., 3 figs
Minor Losses During Air Flow into Granular Porous Media
DEFF Research Database (Denmark)
Poulsen, Tjalfe; Minelgaite, Greta; Bentzen, Thomas Ruby;
2013-01-01
Pressure gradients during uniform fluid flow in porous media are traditionally assumed to be linear. Thus pressure loss across a sample of porous medium is assumed directly proportional to the thickness of the sample. In this study, measurements of pressure gradients inside coarse granular (2 – 18...... mm particle size) porous media during steady gas flow were carried out. The results showed that pressure variation with distance in the porous media were nonlinear near the inlet (where pressure gradients were higher) but became linear at greater distances (with a lower gradient). This indicates that...... pressure loss in porous media consists of two components: (1) a linear pressure gradient and (2) an initial pressure loss near the inlet. This initial pressure loss is also known from hydraulics in tubes as a minor loss and is associated with abrupt changes in the flow field such as narrowings and bends...
A Fractal Model for Capillary Pressure of Porous Media
Directory of Open Access Journals (Sweden)
Boqi Xiao
2013-06-01
Full Text Available Capillary pressure is a basic parameter in the study of the behavior of porous media containing two or more immiscible fluid phases. In this study, the capillary pressure of porous media is predicted based on based on fractal property of pore in porous media. The formula of calculating the capillary pressure of porous media is given. The capillary pressure of porous media is expressed as a function of porosity, fractal dimension of pore and saturation. Based on the parametric effect analysis, we conclude that the capillary pressure of porous media is negatively correlated with the porosity and saturation. Besides, it is shown that the capillary pressure of unsaturated porous media decreases with the increase of saturation. No additional empirical constant is introduced. This model contains less empirical constants than the conventional correlations. The model predictions are compared with the existing experimental data and good agreement between the model predictions and experimental data is found. The validity of the present fractal model is thus verified.
Nanoparticle tracers in calcium carbonate porous media
Li, Yan Vivian
2014-07-15
Tracers are perhaps the most direct way of diagnosing subsurface fluid flow pathways for ground water decontamination and for natural gas and oil production. Nanoparticle tracers could be particularly effective because they do not diffuse away from the fractures or channels where flow occurs and thus take much less time to travel between two points. In combination with a chemical tracer they can measure the degree of flow concentration. A prerequisite for tracer applications is that the particles are not retained in the porous media as the result of aggregation or sticking to mineral surfaces. By screening eight nanoparticles (3-100 nm in diameter) for retention when passed through calcium carbonate packed laboratory columns in artificial oil field brine solutions of variable ionic strength we show that the nanoparticles with the least retention are 3 nm in diameter, nearly uncharged, and decorated with highly hydrophilic polymeric ligands. The details of these column experiments and the tri-modal distribution of zeta potential of the calcite sand particles in the brine used in our tests suggests that parts of the calcite surface have positive zeta potential and the retention of negatively charged nanoparticles occurs at these sites. Only neutral nanoparticles are immune to at least some retention. © 2014 Springer Science+Business Media.
Experimental investigation of transverse mixing in porous media under helical flow conditions
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.; Grathwohl, Peter; Rolle, Massimo
2016-07-01
Plume dilution and transverse mixing can be considerably enhanced by helical flow occurring in three-dimensional heterogeneous anisotropic porous media. In this study, we perform tracer experiments in a fully three-dimensional flow-through chamber to investigate the effects of helical flow on plume spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously injecting dye tracers at different inlet ports. High-resolution measurements of concentration and flow rates were performed at 49 outlet ports. These measurements allowed quantifying the spreading and dilution of the solute plumes at the outlet cross section. Direct evidence of plume spiraling and visual proof of helical flow was obtained by freezing and slicing the porous media at different cross sections and observing the dye-tracer distribution. We simulated flow and transport to interpret our experimental observations and investigate the effects of helical flow on mixing-controlled reactive transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four times) in helical flows compared to analogous scenarios in uniform flows.
Chiogna, Gabriele; Herrera, Paulo
2015-04-01
Several studies have demonstrated how plume deformation induced by flow heterogeneity in porous media can enhance mixing of reactants. This enhancement can have important impact on mixing controlled reactions such a biodegradation of plumes of organic compounds. On the other hand, recent studies have indicated the possibility of observing complex flow topology on groundwater flow that occurs in anisotropic yet homogenous porous media. Moreover, it has been demonstrated that those complex flow topologies can also enhance solute mixing. We study the effect of medium anisotropy on reactive solute transport for the case of a chemical reactor composed of two homogeneous anisotropic layers. We simulate different injection strategies for different chemical reactions that involve two reactants. We demonstrate the effect of the medium anisotropy by analyzing the results of the simulations and identify best strategies for the operation and design of the system to maximize reaction rates. These findings could have potential application in the design of new remediation systems for contaminated groundwater, chemical reactors and other engineering problems that involve flow through porous media.
Propagation of plane waves in poroviscoelastic anisotropic media
Institute of Scientific and Technical Information of China (English)
A.K.Vashishth,M.D.Sharma
2008-01-01
This study discusses wave propagation in perhaps the most general model of a poroelastic medium.The medium is considered as a viscoelastic,anisotropic and porous solid frame such that its pores of anisotropic permeability are filled with a viscous fluid.The anisotropy considered is of general type,and the attenuating waves in the medium are treated as the inhomogeneous waves.The complex slowness vector is resolved to define the phase velocity,homogeneous attenuation,inhomogeneous attenuation,and angle of attenuation for each of the four attenuating waves in the medium.A non-dimensional parameter measures the deviation of an inhomogeneous wave from its homogeneous version.An numerical model of a North-Sea sandstone is used to analyze the effects of the propagation direction,inhomogeneity parameter,frequency regime,anisotropy symmetry,anelasticity of the frame,and viscosity of the pore-fluid on the propagation characteristics of waves in such a medium.
Foam Transport in Porous Media - A Review
Energy Technology Data Exchange (ETDEWEB)
Zhang, Z. F.; Freedman, Vicky L.; Zhong, Lirong
2009-11-11
Amendment solutions with or without surfactants have been used to remove contaminants from soil. However, it has drawbacks such that the amendment solution often mobilizes the plume, and its movement is controlled by gravity and preferential flow paths. Foam is an emulsion-like, two-phase system in which gas cells are dispersed in a liquid and separated by thin liquid films called lamellae. Potential advantages of using foams in sub-surface remediation include providing better control on the volume of fluids injected, uniformity of contact, and the ability to contain the migration of contaminant laden liquids. It is expected that foam can serve as a carrier of amendments for vadose zone remediation, e.g., at the Hanford Site. As part of the U.S. Department of Energy’s EM-20 program, a numerical simulation capability will be added to the Subsurface Transport Over Multiple Phases (STOMP) flow simulator. The primary purpose of this document is to review the modeling approaches of foam transport in porous media. However, as an aid to understanding the simulation approaches, some experiments under unsaturated conditions and the processes of foam transport are also reviewed. Foam may be formed when the surfactant concentration is above the critical micelle concentration. There are two main types of foams – the ball foam (microfoam) and the polyhedral foam. The characteristics of bulk foam are described by the properties such as foam quality, texture, stability, density, surface tension, disjoining pressure, etc. Foam has been used to flush contaminants such as metals, organics, and nonaqueous phase liquids from unsaturated soil. Ball foam, or colloidal gas aphrons, reportedly have been used for soil flushing in contaminated site remediation and was found to be more efficient than surfactant solutions on the basis of weight of contaminant removed per gram of surfactant. Experiments also indicate that the polyhedral foam can be used to enhance soil remediation. The
Elastodynamic analysis of anisotropic liquid-saturated porous medium due to mechanical sources
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
Elastodynamlc analysis of an anisotropic liquid-saturated porous medium is made to study a deformation problem of a transversely isotropic liquid-saturated porous medium due to mechanical sources. Certain physical problems are of the nature, in which the deformation takes place only in one direction, e.g., the problem relating to deformed structures and columns. In soil mechanics, an assumption of only vertical subsidence is often invoked and this leads to the one dimensional model of poroelasticity. By considering a model of one-dimensional deformation of the anisotropic liquid-saturated porous medium, variations in disturbances are observed with reference to time and distance.The distributions of displacements and stresses are affected due to the anisotropy of the medium, and also due to the type of sources causing the disturbances.
Particle tracing techniques for flows in porous media
Energy Technology Data Exchange (ETDEWEB)
Fox, R.L.; Eaton, R.R.; Krueger, D.A.
1978-01-01
The prediction of flow in porous media has been of both current and historical interest. Recent developments, for example, in the in-situ gasification of coal, the removal of hydrocarbons from oil shale, and the extraction of oil and gas require an in-depth understanding of flow in porous geologic media. Existing procedures for investigating these problems require more empirical input than should be necessary if the porous media were adequately described by the computational scheme. The purpose of this paper is to develop a particle tracing scheme for calculating flows in porous media which will reduce the number of required empirical properties, such as permeability, and have application to more general flow regimes such as non-Darcy flows.
Institute of Scientific and Technical Information of China (English)
刘洋; 魏修成
2003-01-01
Based on Biot theory of two-phase anisotropic media and Hamilton theory about dynamic problem, finite elementequations of elastic wave propagation in two-phase anisotropic media are derived in this paper. Numerical solutionof finite element equations is given. Finally, properties of elastic wave propagation are observed and analyzedthrough FEM modeling.
Numerical methods for flow and transport in porous media
Vu Do, Huy Cuong
2014-01-01
This thesis bears on the modelling of groundwater flow and transport in porous media; we perform numerical simulations by means of finite volume methods and prove convergence results. In Chapter 1, we first apply a semi-implicit standard finite volume method and then the generalized finite volume method SUSHI for the numerical simulation of density driven flows in porous media; we solve a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation...
A Particle Resistance Model for Flow through Porous Media
International Nuclear Information System (INIS)
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere. The proposed model is expressed as a function of porosity, fluid property, particle size, fluid velocity (or Reynolds number) and fractal characters Df of particles in porous media. The model predictions are in good agreement with the experimental data. The validity of the proposed model is thus verified. (fundamental areas of phenomenology (including applications))
A Particle Resistance Model for Flow through Porous Media
Institute of Scientific and Technical Information of China (English)
WU Jin-Sui; YIN Shang-Xian; ZHAO Dong-Yu
2009-01-01
A particle model for resistance of flow in isotropic porous media is developed based on the fractal geometry theory and on the drag force flowing around sphere.The proposed model is expressed as a function of porosity,fluid property,particle size,fluid velocity (or Reynolds number) and fractal characters Df of particles in porous media.The model predictions are in good agreement with the experimental data.The validity of the proposed model is thus verified.
Filtration gases burning at profiles symmetry of porous media temperature
International Nuclear Information System (INIS)
The mathematical model of filtration gases burning at profiles symmetry in temperature of inert porous media is defined. This mathematic model allows to find the conditions of symmetric profiles of concentration of components of the gas mixture and the temperature of porous media and, in particular, calculations of characteristics of burning wave depending on Lewis number and other parameters. The diagrams of these dependences are analyzed. (author)
Characterization of an impinging jet into porous media
Wang, Cong; Alhani, Salwan; Gharib, Morteza
2015-11-01
In this work, characteristic behavior of a liquid jet into porous hydrophobic / hydrophilic particle media is investigated. In porous media, the capillary effect becomes significant, especially when the jet Reynolds Number is low. To analyze the cavity creation phenomena, the effect of jet's diameter, speed and acceleration as well as particles' size are carefully studied. Such knowledge of fluid behavior will provide guidance for medicine injection process. This work is supported by Caltech GALCIT STEM program.
Discrete Morse flow for Ricci flow and Porous Media equation
Ma, Li
2012-01-01
In this paper, we study the discrete Morse flow for the Ricci flow on football, which is the 2-sphere with removed north and south poles and with the metric $g_0$ of constant scalar curvature, and and for Porous media equation on a bounded regular domain in the plane. We show that with a suitable assumption about $g(0)$ we have a weak approximated discrete Morse flow for the approximated Ricci flow and Porous media equation on any time intervals.
Mass Transfer and Porous Media (MTPM)
Energy Technology Data Exchange (ETDEWEB)
Rotenberg, B.; Marry, V.; Malikova, N.; Vuilleumier, R.; Giffaut, E.; Turq, P.; Robinet, J.C.; Diaz, N.; Sardini, P.; Goutelard, F.; Menut, D.; Parneix, J.C.; Sammartino, S.; Pret, D.; Coelho, D.; Jougnot, D.; Revil, A.; Boulin, P.F.; Angulo-Jaramillo, R.; Daian, J.F.; Talandier, J.; Berne, P.; Cochepin, B.; Trotignon, L.; Bildstein, O.; Steefel, C.; Lagneau, V.; Van der Lee, J.; Birchall, D.J.; Harrington, J.F.; Noy, D.J.; Sellin, P.; Bildstein, O.; Piault, E.; Trotignon, L.; Montarnal, P.; Deville, E.; Genty, A.; Le Potier, C.; Imbert, C.; Semete, P.; Desgree, P.; Fevrier, B.; Courtois, A.; Touze, G.; Sboui, A.; Roberts, J.E.; Jaffre, J.; Glaus, M.A.; Rosse, R.; Van Loon, L.R.; Matray, J.M.; Parneix, J.C.; Tinseau, E.; Pret, D.; Mayor, J.C.; Ohkubo, T.; Kikuchi, H.; Yamaguchi, M.; Alonso, U.; Missana, T.; Garcia-Gutierrez, M.; Patelli, A.; Siitari-Kauppi, M.; Leskinen, A.; Rigato, V.; Samper, J.; Dewonck, S.; Zheng, L.; Yang, Q.; Naves, A.; Dai, Z.; Samper, J.; Wolfsberg, A.; Levitt, D.; Cormenzana, J.L.; Missana, T.; Mingarro, M.; Schampera, B.; Dultz, S.; Riebe, B.; Samper, J.; Yang, Q.; Genty, A.; Perraud, D.; Poller, A.; Mayer, G.; Croise, J.; Marschall, P.; Krooss, B.; Matray, J.M.; Tanaka, T.; Vogel, P.; Lavanchy, J.M.; Enssle, C.P.; Cruchaudet, M.; Dewonck, S.; Descostes, M.; Blin, V.; Radwan, J.; Poinssot, C.; Mibus, J.; Sachs, S.; Devol-Brown, I.; Motellier, S.; Tinseau, E.; Thoby, D.; Marsal, F.; DeWindt, L.; Tinseau, E.; Pellegrini, D.; Bauer, A.; Fiehn, B.; Marquardt, Ch.; Romer, J.; Gortzen, A.; Kienzler, B
2007-07-01
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Mass Transfer and Porous Media (MTPM)
International Nuclear Information System (INIS)
This session gathers 48 articles (posters) dealing with: interlayer / micro-pore exchange of water and ions in clays: a molecular dynamics study; the multi-scale characterisation of mineral and textural spatial heterogeneities in Callovo-Oxfordian argilite and its consequence on solute species diffusion modelling; the diffusion of ions in unsaturated clay rocks: Theory and application to the Callovo- Oxfordian argillite; the porous media characterization with respect to gas transfer in Callovo Oxfordian argillite; the predictions on a 2-D cementation experiment in porous medium: intercomparison on the Comedie project; the large-scale gas injection test (LASGIT) at the Aespoe hard rock laboratory in Sweden; simulating the geochemical coupling between vitrified waste, canister and near-field on the alliances platform; toward radionuclide transport calculations on whole radioactive waste disposal with CAST3M platform; the experimental study of the water permeability of a partially saturated argillite; a mixed hexahedral finite elements for Darcy flow calculation in clay porous media; the diffusive properties of stainless steel filter discs before and after use in diffusion experiments with compacted clays; the structural organization of porosity in the Opalinus clay at the Mont Terri Rock Laboratory under saturated and unsaturated conditions; the evaluation of pore structure in compacted saturated Bentonite using NMR relaxometry; diffusion coefficients measurement in consolidated clays: a combination of micro-scale profiling and solid pore structure analyses; the numerical interpretation of in-situ DIR diffusion experiments on the Callovo- Oxfordian clay at the Meuse/Haute-Marne URL the identification of relative conductivity models for water flow and solute transport in unsaturated compacted Bentonite; diffusion experiments in Callovo- Oxfordian clay from the Meuse/Haute-Marne URL, France: experimental setup and data analyses; the transport in organo
Impact of space-time mesh adaptation on solute transport modeling in porous media
Esfandiar, Bahman; Porta, Giovanni; Perotto, Simona; Guadagnini, Alberto
2015-02-01
We implement a space-time grid adaptation procedure to efficiently improve the accuracy of numerical simulations of solute transport in porous media in the context of model parameter estimation. We focus on the Advection Dispersion Equation (ADE) for the interpretation of nonreactive transport experiments in laboratory-scale heterogeneous porous media. When compared to a numerical approximation based on a fixed space-time discretization, our approach is grounded on a joint automatic selection of the spatial grid and the time step to capture the main (space-time) system dynamics. Spatial mesh adaptation is driven by an anisotropic recovery-based error estimator which enables us to properly select the size, shape, and orientation of the mesh elements. Adaptation of the time step is performed through an ad hoc local reconstruction of the temporal derivative of the solution via a recovery-based approach. The impact of the proposed adaptation strategy on the ability to provide reliable estimates of the key parameters of an ADE model is assessed on the basis of experimental solute breakthrough data measured following tracer injection in a nonuniform porous system. Model calibration is performed in a Maximum Likelihood (ML) framework upon relying on the representation of the ADE solution through a generalized Polynomial Chaos Expansion (gPCE). Our results show that the proposed anisotropic space-time grid adaptation leads to ML parameter estimates and to model results of markedly improved quality when compared to classical inversion approaches based on a uniform space-time discretization.
Capillary thermomechanics in serially porous media, with implications for randomly porous media
Miller, Robert D.
Visions of a single mobile substance present as two rival phases more or less cleanly segregated by capillarity between rival strata of a serially porous medium (a ``discontinuum'') imply explicit testable equations for externally measured capillary thermo-osmotic pressures and capillary thermo-osmosis, with implications for thermomechanical consolidation, dilation, and cracking. Underlying equations assume fluid phases governed by the laws of surface tension and viscous flow, moderated by an appropriate form of the Clapeyron equation. Derived phenomenological coefficients in macroscopic equations for steady coupled transports of mass and heat include only path-length-weighted fluid and heat conductances for rival domains and the heat of phase transformation. Expressions emphasize the phase-specific nature of Onsager's reciprocity principle and apply to serial media held within permeameters set up for measuring either ``isothermal'' or ``adiabatic'' mass transport or held within sealed containers intended for measurements of ``thermal conductivities.'' Results clarify unmet challenges facing modelers of similar processes and attributes in randomly porous media.
The Kinematics and Field Equations for Porous Media
Institute of Scientific and Technical Information of China (English)
无
1999-01-01
With a porous medium regarded as an immiscible mixture of multiphase and each phase as a miscible mixture of multi-constituent, a systematical research on the kinematics and field equations for porous media is carried out from the point of view of mixture theory. It is shown that the motion of each phase is the mathematical average of the motions of all constituents in the phase, and that the motion of porous media may be described as the motion of the skeleton and the relative motion of each phase with respect to the skeleton. The influence of mass exchange between different constituents in each phase and the influence of mass exchange of same constituent between different phases in porous media are considered in field equations which are self-consistent in theory. All the field equations in the references are special cases of the equations proposed in this paper.
Experimental investigation of transverse mixing in porous media under helical flow conditions
DEFF Research Database (Denmark)
Ye, Yu; Chiogna, Gabriele; Cirpka, Olaf A.;
2016-01-01
transport. The simulation results were evaluated using metrics of reactive mixing such as the critical dilution index and the length of continuously injected steady-state plumes. The results show considerable reaction enhancement, quantified by the remarkable decrease of reactive plume lengths (up to four...... spiraling and deformation, as well as on its dilution. Porous media were packed in angled stripes of materials with different grain sizes to create blocks with macroscopically anisotropic hydraulic conductivity, which caused helical flows. Steady-state transport experiments were carried out by continuously...... times) in helical flows compared to analogous scenarios in uniform flows....
Porous media heat transfer for injection molding
Energy Technology Data Exchange (ETDEWEB)
Beer, Neil Reginald
2016-05-31
The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.
Wang, Ding; Wang, Liji; Ding, Pinbo
2016-08-01
An illustrative theory is developed to analyze the acoustic wave propagation characteristics in the porous media with anisotropic permeability. We focus here on the role of fracture permeability in the unconsolidated porous media, looking in particular at the compressional P-wave phase velocity and attenuation. Two fluid pressure equilibration characteristic time factors are defined, which are corresponding to crack-pore system and crack-crack system, respectively. The theoretical results show that the dispersion and attenuation characteristics of acoustic wave are affected by porous matrix and fracture permeability simultaneously. Due to the fluid exchange that takes place between fractures and pores dominantly, the influence of the fracture connectivity on the wave propagation is very weak when the permeability of background medium is relatively high. However, correlation between wave propagation and fracture permeability is significant when the matrix permeability at a low level. A second attenuation peak occurs for the fluid flow within fractures in high-frequency region for more and more higher fracture permeability. The exact analytical solutions that are compared to numerical forward modeling of wave propagation in fractured media allow us to verify the correctness of the new model. If there exists another approach for obtaining the connectivity information of background media, we can use this model to analyze qualitatively the permeability of fractures or afford an indicator of in-situ permeability changes in a oil reservoir, for example, fracturing operations. PMID:27259119
Nuclear magnetic relaxation of liquids in porous media
International Nuclear Information System (INIS)
Nuclear magnetic relaxation is useful for probing physical and chemical properties of liquids in porous media. Examples are given on high surface area porous materials including calibrated porous silica glasses, granular packings, plaster pastes, cement-based materials and natural porous materials, such as sandstone and carbonate rocks. Here, we outline our recent NMR relaxation work for these very different porous materials. For instance, low field NMR relaxation of water in calibrated granular packings leads to striking different pore-size dependencies of the relaxation times T1 and T2 when changing the amount of surface paramagnetic impurities. This allows separation of the diffusion and surface limited regimes of relaxation in these macroporous media. The magnetic field dependence of the nuclear spin-lattice relaxation rate 1/T1(ω0) is also a rich source of dynamical information for characterizing the molecular dynamics of liquids in porous media. This allows a continuous characterization of the evolving microstructure of various cementitious materials. Our recent applications of two-dimensional (2D) T1-T2 and T2-z-store-T2 correlation experiments have evidenced the water exchange in connected micropores of cement pastes. The direct probing of water adsorption time on a solid surface gives access to an original characterization of the surface nano-wettability of porous plaster pastes. We show that such a parameter depends directly on the physical chemistry of the pore surfaces. Lastly, we outline our recent measurements of wettability in oil/brine/reservoir carbonate rocks.
Asymptotics of the filtration problem for suspension in porous media
Directory of Open Access Journals (Sweden)
Kuzmina Ludmila Ivanovna
2015-01-01
Full Text Available The mechanical-geometric model of the suspension filtering in the porous media is considered. Suspended solid particles of the same size move with suspension flow through the porous media - a solid body with pores - channels of constant cross section. It is assumed that the particles pass freely through the pores of large diameter and are stuck at the inlet of pores that are smaller than the particle size. It is considered that one particle can clog only one small pore and vice versa. The particles stuck in the pores remain motionless and form a deposit. The concentrations of suspended and retained particles satisfy a quasilinear hyperbolic system of partial differential equations of the first order, obtained as a result of macro-averaging of micro-stochastic diffusion equations. Initially the porous media contains no particles and both concentrations are equal to zero; the suspension supplied to the porous media inlet has a constant concentration of suspended particles. The flow of particles moves in the porous media with a constant speed, before the wave front the concentrations of suspended and retained particles are zero. Assuming that the filtration coefficient is small we construct an asymptotic solution of the filtration problem over the concentration front. The terms of the asymptotic expansions satisfy linear partial differential equations of the first order and are determined successively in an explicit form. It is shown that in the simplest case the asymptotics found matches the known asymptotic expansion of the solution near the concentration front.
a Fractal Network Model for Fractured Porous Media
Xu, Peng; Li, Cuihong; Qiu, Shuxia; Sasmito, Agus Pulung
2016-04-01
The transport properties and mechanisms of fractured porous media are very important for oil and gas reservoir engineering, hydraulics, environmental science, chemical engineering, etc. In this paper, a fractal dual-porosity model is developed to estimate the equivalent hydraulic properties of fractured porous media, where a fractal tree-like network model is used to characterize the fracture system according to its fractal scaling laws and topological structures. The analytical expressions for the effective permeability of fracture system and fractured porous media, tortuosity, fracture density and fraction are derived. The proposed fractal model has been validated by comparisons with available experimental data and numerical simulation. It has been shown that fractal dimensions for fracture length and aperture have significant effect on the equivalent hydraulic properties of fractured porous media. The effective permeability of fracture system can be increased with the increase of fractal dimensions for fracture length and aperture, while it can be remarkably lowered by introducing tortuosity at large branching angle. Also, a scaling law between the fracture density and fractal dimension for fracture length has been found, where the scaling exponent depends on the fracture number. The present fractal dual-porosity model may shed light on the transport physics of fractured porous media and provide theoretical basis for oil and gas exploitation, underground water, nuclear waste disposal and geothermal energy extraction as well as chemical engineering, etc.
Tritium transport in lithium ceramics porous media
Energy Technology Data Exchange (ETDEWEB)
Tam, S.W.; Ambrose, V.
1991-12-31
A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs.
Tritium transport in lithium ceramics porous media
Energy Technology Data Exchange (ETDEWEB)
Tam, S.W.; Ambrose, V.
1991-01-01
A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs.
Tritium transport in lithium ceramics porous media
International Nuclear Information System (INIS)
A random network model has been utilized to analyze the problem of tritium percolation through porous Li ceramic breeders. Local transport in each pore channel is described by a set of convection-diffusion-reaction equations. Long range transport is described by a matrix technique. The heterogeneous structure of the porous medium is accounted for via Monte Carlo methods. The model was then applied to an analysis of the relative contribution of diffusion and convective flow to tritium transport in porous lithium ceramics. 15 refs., 4 figs
Reptation of a semiflexible polymer through porous media
Nam, Gimoon; Johner, Albert; Lee, Nam-Kyung
2010-07-01
We study the motion of a single stiff semiflexible filament of length S through an array of topological obstacles. By means of scaling arguments and two-dimensional computer simulations, we show that the stiff chain kinetics follows the reptation picture, albeit with kinetic exponents (for the central monomer) different from those for flexible chain reptation. At early times when topological constraints are irrelevant, the chain kinetics is the anisotropic dynamics of a free filament. After the entanglement time τe transverse modes are equilibrated under the topological constraints, but the chain is not yet correlated over its whole length. During the relaxation of longitudinal modes, both the longitudinal fluctuation of the central monomer and the longitudinal correlation length grow as ˜√t . After time τr˜S2 chain ends are correlated, the chain then diffuses globally along the tube and tube renewal takes place. In the reptation regime, the longitudinal fluctuation of the central monomer grows like ˜t1. The opening of the intermediate ˜√t regime, absent for a free filament, is a signature of the reptation process. Although the underlying physics is quite different, the intermediate regime is reminiscent of the internal Rouse mode relaxation found for reptating flexible chains. In most cases asymptotic power laws from scaling could be complemented by prefactors calculated analytically. Our results are supported by two-dimensional Langevin simulations with fixed obstacles via evaluation of the mean squared displacement of the central monomer. The scaling theory can be extended to long semiflexible polymers adopting random-walk equilibrium configurations and should also apply in three dimensions for porous media with pore diameter smaller than the persistence length of the filament.
Acoustically driven filtration of particulate suspensions in porous media
Gupta, Sanjay
1997-12-01
A novel method of filtration of liquid suspensions containing micron to millimeter size particles has been developed. A resonant ultrasonic field, applied across a highly porous medium, has been used to trap fine particles inside the large pores (relative to the particle size) of the medium. Three types of porous media, unconsolidated bed of 3 mm glass beads, consolidated open pore aluminum mesh, and reticulated polyester polyurethane foam were investigated as the test media. Reasonable filtration efficiencies were achieved for model aqueous suspensions of 325 mesh polystyrene particles in all three porous media. The expected trends of filtration performance with respect to suspension flow rate, its concentration, and the acoustic field intensity were confirmed. The Filtration phenomena was found to be limited by non-physical saturation of porous media. At saturation, the particles collected inside the media were found to exhibit macroscopic vibrations which allows them to escape with the carrier fluid. The highly porous POLY foam (95% porosity) was found to be the best media for suspension studied in terms of the duration of particle retention and percentage filtration efficiencies. The aluminum mesh performed slightly poorer. The unconsolidated porous media collected the least amount of solids. A simple theoretical development based on particle trajectory around an infinitely long cylindrical fiber, in the presence of acoustic field, has been initiated. In principle, the new filtration method is similar to high gravity magnetic separation but the acoustic method has a wider scope due to inherent acoustic contrast present in most suspensions. The low pressure drop, ease of operation, amenability to large scale operation and reasonable filtration efficiency make the new method highly attractive and suitable for practical applications.
Preliminary study on ECT imaging of flames in porous media
International Nuclear Information System (INIS)
This preliminary study for the first time investigated the feasibility of tomographic monitoring of flames in porous media, in which the cross-sectional profiles of flames inside a porous medium were imaged by electrical capacitance tomography (ECT). The relationship between the flame ionization and relative permittivity was established as the basis for ECT imaging of flames. Image reconstruction algorithms were discussed and an online iterative method OIOR was selected for image reconstruction. Experimental measurements were carried out and images of the flames were reconstructed. The shape, size and motion of the flames in a porous block were clearly monitored. Also the images correspond clearly to the variations of the combustion intensity. The feasibility of ECT monitoring of flames in porous media is proven by this study
Laha, P.; Nazarkin, M. Y.; Volkova, A. V.; Simunin, M. M.; Terryn, H.; Gavrilov, S. A.; Ustarroz, J.
2015-03-01
ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.
International Nuclear Information System (INIS)
ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc
Energy Technology Data Exchange (ETDEWEB)
Laha, P., E-mail: plaha@vub.ac.be; Terryn, H.; Ustarroz, J., E-mail: justarro@vub.ac.be [Research Group Electrochemical and Surface Engineering (SURF), Vrije Universiteit Brussel, Pleinlaan 2, 1050 Elsene, Brussels (Belgium); Nazarkin, M. Y., E-mail: mikleo@mail.ru; Gavrilov, S. A. [Department of Materials of Functional Electronics (MFE), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation); Volkova, A. V.; Simunin, M. M. [Department of Quantum Physics and Nanoelectronics (QPN), National Research University of Electronic Technology, Bld. 5, Pas. 4806, Zelenograd, Moscow 124498 (Russian Federation)
2015-03-09
ZnO films have increasingly been in the spotlight due to their largely varied electro-physical and optical properties. For several applications, porous anisotropic nanocrystalline layers are especially interesting. To study the growth kinetics of such films during different fabrication processes, a powerful non-destructive in-situ technique is required. In this work, both ex-situ and in-situ spectroscopic ellipsometry are used along with advanced modelling techniques that are able to take both the anisotropy and the porosity of the films into account. Scanning electron microscopy, along with nitrogen absorption methods for measuring porosity, validated the ellipsometric data and proposed model. The film, grown by chemical bath deposition, was monitored from around 700 to 1800 nm in thickness. This same principle can now be used to monitor any other porous and/or anisotropic structure in an effective in-situ manner, e.g., growth of porous anodic aluminium oxides, nano-porous silica films, etc.
Van der Waals interaction torque and force between dielectrically anisotropic layered media
Lu, Bing-Sui
2016-01-01
We analyse the van der Waals interaction for a pair of dielectrically anisotropic plane-layered media interacting across a dielectrically isotropic medium. We investigate the van der Waals torque and force for the following cases: (i) a pair of single anisotropic layers, (ii) a single anisotropic layer interacting with a multilayered slab consisting of alternating anisotropic and isotropic layers, and (iii) a pair of multilayered slabs each consisting of alternating anisotropic and isotropic layers, looking at the cases where the optical axes lie parallel and/or perpendicular to the plane of the layers. For the first case, the optical axes of the oppositely facing anisotropic layers of the two interacting slabs generally have an angular mismatch, and within each multilayered slab the optical axes may either be the same, or undergo constant angular increments across the anisotropic layers. In particular, we examine how the behaviors of the van der Waals torque and force can be "tuned" by adjusting the layer th...
Advanced modeling in porous media: Use of DNS
International Nuclear Information System (INIS)
Two-phase flows in porous media appear in a large number of engineering applications including heat-exchangers, drying process and nuclear reactors. More particularly, in the framework of its research programme on severe nuclear reactor accidents, IPSN investigates the water flooding of an overheated porous bed, where such complex flows are likely to exist. The goal is to describe the flow with a general model, covering rods and debris beds regions in the vessel. (authors)
Impact of wettability correlations on multiphase flow through porous media
de la Lama, Marta S.; Brinkmann, Martin
2012-01-01
In the last decades, significant progress has been made in understanding the multiphase displacement through porous media with homogeneous wettability and its relation to the pore geometry. However, the role of wettability at the scale of the pore remains still little understood. In the present study the displacement of immiscible fluids through a two-dimensional porous medium is simulated by means of a mesoscopic particle approach. The substrate is described as an assembly of non-overlapping...
Modeling microbial processes in porous media
Murphy, Ellyn M.; Ginn, Timothy R.
The incorporation of microbial processes into reactive transport models has generally proceeded along two separate lines of investigation: (1) transport of bacteria as inert colloids in porous media, and (2) the biodegradation of dissolved contaminants by a stationary phase of bacteria. Research over the last decade has indicated that these processes are closely linked. This linkage may occur when a change in metabolic activity alters the attachment/detachment rates of bacteria to surfaces, either promoting or retarding bacterial transport in a groundwater-contaminant plume. Changes in metabolic activity, in turn, are controlled by the time of exposure of the microbes to electron acceptors/donor and other components affecting activity. Similarly, metabolic activity can affect the reversibility of attachment, depending on the residence time of active microbes. Thus, improvements in quantitative analysis of active subsurface biota necessitate direct linkages between substrate availability, metabolic activity, growth, and attachment/detachment rates. This linkage requires both a detailed understanding of the biological processes and robust quantitative representations of these processes that can be tested experimentally. This paper presents an overview of current approaches used to represent physicochemical and biological processes in porous media, along with new conceptual approaches that link metabolic activity with partitioning of the microorganism between the aqueous and solid phases. Résumé L'introduction des processus microbiologiques dans des modèles de transport réactif a généralement suivi deux voies différentes de recherches: (1) le transport de bactéries sous forme de colloïdes inertes en milieu poreux, et (2) la biodégradation de polluants dissous par une phase stationnaire de bactéries. Les recherches conduites au cours des dix dernières années indiquent que ces processus sont intimement liés. Cette liaison peut intervenir lorsqu
A volume-balance model for flow on porous media
Malaga, Carlos; Mandujano, Francisco; Becerra, Julian
2015-11-01
Volume-balance models are used by petroleum engineers for simulating multiphase and multicomponent flow phenomena in porous media and the extraction process in oil reservoirs. In these models, mass conservation equations and Darcy's law are supplemented by a balance condition for the pore and fluid volumes. This provides a pressure equation suitable for simulating a compressible flow within a compressible solid matrix. Here we present an alternative interpretation of the volume-balance condition that includes the advective transport within a consolidated porous media. We obtain a modified equation for the time evolution of the pressure field. Numerical tests for phase separation under gravity are presented for multiphase three dimensional flow in heterogeneous porous media. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER grant number 42536 (DGAJ-SPI-34-170412-217).
Relationship between fluid resistance and heat transfer in porous media
International Nuclear Information System (INIS)
A relationship is established between the drag coefficient and heat-transfer coefficient in a turbulent flow in a porous medium. The relationship is described in the form of criterional equations which contain a unique empirical (evidently universal) constant, and it is based on the determining effect of the scale of the fluctuation velocity of the heat carrier on the heat-transfer coefficient. It is found that satisfactory results are obtained for porous media by using the Kolmogorov scale of fluctuation velocity. A comparison is made between the results of present calculations and experimental data on heat transfer in spherical packings and reticular and fibrous media and for transverse flow in rod bundles cooled by liquid metals, gases, water, and oils. The formulas obtained are convenient to use to estimate heat transfer in porous media from measurements of drag
Channelization in Porous Media driven by Erosion and Deposition
Jäger, Robin; Herrmann, Hans Jürgen
2016-01-01
We develop and validate a new model to study simultaneous erosion and deposition in three-dimensional porous media. We study the changes of the porous structure induced by the deposition and erosion of matter on the solid surface and find that when both processes are active, channelization in the porous structure always occurs. The channels can be stable or only temporary depending mainly on the driving mechanism. Whereas a fluid driven by a constant pressure drop in general does not form steady channels, imposing a constant flux always produces stable channels within the porous structure. Furthermore we investigate how changes of the local deposition and erosion properties affect the final state of the porous structure, finding that the larger the range of wall shear stress for which there is neither erosion nor deposition, the more steady channels are formed in the structure.
Linking Colloid Deposit Morphology and Clogging in Porous Media
Roth, E. J.; Mont-eton, M. E.; Mays, D. C.
2012-12-01
Innovations in the field of groundwater remediation have been hampered by delivery limitations in the porous media. For example, colloid deposits (comprising clays or silts) can cause a detrimental reduction in permeability, or clogging, which is problematic for groundwater remediation as well as granular media filtration and aquifer storage and recovery. During remediation, clogging creates preferential pathways in the media, leading to localized rather than spatially extensive contaminant treatment. Consequentially, remediation efforts become more expensive, less effective, and take a very long time. This presentation describes ongoing research investigating the link between colloid deposit morphology and clogging in porous media. As described by Darcy's Law, the velocity of fluid flow through porous media is proportional to permeability, which depends, in part, on porosity. However, changes in permeability are not in accord with changes in porosity as predicted by the Kozeny-Carman equation. It is hypothesized that unmeasured aspects of colloid deposit morphology could be the cause of this anomaly. Colloidal phenomena have important and dynamic effects on the permeability of natural porous media, and several lines of evidence suggest a correlation between clogging in porous media and the fractal dimension of colloid deposits. Here, a custom-built static light scattering apparatus is used to measure the fractal dimension of colloid deposits in refractive index matched porous media within a flow column. The media in our flow column is Nafion, which becomes essentially invisible when saturated by a solution of isopropanol and water. Polystyrene microspheres are then added to the influent through the column as a surrogate for natural colloids. Light from a laser is passed through the column, scattering from the deposited colloids, but not from the index matched Nafion. The resulting intensity of scattered light is measured as a function of scattering angle, and then
Combustion and heat transfer in porous media
Energy Technology Data Exchange (ETDEWEB)
Sathe, S.B.; Peck, R.E.; Tong, T.W.
1990-06-01
The objective of the present study is to generate fundamental knowledge about heat transfer and combustion in porous radiant burners (PRBs) in order to improve their performance. A theoretical heat transfer and combustion model is developed to study the characteristics of PRBs. The model accounts for non-local thermal equilibrium between the solid and gas phases. The solid is assumed to absorb, emit and scatter radiant energy. Combustion is modeled as a one-step global reaction. It is revealed that the flame speed inside the porous medium is enhanced compared to the adiabatic flame speeds due to the higher conductivity of the solid compared to the gas as well as due to radiative preheating of the reactants. The effects of the properties of the porous material on the flame speeds, radiative outputs and efficiencies were investigated. To improve the radiative output from the burner, it is desirable that the porous layer has an optical thickness of about ten. The radiative output and the efficiency is higher for lower scattering albedo. The heat transfer coupling between the solid and gas phases should be high enough to ensure local thermal equilibrium, by choosing a fine porous matrix. Higher solid phase conduction enhances the flame speed and the radiative output. Experiments are performed on a ceramic foam to verify the theoretical findings. The existence of the two stability regions was verified experimentally.
Density-Driven Compactional Flow in Porous Media
Yang, Xin-She
2010-01-01
In the mathematical modelling of compactional flow in porous media, the constitutive relation is typically modelled in terms of a nonlinear relationship between effective pressure and porosity, and compaction is essentially poroelastic. However, at depths deeper than 1 km where pressure is high, compaction becomes more akin to a viscous one. Two mathematical models of compaction in porous media are formulated and the noninear equations are then solved numerically. The essential features of numerical profiles of poroelastic and viscous compaction are thus compared with asymptotic solutions. Two distinguished styles of density-driven compaction in fast and slow compacting sediments are analysed and shown in this paper.
Traveling time and traveling length for flow in porous media
Lee, Youngki; Andrade Jr., Jose S.; Buldyrev, Sergey V.; Dokholyan, Nikolay V.; Havlin, Shlomo; King, Peter R.; Paul, Gerald; Stanley, H. Eugene
1999-01-01
We study traveling time and traveling length for tracer dispersion in porous media. We model porous media by two-dimensional bond percolation, and we model flow by tracer particles driven by a pressure difference between two points separated by Euclidean distance $r$. We find that the minimal traveling time $t_{min}$ scales as $t_{min} \\sim r^{1.40}$, which is different from the scaling of the most probable traveling time, ${\\tilde t} \\sim r^{1.64}$. We also calculate the length of the path c...
Study of water radiolysis in porous media
International Nuclear Information System (INIS)
The understanding of the production of H2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author)
Institute of Scientific and Technical Information of China (English)
SHU Wei-Xing; LUO Hai-Lu; LI Fei; REN Zhong-Zhou
2006-01-01
@@ We investigate the propagation of electromagnetic waves at the interface between an isotropic material and the anisotropic medium with a unique dispersion relation. We show that the refraction behaviour of E-polarized waves is opposite to that of H-polarized waves, though the dispersion relations for E- and H-polarized waves are the same. It is found that waves exhibit different propagation properties in anisotropic media with different sign combinations of the permittivity and permeability tensors. Some interesting properties of propagation are also found in the special anisotropic media, leading to potential applications.
Mathematical models of a diffusion-convection in porous media
Directory of Open Access Journals (Sweden)
Anvarbek M. Meirmanov
2012-06-01
Full Text Available Mathematical models of a diffusion-convection in porous media are derived from the homogenization theory. We start with the mathematical model on the microscopic level, which consist of the Stokes system for a weakly compressible viscous liquid occupying a pore space, coupled with a diffusion-convection equation for the admixture. We suppose that the viscosity of the liquid depends on a concentration of the admixture and for this nonlinear system we prove the global in time existence of a weak solution. Next we rigorously fulfil the homogenization procedure as the dimensionless size of pores tends to zero, while the porous body is geometrically periodic. As a result, we derive new mathematical models of a diffusion-convection in absolutely rigid porous media.
Upscaling of flow in porous media from a tracer perspective
Berentsen, C.W.J.
2003-01-01
Most of our knowledge of flow in porous media is obtained at the pore and the macro scale. For reservoir scale modelling it is not practical to model the flow at these fine scales. Considering the usual objectives (e.g. large scale flow pattern and production forecast) it is undesirable to have to g
Simulation of impaction filtration of aerosol droplets in porous media
Ghazaryan, Lilya; Lopez Penha, David J.; Geurts, Bernard J.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F.; Sequeira, A.; Pereira, J.M.C.
2010-01-01
We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar
magnetic resonance of 3He nuclei in porous media
International Nuclear Information System (INIS)
The data on 3He spin kinetics in porous media above the Fermi temperature of 3He are summarized. Presented results are obtained in Kazan Federal University in last ten years and are the base of developing method of helium porometry. Guidelines for investigation of samples with unknown pore sizes and superficial their properties are proposed
A non-Darcian approach to flows through porous media
International Nuclear Information System (INIS)
Darcy's law is inadequate to describe viscous flows through porous media near solid boundaries-interfaces, permeable or not, and also at high speeds. The convective accelerations and viscous stresses play a dominating role in determining the flow pattern in a layer close to such surfaces. Of course, the flow at large distances is very much closer to the Darcian flow
Determination of permeability using fractal method for porous media
Institute of Scientific and Technical Information of China (English)
施明恒; 陈永平
2001-01-01
A theoretical formulation was developed to express permeability as a function of different fractal dimensions and other scales for porous media . The effective fractal void ratio, the spectral dimension and the fractal dimension of particle mass distribution were introduced. The permeabilities for different soils in China are calculated. The predicted permeability for rice soil was compared with the measured data available in literature.
Fractal and Multifractal Models Applied to Porous Media - Editorial
Given the current high level of interest in the use of fractal geometry to characterize natural porous media, a special issue of the Vadose Zone Journal was organized in order to expose established fractal analysis techniques and cutting-edge new developments to a wider Earth science audience. The ...
Diffusive–Dispersive and Reactive Fronts in Porous Media
DEFF Research Database (Denmark)
Haberer, Christina M.; Muniruzzaman, Muhammad; Grathwohl, Peter;
2015-01-01
Diffusive–dispersive mass transfer is important for many groundwater quality problems as it drives the interaction between different reactants, thus influencing a wide variety of biogeochemical processes. In this study, we performed laboratory experiments to quantify O2 transport in porous media...
Microscopic interfacial phenomena during flow in porous media
Energy Technology Data Exchange (ETDEWEB)
Miksis, M.J.; Ida, M.P. [Northwestern Univ., Evanston, IL (United States)
1996-12-31
A fundamental process during any multiphase flow in porous media is the breaking apart of one of the phases into smaller components. Here the authors investigate this breaking process as applied to a thin liquid film. They study the breaking of both a two dimensional planar film and a cylindrical thread of liquid using both analytical and numerical methods.
Acoustic Wave Monitoring of Biofilm Development in Porous Media
Biofilm development in porous media can result in significant changes to the hydrogeological properties of subsurface systems with implications for fluid flow and contaminant transport. As such, a number of numerical models and simulations have been developed in an attempt to qua...
Coupled Flow and Reactivity in the Variably Saturated Porous Media
Energy Technology Data Exchange (ETDEWEB)
Palmer, Carl; Smith Bob W.
2003-06-01
This Environmental Management Science Program project (86598) is a collaborative effort between the University of Idaho (UI) and the Idaho National Engineering and Environmental Laboratory (INEEL) with the goal of developing a better understanding of the relationships between chemical reactivity, moisture content, and reactive transport for vadose zone porous media.
Chaotic advection in 2D anisotropic porous media
Varghese, Stephen; Speetjens, Michel; Trieling, Ruben; Toschi, Federico
2015-11-01
Traditional methods for heat recovery from underground geothermal reservoirs employ a static system of injector-producer wells. Recent studies in literature have shown that using a well-devised pumping scheme, through actuation of multiple injector-producer wells, can dramatically enhance production rates due to the increased scalar / heat transport by means of chaotic advection. However the effect of reservoir anisotropy on kinematic mixing and heat transport is unknown and has to be incorporated and studied for practical deployment in the field. As a first step, we numerically investigate the effect of anisotropy (both magnitude and direction) on (chaotic) advection of passive tracers in a time-periodic Darcy flow within a 2D circular domain driven by periodically reoriented diametrically opposite source-sink pairs. Preliminary results indicate that anisotropy has a significant impact on the location, shape and size of coherent structures in the Poincare sections. This implies that the optimal operating parameters (well spacing, time period of well actuation) may vary strongly and must be carefully chosen so as to enhance subsurface transport. This work is part of the research program of the Foundation for Fundamental Research on Matter (FOM), which is part of Netherlands Organisation for Scientific Research (NWO). This research program is co-financed by Shell Global Solutions International B.V.
Institute of Scientific and Technical Information of China (English)
Zhiming Chen
2006-01-01
We review some of our recent efforts in developing upscaling methods for simulating the flow transport through heterogeneous porous media. In particular, the steady flow transport through highly heterogeneous porous media driven by extraction wells and the flow transport through unsaturated porous media will be considered.
Osmosis, filtration and fracture of porous media
International Nuclear Information System (INIS)
Filtration was produced in a small scale physical model of a granular porous medium of cylindrical shape.The same volume flow was obtained either applying a difference in hydrostatic pressure or in osmotic pressure.In the first case a process of sustained erosion ending in an hydraulic short circuit was observed,while in the second case the material remained stable.This paradoxical strength behaviour is explained using some results from differential geometry,classical field theory and thermo-kinetic theory.The fracture process of a continuous matrix in a porous medium under the combined effect of filtration and external mechanical loads in then considered.The obtained results can be applied to the textural and compressive strength of wet concrete
Novel lattice models for porous media
Andrey P Jivkov, Joseph E Olele
2011-01-01
Several barriers in a nuclear waste repository, such as waste immobilisers, backfills and host rock are porous. Predicting the changes in their permeability over the repository lifetime is critical to the assessment of radionuclide transport. Pore network models used in petrology offer an advantageous way for such predictions, because they can be linked elegantly to physical mechanisms that could lead to pore structure changes, e.g. mechanical damage, gas generation, or irradiation. The ex...
Migration of radionuclides in porous media
International Nuclear Information System (INIS)
One- and three-dimensional solutions based on the classical advection-dispersion equation have been developed and classified for the analysis of radionuclide transport in unconsolidated porous materials. The one-dimensional solutions have been applied for interpretation of experimental data obtained from radio-tracer tests with laboratory and field columns whereas both types of solutions were employed for interpretation of the field tracer test data
Superfluid Helium Flow in Porous Media
Allain, Hervé; Quintard, Michel; Soulaine, Cyprien; Prat, Marc; Baudouy, Bertrand; Van Weelderen, Rob
2013-01-01
Superfluid helium is primarily used in the field of applied superconductivity. Given the complexity of the magnet geometry and the scales involved, a real 3D simulation of heat transfer in such devices at the micro-channel scale is very difficult, even impossible. However, the repeatability or even periodicity of the structure suggests the possibility of a macro-scale description following a porous medium approach. Which macro-scale model may be used? This largely remains an open field while ...
Directory of Open Access Journals (Sweden)
Sophia Haussener
2012-01-01
Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.
Wang, Hui
2014-05-01
This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my
Studies of Tracer Dispersion and Fluid Flow in Porous Media
Energy Technology Data Exchange (ETDEWEB)
Rage, T.
1996-12-31
This doctoral thesis explores the connection between the topology of a porous medium and its macroscopic transport properties and is based on computerized simulation. In porous media, both diffusion and convection contribute to the dispersion of a tracer and their combined effect is emphasized. The governing equations are solved numerically, using finite differences and Monte Carlo technique. The influence of finite Reynolds number on the outcome of echo-experiments is discussed. Comparing experiments and simulations it is found that nonlinear inertial forces lead to a visible deformation of a returned tracer at surprisingly small Reynolds numbers. In a study of tracer dispersion and fluid flow in periodic arrays of discs it is demonstrated that the mechanisms of mechanical dispersion in periodic media and in natural (non-periodic) porous media are essentially different. Measurements of the percolation probability distribution of a sandstone sample is presented. Local porosity theory predicts that this simple geometric function of a porous medium is of dominant importance for its macroscopic transport properties. It is demonstrated that many aspects of transport through fractures can be studied by using simple but realistic models and readily available computer resources. An example may be the transport of hydrocarbon fluids from the source rock to a reservoir. 165 refs., 44 figs., 1 table
Particle dispersion and deposition in porous media: a computational perspective
Boccardo, Gianluca; Crevacore, Eleonora; Sethi, Rajandrea; Marchisio, Daniele
2015-11-01
This work investigates particle dispersion in porous media, which is of central relevance in a number of applications ranging from groundwater remediation tochemical engineering. The challenge lies in studying the complex fluid dynamics behavior arising at the microscale (very difficult to observe experimentally) and obtaining transport models to be employed at the macroscopic scale of interest. While a wealth of studies have approached this problem, the case of particle transport with a concurrent heterogeneous chemical reaction (e.g.: particle deposition) still lacks a satisfactory description, especially when considering a polydisperse population of solid particles. Moreover, the oft-used simplified descriptions of the porous medium (via array of spheres or similar strategies) fail to fully take into account the effect of the packing structure. Our novel approach relies on an ``in-silico'' procedure where many 3-D realistic porous media models are constructed via rigid-body simulations and fluid flowand particle transport are then investigated through computational fluid dynamics. The results evidence the need for a deeper look, afforded by these methodology, into the influence of the features of realistic porous media on particle transport and deposition.
Statistical mechanics of unsaturated porous media
Xu, Jin; Louge, Michel Y.
2015-12-01
We explore a mean-field theory of fluid imbibition and drainage through permeable porous solids. In the limit of vanishing inertial and viscous forces, the theory predicts the hysteretic "retention curves" relating the capillary pressure applied across a connected domain to its degree of saturation in wetting fluid in terms of known surface energies and void space geometry. To avoid complicated calculations, we adopt the simplest statistical mechanics, in which a pore interacts with its neighbors through narrow openings called "necks," while being either full or empty of wetting fluid. We show how the main retention curves can be calculated from the statistical distribution of two dimensionless parameters λ and α measuring the specific areas of, respectively, neck cross section and wettable pore surface relative to pore volume. The theory attributes hysteresis of these curves to collective first-order phase transitions. We illustrate predictions with a porous domain consisting of a random packing of spheres, show that hysteresis strength grows with λ and weakens as the distribution of α broadens, and reproduce the behavior of Haines jumps observed in recent experiments on an ordered pore network.
Statistical mechanics of unsaturated porous media.
Xu, Jin; Louge, Michel Y
2015-12-01
We explore a mean-field theory of fluid imbibition and drainage through permeable porous solids. In the limit of vanishing inertial and viscous forces, the theory predicts the hysteretic "retention curves" relating the capillary pressure applied across a connected domain to its degree of saturation in wetting fluid in terms of known surface energies and void space geometry. To avoid complicated calculations, we adopt the simplest statistical mechanics, in which a pore interacts with its neighbors through narrow openings called "necks," while being either full or empty of wetting fluid. We show how the main retention curves can be calculated from the statistical distribution of two dimensionless parameters λ and α measuring the specific areas of, respectively, neck cross section and wettable pore surface relative to pore volume. The theory attributes hysteresis of these curves to collective first-order phase transitions. We illustrate predictions with a porous domain consisting of a random packing of spheres, show that hysteresis strength grows with λ and weakens as the distribution of α broadens, and reproduce the behavior of Haines jumps observed in recent experiments on an ordered pore network. PMID:26764701
MULTIPHASE FLOW AND TRANSPORT IN POROUS MEDIA
Multiphase flow and transport of compositionally complex fluids in geologic media is of importance in a number of applied problems which have major social and economic effects. n petroleum reservoir engineering efficient recovery of energy reserves is the principal goal. nfortuna...
Slip effects associated with Knudsen transport phenomena in porous media
Frederking, T. H. K.; Hepler, W. A.; Khandhar, P. K.
1988-01-01
Porous media used in phase separators and thermomechanical pumps have been the subject of characterization efforts based on the Darcy permeability of laminar continuum flow. The latter is not always observed at low speed, in particular at permeabilities below 10 to the -9th/squared cm. The present experimental and theoretical studies address questions of slip effects associated with long mean free paths of gas flow at room temperature. Data obtained are in good agreement, within data uncertainty, with a simplified asymptotic Knudsen equation proposed for porous plugs on the basis of Knudsen's classical flow equation for long mean free paths.
Overlimiting Current and Shock Electrodialysis in Porous Media
Deng, Daosheng; Dydek, E. Victoria; Han, Ji-Hyung; Schlumpberger, Sven; Mani, Ali; Zaltzman, Boris; Bazant, Martin Z.
2013-01-01
Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electro-osmotic flow also contribute to ionic fluxes. In this paper, we report experimental evidence for surface-driven over-limiting current (faster than diffusion) and deionization shocks (propagating salt removal) in a porous medium. The apparatus consists of a silica glass frit (1 mm thick with 500 nm mean pore size) in an aqueous electrolyte (CuSO$_4$ or AgNO$_3$...
Multiphase lattice Boltzmann simulations for porous media applications -- a review
Liu, Haihu; Leonardi, Christopher R; Jones, Bruce D; Schmieschek, Sebastian; Narváez, Ariel; Williams, John R; Valocchi, Albert J; Harting, Jens
2014-01-01
Over the last two decades, lattice Boltzmann methods have become an increasingly popular tool to compute the flow in complex geometries such as porous media. In addition to single phase simulations allowing, for example, a precise quantification of the permeability of a porous sample, a number of extensions to the lattice Boltzmann method are available which allow to study multiphase and multicomponent flows on a pore scale level. In this article we give an extensive overview on a number of these diffuse interface models and discuss their advantages and disadvantages. Furthermore, we shortly report on multiphase flows containing solid particles, as well as implementation details and optimization issues.
Power exponential velocity distributions in disordered porous media
Matyka, Maciej; Koza, Zbigniew
2016-01-01
Velocity distribution functions link the micro- and macro-level theories of fluid flow through porous media. Here we study them for the fluid absolute velocity and its longitudinal and lateral components relative to the macroscopic flow direction in a model of a random porous medium. We claim that all distributions follow the power exponential law controlled by an exponent $\\gamma$ and a shift parameter $u_0$ and examine how these parameters depend on the porosity. We find that $\\gamma$ has a universal value $1/2$ at the percolation threshold and grows with the porosity, but never exceeds 2.
Poroelastic Response of Orthotropic Fractured Porous Media
Energy Technology Data Exchange (ETDEWEB)
Berryman, James G.
2011-12-16
An algorithm is presented for inverting either laboratory or field poroelastic data for all the drained constants of an anisotropic (specifically orthotropic) fractured poroelastic system. While fractures normally weaken the system by increasing the mechanical compliance, any liquids present in these fractures are expected to increase the stiffness somewhat, thus negating to some extent the mechanical weakening influence of the fractures themselves. The analysis presented quantifies these effects and shows that the key physical variable needed to account for the pore-fluid effects is a factor of (1 - B), where B is Skempton's second coe fficient and satisfies 0 {<=} B < 1. This scalar factor uniformly reduces the increase in compliance due to the presence of communicating fractures, thereby stiffening the fractured composite medium by a predictable amount. One further goal of the discussion is to determine how many of the poroelastic constants need to be known by other means in order to determine the rest from remote measurements, such as seismic wave propagation data in the field. Quantitative examples arising in the analysis show that, if the fracture aspect ratio a{sub f} ~ 0.1 and the pore fluid is liquid water, then for several cases considered Skempton's B ~ 0:9, so the stiffening effect of the pore-liquid reduces the change in compliance due to the fractures by a factor 1-B ~ 0.1, in these examples. The results do however depend on the actual moduli of the unfractured elastic material, as well as on the pore-liquid bulk modulus, so these quantitative predictions are just examples, and should not be treated as universal results. Attention is also given to two previously unremarked poroelastic identities, both being useful variants of Gassmann's equations for homogeneous -- but anisotropic -- poroelasticity. Relationships to Skempton's analysis of saturated soils are also noted. The paper concludes with a discussion of alternative methods
An iterative, fast-sweeping-based eikonal solver for 3D tilted anisotropic media
Waheed, Umair bin
2015-03-30
Computation of first-arrival traveltimes for quasi-P waves in the presence of anisotropy is important for high-end near-surface modeling, microseismic-source localization, and fractured-reservoir characterization - and it requires solving an anisotropic eikonal equation. Anisotropy deviating from elliptical anisotropy introduces higher order nonlinearity into the eikonal equation, which makes solving the eikonal equation a challenge. We addressed this challenge by iteratively solving a sequence of simpler tilted elliptically anisotropic eikonal equations. At each iteration, the source function was updated to capture the effects of the higher order nonlinear terms. We used Aitken\\'s extrapolation to speed up convergence rate of the iterative algorithm. The result is an algorithm for computing first-arrival traveltimes in tilted anisotropic media. We evaluated the applicability and usefulness of our method on tilted transversely isotropic media and tilted orthorhombic media. Our numerical tests determined that the proposed method matches the first arrivals obtained by wavefield extrapolation, even for strongly anisotropic and highly complex subsurface structures. Thus, for the cases where two-point ray tracing fails, our method can be a potential substitute for computing traveltimes. The approach presented here can be easily extended to compute first-arrival traveltimes for anisotropic media with lower symmetries, such as monoclinic or even the triclinic media.
Hydraulic tortuosity in arbitrary porous media flow
Duda, Artur; Matyka, Maciej
2011-01-01
Tortuosity ($T$) is a parameter describing an average elongation of fluid streamlines in a porous medium as compared to free flow. In this paper several methods of calculating this quantity from lengths of individual streamlines are compared and their weak and strong features are discussed. An alternative method is proposed, which enables one to calculate $T$ directly from the fluid velocity field, without the need of determining streamlines, which greatly simplifies determination of tortuosity in complex geometries, including those found in experiments or 3D computer models. Numerical results obtained with this method suggest that (a) the hydraulic tortuosity of an isotropic fibrous medium takes on the form $T = 1 + p\\sqrt{1-\\phi}$, where $\\phi$ is the porosity and $p$ is a constant and (b) the exponent controlling the divergence of $T$ with the system size at percolation threshold is related to an exponent describing the scaling of the most probable traveling length at bond percolation.
Pore-scale simulation of laminar flow through porous media
International Nuclear Information System (INIS)
The experimental investigation of flow through porous media is inherently difficult due to the lack of optical access. The recent developments in the fields of X-ray micro-tomography (micro-CT hereafter), digital sample reconstruction by image-processing techniques and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations through digitally-reconstructed porous samples. The scientific relevance of pore-scale simulations lies in the possibility of upscaling the pore-level data, yielding volume-averaged quantities useful for practical purposes. One of the best-known examples of upscaling is the calculation of absolute and relative permeability of reservoir rocks. This contribution presents a complete work-flow for setting up pore-scale simulations, starting from the micro-CT of a (in general small) porous sample. Relevant applications are discussed in order to reveal the potential of the proposed methodology.
Pore-scale simulation of laminar flow through porous media
Piller, M.; Casagrande, D.; Schena, G.; Santini, M.
2014-04-01
The experimental investigation of flow through porous media is inherently difficult due to the lack of optical access. The recent developments in the fields of X-ray micro-tomography (micro-CT hereafter), digital sample reconstruction by image-processing techniques and fluid-dynamics simulation, together with the increasing power of super-computers, allow to carry out pore-scale simulations through digitally-reconstructed porous samples. The scientific relevance of pore-scale simulations lies in the possibility of upscaling the pore-level data, yielding volume-averaged quantities useful for practical purposes. One of the best-known examples of upscaling is the calculation of absolute and relative permeability of reservoir rocks. This contribution presents a complete work-flow for setting up pore-scale simulations, starting from the micro-CT of a (in general small) porous sample. Relevant applications are discussed in order to reveal the potential of the proposed methodology.
3-D waveform tomography sensitivity kernels for anisotropic media
Djebbi, R.
2014-01-01
The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.
Polarisations of quasi-waves in a general anisotropic porous solid saturated with viscous liquid
Indian Academy of Sciences (India)
M D Sharma
2005-08-01
Wave propagation is studied in a general anisotropic poroelastic solid saturated with a viscous fluid flowing through its pores of anisotropic permeability. The extended version of Biot's theory is used to derive a system of modified Christoffel equations for the propagation of plane harmonic waves in such media. The non-trivial solution of this system is ensured by a biquadratic equation whose roots represent the complex velocities of four attenuating quasi-waves in the medium. These complex velocities define phase velocity and attenuation of each quasi-wave propagating along a given phase direction in three-dimensional space. The solution itself defines the polarisations of the quasi-waves along with phase shift. The variations of polarisations of quasi-waves with their phase direction, are computed for a realistic numerical model.
FEMWASTE FEMWATER, Finite Elements Method Waste Transport Through Porous Media
International Nuclear Information System (INIS)
1 - Description of program or function: FEMWASTE is a two-dimensional transient model for the transport of dissolved constituents through porous media. The transport mechanisms include: convection, hydro- dynamic dispersion, chemical sorption, and first-order decay. The waste transport model is compatible with the water flow model (FEMWATER)) for predicting convective Darcy velocities in porous media which may be partially saturated. 2 - Method of solution: Implementation of quadrilateral iso-parametric finite elements, bilinear spatial interpolation, asymmetric weighting functions, several time-marching techniques, and Gaussian elimination are employed in the numerical formulation of the transport equation. The application of the finite element method ensures that mass balance over the whole region is preserved. A mixture-dependent retardation factor is employed in the definition of solute sorption
Analytic studies of colloid transport in fractured porous media
International Nuclear Information System (INIS)
We analyze the interactive migration of radioactive colloids and solute in fractured rock. Two possible interactions between radionuclides as colloids and as solute are considered: solute sorption on nonradioactive colloids to form pseudocolloids, and dissolution of radioactive colloids. Previous studies have discussed the formation and transport of colloids in porous media, including removal of colloids by filtration and sedimentation. Colloids can migrate faster than solute because of weaker sorption on stationary solids and because of hydrochromatography of colloid particles in flow channels. However, the migration of colloids and pseudocolloids can be retarded by the interaction of colloids with solute, and the migration of solute in local equilibrium with colloids can be more rapid than if colloids were not present. Here we present a new quantative analysis to predict the interactive migration of colloids and solute in porous and fractured media. 4 figs
Dissipative particle dynamics model for colloid transport in porous media
Energy Technology Data Exchange (ETDEWEB)
Pan, W.; Tartakovsky, A. M.
2013-08-01
We present that the transport of colloidal particles in porous media can be effectively modeled with a new formulation of dissipative particle dynamics, which augments standard DPD with non-central dissipative shear forces between particles while preserving angular momentum. Our previous studies have demonstrated that the new formulation is able to capture accurately the drag forces as well as the drag torques on colloidal particles that result from the hydrodynamic retardation effect. In the present work, we use the new formulation to study the contact efficiency in colloid filtration in saturated porous media. Note that the present model include all transport mechanisms simultaneously, including gravitational sedimentation, interception and Brownian diffusion. Our results of contact efficiency show a good agreement with the predictions of the correlation equation proposed by Tufenkji and EliMelech, which also incorporate all transport mechanisms simultaneously without the additivity assumption.
On growth and flow: bacterial biofilms in porous media
Durham, William; Leombruni, Alberto; Tranzer, Olivier; Stocker, Roman
2011-11-01
Bacterial biofilms often occur in porous media, where they play pivotal roles in medicine, industry and the environment. Though flow is ubiquitous in porous media, its effects on biofilm growth have been largely ignored. Using patterned microfluidic devices that simulate unconsolidated soil, we find that the structure of Escherichia coli biofilms undergoes a self-organization mediated by the interaction of growth and flow. Intriguingly, we find that biofilm productivity peaks at intermediate flow rates, when the biofilm is irrigated by a minimum number of preferential flow channels. At larger and smaller flow rates, fluid flows more uniformly through the matrix, but productivity drops due to removal by shear and reduced nutrient transport, respectively. These dynamics are correctly predicted by a simple network model. The observed tradeoff between growth and flow may have important consequences on biofilm-mediated processes such as biochemical cycling, antibiotic resistance and water filtration.
Boiling heat transfer in porous media composed of particles
International Nuclear Information System (INIS)
The boiling heat transfer in the porous media composed of spherical fuel elements exerts significant influences on the reactor's efficiency and safety. In the present study an experimental setup was designed and the boiling heat transfer in the porous media composed of spheres of regular distribution was investigated. Four spheres with diameters of 5mm, 6mm, 7mm and 8mm were used in the test sections. The greater particle diameter led to lower heat transfer coefficient, and resulted in higher wall superheat of original nucleation boiling. The variation of heat transfer coefficient was divided into three groups according to two-phase flow patterns and void fraction. A correlation of heat transfer coefficient was proposed with a mean relative deviation of ± 16%. (author)
Characteristics of heat transport in porous media with water infiltration
International Nuclear Information System (INIS)
In this paper heat and water transports in porous media with waster infiltration are discussed experimentally and theoretically. The distributions of water content and temperature were predicted for one- and tow-dimensional porous media, based on a model that there is thermal equilibrium between the water and the matrix at any specific space. The predicted temperature distributions were compared of the experimental results obtained using various glass bead sizes. A larger bead size has a faster infiltration rate and forms a wider infiltration layer, especially to the direction of gravity. But the heated layer does not extend so wide as the infiltration layer because the temperature of water infiltrating gradually drops due to heat transport at upstream
Resistance absorption of some groundwater tracers in porous media
Jafari, Fateme
2010-05-01
Absorption of tracer to the aquifer material is among the most important factors which should be considered when a tracing program is considered. In this study, the absorption of the tracer into the porous media is analyzed experimentally for some of the most important and applied tracers as uranine, rhodamine B, eosin, potassium permanganate, sodium chloride and potassium chloride. For each tracer, effect of initial tracer concentration and percentage of fine grain sediments on tracer absorption in porous media is analyzed. According to the final results, rhodamine B and potassium permanganate have the less resistance against absorption to aquifer material, whilst eosin and uranine are the most resistant tracers among the examined ones. Key Words: Tracer, Absorption, Aquifer, Column Method
Filtration characteristics of porous silicon carbide media
International Nuclear Information System (INIS)
The characteristics of a filter such as clean filter pressure drop, filtering performance and filter drag variation with dust loading have been studied with fabricated SiC filter specimens in the laboratory and commercial ceramic filters. Several theoretical equations have been modified and applied to investigate such characteristics. To estimate the pressure drop of clean gas flow through a cylindrical porous filter, Forchheimer equation, which contains the terms of permeability and turbulent factor at a high velocity of gas, has been modified and tested with experimental data. The filtering efficiency was found to be above 99.9% and the penetration of dust decreased exponentially with dust loading. The pressure drop during filtration was measured and showed to increase exponentially with dust loading in the beginning because particles were intercepted and a cake layer was formed by structural properties of a filter. And then it increased in proportion as the cake layer thickened. The effect of dust deposition on the pressure drop could be explained theoretically using several characteristic parameters relevant to dust size, structure of filters and cake layer formation
Soltanian, Mohamad Reza; Ritzi, Robert W; Dai, Zhenxue; Huang, Chao Cheng
2015-03-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact of changing the mean, variance, and integral scale of K and Kd on reactive solute dispersion. PMID:25532767
Soltanian, Mohamad Reza; Dai, Zhenxue; Huang, Chaocheng
2014-01-01
Physical and chemical heterogeneities have a large impact on reactive transport in porous media. Examples of heterogeneous attributes affecting reactive mass transport are the hydraulic conductivity (K), and the equilibrium sorption distribution coefficient (Kd). This paper uses the Deng et al. (2013) conceptual model for multimodal reactive mineral facies and a Lagrangian-based stochastic theory in order to analyze the reactive solute dispersion in three-dimensional anisotropic heterogeneous porous media with hierarchical organization of reactive minerals. An example based on real field data is used to illustrate the time evolution trends of reactive solute dispersion. The results show that the correlation between the hydraulic conductivity and the equilibrium sorption distribution coefficient does have a significant effect on reactive solute dispersion. The anisotropy ratio does not have a significant effect on reactive solute dispersion. Furthermore, through a sensitivity analysis we investigate the impact...
Computation of streaming potential in porous media: Modified permeability tensor
Bandopadhyay, Aditya; DasGupta, Debabrata; Mitra, Sushanta K.; Chakraborty, Suman
2015-11-01
We quantify the pressure-driven electrokinetic transport of electrolytes in porous media through a matched asymptotic expansion based method to obtain a homogenized description of the upscaled transport. The pressure driven flow of aqueous electrolytes over charged surfaces leads to the generation of an induced electric potential, commonly termed as the streaming potential. We derive an expression for the modified permeability tensor, K↔eff, which is analogous to the Darcy permeability tensor with due accounting for the induced streaming potential. The porous media herein are modeled as spatially periodic. The modified permeability tensor is obtained for both topographically simple and complex domains by enforcing a zero net global current. Towards resolving the complicated details of the porous medium in a computationally efficient framework, the domain identification and reconstruction of the geometries are performed using adaptive quadtree (in 2D) and octree (in 3D) algorithms, which allows one to resolve the solid-liquid interface as per the desired level of resolution. We discuss the influence of the induced streaming potential on the modification of the Darcy law in connection to transport processes through porous plugs, clays and soils by considering a case-study on Berea sandstone.
Denitrification and chemotaxis of Pseudomonas stutzeri KC in porous media.
Roush, Caroline J; Lastoskie, Christian M; Worden, R Mark
2006-01-01
Chemotaxis is an important mechanism by which microorganisms are dispersed in porous media. A vigorous chemotactic response to concentration gradients formed by microbial consumption of chemoattractants can accelerate transport of bacteria to highly contaminated regions of soils and sediments, enhancing the efficiency of in situ bioremediation operations. Although chemotaxis plays a key role in establishment of biodegradation zones in the subsurface, the effects of physical heterogeneity on bacterial motility are poorly understood. To investigate the influence of porous media heterogeneity on microbial chemotaxis, swarm plate migration experiments were conducted using Pseudomonas stutzeri strain KC, a denitrifying bacterium used for in situ biodegradation of carbon tetrachloride in groundwater. Swarm plate measurements indicate that strain KC is strongly chemotactic toward both acetate and nitrate. A three-component mathematical model was developed to describe the migration of strain KC. Estimates of chemotactic sensitivity were obtained in the homogeneous (agar) phase and in a heterogeneous medium of aquifer solids extracted from the Schoolcraft bioremediation field site in western Michigan. Interestingly, the motility of strain KC is significantly larger in the porous medium than in the aqueous phase. We hypothesize that chemotactic response is enhanced within the heterogeneous medium because chemoattractant gradients formed by nitrate consumption are larger in the confined spaces of the porous medium than in unconfined agar solution. PMID:16760079
Energy Technology Data Exchange (ETDEWEB)
Borgne, H.
2004-12-01
modelling of waves propagation in anisotropic media. With the approximations of ray theory, 1 develop an expression of the geometrical spreading, the amplitude, and their reciprocity relations. I set up imaging formulas in order to reconstruct the reflection coefficients of the subsurface in elastic anisotropic media. In a first time, 1 salve the direct problem, by expressing the integral relation between the scattered wave field recorded by the receivers and the subsurface reflection coefficients. In a second time, 1 apply an elastic anisotropic quantitative migration method, based on the properties of the inverse Radon transforms (Beylkin's approach), in order to express the reflection coefficient in 2D, 2.5D and 3D media. 1 implemented these formulas in a new preserved amplitude migration algorithm, where the images are sorted by angle classes. At last, 1 apply these theoretical results to synthetic and real datasets. 1 show that migration is able to reconstruct the correct A V A behavior of anisotropic reflection coefficients if hath. modifications are achieved. Then, 1 degrade the process, by keeping an anisotropic ray tracing but using the classical isotropic imaging formula. F'or this commonly used configuration, 1 evaluate the error that can be expected in the A V A response of the migrated reflection coefficient. Methodological applications show the sensibility of the migration results to the velocity model smoothing and to an error on the anisotropic axis. (author)
Finite difference approach for modeling multispecies transport in porous media
N. Natarajan; G. Suresh Kumar
2010-01-01
An alternative approach to the decomposition method for solving multispecies transport in porous media, coupled with first-order reactions has been proposed. The numerical solution is based on implicit finite difference method. The task of decoupling the coupled partial differential equations has been overcome in this method. The proposed approach is very much advantageous because of its simplicity and also can be adopted in situations where non linear processes are coupled with multi-species...
Displacement of Colloidal Dispersions in Porous Media: Experimental & Numerical Approaches
AHMADI-SENICHAULT, Azita; OMARI, Aziz; BERTIN, Henri
2015-01-01
The displacement of colloidal dispersions is of particular interest in many applications ranging from environmental issues to petroleum recovery. Natural porous media such as soils, aquifers or reservoirs contain colloidal particles of different nature (bacteria, viruses, clay, metal complexes …). Colloids can act as vehicles for micro organisms’ transport in aquifers causing danger for human health. In petroleum recovery techniques, water containing colloids is sometimes injected and their r...
Multidimenstional Models for Macroscopic Virus Transport in Porous Media
Chrysikopoulos, Constantinos V; Sim, Youn
1997-01-01
Analytical models for virus transport in saturated, homogeneous porous media are developed. The models account for three-dimensional dispersion in a uniform flow field, and first-order inactivation of suspended and deposited viruses with different inactivation rate coefficients. Virus deposition onto solid particles is described by two different processes: nonequilibrium adsorption which is applicable to viruses behaving as solutes; and colloid filtration which is applicable to viruses behavi...
Finite difference approach for modeling multispecies transport in porous media
Directory of Open Access Journals (Sweden)
N.Natarajan
2010-08-01
Full Text Available An alternative approach to the decomposition method for solving multispecies transport in porous media, coupled with first-order reactions has been proposed. The numerical solution is based on implicit finite difference method. The task of decoupling the coupled partial differential equations has been overcome in this method. The proposed approach is very much advantageous because of its simplicity and also can be adopted in situations where non linear processes are coupled with multi-species transport problems.
Solute Transport Across a Contact Interface in Deformable Porous Media
Ateshian, Gerard A.; Maas, Steve; Weiss, Jeffrey A.
2012-01-01
A finite element formulation of neutral solute transport across a contact interface between deformable porous media is implemented and validated against analytical solutions. By reducing the integral statements of external virtual work on the two contacting surfaces into a single contact integral, the algorithm automatically enforces continuity of solute molar flux across the contact interface, whereas continuity of the effective solute concentration (a measure of the solute mechano-chemical ...
Competitive positron and positronium trapping in porous media
International Nuclear Information System (INIS)
Positron annihilation acquired acceptance for structural investigation of solids but results in porous media-where positron lifetime spectroscopy (LT) reveals substantial Ps formation-were ambiguous. Data on zeolites lead to the conclusion that Ps trapping in competing 'extended free volume' sites, inhomogeneous regions and grain boundaries occurs. Furthermore, positron trapping must also be considered. Systematic errors due to incomplete time range selection are discussed, significance and importance of corrections for 3γ/2γ counting efficiency differences are shown in practice
Mathematical analysis of variable density flows in porous media
Czech Academy of Sciences Publication Activity Database
Feireisl, Eduard; Hilhorst, D.; Petzeltová, Hana; Takáč, P.
2016-01-01
Roč. 16, č. 1 (2016), s. 1-19. ISSN 1424-3199 EU Projects: European Commission(XE) 320078 - MATHEF Institutional support: RVO:67985840 Keywords : variable density flow * flows in porous media * global-in-time solutions Subject RIV: BA - General Mathematics Impact factor: 0.783, year: 2014 http://link.springer.com/article/10.1007/s00028-015-0290-6
Numerical Simulations of Heat Explosion With Convection In Porous Media
Allali, Karam; Bikany, Fouad; Taik, Ahmed; Volpert, Vitaly
2013-01-01
In this paper we study the interaction between natural convection and heat explosion in porous media. The model consists of the heat equation with a nonlinear source term describing heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary and oscillating convection regimes and oscillating heat explosion are observed. The models with quasi-stationary and unstationary Darcy equation are compared.
The multiphase flow and heat transfer in porous media
Starikovicius, V.
2003-01-01
In first part of this work, summaries of traditional Multiphase Flow Model and more recent Multiphase Mixture Model are presented. Attention is being paid to attempts include various heterogeneous aspects into models. In second part, MMM based differential model for two-phase immiscible flow in porous media is considered. A numerical scheme based on the sequential solution procedure and control volume based finite difference schemes for the pressure and saturation-conservation equations is de...
RADICAL FLOW IN POROUS MEDIA WITH DISPERSION AND ADSORPTION
Institute of Scientific and Technical Information of China (English)
LIU Ci-qun; GUO Bai-qi; SONG Fu-quan; WANG Jin-ying
2004-01-01
The radical transport of chemical concentration in porous media with dispersion and adsorption was studied in this paper. Using Langmuir's adsorption model, the numerical equation of concentration transport was derived. The flows with and without adsorption were simulated and analyzed.Comparison of the obtained solution with the known analytical solution for flow without adsorption shows the presented numerical method is correct and effective, which can be used in reservoir engineering.
Pore Scale Simulation of Transport in Porous Media
Fahlke, Jorrit
2008-01-01
When performing solute transport in porous media one often observes an asymmetric break-through curve with a very slow decline of the concentration. This phenomenon even appears with non-sorbing solutes and is known as tailing. There are several hypotheses to explain this phenomenon. The modelling is often done using the mobile-immobile model (MIM), which assumes that parts of the solvent are not moving along with the general flow. The solutes can move into these stagnant zones by diffusion...
Logarithmic diffusion and porous media equations: a unified description
Pedron, I. T.; Mendes, R. S.; Buratta, T. J.; L. C. Malacarne; Lenzi, E. K.
2005-01-01
In this work we present the logarithmic diffusion equation as a limit case when the index that characterizes a nonlinear Fokker-Planck equation, in its diffusive term, goes to zero. A linear drift and a source term are considered in this equation. Its solution has a lorentzian form, consequently this equation characterizes a super diffusion like a L\\'evy kind. In addition is obtained an equation that unifies the porous media and the logarithmic diffusion equations, including a generalized dif...
Consolidation of elastic porous media saturated by two immiscible fluids
Tuncay, Kağan; Çorapçıoğlu, M. Yavuz
1996-01-01
A theory is presented to simulate the consolidation of elastic porous media saturated by two immiscible Newtonian fluids. The macroscopic equations, including mass and momentum balance equations and constitutive relations, are obtained by volume averaging the microscale equations. The theory is based on the small deformation assumption. In the microscale, the grains are assumed to be linearly elastic and the fluids are Newtonian. The bulk and shear moduli of the solid matrix are introduced to...
Cell-centered finite volume discretizations for deformable porous media
Nordbotten, Jan Martin
2014-01-01
The development of cell-centered finite volume discretizations for deformation is motivated by the desire for a compatible approach with the discretization of fluid flow in deformable porous media. We express the conservation of momentum in the finite volume sense, and introduce three approximations methods for the cell-face stresses. The discretization method is developed for general grids in one to three spatial dimensions, and leads to a global discrete system of equations for the displace...
Solute transport through porous media using asymptotic dispersivity
Indian Academy of Sciences (India)
P K Sharma; Teodrose Atnafu Abgaze
2015-08-01
In this paper, multiprocess non-equilibrium transport equation has been used, which accounts for both physical and chemical non-equilibrium for reactive transport through porous media. An asymptotic distance dependent dispersivity is used to embrace the concept of scale-dependent dispersion for solute transport in heterogeneous porous media. Semi-analytical solution has been derived of the governing equations with an asymptotic distance dependent dispersivity by using Laplace transform technique and the power series method. For application of analytical model, we simulated observed experimental breakthrough curves from 1500 cm long soil column experiments conducted in the laboratory. The simulation results of break-through curves were found to deviate from the observed breakthrough curves for both mobile–immobile and multiprocess non-equilibrium transport with constant dispersion models. However, multiprocess non-equilibrium with an asymptotic dispersion model gives better fit of experimental breakthrough curves through long soil column and hence it is more useful for describing anomalous solute transport through hetero-geneous porous media. The present model is simpler than the stochastic numerical method.
Dendrite Suppression by Shock Electrodeposition in Charged Porous Media
Han, Ji-Hyung; Wang, Miao; Bai, Peng; Brushett, Fikile R.; Bazant, Martin Z.
2016-06-01
It is shown that surface conduction can stabilize electrodeposition in random, charged porous media at high rates, above the diffusion-limited current. After linear sweep voltammetry and impedance spectroscopy, copper electrodeposits are visualized by scanning electron microscopy and energy dispersive spectroscopy in two different porous separators (cellulose nitrate, polyethylene), whose surfaces are modified by layer-by-layer deposition of positive or negative charged polyelectrolytes. Above the limiting current, surface conduction inhibits growth in the positive separators and produces irregular dendrites, while it enhances growth and suppresses dendrites behind a deionization shock in the negative separators, also leading to improved cycle life. The discovery of stable uniform growth in the random media differs from the non-uniform growth observed in parallel nanopores and cannot be explained by classic quasi-steady “leaky membrane” models, which always predict instability and dendritic growth. Instead, the experimental results suggest that transient electro-diffusion in random porous media imparts the stability of a deionization shock to the growing metal interface behind it. Shock electrodeposition could be exploited to enhance the cycle life and recharging rate of metal batteries or to accelerate the fabrication of metal matrix composite coatings.
Particle retention in porous media: Applications to water injectivity decline
Energy Technology Data Exchange (ETDEWEB)
Wennberg, Kjell Erik
1998-12-31
This thesis studies the problem of migration and deposition of colloidal particles within porous media, theoretically and by computerized simulation. Special emphasis is put on the prediction of injectivity decline in water injection wells due to inherent particles in the injection water. The study of particle deposition within porous media requires a correct prediction of the deposition rate or filtration coefficient. A thorough review of the modeling approaches used in the past are combined with new ideas in order to arrive at an improved model for the prediction of the filtration coefficient. A new way of determining the transition time for the dominant deposition mechanism to change from internal deposition to external cake formation is proposed. From this fundamental theory, equations are given for water injectivity decline predictions. A computer program called WID for water injectivity decline predictions was developed. Using water quality, formation properties, injection rate/pressure and completion information as input, WID predicts decline in vertical and horizontal injection wells with openhole, perforated and fractured completions. The calculations agree fairly well with field data; in some cases the agreement is excellent. A poor match in a few cases indicates that more mechanisms may be responsible for injectivity decline than those presently accounted for by the simulator. The second part of the study deals with a theoretical investigation of the multi-dimensional nature of particle deposition in porous media. 112 refs., 100 figs., 9 tabs.
Pore Scale View of Fluid Displacement Fronts in Porous Media
Or, D.; Moebius, F.
2014-12-01
The macroscopically smooth and regular motion of fluid fronts in porous media is composed of abrupt pore-scale interfacial jumps involving intense interfacial energy release marked by pressure bursts and acoustic emissions. The characteristics of these pore scale events affect residual phase entrapment and the resulting unsaturated transport properties behind the front. Experimental studies using acoustic emissions technique (AE), rapid imaging, and pressure measurements help characterize pore scale processes during drainage and imbibition in model porous media. Imbibition and drainage produce different AE signatures (obeying a power law). For rapid drainage, AE signals persist long after cessation of front motion indicative of redistribution and interfacial relaxation. Rapid imaging revealed that interfacial jumps exceed mean front velocity and are highly inertial (Re>1000). Imaged pore invasion volumes and pore volumes deduced from waiting times between pressure fluctuations were in remarkable agreement with geometric pores. Differences between invaded volumes and geometrical pores increase with increasing capillary numbers due to shorter pore evacuation times and onset of simultaneous invasion events. A new mechanistic model for interfacial motions through a pore-throat network enabled systematic evaluation of inertia in interfacial dynamics. Results suggest that in contrast to great sensitivity of pore scale dynamics to variations in pore geometry and boundary conditions, inertia exerts only a minor effect on average phase entrapment. Pore scale invasion events paint a complex picture of rapid and inertial motions and provide new insights on mechanisms at displacement fronts essential for improving the macroscopic description of multiphase flow in porous media.
Statistical fusion of two-scale images of porous media
Mohebi, Azadeh; Fieguth, Paul; Ioannidis, Marios A.
2009-11-01
The reconstruction of the architecture of void space in porous media is a challenging task, since porous media contain pore structures at multiple scales. Whereas past methods have been limited to producing samples with matching statistical behavior, the patterns of grey-level values in a measured sample actually say something about the unresolved details, thus we propose a statistical fusion framework for reconstructing high-resolution porous media images from low-resolution measurements. The proposed framework is based on a posterior sampling approach in which information obtained by low-resolution (MRI or X-ray) measurements is combined with prior models inferred from high-resolution microscopic data, typically 2D. In this paper, we focus on two-scale reconstruction tasks in which the measurements resolve only the large scale structures, leaving the small-scale to be inferred. The evaluation of the results generated by the proposed method shows the strong ability of the proposed method in reconstructing fine-scale structures positively correlated with the underlying ground truth. Comparing our method with the recent method of Okabe and Blunt [12], in which the measurements are also used in the reconstruction, we conclude that our method is more robust to the resolution of the measurement, and more closely matches the underlying fine-scale field.
Prestack exploding reflector modelling and migration for anisotropic media
Alkhalifah, Tariq Ali
2014-10-09
The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.
An analysis of seismic attenuation in random porous media
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
The attenuation of seismic wave in rocks has been one of the interesting research topics, but till now no poroelasticity models can thoroughly explain the strong attenuation of wave in rocks. In this paper, a random porous medium model is designed to study the law of wave propagation in complex rocks based on the theory of Biot poroelasticity and the general theory of stochastic process. This model sets the density of grain, porosity, permeability and modulus of frame as random parameters in space, and only one fluid infiltrates in rocks for the sake of better simulation effect in line with real rocks in earth strata. Numerical simulations are implemented. Two different inverse quality factors of fast P-wave are obtained by different methods to assess attenuation through records of virtual detectors in wave field (One is amplitude decay method in time domain and the other is spectral ratio method in frequency domain). Comparing the attenuation results of random porous medium with those of homogeneous porous medium, we conclude that the attenuation of seismic wave of homogeneous porous medium is far weaker than that of random porous medium. In random porous media, the higher heterogeneous level is, the stronger the attenuation becomes, and when heterogeneity σ = 0.15 in simulation, the attenuation result is consistent with that by actual observation. Since the central frequency (50 Hz) of source in numerical simulation is in earthquake band, the numerical results prove that heterogeneous porous structure is one of the important factors causing strong attenuation in real stratum at intermediate and low frequency.
Observation of anisotropic diffusion of light in compacted granular porous materials
Alerstam, Erik
2011-01-01
Employing spatially resolved photon time-of-flight spectroscopy, we reveal anisotropic diffusion of light in compressed granular media. Findings correlate well with recent reports of pore structural anisotropy and its pressure dependence, and significantly reshape our understanding of the optics of compacted granular matter. New routes to material characterization and investigations of compression-induced anisotropy are opened, and an urgent need for better understanding of the relation between compression, microstructure and light scattering is disclosed. Important implications for quantitative spectroscopy of powder compacts in general, and pharmaceutical tablets in particular, are also discussed.
Thermal diffusion of radon in porous media
International Nuclear Information System (INIS)
Based on the non-intersection model of cylindrical capillaries, the mean radius of the pores of some soils and building materials are estimated. In size, the above-mentioned radii are usually of the order of the free path of gas molecules at atmospheric pressure. A review of pore size distribution data also reveals that a large fraction of concrete pores belong to Knudsen's region. This fact indicates that the thermal gradient in these media must cause gas (radon) transport. The interpretation of the experimental data concerning the rate of emanation of 222Rn from a concrete-capped source subjected to a sudden increase in temperature is given, based on irreversible thermodynamics theory. The calculations given here for radon flux, caused by concentration and thermal gradients, are in satisfactory agreement with the experimental data. It is shown that thermodiffusion can significantly contribute to radon flux in concrete. The need to include the thermodiffusion radon flux in the radon entry model is discussed. (author)
Energy Technology Data Exchange (ETDEWEB)
Antonova, A.M.; Moiseikina, I.I. [Kiev Univ. (Ukraine)
1994-10-05
We consider nonstationary seepage in a bounded nonhomogeneously anisotropic fissured-porous layer. The layer contains by an imperfect well, which operates with a constant discharge. Formulas for the distribution of fluid pressure are obtained using the Laplace transform and the separation of variables method.
Anisotropic fractal media by vector calculus in non-integer dimensional space
Energy Technology Data Exchange (ETDEWEB)
Tarasov, Vasily E., E-mail: tarasov@theory.sinp.msu.ru [Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation)
2014-08-15
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Anisotropic fractal media by vector calculus in non-integer dimensional space
International Nuclear Information System (INIS)
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media
Anisotropic fractal media by vector calculus in non-integer dimensional space
Tarasov, Vasily E.
2014-08-01
A review of different approaches to describe anisotropic fractal media is proposed. In this paper, differentiation and integration non-integer dimensional and multi-fractional spaces are considered as tools to describe anisotropic fractal materials and media. We suggest a generalization of vector calculus for non-integer dimensional space by using a product measure method. The product of fractional and non-integer dimensional spaces allows us to take into account the anisotropy of the fractal media in the framework of continuum models. The integration over non-integer-dimensional spaces is considered. In this paper differential operators of first and second orders for fractional space and non-integer dimensional space are suggested. The differential operators are defined as inverse operations to integration in spaces with non-integer dimensions. Non-integer dimensional space that is product of spaces with different dimensions allows us to give continuum models for anisotropic type of the media. The Poisson's equation for fractal medium, the Euler-Bernoulli fractal beam, and the Timoshenko beam equations for fractal material are considered as examples of application of suggested generalization of vector calculus for anisotropic fractal materials and media.
Diffusion with condensation and evaporation in porous media
International Nuclear Information System (INIS)
Vapor phase transport in porous media is important in a number of environmental and industrial processes: soil moisture transport, vapor phase transport in the vadose zone, transport in the vicinity of buried nuclear waste, and industrial processes such as drying. The diffusion of water vapor in a packed bed containing residual liquid is examined experimentally. The objective is to quantify the effect of enhanced vapor diffusion resulting from evaporation/condensation in porous media subjected to a temperature gradient. Isothermal diffusion experiments in free-space were conducted to qualify the experimental apparatus and techniques. For these experiments measured diffusion coefficients are within 3.6% of those reported in the literature for the temperature range from 25 C to 40 C. Isothermal experiments in packed beds of glass beads were used to determine the tortuosity coefficient resulting in τ = 0.78 ± 0.028, which is also consistent with previously reported results. Nonisothermal experiments in packed beds in which condensation occurs were conducted to examine enhanced vapor diffusion. The interpretation of the results for these experiments is complicated by a gradual, but continuous, build-up of condensate in the packed beds during the course of the experiment. Results indicate diffusion coefficients which increase as a function of saturation resulting in enhancement of the vapor-phase transport by a factor of approximately four compared to a dry porous medium
Measurement of Interfacial Area Production and Permeability within Porous Media
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.
2010-01-01
An understanding of the pore-level interactions that affect multi-phase flow in porous media is important in many subsurface engineering applications, including enhanced oil recovery, remediation of dense non-aqueous liquid contaminated sites, and geologic CO2 sequestration. Standard models of two-phase flow in porous media have been shown to have several shortcomings, which might partially be overcome using a recently developed model based on thermodynamic principles that includes interfacial area as an additional parameter. A few static experimental studies have been previously performed, which allowed the determination of static parameters of the model, but no information exists concerning the interfacial area dynamic parameters. A new experimental porous flow cell that was constructed using stereolithography for two-phase gas-liquid flow studies was used in conjunction with an in-house analysis code to provide information on dynamic evolution of both fluid phases and gas-liquid interfaces. In this paper, we give a brief introduction to the new generalized model of two-phase flow model and describe how the stereolithography flow cell experimental setup was used to obtain the dynamic parameters for the interfacial area numerical model. In particular, the methods used to determine the interfacial area permeability and production terms are shown.
Computational models of the hydrodynamics of fractured-porous media
International Nuclear Information System (INIS)
The prediction of the flow pattern in fractured-porous media has great importance in the assessment of the local thermohydrological effects of the siting of a nuclear waste repository, among many other technological applications. Computational models must be used due to the complexity of the different phenomena involved which restricts the use of analytical techniques. A new numerical method, based on the boundary-fitted finite-difference technique, is presented in this thesis. The boundaries are external (the boundary of the physical domain), and internal (which correspond to the fracture network). The inclusion of the discrete fracture representation in the volume that represents the porous medium is the difference between the usual approach and the present one. The numerical model has been used in the prediction of the flow pattern in several internationally recognized verification cases and to hypothetical problems of our interest. The results obtained proved that the numerical approach considered gives accurate and reliable predictions of the hydrodynamics of fractured-porous media, allowing its use for the above mentioned studies. (Author)
Energy Technology Data Exchange (ETDEWEB)
Sekar, R., E-mail: rsekar@pec.edu [Department of Mathematics, Pondicherry Engineering College, Puducherry 605014 (India); Raju, K. [Department of Mathematics, Pondicherry Engineering College, Puducherry 605014 (India); Vasanthakumari, R. [Kasthurba College for Women, Villianur, Puducherry 605110 (India)
2013-04-15
The Soret-driven ferrothermoconvective instability of multi- component fluid in an anisotropic porous medium heated from below and salted from above has been analyzed using Brinkman model for various values of anisotropic parameter. The salinity effect is contained in magnetization and density of the ferrofluid and the system is assumed to have anisotropy in the vertical direction and isotropy in the horizontal direction. A small perturbation imparted on the basic state and a linear stability analysis is used for this model for which the normal mode technique is applied. The present analysis has been carried out through both stationary as well as oscillatory modes. The vertical anisotropy tends to destabilize the system. -- Highlights: ► We examine the effect of anisotropy and magnetization of convection in Soret effect. ► The system loses its stability for critical Rayleigh number for various parameters like R{sub s} and K{sub 1}. ► The larger temperature difference is needed to guarantee the occurring of convection. ► The Soret effect plays a dominant role for the stability of the system.
International Nuclear Information System (INIS)
The Soret-driven ferrothermoconvective instability of multi- component fluid in an anisotropic porous medium heated from below and salted from above has been analyzed using Brinkman model for various values of anisotropic parameter. The salinity effect is contained in magnetization and density of the ferrofluid and the system is assumed to have anisotropy in the vertical direction and isotropy in the horizontal direction. A small perturbation imparted on the basic state and a linear stability analysis is used for this model for which the normal mode technique is applied. The present analysis has been carried out through both stationary as well as oscillatory modes. The vertical anisotropy tends to destabilize the system. -- Highlights: ► We examine the effect of anisotropy and magnetization of convection in Soret effect. ► The system loses its stability for critical Rayleigh number for various parameters like Rs and K1. ► The larger temperature difference is needed to guarantee the occurring of convection. ► The Soret effect plays a dominant role for the stability of the system
A reconstruction method of porous media integrating soft data with hard data
Institute of Scientific and Technical Information of China (English)
LU DeTang; ZHANG Ting; YANG JiaQing; LI DaoLun; KONG XiangYan
2009-01-01
The three-dimensional reconstruction of porous media is of great significance to the research of mechanisms of fluid flow. The real three-dimensional structural data of porous media are helpful to describe the irregular topologic structures in porous media. The reconstruction of porous media will be inaccurate while only hard data or no conditional data are available. Reconstructed results can be more accurate, using soft data during reconstruction. Integrating soft data with hard data, a method based on multiple-point geostatistics (MPS) is proposed to reconstruct three-dimensional structures of porous media. The variogram curves and permeability, computed by lattice Boltzmann method (LBM), of the reconstructed images and the target image obtained from real volume data were compared, showing that the structural characteristics of reconstructed porous media using both soft data and hard data as conditional data are most similar to those of real volume data.
A cellular automaton simulation of contaminant transport in porous media
International Nuclear Information System (INIS)
A simulation tool to investigate radionuclide transport in porous groundwater flow is described. The flow systems of interest are those important in determining the fate of radionuclides emplaced in an underground repository, such as saturated matrix flow, matrix and fracture flow in the unsaturated zone, and viscous fingering in porous fractures. The work discussed here is confined to consideration of saturated flow in porous media carrying a dilute, sorptive species. The simulation technique is based on a special class of cellular automata known as lattice gas automata (LGA) which are capable of predicting hydrodynamic behavior. The original two-dimensional scheme (that of Frisch et. al. known as the FHP model) used particles of unit mass traveling on a triangular lattice with unit velocity and undergoing simple collisions which conserve mass and momentum at each node. These microscopic rules go over to the incompressible Navier-Stokes equations in the macroscopic limit. One of the strengths of this technique is the natural way that heterogeneities, such as boundaries, are accommodated. Complex geometries such as those associated with porous microstructures can be modeled effectively. Several constructions based on the FHP model have been devised, including techniques to eliminate statistical noise, extension to three dimensions, and the addition of surface tension which leads to multiphase flow
The kinetics of ice-lens growth in porous media
Style, Robert W.
2012-01-09
Abstract We analyse the growth rate of segregated ice (ice lenses) in freezing porous media. For typical colloidal materials such as soils we show that the commonly employed Clapeyron equation is not valid macroscopically at the interface between the ice lens and the surrounding porous medium owing to the viscous dynamics of flow in premelted films. The flow in these films gives rise to an \\'interfacial resistance\\' to flow towards the growing ice which causes a significant drop in predicted ice-growth (heave) rates. This explains why many previous models predict ice-growth rates that are much larger than those seen in experiments. We derive an explicit formula for the ice-growth rate in a given porous medium, and show that this only depends on temperature and on the external pressures imposed on the freezing system. This growth-rate formula contains a material-specific function which can be calculated (with knowledge of the geometry and material of the porous medium), but which is also readily experimentally measurable. We apply the formula to plate-like particles, and show that the results can be matched with previous experimental data. Finally we show how the interfacial resistance explains the observation that the maximum heave rate in soils occurs in medium-grained particles such as silts, while heave rates are smaller for fine-and coarse-grained particles. © 2012 Cambridge University Press.
Bound dipole solitary solutions in anisotropic nonlocal self-focusing media
DEFF Research Database (Denmark)
Mamaev, A.V.; Zozulya, A.A.; Mezentsev, V.K.;
1997-01-01
We find and analyze bound dipole solitary solutions in media with anisotropic nonlocal photorefractive material response. The dipole solutions consist of two elliptically shaped Gaussian-type beams separated by several diameters, and with a pi phase shift between their fields. Spatial evolution o...
Djebbi, Ramzi
2013-08-19
Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.
Convection heat transfer in the double pass solar collector with porous media
International Nuclear Information System (INIS)
This paper describes about heat transfer characteristics in the double pass solar heater with porous media. Nusselt and Stanton number had been used to shown the heat transfer. Nusselt number had been measured and compared with several theories. Stanton number in the double pass solar heater with porous media and without porous media had been compared. Predicted value of Stanton number will be shown in this paper
Investigations on the porous media equations and resistance coefficients for coastal structures
DEFF Research Database (Denmark)
Jensen, Bjarne; Jacobsen, Niels Gjøl; Christensen, Erik Damgaard
2014-01-01
This paper considers the flow in porous media that occurs in coastal and offshore engineering problems. Over the past decades numerous formulations of flow equations for porous media have been presented. The present work re-examines the porous media equations of the most recent form and corrects ...... source CFD library OpenFOAM® and has been made publicly available to the engineering community as part of the wave generation framework waves2Foam....
An electrical conductivity model for fractal porous media
Wei, Wei; Cai, Jianchao; Hu, Xiangyun; Han, Qi
2015-06-01
Archie's equation is an empirical electrical conductivity-porosity model that has been used to predict the formation factor of porous rock for more than 70 years. However, the physical interpretation of its parameters, e.g., the cementation exponent m, remains questionable. In this study, a theoretical electrical conductivity equation is derived based on the fractal characteristics of porous media. The proposed model is expressed in terms of the tortuosity fractal dimension (DT), the pore fractal dimension (Df), the electrical conductivity of the pore liquid, and the porosity. The empirical parameter m is then determined from physically based parameters, such as DT and Df. Furthermore, a distinct interrelationship between DT and Df is obtained. We find a reasonably good match between the predicted formation factor by our model and experimental data.
High-precision synthetic computed tomography of reconstructed porous media
Hilfer, R.; Zauner, Th.
2011-12-01
Multiscale simulation of transport in disordered and porous media requires microstructures covering several decades in length scale. X-ray and synchrotron computed tomography are presently unable to resolve more than one decade of geometric detail. Recent advances in pore scale modeling [Biswal, Held, Khanna, Wang, and Hilfer, Phys. Rev. E PLEEE81539-375510.1103/PhysRevE.80.041301 80, 041301 (2009)] provide strongly correlated microstructures with several decades in microstructural detail. A carefully calibrated microstructure model for Fontainebleau sandstone has been discretized into a suite of three-dimensional microstructures with resolutions from roughly 128 μm down to roughly 500 nm. At the highest resolution the three-dimensional image consists of 327683=35184372088832 discrete cubic volume elements with gray values between 0 and 216. To the best of our knowledge, this synthetic image is the largest computed tomogram of a porous medium available at present.
Ferrofluid magnetoviscous control of wall flow channeling in porous media
Institute of Scientific and Technical Information of China (English)
Fa(ic)al Larachi; Damien Desvigne
2007-01-01
We analyzed the phenomenon of ferrofluid magnetoviscosity in high-permeability wall-region non-magnetic porous media of the Müller kind.After upscaling the pore-level ferrohydrodynamic model, we obtained a simplified volume-average zero-order axisymmetric model for non-Darcy non-turbulent flow of steady-state isothermal incompressible Newtonian ferrofluids through a porous medium experiencing external constant bulk-flow oriented gradient magnetic field, ferrofluid self-consistent demagnetizing field and induced magnetic field in the solid. The model was explored in contexts plagued by wall flow maldistribution due to low column-to-particle diameter ratios. It was shown that for proper magnetic field arrangement, wall channeling can be reduced by inflating wall flow resistance through magnetovisco-thickening and Kelvin body force density which reroute a fraction of wall flow towards bed core.
Anomalous dynamics of capillary rise in porous media
Shikhmurzaev, Yulii D.
2012-07-09
The anomalous dynamics of capillary rise in a porous medium discovered experimentally more than a decade ago is described. The developed theory is based on considering the principal modes of motion of the menisci that collectively form the wetting front on the Darcy scale. These modes, which include (i) dynamic wetting mode, (ii) threshold mode, and (iii) interface depinning process, are incorporated into the boundary conditions for the bulk equations formulated in the regular framework of continuum mechanics of porous media, thus allowing one to consider a general case of three-dimensional flows. The developed theory makes it possible to describe all regimes observed in the experiment, with the time spanning more than four orders of magnitude, and highlights the dominant physical mechanisms at different stages of the process. © 2012 American Physical Society.
Solute transport in dual-permeability porous media
Leij, Feike J.; Toride, Nobuo; Field, Malcolm S.; Sciortino, Antonella
2012-04-01
A dual-advection dispersion equation (DADE) is presented and solved to describe solute transport in structured or layered porous media with different nonzero flow rates in two distinct pore domains with linear solute transfer between them. This dual-permeability model constitutes a generalized version of the advection-dispersion equation (ADE) for transport in uniform porous media and the mobile-immobile model (MIM) for transport in media with a mobile and an immobile pore domain. Analytical tools for the DADE have mostly been lacking. An analytical solution has therefore been derived using Laplace transformation with time and modal decomposition based on matrix diagonalization, assuming the same dispersivity for both domains. Temporal moments are derived for the DADE and contrasted with those for the ADE and the MIM. The effective dispersion coefficient for the DADE approaches that of the ADE for a similar velocity in both pore domains and large values for the first-order transfer parameter, and approaches that of the MIM for the opposite conditions. The solution of the DADE is used to illustrate how differences in pore water velocity between the domains and low transfer rates will lead to double peaks in the volume- or flux-averaged concentration profiles versus time or position. The DADE is applied to optimize experimental breakthrough curves for an Andisol with a distinct intra- and interaggregate porosity. The DADE improved the description of the breakthrough data compared to the ADE and the MIM.
Anisotropic transport and diffusion of elastic waves in random media
Baydoun, Ibrahim; Savin, Eric; Cottereau, Regis; Clouteau, Didier; Guilleminot, Johann
2013-01-01
We discuss the inﬂuence of material anisotropy on the possible depolarization and diffusion of elastic waves in randomly heterogeneous media. Anisotropy is considered at two levels. The ﬁrst one is related to the constitutive law of random materials, which may be handled by a random matrix theory for the elasticity tensor. The second level is related to the correlation structure of these random materials. Since the propagation of waves in such complex media cannot be described by deterministi...
Steady Counterflow he II Heat Transfer Through Porous Media
Dalban-Canassy, M.; Van Sciver, S. W.
2010-04-01
We present steady state counterflow measurements performed on porous samples saturated in He II. The experiment is composed of a vacuum insulated open channel whose top extremity is closed to a Minco® heater. The temperature and pressure differences across the plug are measured by two germanium TTR-G Microsensors® thermometers and a Validyne DP10-20 differential pressure sensor. Applied heat fluxes range up to 0.5 kW/m2 of sample cross section. Measurements were performed at temperatures ranging from 1.7 to 2.1 K on highly anisotropic samples provided by Composite Technology Development Inc.: circular pellets (3.08 mm thick and 28.58 mm in diameter) of 20 compressed layers of pre-impregnated woven magnet insulation. In the laminar regime, the permeability is estimated from the pressure drop measurements for comparison with room temperature data. In the turbulent regime, the model based on tortuosity developed previously fails to describe the heat transfer behavior of He II in this type of porous medium.
Direct numerical simulation of inertial flows in porous media
Apte, S.; Finn, J.; Wood, B. D.
2010-12-01
At modest flow rates (10 ≤ Re ≤ 300) through porous media and packed beds, fluid inertia can result in complex steady and unsteady recirculation regions, dependent on the local pore geometry. Body fitted CFD is a broadly used design and analysis tool for flows in porous media and packed bed type reactors. Unfortunately, the inherent complexities of porous media make unstructured mesh generation a difficult and time consuming step in the simulation process. To accurately capture the inertial dynamics using high-fidelity direct simulations, body fitted meshes must be high quality and sufficiently refined. We present methods to parameterize and simplify mesh generation for packed beds, with an eye toward obtaining efficient mesh independence for Reynolds numbers in the inertial and unsteady regimes. The crux of mesh generation for packed beds is dealing with sphere-sphere or sphere-wall contact points, where a geometric singularity exists. To handle the sphere-sphere and sphere-wall contact points, we use a fillet bridge model, in which every pair of contacting entities are bridged by a fillet, eliminating a small fluid region near the contact point. This results in a continuous surface mesh which does not require resizing of the spheres and can accommodate prism cells for improved boundary layer resolution. A second order accurate, parallel, incompressible flow solver [Moin and Apte, AIAA J. 2006] is used to simulate flow through three different sphere packings: a periodic simple cubic packing, a wall bounded hexagonal close packing, and a randomly packed tube. Mesh independence is assessed using several measures including Ergun pressure drop coefficients, viscous and pressure components of drag force, kinetic energy, kinetic energy dissipation and interstitial velocity profiles. The results of these test cases are used to determine the feasibility of accurate and very large scale simulations of flow through a randomly packed bed of 103 pores. Preliminary results
Deposition of flame-made nanoparticles on porous media
DEFF Research Database (Denmark)
Elmøe, Tobias Dokkedal
2008-01-01
Deposition of flame-made nanoparticles on porous media Nanopartikler i porøse keramiske materialer har en lang række anvendelsesmuligheder, som f.eks. gas-sensorer, katalysatorer, brændselscelle anoder samt dieselsodfiltre. En hurtig metode til dannelsen af disse er ved direkte deponering. Her...... kagefiltrering) blev studeret. Morfologien af de deponerede lag blev karakteriseret som funktion af Peclet tallet (Pe), der angiver forholdet mellem diffusiv og konvektiv transport. For samtlige Pe tal sås tilstopning at ske udenfor substratkapillæret, hvilket var i god overensstemmelse med eksperimentelle SEM...
Simulation of impaction filtration of aerosol droplets in porous media
Ghazaryan, Lilya; Lopez Penha, David J.; Geurts, Bernard J.; Stolz, Steffen; Winkelmann, Christoph; Pereira, J.C.F.; Sequeira, A.; Pereira, J. M. C.
2010-01-01
We report on the development of a method to simulate from first principles the particle filtration efficiency of filters that are composed of structured porous media. We assume that the ratio of particle density to the fluid density is high. We concentrate on the motion of the particles in a laminar flow and quantify the role of inertial effects on the filtration of an ensemble of particles. We adopt the Euler-Lagrange approach, distinguishing a flow field in which the motion of a large numbe...
Inverse modelling for flow and transport in porous media
International Nuclear Information System (INIS)
The problem of parameter identification for flow and transport model in porous media is discussed in this communication. First, a general framework for the development and application of environmental models is discussed. Then the forward and inverse problems for discrete models are described in detail, introducing fundamental concepts (uniqueness, identifiability, stability, conditioning). The importance of model scales is reviewed and is shown its link with the stability and conditioning issues. Finally some remarks are given to the use of several independent sets of data in inverse modelling
Porous Media Approach for Modeling Closed Cell Foam
Ghosn, Louis J.; Sullivan, Roy M.
2006-01-01
In order to minimize boil off of the liquid oxygen and liquid hydrogen and to prevent the formation of ice on its exterior surface, the Space Shuttle External Tank (ET) is insulated using various low-density, closed-cell polymeric foams. Improved analysis methods for these foam materials are needed to predict the foam structural response and to help identify the foam fracture behavior in order to help minimize foam shedding occurrences. This presentation describes a continuum based approach to modeling the foam thermo-mechanical behavior that accounts for the cellular nature of the material and explicitly addresses the effect of the internal cell gas pressure. A porous media approach is implemented in a finite element frame work to model the mechanical behavior of the closed cell foam. The ABAQUS general purpose finite element program is used to simulate the continuum behavior of the foam. The soil mechanics element is implemented to account for the cell internal pressure and its effect on the stress and strain fields. The pressure variation inside the closed cells is calculated using the ideal gas laws. The soil mechanics element is compatible with an orthotropic materials model to capture the different behavior between the rise and in-plane directions of the foam. The porous media approach is applied to model the foam thermal strain and calculate the foam effective coefficient of thermal expansion. The calculated foam coefficients of thermal expansion were able to simulate the measured thermal strain during heat up from cryogenic temperature to room temperature in vacuum. The porous media approach was applied to an insulated substrate with one inch foam and compared to a simple elastic solution without pore pressure. The porous media approach is also applied to model the foam mechanical behavior during subscale laboratory experiments. In this test, a foam layer sprayed on a metal substrate is subjected to a temperature variation while the metal substrate is
Bacteria transport through porous media. Annual report, December 31, 1984
Energy Technology Data Exchange (ETDEWEB)
Yen, T.F.
1986-09-01
The following five chapters in this report have been processed separately for inclusion in the Energy Data Base: (1) theoretical model of convective diffusion of motile and non-motile bacteria toward solid surfaces; (2) interfacial electrochemistry of oxide surfaces in oil-bearing sands and sandstones; (3) effects of sodium pyrophosphate additive on the ''huff and puff''/nutrient flooding MEOR process; (4) interaction of Escherichia coli B, B/4, and bacteriophage T4D with Berea sandstone rock in relation to enhanced oil recovery; and (5) transport of bacteria in porous media and its significance in microbial enhanced oil recovery.
Ferrage, Eric; Hubert, Fabien; Tertre, Emmanuel; Delville, Alfred; Michot, Laurent J.; Levitz, Pierre
2015-06-01
Swelling clay minerals play a key role in the control of water and pollutant migration in natural media such as soils. Moreover, swelling clay particles' orientational properties in porous media have significant implications for the directional dependence of fluid transfer. Herein we investigate the ability to mimic the organization of particles in natural swelling-clay porous media using a three-dimensional sequential particle deposition procedure [D. Coelho, J.-F. Thovert, and P. M. Adler, Phys. Rev. E 55, 1959 (1997), 10.1103/PhysRevE.55.1959]. The algorithm considered is first used to simulate disk packings. Porosities of disk packings fall onto a single master curve when plotted against the orientational scalar order parameter value. This relation is used to validate the algorithm used in comparison with existing ones. The ellipticity degree of the particles is shown to have a negligible effect on the packing porosity for ratios ℓa/ℓb less than 1.5, whereas a significant increase in porosity is obtained for higher values. The effect of the distribution of the geometrical parameters (size, aspect ratio, and ellipticity degree) of particles on the final packing properties is also investigated. Finally, the algorithm is used to simulate particle packings for three size fractions of natural swelling-clay mineral powders. Calculated data regarding the distribution of the geometrical parameters and orientation of particles in porous media are successfully compared with experimental data obtained for the same samples. The results indicate that the obtained virtual porous media can be considered representative of natural samples and can be used to extract properties difficult to obtain experimentally, such as the anisotropic features of pore and solid phases in a system.
Numerical method for computing flow through partially saturated porous media
Eaton, R. R.
This paper discusses the development of the finite element computer code SAGUARO which calculates the two-dimensional flow of mass and energy through porous media. The media may be saturated or partially saturated. SAGUARO solves the parabolic time-dependent mass transport equation which accounts for the presence of partially saturated zones through the use of highly non-linear material characteristic curves. The energy equation accounts for the possibility of partially-saturated regions by adjusting the thermal capacitances and thermal conductivities according to the volume fraction of water present in the local pores. The code capabilities are demonstrated through the presentation of a sample problem involving the one dimensional calculation of simultaneous energy transfer and water infiltration into partially saturated hard rock.
International Nuclear Information System (INIS)
This paper describes the theory and application of the PORFLOW model for analysis of coupled flow, heat and species transport processes in saturated, porous, or equivalent porous media. The model is based upon the nodal-point integration method. It inherently conserves mass and energy at both local and global scales. It provides for inhomogeneous, anisotropic, and time-dependent properties and accounts for buoyancy effects due to density changes. It has been in development for over 9 years, and its applications have included nuclear waste disposal, geothermal storage, ground water resources management, chemical pollution of aquifers, and others. Two applications of the model to problems related to disposal of high-level waste are described in this paper
Towards a porous media model of the human lung
DeGroot, Christopher T.; Straatman, Anthony G.
2012-05-01
In this article, progress towards building a complete porous media model of the human lung is discussed. While the recent trend in computational fluid dynamics studies of airflow in the human lung has been to continually increase the size and detail of the airway tree under consideration, it is proposed in this work that simulating flow in the human lung as a coupled fluid-porous system is an effective method to simulate the flow in the whole lung. Under the proposed modeling paradigm, a truncated airway tree constitutes a fluid region which is coupled to a porous region that represents the remainder of the lung volume, containing small airways and alveoli. The first part of this work describes pore-level simulations conducted in an alveolated duct geometry, which are present in large quantities in the human lung, to determine its permeability. Next, volume-averaged simulations incorporating the results of the pore-level simulations and using a realistic lung geometry based on computed tomography images are discussed along with future directions for this work.
Microscale simulation of particle deposition in porous media.
Boccardo, Gianluca; Marchisio, Daniele L; Sethi, Rajandrea
2014-03-01
In this work several geometries, each representing a different porous medium, are considered to perform detailed computational fluid dynamics simulation for fluid flow, particle transport and deposition. Only Brownian motions and steric interception are accounted for as deposition mechanisms. Firstly pressure drop in each porous medium is analyzed in order to determine an effective grain size, by fitting the results with the Ergun law. Then grid independence is assessed. Lastly, particle transport in the system is investigated via Eulerian steady-state simulations, where particle concentration is solved for, not following explicitly particles' trajectories, but solving the corresponding advection-diffusion equation. An assumption was made in considering favorable collector-particle interactions, resulting in a "perfect sink" boundary condition for the collectors. The gathered simulation data are used to calculate the deposition efficiency due to Brownian motions and steric interception. The original Levich law for one simple circular collector is verified; subsequently porous media constituted by a packing of collectors are scrutinized. Results show that the interactions between the different collectors result in behaviors which are not in line with the theory developed by Happel and co-workers, highlighting a different dependency of the deposition efficiency on the dimensionless groups involved in the relevant correlations. PMID:24407681
Modeling heterogeneous unsaturated porous media flow at Yucca Mountain
International Nuclear Information System (INIS)
Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistics is used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass
Multicomponent, multiphase flow in porous media with temperature variation
Energy Technology Data Exchange (ETDEWEB)
Wingard, J.S.; Orr, F.M. Jr.
1990-10-01
Recovery of hydrocarbons from porous media is an ongoing concern. Advanced techniques augment conventional recovery methods by injecting fluids that favorably interact with the oil. These fluids interact with the oil by energy transfer, in the case of steam injection, or by mass transfer, as in a miscible gas flood. Often both thermal and compositional considerations are important. An understanding of these injection methods requires knowledge of how temperature variations, phase equilibrium and multiphase flow in porous media interact. The material balance for each component and energy balance are cast as a system of non-strictly hyperbolic partial differential equations. This system of equations is solved using the method of characteristics. The model takes into account the phase behavior by using the Peng-Robinson equation of state to partition the individual components into different phases. Temperature effects are accounted for by the energy balance. Flow effects are modelled by using fractional flow curves and a Stone's three phase relative permeability model. Three problems are discussed. The first problem eliminates the phase behavior aspect of the problem by studying the flow of a single component as it undergoes an isothermal phase change. The second couples the effects of temperature and flow behavior by including a second component that is immiscible with the original component. Phase behavior is added by using a set of three partially miscible components that partition into two or three separate phases. 66 refs., 54 figs., 14 tabs.
Topological phase transition in 2D porous media flows
Waisbord, Nicolas; Stoop, Norbert; Kantsler, Vasily; Guasto, Jeffrey S.; Dunkel, Jorn; Guasto Team; Dunkel Team; Kantsler Team
2015-11-01
Since the establishment of Darcy's law, analysis of porous-media flows has focused primarily on linking macroscopic transport properties, such as mean flow rate and dispersion, to the pore statistics of the material matrix. Despite intense efforts to understand the fluid velocity statistics from the porous-media structure, a qualitative and quantitative connection remains elusive. Here, we combine precisely controlled experiments with theory to quantify how geometric disorder in the matrix affects the flow statistics and transport in a quasi-2D microfluidic channel. Experimentally measured velocity fields for a range of different microstructure configurations are found to be in excellent agreement with large-scale numerical simulations. By successively increasing the matrix disorder, we study the transition from periodic flow structures to transport networks consisting of extended high-velocity channels. Morse-Smale complex analysis of the flow patterns reveals a topological phase transition that is linked to a qualitative change in the physical transport properties. This work demonstrates that topological flow analysis provides a mathematically well-defined, broadly applicable framework for understanding and quantifying fluid transport in complex geometries.
Evaluation of liquid aerosol transport through porous media.
Hall, R; Murdoch, L; Falta, R; Looney, B; Riha, B
2016-07-01
Application of remediation methods in contaminated vadose zones has been hindered by an inability to effectively distribute liquid- or solid-phase amendments. Injection as aerosols in a carrier gas could be a viable method for achieving useful distributions of amendments in unsaturated materials. The objectives of this work were to characterize radial transport of aerosols in unsaturated porous media, and to develop capabilities for predicting results of aerosol injection scenarios at the field-scale. Transport processes were investigated by conducting lab-scale injection experiments with radial flow geometry, and predictive capabilities were obtained by developing and validating a numerical model for simulating coupled aerosol transport, deposition, and multi-phase flow in porous media. Soybean oil was transported more than 2m through sand by injecting it as micron-scale aerosol droplets. Oil saturation in the sand increased with time to a maximum of 0.25, and decreased with radial distance in the experiments. The numerical analysis predicted the distribution of oil saturation with only minor calibration. The results indicated that evolution of oil saturation was controlled by aerosol deposition and subsequent flow of the liquid oil, and simulation requires including these two coupled processes. The calibrated model was used to evaluate field applications. The results suggest that amendments can be delivered to the vadose zone as aerosols, and that gas injection rate and aerosol particle size will be important controls on the process. PMID:27149690
Electrokinetic induced solute dispersion in porous media; pore network modeling
Li, Shuai; Schotting, Ruud; Raoof, Amir
2013-04-01
Electrokinetic flow plays an important role in remediation process, separation technique, and chromatography. The solute dispersion is a key parameter to determine transport efficiency. In this study, we present the electrokinetic effects on solute dispersion in porous media at the pore scale, using a pore network model. The analytical solution of the electrokinetic coupling coefficient was obtained to quantity the fluid flow velocity in a cylinder capillary. The effect of electrical double layer on the electrokinetic coupling coefficient was investigated by applying different ionic concentration. By averaging the velocity over cross section within a single pore, the average flux was obtained. Applying such single pore relationships, in the thin electrical double layer limit, to each and every pore within the pore network, potential distribution and the induced fluid flow was calculated for the whole domain. The resulting pore velocities were used to simulate solute transport within the pore network. By averaging the results, we obtained the breakthrough curve (BTC) of the average concentration at the outlet of the pore network. Optimizing the solution of continuum scale advection-dispersion equation to such a BTC, solute dispersion coefficient was estimated. We have compared the dispersion caused by electrokinetic flow and pure pressure driven flow under different Peclet number values. In addition, the effect of microstructure and topological properties of porous media on fluid flow and solute dispersion is presented, mainly based on different pore coordination numbers.
Geometric Models for Isotropic Random Porous Media: A Review
Directory of Open Access Journals (Sweden)
Helmut Hermann
2014-01-01
Full Text Available Models for random porous media are considered. The models are isotropic both from the local and the macroscopic point of view; that is, the pores have spherical shape or their surface shows piecewise spherical curvature, and there is no macroscopic gradient of any geometrical feature. Both closed-pore and open-pore systems are discussed. The Poisson grain model, the model of hard spheres packing, and the penetrable sphere model are used; variable size distribution of the pores is included. A parameter is introduced which controls the degree of open-porosity. Besides systems built up by a single solid phase, models for porous media with the internal surface coated by a second phase are treated. Volume fraction, surface area, and correlation functions are given explicitly where applicable; otherwise numerical methods for determination are described. Effective medium theory is applied to calculate physical properties for the models such as isotropic elastic moduli, thermal and electrical conductivity, and static dielectric constant. The methods presented are exemplified by applications: small-angle scattering of systems showing fractal-like behavior in limited ranges of linear dimension, optimization of nanoporous insulating materials, and improvement of properties of open-pore systems by atomic layer deposition of a second phase on the internal surface.
Influence of biofilms on transport properties in porous media
Davit, Y.
2015-12-01
Microbial activity and biofilm growth in porous media can drastically modify transport properties such as permeability, longitudinal and transverse dispersion or effective reaction rates. Understanding these effects has proven to be a considerable challenge. Advances in this field have been hindered by the difficulty of modeling and visualizing these multi-phase non-linear effects across a broad range of spatial and temporal scales. To address these issues, we are developing a strategy that combines imaging techniques based on x-ray micro-tomography with homogenization of pore-scale transport equations. Here, we review recent progress in x-ray imaging of biofilms in porous media, with a particular focus on the contrast agents that are used to differentiate between the fluid and biofilm phases. We further show how the 3D distribution of the different phases can be used to extract specific information about the biofilm and how effective properties can be calculated via the resolution of closure problems. These closure problems are obtained using the method of volume averaging and must be adapted to the problem of interest. In hydrological systems, we show that a generic formulation for reactive solute transport is based on a domain decomposition approach at the micro-scale yielding macro-scale models reminiscent of multi-rate mass transfer approaches.
Modeling heterogeneous unsaturated porous media flow at Yucca Mountain
International Nuclear Information System (INIS)
Geologic systems are inherently heterogeneous and this heterogeneity can have a significant impact on unsaturated flow through porous media. Most previous efforts to model groundwater flow through Yucca Mountain have used stratigraphic units with homogeneous properties. However, modeling heterogeneous porous and fractured tuff in a more realistic manner requires numerical methods for generating heterogeneous simulations of the media, scaling of material properties from core scale to computational scale, and flow modeling that allows channeling. The Yucca Mountain test case of the INTRAVAL project is used to test the numerical approaches. Geostatistical methods are used to generate more realistic representations of the stratigraphic units and heterogeneity within units is generated using sampling from property distributions. Scaling problems are reduced using an adaptive grid that minimizes heterogeneity within each flow element. A flow code based on the dual mixed-finite-element method that allows for heterogeneity and channeling is employed. In the Yucca Mountain test case, the simulated volumetric water contents matched the measured values at drill hole USW UZ-16 except in the nonwelded portion of Prow Pass
Physical modelling of elastic anisotropy in porous media
Energy Technology Data Exchange (ETDEWEB)
Furre, Anne-Kari
1997-12-31
During the last decades, anisotropy has become increasingly interesting in hydrocarbon prospecting. Knowledge of anisotropy in the subsurface can improve reservoir production and data interpretation. This thesis presents experimental studies of three different artificial anisotropic media: layered materials, isotropic matrix with stress-induced fractures, and layered media with controlled crack patterns at an oblique angle relative to layering. Layered media were constructed by varying grain size distributions for different layers, which resulted in acoustic and permeability anisotropy. The thin layer materials could be described by Backus modelling provided the wavelength was much larger than the layer periods. Frequency dependent scattering was observed for waves travelling normal to the layers. Saturated wave velocities were consistent with transverse isotropic Biot theory, but because the permeability anisotropy was small, no flow dependent attenuation anisotropy was observed. When sandstones were cemented under stress and then released, to simulate a vertical core or uplift process, predominantly horizontal cracks developed in the samples. On reloading to the cementing stress level, the velocities were below the initial values, which supports the theories of crack growth. In further triaxial tests on the same material a stress-dependent anisotropy occurred similar to what is often seen in natural samples taken from large depths. 70 refs., 200 figs., 56 tabs.
Direct Numerical Simulation of Liquid Transport Through Fibrous Porous Media
Palakurthi, Nikhil Kumar
Fluid flow through fibrous media occurs in many industrial processes, including, but not limited, to fuel cell technology, drug delivery patches, sanitary products, textile reinforcement, filtration, heat exchangers, and performance fabrics. Understanding the physical processes involved in fluid flow through fibrous media is essential for their characterization as well as for the optimization and development of new products. Macroscopic porous-media equations require constitutive relations, which account for the physical processes occurring at the micro-scale, to predict liquid transport at the macro-scale. In this study, micro-scale simulations were conducted using conventional computational fluid dynamics (CFD) technique (finite-volume method) to determine the macroscopic constitutive relations. The first part of this thesis deals with the single-phase flow in fibrous media, following which multi-phase flow through fibrous media was studied. Darcy permeability is an important parameter that characterizes creeping flow through a fibrous porous medium. It has a complex dependence on the medium's properties such as fibers' in-plane and through-plane orientation, diameter, aspect ratio, curvature, and porosity. A suite of 3D virtual fibrous structures with a wide range of geometric properties were constructed, and the permeability values of the structures were calculated by solving the 3D incompressible Navier-Stokes equations. The through-plane permeability was found to be a function of only the fiber diameter, the fibers' through-plane orientation, and the porosity of the medium. The numerical results were used to extend a permeability-porosity relation, developed in literature for 3D isotropic fibrous media, to a wide range of fibers' through-plane orientations. In applications where rate of capillary penetration is important, characterization of porous media usually involves determination of either the effective pore radius from capillary penetration experiments
Experimentally Determined Interfacial Area Between Immiscible Fluids in Porous Media
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Niessner, J; Hassanizadeh, S.M; Smith, Duane
2008-01-01
When multiple fluids flow through a porous medium, the interaction between the fluid interfaces can be of great importance. While this is widely recognized in practical applications, numerical models often disregard interactios between discrete fluid phases due to the computational complexity. And rightly so, for this level of detail is well beyond most extended Darcy Law relationships. A new model of two-phase flow including the interfacial area has been proposed by Hassarizadeh and Gray based upon thermodynamic principles. A version of this general equation set has been implemented by Nessner and Hassarizadeh. Many of the interfacial parameters required by this equation set have never been determined from experiments. The work presented here is a description of how the interfacial area, capillary pressure, interfacial velocity and interfacial permeability from two-phase flow experiments in porous media experiments can be used to determine the required parameters. This work, while on-going, has shown the possibility of digitizing images within translucent porous media and identifying the location and behavior of interfaces under dynamic conditions. Using the described methods experimentally derived interfacial functions to be used in larger scale simulations are currently being developed. In summary, the following conclusions can be drawn: (1) by mapping a pore-throat geometry onto an image of immiscible fluid flow, the saturation of fluids and the individual interfaces between the fluids can be identified; (2) the resulting saturation profiles of the low velocity drainage flows used in this study are well described by an invasion percolation fractal scaling; (3) the interfacial area between fluids has been observed to increase in a linear fashion during the initial invasion of the non-wetting fluid; and (4) the average capillary pressure within the entire cell and representative elemental volumes were observed to plateau after a small portion of the volume was
Description of a Furnace for the Creation of Anisotropic Porous Metals
Energy Technology Data Exchange (ETDEWEB)
Gutsch, Thomas; Miszkiel, Mark; Schmale, David T.
1999-05-01
A furnace has been built for the purpose of producing anisotropic porous metals through solid-gas eutectic solidification. This process allows control of continuously formed anisotropic pores in metals and was discovered at the State Metallurgical Academic' University in Dnepropetrovsk Ukraine. The process incorporates hydrogen gas within the metal as it solidifies from the molten state. Metals which do not form hydrides, including iron, nickel, aluminum, copper and others can be formed in this manner. The furnace is housed within a ~.64 meter³ (30 ft³) ASME code stamped cylindrical stainless steel vacuum/pressure vessel. The vessel is a water chilled vertical cylinder with removable covers at the top and bottom. It can be evacuated to 20 mTorr or pressurized to 5.5 MPa (800 psi). A charge of 2700 cc (167 in³) of molten metal can be melted in a crucible in the upper portion within a watercooled 30 cm (12 in.) ID induction coil. A 175 kW Inductotherm power source energizes the coil. Vertical actuation of a ceramic stopper rod allows the molten metal to be tapped into a solidification mold beneath the melting crucible. The cylindrical mold rests on a water cooled copper base inducing directional solidification from the bottom. Mixtures of hydrogen and argon gases are introduced during the process. The system is remotely controlled and located in a structure with frangible walls specially designed for possible ambient pressure excursions as a result of equipment failure. This paper includes a general description of the furnace and operating procedure and a detailed description of the control, monitoring and interlock systems.
Modern hardware architectures accelerate porous media flow computations
Kulczewski, Michal; Kurowski, Krzysztof; Kierzynka, Michal; Dohnalik, Marek; Kaczmarczyk, Jan; Borujeni, Ali Takbiri
2012-05-01
Investigation of rock properties, porosity and permeability particularly, which determines transport media characteristic, is crucial to reservoir engineering. Nowadays, micro-tomography (micro-CT) methods allow to obtain vast of petro-physical properties. The micro-CT method facilitates visualization of pores structures and acquisition of total porosity factor, determined by sticking together 2D slices of scanned rock and applying proper absorption cut-off point. Proper segmentation of pores representation in 3D is important to solve the permeability of porous media. This factor is recently determined by the means of Computational Fluid Dynamics (CFD), a popular method to analyze problems related to fluid flows, taking advantage of numerical methods and constantly growing computing powers. The recent advent of novel multi-, many-core and graphics processing unit (GPU) hardware architectures allows scientists to benefit even more from parallel processing and built-in new features. The high level of parallel scalability offers both, the time-to-solution decrease and greater accuracy - top factors in reservoir engineering. This paper aims to present research results related to fluid flow simulations, particularly solving the total porosity and permeability of porous media, taking advantage of modern hardware architectures. In our approach total porosity is calculated by the means of general-purpose computing on multiple GPUs. This application sticks together 2D slices of scanned rock and by the means of a marching tetrahedra algorithm, creates a 3D representation of pores and calculates the total porosity. Experimental results are compared with data obtained via other popular methods, including Nuclear Magnetic Resonance (NMR), helium porosity and nitrogen permeability tests. Then CFD simulations are performed on a large-scale high performance hardware architecture to solve the flow and permeability of porous media. In our experiments we used Lattice Boltzmann
Focusing and negative refraction in anisotropic indefinite permittivity media
Marshall, Sara; Amirkhizi, Alireza V.; Nemat-Nasser, Sia
2009-03-01
Materials that exhibit negative refraction demonstrate physical phenomena that may be used for novel applications. This work serves to evaluate the possibility of hyperbolic focusing due to an indefinite anisotropic permittivity tensor. Two single-loop antennas were used to approximately achieve a transverse magnetic (TM) point source and detector. Using an Agilent 8510C Vector Network Analyzer (VNA), the frequency spectrum was scanned between 7 and 9 GHz. Relative gain or loss measurements were taken at equal spatial steps around the center of the sample. A scanning robot allowed for the automatic scanning of the space behind the sample in the x, y, and z directions, to establish the focusing patterns, and to compare the signal amplitudes in the presence and absence of the sample. The robot was controlled using LabVIEW, which also collected the data from the VNA and passed it to Matlab for processing. A soft focusing spot was observed when the antennas were placed in a symmetric configuration with respect to the sample. These results suggest a method of focusing electromagnetic waves using negative refraction in indefinite materials.
A recipe for practical full waveform inversion in anisotropic media
Alkhalifah, Tariq Ali
2014-03-28
In representing the most common (first-order influence, and gravity induced) acoustic anisotropy, transversely isotropic with a vertical symmetry direction (VTI) medium, with the P-wave normal moveout velocity, delta, and eta, we obtain a perturbation radiation pattern that has limited tradeoff between the parameters. Since delta is weakly resolvable from the kinematics of wave propagation, we can use it to play the role that density plays in improving the data fit for an imperfect physical model that ignores the elastic nature of the Earth. An FWI scheme that starts from diving waves would benefit from representing the acoustic VTI model with the P-wave horizontal velocity, eta, and epsilon. In this representation, the diving waves will help us first resolve the horizontal velocity, and then reflections, if the nonlinearity is properly handled, could help us resolve eta, while epsilon comes at the end to improve the amplitude fit (instead of the density). The model update wavelength for acoustic anisotropic FWI is very much similar to that experienced for the isotropic case. Copyright © 2014 by the European Association of Geoscientists & Engineers. All rights reserved.
Analysis for the Potential Function of the Digital Microstructure Image of Porous Media
Institute of Scientific and Technical Information of China (English)
XUYou-Sheng; LINJi; LIHua-Mei; WUPeng-Min
2003-01-01
Making use of the full information obtained in our previous discussions, a new analytical solutions for the potential function of the digital microstructure image of porous media is reported in this paper. It is demonstrated that the distribution of potential function depends on the zeroth order Bessel function. All these will be helpful for analyzing the similar subjects in porous media.
Analysis for the Potential Function of the Digital Microstructure Image of Porous Media
Institute of Scientific and Technical Information of China (English)
XU You-Sheng; LIN Ji; LI Hua-Mei; WU Feng-Min
2003-01-01
Making use of the full information obtained in our previous discussions, a new analytical solutions for thepotential function of the digital microstructure image of porous media is reported in this paper. It is demonstrated that the distribution of potential function depends on the zeroth order Bessel function. All these will be helpful for analyzingthe similar subjects in porous media.
A New Capacitance Probe for Measuring the Local Moisture Content in Wet Porous Media
Institute of Scientific and Technical Information of China (English)
HanJitian; ShiMingheng; 等
1997-01-01
A new capacitance probe is developed for measuring local moisture content in wet porous media.The measurement principle,sensor structure of the probe,dynamic response characteristics and calibration procedure are discussed in detail.The experimental results show that the probe can be used to measure the local moisture content in wet porous media.
Photon transport parameters of diffusive media with highly anisotropic scattering
International Nuclear Information System (INIS)
The dependence of the photon transport parameters on the optical characteristics of diffusive media such as biological tissue with strongly forward biased scattering is examined with respect to the influence of the large angle scattering component and higher moments of the phase function. The latter are particularly significant for the temporal evolution of the angular intensity. The P3 approximation gives clear physical insight into the influence of boundaries on the radiative flux and is applied here as an analytic method of evaluating certain phase functions reported in the literature, while higher order PN approximations are used to calculate accurate time-dependent angular intensity distributions of the scattered light
Fluid structure interaction for fluid flow normal to deformable porous media
Muntz, Sabine
2008-01-01
In this thesis, the coupling of the Stokes equations and the Biot poroelasticity equations for fluid flow normal to porous media is investigated. For that purpose, the transmission conditions across the interfaces between the fluid regions and the porous domain are derived. A proper algorithm is formulated and numerical examples are presented. First, the transmission conditions for the coupling of various physical phenomena are reviewed. For the coupling of free flow with porous media, it has...
Fractal Analysis of Robertson-Stiff Fluid Flow in Porous Media
International Nuclear Information System (INIS)
The Robertson—Stiff (RS) fluid is the representative fluid which may be reduced to Bingham, power-law and Newtonian fluids under appropriate conditions. We present fractal models for the flow rate, velocity, starting pressure gradient and effective permeability for RS fluids in porous media based on the fractal characteristics of porous media and capillary models. The proposed models are expressed as functions of the fractal dimensions, porosity, maximum pore size and the representative length of the porous media. Every parameter in the proposed expressions has clear physical meaning, and the proposed models relate the flow characteristics of the RS fluids to the structural parameters of the porous media. The analytical expressions reveal the physical principles of RS fluid flow in porous media. (fundamental areas of phenomenology(including applications))
Modelling of transport processes in porous media for energy applications
Energy Technology Data Exchange (ETDEWEB)
Kangas, M.
1996-12-31
Flows in porous media are encountered in many branches of technology. In these phenomena, a fluid of some sort is flowing through porous matrix of a solid medium. Examples of the fluid are water, air, gas and oil. The solid matrix can be soil, fissured rock, ceramics, filter paper, etc. The flow is in many cases accompanied by transfer of heat or solute within the fluid or between the fluid and the surrounding solid matrix. Chemical reactions or microbiological processes may also be taking place in the system. In this thesis, a 3-dimensional computer simulation model THETA for the coupled transport of fluid, heat, and solute in porous media has been developed and applied to various problems in the field of energy research. Although also applicable to porous medium applications in general, the version of the model described and used in this work is intended for studying the transport processes in aquifers, which are geological formations containing groundwater. The model highlights include versatile input and output routines, as well as modularity which, for example, enables an easy adaptation of the model for use as a subroutine in large energy system simulations. Special attention in the model development has been attached to high flow conditions, which may be present in Nordic esker aquifers located close to the ground surface. The simulation model has been written with FORTRAN 77 programming language, enabling a seamless operation both in PC and main frame environments. For PC simulation, a special graphic user interface has been developed. The model has been used with success in a wide variety of applications, ranging from basic thermal analyses to thermal energy storage system evaluations and nuclear waste disposal simulations. The studies have shown that thermal energy storage is feasible also in Nordic high flow aquifers, although at the cost of lower recovery temperature level, usually necessitating the use of heat pumps. In the nuclear waste studies, it
Onset of Darcy-Brinkman Reaction-Convection in an Anisotropic Porous Layer
Directory of Open Access Journals (Sweden)
S. N. Gaikwad
2016-01-01
Full Text Available The linear and nonlinear stability analysis of double diffusive reaction-convection in a sparsely packed anisotropic porous layer subjected to chemical equilibrium on the boundaries is investigated analytically. The linear analysis is based on the usual normal mode method and the nonlinear theory on the truncated representation of Fourier series method. The Darcy-Brinkman model is employed for the momentum equation. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. The effect of Darcy number, Damkohler number, anisotropy parameters, Lewis number, and normalized porosity on the stationary, oscillatory, and finite amplitude convection is shown graphically. It is found that the effect of Darcy number and mechanical anisotropy parameter have destabilizing effect, while the thermal anisotropy parameter has stabilizing effect on the stationary, oscillatory and finite amplitude convection. The Damkohler number has destabilizing effect in the case of stationary mode, with stabilizing effect in the case of oscillatory and finite amplitude modes. Further, the transient behavior of the Nusselt and Sherwood numbers are investigated by solving the nonlinear system of ordinary differential equations numerically using the Runge-Kutta method.
Wave propagation in solid and porous half-space media
Hamidzadeh, Hamid R; Jazar, Reza N
2014-01-01
This unique book covers advanced topics in dynamic modeling of soil-foundation interaction, as well as the response of elastic semi-infinite media from an applications viewpoint. Advanced concepts such as solutions for analysis of elastic semi-infinite mediums, fluid motion in porous media, and nonlinearities in dynamic behavior are explained in great detail. Related theories and numerical analysis for independent vertical, horizontal, and rocking as well as coupled horizontal and rocking vibrations of a rigid rectangular base resting on the surface of a semi-infinite medium are presented. Throughout the book, a strong emphasis is placed on applications. A laboratory model for elastic half-space medium is also described. This book also: · Provides a systematic solution for analysis of elastic semi-infinite mediums when subjected to different loading conditions · Offers a solution for the continuous elastic medium that is also extended to visco-elastic media by considering com...
Transport of molecular fluids through three-dimensional porous media
Adler, Pierre; Pazdniakou, Aliaksei
2014-05-01
The main purpose of this study is to extend the analysis which has been made for the double layer theory (summarized by [1]) to situations where the distance between the solid walls is of the order of several molecular diameters. This is of a large interest from a scientific viewpoint and for various engineering applications. The intermolecular forces and their influence on fluid structure and dynamics can be taken into account by using the mesoscopic scale models based on the Boltzmann equation [2]. The numerical methods derived from these models are less demanding in computational resources than conventional molecular dynamics methods and therefore long time evolution of large samples can be considered. Three types of fluid particles are considered, namely the anions, the cations and the solvent. They possess a finite diameter which should be at least a few lattice units. The collision frequency between particles is increased by the pair correlation function for hard spheres. The lattice Boltzmann model is built in three dimensions with 19 velocities; it involves two relaxation times. The particle distribution functions are discretized over a basis of Hermite polynomial tensors. Electric forces are included and a Poisson equation is simultaneously solved by a successive over-relaxation method. The numerical algorithm is detailed; it is devised in order to be able to address any three-dimensional porous media. It involves the determination of the densities of each particle species, of the overall density and of the equilibrium distribution function. Then, the electric forces are determined. Collision operators are applied as well as the boundary conditions. Finally, the propagation step is performed and the algorithm starts a new loop. The influence of parameters can be illustrated by systematic calculations in a plane Poiseuille configuration. The drastic influence of the ratio between the channel width and the particle sizes on the local densities and the
Microbial growth and transport in saturated and unsaturated porous media
Hron, Pavel; Jost, Daniel; Bastian, Peter; Ippisch, Olaf
2014-05-01
There is a considerable ongoing effort aimed at understanding the behavior of microorganisms in porous media. Microbial activity is of significant interest in various environmental applications such as in situ bioremediation, protection of drinking water supplies and for subsurface geochemistry in general. The main limiting factors for bacterial growth are the availability of electron acceptors, nutrients and bio-available water. The capillary fringe, defined - in a wider sense than usual - as the region of the subsurface above the groundwater table, but still dominated by capillary rise, is a region where all these factors are abundantly available. It is thus a region where high microbial activity is to be expected. In a research unit 'Dynamic Capillary Fringes - A Multidisciplinary Approach (DyCap)' founded by the German Research Foundation (DFG), the growth of microorganisms in the capillary fringe was studied experimentally and with numerical simulations. Processes like component transport and diffusion, exchange between the liquid phase and the gas phase, microbial growth and cell attachment and detachment were incorporated into a numerical simulator. The growth of the facultative anaerobic Escherichia coli as a function of nutrient availability and oxygen concentration in the liquid phase is modeled with modified Monod-type models and modifications for the switch between aerobic and anaerobic growth. Laboratory batch experiments with aqueous solutions of bacteria have been carried out under various combinations of oxygen concentrations in the gas phase and added amounts of dissolved organic carbon to determine the growth model parameters by solution of a parameter estimation problem. For the transport of bacteria the adhesion to phase boundaries is also very important. As microorganisms are transported through porous media, they are removed from the pore fluid by physicochemical filtration (attachment to sediment grain surfaces) or are adhering to gas
Czech Academy of Sciences Publication Activity Database
Pšenčík, Ivan; Farra, V.
Prague : Charles University , 2012, s. 139-142 R&D Projects: GA ČR(CZ) GAP210/11/0117 Institutional support: RVO:67985530 Keywords : seismic waves * anisotropic media * traveltimes Subject RIV: DC - Siesmology, Volcanology, Earth Structure
A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media
Salama, Amgad
2013-03-20
In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.
Nonlinear Biot waves in porous media with application to unconsolidated granular media.
Dazel, Olivier; Tournat, Vincent
2010-02-01
The nonlinear propagation through porous media is investigated in the framework of Biot theory. For illustration, and considering the current interest for the determination of the elastic properties of granular media, the case of nonlinear propagation in "model" granular media (disordered packings of noncohesive elastic beads of the same size embedded in a visco-thermal fluid) is considered. The solutions of linear Biot waves are first obtained, considering the appropriate geometrical and physical parameters of the medium. Then, making use of the method of successive approximations of nonlinear acoustics, the solutions for the second harmonic Biot waves are derived by considering a quadratic nonlinearity in the solid frame constitutive law (which takes its origin from the high nonlinearity of contacts between grains). The propagation in a semi-infinite medium with velocity dispersion, frequency dependent dissipation, and nonlinearity is first analyzed. The case of a granular medium slab with rigid boundaries, often considered in experiments, is then presented. Finally, the importance of mode coupling between solid and fluid waves is evaluated, depending on the actual fluid, the bead diameter, or the applied static stress on the beads. The application of these results to other media supporting Biot waves (porous ceramics, polymer foams, etc.) is straightforward. PMID:20136191
Gao, Kai
2015-06-05
The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.
Roth, E. J.; Tigera, R. G.; Crimaldi, J. P.; Mays, D. C.
2015-12-01
Research in porous media is often hampered by the difficulty in making pore-scale observations. By selecting porous media that is refractive index matched (RIM) to the pore fluid, the media becomes transparent. This allows optical imaging techniques such as static light scattering (SLS), dynamic light scattering (DLS), confocal microscopy, and planar laser-induced fluorescence (PLIF) to be employed. RIM is particularly useful for research concerning contaminant remediation in the subsurface, permitting visual observation of plume dynamics at the pore scale. The goal of this research is to explore and assess candidate combinations of porous media, fluid, and fluorescent dye. The strengths and weaknesses of each combination will then be evaluated in terms of safety, cost, and optical quality in order to select the best combination for use with PLIF. Within this framework, top-ranked RIM combinations include Pyrex glass beads, water beads, or granular Nafion saturated in vegetable glycerin, deionized water, and an aqueous solution of 48% isopropanol, respectively. This research lays the groundwork for future efforts to build a flow chamber in which the selected RIM porous media, solution, and dye will be used in evaluating subsurface pumping strategies designed to impose chaotic plume spreading in porous media. Though the RIM porous media explored in this research are selected based on the specifications of a particular experiment, the methods developed for working with and evaluating RIM porous media should be of utility to a wide variety of research interests.
Phase field modeling of partially saturated deformable porous media
Sciarra, Giulio
2016-09-01
A poromechanical model of partially saturated deformable porous media is proposed based on a phase field approach at modeling the behavior of the mixture of liquid water and wet air, which saturates the pore space, the phase field being the saturation (ratio). While the standard retention curve is expected still^ to provide the intrinsic retention properties of the porous skeleton, depending on the porous texture, an enhanced description of surface tension between the wetting (liquid water) and the non-wetting (wet air) fluid, occupying the pore space, is stated considering a regularization of the phase field model based on an additional contribution to the overall free energy depending on the saturation gradient. The aim is to provide a more refined description of surface tension interactions. An enhanced constitutive relation for the capillary pressure is established together with a suitable generalization of Darcy's law, in which the gradient of the capillary pressure is replaced by the gradient of the so-called generalized chemical potential, which also accounts for the "force", associated to the local free energy of the phase field model. A micro-scale heuristic interpretation of the novel constitutive law of capillary pressure is proposed, in order to compare the envisaged model with that one endowed with the concept of average interfacial area. The considered poromechanical model is formulated within the framework of strain gradient theory in order to account for possible effects, at laboratory scale, of the micro-scale hydro-mechanical couplings between highly localized flows (fingering) and localized deformations of the skeleton (fracturing).
Critical transport parameters for porous media subjected to counterflow
Frederking, T. H. K.; Afifi, F. A.; Ono, D. Y.
1989-01-01
Experimental and theoretical studies have been conducted to determine critical parameters at the onset of nonlinear counterflow in He II below the lambda point of He-4. Critical temperature differences have been measured in porous media for zero net mass flow and for Darcy permeabilities in the order of magnitude range from 10 to the -10th to 10 to the -8th sq cm. The normalized critical temperature gradients, which covered the liquid temperature range of 1.5 K to the lambda temperature, are found to vary with T proportional to the ratio of the superfluid density to the normal fluid density. This liquid temperature dependence appears to be consistent with duct data which are limited at low temperature by a Reynolds number criterion.
Magnetic Resonance of Porous Media (MRPM): A perspective
Song, Yi-Qiao
2013-04-01
Porous media are ubiquitous in our environment and their application is extremely broad. The common connection between these diverse materials is the importance of the microstructure (μm to mm scale) in determining the physical, chemical and biological functions and properties. Magnetic resonance and its imaging modality have been essential for noninvasive characterization of these materials, in the development of catalysts, understanding cement hydration, fluid transport in rocks and soil, geological prospecting, and characterization of tissue properties for medical diagnosis. The past two decades have witnessed significant development of MRPM that couples advances in physics, chemistry and engineering with a broad range of applications. This article will summarize key advances in basic physics and methodology, examine their limitations and envision future R&D directions.
On the transport of emulsions in porous media
Energy Technology Data Exchange (ETDEWEB)
Cortis, Andrea; Ghezzehei, Teamrat A.
2007-06-27
Emulsions appear in many subsurface applications includingbioremediation, surfactant-enhanced remediation, and enhancedoil-recovery. Modeling emulsion transport in porous media is particularlychallenging because the rheological and physical properties of emulsionsare different from averages of the components. Current modelingapproaches are based on filtration theories, which are not suited toadequately address the pore-scale permeability fluctuations and reductionof absolute permeability that are often encountered during emulsiontransport. In this communication, we introduce a continuous time randomwalk based alternative approach that captures these unique features ofemulsion transport. Calculations based on the proposed approach resultedin excellent match with experimental observations of emulsionbreakthrough from the literature. Specifically, the new approach explainsthe slow late-time tailing behavior that could not be fitted using thestandard approach. The theory presented in this paper also provides animportant stepping stone toward a generalizedself-consistent modeling ofmultiphase flow.
Environmental behavior of engineered nanomaterials in porous media: a review.
Park, Chang Min; Chu, Kyoung Hoon; Heo, Jiyong; Her, Namguk; Jang, Min; Son, Ahjeong; Yoon, Yeomin
2016-05-15
A pronounced increase in the use of nanotechnology has resulted in nanomaterials being released into the environment. Environmental exposure to the most common engineered nanomaterials (ENMs), such as carbon-based and metal-based nanomaterials, can occur directly via intentional injection for remediation purposes, release during the use of nanomaterial-containing consumer goods, or indirectly via different routes. Recent reviews have outlined potential risks assessments, toxicity, and life cycle analyses regarding ENM emission. In this review, inevitable release of ENMs and their environmental behaviors in aqueous porous media are discussed with an emphasis on influencing factors, including the physicochemical properties of ENMs, solution chemistry, soil hydraulic properties, and soil matrices. Major findings of laboratory column studies and numerical approaches for the transport of ENMs are addressed, and studies on the interaction between ENMs and heavy metal ions in aqueous soil environments are examined. Future research is also presented with specific research directions and outlooks. PMID:26882524
Effect of Boundary Conditions on Freezing in Porous Media
Directory of Open Access Journals (Sweden)
Rahul Basu
2004-07-01
Full Text Available This paper examines a model for coupled heat and mass transfer for freezing in a porous media with Dirichlet and convective boundary conditions. Variables include porosity, heat transfer coefficients, thermal and mass diffusivity, density, latent heat, and boundary temperatures. A simulation for the slab illustrates the appearance of undercooling. A stability criterion for the phase interface is linked with well-known metallurgical parameters like undercooling and freezing rate. A possible mechanism for freckling in ingots of niobium-rich superalloys is examined. It has been shown that heat and mass transfer balance at the interface can affect stability. The effect of boundary conditions on the velocity of freezing is computed for some cases, including the self-freezing process.
Strength and stability of microbial plugs in porous media
Energy Technology Data Exchange (ETDEWEB)
Sarkar, A.K. [NIPER/BDM-Oklahoma, Inc., Bartlesville, OK (United States); Sharma, M.M.; Georgiou, G. [Univ. of Texas, Austin, TX (United States)
1995-12-31
Mobility reduction induced by the growth and metabolism of bacteria in high-permeability layers of heterogeneous reservoirs is an economically attractive technique to improve sweep efficiency. This paper describes an experimental study conducted in sandpacks using an injected bacterium to investigate the strength and stability of microbial plugs in porous media. Successful convective transport of bacteria is important for achieving sufficient initial bacteria distribution. The chemotactic and diffusive fluxes are probably not significant even under static conditions. Mobility reduction depends upon the initial cell concentrations and increase in cell mass. For single or multiple static or dynamic growth techniques, permeability reduction was approximately 70% of the original permeability. The stability of these microbial plugs to increases in pressure gradient and changes in cell physiology in a nutrient-depleted environment needs to be improved.
Biopolymer system for permeability modification in porous media
Energy Technology Data Exchange (ETDEWEB)
Stepp, A.K.; Bryant, R.S.; Llave, F.M. [BMD-Oklahoma, Inc., Bartlesville, OK (United States)] [and others
1995-12-31
New technologies are needed to reduce the current high rate of well abandonment. Improved sweep efficiency, reservoir conformance, and permeability modification can have a significant impact on oil recovery processes. Microorganisms can be used to selectively plug high-permeability zones to improve sweep efficiency and impart conformance control. Studies of a promising microbial system for polymer production were conducted to evaluate reservoir conditions in which this system would be effective. Factors which can affect microbial growth and polymer production include salinity, pH, temperature, divalent ions, presence of residual oil, and rock matrix. Flask tests and coreflooding experiments were conducted to optimize and evaluate the effectiveness of this system. Nuclear magnetic resonance imaging (NMRI) was used to visualize microbial polymer production in porous media. Changes in fluid distribution within the pore system of the core were detected.
Simulation of a Heat Transfer in Porous Media
Geiser, Juergen
2012-01-01
We are motivated to model a heat transfer to a multiple layer regime and their optimization for heat energy resources. Such a problem can be modeled by a porous media with different phases (liquid and solid). The idea arose of a geothermal energy reservoir which can be used by cities, e.g. Berlin. While hot ground areas are covered to most high populated cites, the energy resources are important and a shift to use such resources are enormous. We design a model of the heat transport via the flow of water through the heterogeneous layer of the underlying earth sediments. We discuss a multiple layer model, based on mobile and immobile zones. Such numerical simulations help to economize on expensive physical experiments and obtain control mechanisms for the delicate heating process.
Centrifuge Techniques and Apparatus for Transport Experiments in Porous Media
Energy Technology Data Exchange (ETDEWEB)
Earl D. Mattson; Carl D. Paler; Robert W. Smith; Markus Flury
2010-06-01
This paper describes experimental approaches and apparatus that we have developed to study solute and colloid transport in porous media using Idaho National Laboratory's 2-m radius centrifuge. The ex-perimental techniques include water flux scaling with applied acceleration at the top of the column and sub-atmospheric pressure control at the column base, automation of data collection, and remote experimental con-trol over the internet. These apparatus include a constant displacement piston pump, a custom designed liquid fraction collector based on switching valve technology, and modified moisture monitoring equipment. Suc-cessful development of these experimental techniques and equipment is illustrated through application to transport of a conservative tracer through unsaturated sand column, with centrifugal acceleration up to 40 gs. Development of such experimental equipment that can withstand high accelerations enhances the centrifuge technique to conduct highly controlled unsaturated solute/colloid transport experiments and allows in-flight liquid sample collection of the effluent.
Efficient algorithms for multiscale modeling in porous media
Wheeler, Mary F.
2010-09-26
We describe multiscale mortar mixed finite element discretizations for second-order elliptic and nonlinear parabolic equations modeling Darcy flow in porous media. The continuity of flux is imposed via a mortar finite element space on a coarse grid scale, while the equations in the coarse elements (or subdomains) are discretized on a fine grid scale. We discuss the construction of multiscale mortar basis and extend this concept to nonlinear interface operators. We present a multiscale preconditioning strategy to minimize the computational cost associated with construction of the multiscale mortar basis. We also discuss the use of appropriate quadrature rules and approximation spaces to reduce the saddle point system to a cell-centered pressure scheme. In particular, we focus on multiscale mortar multipoint flux approximation method for general hexahedral grids and full tensor permeabilities. Numerical results are presented to verify the accuracy and efficiency of these approaches. © 2010 John Wiley & Sons, Ltd.
Evaluation of QNI corrections in porous media applications
Radebe, M. J.; de Beer, F. C.; Nshimirimana, R.
2011-09-01
Qualitative measurements using digital neutron imaging has been the more explored aspect than accurate quantitative measurements. The reason for this bias is that quantitative measurements require correction for background and material scatter, and neutron spectral effects. Quantitative Neutron Imaging (QNI) software package has resulted from efforts at the Paul Scherrer Institute, Helmholtz Zentrum Berlin (HZB) and Necsa to correct for these effects, while the sample-detector distance (SDD) principle has previously been demonstrated as a measure to eliminate material scatter effect. This work evaluates the capabilities of the QNI software package to produce accurate quantitative results on specific characteristics of porous media, and its role to nondestructive quantification of material with and without calibration. The work further complements QNI abilities by the use of different SDDs. Studies of effective %porosity of mortar and attenuation coefficient of water using QNI and SDD principle are reported.
Rich n-heptane and diesel combustion in porous media
Energy Technology Data Exchange (ETDEWEB)
Pastore, A.; Mastorakos, E. [Department of Engineering, University of Cambridge, Cambridge CB2 1PZ (United Kingdom)
2010-04-15
Rich n-heptane and diesel flames in two-layer porous media are experimentally investigated in the context of syngas production. The stable operating points of n-heptane reforming have been determined and the mole fractions of H{sub 2}, CO, CO{sub 2} and light hydrocarbons have been measured in the exhaust gas at an equivalence ratio of 2 for different thermal input values. The reformer performance has been assessed also from the point of view of the heat losses and the mixture homogeneity. The pre-vapouriser produces an approximately uniform vapour-air mixture upstream of the flame front. The range of flow rates for stable flames decreased with increasing equivalence ratio. Heat losses were about 10% of the thermal input at high firing rates. A 77.2% of the equilibrium H{sub 2} was achieved at a flame speed of 0.82 m/s. The same reactor with a different porous matrix for the reforming stage demonstrates diesel reforming to syngas with a conversion efficiency of 77.3% for a flame speed of 0.65 m/s. (author)
Overlimiting Current and Shock Electrodialysis in Porous Media
Deng, Daosheng; Han, Ji-Hyung; Schlumpberger, Sven; Mani, Ali; Zaltzman, Boris; Bazant, Martin Z
2013-01-01
Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electro-osmotic flow also contribute to ionic fluxes. In this paper, we report experimental evidence for surface-driven over-limiting current (faster than diffusion) and deionization shocks (propagating salt removal) in a porous medium. The apparatus consists of a silica glass frit (1 mm thick with 500 nm mean pore size) in an aqueous electrolyte (CuSO$_4$ or AgNO$_3$) passing ionic current from a reservoir to a cation-selective membrane (Nafion). The current-voltage relation of the whole system is consistent with a proposed theory based on the electro-osmotic flow mechanism over a broad range of reservoir salt concentrations (0.1 mM - 1.0 M), after accounting for (Cu) electrode polarization and pH-regulated silica charge. Above the limiting current, deionized water ($\\approx 10 \\mu$ $M$) can be continuously extracted from the frit, which implies the existence of a stable shock propag...
Overlimiting current and shock electrodialysis in porous media.
Deng, Daosheng; Dydek, E Victoria; Han, Ji-Hyung; Schlumpberger, Sven; Mani, Ali; Zaltzman, Boris; Bazant, Martin Z
2013-12-31
Most electrochemical processes, such as electrodialysis, are limited by diffusion, but in porous media, surface conduction and electroosmotic flow also contribute to ionic flux. In this article, we report experimental evidence for surface-driven overlimiting current (faster than diffusion) and deionization shocks (propagating salt removal) in a porous medium. The apparatus consists of a silica glass frit (1 mm thick with a 500 nm mean pore size) in an aqueous electrolyte (CuSO4 or AgNO3) passing ionic current from a reservoir to a cation-selective membrane (Nafion). The current-voltage relation of the whole system is consistent with a proposed theory based on the electroosmotic flow mechanism over a broad range of reservoir salt concentrations (0.1 mM to 1.0 M) after accounting for (Cu) electrode polarization and pH-regulated silica charge. Above the limiting current, deionized water (≈10 μM) can be continuously extracted from the frit, which implies the existence of a stable shock propagating against the flow, bordering a depleted region that extends more than 0.5 mm across the outlet. The results suggest the feasibility of shock electrodialysis as a new approach to water desalination and other electrochemical separations. PMID:24320737
Scaling heat and mass flow through porous media during pyrolysis
Maes, Julien; Muggeridge, Ann H.; Jackson, Matthew D.; Quintard, Michel; Lapene, Alexandre
2015-03-01
The modelling of heat and mass flow through porous media in the presence of pyrolysis is complex because various physical and chemical phenomena need to be represented. In addition to the transport of heat by conduction and convection, and the change of properties with varying pressure and temperature, these processes involve transport of mass by convection, evaporation, condensation and pyrolysis chemical reactions. Examples of such processes include pyrolysis of wood, thermal decomposition of polymer composite and in situ upgrading of heavy oil and oil shale. The behaviours of these systems are difficult to predict as relatively small changes in the material composition can significantly change the thermophysical properties. Scaling reduces the number of parameters in the problem statement and quantifies the relative importance of the various dimensional parameters such as permeability, thermal conduction and reaction constants. This paper uses inspectional analysis to determine the minimum number of dimensionless scaling groups that describe the decomposition of a solid porous material into a gas in one dimension. Experimental design is then used to rank these scaling groups in terms of their importance in describing the outcome of two example processes: the thermal decomposition of heat shields formed from polymer composites and the in situ upgrading of heavy oils and oil shales. A sensitivity analysis is used to divide these groups into three sets (primary, secondary and insignificant), thus identifying the combinations of solid and fluid properties that have the most impact on the performance of the different processes.
Thermal Convection in Laboratory-Scale Porous Media
Breitmeyer, R. J.; Cooper, C. A.; Decker, D. L.
2006-12-01
Experiments in laboratory-scale porous media were conducted to observe the behavior of thermally driven convection. Experiments were conducted in two cells with dimensions of 24 x 20 x 2.54 cm and 100 x 75 x 2.54 cm. Each experiment consisted of constant temperature, thermally conductive, impermeable boundaries at the top and bottom with spherical glass beads comprising the medium. The porous medium was made up of two sizes of glass beads, 0.3 cm and 0.5 cm. A thermochromic liquid crystal (TLC) tracer was employed in conjunction with a CCD camera to develop a time-series of image data with a color-temperature relationship. Experiments were systematically designed to determine how convection develops in relation to permeability and its spatial variations, thermal gradient, and cell dimensions of the system. The physical behavior of convection was observed in terms of plume structure and velocity, and heat flux. Plume width appeared to be dependent on both permeability and the size of the initial instabilities at the onset of convection with wider plumes forming in lower permeability media and wider initial instabilities leading to wider plumes at later times. Heat flux behavior for each experiment was investigated through calculation of the Nusselt Number (Nu). Nu as a function of Rayleigh Number (Ra) appeared to scale as Nu~ Ra^{1/3} in the homogeneous medium, which is in agreement with previous work. Observations of the long-time behavior were made to determine whether or not the development of steady-state behavior occurred. In the small experimental cell with a 15° C temperature difference and containing only 0.5 cm beads, a steady state condition appeared to form shortly after the plumes reached the upper constant temperature boundary condition. Experiments were conducted in both cells in which higher permeability media underlay lower permeability media with a 10° C temperature difference. Similar behavior was seen in both cells with the plumes widening at
Ferrofluid magnetoviscous control of wall flow channeling in porous media
Institute of Scientific and Technical Information of China (English)
Faal; Larachi
2007-01-01
[1]Bacri,J.C.,Perzynski,R.,Shliomis,M.I.,& Burde,G.I.(1995).Negative viscosity effect in a magnetic fluid.Physical Review Letters,75(11),2128-2131.[2]Felderhof,B.U.(2001).Flow of a ferrofluid down a tube in an oscillating magnetic field.Physical Review E,64(021508),1-7.[3]Khuzir,P.,Bossis,G.,Bashtovoi,V.,& Volkova,O.(2003).Flow of magnetorheological fluid through porous media.European Journal of Mechanics B/Fluids,22,331-343.[4]McTague,J.P.(1969).Magnetoviscosity of magnetic colloids.Journal of Chemical Physics,51,133-136.[5]Odenbach,S.(2003).Magnetic fluids-Suspensions of magnetic dipoles and their magnetic control.Journal of Physics:Condensed Matter,15,S 1497-S1508.[6]Rinaldi,C.,& Zahn,M.(2002).Effects of spin viscosity on ferrofluid flow profiles in alternating and rotating magnetic fields.Physics of Fluids,14,2847-2870.[7]Rosensweig,R.E.(1997).Ferrohydrodynamics.New York:Dover Publications.[8]Schumacher,K.R.,Sellien,I.,Knoke,G.S.,Cadet,T.,& Finlayson,B.A.(2003).Experiment and simulation of laminar and turbulent ferrofluid pipe flow in an oscillating magnetic field.Physical Review E,67(026308),1-11.[9]Shliomis,M.I.(1972).Effective viscosity of magnetic suspensions.Soviet Physics JETP,34,1291-1294.[10]Whitaker,S.(1999).Theory and applications of transport in porous media.Dordrecht:Kluwer Academic Press.[11]Zeuner,A.,Richter,R.,& Rehberg,I.(1998).Experiments on negative and positive magnetoviscosity in an alternating magnetic field.Physical Review E,58,62876293.
Multimodel framework for characterization of transport in porous media
Ciriello, Valentina; Edery, Yaniv; Guadagnini, Alberto; Berkowitz, Brian
2015-05-01
We consider modeling approaches to characterize solute transport in porous media, integrating them into a unique theoretical and experimental framework for model evaluation and data interpretation. To date, development of (conservative and reactive chemical) transport models and formulation of model calibration methods grounded on sensitivity-based collection of measurements have been pursued in parallel. Key questions that remain include: For a given set of measurements, which conceptual picture of the transport processes, as embodied in a mathematical model or models, is most appropriate? What are the most valuable space-time locations for solute concentration measurements, depending on the model selected? How is model parameter uncertainty propagated to model output, and how does this propagation affect model calibration? We address these questions by merging parallel streams of research—model formulation, reduction, calibration, sensitivity analysis, and discrimination—offering our view on an emerging framework that guides (i) selection of an appropriate number and location of time-dependent concentration measurements given a transport model and (ii) assessment (through discrimination criteria) of the relative benefit of applying any particular model from a set of several models. Our strategy is to employ metrics to quantify the relative contribution of each uncertain model parameter to the variability of the model output. We evaluate these metrics through construction of a surrogate (or "meta") transport model that has the additional benefit of enabling sensitivity analysis and model calibration at a highly reduced computational cost. We demonstrate the applicability of this framework, focusing on transport of reactive chemicals in laboratory-scale porous media.
Macro-scale turbulence modelling for flows in porous media
International Nuclear Information System (INIS)
- This work deals with the macroscopic modeling of turbulence in porous media. It concerns heat exchangers, nuclear reactors as well as urban flows, etc. The objective of this study is to describe in an homogenized way, by the mean of a spatial average operator, turbulent flows in a solid matrix. In addition to this first operator, the use of a statistical average operator permits to handle the pseudo-aleatory character of turbulence. The successive application of both operators allows us to derive the balance equations of the kind of flows under study. Two major issues are then highlighted, the modeling of dispersion induced by the solid matrix and the turbulence modeling at a macroscopic scale (Reynolds tensor and turbulent dispersion). To this aim, we lean on the local modeling of turbulence and more precisely on the k - ε RANS models. The methodology of dispersion study, derived thanks to the volume averaging theory, is extended to turbulent flows. Its application includes the simulation, at a microscopic scale, of turbulent flows within a representative elementary volume of the porous media. Applied to channel flows, this analysis shows that even within the turbulent regime, dispersion remains one of the dominating phenomena within the macro-scale modeling framework. A two-scale analysis of the flow allows us to understand the dominating role of the drag force in the kinetic energy transfers between scales. Transfers between the mean part and the turbulent part of the flow are formally derived. This description significantly improves our understanding of the issue of macroscopic modeling of turbulence and leads us to define the sub-filter production and the wake dissipation. A f - f - w>f model is derived. It is based on three balance equations for the turbulent kinetic energy, the viscous dissipation and the wake dissipation. Furthermore, a dynamical predictor for the friction coefficient is proposed. This model is then successfully applied to the study of
Computational techniques in multiphase flow and transport in porous media
International Nuclear Information System (INIS)
In general the objectives of computer simulation of multiphase, multicomponent flow and transport in porous media are to understand better the complex physical and chemical processes. An example of such complex phenomenon is the transport of radionuclides in multiphase groundwater flow in combination with sorption, desorption and radioactive decay. This knowledge can be used to successfully deal with urgent environmental problems. Using computer simulations efficient clean-up or remediation procedures can be developed. Flow and transport in porous media are described by a non-linear system of partial differential equations of convection-diffusion-reaction type. The formulation of the differential model is usually based on the mass conservation principle enhanced with constitutive relations such as the Darcy's and Henry's laws. Analytic solutions of such differential models are not possible. Accordingly numerical techniques provide the only feasible approach to solving these difficult problems. There has been an intense effort focused on building such models for these equations during the last few decades. This work has resulted in the development of a number of simulators in the petroleum industry for efficient reservoir modeling. These techniques are also being applied to environmental problems. A typical environmental application involves a pollutant leaking from a source either in the atmosphere or underground. The accurate prediction of the dominant direction and speed of movement as well as concentration levels are among the primary tasks in such settings. The aim of this paper is to discuss one approach for building a numerical two phase fluid flow and transport model for groundwater flow simulations. The authors discuss related discretization, solution methods and computer implementation. Numerical experiments involving a model groundwater application are provided
Mechanical Clogging Processes in Unconsolidated Porous Media Near Pumping Wells
de Zwart, B.; Schotting, R.; Hassanizadeh, M.
2003-12-01
In the Netherlands water supply companies produce over more than one billion cubic meters of drinking water every year. About 2500 water wells are used to pump up the groundwater from aquifers in the Dutch subsurface. More than 50% of these wells will encounter a number of technical problems during their lifetime. The main problem is the decrease in capacity due to well clogging. Clogging shows up after a number of operation years and results in extra, expensive cleaning operations and in early replacement of the pumping wells. This problem has been acknowledged by other industries, for example the metal, petroleum, beer industry and underground storage projects. Well clogging is the result of a number of interacting mechanisms creating a complex problem in the subsurface. In most clogging cases mechanical mechanisms are involved. A large number of studies have been performed to comprehend these processes. Investigations on mechanical processes are focused on transport of small particles through pores and deposition of particles due to physical or physical-chemical processes. After a period of deposition the particles plug the pores and decrease the permeability of the medium. Particle deposition in porous media is usually modelled using filtration theory. In order to get the dynamics of clogging this theory is not sufficient. The porous media is continuously altered due to deposition and mobilization. Therefore the capture characteristics will also continuously change and deposition rates will change in time. A new formula is derived to describe (re)mobilization of particles and allow changing deposition rates. This approach incorporates detachment and reattachment of deposited particles. This work also includes derivation of the filtration theory in radial coordinates. A comparison between the radial filtration theory and the new formula will be shown.
Staggered-Grid Finite Difference Method with Variable-Order Accuracy for Porous Media
Jinghuai Gao; Yijie Zhang
2013-01-01
The numerical modeling of wave field in porous media generally requires more computation time than that of acoustic or elastic media. Usually used finite difference methods adopt finite difference operators with fixed-order accuracy to calculate space derivatives for a heterogeneous medium. A finite difference scheme with variable-order accuracy for acoustic wave equation has been proposed to reduce the computation time. In this paper, we develop this scheme for wave equations in porous media...
Unstable infiltration fronts in porous media on laboratory scale
Schuetz, Cindi; Neuweiler, Insa
2014-05-01
Water flow and transport of substances in the unsaturated zone are important processes for the quality and quantity of water in the hydrologic cycle. The water movement through preferential paths is often much faster than standard models (e. g. Richards equation in homogeneous porous media) predict. One type/phenomenon of preferential flow can occur during water infiltration into coarse and/or dry porous media: the so-called gravity-driven fingering flow. To upscale the water content and to describe the averaged water fluxes in order to couple models of different spheres it is necessary to understand and to quantify the behavior of flow instabilities. We present different experiments of unstable infiltration in homogeneous and heterogeneous structures to analyze development and morphology of gravity-driven fingering flow on the laboratory scale. Experiments were carried out in two-dimensional and three-dimensional sand tanks as well as in larger two-dimensional sand tanks with homogeneous and heterogeneous filling of sand and glass beads. In the small systems, water content in the medium was measured at different times. We compare the experiments to prediction of theoretical approaches (e.g. Saffman and Taylor, 1958; Chuoke et al., 1959; Philip 1975a; White et al., 1976; Parlange and Hill, 1976a; Glass et al., 1989a; Glass et al., 1991; Wang et al., 1998c) that quantify properties of the gravity-driven fingers. We use hydraulic parameters needed for the theoretical predictions (the water-entry value (hwe), van Genuchten parameter (Wang et al., 1997, Wang et al., 2000) and saturated conductivity (Ks), van Genuchten parameter (Guarracino, 2007) to simplify the prediction of the finger properties and if necessary to identify a constant correction factor. We find in general that the finger properties correspond well to theoretical predictions. In heterogeneous settings, where fine inclusions are embedded into a coarse material, the finger properties do not change much
Quantifying Biofilm in Porous Media Using Rock Physics Models
Alhadhrami, F. M.; Jaiswal, P.; Atekwana, E. A.
2012-12-01
Biofilm formation and growth in porous rocks can change their material properties such as porosity, permeability which in turn will impact fluid flow. Finding a non-intrusive method to quantify biofilms and their byproducts in rocks is a key to understanding and modeling bioclogging in porous media. Previous geophysical investigations have documented that seismic techniques are sensitive to biofilm growth. These studies pointed to the fact that microbial growth and biofilm formation induces heterogeneity in the seismic properties. Currently there are no rock physics models to explain these observations and to provide quantitative interpretation of the seismic data. Our objectives are to develop a new class of rock physics model that incorporate microbial processes and their effect on seismic properties. Using the assumption that biofilms can grow within pore-spaces or as a layer coating the mineral grains, P-wave velocity (Vp) and S-wave (Vs) velocity models were constructed using travel-time and waveform tomography technique. We used generic rock physics schematics to represent our rock system numerically. We simulated the arrival times as well as waveforms by treating biofilms either as fluid (filling pore spaces) or as part of matrix (coating sand grains). The preliminary results showed that there is a 1% change in Vp and 3% change in Vs when biofilms are represented discrete structures in pore spaces. On the other hand, a 30% change in Vp and 100% change in Vs was observed when biofilm was represented as part of matrix coating sand grains. Therefore, Vp and Vs changes are more rapid when biofilm grows as grain-coating phase. The significant change in Vs associated with biofilms suggests that shear velocity can be used as a diagnostic tool for imaging zones of bioclogging in the subsurface. The results obtained from this study have significant implications for the study of the rheological properties of biofilms in geological media. Other applications include
Direct, Dynamic Measurement of Interfacial Area within Porous Media
Energy Technology Data Exchange (ETDEWEB)
Crandall, Dustin; Ahmadi, Goodarz; Smith, Duane H.; Bromhal, Grant
2010-01-01
Standard models of two-phase flow in porous media have been shown to exhibit several shortcomings that might be partially overcome with a recently developed model based on thermodynamic principles (Hassanizadeh and Gray, 1990). This alternative two-phase flow model contains a set of new and non-standard parameters, including specific interfacial area. By incorporating interfacial area production, destruction, and propagation into functional relationships that describe the capillary pressure and saturation, a more physical model has been developed. Niessner and Hassanizadeh (2008) have examined this model numerically and have shown that the model captures saturation hysteresis with drainage/imbibition cycles. Several static experimental studies have been performed to examine the validity of this new thermodynamically based approach; these allow the determination of static parameters of the model. To date, no experimental studies have obtained information about the dynamic parameters required for the model. A new experimental porous flow cell has been constructed using stereolithography to study two-phase flow phenomena (Crandall et al. 2008). A novel image analysis tool was developed for an examination of the evolution of flow patterns during displacement experiments (Crandall et al. 2009). This analysis tool enables the direct quantification of interfacial area between fluids by matching known geometrical properties of the constructed flow cell with locations identified as interfaces from images of flowing fluids. Numerous images were obtained from two-phase experiments within the flow cell. The dynamic evolution of the fluid distribution and the fluid-fluid interface locations were determined by analyzing these images. In this paper, we give a brief introduction to the thermodynamically based two-phase flow model, review the properties of the stereolithography flow cell, and show how the image analysis procedure has been used to obtain dynamic parameters for the
Coupled models in porous media: reactive transport and fractures
International Nuclear Information System (INIS)
This thesis deals with numerical simulation of coupled models for flow and transport in porous media. We present a new method for coupling chemical reactions and transport by using a Newton-Krylov method, and we also present a model of flow in fractured media, based on a domain decomposition method that takes into account the case of intersecting fractures. This study is composed of three parts: the first part contains an analysis, and implementation, of various numerical methods for discretizing advection-diffusion problems, in particular by using operator splitting methods. The second part is concerned with a fully coupled method for modeling transport and chemistry problems. The coupled transport-chemistry model is described, after discretization in time, by a system of nonlinear equations. The size of the system, namely the number of grid points times the number a chemical species, precludes a direct solution of the linear system. To alleviate this difficulty, we solve the system by a Newton-Krylov method, so as to avoid forming and factoring the Jacobian matrix. In the last part, we present a model of flow in 3D for intersecting fractures, by using a domain decomposition method. The fractures are treated as interfaces between sub-domains. We show existence and uniqueness of the solution, and we validate the model by numerical tests. (author)
Experimental Study on Aero Conductivity of Porous Media
Institute of Scientific and Technical Information of China (English)
无
2006-01-01
To study the variation pattern of aero conductivity of different porous media under low pressure conditions, three kinds of media are selected.These include sandy clay loam, fine sand, and medium sand, and air as fluid to conduct soil column ventilation tests.Pressure at both ends of the columns is measured under different ventilation flow rates during testing.The test results show that the aero conductivity, solved by Darcy's law, is not a constant.It is a variable, which increases first when air flow velocity is less than 0.258 7 cm/ s for sandy clay loam, 0.637 3 cm/s for fine sand and then decreases when air flow velocity is bigger than that with the increase of the ventilation flow rate when the medium is determined.By analyzing various factors that influence the flow resistance, the reasons for variation in aero conductivity are found as follows: first, the change of pore structure results in better ventilation; second, the relationship between pressure head loss and air flow velocity is nonlinear, and it is beyond the condition of the laminar flow domain to which Darcy's law can be applied, when the air flow rate increases to a certain value and the flow velocity is in the transition range to turbulent flow.
Humic acid transport in saturated porous media:Influence of flow velocity and influent concentration
Institute of Scientific and Technical Information of China (English)
Xiaorong Wei; Mingan Shao; Lina Du; Robert Horton
2014-01-01
Understanding the transport of humic acids (HAs) in porous media can provide important and practical evidence needed for accurate prediction of organic/inorganic contaminant transport in different environmental media and interfaces.A series of column transport experiments was conducted to evaluate the transport of HA in different porous media at different flow velocities and influent HA concentrations.Low flow velocity and influent concentration were found to favor the adsorption and deposition of HA onto sand grains packed into columns and to give higher equilibrium distribution coefficients and deposition rate coefficients,which resulted in an increased fraction of HA being retained in columns.Consequently,retardation factors were increased and the transport of HA through the columns was delayed.These results suggest that the transport of HA in porous media is primarily controlled by the attachment of HA to the solid matrix.Accordingly,this attachment should be considered in studies of HA behavior in porous media.
Alaoui-Ismaili, N.; Guy, P.; Chassignole, B.
2014-02-01
The aim of this work is to measure the complex elastic tensor and Euler angles in very complex anisotropic media like austenitic steel welds, by inverse problem resolution from experimental data. The obtained experimental characteristics of the anisotropic material will be injected in a FE code developed by EDF enabling the simulation of an actual ultrasonic NDE of welds. The present work aims to provide reliable input data to the 3D future development of the code. In particular, this complex elastic tensor will allow to predict by modeling beam skewing ant attenuation in an austenitic weld. The investigation of such anisotropic media is very complex because of the directional dependency of the elastic stiffness tensor. Then we will discuss the use of a hybrid genetic algorithm to overcome this difficulty. The identification method is based on waveforms spectra reconstruction associated to a physical model describing wave propagation in plates, during underwater measurements. The entire procedure is qualified and validated using simulated data. Moreover, a comparison of the estimated elastic coefficients with literature values and ultrasonic measurements obtained in transmission is also given, at the end of the paper.
Energy Technology Data Exchange (ETDEWEB)
Alaoui-Ismaili, N. [INSA-Lyon, MATEIS, UMR5510 Villeurbanne, F-69621 (France); Guy, P. [INSA-Lyon, LVA, EA677 Villeurbanne, F-69621 (France); Chassignole, B. [EDF R and D, Moret sur Loing, F77818 (France)
2014-02-18
The aim of this work is to measure the complex elastic tensor and Euler angles in very complex anisotropic media like austenitic steel welds, by inverse problem resolution from experimental data. The obtained experimental characteristics of the anisotropic material will be injected in a FE code developed by EDF enabling the simulation of an actual ultrasonic NDE of welds. The present work aims to provide reliable input data to the 3D future development of the code. In particular, this complex elastic tensor will allow to predict by modeling beam skewing ant attenuation in an austenitic weld. The investigation of such anisotropic media is very complex because of the directional dependency of the elastic stiffness tensor. Then we will discuss the use of a hybrid genetic algorithm to overcome this difficulty. The identification method is based on waveforms spectra reconstruction associated to a physical model describing wave propagation in plates, during underwater measurements. The entire procedure is qualified and validated using simulated data. Moreover, a comparison of the estimated elastic coefficients with literature values and ultrasonic measurements obtained in transmission is also given, at the end of the paper.
Sanchez-Valencia, Juan Ramon; Longtin, Remi; Rossell, Marta D; Gröning, Pierangelo
2016-04-01
We report a new methodology based on glancing angle deposition (GLAD) of an organic molecule in combination with perpendicular growth of a second inorganic material. The resulting thin films retain a very well-defined tilted columnar microstructure characteristic of GLAD with the inorganic material embedded inside the columns. We refer to this new methodology as growth assisted by glancing angle deposition or GAGLAD, since the material of interest (here, the inorganic) grows in the form of tilted columns, though it is deposited under a nonglancing configuration. As a "proof of concept", we have used silver and zinc oxide as the perpendicularly deposited material since they usually form ill-defined columnar microstructures at room temperature by GLAD. By means of our GAGLAD methodology, the typical tilted columnar microstructure can be developed for materials that otherwise do not form ordered structures under conventional GLAD. This simple methodology broadens significantly the range of materials where control of the microstructure can be achieved by tuning the geometrical deposition parameters. The two examples presented here, Ag/Alq3 and ZnO/Alq3, have been deposited by physical vapor deposition (PVD) and plasma enhanced chemical vapor deposition (PECVD), respectively: two different vacuum techniques that illustrate the generality of the proposed technique. The two type of hybrid samples present very interesting properties that demonstrate the potentiality of GAGLAD. On one hand, the Ag/Alq3 samples present highly optical anisotropic properties when they are analyzed with linearly polarized light. To our knowledge, these Ag/Alq3 samples present the highest angular selectivity reported in the visible range. On the other hand, ZnO/Alq3 samples are used to develop highly porous ZnO thin films by using Alq3 as sacrificial material. In this way, antireflective ZnO samples with very low refractive index and extinction coefficient have been obtained. PMID:26954074
Seepage Characteristics Study on Power-Law Fluid in Fractal Porous Media
Directory of Open Access Journals (Sweden)
Meijuan Yun
2014-01-01
Full Text Available We present fractal models for the flow rate, velocity, effective viscosity, apparent viscosity, and effective permeability for power-law fluid based on the fractal properties of porous media. The proposed expressions realize the quantitative description to the relation between the properties of the power-law fluid and the parameters of the microstructure of the porous media. The model predictions are compared with related data and good agreement between them is found. The analytical expressions will contribute to the revealing of physical principles for the power-law fluid flow in porous media.
Estimation of Porous Media Approach for Thermal Hydraulics of Nuclear Fuel Assembly
International Nuclear Information System (INIS)
In many CFD studies, porous media assumption has been often used for thermal hydraulics of nuclear fuel assembly, e.g., reactor core, storage cask, spent fuel pool and etc. and it could be applied extensively as shown in Fig. 1. However, the assumption could not predict the local phenomena in a subchannel or the mixing effect between subchannels and did not consider distribution of variables. This work validates the porous media approach in nuclear fuel assembly from two aspects, friction factor and averaged temperature and discusses about appropriate use of the porous media approach at the various fluid conditions. Commercial CFD code CFX 12.0 was used
Energy Technology Data Exchange (ETDEWEB)
Colwell, Frederick [Oregon State Univ., Corvallis, OR (United States); Wildenschild, Dorthe [Oregon State Univ., Corvallis, OR (United States); Wood, Brian [Oregon State Univ., Corvallis, OR (United States); Gerlach, Robin [Montana State Univ., Bozeman, MT (United States); Mitchell, Andrew [Montana State Univ., Bozeman, MT (United States); Redden, George [Idaho National Lab. (INL), Idaho Falls, ID (United States)
2014-08-29
The goal for this research was to understand how best to add compounds to receptive microbial communities in porous media in order to achieve optimal calcite precipitation in a volumetrically significant space and to understand the physiological health of the cells that are responsible for the calcite precipitation. The specific objectives were to: (1) develop better tools for visually examining biofilms in porous media and calcium carbonate precipitation being mediated by microbes in porous media, and (2) demonstrate the effectiveness of using that tool within a flow cell model system.
Energy Technology Data Exchange (ETDEWEB)
Berryman, J.G.
2010-06-01
The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated
Optical analogue of the Aharonov-Bohm effect using anisotropic media
International Nuclear Information System (INIS)
We show that in the context of paraxial optics, which can be analyzed through a wave equation similar to the non-relativistic Schroedinger equation of quantum mechanics but replacing time t by spatial coordinate z, the existence of a vector potential A-perpendicular mimicking the magnetic vector potential in quantum mechanics is allowed by specific gauge symmetries of the optical field in a medium with anisotropic refractive index. In this way, we use Feynman's path integral to demonstrate an optical analogue of the quantum-mechanical Aharonov-Bohm effect, encouraging the search for another optical systems with analogies with more complex quantum field theories. -- Highlights: → The optical analogue of the Aharonov-Bohm effect is demonstrated using anisotropic media. → It follows from the gauge principle applied to the optical field in the paraxial regime. → Feynman's path integral formalism is used to obtain the main result, leading directly from geometric to physical optics.
An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media
Al-Jabr, A. A.
2014-05-02
Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.
Theory and simulation of time-fractional fluid diffusion in porous media
International Nuclear Information System (INIS)
We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald–Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’. (paper)
Pepona, Marianna; Favier, Julien
2016-09-01
In this work, we propose a numerical framework to simulate fluid flows in interaction with moving porous media of complex geometry. It is based on the Lattice Boltzmann method including porous effects via a Brinkman-Forchheimer-Darcy force model coupled to the Immersed Boundary method to handle complex geometries and moving structures. The coupling algorithm is described in detail and it is validated on well-established literature test cases for both stationary and moving porous configurations. The proposed method is easy to implement and efficient in terms of CPU cost and memory management compared to alternative methods which can be used to deal with moving immersed porous media, e.g. re-meshing at each time step or use of a moving/chimera mesh. An overall good agreement was obtained with reference results, opening the way to the numerical simulation of moving porous media for flow control applications.
A New Appraoch to Modeling Immiscible Two-phase Flow in Porous Media
DEFF Research Database (Denmark)
Yuan, Hao; Shapiro, Alexander; Stenby, Erling Halfdan
based on Rapoport-Leas Equation and Film Model, a systematic literature review of the LBM CFD methods including the particle-based LBM and porous-medium-based LBM for multiphase flow, and the sample calculation of particle-based LBM in a random porous medium. Finally we come to present a new approach to......In this work we present a systematic literature review regarding the macroscopic approaches to modeling immiscible two-phase flow in porous media, the formulation process of the incorporate PDE based on Film Model(viscous coupling), the calculation of saturation profile around the transition zone...... modeling immiscible two-phase flow in porous media. The suggested approach to immiscible two-phase flow in porous media describes the dispersed mesoscopic fluids’ interfaces which are highly influenced by the injected interfacial energy and the local interfacial energy capacity. It reveals a new...
Institute of Scientific and Technical Information of China (English)
无
2000-01-01
When there exists anisotropy in underground media, elastic parameters of the observed coordinate possibly do not coincide with that of the natural coordinate. According to the theory that the density of potential energy, dissipating energy is independent of the coordinate, the relationship of elastic parameters between two coordinates is derived for two-phase anisotropic media. Then, pseudospectral method to solve wave equations of two-phase anisotropic media is derived. At last, we use this method to simulate wave propagation in two-phase anisotropic media, four types of waves are observed in the snapshots, i.e., fast P wave and slow P wave, fast S wave and slow S wave. Shear wave splitting, SV wave cusps and elastic wave reflection and transmission are also observed.
Acoustic streaming in pulsating flows through porous media
International Nuclear Information System (INIS)
When a body immersed in a viscous fluid is subjected to a sound wave (or, equivalently, the body oscillates in the fluid otherwise at rest) a rotational fluid stream develops across a boundary layer nearby the fluid-body interphase. This so-called acoustic streaming phenomenon is responsible for a notable enhancement of heat, mass and momentum transfer and takes place in any process involving two phases subjected to relative oscillations. Understanding the fundamental mechanisms governing acoustic streaming in two-phase flows is of great interest for a wide range of applications such as sonoprocessed fluidized bed reactors, thermoacoustic refrigerators/engines, pulsatile flows through veins/arteries, hemodialysis devices, pipes in off-shore platforms, offshore piers, vibrating structures in the power-generating industry, lab-on-a-chip microfluidics and microgravity acoustic levitation, and solar thermal collectors to name a few. The aim of engineering studies on this vast diversity of systems is oriented towards maximizing the efficiency of each particular process. Even though practical problems are usually approached from disparate disciplines without any apparent linkage, the behavior of these systems is influenced by the same underlying physics. In general, acoustic streaming occurs within the interstices of porous media and usually in the presence of externally imposed steady fluid flows, which gives rise to important effects arising from the interference between viscous boundary layers developed around nearby solid surfaces and the nonlinear coupling between the oscillating and steady flows. This paper is mainly devoted to highlighting the fundamental physics behind acoustic streaming in porous media in order to provide a simple instrument to assess the relevance of this phenomenon in each particular application. The exact microscopic Navier-Stokes equations will be numerically solved for a simplified 2D system consisting of a regular array of oscillating
Study of energy recovery by means of porous media considering gas radiation effect
Energy Technology Data Exchange (ETDEWEB)
Nassab, G.; Fallah, M. [Shahid Bahonar University, Kerman (Iran). Department of Mechanical Engineering
2006-07-01
The work is an extension of the theoretical findings on the relatively new concept for radiative energy recovery system using porous media. The basic high-temperature flow system is considered, in which the hot radiating gas flows through a homogeneous porous layer. The porous layer as a grey body, in addition to convective heat exchange with the gas, can absorb, emit, and scatter thermal radiation. It is desired to have a large amount of energy changes from gas enthalpy to thermal radiation by porous medium. The two-flux radiation model is used to obtain the distribution of radiative heat flux in the porous media. The numerical solution of the coupled energy equations for the gas and porous layer in steady condition is obtained using the Runge-Kutta method. The crucial influence of gas radiation effect on the system's performance is thoroughly explored. (author)
Waheed, Umair bin
2013-09-01
On several simple models of isotropic and anisotropic media, we have studied the accuracy of the two-point paraxial traveltime formula designed for the approximate calculation of the traveltime between points S\\' and R\\' located in the vicinity of points S and R on a reference ray. The reference ray may be situated in a 3D inhomogeneous isotropic or anisotropic medium with or without smooth curved interfaces. The twopoint paraxial traveltime formula has the form of the Taylor expansion of the two-point traveltime with respect to spatial Cartesian coordinates up to quadratic terms at points S and R on the reference ray. The constant term and the coefficients of the linear and quadratic terms are determined from quantities obtained from ray tracing and linear dynamic ray tracing along the reference ray. The use of linear dynamic ray tracing allows the evaluation of the quadratic terms in arbitrarily inhomogeneous media and, as shown by examples, it extends the region of accurate results around the reference ray between S and R (and even outside this interval) obtained with the linear terms only. Although the formula may be used for very general 3D models, we concentrated on simple 2D models of smoothly inhomogeneous isotropic and anisotropic (~8% and ~20% anisotropy) media only. On tests, in which we estimated twopoint traveltimes between a shifted source and a system of shifted receivers, we found that the formula may yield more accurate results than the numerical solution of an eikonal-based differential equation. The tests also indicated that the accuracy of the formula depends primarily on the length and the curvature of the reference ray and only weakly depends on anisotropy. The greater is the curvature of the reference ray, the narrower its vicinity, in which the formula yields accurate results.
Modeling the Flow of Yield-Stress Fluids in Porous Media
Sochi, Taha
2009-01-01
Yield-stress is a problematic and controversial non-Newtonian flow phenomenon. In this article, we investigate the flow of yield-stress substances through porous media within the framework of pore-scale network modeling. We also investigate the validity of the Minimum Threshold Path (MTP) algorithms to predict the pressure yield point of a network depicting random or regular porous media. Percolation theory as a basis for predicting the yield point of a network is briefly presented and assessed. In the course of this study, a yield-stress flow simulation model alongside several numerical algorithms related to yield-stress in porous media were developed, implemented and assessed. The general conclusion is that modeling the flow of yield-stress fluids in porous media is too difficult and problematic. More fundamental modeling strategies are required to tackle this problem in the future.
2014-01-01
We investigate the local fractional linear transport equations arising in fractal porous media by using the local fractional variational iteration method. Their approximate solutions within the nondifferentiable functions are obtained and their graphs are also shown.
Study of the mechanisms of the flame propagation and stabilization in porous media
Institute of Scientific and Technical Information of China (English)
2008-01-01
The CH4/air premixed gas combustion processes in porous media were numerically studied using the two-temperature reacting fluid model with dispersions and detailed chemical reaction mechanism GRI 3.0. The mechanisms of the propagation and stabilization of submerge flames and surface flames in porous media were illuminated distinctly by considering the magnitude of the terms in the two energy equations, analyzing the sensibility of flame propagation speed to flame location, heat exchange coefficient between gas and solid, thermal conductivity and radiative extinction coefficient of porous media. It was concluded that the propagation mechanism of a submerged flame is similar to that of a free flame with an additional preheat zone and that the surface-flame propagation mechanism in porous media is similar to that of a free flame with heat loss in reaction zone.
Mathematical and numerical modeling considerations for radionuclide ion migration in porous media
International Nuclear Information System (INIS)
The equations governing radionuclide transport in sorbing, porous media are presented using phenomenological coefficients. Both equilibrium controlled and simple rate controlled chemistry are summarized. Several simplified models are discussed. Finally, various numerical problems are considered. 25 references
International Nuclear Information System (INIS)
THETA is a computer simulation model for 3-dimensional coupled fluid, heat, and solute transport in porous media. The numerical solution used in the model is based on a finite difference approximation (FDM). For convective heat transport, an upwind scheme is used. THETA version 5.1 is a microcomputer version of the earlier main frame computer version of the model, developed also at the Helsinki University of Technology. Although some simplifications have been made, the essential features of the main frame version of THETA (e.g., fully homogeneous and anisotropic permeability) have been retained in the new version. THETA is intended for use in numerous applications of flow in porous media, such as aquifers (thermal energy storage, water supply, environmental issues) or fissured rock (nuclear waste disposal, gas storage) (15 refs., 13 figs.)
One-way acoustic mirror based on anisotropic zero-index media
Energy Technology Data Exchange (ETDEWEB)
Gu, Zhong-ming; Liang, Bin, E-mail: liangbin@nju.edu.cn, E-mail: jccheng@nju.edu.cn; Yang, Jing; Cheng, Jian-chun, E-mail: liangbin@nju.edu.cn, E-mail: jccheng@nju.edu.cn [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); Zou, Xin-ye [Key Laboratory of Modern Acoustics, MOE, Institute of Acoustics, Department of Physics, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093 (China); State Key Laboratory of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China); Li, Yong [CNRS, Institut Jean Lamour, Vandoeuvre-lès-Nancy F-54506, France and Institut Jean Lamour, Université de Lorraine, Boulevard des Aiguillettes, BP: 70239, 54506 Vandoeuvre-lès-Nancy (France); Yang, Jun [Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190 (China)
2015-11-23
We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control.
Strongly Resonant Transmission of Electromagnetic Radiation in Periodic Anisotropic Layered Media
Chabanov, A A
2007-01-01
The electromagnetic dispersion in periodic layered media can be tailored and their resonant properties can be considerably improved by utilizing anisotropic materials. Periodic structures with a photonic band edge split into two parts, or so-called split band edge, exhibit superior resonant properties including exceptionally high values of Q of their transmission resonances and nearly perfect impedance matching at the boundaries, even when the number of unit cells N is not large. A microwave transmission resonance of Q~1600 is demonstrated in a periodic stack of form-birefringent layers of N=12 realized in waveguide geometry.
One-way acoustic mirror based on anisotropic zero-index media
International Nuclear Information System (INIS)
We have designed a one-way acoustic mirror comprising anisotropic zero-index media. For acoustic beam incident at a particular angle, the designed structure behaves like a high-efficient mirror that redirects almost all the incident energy into another direction predicted by the Snell's law, while becoming virtually transparent to beams propagating reversely along this output path. Furthermore, the mirror can be tailored to work at arbitrary incident angle by simply adjusting its geometry. Our design, with undirectional reflection functionality and flexible working angle, may offer possibilities in space isolations and have deep implication in various scenarios like ultrasound imaging or noise control
Pore-network modeling of solute transport and biofilm growth in porous media
Qin, Chao Zhong; Hassanizadeh, S. Majid
2015-01-01
In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a con
International Nuclear Information System (INIS)
We present a three-dimensional geometry model for tortuosity of streamlines in porous media with randomly placed cylindrical particles. The proposed model is expressed as functions of porosity and geometrical parameters with no empirical constant. This might be helpful for understanding the physical mechanism for tortuosity of streamlines in three-dimensional porous media. The model predictions are found to be in good agreement with the experimental data available
Exact Solution for Long-Term Size Exclusion Suspension-Colloidal Transport in Porous Media
You, Z.; Bedrikovetsky, P.; L. Kuzmina
2013-01-01
Long-term deep bed filtration in porous media with size exclusion particle capture mechanism is studied. For monodispersed suspension and transport in porous media with distributed pore sizes, the microstochastic model allows for upscaling and the exact solution is derived for the obtained macroscale equation system. Results show that transient pore size distribution and nonlinear relation between the filtration coefficient and captured particle concentration during suspension filtration and ...
Numerical Simulation of Reactive Transport Problems in Porous Media Using Global Implicit Approach
Zolfaghari, Reza
2016-01-01
This thesis focuses on solutions of reactive transport problems in porous media. The principle mechanisms of flow and reactive mass transport in porous media are investigated. Global implicit approach (GIA), where transport and reaction are fully coupled, and sequential noniterative approach (SNIA) are implemented into the software OpenGeoSys (OGS6) to couple chemical reaction and mass transport. The reduction scheme proposed by Kräutle is used in GIA to reduce the number of coupled nonlinear...
Study of Displacement Efficiency and Flow Behavior of Foamed Gel in Non-Homogeneous Porous Media
Wang, Yanling; Jin, Jiafeng; Bai, Baojun; Wei, Mingzhen
2015-01-01
Field trials have demonstrated that foamed gel is a very cost-effective technology for profile modification and water shut-off. However, the mechanisms of profile modification and flow behavior of foamed gel in non-homogeneous porous media are not yet well understood. In order to investigate these mechanisms and the interactions between foamed gel and oil in porous media, coreflooding and pore-scale visualization waterflooding experiments were performed in the laboratory. The results of the c...
An open-source toolbox for multiphase flow in porous media
Horgue, Pierre; Soulaine, Cyprien; Franc, Jacques; Guibert, Romain; Debenest, Gérald
2014-01-01
International audience Multiphase flow in porous media provides a wide range of applications: from the environmental understanding (aquifer, site-pollution) to industrial process improvements (oil production, waste management). Modeling of such flows involve specific volume-averaged equations and therefore specific computational fluid dynamics (CFD) tools. In this work, we develop a toolbox for modeling multiphase flow in porous media with OpenFOAM®, an open-source platform for CFD. The un...
FITTING OF THE DATA FOR DIFFUSION COEFFICIENTS IN UNSATURATED POROUS MEDIA
Energy Technology Data Exchange (ETDEWEB)
B. Bullard
1999-05-01
The purpose of this calculation is to evaluate diffusion coefficients in unsaturated porous media for use in the TSPA-VA analyses. Using experimental data, regression techniques were used to curve fit the diffusion coefficient in unsaturated porous media as a function of volumetric water content. This calculation substantiates the model fit used in Total System Performance Assessment-1995 An Evaluation of the Potential Yucca Mountain Repository (TSPA-1995), Section 6.5.4.
Measurements of Water Permeability in Unconsolidated Porous Media with Methane Hydrate Formation
Xiao-Sen Li; Gang Li; Jia-Lin Jia; Jing-Chun Feng; Bo Li
2013-01-01
Permeability is one of the key factors that determine the fluids flow capacity and production potential of hydrate deposits. In this study, an experimental setup is developed to investigate the flow properties of the porous media, and the permeabilities to water are measured in the unconsolidated porous media with or without hydrate deposition in the pores. A specialized method of precisely controlling the amount of injected methane gas is employed to form methane hydrate in the core sample, ...
NEW STUDYING OF LATTICE BOLTZMANN METHOD FOR TWO-PHASE DRIVEN IN POROUS MEDIA
Institute of Scientific and Technical Information of China (English)
许友生; 刘慈群; 俞慧丹
2002-01-01
By using the interaction of particles, such as the physical principle of the same attract each other and the different repulse each other, a new model of Lattice Boltzmann to simulate the two-phase driven in porous media was discussed. The result shows effectively for the problem of two-phase driven in porous media. Furthermore, the method economizes on computer time, has less fiuctuation on boundary surface and takes no average measure.
Determination of Effective Thermal Conductivity For Real Porous Media Using Fractal Theory
Institute of Scientific and Technical Information of China (English)
ChenYongping; ShiMingheng
1999-01-01
In this paper,using fractal theory,the geometric structure of real soil was described with ist section view and section particle area fractal dimension d of porous media was counted.The volumetric solid content and the relation between volumetric solid content and porous media particle arrangements as well as measure scale were obtainted.A heat conduction model was established and the effective thermal conductivity of real soil based on the volumetric solid content was calculated.
Quantitative evaluation of porous media wettability using NMR relaxometry.
Fleury, M; Deflandre, F
2003-01-01
We propose a new method to determine wettability indices from NMR relaxometry. The new method uses the sensitivity of low field NMR relaxometry to the fluid distribution in oil-water saturated porous media. The model is based on the existence of a surface relaxivity for both oil and water, allowing the determination of the amount of surface wetted either by oil or by water. The proposed NMR wettability index requires the measurement of relaxation time distribution at four different saturation states. At the irreducible water saturation, we determine the dominant relaxation time of oil in the presence of a small amount of water, and at the oil residual saturation, we determine the dominant relaxation time of water in the presence of a small amount of oil. At 100% water and 100% oil saturation, we determine the surface relaxivity ratio. The interaction of oil with the surface is also evidenced by the comparison of the spin-lattice (T1) and spin-locking (T1rho) relaxation times. The new NMR index agrees with standard wettability measurements based on drainage-imbibition capillary pressure curves (USBM test) in the range [-0.3-1]. PMID:12850740
Complexity Reduction of Multiphase Flows in Heterogeneous Porous Media
Ghommem, Mehdi
2015-04-22
In this paper, we apply mode decomposition and interpolatory projection methods to speed up simulations of two-phase flows in heterogeneous porous media. We propose intrusive and nonintrusive model-reduction approaches that enable a significant reduction in the size of the subsurface flow problem while capturing the behavior of the fully resolved solutions. In one approach, we use the dynamic mode decomposition. This approach does not require any modification of the reservoir simulation code but rather post-processes a set of global snapshots to identify the dynamically relevant structures associated with the flow behavior. In the second approach, we project the governing equations of the velocity and the pressure fields on the subspace spanned by their proper-orthogonal-decomposition modes. Furthermore, we use the discrete empirical interpolation method to approximate the mobility-related term in the global-system assembly and then reduce the online computational cost and make it independent of the fine grid. To show the effectiveness and usefulness of the aforementioned approaches, we consider the SPE-10 benchmark permeability field, and present a numerical example in two-phase flow. One can efficiently use the proposed model-reduction methods in the context of uncertainty quantification and production optimization.
Mechanisms for two phase flow in porous media
International Nuclear Information System (INIS)
For a better understanding of transport mechanisms in soil for a system with two phases of immiscible liquids the physics of porous media gives again important contributions. In this report, the considerations mainly concentrate on horizontal transport. Our approach is based on the similarity solution of the transport equation which reduces a given nonlinear partial differential equation (PDE) to an ordinary differential equation (ODE). It can be seen, how dimensionless similarity solutions of the ODE depend, in addition to the similarity variable, on two parameters: - the capillary number Nc, giving the ratio of capillary forces and viscous forces, and - the ratio of the viscosities of the two liquid phases. It is shown, under which conditions different mechanisms of transport are to be expected, such as - a completely stable displacement or - an unstable displacement, related to viscous fingering (DLA, Diffusion Limited Aggregation) or to capillary fingering (IP, Invasion Percolation). These mechanisms are also strongly dependent on certain critical exponents (characteristic for DLA or IP). These relations are discussed in our report. Again, for some regions of saturation, mechanisms of displacement are either clearly dominated - by imbibition (e.g. water pushing oil) or - by drain (e.g. oil pushing water). Some of the results are also transformed again from the similarity solution of the ODE to a solution of the PDE (with space- and time coordinates). It is seen, that even with this somewhat simplified approach, we obtain a considerable spectrum of mechanisms. (orig.)
Temporal stability of superposed magnetic fluids in porous media
Energy Technology Data Exchange (ETDEWEB)
Zakaria, Kadry; Sirwah, Magdy A; Alkharashi, Sameh [Mathematics Department, Faculty of Science, Tanta University, Tanta (Egypt)
2008-02-15
The present work deals with the stability properties of time periodically streaming superposed magnetic fluids through porous media under the influence of an oblique alternating magnetic field. The system is composed of a middle fluid sheet of finite thickness embedded between two other bounded layers. The fluids are assumed to be incompressible and there are no volume charges in the layers of the fluids. Such configurations are of relevance in a variety of astrophysical and space configurations. The solutions of the linearized equations of motion and boundary conditions lead to deriving two more general simultaneous Mathieu equations of damping terms with complex coefficients. The method of multiple time scales is used to obtain approximate solutions and analyze the stability criteria for both the non-resonant and resonant cases and hence transition curves are obtained for such cases. The stability criteria are examined theoretically and numerically from which stability diagrams are obtained. It is found that the fluid sheet thickness plays a destabilizing role in the presence of a constant field and velocity, while the damping role is observed for the resonant cases. Dual roles are observed for the fluid velocity and the porosity in the stability criteria.
New hydrologic model of fluid migration in deep porous media
Dmitrievsky, A.; Balanyuk, I.
2009-04-01
The authors present a new hydrological model of mantle processes that effect on formation of oil-and-gas bearing basins, fault tectonics and thermal convection. Any fluid migration is initially induced by lateral stresses in the crust and lithosphere which result from global geodynamic processes related to the mantle convection. The global processes are further transformed into regional movements in weakness zones. Model of porous media in deep fractured zones and idea of self-oscillation processes in mantle layers and fractured zones of the crust at different depths was used as the basis for developed concept. The content of these notions resides in the fact that there are conditions of dynamic balance in mantle layers originating as a result of combination and alternate actions of compaction and dilatance mechanisms. These mechanisms can be manifested in different combinations and under different conditions as well as can be complemented by other processes influencing on regime of fluid migration. They can act under condition of passive margin, ocean rift and ocean subduction zones as well as in consolidated platform and sheet. Self-oscillation regime, sub vertical direction of fluid flows, anomalously high layer pressure, and high level of anomalies of various geophysical fields are common for them. A certain class of fluid dynamic models describing consolidation of sedimentary basins, free oscillation processes slow and quick (at the final stage) fluid dynamic processes of the evolution of a sedimentary basin in subduction zones is considered for the first time. The last model of quick fluid dynamic processes reflects the process of formation of hydrocarbon deposits in the zones of collision of lithosphere plates. The results of numerical simulation and diagrams reflecting consecutive stages of the gas-fluid dynamic front propagation are assessed of the Pri-Caspian depression as the example. Calculations with this model will simultaneously be carried out for
Colloid suspension stability and transport through unsaturated porous media
Energy Technology Data Exchange (ETDEWEB)
McGraw, M.A.; Kaplan, D.I.
1997-04-01
Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media.
Nonlinear interfacial stability for magnetic fluids in porous media
International Nuclear Information System (INIS)
The weakly nonlinear stability is employed to analyze the interfacial phenomenon of two magnetic fluids in porous media. The effect of an oblique magnetic field to the separation face of two fluids is taken into account. The solutions of equations of motion under nonlinear boundary conditions lead to deriving a nonlinear equation in terms of the interfacial displacement. This equation is accomplished by utilizing the cubic nonlinearity. The method of multiple scale expansion is employed in order to obtain a dispersion relation for the first-order problem and nonlinear Ginzburg-Landau equation, for the higher-order problem, describing the behaviour of the system in a nonlinear approach. Regions of stability and instability are identified for the magnetic field intensity versus the wave number. It is found that the oblique magnetic filed has a stabilizing influence under some certain conditions for the directions of the magnetic fields. The resistance coefficient has a destabilizing influence in the linear description. Further, in the nonlinear scope, the increase of the resistance parameters plays both stabilizing and destabilizing role in the stability criteria
Microfluidic investigation of the deposition of asphaltenes in porous media.
Hu, Chuntian; Morris, James E; Hartman, Ryan L
2014-06-21
The deposition of asphaltenes in porous media, an important problem in science and macromolecular engineering, was for the first time investigated in a transparent packed-bed microreactor (μPBR) with online analytics to generate high-throughput information. Residence time distributions of the μPBR before and after loading with ~29 μm quartz particles were measured using inline UV-Vis spectroscopy. Stable packings of quartz particles with porosity of ~40% and permeability of ~500 mD were obtained. The presence of the packing materials reduced dispersion under the same velocity via estimation of dispersion coefficients and the Bodenstein number. Reynolds number was observed to influence the asphaltene deposition mechanism. For larger Reynolds numbers, mechanical entrapment likely resulted in significant pressure drops for less pore volumes injected and less mass of asphaltenes being retained under the same maximum dimensionless pressure drop. The innovation of packed-bed microfluidics for investigations on asphaltene deposition mechanisms could contribute to society by bridging macromolecular science with microsystems. PMID:24777527
Colloid suspension stability and transport through unsaturated porous media
International Nuclear Information System (INIS)
Contaminant transport is traditionally modeled in a two-phase system: a mobile aqueous phase and an immobile solid phase. Over the last 15 years, there has been an increasing awareness of a third, mobile solid phase. This mobile solid phase, or mobile colloids, are organic or inorganic submicron-sized particles that move with groundwater flow. When colloids are present, the net effect on radionuclide transport is that radionuclides can move faster through the system. It is not known whether mobile colloids exist in the subsurface environment of the Hanford Site. Furthermore, it is not known if mobile colloids would likely exist in a plume emanating from a Low Level Waste (LLW) disposal site. No attempt was made in this study to ascertain whether colloids would form. Instead, experiments and calculations were conducted to evaluate the likelihood that colloids, if formed, would remain in suspension and move through saturated and unsaturated sediments. The objectives of this study were to evaluate three aspects of colloid-facilitated transport of radionuclides as they specifically relate to the LLW Performance Assessment. These objectives were: (1) determine if the chemical conditions likely to exist in the near and far field of the proposed disposal site are prone to induce flocculation (settling of colloids from suspension) or dispersion of naturally occurring Hanford colloids, (2) identify the important mechanisms likely involved in the removal of colloids from a Hanford sediment, and (3) determine if colloids can move through unsaturated porous media
Influence of Dispersion on Transport of Tracer through Unsaturated Porous Media
Directory of Open Access Journals (Sweden)
T Bunsri
2008-01-01
Full Text Available The dispersion phenomenon has resulted from the various water flow magnitude and direction in porous media. The dissolved tracer tends to spread due to dispersion and then travel time of tracer through the porous media increases. In unsaturated porous media, dispersion coefficient varies with non-linear Darcy’s velocity and the water content. These effects observed in both of the laboratory scale sand and soil columns (20 cm. The unsaturated infiltration column and tracer tests have been used to interpret the relationships between Darcy’s velocity and the water content together with the dispersion coefficient. However, the dispersivity coefficient cannot be measured directly, it has to determine from advection-dispersion equation (ADE, which can be used to model the tracer transport in unsaturated porous media. The model was used to describe the non-linear functions of water contents and dispersivities for both porous media. The simulations have been verified that the dispersion of tracer through soil is higher than sand column and also travel time of tracer through soil is longer than sand column. Even though, soil has very low degree of pore velocity, the high dispersivity is observed in the simulations. The water content and tracer concentration profiles reveal that the increase of dispersivity induces the increase of flow path distance and the decrease of pore velocity. The maximum dispersivity was observed when the water content of porous media is relatively low; this leads the maximum of spreading of tracer.
Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media
International Nuclear Information System (INIS)
Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately
Study of the effects of stress sensitivity on the permeability and porosity of fractal porous media
Energy Technology Data Exchange (ETDEWEB)
Tan, Xiao-Hua, E-mail: xiaohua-tan@163.com; Li, Xiao-Ping; Liu, Jian-Yi; Zhang, Lie-Hui; Fan, Zhou
2015-10-16
Flow in porous media under stress is very important in various scientific and engineering fields. It has been shown that stress plays an important role in effect of permeability and porosity of porous media. In this work, novel predictive models for permeability and porosity of porous media considering stress sensitivity are developed based on the fractal theory and mechanics of materials. Every parameter in the proposed models has clear physical meaning. The proposed models are evaluated using previously published data for permeability and porosity measured in various natural materials. The predictions of permeability and porosity show good agreement with those obtained by the available experimental data and illustrate that the proposed models can be used to characterize the flow in porous media under stress accurately. - Highlights: • Predictive models for permeability and porosity of porous media considering stress sensitivity are developed. • The fractal theory and mechanics of materials are used in these models. • The predictions of permeability and porosity show good agreement with those obtained by the available experimental data. • The proposed models can be used to characterize the flow in porous media under stress accurately.
Effect of sequential release of NAPLs on NAPL migration in porous media
Bang, Woohui; Yeo, In Wook
2016-04-01
NAPLs (Non-aqueous phase liquids) are common groundwater contaminants and are classified as LNAPLs (Light non-aqueous phase liquids) and DNAPLs (Dense non-aqueous phase liquids) according to relative density for water. Due to their low solubility in water, NAPLs remain for a long time in groundwater, and they pose a serious environmental problem. Therefore, understanding NAPLs migration in porous media is essential for effective NAPLs remediation. DNAPLs tend to move downward through the water table by gravity force because its density is higher than water. However, if DNAPLs do not have sufficient energy which breaks capillary force of porous media, they will just accumulate above capillary zone or water table. Mobile phase of LNAPLs rises and falls depending on fluctuation of water table, and it could change the wettability of porous media from hydrophilic to hydrophobic. This could impacts on the migration characteristics of subsequently-released DNAPLs. LNAPLs and DNAPLs are sometime disposed at the same place (for example, the Hill air force base, USA). Therefore, this study focuses on the effect of sequential release of NAPLs on NAPLs (in particular, DNAPL) migration in porous media. We have conducted laboratory experiments. Gasoline, which is known to change wettability of porous media from hydrophilic to intermediate, and TCE (Trichloroethylene) were used as LNAPL and DNAPL, respectively. Glass beads with the grain size of 1 mm and 2 mm were prepared for two sets of porous media. Gasoline and TCE was dyed for visualization. First, respective LNAPL and DNAPL of 10 ml were separately released into prepared porous media. For the grain size of 2 mm glass beads, LNAPL became buoyant above the water table, and DNAPL just moved downward through porous media. However, for the experiment with the grain size of 1 mm glass beads, NAPLs behaved very differently. DNAPL did not migrate downward below and just remained above the water table due to capillary pressure of
Polarization ray tracing in anisotropic optically active media. II. Theory and physics
International Nuclear Information System (INIS)
Refraction, reflection, and amplitude relations are derived that apply to polarization ray tracing in anisotropic, optically active media such as quartz. The constitutive relations for quartz are discussed. The refractive indices and polarization states associated with the two modes of propagation are derived as a function of wave direction. A procedure for refracting at any uniaxial or optically active interface is derived that computes both the ray direction and the wave direction. A method for computing the optical path length is given, and Fresnel transmission and ref lection equations are derived from boundary conditions on the electromagnetic fields. These ray-tracing formulas apply to uniaxial, optically active media and therefore encompass uniaxial, non-optically active materials and isotropic, optically active materials
Energy Technology Data Exchange (ETDEWEB)
Mensch, Th.
2000-01-12
The seismic anisotropy causes in the Earth are known. The anisotropy characterization can provide valuable informations on the structure, lithology or eventual deformation processes in geological media. The orthorhombic symmetry allows a more complete description and representation of the anisotropy than the transversely isotropy symmetry usually assumed. Moreover this symmetry is potentially common in sedimentary basins, and particularly in fractured reservoir. In anisotropic media of arbitrary symmetry (triclinic), there is no simple analytic expressions on the phase slowness surface. The weak anisotropy assumption, often reasonable in geological media, makes perturbation techniques relevant. An approximate first order analytical expression of the qP-wave slowness surface is obtained. Using an adequate parameterization, the forward problem is solved by the ray theory. The Hamiltonian formulation introduces by a simple way ray equations in anisotropic media. The rays, travel time and its Fruchet derivatives expressions, valid to first order, are given for orthorhombic inhomogeneous media. Perturbation method applied to the ray theory allows the development of fast ray tracing in these media. Synthetic examples illustrate the accuracy and efficiency of the proposed approach. A tomographic method is developed. The travel time are inverted by minimizing, in term of least-square, the misfit between the observed and calculated travel times. The solution is approached iteratively by using a singular value decomposition algorithm. The inversion stability is assured by introducing a priori constraints. Synthetics examples show the need of an acquisition geometry well conceived to take account of anisotropy. (author)
Matyka, Maciej
2008-01-01
The aim of the thesis is to present and analyze two particular problems of transport in porous media flow. The first of them is related to the process of saturation of porous building materials. Recently, M. K\\"untz and P. Laval\\'ee, using a computer model of this process, have concluded that the anomalous diffusion assumption is correct. In this thesis I present an alternative explanation of this results without any refer to anomalous diffusion. The second part of the thesis covers the numerical analysis of the tortuosity of the flow -- one of a very interesting physical macroscopic variables characterizing transport in porous media. (in Polish)
Mineral carbonation in water-unsaturated porous media
Harrison, A. L.; Dipple, G. M.; Mayer, K. U.; Power, I. M.
2014-12-01
Ultramafic mine tailings have an untapped capacity to sequester CO2 directly from air or CO2-rich gas streams via carbonation of tailings minerals [1]. The CO2 sequestration capacity of these sites could be exploited simply by increasing the supply of CO2 into tailings, such as through circulation of air or flue gas from mine site power plants [1,2]. Mine tailings storage facilities typically have heterogeneously distributed pore water [1], affecting both the reactive capacity of the porous medium and the exposure of reactive phases to CO2 [3]. We examine the physical reaction processes that govern carbonation efficiency in variably saturated porous media using meter-scale column experiments containing the tailings mineral, brucite [Mg(OH)2], that were supplied with 10% CO2 gas streams. The experiments were instrumented with water content and gas phase CO2 sensors to track changes in water saturation and CO2concentration with time. The precipitation of hydrated Mg-carbonates as rinds encasing brucite particles resulted in passivation of brucite surfaces and an abrupt shut down of the reaction prior to completion. Moreover, the extent of reaction was further limited at low water saturation due to the lack of water available to form hydrated Mg-carbonates, which incorporate water into their crystal structures. Reactive transport modeling using MIN3P-DUSTY [4] revealed that the instantaneous reaction rate was not strongly affected by water saturation, but the reactive capacity was reduced significantly. Surface passivation and water-limited reaction resulted in a highly non-geometric evolution of reactive surface area. The extent of reaction was also limited at high water content because viscous fingering of the gas streams injected at the base of the columns resulted in narrow zones of highly carbonated material, but left a large proportion of brucite unreacted. The implication is that carbonation efficiency in mine tailings could be maximized by targeting an
Wang, Lei; Wang, Xiaodong
2014-06-01
Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion.
International Nuclear Information System (INIS)
Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)
Gao, Kai
2016-01-01
The conventional Perfectly Matched Layer (PML) is unstable for certain kinds of anisotropic media. This instability is intrinsic and independent of PML formulation or implementation. The Multi-axial PML (MPML) removes such instability using a nonzero damping coefficient in the direction parallel with the interface between a PML and the investigated domain. The damping ratio of MPML is the ratio between the damping coefficients along the directions parallel with and perpendicular to the interface between a PML and the investigated domain. No quantitative approach is available for obtaining these damping ratios for general anisotropic media. We develop a quantitative approach to determining optimal damping ratios to not only stabilize PMLs, but also minimize the artificial reflections from MPMLs. Numerical tests based on finite-difference method show that our new method can effectively provide a set of optimal MPML damping ratios for elastic-wave propagation in 2D and 3D general anisotropic media.
Evaluation of a method to measure water content in porous media by employing ultrasound
Directory of Open Access Journals (Sweden)
Luis Leonardo Sáenz Cruz
2010-06-01
Full Text Available A method to measure water content in porous media, such as solis and grains, was developed as a real time nondestructive test. The method was based on piezoelectric ultrasonic transducers as a sensor system. Transmiters and receivers was developed to administrate the sensors system and ultrasonic signal. Transmiters and receivers are placed facing each other and located inside the porous media 10 cm apart. The method was evaluated in two porous meda, namely a column 30 cm coarse sand and a paddy rice variety Fedearroz 50, in order to evaluate the sensors system performance in two different porous media with different water holder capacity. Tools were developed for data acquisition, capacity of 16 analog signal, 12 bits resolution. Electronic circuits, C++ OPP programming and Matlab were used. The results showed a monotonically increment of millivolts as a response of the transducer as the water content was decreasing
A NEW INSTRUMENT FOR MEASURING LOCAL MOISTURE CONTENTS IN MOIST POROUS MEDIA
Institute of Scientific and Technical Information of China (English)
HAN Ji-tian; WANG Ji-hao; GUI Ke-ting; SHI Ming-heng
2005-01-01
A new instrument was developed for measuring the local moisture content in moist porous media based on the needle-type capacitance sensor and single-chip microprocessor technique. The working principle, the structure and characteristics of the hardware and software of the instrument were presented. The dynamic response characteristics and reliability of the instrument were experimentally determined. As an example, the instrument was employed to measure the heat and mass transport properties of a moist porous material. The experimental results show that the instrument can be used for measuring the local moisture content in moist porous media and would be an effective tool for determining the heat and mass transport properties in moist porous media.
Permeability analysis of fractured vuggy porous media based on homogenization theory
Institute of Scientific and Technical Information of China (English)
无
2010-01-01
Based on the characteristics of fractured vuggy porous media,a novel mathematical model was proposed to model fluid flow in such media on fine scale,i.e.,the discrete fracture-vug network model.The new model consists of three systems:porous rock system,fracture system,and vug system.The fractures and vugs are embedded in porous rock,and the isolated vugs could be connected via the discrete fracture network.The flow in porous rock and fractures follows Darcy’s law,and the vugs system is free fluid region.Using a two-scale homogenization limit theory,we obtained a macroscopic Darcy’s law governing the media on coarse scale.The theoretical formula of the equivalent permeability of the fractured vuggy porous media was derived.The model and method of this paper were verified by some numerical examples.At the end the permeability of some fractured vuggy porous media with typical fracture-vug structures was analyzed.
International Nuclear Information System (INIS)
The radiative properties of reticulated porous inert media are computationally identified using the real three-dimensional structural data of porous media. The computational grids data are reconstructed from three-dimensional computer tomography scans and magnetic resonance image scans of different reticulated porous media. A ray tracing algorithm is used to track the rays inside the grid structure. Statistically large numbers of rays are traced for their path length and incident angle, which are used to find the probability based equivalent extinction coefficient and scattering phase function. The equivalent extinction coefficients are found for porous media with different porosities and pore densities. The dependency of specular and diffuse scattering phase functions on the porous structure and surface reflectance are also studied. -- Highlights: ► The ceramic porous inert media were found to be isotropic. ► The scattering phase functions were independent of structural properties. ► The diffuse scattering phase functions were independent to reflectance. ► Diffuse scattering phase functions were similar to that of a sphere.
Dynamics of water evaporation from saline porous media with mixed wettability
Bergstad, Mina; Shokri, Nima
2016-04-01
Understanding of the dynamics of salt transport and precipitation in porous media during evaporation is of crucial concern in various environmental and hydrological applications such as soil salinization, rock weathering, terrestrial ecosystem functioning, microbiological activities and biodiversity in vadose zone. Vegetation, plant growth and soil organisms can be severely limited in salt-affected land. This process is influenced by the complex interaction among atmospheric conditions, transport properties of porous media and properties of the evaporating solution (1-5). We investigated effects of mixed wettability conditions on salt precipitation during evaporation from saline porous media. To do so, we conducted a series of evaporation experiments with sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. The dynamics of salt precipitation at the surface of sand columns (mounted on digital balances to record the evaporation curves) as well as the displacement of the receding drying front (the interface between wet and partially wet zone) were recorded using an automatic imaging system at well-defined time intervals. The experiments were conducted with sand packs containing 0, 25, 40, 50, 65, and 80% fraction of hydrophobic grains. All experiments were conducted in an environmental chamber in which the relative humidity and ambient temperature were kept constant at 30% and 30 C, respectively. Our results show that partial wettability conditions had minor impacts on the evaporative mass losses from saline sand packs due to the presence of salt. This is significantly different than what is normally observed during evaporation from mixed wettability porous media saturated with pure water (6). In our experiments, increasing the fraction of hydrophobic grains did not result in any notable reduction of the evaporative mass losses from saline porous media. Our results show that the presence of hydrophobic grains on the surface
Rock Physics Models of Biofilm Growth in Porous Media
Jaiswal, P.; alhadhrami, F. M.; Atekwana, E. A.
2013-12-01
Recent studies suggest the potential to use acoustic techniques to image biofilm growth in porous media. Nonetheless the interpretation of the seismic response to biofilm growth and development remains speculative because of the lack of quantitative petrophysical models that can relate changes in biofilm saturation to changes in seismic attributes. Here, we report our efforts in developing quantitative rock physics models to biofilm saturation with increasing and decreasing P-wave velocity (VP) and amplitudes recorded in the Davis et al. [2010] physical scale experiment. We adapted rock physics models developed for modeling gas hydrates in unconsolidated sediments. Two distinct growth models, which appear to be a function of pore throat size, are needed to explain the experimental data. First, introduction of biofilm as an additional mineral grain in the sediment matrix (load-bearing mode) is needed to explain the increasing time-lapse VP. Second, introduction of biofilm as part of the pore fluid (pore-filling mode) is required to explain the decreasing time-lapse VP. To explain the time-lapse VP, up to 15% of the pore volume was required to be saturated with biofilm. The recorded seismic amplitudes, which can be expressed as a function of porosity, permeability and grain size, showed a monotonic time-lapse decay except on Day 3 at a few selected locations, where it increased. Since porosity changes are constrained by VP, amplitude increase could be modeled by increasing hydraulic conductivity. Time lapse VP at locations with increasing amplitudes suggest that these locations have a load-bearing growth style. We conclude that permeability can increase by up to 10% at low (~2%) biofilm saturation in load-bearing growth style due to the development of channels within the biofilm structure. Developing a rock physics model for the biofilm growth in general may help create a field guide for interpreting porosity and permeability changes in bioremediation, MEOR and
Cotransport of bismerthiazol and montmorillonite colloids in saturated porous media
Shen, Chongyang; Wang, Hong; Lazouskaya, Volha; Du, Yichun; Lu, Weilan; Wu, Junxue; Zhang, Hongyan; Huang, Yuanfang
2015-06-01
While bismerthiazol [N,N‧-methylene-bis-(2-amino-5-mercapto-1,3,4-thiadiazole)] is one of the most widely used bactericides, the transport of bismerthiazol in subsurface environments is unclear to date. Moreover, natural colloids are ubiquitous in the subsurface environments. The cotransport of bismerthiazol and natural colloids has not been investigated. This study conducted laboratory column experiments to examine the transport of bismerthiazol in saturated sand porous media both in the absence and presence of montmorillonite colloids. Results show that a fraction of bismerthiazol was retained in sand and the retention was higher at pH 7 than at pH 4 and 10. The retention did not change with ionic strength. The retention was attributed to the complex of bismerthiazol with metals/metal oxides on sand surfaces through ligand exchange. The transport of bismerthiazol was enhanced with montmorillonite colloids copresent in the solutions and, concurrently, the transport of montmorillonite colloids was facilitated by the bismerthiazol. The transport of montmorillonite colloids was enhanced likely because the bismerthiazol and the colloids competed for the attachment/adsorption sites on collector surfaces and the presence of bismerthiazol changed the Derjaguin-Landau-Verwey-Overbeek (DLVO) interaction energies between colloids and collectors. The transport of bismerthiazol was inhibited if montmorillonite colloids were pre-deposited in sand because bismerthiazol could adsorb onto the colloid surfaces. The adsorbed bismerthiazol could be co-remobilized with the colloids from primary minima by decreasing ionic strength. Whereas colloid-facilitated transport of pesticides has been emphasized, our study implies that transport of colloids could also be facilitated by the presence of pesticides.
Differential porosimetry and permeametry for random porous media
Hilfer, R.; Lemmer, A.
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ -CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850 μ m , thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates.
Toward an improved understanding of multiphase flow in porous media
Muccino, Julia C.; Gray, William G.; Ferrand, Lin A.
1998-08-01
Physical description of multiphase flow in porous media ideally should be based on conservation principles. In practice, however, Darcy's law is employed as the foundation of multiphase flow studies. Darcy's law is an empirical surrogate for momentum conservation based on data obtained from experimental study of one-dimensional single-phase flow. In its original form [Darcy, 1856], Darcy's law contained a single, constant coefficient that depended on the properties of the medium. Since 1856, Darcy's relation has been heuristically and progressively altered by allowing this coefficient to be a spatially dependent, nonlinear function of fluid and solid phase properties, particularly of the quantities of these phases within the flow system. The shortcoming of this approach is that the governing flow equation is obtained by enhancing a simple empirical coefficient with complex functional dependencies rather than by simplifying general conservation principles. As a result, some of the important physical phenomena are not properly accounted for. Also, some assumptions intrinsic to the equations are overlooked, making accurate simulation more of an art than an entirely scientific exercise. A more general and more theoretically appealing approach to the derivation of conservation principles for multiphase flow has been evolving over the last 30 years. This approach employs a mathematical procedure for deriving conservation principles at the length scale of interest, followed by imposition of thermodynamic constraints to restrict the generality of these expressions. The product of this approach is a set of balance equations that provides a framework in which the assumptions inherent in a hypothesized model of multiphase flow are clearly stated. Requirements for more comprehensive and physically complete models can then be specified.
Complex resistivity signatures of ethanol biodegradation in porous media
Personna, Yves Robert; Slater, Lee; Ntarlagiannis, Dimitrios; Werkema, Dale; Szabo, Zoltan
2013-01-01
Numerous adverse effects are associated with the accidental release of ethanol (EtOH) and its persistence in the subsurface. Geophysical techniques may permit non-invasive, real time monitoring of microbial degradation of hydrocarbon. We performed complex resistivity (CR) measurements in conjunction with geochemical data analysis on three microbial-stimulated and two control columns to investigate changes in electrical properties during EtOH biodegradation processes in porous media. A Debye Decomposition approach was applied to determine the chargeability (m), normalized chargeability (mn) and time constant (τ) of the polarization magnitude and relaxation length scale as a function of time. The CR responses showed a clear distinction between the bioaugmented and control columns in terms of real (σ′) and imaginary (σ″) conductivity, phase (ϕ) and apparent formation factor (Fapp). Unlike the control columns, a substantial decrease in σ′ and increase in Fapp occurred at an early time (within 4 days) of the experiment for all three bioaugmented columns. The observed decrease in σ′ is opposite to previous studies on hydrocarbon biodegradation. These columns also exhibited increases in ϕ (up to ~ 9 mrad) and σ″ (up to two order of magnitude higher) 5 weeks after microbial inoculation. Variations in m and mn were consistent with temporal changes in ϕ and σ″ responses, respectively. Temporal geochemical changes and high resolution scanning electron microscopy imaging corroborated the CR findings, thus indicating the sensitivity of CR measurements to EtOH biodegradation processes. Our results offer insight into the potential application of CR measurements for long-term monitoring of biogeochemical and mineralogical changes during intrinsic and induced EtOH biodegradation in the subsurface.
Differential porosimetry and permeametry for random porous media.
Hilfer, R; Lemmer, A
2015-07-01
Accurate determination of geometrical and physical properties of natural porous materials is notoriously difficult. Continuum multiscale modeling has provided carefully calibrated realistic microstructure models of reservoir rocks with floating point accuracy. Previous measurements using synthetic microcomputed tomography (μ-CT) were based on extrapolation of resolution-dependent properties for discrete digitized approximations of the continuum microstructure. This paper reports continuum measurements of volume and specific surface with full floating point precision. It also corrects an incomplete description of rotations in earlier publications. More importantly, the methods of differential permeametry and differential porosimetry are introduced as precision tools. The continuum microstructure chosen to exemplify the methods is a homogeneous, carefully calibrated and characterized model for Fontainebleau sandstone. The sample has been publicly available since 2010 on the worldwide web as a benchmark for methodical studies of correlated random media. High-precision porosimetry gives the volume and internal surface area of the sample with floating point accuracy. Continuum results with floating point precision are compared to discrete approximations. Differential porosities and differential surface area densities allow geometrical fluctuations to be discriminated from discretization effects and numerical noise. Differential porosimetry and Fourier analysis reveal subtle periodic correlations. The findings uncover small oscillatory correlations with a period of roughly 850μm, thus implying that the sample is not strictly stationary. The correlations are attributed to the deposition algorithm that was used to ensure the grain overlap constraint. Differential permeabilities are introduced and studied. Differential porosities and permeabilities provide scale-dependent information on geometry fluctuations, thereby allowing quantitative error estimates. PMID:26274305
Flow of miscible and immiscible hydrocarbons in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Butts, M.B.
1996-12-31
A series of large-scale two-dimensional physical model studies has been carried out in order to better understand and predict the multiphase flow of hydrocarbon contaminants and the release of the water-soluble fraction of such contaminants into the groundwater stream. The detailed measurements of the fluid saturations within the bulk hydrocarbon plume as well as the aqueous concentrations recorded downstream should provide a useful data set for testing and improving numerical models of both multiphase flow and transport. Predictions of a numerical model of immiscible multiphase flow developed in the petroleum industry were found to compare favourably with the observed oil plume for the case of an immiscible oil spill. Nevertheless, subtle layering within the experimental flume altered the long-term development of the oil plume in a manner not predicted by the numerical model. A stochastic model for three-dimensional, two-phase incompressible flow in heterogeneous soil and rock formations is developed. Analytical solutions for the resulting stochastic differential equations are derived for asymptotic flows using a perturbation approach. These solutions were used to derive general expressions for the large-scale (effective) properties for large-scale two-phase flow in porous media. An important observation from this analysis is that general large-scale flow in heterogeneous soils cannot be predicted on the basis of simple averages of the soil hydraulic properties alone. The large-scale capillary pressure saturation relation is evaluated for imbibition into a wet soil or rock formation. (EG) 194 refs.
A New Numerical Solution of Fluid Flow in Stratigraphic Porous Media
Institute of Scientific and Technical Information of China (English)
XU You-Sheng; LI Hua-Mei; GUO Shang-Ping; HUANG Guo-Xiang
2004-01-01
A new numerical technique based on a lattice-Boltzmann method is presented for analyzing the fluid flow in stratigraphic porous media near the earth's surface. The results obtained for the relations between porosity, pressure,and velocity satisfy well the requirements of stratigraphic statistics and hence are helpful for a further study of the evolution of fluid flow in stratigraphic media.
Measurement of colloidal phenomena during flow through refractive index matched porous media
Roth, Eric J.; Mont-Eton, Michael E.; Gilbert, Benjamin; Lei, Tim C.; Mays, David C.
2015-11-01
Colloidal phenomena in porous media, natural or engineered, are important in a breadth of science and technology applications, but fundamental understanding is hampered by the difficulty in measuring colloid deposit morphology in situ. To partially address this need, this paper describes a static light scattering apparatus using a flow cell filled with refractive index matched (RIM) porous media, allowing real-time measurement of colloidal phenomena as a function of depth within the flow cell. A laser interacts with the colloids in the pore space and their structures, but not with the RIM media. The intensity of scattered light is measured as a function of scattering angle, which allows characterization of colloid deposit morphology as a fractal dimension and a radius of gyration. In parallel, fluid discharge rate and pressure drop are recorded to determine permeability, a key parameter for any application involving flow through porous media. This apparatus should prove useful in any application requiring characterization of colloidal phenomena within porous media. Additionally, this paper describes how to use granular Nafion as RIM porous media.
Measurement of colloidal phenomena during flow through refractive index matched porous media.
Roth, Eric J; Mont-Eton, Michael E; Gilbert, Benjamin; Lei, Tim C; Mays, David C
2015-11-01
Colloidal phenomena in porous media, natural or engineered, are important in a breadth of science and technology applications, but fundamental understanding is hampered by the difficulty in measuring colloid deposit morphology in situ. To partially address this need, this paper describes a static light scattering apparatus using a flow cell filled with refractive index matched (RIM) porous media, allowing real-time measurement of colloidal phenomena as a function of depth within the flow cell. A laser interacts with the colloids in the pore space and their structures, but not with the RIM media. The intensity of scattered light is measured as a function of scattering angle, which allows characterization of colloid deposit morphology as a fractal dimension and a radius of gyration. In parallel, fluid discharge rate and pressure drop are recorded to determine permeability, a key parameter for any application involving flow through porous media. This apparatus should prove useful in any application requiring characterization of colloidal phenomena within porous media. Additionally, this paper describes how to use granular Nafion as RIM porous media. PMID:26628117
Institute of Scientific and Technical Information of China (English)
WANG Hui-fang; WANG Ming-yu
2012-01-01
Layered structures with upper porous and lower fractured media are widely distributed in the world.An experimental investigation on rainfall infiltration and solute transport in such layered structures can provide the necessary foundation for effectively preventing and forecasting water bursting in mines,controlling contamination of mine water,and accomplishing ecological restoration of mining areas.A typical physical model of the layered structures with porous and fractured media was created in this study.Then rainfall infiltration experiments were conducted after salt solution was sprayed on the surface of the layered structure.The volumetric water content and concentration of chlorine ions at different specified positions along the profile of the experiment system were measured in real-time.The experimental results showed that the lower fractured media,with a considerably higher permeability than that of the upper porous media,had significant effects on preventing water infiltration.Moreover,although the porous media were homogeneous statistically in the whole domain,spatial variations in the features of effluent concentrations with regards to time,or so called breakthrough curves,at various sampling points located at the horizontal plane in the porous media near the porous-fractured interface were observed,indicating the diversity of solute transport at small scales.Furthermore,the breakthrough curves of the outflow at the bottom,located beneath the underlying fractured rock,were able to capture and integrate features of the breakthrough curves of both the upper porous and fractured media,which exhibited multiple peaks,while the peak values were reduced one by one with time.
Study of the release of various elements from HLW glasses in contact with porous media
International Nuclear Information System (INIS)
When a borosilicate glass incorporating HLW is embedded in a static porous media the leached elements diffuse into the media. The release of the various elements from the glass is governed by different mechanisms. Soluble elements (such as Cs or Tc) will be released as a direct consequence of the glass degradation. The release of elements which are less soluble than silica, on the contrary, will be dominated by the solubility limit and by the subsequent diffusion in the porous media. An integral experiment has been devised which allows one to measure the leaching rate and the diffusion of the various species in the porous media at the same time. 8 refs., 6 figs., 1 tab
Computed tomographic analyses of water distribution in three porous foam media
International Nuclear Information System (INIS)
The purpose of this paper is to review some of the details of CAT scanning that are of importance to the application of CAT scanning porous media and to evaluate the use of the CAT scanner to measure the spatial distribution of water in three different porous media. The scanner's response to changes in the spatial distribution of water in three different porous phenolic foam materials after draining for 16 h was investigated. Water content distributions were successfully detected with good resolution on the x-ray image. Comparisons of CAT vs. gravimetrically determined water content indicated a significant linear relationship between the methods. Results from these experiments indicate that the CAT scanner can nondestructively measure volume wetness in the phenolic foam media. The clarity of the CAT images suggests that CAT scanning has great potential for studies where small and rapid changes in water content within small volumes of media are desired
Natural Convection in Enclosed Porous or Fluid Media
Saatdjian, Esteban; Lesage, François; Mota, José Paulo B.
2014-01-01
In Saatdjian, E., Lesage, F., and Mota, J.P.B, "Transport Phenomena Projects: A Method to Learn and to Innovate, Natural Convection Between Porous, Horizontal Cylinders," "Chemical Engineering Education," 47(1), 59-64, (2013), the numerical solution of natural convection between two porous, concentric, impermeable cylinders was…
Single-step method for hydrogen isotope ratio measurement of water in porous media
Energy Technology Data Exchange (ETDEWEB)
Turner, J.V.; Gailitis, V.
1988-06-01
The standard zinc reduction technique for stable hydrogen isotope analysis has been modified to a single-step method which enables rapid measurement of the deuterium to hydrogen (/sup 2/H//sup 1/H) ratio in water from porous media. The novel feature of the method is microdistillation of water from the porous medium within the zinc reduction tube. The need for such a technique arose from a requirement for /sup 2/H//sup 1/H ratio measurement on microliter quantities of water from unsaturated porous media. Conventional methods using reduction of water over zinc or uranium require free water which must be extracted from the porous medium by either immiscible fluid displacement, vacuum distillation, azeotropic distillation, or squeezing. Each of these methods is time-consuming, can present extraction difficulties at low water content, and may lead to isotope fractionation where phase changes occur during the extraction procedure. Because the technique presented here requires only 100-300 mg, of sample (5-30 mg of water, depending on water content) it has a wide application to experimental studies of water movement in porous media using water either artificially enriched in deuterium or of natural abundance. The authors have used the method successfully in field and laboratory experiments at both environmental and enriched concentrations of deuterium. The method is equally applicable to saturated porous media and also gives a measure of the water content of the sample.
International Nuclear Information System (INIS)
The Synthetic Kernel (SKN) method is employed to a 3D absorbing, emitting and linearly anisotropically scattering inhomogeneous medium. Standard SKN approximation is applied only to the diffusive components of the radiative transfer equations. An alternative SKN (SKN⁎) method is also derived in full 3-D generality by extending the approximation to the direct wall contributions. Complete sets of boundary conditions for both SKN approaches are rigorously obtained. The simplified spherical harmonics (P2N−1 or SP2N−1) and simplified double spherical harmonics (DPN−1 or SDPN−1) equations for linearly anisotropically scattering homogeneous medium are also derived. Resulting full P2N−1 and DPN−1 (or SP2N−1 and SDPN−1) equations are cast as diagonalized second order coupled diffusion-like equations. By this analysis, it is shown that the SKN method is a high-order approximation, and simply by the selection of full or half range Gauss–Legendre quadratures, SKN⁎ equations become identical to P2N−1 or DPN−1 (or SP2N−1 or SDPN−1) equations. Numerical verification of all methods presented is carried out using a 1D participating isotropic slab medium. The SKN method proves to be more accurate than SKN⁎ approximation, but it is analytically more involved. It is shown that the SKN⁎ with proposed BCs converges with increasing order of approximation, and the BCs are applicable to SPN or SDPN methods. - Highlights: • SKN methods are extended to linear anisotropic scattering media. • Diagonalized simplified PN and simplified DPN equations are also derived. • PN and DPN quadratures are used with the SKN and SKN⁎ methods. • SKN methods are equivalent to SP2N−1 and SDPN−1 approximations
Directory of Open Access Journals (Sweden)
A. K. Acharya
2014-01-01
Full Text Available Free convective magnetohydrodynamics (MHD flow of a viscous incompressible and electrically conducting fluid past a hot vertical porous plate embedded in a porous medium in the presence of heat source has been studied in this paper. The temperature of the plate varies both in space and time. The main objective of this paper is to study the effect of porosity of the medium coupled with the variation of plate temperature with regard to space and in time. The effect of pertinent parameters characterizing the flow has been presented through the graphs. It is important to record that the presence of porous media has no significant contribution to the flow characteristics and viscous dissipation compensates for the heating and cooling of the plate due to convective current.
Hybrid finite volume scheme for a two-phase flow in heterogeneous porous media*
Directory of Open Access Journals (Sweden)
Brenner Konstantin
2012-04-01
Full Text Available We propose a finite volume method on general meshes for the numerical simulation of an incompressible and immiscible two-phase flow in porous media. We consider the case that can be written as a coupled system involving a degenerate parabolic convection-diffusion equation for the saturation together with a uniformly elliptic equation for the global pressure. The numerical scheme, which is implicit in time, allows computations in the case of a heterogeneous and anisotropic permeability tensor. The convective fluxes, which are non monotone with respect to the unknown saturation and discontinuous with respect to the space variables, are discretized by means of a special Godunov scheme. We prove the existence of a discrete solution which converges, along a subsequence, to a solution of the continuous problem. We present a number of numerical results in space dimension two, which confirm the efficiency of the numerical method. Nous proposons un schéma de volumes finis hybrides pour la discrétisation d’un problème d’écoulement diphasique incompressible et immiscible en milieu poreux. On suppose que ce problème a la forme d’une équation parabolique dégénérée de convection-diffusion en saturation couplée à une équation uniformément elliptique en pression. On considère un schéma implicite en temps, où les flux diffusifs sont discrétisés par la méthode des volumes finis hybride, ce qui permet de pouvoir traiter le cas d’un tenseur de perméabilité anisotrope et hétérogène sur un maillage très général, et l’on s’appuie sur un schéma de Godunov pour la discrétisation des flux convectifs, qui peuvent être non monotones et discontinus par rapport aux variables spatiales. On démontre l’existence d’une solution discrète, dont une sous-suite converge vers une solution faible du problème continu. On présente finalement des cas test bidimensionnels.
Evaporation of NaCl solution from porous media with mixed wettability
Bergstad, Mina; Shokri, Nima
2016-05-01
Evaporation of saline water from porous media is ubiquitous in many processes including soil salinization, crop production, and CO2 sequestration in deep saline acquirer. It is controlled by the transport properties of porous media, atmospheric conditions, and properties of the evaporating saline solution. In the present study, the effects of mixed wettability conditions on the general dynamics of water evaporation from porous media saturated with NaCl solution were investigated. To do so, we conducted a comprehensive series of evaporation experiments using sand mixtures containing different fractions of hydrophobic grains saturated with NaCl solutions. Our results showed that increasing fraction of hydrophobic grains in the mixed wettability sand pack had minor impact on the evaporative mass losses due to the presence of salt whose precipitation patterns were significantly influenced by the mixed wettability condition. Through macroscale and microscale investigations, we found formation of patchy efflorescence in the case of mixed wettability sand pack as opposed to crusty efflorescence in the case of completely hydrophilic porous media. Furthermore, the presence of salty water and hydrophobic grains in the sand pack significantly influenced the general dynamics and morphology of the receding drying front. Our results extend the understanding of the saline water evaporation from porous media with direct applications to various hydrological and engineering processes.
Experimental investigation of magnetically driven flow of ferrofluids in porous media
Energy Technology Data Exchange (ETDEWEB)
Borglin, S.E.; Moridis, G.J.; Oldenburg, C.M.
1998-08-01
This report presents experimental results of the flow of ferrofluids in porous media to investigate the potential for precisely controlling fluid emplacement in porous media using magnetic fields. Ferrofluids are colloidal suspensions of magnetic particles stabilized in various carrier liquids. In the presence of an external magnetic field, the ferrofluid becomes magnetized as the particles align with the magnetic field. Potential applications of ferrofluids to subsurface contamination problems include magnetic guidance of reactants to contaminated target zones in the subsurface for in situ treatment or emplacement of containment barriers. Laboratory experiments of magnetically induced ferrofluid flow in porous media in this report demonstrate the potential for mobilizing ferrofluid and controlling fluid emplacement through control of the external magnetic field. The pressures measured in ferrofluid due to the attraction of ferrofluid to a permanent magnet agree well with calculated values. The results show that a predictable pressure gradient is produced in the fluid which is strong near the magnet and drops off quickly with distance. This pressure gradient drives the fluid through sand without significant loss of ferrofluid strength due to filtration or dilution. Flow visualization experiments of ferrofluid in water-filled horizontal Hele-Shaw cells demonstrate that ferrofluid obtains a consistent final arc-shaped configuration around the magnet regardless of initial configuration or flow path toward the magnet. Analogous experiments in actual porous media showed similar features and confirm the ability of ferrofluid to move through porous media by magnetic forces.
Drop Impingement Induced Dispersal of Microorganisms and Contaminants Within Porous Media
Joung, Young Soo; Ge, Zhifei; Buie, Cullen
2014-11-01
We investigate migration of chemicals and microbes with aerosol generated by drop impingement on porous media. In our previous work we found that aerosol generation from droplets hitting porous media within a specific range of the Weber number (We) and a modified Pelect number (Pe). We and Pe reflect the impact condition of droplets and the wetting properties of porous media, respectively. The relationship between We and Pe can be expressed by a third dimensionless group, the Washburn Reynolds number (ReW = We/Pe). In a specific range of ReW, hundreds of aerosol particles can be generated within milliseconds of drop impingement. In this work we investigate if microbes such as Corynebacterium glutamicum, a soil bacterium, and chemicals such as Rhodamine B can be dispersed by aerosols generated from droplet impact. Experimentally, C. glutamicum and Rhodamine B are permeated into porous media. Then drop impingements are conducted on the porous media with different We and Pe in an airflow tunnel. We quantitatively investigate the volume and speed of aerosol migration as a function of ReW of the drop impingement and Re of the airflow. Results of this study will shed light upon the dispersal of elemental compounds and microbes within soils due to aerosol generated by rainfall.
International Nuclear Information System (INIS)
Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Cushman, J.H.; Madilyn Fletcher
2000-06-01
Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Cushman, J.H.
2000-06-01
Dynamic microbial attachment/detachment occurs in subsurface systems in response to changing environmental conditions caused by contaminant movement and degradation. Understanding the environmental conditions and mechanisms by which anaerobic bacteria partition between aqueous and solid phases is a critical requirement for designing and evaluating in situ bioremediation efforts. This interdisciplinary research project, of which we report only the Purdue contribution, provides fundamental information on the attachment/detachment dynamics of bacteria in heterogeneous porous media. Fundamental results from the Purdue collaboration are: (a) development of a matched-index method for obtaining 3-D Lagrangian trajectories of microbial sized particles transporting within porous media or microflow cells, (b) application of advanced numerical methods to optimally design a microflow cell for studying anaerobic bacterial attachment/detachment phenomena, (c) development of two types of models for simulating bacterial movement and attachment/detachment in microflow cells and natural porous media, (d) application of stochastic analysis to upscale pore scale microbial attachment/detachment models to natural heterogeneous porous media, and (e) evaluation of the role nonlocality plays in microbial dynamics in heterogeneous porous media.
Predicting colloid transport through saturated porous media: A critical review
Molnar, Ian L.; Johnson, William P.; Gerhard, Jason I.; Willson, Clinton S.; O'Carroll, Denis M.
2015-09-01
Understanding and predicting colloid transport and retention in water-saturated porous media is important for the protection of human and ecological health. Early applications of colloid transport research before the 1990s included the removal of pathogens in granular drinking water filters. Since then, interest has expanded significantly to include such areas as source zone protection of drinking water systems and injection of nanometals for contaminated site remediation. This review summarizes predictive tools for colloid transport from the pore to field scales. First, we review experimental breakthrough and retention of colloids under favorable and unfavorable colloid/collector interactions (i.e., no significant and significant colloid-surface repulsion, respectively). Second, we review the continuum-scale modeling strategies used to describe observed transport behavior. Third, we review the following two components of colloid filtration theory: (i) mechanistic force/torque balance models of pore-scale colloid trajectories and (ii) approximating correlation equations used to predict colloid retention. The successes and limitations of these approaches for favorable conditions are summarized, as are recent developments to predict colloid retention under the unfavorable conditions particularly relevant to environmental applications. Fourth, we summarize the influences of physical and chemical heterogeneities on colloid transport and avenues for their prediction. Fifth, we review the upscaling of mechanistic model results to rate constants for use in continuum models of colloid behavior at the column and field scales. Overall, this paper clarifies the foundation for existing knowledge of colloid transport and retention, features recent advances in the field, critically assesses where existing approaches are successful and the limits of their application, and highlights outstanding challenges and future research opportunities. These challenges and opportunities
Laboratory Models of Thermal Convection in Porous Media
Cooper, C. A.; Breitmeyer, R.; Schumer, R.; Voepel, H.; Decker, D.
2011-12-01
Experiments have been conducted to measure the length and times scales of thermal plumes in laboratory porous media. A polycarbonate cell 1 m high x 75 cm wide x 2.54 cm deep filled with 3 mm glass beads is heated uniformly from the bottom using electrical heat tape. The heat tape is in direct contact with an aluminum alloy heat exchanger sandwiched between the two vertical plates, and a digital controller is used to maintain constant temperature. The upper boundary is kept at constant temperature by circulating cold water from a constant-temperature refrigerating bath through copper tubes in contact with the upper part of the cell. Flow is visualized by mixing a neutrally buoyant thermochromic liquid tracer in the working fluid (water and glycerin). TLCs are liquid crystals manufactured to change color as a function of temperature. Color change is repeatable and reversible with a response time to temperature change is less than 0.01 s. Image acquisition is done using a CCD camera, and three images are captured nearly simultaneously, each with a red, blue, or green filter over the camera lens. The three images are then combined to make a true color image. At each pixel in the image, hue is extracted and a calibration curve is developed to relate hue to temperature. In one experiment with a 10 degree C temperature difference between the upper and lower boundaries, the onset of convection began within 26 minutes, which is about half the time predicted by a scale analysis. The initial velocity of all plumes is on the order of 15 cm/hr, although some plumes stop moving before reaching the upper boundary of the cell. There are several reasons for plume deceleration: (1) As plumes travel vertically, they alter the initial temperature profile of the fluid such that the temperature field makes constant adjustments, which affects the dimensions, velocities, and interactions of the plumes; (2) adjacent plumes merge, resulting in a single larger plume; and (3) interactions
Compositional multiphase flow and transport in heterogeneous porous media
Energy Technology Data Exchange (ETDEWEB)
Huber, R.U.
2000-07-01
This work first treats the conceptual models for the description of multiphase flow processes in porous media. The thermodynamic laws are explained and the description and quantification of multi-fluid equilibria are discussed in order to account for fluid composition. The fully and weakly coupled approaches for the mathematical description of such flow processes with respect to systems consisting of two and three fluid phases as well as with respect to compositional single and multiphase systems are assessed. For the discretization of the two-phase flow equations node- and cell-centered finite volume methods and mixed and mixed-hybrid finite element approaches are applied. Based upon these methods five solution algorithms are developed. Four of these algorithms are based on the simultaneous solution of the discretized equations in combination with the Newton-Raphson technique. Methods 1 and 2 treat two- three-phase flow processes, Method 3 applies to the solution of partially miscible three-component systems while Method 4 is created for three-phase three-component systems. The latter method uses a variable substitution dependent on the local presence of the fluid phases. Method 5 is based on the IMPES/IMPESC concept. The time-implicit pressure equation is discretized with the mixed-hybrid finite element method. The saturation and concentration equations, respectively, are solved with a cell-centered finite volume scheme. The developed algorithms are applied to the two- and three-phase Buckley-Leverett problems. A partitioning interwell tracer test is simulated. The propagation behavior of nonaqueous phase liquids (NAPLs) in the saturated and unsaturated ground zone under the influence of heterogeneities are examined. In addition, a larger-scale experiment is simulated, which involves an injection of trichloroethylene into the subsurface and the subsequent distribution. Here, the development of a dissolved contaminant plume as well as the behavior of organic
A multi-level method for transmission eigenvalues of anisotropic media
Ji, Xia; Sun, Jiguang
2013-12-01
In this paper, we propose a multi-level finite element method for the transmission eigenvalue problem of anisotropic media. The problem is non-standard and non-self-adjoint with important applications in inverse scattering theory. We employ a suitable finite element method to discretize the problem. The resulting generalized matrix eigenvalue problem is large, sparse and non-Hermitian. To compute the smallest real transmission eigenvalue, which is usually an interior eigenvalue, we devise a multi-level method using Arnoldi iteration. At the coarsest mesh, the eigenvalue is obtained using Arnoldi iteration with an adaptive searching technique. This value is used as the initial guess for Arnoldi iteration at the next mesh level. This procedure is then repeated until the finest mesh level. Numerical examples are presented to show the viability of the method.
Czech Academy of Sciences Publication Activity Database
Červený, V.; Pšenčík, Ivan
Prague : Charles university, 2006, s. 179-195 R&D Projects: GA ČR GA205/05/2182; GA AV ČR IAA3012309 Institutional research plan: CEZ:AV0Z30120515 Keywords : viscoelastic anisotropic media * energy-flux vector * time-averaged energy-related quantities Subject RIV: DC - Siesmology, Volcanology, Earth Structure
Numerical modeling of boiling heat transfer in porous media
International Nuclear Information System (INIS)
Theoretical models were developed and validated to investigate boiling heat transfer in porous layers with and without the presence of chimneys. The critical heat flux and distributions of temperature, liquid saturation, liquid and vapor pressures, and liquid and vapor velocities were predicted numerically under typical PWR conditions. The results indicate that a porous layer produces a higher heat transfer coefficient in the nucleate boiling regime, as is well-known, and could potentially yield a much higher critical heat flux than a plain surface does. Moreover, a chimney-type porous layer can have a better thermal performance, i.e., heat transfer coefficient and critical heat flux than a homogeneous one, primarily due to the presence of chimneys providing pathways for vapor to escape from the porous layer with less resistance
Institute of Scientific and Technical Information of China (English)
李锡夔; 张俊波; 张洪武
2001-01-01
In the present work a model based on the Biot theory for simulating coupled hydrodynamic behavior in saturated porous media is utilized with integration of the inertial coupling effect between the solid-fluid phases of the media into the model. The non-associated Drucker-Prager criterion to describe nonlinear constitutive behavior of pressure dependent elasto-plasticity for the media is particularly considered. With no consideration of compressibility of solid grains and the pore fluid, the discontinuity and instability of the wave propagation in saturated porous media are analyzed for the plane strain problems in detail. The critical conditions of stationary discontinuity and flutter instability in the wave propagation are given.The results and conclusions obtained by the present work will provide some bases or clues for overcoming the difficulties in numerical modeling of wave propagation in the media subjected to dynamic loading.
International Nuclear Information System (INIS)
This document is a user's manual for the Rn3D finite element code. Rn3D was developed to simulate gas flow and radon transport in variably saturated, nonisothermal porous media. The Rn3D model is applicable to a wide range of problems involving radon transport in soil because it can simulate either steady-state or transient flow and transport in one-, two- or three-dimensions (including radially symmetric two-dimensional problems). The porous materials may be heterogeneous and anisotropic. This manual describes all pertinent mathematics related to the governing, boundary, and constitutive equations of the model, as well as the development of the finite element equations used in the code. Instructions are given for constructing Rn3D input files and executing the code, as well as a description of all output files generated by the code. Five verification problems are given that test various aspects of code operation, complete with example input files, FORTRAN programs for the respective analytical solutions, and plots of model results. An example simulation is presented to illustrate the type of problem Rn3D is designed to solve. Finally, instructions are given on how to convert Rn3D to simulate systems other than radon, air, and water
Dynamic Loading of Deformable Porous Media Can Induce Active Solute Transport
Albro, Michael B.; Chahine, Nadeen O; Li, Roland; Yeager, Keith; Hung, Clark T.; Ateshian, Gerard A.
2008-01-01
Active solute transport mediated by molecular motors across porous membranes is a well-recognized mechanism for transport across the cell membrane. In contrast, active transport mediated by mechanical loading of porous media is a non-intuitive mechanism that has only been predicted recently from theory, but not yet observed experimentally. This study uses agarose hydrogel and dextran molecules as a model experimental system to explore this mechanism. Results show that dynamic loading can enha...
Pore-network modeling of solute transport and biofilm growth in porous media
Qin, Chao Zhong; Hassanizadeh, S. Majid
2015-01-01
In this work, a pore-network (PN) model for solute transport and biofilm growth in porous media was developed. Compared to previous studies of biofilm growth, it has two new features. First, the constructed pore network gives a better representation of a porous medium. Second, instead of using a constant mass exchange coefficient for solute transport between water phase and biofilm, a variable coefficient as a function of biofilm volume fraction and Damköhler number was employed. This PN mode...
Analysis of Flow and Transport in Refractive Index Matched Porous Media
Stöhr, Michael
2003-01-01
In the present work a novel method for the measurement of flow and transport in porous media has been developped. Through the employment of particularly applicative solids, liquids and fluorescent dyes and the application of a method for the highly precise matching of refractive indices, the dynamics of the dye distribution inside a threedimensional porous medium could be determined with a high temporal and spatial resolution using planar laser-induced fluorescence. For the data analysis spec...
Influence of the Gas-Water Interface on Transport of Microorganisms through Unsaturated Porous Media
Wan, Jiamin; Wilson, John L.; Kieft, Thomas L.
1994-01-01
In this article, a new mechanism influencing the transport of microorganisms through unsaturated porous media is examined, and a new method for directly visualizing bacterial behavior within a porous medium under controlled chemical and flow conditions is introduced. Resting cells of hydrophilic and relatively hydrophobic bacterial strains isolated from groundwater were used as model microorganisms. The degree of hydrophobicity was determined by contact-angle measurements. Glass micromodels a...
Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines
Miroslaw Weclas
2010-01-01
The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of...
Investigation of Resistivity of Saturated Porous Media with Lattice Boltzmann Method
Institute of Scientific and Technical Information of China (English)
YUE Wen-Zheng; TAO Guo; ZHU Ke-Qin
2004-01-01
The lattice Boltzmann method is employed to study the electrical transport properties of saturated porous media.Electrical current flow through the porous media is simulated and the relationship between resistivity index and water saturation is derived. It is found that this kind of relation is not a straight line as described by the Archie equation with the parameter n being a constant in a log-log scale. A new equation is thus developed to formulate this relation with n being a function of porosity and water saturation. The comparisons between the results by lattice Boltzmann and by the laboratory experiments on rock samples demonstrate that this numerical method can provide an alternative way for the expensive laboratory experiments to investigate the electrical transport properties of saturated porous media and can be used to explore micro mechanisms more conveniently.
Measurement of Fluid Flow in Pipe and Porous Media by High-Resolution Magnetic Resonance Imaging
Institute of Scientific and Technical Information of China (English)
JIANG Lan-lan; SONG Yong-chen; LIU Yu; DOU Bin-lin; ZHU Ning-jun; ZHAO Jia-fei; BULITI Abudula
2012-01-01
The objective of this study is to understand the process of fluid flow in pipe and porous media with different pore structures.High-resolution Magnetic Resonance Imaging (MRI) technique was used to visualize the pore structure and measure fluid flow.The porous media was formed by packed bed of glass beads.Flow measurement was carried out by a modified spin echo sequence.The results show that the velocity distribution in pipe is annular and the linear relation between MRI velocity and actual velocity is found in pipe flow measurement.The flow distribution in porous media is rather heterogeneous,and it is consistent with heterogeneous pore structure.The flow through pores with the high volume flow rate is determined largely by geometrical effects such as pore size and cross-sectional area.
Modeling the Impact of Fracture Growth on Fluid Displacements in Deformable Porous Media
Santillán, D.; Cueto-Felgueroso, L.; Juanes, R.
2015-12-01
Coupled flow and geomechanics is a critical research challenge in engineering and the geosciences. The flow of a fluid through a deformable porous media is present in manyenvironmental, industrial, and biological processes,such as the removal of pollutants from underground water bodies, enhanced geothermal systems, unconventional hydrocarbon resources or enhanced oil recovery techniques. However, the injection of a fluid can generate or propagate fractures, which are preferential flow paths. Using numerical simulation, we study the interplay between injection and rock mechanics, and elucidate fracture propagation as a function of injection rate, initial crack topology and mechanical rock properties. Finally, we discuss the role of fracture growth on fluid displacements in porous media. Figure: An example of fracture (in red) propagated in a porous media (in blue)
International Nuclear Information System (INIS)
The effect of thermal asymmetrical boundaries on entropy generation of viscous dissipative flow of forced convection in thermal non-equilibrium porous media is analytically studied. The two-dimensional temperature, Nusselt number and entropy generation contours are analysed comprehensively to provide insights into the underlying physical significance of the effect on entropy generation. By incorporating the effects of viscous dissipation and thermal non-equilibrium, the first-law and second-law characteristics of porous-medium flow are investigated via various pertinent parameters, i.e. heat flux ratio, effective thermal conductivity ratio, Darcy number, Biot number and averaged fluid velocity. For the case of symmetrical wall heat flux, an optimum condition with a high Nusselt number and a low entropy generation is identified at a Darcy number of 10−4, providing an ideal operating condition from the second-law aspect. This type of heat and fluid transport in porous media covers a wide range of engineering applications, involving porous insulation, packed-bed catalytic process in nuclear reactors, filtration transpiration cooling, and modelling of transport phenomena of microchannel heat sinks. - Highlights: • Effects of thermal asymmetries on convection in porous-medium are studied. • Exergetic effectiveness of porous media with thermal asymmetries is investigated. • 2-D temperature, Nusselt number and entropy generation contours are analyzed. • Significance of viscous dissipation in entropy generation is scrutinized. • Significance of thermal non-equilibrium in entropy generation is studied
Analysis of a resistive force in a fluid flow through porous media
International Nuclear Information System (INIS)
The analysis of a great number of experimental data from literature show that the resistive term of the moviment equation for a newtonian fluid flowing through an homogeneous porous media is isotropic, and may be written by the Forchheimer quadratic form, provided that the wall effects be despicable and the dimensions of the porous limited. In the quadratic form of Forchheimer, the porous matrix is characterized by permeability and by an admensional factor whose value may be estimated through a modification in the ERGUN classical correlation. (E.G.)
Institute of Scientific and Technical Information of China (English)
Zhang Xuemin; Li Jinping; Wu Qingbai; Wang Chunlong; Nan Junhu
2015-01-01
Porous medium has an obvious effect on the formation of carbon dioxide hydrate. In order to study the character-istics of CO2 hydrate formation in porous medium below the freezing point, the experiment of CO2 hydrate formation was conducted in a high-pressure 1.8-L cell in the presence of porous media with a particle size of 380μm, 500μm and 700μm, respectively. The test results showed that the porous medium had an important inlfuence on the process of CO2 hydrate for-mation below the freezing point. Compared with porous media with a particle size of 500μm and 700μm, respectively, the average hydrate formation rate and gas storage capacity of carbon dioxide hydrate in the porous medium with a particle size of 380μm attained 0.016 14 mol/h and 65.094 L/L, respectively. The results also indicated that, within a certain range of particle sizes, the smaller the particle size of porous medium was, the larger the average hydrate formation rate and the gas storage capacity of CO2 hydrate during the process of hydrate formation would be.
Dynamics of barite growth in porous media quantified by in situ synchrotron X-ray tomography
Godinho, jose; Gerke, kirill
2016-04-01
Current models used to formulate mineral sequestration strategies of dissolved contaminants in the bedrock often neglect the effect of confinement and the variation of reactive surface area with time. In this work, in situ synchrotron X-ray micro-tomography is used to quantify barite growth rates in a micro-porous structure as a function of time during 13.5 hours with a resolution of 1 μm. Additionally, the 3D porous network at different time frames are used to simulate the flow velocities and calculate the permeability evolution during the experiment. The kinetics of barite growth under porous confinement is compared with the kinetics of barite growth on free surfaces in the same fluid composition. Results are discussed in terms of surface area normalization and the evolution of flow velocities as crystals fill the porous structure. During the initial hours the growth rate measured in porous media is similar to the growth rate on free surfaces. However, as the thinner flow paths clog the growth rate progressively decreases, which is correlated to a decrease of local flow velocity. The largest pores remain open, enabling growth to continue throughout the structure. Quantifying the dynamics of mineral precipitation kinetics in situ in 4D, has revealed the importance of using a time dependent reactive surface area and accounting for the local properties of the porous network, when formulating predictive models of mineral precipitation in porous media.
Transport and Deposition of Variably Charged Soil Colloids in Saturated Porous Media
DEFF Research Database (Denmark)
Sharma, Anu; Kawamoto, Ken; Møldrup, Per; de Jonge, Lis Wollesen; Komatsu, Toshiko
2011-01-01
A series of column experiments was conducted to investigate the transport and deposition of variably charged colloids in saturated porous media. Soil colloids with diameters <1 mm were extracted from a volcanic-ash soil from Nishi-Tokyo (referred to here as VAS colloids) and a red-yellow soil from...... of both soil colloids and sand grains, thereby increasing colloid deposition. This study emphasizes that the pH-dependent surface charge of both mobile colloids and receiving porous media needs more consideration in models for colloid and colloid-facilitated transport in soil....
Thermal performance of a double-pass solar collector with porous media
International Nuclear Information System (INIS)
Thermal performance of a double-pass solar collector has been developed for air following through the porous media. The porous media are arranged in different porosities to increase heat transfer, area density and the total heat transfer rate. A test collector was developed and tested indoors by varying the design features and operating conditions using a halogen-lamp simulator as a radiation source. An experimental setup as been designed and constructed. Comparisons of the theoretical and the experimental result have been conducted. This type of collector can be used for drying and heat applications such as solar industrial processes, space and solar drying of agricultural products
Mass transfer and precipitation of dispersed particles in inhomogeneous filtering porous media
International Nuclear Information System (INIS)
Calculational and theoretical technique which permits to describe stationary and nonstationary processes of mass transfer in porous media (filters) is suggested. The problem of two-phase mixture (liquid sodium and impurity) transfer in porous media is under consideration in the case when sodium contains finely dispersed micro- and nano-sized impurity. Distributions of deposits in the filters in dependence to filtration rate and degree of packing are presented. It is pointed out that density fluctuations of packing effects on filter restriction and efficiency. This effect is essential in the case of fine particles when diffusion precipitation becomes prevailing
Mesoscopic modeling of multi-physicochemical transport phenomena in porous media
Energy Technology Data Exchange (ETDEWEB)
Kang, Qinjin [Los Alamos National Laboratory; Wang, Moran [Los Alamos National Laboratory; Mukherjee, Partha P [Los Alamos National Laboratory; Lichtner, Peter C [Los Alamos National Laboratory
2009-01-01
We present our recent progress on mesoscopic modeling of multi-physicochemical transport phenomena in porous media based on the lattice Boltzmann method. Simulation examples include injection of CO{sub 2} saturated brine into a limestone rock, two-phase behavior and flooding phenomena in polymer electrolyte fuel cells, and electroosmosis in homogeneously charged porous media. It is shown that the lattice Boltzmann method can account for multiple, coupled physicochemical processes in these systems and can shed some light on the underlying physics occuning at the fundamental scale. Therefore, it can be a potential powerful numerical tool to analyze multi-physicochemical processes in various energy, earth, and environmental systems.
Effect of water content on dispersion of transferred solute in unsaturated porous media
International Nuclear Information System (INIS)
Estimating contaminant migration in the context of waste disposal and/or environmental remediation of polluted soils requires a complete understanding of the underlying transport processes. In unsaturated porous media, water content impacts directly on porous solute transfer. Depending on the spatial distribution of water content, the flow pathway is more complex than in water saturated media. Dispersivity is consequently dependent on water content. Non-reactive tracer experiments performed using unsaturated sand columns confirm the dependence of dispersivity with pore velocity; moreover, a power law relationship between dispersivity and water content is evidenced. (authors)
Multi-level adaptive simulation of transient two-phase flow in heterogeneous porous media
Chueh, C.C.
2010-10-01
An implicit pressure and explicit saturation (IMPES) finite element method (FEM) incorporating a multi-level shock-type adaptive refinement technique is presented and applied to investigate transient two-phase flow in porous media. Local adaptive mesh refinement is implemented seamlessly with state-of-the-art artificial diffusion stabilization allowing simulations that achieve both high resolution and high accuracy. Two benchmark problems, modelling a single crack and a random porous medium, are used to demonstrate the robustness of the method and illustrate the capabilities of the adaptive refinement technique in resolving the saturation field and the complex interaction (transport phenomena) between two fluids in heterogeneous media. © 2010 Elsevier Ltd.
A finite volume method for density driven flows in porous media
Directory of Open Access Journals (Sweden)
Hilhorst Danielle
2013-01-01
Full Text Available In this paper, we apply a semi-implicit finite volume method for the numerical simulation of density driven flows in porous media; this amounts to solving a nonlinear convection-diffusion parabolic equation for the concentration coupled with an elliptic equation for the pressure. We compute the solutions for two specific problems: a problem involving a rotating interface between salt and fresh water and the classical but difficult Henry’s problem. All solutions are compared to results obtained by running FEflow, a commercial software package for the simulation of groundwater flow, mass and heat transfer in porous media.
International Nuclear Information System (INIS)
Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH4/H2O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH4/H2O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver
Study of the radiolysis of water in porous media
International Nuclear Information System (INIS)
The understanding of the production of H2 in the radiolysis of water confined into pores of concrete is important for the disposal of radioactive waste. In order to describe the mechanisms of water radiolysis in such heterogeneous porous systems we have studied the behaviour under gamma radiation of water confined in porous silica glasses with pores going from 8 to 300 nm of diameter and meso-porous molecular sieves (MCM-41). The radiolytic yields of hydroxyl radicals, hydrated electron and dihydrogen, have been determined with respect to the pore size of materials. The increase of these radiolytic yields compared to those of free water allowed us to show a charge transfer from silica to confined water. On the other hand the kinetics of hydrated electron reactions measured by pulse radiolysis are not modified. (author)
International Nuclear Information System (INIS)
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain–domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as
Yuwen, Tairan; Post, Carol Beth; Skrynnikov, Nikolai R
2011-09-01
Many proteins have modular design with multiple globular domains connected via flexible linkers. As a simple model of such system, we study a tandem construct consisting of two identical SH3 domains and a variable-length Gly/Ser linker. When the linker is short, this construct represents a dumbbell-shaped molecule with limited amount of domain-domain mobility. Due to its elongated shape, this molecule efficiently aligns in steric alignment media. As the length of the linker increases, the two domains become effectively uncoupled and begin to behave as independent entities. Consequently, their degree of alignment drops, approaching that found in the (near-spherical) isolated SH3 domains. To model the dependence of alignment parameters on the length of the interdomain linker, we have generated in silico a series of conformational ensembles representing SH3 tandems with different linker length. These ensembles were subsequently used as input for alignment prediction software PALES. The predicted alignment tensors were compared with the results of experimental measurements using a series of tandem-SH3 samples in PEG/hexanol alignment media. This comparison broadly confirmed the expected trends. At the same time, it has been found that the isolated SH3 domain aligns much stronger than expected. This finding can be attributed to complex morphology of the PEG/hexanol media and/or to weak site-specific interactions between the protein and the media. In the latter case, there are strong indications that electrostatic interactions may play a role. The fact that PEG/hexanol does not behave as a simple steric media should serve as a caution for studies that use PALES as a quantitative prediction tool (especially for disordered proteins). Further progress in this area depends on our ability to accurately model the anisotropic media and its site-specific interactions with protein molecules. Once this ability is improved, it should be possible to use the alignment parameters as a
Ortiz, Aurélie U.; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier
2012-01-01
We performed ab initio calculations of the elastic constants of five flexible metal-organic frameworks: MIL-53(Al), MIL-53(Ga), MIL-47 and the square and lozenge structures of DMOF-1. Tensorial analysis of the elastic constants reveal a highly anisotropic elastic behavior, some deformation directions exhibiting very low Young's modulus and shear modulus. This anisotropy can reach a 400:1 ratio between the most rigid and weakest directions, in stark contrast with the case of non-flexible MOFs ...
Zhong-yan Liu; Huan-zhen Chen
2014-01-01
By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve numerically a kind of anisotropic diffusion models governed by the elliptic interface problems with discontinuous tensor-conductivity. The existence and uniqueness of the discrete scheme are proved, and an optimal-order energy-norm estimate and ${L}^{2}$ -norm estimate f...
Reconstruction of three-dimensional porous media using a single thin section.
Tahmasebi, Pejman; Sahimi, Muhammad
2012-06-01
The purpose of any reconstruction method is to generate realizations of two- or multiphase disordered media that honor limited data for them, with the hope that the realizations provide accurate predictions for those properties of the media for which there are no data available, or their measurement is difficult. An important example of such stochastic systems is porous media for which the reconstruction technique must accurately represent their morphology--the connectivity and geometry--as well as their flow and transport properties. Many of the current reconstruction methods are based on low-order statistical descriptors that fail to provide accurate information on the properties of heterogeneous porous media. On the other hand, due to the availability of high resolution two-dimensional (2D) images of thin sections of a porous medium, and at the same time, the high cost, computational difficulties, and even unavailability of complete 3D images, the problem of reconstructing porous media from 2D thin sections remains an outstanding unsolved problem. We present a method based on multiple-point statistics in which a single 2D thin section of a porous medium, represented by a digitized image, is used to reconstruct the 3D porous medium to which the thin section belongs. The method utilizes a 1D raster path for inspecting the digitized image, and combines it with a cross-correlation function, a grid splitting technique for deciding the resolution of the computational grid used in the reconstruction, and the Shannon entropy as a measure of the heterogeneity of the porous sample, in order to reconstruct the 3D medium. It also utilizes an adaptive technique for identifying the locations and optimal number of hard (quantitative) data points that one can use in the reconstruction process. The method is tested on high resolution images for Berea sandstone and a carbonate rock sample, and the results are compared with the data. To make the comparison quantitative, two sets
Multiscale modeling of high contrast brinkman equations with applications to deformable porous media
Brown, Donald
2013-06-18
Simulating porous media flows has a wide range of applications. Often, these applications involve many scales and multi-physical processes. A useful tool in the analysis of such problems in that of homogenization as an averaged description is derived circumventing the need for complicated simulation of the fine scale features. In this work, we recall recent developments of homogenization techniques in the application of flows in deformable porous media. In addition, homogenization of media with high-contrast. In particular, we recall the main ideas of the homogenization of slowly varying Stokes flow and summarize the results of [4]. We also present the ideas for extending these techniques to high-contrast deformable media [3]. These ideas are connected by the modeling of multiscale fluid-structure interaction problems. © 2013 American Society of Civil Engineers.
Characteristic evaluation of cooling technique using liquid nitrogen and metal porous media
Energy Technology Data Exchange (ETDEWEB)
Tanno, Yusuke; Ito, Satoshi; Hashizume, Hidetoshi [Department of Quantum Science and Energy Engineering, Graduate School of Engineering, Tohoku University, Sendai, Miyagi 980-8579 (Japan)
2014-01-29
A remountable high-temperature superconducting magnet, whose segments can be mounted and demounted repeatedly, has been proposed for construction and maintenance of superconducting magnet and inner reactor components of a fusion reactor. One of the issues in this design is that the performance of the magnet deteriorates by a local temperature rise due to Joule heating in jointing regions. In order to prevent local temperature rise, a cooling system using a cryogenic coolant and metal porous media was proposed and experimental studies have been carried out using liquid nitrogen. In this study, flow and heat transfer characteristics of cooling system using subcooled liquid nitrogen and bronze particle sintered porous media are evaluated through experiments in which the inlet degree of subcooling and flow rate of the liquid nitrogen. The flow characteristics without heat input were coincided with Ergun’s equation expressing single-phase flow in porous materials. The obtained boiling curve was categorized into three conditions; convection region, nucleate boiling region and mixed region with nucleate and film boiling. Wall superheat did not increase drastically with porous media after departure from nucleate boiling point, which is different from a situation of usual boiling curve in a smooth tube. The fact is important characteristic to cooling superconducting magnet to avoid its quench. Heat transfer coefficient with bronze particle sintered porous media was at least twice larger than that without the porous media. It was also indicated qualitatively that departure from nucleate boiling point and heat transfer coefficient depends on degree of subcooling and mass flow rate. The quantitative evaluation of them and further discussion for the cooling system will be performed as future tasks.
How methylhydroxyethylcellulose (MHEC) influences drying in porous media
Faiyas, A.P.A.; Erich, S.J.F.; Soestbergen, M. van; Huinink, H.P.; Adan, O.C.G.; Nijland, T.G.
2015-01-01
This article presents both an experimental as well as a theoretical study on the effect of MethylHy droxyEthylCellulose (MHEC) on drying in porous materials using Nuclear Magnetic Resonance Imaging (NMR). MHEC, a water soluble polymer, is normally added to glue mortars as a water retention agent in
Boundary Layer Flows in Porous Media with Lateral Mass Flux
DEFF Research Database (Denmark)
Nemati, H; H, Bararnia; Noori, F;
2015-01-01
Solutions for free convection boundary layers on a heated vertical plate with lateral mass flux embedded in a saturated porous medium are presented using the Homotopy Analysis Method and Shooting Numerical Method. Homotopy Analysis Method yields an analytic solution in the form of a rapidly...
Dispersive surface waves along partially saturated porous media
Chao, G.; Smeulders, D.M.J.; Van Dongen, M.E.H.
2006-01-01
Numerical results for the velocity and attenuation of surface wave modes in fully permeable liquid/partially saturated porous solid plane interfaces are reported in a broadband of frequencies (100 Hz–1 MHz). A modified Biot theory of poromechanics is implemented which takes into account the interact
Transport and straining of suspensions in porous media: Experimental and theoretical study
Directory of Open Access Journals (Sweden)
Aji Kaiser
2012-01-01
Full Text Available An analytical model for deep bed filtration of suspension in porous media and straining under size exclusion capture mechanism is developed and validated by laboratory tests on suspension flow in engineered media. The fraction of swept particles is introduced in the inlet boundary condition. The model is successfully matched with the results from column experiments, predicting the suspended particle concentrations at the outlet.
Influence of temporal fluctuations and spatial heterogeneity on pollution transport in porous media
Elfeki, A. M. M.; Uffink, G.J.M.; Lebreton, S.
2011-01-01
The combined influence of temporal fluctuations and spatial heterogeneity on non-reactive solute transport mechanisms in porous media can be understood by performing simulations of steady and unsteady flow and transport in heterogeneous media. The study focuses on issues such as the degree of heterogeneity, correlation length, separation of the combined effects of temporal and spatial variations, and ergodicity conditions under unsteady flow conditions. It is shown that the effect of temporal...
Potential of Porous-Media Combustion Technology as Applied to Internal Combustion Engines
Directory of Open Access Journals (Sweden)
Miroslaw Weclas
2010-01-01
Full Text Available The paper summarizes the knowledge concerning porous media combustion techniques as applied in engines. One of most important reasons of this review is to introduce this still not well known technology to researchers doing with internal combustion engine processes, thermal engines, reactor thermodynamics, combustion, and material science. The paper gives an overview of possible applications of a highly porous open cell structures to in-cylinder processes. This application means utilization of unique features of porous media for supporting engine processes, especially fuel distribution in space, vaporization, mixing with air, heat recuperation, ignition and combustion. There are three ways for applying porous medium technology to engines: support of individual processes, support of homogeneous combustion process (catalytic and non-catalytic with temperature control, and utilization of the porous structure as a heat capacitor only. In the first type of application, the porous structure may be utilized for fuel vaporization and improved fuel distribution in space making the mixture more homogeneous in the combustion chamber. Extension of these processes to mixture formation and ignition inside a combustion reactor allows the realization of a homogeneous and a nearly zero emissions level combustion characterized by a homogeneous temperature field at reduced temperature level.
Wacker, Josias B; Parashar, Virendra K; Gijs, Martin A M
2011-04-19
We report the microfluidic chip-based assembly of colloidal silanol-functionalized silica nanoparticles using monodisperse water-in-oil droplets as templates. The nanoparticles are linked via silica bridges, thereby forming superstructures that range from doublets to porous spherical or rod-like micro-objects. Adding magnetite nanoparticles to the colloid generates micro-objects that can be magnetically manipulated. We functionalized such magnetic porous assemblies with horseradish peroxidase and demonstrate the catalytic binding of fluorescent dye-labeled tyramide over the complete effective surface of the superstructure. Such nanoparticle assemblies permit easy manipulation and recovery after a heterogeneous catalytic process while providing a large surface similar to that of the individual nanoparticles. PMID:21417232
History-independence of steady-state in simultaneous two-phase flow through porous media
Erpelding, Marion; Tallakstad, Ken Tore; Hansen, Alex; Flekkøy, Eirik Grude; Måløy, Knut Jørgen
2013-01-01
It is well known that the transient behavior during drainage or imbibition in multiphase flow in porous media strongly depends on the history and initial condition of the system. However, when the steady-state regime is reached and both drainage and imbibition take place at the pore level, the influence of the evolution history and initial preparation is an open question. Here, we present an extensive experimental and numerical work investigating the history dependence of simultaneous steady-state two-phase flow through porous media. Our experimental system consists of a Hele-Shaw cell filled with glass beads which we model numerically by a network of disordered pores transporting two immiscible fluids. From the measurements of global pressure evolution, histogram of saturation and cluster-size distributions, we find that when both phases are flowing through the porous medium, the steady state does not depend on the initial preparation of the system or on the way it has been reached.
Local boundary conditions for NMR-relaxation in digitized porous media
DEFF Research Database (Denmark)
Ögren, Hans Magnus
2014-01-01
We narrow the gap between simulations of nuclear magnetic resonance dynamics on digitaldomains (such as CT-images) and measurements in D-dimensional porous media. We point out with twobasic domains, the ball and the cube in D dimensions, that due to a digitaluncertainty in representing the real...
LLUVIA-II: A program for two-dimensional, transient flow through partially saturated porous media
International Nuclear Information System (INIS)
LLUVIA-II is a program designed for the efficient solution of two- dimensional transient flow of liquid water through partially saturated, porous media. The code solves Richards equation using the method-of-lines procedure. This document describes the solution procedure employed, input data structure, output, and code verification
On the Coupling of Incompressible Stokes or Navier–Stokes and Darcy Flows Through Porous Media
Girault, V.
2012-11-03
In this chapter, we present the theoretical analysis of coupled incompressible Navier-Stokes (or Stokes) flows and Darcy flows with the Beavers-Joseph-Saffman interface condition. We discuss alternative interface and porous media models. We review some finite element methods used by several authors in this coupling and present numerical experiments.
Elliptic random-walk equation for suspension and tracer transport in porous media
DEFF Research Database (Denmark)
Shapiro, Alexander; Bedrikovetsky, P. G.
2008-01-01
We propose a new approach to transport of the suspensions and tracers in porous media. The approach is based on a modified version of the continuous time random walk (CTRW) theory. In the framework of this theory we derive an elliptic transport equation. The new equation contains the time and the...
International Nuclear Information System (INIS)
Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30–500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations
The in situ microbial enhanced oil recovery in fractured porous media
Energy Technology Data Exchange (ETDEWEB)
Soudmand-asli, Alireza; Ayatollahi, S. Shahab; Zareie, Maryam [School of Chemical and Petroleum Engineering, Shiraz University, Shiraz (Iran); Mohabatkar, Hassan [Department of Biology, School of Sciences, Shiraz University, Shiraz (Iran); Shariatpanahi, S. Farzad [Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran (Iran)
2007-08-15
These experiments aim to investigate the microbial enhanced oil recovery (MEOR) technique in fractured porous media using etched-glass micromodels. Three identically patterned micromodels with different fracture angle orientation of inclined, vertical and horizontal with respect to the flow direction were utilized. A non-fractured model was also used to compare the efficiency of MEOR in fractured and non-fractured porous media. Two types of bacteria were employed: Bacillus subtilis (a biosurfactant-producing bacterium) and Leuconostoc mesenteroides (an exopolymer-producing bacterium). The results show that higher oil recovery efficiency can be achieved by using biosurfactant-producing bacterium in fractured porous media. Further investigation on the effect of the mentioned bacteria on oil viscosity, porous media permeability and wettability suggests that the plugging of matrix-fracture interfaces by an exopolymer is the main reason for the low performance of the exopolymer-producing bacterium. Oil viscosity reduction as well as the reduction of IFT was also found to be the reason for better microbial recovery efficiencies of biosurfactant-producing bacterium in the fractured models. (author)
Particle enhanced foam flow in porous media near the critical micelle concentration
Thorat, R.R.
2016-01-01
This thesis was performed in the framework of ErasmusMundus EU-INDIA scholarship programme. The main goal is to elucidate particle enhanced foam flow (surfactant water and nitrogen gas) in porous media near the critical micelle concentration. The thesis is divided in four parts: in the first part th
Energy Technology Data Exchange (ETDEWEB)
Xiang, Aishuang [Princeton University, Chemical and Biological Engineering Department (United States); Yan, Weile [Texas Tech University, Civil and Environmental Engineering (United States); Koel, Bruce E., E-mail: bkoel@princeton.edu [Princeton University, Chemical and Biological Engineering Department (United States); Jaffe, Peter R., E-mail: jaffe@princeton.edu [Princeton University, Civil and Environmental Engineering Department (United States)
2013-07-15
Iron oxide and iron nanoparticles (NPs) have been used effectively for environmental remediation, but are limited in their applications by strong retention in groundwater-saturated porous media. For example, delivery of NPs to large groundwater reservoirs would require large numbers of injection wells. To address this problem, we have explored polymer coatings as a surface engineering strategy to enhance transport of oxide nanoparticles in porous media. We report here on our studies of 2-line ferrihydrite NPs and the influence of poly (acrylic acid) (PAA) polymer coatings on the colloidal stability and transport in natural sand-packed column tests simulating flow in groundwater-saturated porous media. Measurements were also made of zeta potential, hydrodynamic diameter, and polymer adsorption and desorption properties. The coated NPs have a diameter range of 30-500 nm. We found that NP transport was improved by PAA coating and that the transport properties could be tuned by adjusting the polymer concentration. Our results demonstrate that a high stability of oxide particles and improved transport can be achieved in groundwater-saturated porous media by introducing negatively charged polyelectrolytes and optimizing polymer concentrations.
BDDC for mixed-hybrid formulation of flow in porous media with combined mesh dimensions
Czech Academy of Sciences Publication Activity Database
Šístek, Jakub; Březina, J.; Sousedík, B.
2015-01-01
Roč. 22, č. 6 (2015), s. 903-929. ISSN 1070-5325 R&D Projects: GA ČR GA14-02067S Institutional support: RVO:67985840 Keywords : BDDC * fractured porous media * iterative substructuring Subject RIV: BA - General Mathematics Impact factor: 1.322, year: 2014 http://onlinelibrary.wiley.com/doi/10.1002/nla.1991
Brull, Stéphane
2008-01-01
Consider a model of flow of two compressible or incompressible and immiscible phases in a three dimensional porous media. The existence of a weak solution is obtained for two compressible immiscible fluids when the porosity depends on the global pressure and on the space variable.
Effects of gravity and inlet location on a two-phase countercurrent imbibition in porous media
El-Amin, M.F.
2012-01-01
We introduce a numerical investigation of the effect of gravity on the problem of two-phase countercurrent imbibition in porous media. We consider three cases of inlet location, namely, from, side, top, and bottom. A 2D rectangular domain is considered for numerical simulation. The results indicate that gravity has a significant effect depending on open-boundary location.
Transport and Retention of Colloids in Porous Media: Does Shape Really Matter?
The effect of particle shape on its transport and retention in porous media was evaluated by stretching carboxylate-modified fluorescent polystyrene spheres into rod shapes with aspect ratios of 2:1 and 4:1. Quartz crystal microbalance with dissipation experiments (QCM-D) were c...
Interactions between bacteria and solid surfaces in relation to bacterial transport in porous media.
Rijnaarts, H.H.M.
1994-01-01
Interactions between bacteria and solid surfaces strongly influence the behaviour of bacteria in natural and engineered ecosystems. Many biofilm reactors and terrestrial environments are porous media. The purpose of the research presented in this thesis is to gain a better insight into the basic mec
Directory of Open Access Journals (Sweden)
Yan Li-Mei
2013-01-01
Full Text Available The purpose of this paper is to extend the homotopy perturbation method to fractional heat transfer and porous media equations with the help of the Laplace transform. The fractional derivatives described in this paper are in the Caputo sense. The algorithm is demonstrated to be direct and straightforward, and can be used for many other non-linear fractional differential equations.
Directory of Open Access Journals (Sweden)
Zhe Yin
2013-01-01
Full Text Available We study symmetric finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric finite volume element approximations are convergent with optimal order in L2-norm. Numerical example is presented to illustrate the accuracy of our method.
On the Stream Function-Vorticity Finite Element Formulation for Incompressible Flow in Porous Media
Directory of Open Access Journals (Sweden)
Abdellatif Agouzal
2014-01-01
Full Text Available Stream function-vorticity finite element formulation for incompressible flow in porous media is presented. The model consists of the heat equation, the equation for the concentration, and the equations of motion under the Darcy law. The existence of solution for the discrete problem is established. Optimal a priori error estimates are given.
Zhe Yin; Qiang Xu
2013-01-01
We study symmetric finite volume element approximations for two-dimensional parabolic integrodifferential equations, arising in modeling of nonlocal reactive flows in porous media. It is proved that symmetric finite volume element approximations are convergent with optimal order in L2-norm. Numerical example is presented to illustrate the accuracy of our method.
Application of X-ray CT investigation of CO2-brine flow in porous media
International Nuclear Information System (INIS)
A clear understanding of two-phase flows in porous media is important for investigating CO2 geological storage. In this study, we conducted an experiment of CO2/brine flow process in porous media under sequestration conditions using X-ray CT technique. The flow properties of relative permeability, porosity heterogeneity, and CO2 saturation were observed in this experiment. The porous media was packed with glass beads having a diameter of 0.2 mm. The porosity distribution along the flow direction is heterogeneous owing to the diameter and shape of glass beads along the flow direction. There is a relationship between CO2 saturation and porosity distribution, which changes with different flow rates and fractional flows. The heterogeneity of the porous media influences the distribution of CO2; moreover, gravity, fractional flows, and flow rates influence CO2 distribution and saturation. The relative permeability curve was constructed using the steady-state method. The results agreed well with the relative permeability curve simulated using pore-network model. (orig.)
Existence and Uniqueness of Solutions to the Stochastic Porous Media Equations of Saturated Flows
International Nuclear Information System (INIS)
This paper proves the existence and uniqueness of nonnegative solutions for the stochastic porous media equations with multiplicative noise, infinite jump and discontinuous diffusivity function relevant in description of saturation processes in underground water infiltration in a bounded domain of R3.
Modelling multiphase flow inside the porous media of a polymer electrolyte membrane fuel cell
DEFF Research Database (Denmark)
Berning, Torsten; Kær, Søren Knudsen
2011-01-01
Transport processes inside polymer electrolyte membrane fuel cells (PEMFC’s) are highly complex and involve convective and diffusive multiphase, multispecies flow through porous media along with heat and mass transfer and electrochemical reactions in conjunction with water transport through an el...
General slip regime permeability model for gas flow through porous media
Zhou, Bo; Jiang, Peixue; Xu, Ruina; Ouyang, Xiaolong
2016-07-01
A theoretical effective gas permeability model was developed for rarefied gas flow in porous media, which holds over the entire slip regime with the permeability derived as a function of the Knudsen number. This general slip regime model (GSR model) is derived from the pore-scale Navier-Stokes equations subject to the first-order wall slip boundary condition using the volume-averaging method. The local closure problem for the volume-averaged equations is studied analytically and numerically using a periodic sphere array geometry. The GSR model includes a rational fraction function of the Knudsen number which leads to a limit effective permeability as the Knudsen number increases. The mechanism for this behavior is the viscous fluid inner friction caused by converging-diverging flow channels in porous media. A linearization of the GSR model leads to the Klinkenberg equation for slightly rarefied gas flows. Finite element simulations show that the Klinkenberg model overestimates the effective permeability by as much as 33% when a flow approaches the transition regime. The GSR model reduces to the unified permeability model [F. Civan, "Effective correlation of apparent gas permeability in tight porous media," Transp. Porous Media 82, 375 (2010)] for the flow in the slip regime and clarifies the physical significance of the empirical parameter b in the unified model.
Qualitative experiment of unsaturated water vadose through two-layer porous media
International Nuclear Information System (INIS)
The method and main results of qualitative experiment of unsaturated water vadose through two-layer porous media is introduced in this paper. Two types of compositions of porous media, i.e. coarse-fine quartz sand (Type I) and quartz sand-loess (Type II), were used for the experiment. The experiment box is made of glass. And tracers used for the experiment are Rhodamine B and Eosin Y. The vadose path and expansion of tracers through two-layer porous media were observed under artificial sprinkling from top surface for 'top release' of Type I and II as well as for 'middle release' of Type II, respectively. The detouring flow phenomenon of unsaturated water through two-layer porous media is observed, whether they are made up of coarse and fine quartz sand or quartz sand and loess, even though the coarse particle layer is very thin. An obvious space is formed at the lower part of the coarse particle layer at longer time of releasing tracer from the top. And a narrow tracer zone is formed at the lower part of coarse particle layer for releasing tracer from mixed tracer and quartz sand layer in the middle of loess. The complementary scenario is observed for both mentioned above. Moreover, the tracer, which is initially put in coarse particle layer within loess, expanded up and down into loess and the expansion extent increases with retention period under no water sprinkling
Numerical simulation of fluid particle transport through porous media
Najam, S
1999-01-01
The work presented in this report aims at the numerical simulation of fluid particle transport through porous medium. For this purpose various mathematical models and numerical schemes are studied. A mathematical model is derived based on Darcy's Law and continuity equation, it is discretized using finite difference schemes and Guass Seidal iterative procedure is used as a solver. For transient problems Crank Nicolson's method is used. Finally a software in Visual Basic 3.0 is developed that can simulate fluid transport through porous medium by promoting the user to specify the material and geometrical properties of the medium. The unknown pressure heads can be determined at various nodal points and the results are visualized by the colored grid display or by the surface plots.
Diffusive and thermodiffusive transfer of magnetic nanoparticles in porous media.
Sints, Viesturs; Blums, Elmars; Maiorov, Michail; Kronkalns, Gunars
2015-05-01
Experimental results on mass transfer within a thin porous layer saturated with ferrofluid are outlined in this paper. From the analysis of particle concentration distribution across the layer it is shown that both the mass diffusion and the Soret coefficients of nanoparticles are remarkably less than those measured in free fluid. The particle transport coefficient changes due to an external uniform magnetic field qualitatively well agree with the predictions of existing theoretical research. The magnetic field that is oriented transversely to the porous layer causes an increase in the diffusion coefficient and a decrease in the Soret coefficient whilst the longitudinal field causes a reduction of the mass diffusion and an intensification of the particle thermodiffusion. PMID:25957178
Slug flow model for infiltration into fractured porous media
International Nuclear Information System (INIS)
A model for transient infiltration into a periodically fractured porous layer is presented. The fracture is treated as a permeable-walled slot and the moisture distribution is in the form of a slug being an advancing meniscus. The wicking of moisture from the fracture to the unsaturated porous matrix is a nonlinear diffusion process and is approximately by self-similar solutions. The resulting model is a nonlinear Volterra integral equation with a weakly singular kernel. Numerical analysis provides solutions over a wide range of the parameter space and reveals the asymptotic forms of the penetration of this slug in terms of dimensionless variables arising in the model. The numerical solutions corroborate asymptotic results given earlier by Nitao and Buscheck (1991), and by Martinez (1988). Some implications for the transport of liquid in fractured rock are discussed
Random porous media and magnetic separation of magnetic colloids
Baars, R.J.
2016-01-01
The separation of magnetic nanoparticles from a stable dispersion is a challenging task because of the nanoparticles' thermal motion and relatively small magnetic moments. Strong magnetic gradients are required to capture such particles, which can be achieved in a high-gradient magnetic separator. In this work, several facets of this separation process are studied by simulation and experiment. Our method uses a fibrous porous separation matrix comprising magnetisable metallic fibres acting as...
Transport properties of porous media from the microstructure
Energy Technology Data Exchange (ETDEWEB)
Torquato, S. [Princeton Univ., NJ (United States)
1995-12-31
The determination of the effective transport properties of a random porous medium remains a challenging area of research because the properties depend on the microstructure in a highly complex fashion. This paper reviews recent theoretical and experimental progress that we have made on various aspects of this problem. A unified approach is taken to characterize the microstructure and the seemingly disparate properties of the medium.
Visualization of gas flow and diffusion in porous media
Kaiser, Lana G.; Meersmann, Thomas; Logan, John W.; Pines, Alexander
2000-01-01
The transport of gases in porous materials is a crucial component of many important processes in science and technology. In the present work, we demonstrate how magnetic resonance microscopy with continuous flow laser-polarized noble gases makes it possible to “light up” and thereby visualize, with unprecedented sensitivity and resolution, the dynamics of gases in samples of silica aerogels and zeolite molecular sieve particles. The “polarization-weighted” images of ...
Molecular dynamics in porous media studied by nuclear magnetic resonance techniques
International Nuclear Information System (INIS)
Field cycling NMR relaxometry was used to study dynamics of fluids under confinement in different scenarios: fluids flowing through porous media, fluids partially filling porous media and polymer melts in nanoscopic pores. Diffusion in partially filled porous media was also studied with the aid of an NMR diffusometry technique. It is shown that hydrodynamic flow influences the spin-lattice relaxation rate of water confined in mesoscopic porous media under certain conditions. The effect is predicted by an analytical theory and Monte Carlo simulations, and confirmed experimentally by field-cycling NMR relaxometry. Field-cycling NMR relaxometry has been applied to polar and non polar adsorbates in partially filled silica porous glasses. The dependence of the spin-lattice relaxation rate on the filling degree shows that limits for slow and fast exchange between different phases can be distinguished and identified depending on the pore size and polarity of the solvents. Diffusion in the same unsaturated systems was studied with the aid of NMR diffusometry technique. The effective diffusion coefficient of solvents with different polarities displays opposite tendencies as a function of the liquid content. A two-phase fast exchange model including Knudsen and ordinary diffusion and different effective tortuosities is presented accounting for these phenomena. In the case of polymer melts confined in narrow artificial tubes of a porous solid matrix with variable diameter (9 to 57 nm), the characteristics of reptation were experimentally verified using proton field cycling NMR relaxometry technique. This observation is independent of the molecular mass and pore size. In bulk, the same polymer melts show either Rouse or renormalized Rouse dynamics, depending on the molecular mass. The polymers under confinement show features specific for reptation even with a pore diameter 15 times larger than the Flory radius while bulk melts of the same polymers do not. (orig.)
Interface effects on multiphase flows in porous media
Energy Technology Data Exchange (ETDEWEB)
Zhang, Duan Z [Los Alamos National Laboratory
2008-01-01
Most models for multiphase flows in a porous medium are based on the straightforward extension of Darcy's law, in which each fluid phase is driven by its own pressure gradient. The pressure difference between the phases is thought to be an effect of surface tension and is called capillary pressure. Independent of Darcy's law, for liquid imbibition processes in a porous material, diffusion models are sometime used. In this paper, an ensemble phase averaging technique for continuous multi phase flows is applied to derive averaged equations and to examine the validity of the commonly used models. The closure for the averaged equations is quite complicated for general multiphase flows in a porous material. For flows with a small ratio of the characteristic length of the phase interfaces to the macroscopic length, the closure relations can be simplified significantly by an approximation with a second order error in the length ratio. The approximation reveals the information of the length scale separation obscured during the ensemble averaging process, and leads to an equation system similar to Darcy's law, but with additional terms. Based on interactions on phase interfaces, relations among closure quantities are studied.
Optical Analyses of Flow in and Transformation of Deformable Porous Media
Kvalheim Eriksen, Fredrik; Toussaint, Renaud; Jørgen Måløy, Knut; Turkaya, Semih; Flekkøy, Eirik
2014-05-01
This study focuses on the characterization of fluid flow through transforming porous media and the simultaneous transformation of the porous media itself. The motivation is to investigate how fluid flow and deformation of the porous media influence each other, which are complex feedback processes. As a source of data, we have performed controlled experiments of air injection into deformable porous media samples created in the lab. The samples are transparent, horizontal and quasi 2-dimensional, enabling us to visually observe fluid flow through a slice of deformable porous media. The experiments are recorded from above with a digital high-speed camera, providing the raw-data as image sequences with high framerates (250 - 1000 images/s). Analyses on the fluid flow are based on the spatial properties of the observed flow patterns. The spatial properties are derived digitally after the raw-images are transformed into binary images of the flow patterns. Analyses on the transformation of the porous media are based on the frame-to-frame displacement fields of the particles. Such displacement fields are obtained by evaluating a sequence of raw images with a Particle Image Velocimetry software. We aim to show connections between flow observations and porous media observations. Two different kinds of experiments are analyzed. The first is two-phase flow in deformable porous media, and the other is aerofracturing in dry, fine-grained granular packings. The samples for the two-phase flow experiments are created in a circular Hele-Shaw cell with the inlet in the center and the outlet along its rim. Inside the cell, glass beads form a monolayer of deformable porous media saturated with a viscous glycerol-water solution. During an experiment, air is injected into the center of the sample with a constant overpressure, which will force the air to drain the sample radially outwards. This two-phase flow is an unstable event creating fingering patterns of air, while at the same time
Three-Dimensional Imaging and Quantification of Biomass and Biofilms in Porous Media
Energy Technology Data Exchange (ETDEWEB)
Dorthe Wildenschild
2012-10-10
A new method to resolve biofilms in three dimensions in porous media using high-resolution synchrotron-based x-ray computed microtomography (CMT) has been developed. Imaging biofilms in porous media without disturbing the natural spatial arrangement of the porous media and associated biofilm has been a challenging task, primarily because porous media generally precludes conventional imaging via optical microscopy; x-ray tomography offers a potential alternative. One challenge for using this method is that most conventional x-ray contrast agents are water-soluble and easily diffuse into biofilms. To overcome this problem, silver-coated microspheres were added to the fluid phase to create an x-ray contrast that does not diffuse into the biofilm mass. Using this approach, biofilm imaging in porous media was accomplished with sufficient contrast to differentiate between the biomass- and fluid-filled pore spaces. The method was validated by using a two-dimensional micro-model flow cell where both light microscopy and CMT imaging were used to im age the biofilm. The results of this work has been published in Water Resources Research (Iltis et al., 2010). Additional work needs to be done to optimize this imaging approach, specifically, we find that the quality of the images are highly dependent on the coverage of the biofilm with Ag particles, - which means that we may have issues in dead-end pore space and for very low density (fluffy) biofilms. What we can image for certain with this technique is the biofilm surface that is well-connected to flow paths and thus well-supplied with nutrients etc.
Lattice Boltzmann Simulation of Permeability and Tortuosity for Flow through Dense Porous Media
Directory of Open Access Journals (Sweden)
Ping Wang
2014-01-01
Full Text Available Discrete element method (DEM is used to produce dense and fixed porous media with rigid mono spheres. Lattice Boltzmann method (LBM is adopted to simulate the fluid flow in interval of dense spheres. To simulating the same physical problem, the permeability is obtained with different lattice number. We verify that the permeability is irrelevant to the body force and the media length along flow direction. The relationships between permeability, tortuosity and porosity, and sphere radius are researched, and the results are compared with those reported by other authors. The obtained results indicate that LBM is suited to fluid flow simulation of porous media due to its inherent theoretical advantages. The radius of sphere should have ten lattices at least and the media length along flow direction should be more than twenty radii. The force has no effect on the coefficient of permeability with the limitation of slow fluid flow. For mono spheres porous media sample, the relationship of permeability and porosity agrees well with the K-C equation, and the tortuosity decreases linearly with increasing porosity.
Full 3D dispersion curve solutions for guided waves in generally anisotropic media
Hernando Quintanilla, F.; Lowe, M. J. S.; Craster, R. V.
2016-02-01
Dispersion curves of guided waves provide valuable information about the physical and elastic properties of waves propagating within a given waveguide structure. Algorithms to accurately compute these curves are an essential tool for engineers working in non-destructive evaluation and for scientists studying wave phenomena. Dispersion curves are typically computed for low or zero attenuation and presented in two or three dimensional plots. The former do not always provide a clear and complete picture of the dispersion loci and the latter are very difficult to obtain when high values of attenuation are involved and arbitrary anisotropy is considered in single or multi-layered systems. As a consequence, drawing correct and reliable conclusions is a challenging task in the modern applications that often utilize multi-layered anisotropic viscoelastic materials. These challenges are overcome here by using a spectral collocation method (SCM) to robustly find dispersion curves in the most complicated cases of high attenuation and arbitrary anisotropy. Solutions are then plotted in three-dimensional frequency-complex wavenumber space, thus gaining much deeper insight into the nature of these problems. The cases studied range from classical examples, which validate this approach, to new ones involving materials up to the most general triclinic class for both flat and cylindrical geometry in multi-layered systems. The apparent crossing of modes within the same symmetry family in viscoelastic media is also explained and clarified by the results. Finally, the consequences of the centre of symmetry, present in every crystal class, on the solutions are discussed.
Time domain numerical modeling of wave propagation in 2D acoustic / porous media
Chiavassa, Guillaume
2011-01-01
Numerical methods are developed to simulate the wave propagation in 2D heterogeneous fluid / poroelastic media. Wave propagation is described by the usual acoustics equations (in the fluid medium) and by the low-frequency Biot's equations (in the porous medium). Interface conditions are introduced to model various hydraulic contacts between the two media: open pores, sealed pores, and imperfect pores. Well-possedness of the initial-boundary value problem is proven. Cartesian grid numerical methods previously developed in porous heterogeneous media are adapted to the present context: a fourth-order ADER scheme with Strang splitting for time-marching; a space-time mesh-refinement to capture the slow compressional wave predicted by Biot's theory; and an immersed interface method to discretize the interface conditions and to introduce a subcell resolution. Numerical experiments and comparisons with exact solutions are proposed for the three types of interface conditions, demonstrating the accuracy of the approach...
Xu, Jianping
2016-04-01
In this letter we explore the propagation behavior of permeability reduction due to particulate transport in heterogeneous porous media. By simulating an advection-dispersion–based model we find that an attenuating sequence exists in terms of the propagation of particle concentration, permeability reduction and heterogeneity perturbation. The advancing speed of the fronts of the mentioned physical quantities attenuates successively from const to \\text{const}(1/n)1/t1-1/n to \\text{const}1/t (where n > 1 and t denotes time) regardless of the heterogeneity patterns. Then we move on to discuss the micro-dynamics of the propagation sequence, involving how it originates and how it connects with the macroscopic results. Moreover, exploiting the propagation mechanism enables us to know the condition under which we can apply the hypothesis of media homogeneity to describe the behavior of the particulate transport system in porous media.
Critique of Burnett-Frind dispersion tensor for axisymmetric porous media
Energy Technology Data Exchange (ETDEWEB)
Lichtner, Peter C [Los Alamos National Laboratory; Kelkar, Sharad [Los Alamos National Laboratory; Robinson, Bruce A [Los Alamos National Laboratory
2008-01-01
This technical note provides a critique of the Burnett and Frind (1987) dispersion tensor for porous media with axial symmetry based on a previous publication by the authors (Lichtner et aI., 2002). In this work a new approach is used based on unit eigenvectors which simplifies the analysis. It is demonstrated that the Burnett-Frind dispersion tensor, although acceptable for small values of the vertical velocity, produces the incorrect behavior for both longitudinal and transverse dispersivity as the flow velocity varies from parallel to perpendicular to the axis of symmetry. A new form of the dispersion tensor is derived for axially symmetric porous media involving four dispersivity coefficients corresponding to longitudinal and transverse dispersion in horizontal and vertical directions, defined as perpendicular and parallel to the axis of symmetry, respectively. This new dispersion tensor corrects two fundamental problems with the dispersion tensor proposed by Burnett and Frind (1987) for axial symmetric media.
Ortiz, Aurélie U; Boutin, Anne; Fuchs, Alain H; Coudert, François-Xavier
2012-11-01
We performed ab initio calculations of the elastic constants of five flexible metal-organic frameworks (MOFs): MIL-53(Al), MIL-53(Ga), MIL-47, and the square and lozenge structures of DMOF-1. Tensorial analysis of the elastic constants reveals a highly anisotropic elastic behavior, some deformation directions exhibiting very low Young's modulus and shear modulus. This anisotropy can reach a 400:1 ratio between the most rigid and weakest directions, in stark contrast to the case of nonflexible MOFs such as MOF-5 and ZIF-8. In addition, we show that flexible MOFs can display extremely large negative linear compressibility. These results uncover the microscopic roots of stimuli-induced structural transitions in flexible MOFs, by linking the local elastic behavior of the material and its multistability. PMID:23215398
Homogenization of complex flows in porous media and applications
International Nuclear Information System (INIS)
Our work is a contribution to the understanding of transport of solutes in a porous medium. It has applications in groundwater contaminant transport, CO2 sequestration, underground storage of nuclear waste, oil reservoir simulations. We derive expressions for the effective Taylor dispersion taking into account convection, diffusion, heterogeneous geometry of the porous medium and reaction phenomena. Microscopic phenomena at the pore scale are up-scaled to obtain effective behaviour at the observation scale. Method of two-scale convergence with drift from the theory of homogenization is employed as an up-scaling technique. In the first part of our work, we consider reactions of mass exchange type, adsorption/desorption, at the fluid-solid interface of the porous medium. Starting with coupled convection-diffusion equations for bulk and surface concentrations of a single solute, coupled via adsorption isotherms, at a microscopic scale we derive effective equations at the macroscopic scale. We consider the microscopic system with highly oscillating coefficients in a strong convection regime i.e., large Peclet regime. The presence of strong convection in the microscopic model leads to the induction of a large drift in the concentration profiles. Both linear and nonlinear adsorption isotherms are considered and the results are compared. In the second part of our work we generalize our results on single component flow to multicomponent flow in a linear setting. In the latter case, the effective parameters are obtained using Factorization principle and two-scale convergence with drift. The behaviour of effective parameters with respect to Peclet number and Damkohler number are numerically studied. Freefem++ is used to perform numerical tests in two dimensions. (author)
Entropy-induced separation of star polymers in porous media
International Nuclear Information System (INIS)
We present a quantitative picture of the separation of star polymers in a solution where part of the volume is influenced by a porous medium. To this end, we study the impact of long-range-correlated quenched disorder on the entropy and scaling properties of f-arm star polymers in a good solvent. We assume that the disorder is correlated on the polymer length scale with a power-law decay of the pair correlation function g(r)∼r-a. Applying the field-theoretical renormalization group approach we show in a double expansion in ε=4-d and δ=4-a that there is a range of correlation strengths δ for which the disorder changes the scaling behavior of star polymers. In a second approach we calculate for fixed space dimension d=3 and different values of the correlation parameter a the corresponding scaling exponents γf that govern entropic effects. We find that γf-1, the deviation of γf from its mean field value is amplified by the disorder once we increase δ beyond a threshold. The consequences for a solution of diluted chain and star polymers of equal molecular weight inside a porous medium are that star polymers exert a higher osmotic pressure than chain polymers and in general higher branched star polymers are expelled more strongly from the correlated porous medium. Surprisingly, polymer chains will prefer a stronger correlated medium to a less or uncorrelated medium of the same density while the opposite is the case for star polymers
International Nuclear Information System (INIS)
The limited transport of nanoscale zero-valent iron (nZVI) in porous media is a major obstacle to its widespread application for in situ groundwater remediation. Previous studies on nZVI transport have mainly been carried out in quartz porous media. The effect of carbonate minerals, which often predominate in aquifers, has not been evaluated to date. This study assessed the influence of the carbonate minerals in porous media on the transport of polyacrylic acid modified nZVI (PAA-nZVI). Increasing the proportion of carbonate sand in the porous media resulted in less transport of PAA-nZVI. Predicted travel distances were reduced to a few centimeters in pure carbonate sand compared to approximately 1.6 m in quartz sand. Transport modeling showed that the attachment efficiency and deposition rate coefficient increased linearly with increasing proportion of carbonate sand. -- Highlights: •Mobility of nZVI NANOFER 25S was investigated in different saturated porous media. •nZVI transport in carbonate-containing porous media was elucidated and quantified. •Mobility of polyacrylic acid-coated nZVI significantly ceases in carbonate-containing media. •Deposition rate coefficient increases linearly with increasing carbonate content. -- Carbonate minerals in porous aquifers significantly decrease the mobility of commercially available polyacrylic acid modified nanoscale zero-valent iron
Parallel Instabilities in Two-Phase Flow in Porous Media
Vassvik, Morten
2014-01-01
Two immiscible fluids flowing in parallel with respect to the interface separating them in a two-dimensional porous medium has been studied using a dynamic network model. Two immiscible fluids, one wetting and the other non-wetting moving in parallel is a complicated process that haven't gotten much attention. It is found that there is a competition between imbibition and drainage displacements at the pore-scale along the front separating the two fluids due to an external force driving b...
Flow visualization in heat-generating porous media
International Nuclear Information System (INIS)
The work reported is in support of the Sandia Post-Accident Heat Removal Program, in which simulated LMFBR beds will be subjected to in-pile heating in the ACPR (Annular Core Pulsed Reactor). Flow visualization experiments were performed to gain some insight into the flow patterns and temperature distributions in a fluid-saturated heat-generating porous medium. Although much of the information presented is of a qualitative nature, it is useful in the recognition of the controlling transport process and in the formulation of analytic and numerical models
One-phase flow in porous media with hysteresis
Botkin, N. D.; Brokate, M.; El Behi-Gornostaeva, E. G.
2016-04-01
This paper presents a numerical simulation of one phase flow through a porous medium showing a hysteretic relation between the capillary pressure and the saturation of the phase. The flow model used is based on mass conservation principle and Darcy's law. Boundary conditions of Neumann and Signorini type are imposed. The hysteretic relation between the capillary pressure and the saturation is described by a Preisach hysteresis operator. A numerical algorithm for the treatment of the arising system of equations is proposed. Results of numerical simulations are presented.
On the Process of Gas Liberation in Porous Media
DEFF Research Database (Denmark)
Zhelezny, Petr; Shapiro, Alexander; Vu, Duc Thuong; Stenby, Erling Halfdan
2006-01-01
The aim of the present work is an experimental and computational analysis of the effect of gas liberation in a porous medium. The experiments are based on application of X-ray computed tomography (CT). A series of experiments on slow gas liberation was carried out. A mathematical model of the lib...... samples. The results of the calculations indicate noticeable, although not extreme, lowering of the bubble point pressure (0.12-0.18 MPa) and decreased production of gas, compared to the depletion carried out in a PVT cell....
A generalized lattice Boltzmann model for flow through tight porous media with Klinkenberg's effect
Chen, Li; Kang, Qinjun; Hyman, Jeffrey De'Haven; Viswanathan, Hari S; Tao, Wen-Quan
2014-01-01
Gas slippage occurs when the mean free path of the gas molecules is in the order of the characteristic pore size of a porous medium. This phenomenon leads to the Klinkenberg's effect where the measured permeability of a gas (apparent permeability) is higher than that of the liquid (intrinsic permeability). A generalized lattice Boltzmann model is proposed for flow through porous media that includes Klinkenberg's effect, which is based on the model of Guo et al. (Z.L. Guo et al., Phys.Rev.E 65, 046308 (2002)). The second-order Beskok and Karniadakis-Civan's correlation (A. Beskok and G. Karniadakis, Microscale Thermophysical Engineering 3, 43-47 (1999), F. Civan, Transp Porous Med 82, 375-384 (2010)) is adopted to calculate the apparent permeability based on intrinsic permeability and Knudsen number. Fluid flow between two parallel plates filled with porous media is simulated to validate model. Simulations performed in a heterogeneous porous medium with components of different porosity and permeability indicat...
Accelerated formation of THF-H2 clathrate hydrate in porous media.
Saha, Dipendu; Deng, Shuguang
2010-06-01
Porous media were used to control the hydrogen clathrate particle size in order to accelerate its formation kinetics. Stoichiometric tetrahydrofuran-hydrogen binary clathrate hydrates with approximately 1 wt % hydrogen loading formed in the mesopores of four porous media with median pore diameters of 49, 65, 100, and 226 A at 270 K and hydrogen pressure of 65 bar. The minimum formation time for the tetrahydrofuran-hydrogen binary clathrate hydrates was 27 min in a porous medium with a median pore diameter of 49 A, which is 6-22 times faster than the tetrahydrofuran-hydrogen binary clathrate hydrates formed in the bulk ice. The clathrate formation time was found to increase with pore size of the porous media. A modified shrinking core kinetic model was used to calculate the diffusivity of hydrogen in the tetrahydrofuran-hydrogen binary clathrate hydrates. Hydrogen diffusivities in the tetrahydrofuran-hydrogen binary clathrate hydrates were found to be on the order of 10(-18)-10(-19) m(2)/s and decrease with increasing pore size or clathrate particle size. PMID:20148547
Neutron imaging of hydrogen-rich fluids in geomaterials and engineered porous media: A review
Perfect, E.; Cheng, C.-L.; Kang, M.; Bilheux, H. Z.; Lamanna, J. M.; Gragg, M. J.; Wright, D. M.
2014-02-01
Recent advances in visualization technologies are providing new discoveries as well as answering old questions with respect to the phase structure and flow of hydrogen-rich fluids, such as water and oil, within porous media. Magnetic resonance and x-ray imaging are sometimes employed in this context, but are subject to significant limitations. In contrast, neutrons are ideally suited for imaging hydrogen-rich fluids in abiotic non-hydrogenous porous media because they are strongly attenuated by hydrogen and can "see" through the solid matrix in a non-destructive fashion. This review paper provides an overview of the general principles behind the use of neutrons to image hydrogen-rich fluids in both 2-dimensions (radiography) and 3-dimensions (tomography). Engineering standards for the neutron imaging method are examined. The main body of the paper consists of a comprehensive review of the diverse scientific literature on neutron imaging of static and dynamic experiments involving variably-saturated geomaterials (rocks and soils) and engineered porous media (bricks and ceramics, concrete, fuel cells, heat pipes, and porous glass). Finally some emerging areas that offer promising opportunities for future research are discussed.
Dispersion and reaction in two-dimensional model porous media
International Nuclear Information System (INIS)
Darcy-scale convective--diffusive--reactive phenomenological coefficients characterizing the transport of a reactive solute through the interstices of a two-dimensional, spatially periodic, model porous medium (on whose surfaces the solute undergoes a first-order, irreversible chemical reaction) are herein determined numerically as functions of the microscale Peclet (Pe), Damkoehler (Da), and Reynolds (Re) numbers. The role of bed porosity var-epsilon and (circular) cylindrical array configuration are also studied, the latter encompassing square, staggered, and hexagonal arrays. Calculations are effected via generalized Taylor dispersion theory. The Darcy-scale reactivity coefficient bar K* characterizing the effective (first-order, irreversible) volumetric reaction rate is found, inter alia, to be (approximately) inversely proportional to Pe, a conclusion confirmed by analytical results for the limiting case of small Da. Configurational properties of the porous medium are observed to significantly influence bar K*, especially for small porosities and large Da. Moreover, it is found that the mean interstitial velocity vector bar U* of the reactive solute generally differs (often dramatically) from the comparable velocity vector (1/var-epsilon)bar U of the (inert) solvent as a consequence of the chemical reaction occurring at the surfaces of the cylindrical bed particles. These data reveal that the mean solute speed |bar U*| through the interstices may be larger or smaller than the comparable solvent speed (1/var-epsilon)|bar U|, depending upon the existence and nature of a diffusive boundary layer adhering to the cylindrical bed-particle surfaces
Multiphase multicomponent nonisothermal reactive transport in partially saturated porous media
International Nuclear Information System (INIS)
A numerical model MULTIFLO is developed for describing reactive transport in a multiphase-multicomponent, nonisothermal, partially saturated porous medium. The model includes chemical reactions between aqueous, gaseous and solid phases. Reactions involving minerals are considered to be irreversible and described through appropriate kinetic rate laws. Homogeneous reactions within the aqueous phase and heterogeneous reactions between aqueous and gaseous phases are assumed to be reversible, their reaction rates controlled by transport and local equilibrium mass action relations. Flow of aqueous and gaseous phases is described by Darcy's law in a partially saturated porous medium. Solute transport includes contributions from advection, diffusion and dispersion. Enhanced binary diffusion of water vapor for transport in a two-phase system is taken into account. A sequential solution algorithm is used to couple transport of water, air and heat to solute and minor gas components, and solids. Changes in porosity and permeability caused by chemical reactions are coupled to the flow field. Several options are available for solving numerically the solute and gaseous transport equations including fully implicit, explicit and operator splitting methods. Mineral mass transfer equations are solved using an explicit finite difference scheme. The coupled flow and transport model is applied to the proposed high-level nuclear waste storage facility located in unsaturated rock at Yucca Mountain, Nevada. A repository-scale model is used to calculate the redistribution of moisture, heat, and various chemical constituents caused by the thermal perturbation produced by the waste. (author)