WorldWideScience

Sample records for anisotropic optical properties

  1. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  2. Hyperhoneycomb boron nitride with anisotropic mechanical, electronic, and optical properties

    Science.gov (United States)

    Yu, Jin; Qu, Lihua; van Veen, Edo; Katsnelson, Mikhail I.; Yuan, Shengjun

    2017-09-01

    Boron nitride structures have excellent thermal and chemical stabilities. Based on state-of-art theoretical calculations, we propose a wide-gap semiconducting BN crystal with a three-dimensional hyperhoneycomb structure (Hp-BN), which is both mechanically and thermodynamically stable. Our calculated results show that Hp-BN has a higher bulk modulus and a smaller energy gap as compared to c-BN. Moreover, due to the unique bonding structure, Hp-BN exhibits anisotropic electronic and optical properties. It has great adsorption in the ultraviolet region, but it is highly transparent in the visible and infrared region, suggesting that the Hp-BN crystal could have potential applications in electronic and optical devices.

  3. Synthesis and optical properties of anisotropic metal nanoparticles.

    Science.gov (United States)

    Hao, Encai; Schatz, George C; Hupp, Joseph T

    2004-07-01

    In this paper we overview our recent studies of anisotropic noble metal (e.g. gold and silver) nanoparticles, in which a combination of theory and experiment has been used to elucidate the extinction spectra of the particles, as well as information related to their surface enhanced Raman spectroscopy. We used wet-chemical methods to generate several structurally well-defined nanostructures other than solid spheres, including silver nanodisks and triangular nanoprisms, and gold nanoshells and multipods. When solid spheres are transformed into one of these shapes, the surface plasmon resonances in these particles are strongly affected, typically red-shifting and even splitting into distinctive dipole and quadrupole plasmon modes. In parallel, we have developed computational electrodynamics methods based on the discrete dipole approximation (DDA) method to determine the origins of these intriguing optical features. This has resulted in considerable insight concerning the variation of plasmon wavelength with nanoparticle size, shape and dielectric environment, as well as the use of these particles for optical sensing applications.

  4. Influence of spherically anisotropic core on the optical properties of gold nanoshell

    Energy Technology Data Exchange (ETDEWEB)

    Wu, D.J. [Nanjing University, Department of Electronic Science and Engineering, Key Laboratory of Modern Acoustics of MOE, Nanjing (China); Jiangsu University, Faculty of Science, Zhenjiang (China); Liu, X.J. [Nanjing University, Department of Electronic Science and Engineering, Key Laboratory of Modern Acoustics of MOE, Nanjing (China)

    2009-03-15

    The optical properties of gold nanoshell with a core of spherically anisotropic material have been investigated by means of quasi-static theory. It is found with increasing the extent of anisotropy of the core that the surface plasmon resonance for the particle shows a red-shift and that the full width at half maximum (FWHM) of the plasmon resonance peak increases. The local electric field of the particle with anisotropic core is found to be enhanced compared to that with isotropic core. The larger enhancement of the local electric field for the particle is observed in the particle with smaller extent of anisotropy. (orig.)

  5. Smart Optical Composite Materials: Dispersions of Metal-Organic Framework@Superparamagnetic Microrods for Switchable Isotropic-Anisotropic Optical Properties.

    Science.gov (United States)

    Mandel, Karl; Granath, Tim; Wehner, Tobias; Rey, Marcel; Stracke, Werner; Vogel, Nicolas; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2017-01-24

    A smart optical composite material with dynamic isotropic and anisotropic optical properties by combination of luminescence and high reflectivity was developed. This combination enables switching between luminescence and angle-dependent reflectivity by changing the applied wavelength of light. The composite is formed as anisotropic core/shell particles by coating superparamagnetic iron oxide-silica microrods with a layer of the luminescent metal-organic framework (MOF) (3)∞[Eu2(BDC)3]·2DMF·2H2O (BDC(2-) = 1,4-benzenedicarboxylate). The composite particles can be rotated by an external magnet. Their anisotropic shape causes changes in the reflectivity and diffraction of light depending on the orientation of the composite particle. These rotation-dependent optical properties are complemented by an isotropic luminescence resulting from the MOF shell. If illuminated by UV light, the particles exhibit isotropic luminescence while the same sample shows anisotropic optical properties when illuminated with visible light. In addition to direct switching, the optical properties can be tailored continuously between isotropic red emission and anisotropic reflection of light if the illuminating light is tuned through fractions of both UV and visible light. The integration and control of light emission modes within a homogeneous particle dispersion marks a smart optical material, addressing fundamental directions for research on switchable multifunctional materials. The material can function as an optic compass or could be used as an optic shutter that can be switched by a magnetic field, e.g., for an intensity control for waveguides in the visible range.

  6. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  7. Optical Propagation in Anisotropic Metamaterials (Postprint)

    Science.gov (United States)

    2017-02-22

    AFRL-RX-WP-JA-2017-0309 OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) Rudra Gnawali, Partha P. Banerjee, and...October 2013 – 26 December 2016 4. TITLE AND SUBTITLE OPTICAL PROPAGATION IN ANISOTROPIC METAMATERIALS (POSTPRINT) 5a. CONTRACT NUMBER FA8650-13-D...ABSTRACT (Maximum 200 words) Anisotropic metamaterials are widely used in the field of optics because of their unique electromagnetic properties. These

  8. Anisotropic linear and nonlinear optical properties from anisotropy-controlled metallic nanocomposites.

    Science.gov (United States)

    Reyes-Esqueda, Jorge Alejandro; Rodríguez-Iglesias, Vladimir; Silva-Pereyra, Héctor-Gabriel; Torres-Torres, Carlos; Santiago-Ramírez, Ana-Laura; Cheang-Wong, Juan Carlos; Crespo-Sosa, Alejandro; Rodríguez-Fernández, Luis; López-Suárez, Alejandra; Oliver, Alicia

    2009-07-20

    High-energy metallic ions were implanted in silica matrices, obtaining spherical-like metallic nanoparticles (NPs) after a proper thermal treatment. These NPs were then deformed by irradiation with Si ions, obtaining an anisotropic metallic nanocomposite. An average large birefringence of 0.06 was measured for these materials in the 300-800 nm region. Besides, their third order nonlinear optical response was measured using self-diffraction and P-scan techniques at 532 nm with 26 ps pulses. By adjusting the incident light's polarization and the angular position of the nanocomposite, the measurements could be directly related to, at least, two of the three linear independent components of its third order susceptibility tensor, finding a large, but anisotropic, response of around 10(-7) esu with respect to other isotropic metallic systems. For the nonlinear optical absorption, we were able to shift from saturable to reverse saturable absorption depending on probing the Au NP's major or minor axes, respectively. This fact could be related to local field calculations and NP's electronic properties. For the nonlinear optical refraction, we passed from self-focusing to self-defocusing, when changing from Ag to Au.

  9. Anisotropic contrast optical microscope

    Science.gov (United States)

    Peev, D.; Hofmann, T.; Kananizadeh, N.; Beeram, S.; Rodriguez, E.; Wimer, S.; Rodenhausen, K. B.; Herzinger, C. M.; Kasputis, T.; Pfaunmiller, E.; Nguyen, A.; Korlacki, R.; Pannier, A.; Li, Y.; Schubert, E.; Hage, D.; Schubert, M.

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  10. Nanostructured SnS with inherent anisotropic optical properties for high photoactivity

    Science.gov (United States)

    Patel, Malkeshkumar; Chavda, Arvind; Mukhopadhyay, Indrajit; Kim, Joondong; Ray, Abhijit

    2016-01-01

    In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the potential to tap the solar energy by unlocking the functional properties at the nanoscale. Tin(ii) sulfide is a fascinating solar energy material due to its anisotropic material properties. In this manuscript, we report on exploiting the 2D structure modulated optical properties of nanocrystalline SnS thin film synthesized by chemical spray pyrolysis using ambient transport in the harvesting of solar energy. We obtained the nanostructured SnS with well-preserved dimensions and morphologies with one step processing. The work demonstrates that the intrinsically ordered SnS nanostructure on FTO coated glass can tap the incident radiation in an efficient manner. The structure-property relationship to explain the photo-response in nanocrystalline-SnS is verified experimentally and theoretically. The novel design scheme for antireflection coating along with the anisotropic properties of SnS is conceived for realizing a PEC cell. The developed PEC cell consists of a SnS photoanode which shows considerably high photocurrent density of 7 mA cm-2 with aqueous media under AM 1.5G, 100 mW cm-2 exposure with notably stable operation. Electrochemical impedance spectroscopy revealed that a non-ideal capacitive behavior as well as drift assisted transport across the solid-state interface is responsible for such a high photo-current density in the nanocrystalline-SnS photoanode.In view of the worldwide energy challenge in the 21st century, the technology of semiconductor-based photoelectrochemical (PEC) water splitting has received considerable attention as an alternative approach for solar energy harvesting and storage. Two-dimensional (2D) structures such as nanosheets have the

  11. Complex polarization ratio to determine polarization properties of anisotropic tissue using polarization-sensitive optical coherence tomography.

    Science.gov (United States)

    Park, Jesung; Kemp, Nate J; Rylander, H Grady; Milner, Thomas E

    2009-08-03

    Complex polarization ratio (CPR) in materials with birefringence and biattenuance is shown as a logarithmic spiral in the complex plane. A multi-state Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory collected by polarization sensitive optical coherence tomography (PS-OCT) was developed to determine polarization properties of an anisotropic scattering medium. The Levenberg-Marquardt nonlinear fitting algorithm using the CPR trajectory is verified using simulated PS-OCT data with speckle noise. Birefringence and biattenuance of a birefringent film, ex-vivo rodent tail tendon and in-vivo primate retinal nerve fiber layer were determined using measured CPR trajectories and the Levenberg-Marquardt nonlinear fitting algorithm.

  12. Optical sharper focusing in an anisotropic crystal.

    Science.gov (United States)

    Wang, Sicong; Xie, Xiangsheng; Gu, Min; Zhou, Jianying

    2015-06-01

    Optical super-resolution technique through tight focusing is a widely used technique to image material samples with anisotropic optical properties. The knowledge of the field distribution of a tightly focused beam in anisotropic media is both scientifically interesting and technologically important. In this paper, the optical properties of a uniaxial crystal with the optic axis perpendicular to the interface under a tight focusing configuration are studied with rigorous theoretical and numerical analysis. The significant effect of the Poynting vector on the focal position introduces an obvious displacement of the focal spot formed by the extraordinary waves (e-ray). Moreover, a sharper focus with a lateral size of 0.22λ is obtained as a result of the effective separation of the ordinary waves (o-ray) and the e-ray. It provides a new tool to fabricate optical structures with higher resolutions than that in an isotropic medium through the far-field method.

  13. Designing novel anisotropic lenses with transformation optics

    Science.gov (United States)

    Jiang, Wei Xiang; Bao, Di; Cui, Tie Jun

    2016-04-01

    Transformation optics (TO), based on the formally invariant property of Maxwell’s equations, has provided a powerful strategy to design anisotropic or nearly-isotropic devices, in both time-varied and static fields. In this paper, we present and investigate the negative refraction or reflection phenomena by positive-index anisotropic materials based on transformation-optics design. First, we propose and design an inhomogeneous transformed planar lens, in which we will show the negative-refraction-like properties of transformation media. Secondly, we present a homogeneous transformed lens based on linear spatial transformation, in which we will reveal the negative-reflection properties of positive transformation media. Both transformed lenses have unusual properties which are different from those in natural materials.

  14. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  15. Anisotropic properties of TaS2

    Institute of Scientific and Technical Information of China (English)

    Qiao Yan-Bin; Li Yan-Ling; Zhong Guo-Hua; Zeng Zhi; Qin Xiao-Ying

    2007-01-01

    The anisotropic properties of 1T- and 2H-TaS2 are investigated by the density functional theory within the framework of full-potential linearized augmented plane wave method. The band structures of 1T- and 2H-TaS2 exhibit anisotropic properties and the calculated electronic specific-heat coefficient γ of 2H-TaS2 accords well with the existing experimental value. The anisotropic frequency-dependent dielectric functions including the effect of the Drude term are analysed, where the εxx(ω) spectra corresponding to the electric field E perpendicular to the z axis show excellent agreement with the measured results except for the ε1xx(ω) of 1T-TaS2 below the energy level of 2.6 eV which is due to the lack of the enough CDW information for reference in our calculation. Furthermore, based on the values of optical effective mass ratio P of 1T and 2H phases it is found that the anisotropy in 2H-TaS2 is stronger than that in 1T-TaS2.

  16. Raman Tensor Formalism for Optically Anisotropic Crystals.

    Science.gov (United States)

    Kranert, Christian; Sturm, Chris; Schmidt-Grund, Rüdiger; Grundmann, Marius

    2016-03-25

    We present a formalism for calculating the Raman scattering intensity dependent on the polarization configuration for optically anisotropic crystals. It can be applied to crystals of arbitrary orientation and crystal symmetry measured in normal incidence backscattering geometry. The classical Raman tensor formalism cannot be used for optically anisotropic materials due to birefringence causing the polarization within the crystal to be depth dependent. We show that in the limit of averaging over a sufficiently large scattering depth, the observed Raman intensities converge and can be described by an effective Raman tensor given here. Full agreement with experimental results for uniaxial and biaxial crystals is demonstrated.

  17. Ray-optics analysis of inhomogeneous optically anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.

    2010-01-01

    When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the w

  18. Ray-optics analysis of inhomogeneous optically anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.

    2010-01-01

    When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the w

  19. Ray-optics analysis of inhomogeneous optically anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.

    2010-01-01

    When the optical behavior of light in a medium depends on the direction in which light is traveling, the medium is called optically anisotropic. Light is an electromagnetic wave and in this thesis, we discuss the electromagnetic theory on optical anisotropy. We do this with the assumption that the

  20. Gauge Field Optics with Anisotropic Media

    CERN Document Server

    Liu, Fu

    2014-01-01

    By considering gauge transformations on the macroscopic Maxwell's equations, a two dimensional gauge field, with its pseudo magnetic field in the real space, is identified as tilted anisotropy in the constitutive parameters. We show that optical spin Hall effect and one-way edge states become possible simply by using anisotropic media with broadband response. The proposed gauge field also allows us to design an optical isolator based on the Aharonov-Bohm effect. Our approach will be useful in spoof magneto-optics with arbitrary magnetic fields mimicked by metamaterials with subwavelength unit cells. It also serves as a generic way to design polarization-dependent devices.

  1. Numerical simulation and rational design of optically anisotropic columnar films

    Science.gov (United States)

    Leontyev, Viktor A.; Hawkeye, Matthew M.; Wakefield, Nicholas G.; Tabunshchyk, Kyrylo; Sit, Jeremy C.; Kovalenko, Andriy; Brett, Michael J.

    2011-03-01

    Optical anisotropy is an inherent property of columnar dielectric films, such as those fabricated by the glancing angle deposition (GLAD) technique. This process utilizes physical vapor deposition combined with computer-controlled substrate motion to finely tune the direction of column growth and vital morphological parameters such as column cross-section and inter-columnar spacing. Control over the anisotropic properties of the porous film provides an opportunity to design polarization-selective photonic devices and films with improved band gap properties. Anisotropic defects in multilayer films also result in a polarization-sensitive position of resonant transmission modes. We employed the finite-difference time-domain and frequency-domain methods to theoretically analyze and design columnar films with unique band-gap properties. The following morphologies were considered: (i) S-shaped columnar films with polarization-dependent band-gap position and width. Using numerical simulations we have shown that the competitive effect of different sources of anisotropy can be used to engineer photonic band gaps with strong selectivity to linearly-polarized light; (ii) Rugate thin films with an anisotropic defect, which exhibit resonant mode splitting. Optical devices were fabricated using titanium dioxide because it has good transparency in the visible range of the optical spectrum and a large bulk refractive index. Experimental results were compared to simulations to verify the designs and understand the limitations of the fabrication process.

  2. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  3. Optical anisotropic reflectance from W720 LIPSS surface

    Science.gov (United States)

    Silvennoinen, Martti; Penttinen, Niko; Hasoň, Stanislav; Silvennoinen, Raimo

    2013-05-01

    Optical anisotropic reflectance from laser induced periodic surface structures (LIPSS) of stainless steel (W720LIPSS), which were produced by a femtosecond laser, were investigated by using polarized probe beam in a spectrophotometer. Remarkable repeatability in optical anisotropic reflectance was recognized.

  4. Anisotropic optical properties of an oriented-emeraldine-base polymer and an emeraldine-hydrochloride-salt polymer

    Science.gov (United States)

    McCall, R. P.; Scherr, E. M.; MacDiarmid, A. G.; Epstein, A. J.

    1994-08-01

    We present results of polarized reflectance measurements for unstretched and stretched films of polyaniline in the insulating emeraldine-base (EB) and conducting emeraldine-salt (ES) forms. The reflectance data and the resulting optical conductivity, obtained from a Kramers-Kronig transform of the reflectance data, of unstretched films agree well with optical data reported by S. Stafström et al. [Phys. Rev. Lett. 59, 1464 (1987)]. The stretched films (400% elongation) show significant anisotropy in the reflectance and the other optical constants. The frequency-dependent conductivity in ES exhibits a large shift in oscillator strength to lower energies compared to that of EB and compared to that of unstretched films of ES, which demonstrates delocalization of conduction electrons in the ``polaron band.'' The dielectric constant of stretched ES indicates that ES is metal-like, with maximum conductivity greater than ten times the dc conductivity. These results indicate that the dc conductivity is likely dominated by interchain processes and that higher values for conductivity are possible.

  5. Anisotropic properties of tracheal smooth muscle tissue.

    Science.gov (United States)

    Sarma, P A; Pidaparti, R M; Meiss, R A

    2003-04-01

    The anisotropic (directional-dependent) properties of contracting tracheal smooth muscle tissue are estimated from a computational model based on the experimental data of length-dependent stiffness. The area changes are obtained at different muscle lengths from experiments in which stimulated muscle undergoes unrestricted shortening. Then, through an interative process, the anisotropic properties are estimated by matching the area changes obtained from the finite element analysis to those derived from the experiments. The results obtained indicate that the anisotropy ratio (longitudinal stiffness to transverse stiffness) is about 4 when the smooth muscle undergoes 70% strain shortening, indicating that the transverse stiffness reduces as the longitudinal stiffness increases. It was found through a sensitivity analysis from the simulation model that the longitudinal stiffness and the in-plane shear modulus are not very sensitive as compared to major Poisson's ratio to the area changes of the muscle tissue. Copyright 2003 Wiley Periodicals, Inc.

  6. Linear and nonlinear optical response of spherical anisotropic semiconductor microcrystallites

    Science.gov (United States)

    Ramaniah, Lavanya M.; Nair, Selvakumar V.; Rustagi, Kailash C.

    1989-12-01

    We present a phenomenological theory of the linear and nonlinear optical properties associated with the Fröhlich resonances of an optically anisotropic, spherical semiconductor crystallite. Using the Maxwell-Garnett approach, we calculate the effective dielectric function of a composite medium containing such crystallites. To study the effect of anisotropy, we take CdS and CdSe quantum dots as examples for the inclusions, and use a two-resonance model for the dielectric function. Even for randomly oriented inclusions, the Fröhlich resonances split as a result of anisotropic local-field corrections. At higher laser intensities, absorption saturation leads to bistability or tristability in the optical response of individual crystallites, while the response of the composite medium with randomly oriented inclusions shows multistability, with many intermediate branches. The nonlinear response of such a composite medium also exhibits a new kind of orientation-induced broadening of resonances. We also find that tristability is possible in another kind of inhomogeneous material, viz., a composite medium containing two types of isotropic spherical crystallites.

  7. Optical Conductivity of Anisotropic Quantum Dots in Magnetic Fields

    Institute of Scientific and Technical Information of China (English)

    GUO Kang-Xian; CHEN Chuan-Yu

    2005-01-01

    @@ Optical conductivity of anisotropic double-parabolic quantum dots is investigated with the memory-function approach, and the analytic expression for the optical conductivity is derived. With characteristic parameterspertaining to GaAs, the numerical results are presented. It is shown that: (1) the larger the optical phonon frequency ωLO, the stronger the peak intensity of the optical conductivity, and the more asymmetric the shape of the optical conductivity; (2) the magnetic field enhances the optical conductivity for levels l = 0 and l = 1, with or without electron-LO-phonon interactions; (3) the larger the quantum dot thickness lz, the smaller the optical conductivity σ(ω).

  8. Extraction of linear anisotropic parameters using optical coherence tomography and hybrid Mueller matrix formalism.

    Science.gov (United States)

    Liao, Chia-Chi; Lo, Yu-Lung

    2015-04-20

    A method is proposed for extracting the linear birefringence (LB) and linear dichroism (LD) properties of an anisotropic optical sample using reflection-mode optical coherence tomography (OCT) and a hybrid Mueller matrix formalism. To ensure the accuracy of the extracted parameter values, a method is proposed for calibrating and compensating the polarization distortion effect induced by the beam splitters in the OCT system using a composite quarter-waveplate / half-waveplate / quarter-waveplate structure. The validity of the proposed method is confirmed by extracting the LB and LD properties of a quarter-wave plate and a defective polarizer. To the best of the authors' knowledge, the method proposed in this study represents the first reported attempt to utilize an inverse Mueller matrix formalism and a reflection-mode OCT structure to extract the LB and LD parameters of optically anisotropic samples.

  9. All-optical transistor- and diode-action and logic gates based on anisotropic nonlinear responsive liquid crystal.

    Science.gov (United States)

    Wang, Cheng-Yu; Chen, Chun-Wei; Jau, Hung-Chang; Li, Cheng-Chang; Cheng, Chiao-Yu; Wang, Chun-Ta; Leng, Shi-Ee; Khoo, Iam-Choon; Lin, Tsung-Hsien

    2016-08-05

    In this paper, we show that anisotropic photosensitive nematic liquid crystals (PNLC) made by incorporating anisotropic absorbing dyes are promising candidates for constructing all-optical elements by virtue of the extraordinarily large optical nonlinearity of the nematic host. In particular, we have demonstrated several room-temperature 'prototype' PNLC-based all-optical devices such as optical diode, optical transistor and all primary logic gate operations (OR, AND, NOT) based on such optical transistor. Owing to the anisotropic absorption property and the optical activity of the twist alignment nematic cell, spatially non-reciprocal transmission response can be obtained within a sizeable optical isolation region of ~210 mW. Exploiting the same mechanisms, a tri-terminal configuration as an all-optical analogue of a bipolar junction transistor is fabricated. Its ability to be switched by an optical field enables us to realize an all-optical transistor and demonstrate cascadability, signal fan-out, logic restoration, and various logical gate operations such as OR, AND and NOT. Due to the possibility of synthesizing anisotropic dyes and wide ranging choice of liquid crystals nonlinear optical mechanisms, these all-optical operations can be optimized to have much lower thresholds and faster response speeds. The demonstrated capabilities of these devices have shown great potential in all-optical control system and photonic integrated circuits.

  10. Anisotropic Elastic Properties of Muscle-like Nematic Elastomers

    Science.gov (United States)

    Ratna, Banahalii; Thomseniii, Donald L.; Shenoy, Devanand; Srinivasan, Amritha; Keller, Patrick

    2001-03-01

    De Gennes suggested in 1997 that the liquid crystal elastomers are an excellent framework to mimic muscular action. We have prepared anisotropic freestanding films of nematic elastomers from laterally attached side-chain polymers that show muscle-like mechanical properties. The orientational order of the liquid crystal side groups imposes a conformational anisotropy in the polymer backbone. When the order parameter drops at the nematic-isotropic phase transition, there is a concomitant loss of order in the backbone which results in a contraction of the film in the direction of the director orientation. Dynamic mechanical data along directions parallel and perpendicular to the optic axis, show anisotropic stress-strain behavior. The film exhibits soft elasticity when strained in the perpendicular direction when the liquid crystal mesogens reorient without appreciable stress build up. Thermostrictive studies in the parallel direction show 40constriction at the nematic-isotropic phase transition. Isometric studies show that the elastic energy stored is purely entropic in origin and the elastomer acts like a spring with unusually large spring constant at the NI transition. The maximum stress measured is 300kPa. A strain rate of 5s-1 is estimated from shear relaxation studies.

  11. Diffractive Optics of Anisotropic Polarization Gratings

    NARCIS (Netherlands)

    Xu, M.

    2009-01-01

    Diffraction gratings are being used to manipulate light in many different applications, such as in flat panel display systems, modern lighting systems, and optical recording. Diffraction gratings can be made polarization selective due to form birefringence. An alternative approach to polarization

  12. Decay of high order optical vortices in anisotropic nonlinear optical media

    DEFF Research Database (Denmark)

    Mamaev, A.V.; Saffman, M.; Zozulya, A.A.

    1997-01-01

    We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge.......We present an experimental and theoretical study of the decay of high order optical vortices in media with an anisotropic nonlocal nonlinearity. Vortices with charge n decay into an aligned array of n vortices of unit charge....

  13. Diffraction properties of four-petal Gaussian beams in uniaxially anisotropic crystal

    Institute of Scientific and Technical Information of China (English)

    Bin Tang; Yi Jin; Meiping Jiang; Xingfang Jiang

    2008-01-01

    @@ Propagation properties of polarized four-petal Gaussian beams along the optical axis of uniaxially anisotropic crystals were investigated. Based on the paraxially vectorial theory of beam propagation, analytic expressions of the diffraction light field were obtained. The effects of the anisotropy on the polarization properties of the diffracted four-petal Gaussian beams have also been explained by numerical method. The results elucidate that the linear polarization state and the symmetry of the incident beams cannot be kept during propagation in anisotropic crystals.

  14. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...

  15. Tunable anisotropic superfluidity in an optical kagome superlattice

    Science.gov (United States)

    Zhang, Xue-Feng; Wang, Tao; Eggert, Sebastian; Pelster, Axel

    2015-07-01

    We study the phase diagram of the Bose-Hubbard model on the kagome lattice with a broken sublattice symmetry. Such a superlattice structure can naturally be created and tuned by changing the potential offset of one sublattice in the optical generation of the frustrated lattice. The superstructure gives rise to a rich quantum phase diagram, which is analyzed by combining quantum Monte Carlo simulations with the generalized effective potential Landau theory. Mott phases with noninteger filling and a characteristic order along stripes are found, which show a transition to a superfluid phase with an anisotropic superfluid density. Surprisingly, the direction of the superfluid anisotropy can be tuned by changing the particle number, the hopping strength, or the interaction. Finally, we discuss characteristic signatures of anisotropic phases in time-of-flight absorption measurements.

  16. Pressure Prediction of Electronic, Anisotropic Elastic, Optical, and Thermal Properties of Quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-01-01

    Full Text Available The electronic, mechanical, anisotropic elastic, optical, and thermal properties of quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti under different pressure are systematically investigated by first-principles calculations. The bonding characteristics of these compounds are the mixture of metallic and covalent bonds. With an increase of pressure, the heights of total density of states (TDOS for these compounds decrease at Fermi level. The highest volume compressibility among three compounds is Mo2TiAlC2 for its smallest relative volume decline. The relative bond lengths are decreasing when the pressure increases. The bulk and shear modulus of the one doped with Cr or Mo are larger than those of Ti3AlC2 with pressure increasing. With an increase of pressure, the anisotropy of these compounds also increases. Moreover, Mo2TiAlC2 has the biggest anisotropy among the three compounds. The results of optical functions indicate that the reflectivity of the three compounds is high in visible-ultraviolet region up to ~10.5 eV under ambient pressure and increasing constantly when under pressure. Mo2TiAlC2 has the highest loss function. The calculated sound velocity and Debye temperature show that they all increase with pressure. CV of the three compounds is also calculated.

  17. Spectroscopy of intraband optical transitions in anisotropic semiconductor nanocrystals

    Science.gov (United States)

    Turkov, Vadim K.; Baimuratov, Anvar S.; Rukhlenko, Ivan D.; Baranov, Alexander V.; Fedorov, Anatoly V.

    2013-09-01

    We propose a new type of optical spectroscopy of anisotropic semiconductor nanocrystals, which is based on the welldeveloped stationary pump-probe technique, where the pump and probe fields are absorbed upon, respectively, interband and intraband transitions of the nanocrystals' electronic subsystem. We develop a general theory of intraband absorption based on the density matrix formalism. This theory can be applied to study degenerate eigenstates of electrons in semiconductor nanocrystals of different shapes and dimentions. We demonstrate that the angular dependence of intraband absorption by nonspherical nanocrystals enables investigating their shape and orientation, as well as the symmetry of quantum states excited by the probe field and selection rules of electronic transitions.

  18. Modeling anisotropic Maxwell-Jüttner distributions: derivation and properties

    Science.gov (United States)

    Livadiotis, George

    2016-12-01

    In this paper we develop a model for the anisotropic Maxwell-Jüttner distribution and examine its properties. First, we provide the characteristic conditions that the modeling of consistent and well-defined anisotropic Maxwell-Jüttner distributions needs to fulfill. Then, we examine several models, showing their possible advantages and/or failures in accordance to these conditions. We derive a consistent model, and examine its properties and its connection with thermodynamics. We show that the temperature equals the average of the directional temperature-like components, as it holds for the classical, anisotropic Maxwell distribution. We also derive the internal energy and Boltzmann-Gibbs entropy, where we show that both are maximized for zero anisotropy, that is, the isotropic Maxwell-Jüttner distribution.

  19. Properties and evolution of anisotropic structures in collisionless plasmas

    CERN Document Server

    Karimov, A R; Stenflo, L

    2016-01-01

    A new class of exact electrostatic solutions of the Vlasov-Maxwell equations based on the Jeans's theorem is proposed for studying the evolution and properties of two-dimensional anisotropic plasmas that are far from thermodynamic equilibrium. In particular, the free expansion of a slab of electron-ion plasma into vacuum is investigated.

  20. Anisotropic optical response of optically opaque elastomers with conductive fillers as revealed by terahertz polarization spectroscopy

    Science.gov (United States)

    Okano, Makoto; Watanabe, Shinichi

    2016-12-01

    Elastomers are one of the most important materials in modern society because of the inherent viscoelastic properties due to their cross-linked polymer chains. Their vibration-absorbing and adhesive properties are especially useful and thus utilized in various applications, for example, tires in automobiles and bicycles, seismic dampers in buildings, and seals in a space shuttle. Thus, the nondestructive inspection of their internal states such as the internal deformation is essential in safety. Generally, industrial elastomers include various kinds of additives, such as carbon blacks for reinforcing them. The additives make most of them opaque in a wide spectral range from visible to mid-infrared, resulting in that the nondestructive inspection of the internal deformation is quite difficult. Here, we demonstrate transmission terahertz polarization spectroscopy as a powerful technique for investigating the internal optical anisotropy in optically opaque elastomers with conductive additives, which are transparent only in the terahertz frequency region. The internal deformation can be probed through the polarization changes inside the material due to the anisotropic dielectric response of the conductive additives. Our study about the polarization-dependent terahertz response of elastomers with conductive additives provides novel knowledge for in situ, nondestructive evaluation of their internal deformation.

  1. Nonlinear optical spectroscopy of isotropic and anisotropic metallic nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez-Hernandez, R C; Gleason-Villagran, R; Cheang-Wong, J C; Crespo-Sosa, A; Rodriguez-Fernandez, L; Lopez-Suarez, A; Oliver, A; Reyes-Esqueda, J A [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, Mexico, D. F. 04510 (Mexico); Torres-Torres, C [Seccion de Estudios de Posgrado e Investigacion, ESIME-Zacatenco, Instituto Politecnico Nacional, Mexico, D. F. 07338 (Mexico); Rangel-Rojo, R, E-mail: reyes@fisica.unam.mx [CICESE/Depto. de Optica, A.P. 360, Ensenada, B. C. 22860 (Mexico)

    2011-01-01

    In this work, we studied the nonlinear absorption and refraction of isotropic and anisotropic metallic nanocomposites, which consist of Au and Ag nanoparticles (NPs) embedded in matrices of SiO{sub 2}. We performed this study at different wavelengths using the Z-scan technique in the picosecond regime. The wavelengths were selected accordingly to the absorption spectra of the nanocomposites, choosing wavelengths into the inter- and intra-band transitions regions, including the surface plasmon (SP) resonance, as well as in the transparent region. For the anisotropic nanocomposites, the polarization and the incident angle were varied in order to evaluate the different components of the third order susceptibility tensor, {chi}{sup (3)}. We observed dramatic changes of sign for both, nonlinear refraction and absorption, when passing from Au to Ag and/or varying the wave length. The results accentuate the importance of the hot-electrons contribution to the nonlinear optical response at this temporal regime, when compared to inter-band and intra-band transitions contributions.

  2. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  3. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Telschow, Kenneth Louis; Deason, Vance Albert; Schley, Robert Scott; Watson, Scott Marshall

    1999-07-01

    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  4. Direct Imaging of Anisotropic Material Properties using Photorefractive Laser Ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    K.L. Telschow; R.S. Schley; S.M. Watson; V.A. Deason

    1999-06-01

    Anisotropic properties of materials can be determined by measuring the propagation of elastic waves in different directions. A laser imaging approach is presented that utilizes the adaptive property of photorefractive materials to produce a real-time measurement of the antisymmetric Lamb or flexural traveling wave mode displacement and phase. Continuous excitation is employed and the data is recorded and displayed in all directions simultaneously at video camera frame rates. Fourier transform of the data produces an image of the wave slowness in all planar directions. The results demonstrate imaging of microstructural isotropy and anisotropy and stress induced ansiotropy in plates.

  5. Anisotropic linear elastic properties of fractal-like composites.

    Science.gov (United States)

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson's ratio as the matrix but a different Young's modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.

  6. Anisotropic linear elastic properties of fractal-like composites

    Science.gov (United States)

    Carpinteri, Alberto; Cornetti, Pietro; Pugno, Nicola; Sapora, Alberto

    2010-11-01

    In this work, the anisotropic linear elastic properties of two-phase composite materials, made up of square inclusions embedded in a matrix, are investigated. The inclusions present a fractal hierarchical distribution and are supposed to have the same Poisson’s ratio as the matrix but a different Young’s modulus. The effective elastic moduli of the medium are computed at each fractal iteration by coupling a position-space renormalization-group technique with a finite element analysis. The study allows to obtain and generalize some fundamental properties of fractal composite materials.

  7. Optical Properties of Metals.

    Science.gov (United States)

    1983-07-15

    Elementary theory of the optical properties of solids in Advances in solid state physics, Vol. 15. Seitz, F.; Turnbull, D., ed. New York, NY: Academic Press... Properties of Solids (Academic Press, New York, 1972). 2. H.E. Bennett and J.M. Bennett, Optical Properties and Elec- tronic Structure of Metals and...34*. . . . . . . . . . . . | *.**,. ..ś . REFERENCES 1. There are many texts and review papers in this field. An excellent modern reference is F. Wooten, Optical

  8. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    Energy Technology Data Exchange (ETDEWEB)

    Fan, B.B. [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Yang, X.B. [Department of Physics, South China University of Technology, Guangzhou 510640 (China); Zhang, R., E-mail: zhangray@zzu.edu.c [School of Materials Science and Engineering, Zhengzhou University, Henan 450001 (China); Zhengzhou Institute of Aeronautical Industry Management, Henan 450046 (China)

    2010-06-14

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp{sup 2} hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  9. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    Science.gov (United States)

    Steele, J. A.; Lewis, R. A.; Sirbu, L.; Enachi, M.; Tiginyanu, I. M.; Skuratov, V. A.

    2015-04-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index neff and compared to effective media approximations.

  10. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Science.gov (United States)

    Biermann, Mark L.; Walters, Matthew; Diaz-Barriga, James; Rabinovich, W. S.

    2003-10-01

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is avialable for cases of compressive anisotropic in-plane strain.

  11. Characterization of optical anisotropy in quantum wells under compressive anisotropic in-plane strain

    Energy Technology Data Exchange (ETDEWEB)

    Biermann, Mark L [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Walters, Matthew [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Diaz-Barriga, James [Physics Department, 566 Brownson Rd., U.S. Naval Academy, Annapolis, MD 21402 (United States); Rabinovich, W S [Naval Research Laboratory, Code 5652, 4555 Overlook Ave. SW, Washington, DC 20375-5320 (United States)

    2003-10-21

    Anisotropic in-plane strain in quantum wells leads to an optical polarization anisotropy that can be exploited for device applications. We have determined that for many anisotropic compressive strain cases, the dependence of the optical anisotropy is linear in the strain anisotropy. This result holds for a variety of well and barrier materials and widths and for various overall strain conditions. Further, the polarization anisotropy per strain anisotropy varies as the reciprocal of the energy separation of the relevant hole sub-bands. Hence, a general result for the polarization anisotropy per strain anisotropy is available for cases of compressive anisotropic in-plane strain.

  12. Anisotropic thermal property of magnetically oriented carbon nanotube polymer composites

    Science.gov (United States)

    Li, Bin; Dong, Shuai; Wang, Caiping; Wang, Xiaojie; Fang, Jun

    2016-04-01

    This paper proposes a method for preparing multi-walled carbon nanotubea/polydimethylsiloxane (MWCNTs/PDMS) composites with enhanced thermal properties by using a high magnetic field (up to 10T). The MWCNT are oriented magnetically inside a silicone by in-situ polymerization method. The anisotropic structure would be expected to produce directional thermal conductivity. This study will provide a new approach to the development of anisotropic thermal-conductive polymer composites. Systematic studies with the preparation of silicone/graphene composites corresponding to their thermal and mechanical properties are carried out under various conditions: intensity of magnetic field, time, temperature, fillings. The effect of MWCNT/graphene content and preparation procedures on thermal conductivity of composites is investigated. Dynamic mechanical analysis (DMA) is used to reveal the mechanical properties of the composites in terms of the filling contents and magnetic field strength. The scanning electron microscope (SEM) is used to observe the micro-structure of the MWCNT composites. The alignment of MWCNTs in PDMS matrix is also studied by Raman spectroscopy. The thermal conductivity measurements show that the magnetically aligned CNT-composites feature high anisotropy in thermal conductivity.

  13. Rectangular waveguide material characterization: anisotropic property extraction and measurement validation

    Science.gov (United States)

    Crowgey, Benjamin Reid

    for characterization of a sample filling the cross-section of a waveguide. Due to the rectangular nature of the waveguide, typically three different samples are manufactured from the same material in order to characterize the six complex material parameters. The second technique for measuring the electromagnetic properties of a biaxially anisotropic material sample uses a reduced-aperture waveguide sample holder designed to accommodate a cubical sample. All the tensor material parameters can then be determined by measuring the reflection and transmission coefficients of a single sample placed into several orientations. The parameters are obtained using a root-searching algorithm by comparing theoretically computed and measured reflection and transmission coefficients. The theoretical coefficients are determined using a mode matching technique. The first technique for characterizing the electromagnetic properties of gyromagnetic materials considers requires filling the cross-section of a waveguide. The material parameters are extracted from the measured reflection and transmission coefficients. Since the cross-sectional dimensions of waveguides become prohibitively large at low frequencies, and it is at these frequencies that the gyromagnetic properties are most pronounced, sufficiently large samples may not be available. Therefore, the second technique uses a reduced-aperture sample holder that does not require the sample to fill the entire cross section of the guide. The theoretical reflection and transmission coefficients for both methods are determined using a mode matching technique. A nonlinear least squares method is employed to extract the gyromagnetic material parameters. Finally, this dissertation introduces a waveguide standard that acts as a surrogate material with both electric and magnetic properties and is useful for verifying systems designed to characterize engineered materials using the NRW technique. A genetic algorithm is used to optimize the all

  14. Intrinsic left-handed electromagnetic properties in anisotropic superconductors

    Science.gov (United States)

    Lin, Shi-Zeng; Chen, Hou-Tong

    2017-04-01

    Left-handed materials usually are realized in artificial subwavelength structures. Here, we show that some anisotropic superconductors such as Bi 2 Sr 2 CaCu 2 O 8 + δ , YBa 2 Cu x O y , and La 2 - x Sr x CuO 4 , are intrinsic left-handed materials. The condition is that the plasma frequency in the c axis, ωc, and in the ab plane, ωab, and the operating angular frequency, ω, satisfy ω c < ω < ω a b . In addition, ω should be smaller than the superconducting energy gap to sustain superconductivity. We study the reflection and transmission of electromagnetic waves and reveal negative refraction and the backward wave with the phase velocity opposite to the direction of energy flux propagation. We also discuss possible approaches for improvement, making these properties feasible for experimental validation. Being intrinsic left-hand materials, the anisotropic superconductors are promising for applications in functional electromagnetic devices in the terahertz frequency band.

  15. Encapsulation of functional organic compounds in nanoglass for optically anisotropic coatings.

    Science.gov (United States)

    Stöter, Matthias; Biersack, Bernhard; Rosenfeldt, Sabine; Leitl, Markus J; Kalo, Hussein; Schobert, Rainer; Yersin, Hartmut; Ozin, Geoffrey A; Förster, Stephan; Breu, Josef

    2015-04-13

    A novel approach is presented for the encapsulation of organic functional molecules between two sheets of 1 nm thin silicate layers, which like glass are transparent and chemically stable. An ordered heterostructure with organic interlayers strictly alternating with osmotically swelling sodium interlayers can be spontaneously delaminated into double stacks with the organic interlayers sandwiched between two silicate layers. The double stacks show high aspect ratios of >1000 (typical lateral extension 5000 nm, thickness 4.5 nm). This newly developed technique can be used to mask hydrophobic functional molecules and render them completely dispersible in water. The combination of the structural anisotropy of the silicate layers and a preferred orientation of molecules confined in the interlayer space allows polymer nanocomposite films to be cast with a well-defined orientation of the encapsulated molecules, thus rendering the optical properties of the nanocoatings anisotropic.

  16. KINEMATIC WAVE PROPERTIES OF ANISOTROPIC DYNAMICS MODEL FOR TRAFFIC FLOW

    Institute of Scientific and Technical Information of China (English)

    姜锐; 吴清松; 朱祚金

    2002-01-01

    The analyses of kinematic wave properties of a new dynamics model for traffic flow are carried out. The model does not exhibit the problem that one characteristic speed is always greater than macroscopic traffic speed, and therefore satisfies the requirement that traffic flow is anisotropic. Linear stability analysis shows that the model is stable under certain condition and the condition is obtained. The analyses also indicate that the model has a hierarchy of first-and second-order waves, and allows the existence of both smooth traveling wave and shock wave. However, the model has a distinctive criterion of shock wave compared with other dynamics models, and the distinction makes the model more realistic in dealing with some traffic problems such as wrong-way travel analysis.

  17. Optical properties of solids

    CERN Document Server

    Wooten, Frederick

    1972-01-01

    Optical Properties of Solids covers the important concepts of intrinsic optical properties and photoelectric emission. The book starts by providing an introduction to the fundamental optical spectra of solids. The text then discusses Maxwell's equations and the dielectric function; absorption and dispersion; and the theory of free-electron metals. The quantum mechanical theory of direct and indirect transitions between bands; the applications of dispersion relations; and the derivation of an expression for the dielectric function in the self-consistent field approximation are also encompassed.

  18. Ray-optics analysis of inhomogeneous biaxially anisotropic media

    NARCIS (Netherlands)

    Sluijter, M.; De Boer, D.K.G.; Urbach, H.P.

    2009-01-01

    Firm evidence of the biaxial nematic phase in liquid crystals, not induced by a magnetic or electric field, has been established only recently. The discovery of these biaxially anisotropic liquid crystals has opened up new areas of both fundamental and applied research. The advances in biaxial

  19. Self-Assembled Magnetic Metallic Nanopillars in Ceramic Matrix with Anisotropic Magnetic and Electrical Transport Properties.

    Science.gov (United States)

    Su, Qing; Zhang, Wenrui; Lu, Ping; Fang, Shumin; Khatkhatay, Fauzia; Jian, Jie; Li, Leigang; Chen, Fanglin; Zhang, Xinghang; MacManus-Driscoll, Judith L; Chen, Aiping; Jia, Quanxi; Wang, Haiyan

    2016-08-10

    Ordered arrays of metallic nanopillars embedded in a ceramic matrix have recently attracted considerable interest for their multifunctionality in advanced devices. A number of hurdles need to be overcome for achieving practical devices, including selections of metal-ceramic combination, creation of tunable and ordered structure, and control of strain state. In this article, we demonstrate major advances to create such a fine nanoscale structure, i.e., epitaxial self-assembled vertically aligned metal-ceramic composite, in one-step growth using pulsed laser deposition. Tunable diameter and spacing of the nanopillars can be achieved by controlling the growth parameters such as deposition temperature. The magnetic metal-ceramic composite thin films demonstrate uniaxial anisotropic magnetic properties and enhanced coercivity compared to that of bulk metal. The system also presents unique anisotropic electrical transport properties under in-plane and out-of-plane directions. This work paves a new avenue to fabricate epitaxial metal-ceramic nanocomposites, which can simulate broader future explorations in nanocomposites with novel magnetic, optical, electrical, and catalytical properties.

  20. Anisotropic properties of aligned SWNT modified poly (methyl methacrylate) nanocomposites

    Indian Academy of Sciences (India)

    Weixue Li; Qing Wang; Jianfeng Dai

    2006-06-01

    The poly (methyl methacrylate) (PMMA)/single-walled carbon nanotube (SWNT) composites with good uniformity, dispersion and alignment of SWNT were fabricated in an improved figuration process. The semidried mixture was stretched along one direction at a drawing ratio of 50 before it was dried, and then folded along the same direction stretching repeatedly for 100 times. The transmission electron microscopic (TEM) observation demonstrated that SWNT in the PMMA/SWNT composite tends to align in the stretching direction owing to a torque exerting on it in the stretching process. The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of composite rise with the increase of SWNT concentration, and that composite films showed higher conductivity and higher mechanical draw ratios along the stretched direction than perpendicular to it. The thermogravimetric analysis (TGA) revealed that embedding the SWNTs into the PMMA matrix also improves the thermal stability of the composite.

  1. Optical correlation using isotropic and anisotropic self diffraction using photorefractive material

    Science.gov (United States)

    Buranasiri, Prathan

    For two incident optical beams at different angles of incidence, a photorefractive cerium doped barium titanate crystal can facilitate different configurations of self-diffraction into higher orders. These configurations can be classified as isotropic and anisotropic, co-directional and contra-directional. Sometimes, a higher order resulting from an incident diverging object beam may comprise a converging beam, which then has the property of phase conjugation. Photorefractive fanning plays an important role in all these self-diffraction configurations. In this dissertation, we first explore the first higher order generated by forward three wave mixing. Only one higher order is observed when one of the incident beams is perpendicular to the surface of incidence. Not only the energy transfer via the first order grating has been observed but the energy transfer via the second order grating has been observed as well. With the angle between two incident beams less than 0.015 radians, the second configuration of self-diffraction has been investigated. With this configuration, codirectional isotropic self-diffraction (CODIS) and contradirectional isotropic self diffraction (CONDIS) have been observed. Phase conjugated beams which are responsible for CONDIS are the composite of mutual pumped phase conjugate (MPPC) and self pumped phase conjugate (SPPC). Due to the fanning effect, CONDIS usually forms before CODAS. In general, energy transfer between incident beams and CONDIS and CODIS occurs via first order and higher order gratings. For certain large but specific angles between the two incident extraordinarily polarized beams, it is possible to obtain anisotropic self-diffraction into ordinarily polarized higher orders. This third configuration for self-diffraction, called codirectional anisotropic self-diffraction (CODAS), can be generated most efficiently for the Bragg-matched case, although we have also observed CODAS with Bragg mismatch. In addition, CODAS has been

  2. Optical measurement of anisotropic magnetic susceptibility for diamagnetic fine particles

    Science.gov (United States)

    Kitamura, Naoyuki; Takahashi, Kohki; Mogi, Iwao; Awaji, Satoshi; Watanabe, Kazuo

    2016-01-01

    We have developed an apparatus that allows the observation of the transient rotational motion of fine particles under a high magnetic field in order to determine anisotropic magnetic susceptibility. The anisotropic susceptibilities of spherical nanoparticles of bismuth and commercially available carbon nanofibers were determined. The estimated Δχ = 3.9 × 10-5 of spherical bismuth nanoparticles with a diameter of 370 nm was fairly consistent with the value determined previously by the magnetic field dependence of diffraction peak intensity in the X-ray diffraction (XRD) pattern, but was slightly smaller than the value for the bulk crystal. In contrast, the transient behavior of carbon nanofibers did not obey the theoretical motion of a single crystal. The wide distribution of fiber lengths, the irregularity of the structure in the fiber, and the connections between the fibers are suggested for the anomalous behavior.

  3. THE STRUCTURE AND OPTICAL PROPERTIES OF COPOLYMER OF CHOLESTERIC ESTER

    Institute of Scientific and Technical Information of China (English)

    Zhou Enle; Zhang Yongqing; Zhao Xiaoguang; Xu Yang; Zhou Xingmao

    1988-01-01

    The structure and switching properties of liquid crystalline side chain copolymers of cholesteric ester of1,2-hydroxypropyl 2,4-di-isocyanatoluene methylmethacrylate (PHCPM) have been studied in detail. The cholesteric mesophase of PHCPM is shown by polarizing microscopy, X-ray diffraction and selective light reflection. Solution of PHCPM in CHCl3 is optically anisotropic; its optical properties were determined by specific rotation [α], circular dichroism (CD) and wide-angle light scattering (WALS) methods.

  4. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  5. Optical properties of nanoparticles

    DEFF Research Database (Denmark)

    Bendix, Pól Martin

    2015-01-01

    At the NBI I am involved in projects relating to optical properties of metallic nanoparticles in particular with respect to plasmonic heating with direct applications to photothermal cancer therapy. For this purpose we have developed heating assays that can be used to measure the heating of any...... nanoscopic heat source like an irradiated nanoparticle...

  6. Kramers-Kronig-consistent optical functions of anisotropic crystals: generalized spectroscopic ellipsometry on pentacene.

    Science.gov (United States)

    Dressel, M; Gompf, B; Faltermeier, D; Tripathi, A K; Pflaum, J; Schubert, M

    2008-11-24

    The Kramers-Kronig relations between the real and imaginary parts of a response function are widely used in solid-state physics to evaluate the corresponding quantity if only one component is measured. They are among the most fundamental statements since only based on the analytical behavior and causal nature of the material response [Phys. Rev. 104, 1760-1770 (1956)]. Optical losses, for instance, can be obtained from the dispersion of the dielectric constant at all wavelengths, and vice versa [Handbook of optical constants of solids, Vol. 1, p. 35]. Although the general validity was never casted into doubt, it is a longstanding problem that Kramers-Kronig relations cannot simply be applied to anisotropic crystalline materials because contributions from different directions mix in a frequency-dependent way. Here we present a general method to identify frequency-independent principal polarizability directions for which the Kramers-Kronig relations are obeyed even in materials with lowest symmetry. Using generalized spectroscopic ellipsometry on a single crystal surface of triclinic pentacene, as an example, enables us to evaluate the complex dielectric constant and to compare it with band-structure calculations along the crystallographic directions. A general recipe is provided how to proceed from a macroscopic measurement on a low symmetry crystal plane to the microscopic dielectric properties of the unit cell, along whose axes the Kramers-Kronig relations hold.

  7. An engineered anisotropic nanofilm with unidirectional wetting properties

    Science.gov (United States)

    Malvadkar, Niranjan A.; Hancock, Matthew J.; Sekeroglu, Koray; Dressick, Walter J.; Demirel, Melik C.

    2010-12-01

    Anisotropic textured surfaces allow water striders to walk on water, butterflies to shed water from their wings and plants to trap insects and pollen. Capturing these natural features in biomimetic surfaces is an active area of research. Here, we report an engineered nanofilm, composed of an array of poly(p-xylylene) nanorods, which demonstrates anisotropic wetting behaviour by means of a pin-release droplet ratchet mechanism. Droplet retention forces in the pin and release directions differ by up to 80μN, which is over ten times greater than the values reported for other engineered anisotropic surfaces. The nanofilm provides a microscale smooth surface on which to transport microlitre droplets, and is also relatively easy to synthesize by a bottom-up vapour-phase technique. An accompanying comprehensive model successfully describes the film's anisotropic wetting behaviour as a function of measurable film morphology parameters.

  8. Reflection and refraction properties of plane waves on the interface of uniaxially anisotropic chiral media.

    Science.gov (United States)

    Cheng, Qiang; Cui, Tie Jun

    2006-12-01

    We have investigated the reflection and refraction properties of plane waves incident from free space into a uniaxially anisotropic chiral medium, where the chirality appears only in one direction and the host medium can be either an isotropic dielectric or an anisotropic electric plasma. We show that the reflection and refraction properties are closely related to the dispersion relation of the chiral medium and that negative phase refractions and/or negative group refractions may occur. We further demonstrate that the two eigenwaves within the uniaxially anisotropic chiral medium behave differently with respect to the incident angle, and in some cases only one of them can be supported and transmitted. We have studied the critical angle and Brewster's angle with some special properties. We have also discussed the potential application of the uniaxially anisotropic chiral medium for the polarization beam splitter. Numerical results are given to validate our analysis.

  9. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  10. Computational fluid dynamics modeling of airflow inside lungs using heterogenous anisotropic lung tissue elastic properties.

    Science.gov (United States)

    Ilegbusi, Olusegun; Li, Ziang; Min, Yugang; Meeks, Sanford; Kupelian, Patrick; Santhanam, Anand P

    2012-01-01

    The aim of this paper is to model the airflow inside lungs during breathing and its fluid-structure interaction with the lung tissues and the lung tumor using subject-specific elastic properties. The fluid-structure interaction technique simultaneously simulates flow within the airway and anisotropic deformation of the lung lobes. The three-dimensional (3D) lung geometry is reconstructed from the end-expiration 3D CT scan datasets of humans with lung cancer. The lung is modeled as a poro-elastic medium with anisotropic elastic property (non-linear Young's modulus) obtained from inverse lung elastography of 4D CT scans for the same patients. The predicted results include the 3D anisotropic lung deformation along with the airflow pattern inside the lungs. The effect is also presented of anisotropic elasticity on both the spatio-temporal volumetric lung displacement and the regional lung hysteresis.

  11. Investigation of Tooling for Anisotropic Optical Functional Surfaces

    DEFF Research Database (Denmark)

    Li, Dongya; Regi, Francesco; Zhang, Yang

    is assessed by processing the images obtained from a digital microscope Hirox RH-2000 [1]. Figure 1 illustrates the studied surface structure and the microscope. The optical axis of microscope can be tilted within 90 degrees from the horizontal level, which simulates the viewing angle; the analysed surface...

  12. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics.

    Science.gov (United States)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez Del Rio, Manuel

    2014-05-01

    The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young's modulus, the shear modulus and Poisson's ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson's ratio. For an isotropic constant Poisson's ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν12 and ν13 as an effective isotropic Poisson's ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson's ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  13. Revealing the Anisotropic Thermal Conductivity of Black Phosphorus using the Time-Resolved Magneto-Optical Kerr Effect

    OpenAIRE

    Zhu, Jie; Park, Haechan; Chen, Jun-Yang; Gu, Xiaokun; Zhang, Hu; Karthikeyan, Sreejith; Wendel, Nathaniel; Campbell, Stephen A.; Dawber, Matthew; Du, Xu; Li, Mo; Wang, Jian-Ping; Yang, Ronggui; Wang, Xiaojia

    2015-01-01

    Black phosphorus (BP) has emerged as a direct-bandgap semiconducting material with great application potentials in electronics, photonics, and energy conversion. Experimental characterization of the anisotropic thermal properties of BP, however, is extremely challenging due to the lack of reliable and accurate measurement techniques to characterize anisotropic samples that are micrometers in size. Here, we report measurement results of the anisotropic thermal conductivity of bulk BP along thr...

  14. Light scattering by optically anisotropic scatterers: T-matrix theory for radial and uniform anisotropies.

    Science.gov (United States)

    Kiselev, A D; Reshetnyak, V Yu; Sluckin, T J

    2002-05-01

    We extend the T-matrix approach to light scattering by spherical particles to some simple cases in which the scatterers are optically anisotropic. Specifically, we consider cases in which the spherical particles include radially and uniformly anisotropic layers. We find that in both cases the T-matrix theory can be formulated using a modified T-matrix ansatz with suitably defined modes. In a uniformly anisotropic medium we derive these modes by relating the wave packet representation and expansions of electromagnetic field over spherical harmonics. The resulting wave functions are deformed spherical harmonics that represent solutions of the Maxwell equations. We present preliminary results of numerical calculations of the scattering by spherical droplets. We concentrate on cases in which the scattering is due only to the local optical anisotropy within the scatterer. For radial anisotropy we find that nonmonotonic dependence of the scattering cross section on the degree of anisotropy can occur in a regime to which both the Rayleigh and semiclassical theories are inapplicable. For uniform anisotropy the cross section is strongly dependent on the angle between the incident light and the optical axis, and for larger droplets this dependence is nonmonotonic.

  15. Optical properties of stanene

    Science.gov (United States)

    Pratap Chaudhary, Raghvendra; Saxena, Sumit; Shukla, Shobha

    2016-12-01

    Successful synthesis of graphene has created a runaway effect in the exploration of other similar two-dimensional materials. These materials are important as they provide large surface areas and have led to the exploration of new physical phenomena. Even though graphene has exotic electronic properties, its spin-orbit coupling is very weak. Tin, being one of the heaviest elements in this group, is expected to have enhanced spin-orbit coupling in addition to other exotic properties of graphene. Here we report optical signatures of free standing stanene obtained using UV-vis absorption spectroscopy. Raman measurements were performed on a transmission electron microscope (TEM) grid. Interlayer spacing, phonon frequencies and the imaginary part of the complex dielectric function obtained using first principles methods are in good agreement with the experimental data. Occurrence of parallel bands suggests the possibility of the presence of excitonic effects in stanene.

  16. Cellulose-Templated Graphene Monoliths with Anisotropic Mechanical, Thermal, and Electrical Properties.

    Science.gov (United States)

    Zhang, Rujing; Chen, Qiao; Zhen, Zhen; Jiang, Xin; Zhong, Minlin; Zhu, Hongwei

    2015-09-02

    Assembling particular building blocks into composites with diverse targeted structures has attracted considerable interest for understanding its new properties and expanding the potential applications. Anisotropic organization is considered as a frequently used targeted architecture and possesses many peculiar properties because of its unusual shapes. Here, we show that anisotropic graphene monoliths (AGMs), three-dimensional architectures of well-aligned graphene sheets obtained by a dip-coating method using cellulose acetate fibers as templates show thermal-insulating, fire-retardant, and anisotropic properties. They exhibit a feature of higher mechanical strength and thermal/electrical conductivities in the axial direction than in the radial direction. Elastic polymer resins are then introduced into the pores of the AGMs to form conductive and flexible composites. The composites, as AGMs, retain the unique anisotropic properties, revealing opposite resistance change under compressions in different directions. The outstanding anisotropic properties of AGMs make them possible to be applied in the fields of thermal insulation, integrated circuits, and electromechanical devices.

  17. Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si.

    Science.gov (United States)

    de Lima Monteiro, D W; Akhzar-Mehr, O; Sarro, P M; Vdovin, G

    2003-09-08

    We report on the microfabrication of continuous aspherical optical surfaces with a single-mask process, using anisotropic etching of silicon in a KOH water solution. Precise arbitrary aspherical surfaces with lateral scales on the order of several millimeters and a profile depth on the order of several micrometers were fabricated using this process. We discuss the factors defining the precision of the formed component and the resulting surface quality. We demonstrate 1 mm and 5 mm replicated aspherical phase plates, reproducing defocus, tilt, astigmatism and high-order aberrations. The technology has a potential for serial production of reflective and refractive arbitrary aspherical micro-optical components.

  18. Single-mask microfabrication of aspherical optics using KOH anisotropic etching of Si

    Science.gov (United States)

    de Lima Monteiro, D. W.; Akhzar-Mehr, O.; Sarro, P. M.; Vdovin, G.

    2003-09-01

    We report on the microfabrication of continuous aspherical optical surfaces with a single-mask process, using anisotropic etching of silicon in a KOH water solution. Precise arbitrary aspherical surfaces with lateral scales on the order of several millimeters and a profile depth on the order of several micrometers were fabricated using this process. We discuss the factors defining the precision of the formed component and the resulting surface quality. We demonstrate 1 mm and 5 mm replicated aspherical phase plates, reproducing defocus, tilt, astigmatism and high-order aberrations. The technology has a potential for serial production of reflective and refractive arbitrary aspherical micro-optical components.

  19. Majorana modes and topological superfluids for ultracold fermionic atoms in anisotropic square optical lattices

    Science.gov (United States)

    Wu, Ya-Jie; Li, Ning; Kou, Su-Peng

    2016-12-01

    Motivated by the recent experimental realization of two-dimensional spin-orbit coupling through optical Raman lattice scheme, we study attractive interacting ultracold gases with spin-orbit interaction in anisotropic square optical lattices, and find that rich s-wave topological superfluids can be realized, including Z2 topological superfluids beyond the characterization of "tenfold way" in addition to chiral topological superfluids. The topological defects-superfluid vortex and edge dislocations-may host Majorana modes in some topological superfluids, which are helpful for realizing topological quantum computation and Majorana fermionic quantum computation. In addition, we also discuss the Berezinsky-Kosterlitz-Thouless phase transitions for different topological superfluids.

  20. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  1. Silver nanoprisms/silicone hybrid rubber materials and their optical limiting property to femtosecond laser

    Science.gov (United States)

    Li, Chunfang; Liu, Miao; Jiang, Nengkai; Wang, Chunlei; Lin, Weihong; Li, Dongxiang

    2017-08-01

    Optical limiters against femtosecond laser are essential for eye and sensor protection in optical processing system with femtosecond laser as light source. Anisotropic Ag nanoparticles are expected to develop into optical limiting materials for femtosecond laser pulses. Herein, silver nanoprisms are prepared and coated by silica layer, which are then doped into silicone rubber to obtain hybrid rubber sheets. The silver nanoprisms/silicone hybrid rubber sheets exhibit good optical limiting property to femtosecond laser mainly due to nonlinear optical absorption.

  2. Optical properties of advanced materials

    CERN Document Server

    Kajikawa, Kotaro

    2013-01-01

    In the last decade, optically functionalized materials have developed rapidly, from bulk matters to structured forms. Now we have a rich variety of attractive advanced materials. They are applied to optical and electrical devices that support the information communication technology in the mid 21-th century. Accordingly, it is quite important to have a broad knowledge of the optical properties of advanced materials for students, scientists and engineers working in optics and related fields. This book is designed to teach fundamental optical properties of such advanced materials effectively. These materials have their own peculiarities which are very interesting in modern optical physics and also for applications because the concepts of optical properties are quite different from those in conventional optical materials. Hence each chapter starts to review the basic concepts of the materials briefly and proceeds to the practical use. The important topics covered in this book include:  quantum structures of sem...

  3. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    . In order to implement the traceability ofthe manufacturing process, the geometry and dimension of the micro structure on the tool and the replica were assessed viametrological methods. The functionality of the anisotropic surfaces on the polymer replicas were evaluated by a gonioreflectometerand image......This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...... from a certain viewing angle. The process chain comprised three steps: tooling, replicationand quality assurance. Tooling was achieved by precision micro milling. Replication processes such as injection moulding, hotembossing, blow moulding, etc. were employed according to the specific type of product...

  4. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  5. Nanoindentation study of electrodeposited Ag thin coating: An inverse calculation of anisotropic elastic-plastic properties

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Guang; Sun, Xin; Wang, Yuxin; Tay, See Leng; Gao, Wei

    2017-01-01

    A new inverse method was proposed to calculate the anisotropic elastic-plastic properties (flow stress) of thin electrodeposited Ag coating utilizing nanoindentation tests, previously reported inverse method for isotropic materials and three-dimensional (3-D) finite element analyses (FEA). Indentation depth was ~4% of coating thickness (~10 μm) to avoid substrate effect and different indentation responses were observed in the longitudinal (L) and the transverse (T) directions. The estimated elastic-plastic properties were obtained in the newly developed inverse method by matching the predicted indentation responses in the L and T directions with experimental measurements considering indentation size effect (ISE). The results were validated with tensile flow curves measured from free-standing (FS) Ag film. The current method can be utilized to characterize the anisotropic elastic-plastic properties of coatings and to provide the constitutive properties for coating performance evaluations.

  6. Carleman estimates and unique continuation property for the anisotropic differential-operator equations

    Institute of Scientific and Technical Information of China (English)

    Veli B SHAKHMUROV

    2008-01-01

    The unique continuation theorems for the anisotropic partial differential-operator equations with variable coefficients in Banach-valued Lp-spaces are studied. To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations, the sufficient conditions are founded. By using these facts, the unique continuation properties are established. In the application part, the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied.

  7. Measurement of Anisotropic Elastic Constitutive Properties at High Temperatures

    Science.gov (United States)

    2006-05-31

    1295 (1997) 6. Ing, R. K. and Fink, M., IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45(4), 1032-1043 (1998). 7. Prada , C. and Fink, M., Wave...256. 7 Telschow, K.L., J.B. Walter, G.V. Garcia , D.C.Kunerth, “Process monitoring using Optical Ultrasonic Wave Detection. Review of Progress in

  8. Evolution, Interaction, and Intrinsic Properties of Dislocations in Intermetallics: Anisotropic 3D Dislocation Dynamics Approach

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qian [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The generation, motion, and interaction of dislocations play key roles during the plastic deformation process of crystalline solids. 3D Dislocation Dynamics has been employed as a mesoscale simulation algorithm to investigate the collective and cooperative behavior of dislocations. Most current research on 3D Dislocation Dynamics is based on the solutions available in the framework of classical isotropic elasticity. However, due to some degree of elastic anisotropy in almost all crystalline solids, it is very necessary to extend 3D Dislocation Dynamics into anisotropic elasticity. In this study, first, the details of efficient and accurate incorporation of the fully anisotropic elasticity into 3D discrete Dislocation Dynamics by numerically evaluating the derivatives of Green's functions are described. Then the intrinsic properties of perfect dislocations, including their stability, their core properties and disassociation characteristics, in newly discovered rare earth-based intermetallics and in conventional intermetallics are investigated, within the framework of fully anisotropic elasticity supplemented with the atomistic information obtained from the ab initio calculations. Moreover, the evolution and interaction of dislocations in these intermetallics as well as the role of solute segregation are presented by utilizing fully anisotropic 3D dislocation dynamics. The results from this work clearly indicate the role and the importance of elastic anisotropy on the evolution of dislocation microstructures, the overall ductility and the hardening behavior in these systems.

  9. Scale Properties of Anisotropic and Isotropic Turbulence in the Urban Surface Layer

    Science.gov (United States)

    Liu, Hao; Yuan, Renmin; Mei, Jie; Sun, Jianning; Liu, Qi; Wang, Yu

    2017-06-01

    The scale properties of anisotropic and isotropic turbulence in the urban surface layer are investigated. A dimensionless anisotropic tensor is introduced and the turbulent tensor anisotropic coefficient, defined as C, where C = 3d3 + 1 (d3 is the minimum eigenvalue of the tensor) is used to characterize the turbulence anisotropy or isotropy. Turbulence is isotropic when C ≈ 1 , and anisotropic when C ≪ 1 . Three-dimensional velocity data collected using a sonic anemometer are analyzed to obtain the anisotropic characteristics of atmospheric turbulence in the urban surface layer, and the tensor anisotropic coefficient of turbulent eddies at different spatial scales calculated. The analysis shows that C is strongly dependent on atmospheric stability ξ = (z-zd)/L_{MO} , where z is the measurement height, zd is the displacement height, and L_{MO} is the Obukhov length. The turbulence at a specific scale in unstable conditions (i.e., ξ < 0 ) is closer to isotropic than that at the same scale under stable conditions. The maximum isotropic scale of turbulence is determined based on the characteristics of the power spectrum in three directions. Turbulence does not behave isotropically when the eddy scale is greater than the maximum isotropic scale, whereas it is horizontally isotropic at relatively large scales. The maximum isotropic scale of turbulence is compared to the outer scale of temperature, which is obtained by fitting the temperature fluctuation spectrum using the von Karman turbulent model. The results show that the outer scale of temperature is greater than the maximum isotropic scale of turbulence.

  10. Propagation of ring Airy Gaussian beams with optical vortices through anisotropic non-Kolmogorov turbulence

    Science.gov (United States)

    Zhi, Dong; Tao, Rumao; Zhou, Pu; Ma, Yanxing; Wu, Wuming; Wang, Xiaolin; Si, Lei

    2017-03-01

    A new ring Airy Gaussian (RAiG) vortex beam generation method by coherent combination of Gaussian beam array has been proposed. To validate the feasibility of this method, the propagation properties of the RAiG vortex beam and the coherent combining beam in vacuum have been studied and analyzed. From the comparisons of the intensity distributions and phase patterns along the propagation path, we can conclude that the coherent combining beam has the same properties as those of the ideal RAiG vortex beam. So this method can be used to obtain RAiG vortex beam in practice. Then the general analytical expression of the root-mean-square (RMS) beam width of the RAiG vortex beam, which is appropriately generated by coherent combining method, through anisotropic non-Kolmogorov turbulence has been derived. The influence of anisotropic turbulence on RMS beam width of the generated RAiG vortex beam has been numerically calculated. This generation method has good appropriation to the ideal RAiG vortex beam and is very useful for deriving the analytical expression of propagation properties through a random media. The conclusions are useful in practical applications, such as laser communication and remote sensing systems.

  11. Optical properties of polymer nanocomposites

    Indian Academy of Sciences (India)

    S Srivastava; M Haridas; J K Basu

    2008-06-01

    Nanomaterials have emerged as an area of interest motivated by potential applications of these materials in light emitting diodes, solar cells, polarizers, light – stable colour filters, optical sensors, optical data communication and optical data storage. Nanomaterials are of particular interest as they combine the properties of two or more different materials with the possibility of possessing novel mechanical, electronic or chemical behaviour. Understanding and tuning such effects could lead to hybrid devices based on these nanocomposites with improved optical properties. We have prepared polymer nanocomposites of well-defined compositions and studied the optical properties of powders and their thin films. UV-vis absorption spectroscopy on nanocomposite powders and spectroscopic ellipsometry measurements on thin films was used to study the effect of interfacial morphology, interparticle spacing and finite size effects on optical properties of nanocomposites. Systematic shift in the imaginary part of the dielectric function can be seen with variation in size and fraction of the gold nanoparticle. The thickness of the film also plays a significant role in the tunability of the optical spectra.

  12. Optical Properties of Photonic Crystals

    CERN Document Server

    Sakoda, Kazuaki

    2005-01-01

    This is the first comprehensive textbook on the optical properties of photonic crystals. It deals not only with the properties of the radiation modes inside the crystals but also with their peculiar optical response to external fields. A general theory of linear and nonlinear optical response is developed in a clear and detailed fashion using the Green's function method. The symmetry of the eigenmodes is treated systematically using group theory to show how it affects the optical properties of photonic crystals. Important recent developments such as the enhancement of stimulated emission, second harmonic generation, quadrature-phase squeezing, and low-threshold lasing are also treated in detail and made understandable. Numerical methods are also emphasized. Thus this book provides both an introduction for graduate and undergraduate students and also key information for researchers in this field. This second edition has been updated and includes a new chapter on superfluorescence.

  13. Fabricating a variety of micro-optics structures using anisotropic etching of silicon

    Science.gov (United States)

    Li, Bin; Wei, Ming-yue; Wang, Meng; Zhang, Xin-yu; Xie, Chang-sheng; Zhang, Tian-xu

    2010-10-01

    A variety of micro-optics structures can be fabricated using a dual-step anisotropic etching of KOH: H2O over (100) silicon. A key step of this method is the design of mask layout. In accordance with the expected profile, this paper implemented a set of algorithms through computer programming to design the mask, and after setting a set of parameters, the final etching profile can be simulated. According to the data of the mask layout generated by the program, a lithography mask is fabricated, and then through the single-step lithography and dual-step wet etching, the expected profile is acquired. The mask can be fast and efficiently designed using this method, and through follow-up procedures, many kinds of aspherical and irregular micro-structures can be obtained. In this study, a series of 512x512 arrays of concave lenses are designed using the algorithm, and then the follow-up procedures are carried out using the most appropriate corrosion issues calculated by the program, and finally get a good result. At the end of this study, the lens' surface profile, roughness, and optical performance, etc, are tested. Test results show that the micro lens are very neat, and the hole size and depth of each unit have basically the same size. The surface profile and roughness already achieve optical mirror requirements, and the structures have good optical performances.

  14. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Anisotropic mechanical properties of magnetically aligned fibrin gels measured by magnetic resonance elastography.

    Science.gov (United States)

    Namani, Ravi; Wood, Matthew D; Sakiyama-Elbert, Shelly E; Bayly, Philip V

    2009-09-18

    The anisotropic mechanical properties of magnetically aligned fibrin gels were measured by magnetic resonance elastography (MRE) and by a standard mechanical test: unconfined compression. Soft anisotropic biomaterials are notoriously difficult to characterize, especially in vivo. MRE is well-suited for efficient, non-invasive, and non-destructive assessment of shear modulus. Direction-dependent differences in shear modulus were found to be statistically significant for gels polymerized at magnetic fields of 11.7 and 4.7 T compared to control gels. Mechanical anisotropy was greater in the gels polymerized at the higher magnetic field. These observations were consistent with results from unconfined compression tests. Analysis of confocal microscopy images of gels showed measurable alignment of fibrils in gels polymerized at 11.7 T. This study provides direct, quantitative measurements of the anisotropy in mechanical properties that accompanies fibril alignment in fibrin gels.

  16. Optically anisotropic microlens array film directly formed on a single substrate.

    Science.gov (United States)

    Ren, Hongwen; Xu, Su; Liu, Yifan; Wu, Shin-Tson

    2013-12-02

    An optically anisotropic microlens array film directly formed on a single substrate is demonstrated. UV curable diacrylate monomers are coated as a film on the substrate. Under the action of fringing field, not only the film surface is flattened by the generated dielectric force but also the monomers are reoriented to form a gradient refractive index (GRIN) distribution in the film. Via UV exposure, the GRIN distribution is fixed and the polymeric film behaves as a microlens array. The fabrication process is simple and the film offers a switchable focus through controlling the polarization direction of the incident light. Integrating with a 90° twisted-nematic liquid crystal cell, our polymeric microlens array film shows great potential for switchable 2D/3D autostereoscopic displays.

  17. Adaptive anisotropic diffusion for noise reduction of phase images in Fourier domain Doppler optical coherence tomography.

    Science.gov (United States)

    Xia, Shaoyan; Huang, Yong; Peng, Shizhao; Wu, Yanfeng; Tan, Xiaodi

    2016-08-01

    Phase image in Fourier domain Doppler optical coherence tomography offers additional flow information of investigated samples, which provides valuable evidence towards accurate medical diagnosis. High quality phase images are thus desirable. We propose a noise reduction method for phase images by combining a synthetic noise estimation criteria based on local noise estimator (LNE) and distance median value (DMV) with anisotropic diffusion model. By identifying noise and signal pixels accurately and diffusing them with different coefficients respectively and adaptive iteration steps, we demonstrated the effectiveness of our proposed method in both phantom and mouse artery images. Comparison with other methods such as filtering method (mean, median filtering), wavelet method, probabilistic method and partial differential equation based methods in terms of peak signal-to-noise ratio (PSNR), equivalent number of looks (ENL) and contrast-to-noise ratio (CNR) showed the advantages of our method in reserving image energy and removing noise.

  18. Magnetic properties and thermal stability of anisotropic bonded Nd-Fe-B magnets by warm compaction

    Institute of Scientific and Technical Information of China (English)

    TAO Siwu; LU Xin; TIAN Jianjun; QU Xuanhui; Y. Honkura; H. Mitaraib; K. Noguchi

    2009-01-01

    Anisotropic bonded magnets were prepared by warm compaction using anisotropic Nd-Fe-B powder. The forming process, magnetic properties, and temperature stability were studied. The results indicate that the optimal temperature of the process, which was decided by the viscosity of the binders, was 110℃. With increasing pressure, the density of the magnets increased. When the pressure was above 700 MPa, the powder particles were destroyed and the magnetic properties decreased. The magnetic properties of the anisotropic bonded magnets were as follows: remanence Br = 0.98 T, intrinsic coercivity iHc=1361 kA/m, and maximum energy product BHmax = 166 kJ/m3. The magnets had excellent thermal stability because of the high coercivity and good squareness of demagnetization curves. The flux density of the magnets was 35% higher than that of isotropic bonded Nd-Fe-B magnets at 120℃ for 1000 h. The flux density of the bonded magnets showed little change with regard to temperature.

  19. Optical Properties of Fluorescent Dyes

    Institute of Scientific and Technical Information of China (English)

    李戎; 陈东辉

    2001-01-01

    Fluorescent dyes have been widely used these years.Because of the special optical performance, conventional CCM systems seem to be unable to predict the recipes of fabrics dyed with fluorescent dyes. In order to enhance the functions of CCM systems, the optical properties of fluorescent dyes in their absorption region were investigated. It has been found that there was a fixed maximum absorption wavelength for each fluorescent dyes whatever its concentration is. Both absorption region and maximum absorption wavelength of the dyes in solution are the same to those in fabric, and that the absorption is directly proportional to the concentration of the dye. So the optical properties obtained in solutions cna be applied for describing the optics performance of fluorescent dyes in fabrics.

  20. Optical properties of flyash

    Energy Technology Data Exchange (ETDEWEB)

    Self, S.A.

    1990-04-01

    In this research program, we have adopted the approach that by measuring fundamental properties (i.e, the complex refractive index, m) of the fly ash which participates in the radiation transfer, we can use well established theoretical principles (Mie theory) to compute the radiative properties of dispersions of fly ash as found in coal combustors. With this approach one can, understand the underlying principles that affect the radiative properties of an ash dispersion and more confidently predict how variations in the characteristics of the ash dispersion cause variations in its radiative properties. An important criterion in this approach is that the fly ash particles be spherical, homogeneous, and isotropic. Fortunately, fly ash particles are formed at high temperatures at which most of them are molten, leading primarily to spherical particles. Furthermore, one should expect that molten particles will be reasonably homogeneous and isotropic. On cooling, most fly ash particles form glassy spheres which are homogeneous and isotropic. Some ash particles form hollow shells (cenospheres) while others form as particles with bubbles'' or voids, but most fly ash particles are well approximated as homogeneous isotropic spheres. In the following sections we review some of the underlying principles that affect the radiative properties of fly ash dispersions and report on progress that has been made during the past quarter.

  1. Anisotropic compressive properties of passive porcine muscle tissue.

    Science.gov (United States)

    Pietsch, Renee; Wheatley, Benjamin B; Haut Donahue, Tammy L; Gilbrech, Ryan; Prabhu, Rajkumar; Liao, Jun; Williams, Lakiesha N

    2014-11-01

    The body has approximately 434 muscles, which makes up 40-50% of the body by weight. Muscle is hierarchical in nature and organized in progressively larger units encased in connective tissue. Like many soft tissues, muscle has nonlinear visco-elastic behavior, but muscle also has unique characteristics of excitability and contractibility. Mechanical testing of muscle has been done for crash models, pressure sore models, back pain, and other disease models. The majority of previous biomechanical studies on muscle have been associated with tensile properties in the longitudinal direction as this is muscle's primary mode of operation under normal physiological conditions. Injury conditions, particularly high rate injuries, can expose muscle to multiple stress states. Compressive stresses can lead to tissue damage, which may not be reversible. In this study, we evaluate the structure-property relationships of porcine muscle tissue under compression, in both the transverse and longitudinal orientations at 0.1 s-1, 0.01 s-1, or 0.001 s-1. Our results show an initial toe region followed by an increase in stress for muscle in both the longitudinal and transverse directions tested to 50% strain. Strain rate dependency was also observed with the higher strain rates showing significantly more stress at 50% strain. Muscle in the transverse orientation was significantly stiffer than in the longitudinal orientation indicating anisotropy. The mean area of fibers in the longitudinal orientation shows an increasing mean fiber area and a decreasing mean fiber area in the transverse orientation. Data obtained in this study can help provide insight on how muscle injuries are caused, ranging from low energy strains to high rate blast events, and can also be used in developing computational injury models.

  2. Electrospun PCL nanofibers with anisotropic mechanical properties as a biomedical scaffold.

    Science.gov (United States)

    Kim, Geun Hyung

    2008-06-01

    To design an ideal scaffold, various factors should be considered, such as pore size and morphology, mechanical properties versus porosity, surface properties and appropriate biodegradability. Of these factors, the importance of mechanical properties on cell growth is particularly obvious in tissues such as bone, cartilage, blood vessels, tendons and muscles. Although electrospun nanofibers provide easily applicable nano-sized structures which could be used as biomedical scaffolds, the mechanical properties are poor since an increased pore size and porosity are generally accompanied by a decrease in mechanical properties. In addition, the general electrospinning has been limited to the fabrication of a variety of anisotropic mechanical properties, which are extremely important parameters for designing a musculoskeletal system. In this study, scaffolds consisting of variously oriented nanofibers were produced using an electrospinning process modified with an auxiliary electrode and a two-axis robot collecting system. Using an auxiliary electrode, a stable Taylor cone and initial spun jets were obtained. The influence of the electrode was evaluated with electric field simulation. Using the modified electrospinning process, various directions of orientation of electrospun fibers could be acquired and the fabricated oriented nanofiber webs showed a mechanically anisotropic behavior and a higher hydrophilic property compared to randomly distributed fibrous mats.

  3. Simultaneous inversion for anisotropic and structural crustal properties by stacking of radial and transverse receiver functions

    Science.gov (United States)

    Link, Frederik; Rümpker, Georg; Kaviani, Ayoub; Singh, Manvendra

    2016-04-01

    The well-known H-κ-stacking method of Zhu and Kanamori (2000) has developed into a standard tool to infer the thickness of the crust, H, and the average P to S-wave velocity ratio, κ. The stacking approach allows for the largely automated analysis of teleseismic waveforms recorded in the distance range between 30° and 95° . Here, we present an extension of the method to include the inversion for anisotropic crustal properties. For a single anisotropic crustal layer, this involves the computation of delay times and amplitudes for 20 P-to-S converted phases and their crustal reverberations, instead of (up to) five phases in the isotropic case (Kaviani and Rümpker, 2015). The delay times and amplitudes exhibit a complex dependency on slowness and backazimuth. They can be calculated semi-analytically from the eigenvalues and eigenvectors of the system matrix, as defined by Woodhouse (1974). A comparison of the calculated delay times and amplitudes with those obtained by similar methods (Frederiksen and Bostock, 2000) shows a very good agreement between the results. In our approach, the crust exhibits hexagonal anisotropy with a horizontal symmetry axis, such that the anisotropic properties are defined by two parameters: the orientation of the symmetry axis w.r.t. North, φ, and the percentage of anisotropy, a. The inversion, thus, involves a grid search in a 4-dimensional parameter space (H, κ, φ, a) and the stacking of both radial and transverse receiver functions. Known input parameters are the average P-wave velocity of the crust, and the slowness vector (as given by the event-receiver configuration and a global 1D-velocity model). The computations are performed by the new software package AnStack which is based on MATLAB. Synthetic test show that the extended anisotropic stacking has advantages compared to the conventional H-κ stacking as it may allow for inversions at even higher noise levels. We further test for the effect of the azimuthal distribution of

  4. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Science.gov (United States)

    Umeda, Minoru; Katagiri, Mitsuhiko; Shironita, Sayoko; Nagayama, Norio

    2016-12-01

    This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor's technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  5. Anisotropic magnetic properties of dysprosium iron garnet (DyIG)

    Energy Technology Data Exchange (ETDEWEB)

    Lahoubi, M; Younsi, W; Soltani, M-L [Department of Physics, Badji-Mokhtar University, BP 12 - 23000 Annaba (Algeria); Ouladdiaf, B, E-mail: mlahoubi@gmail.co [Institut Laue Langevin, BP 156 - 38042 Grenoble Cedex 9 (France)

    2010-01-01

    The magnetic properties of dysprosium iron garnet (DyIG) have been studied by performing high resolution powder neutron diffraction experiments and high dc fields magnetizations on single crystals. Among all the reflections (hkl) indexed in the nuclear cubic space group (CSG) Ia 3-bar d with h+k+l=2n and k=[000], the superstructure lines (hkl)* forbidden by the symmetry (222)* and (622)* are not observed in the patterns at all temperatures. The pattern at 130 K is well interpreted within the magnetic modes F belonging to the irreducible representation (IR) T{sub 1g} of the CSG and identified to the room temperature ferrimagnetic Neel model. The high magnetic field behavior of the spontaneous collinear magnetic structure (MS) along the easy axis (EA) <111> is isotropic. Below 130 K, the patterns exhibit additional magnetic superstructure lines. They are associated to the appearance of the spontaneous non collinear MS which is described in the subgroup of the CSG, R 3-bar c within the IR A{sub 2g}. A strong magnetization anisotropy (MA) is observed at 1.5 K in the low symmetry phases were the spin reorientation transition (SR) occur at T{sub RS}=14.5 K. The onset of MA is detected below two characteristic temperatures, Ta{sub 1}=125 K and Ta{sub 2}=75 K respectively to the hard axis (HA) <100> and <110>. Symmetry arguments are used in the framework of the theory of representation analysis (RA) applied to the subgroup of R 3-bar c, C2/c within the IR A{sub g}. It seems that this MA results essentially from the difference between the spontaneous non collinear MS and the field induced (FI) configurations. All results are discussed with previous neutrons studies.

  6. Carleman estimates and unique continuation property for the anisotropic differential-operator equations

    Institute of Scientific and Technical Information of China (English)

    Veli; B; SHAKHMUROV

    2008-01-01

    The unique continuation theorems for the anisotropic partial differential-operator equations with variable coeffcients in Banach-valued Lp-spaces are studied.To obtain the uniform maximal regularity and the Carleman type estimates for parameter depended differential-operator equations,the suffcient conditions are founded.By using these facts,the unique continuation properties are established.In the application part,the unique continuation properties and Carleman estimates for finite or infinite systems of quasielliptic partial differential equations are studied.

  7. IMPACT STUDY OF ANISOTROPIC OPTICAL FIBERS WINDING WITH DIFFERENT TENSION VALUE ON THE H-PARAMETER INVARIANCE DEGREE

    Directory of Open Access Journals (Sweden)

    A. B. Mukhtubayev

    2015-09-01

    Full Text Available Subject of Research. We have investigated the effect of anisotropic optical fibers winding with an elliptical sheath subjecting to stress on the H-parameter invariance degree. This type of optical fiber is used in the manufacture of fiber loop in fiber-optic gyroscopes. Method of Research. The method of research is based on the application of Michelson polarization scanning interferometer as a measuring device. Superluminescent diode with a central wavelength of 1575 nm and a half-width of the spectrum equal to 45 nm is used as a radiation source. The studies were carried out with anisotropic optical fiber with 50 m long elliptical sheath subjecting to stress. The fiber was wound with one layer turn to turn on the coil with a diameter of 18 cm, which is used in the design of fiber-optic gyroscope. The tension force of the optical fiber was controlled during winding on a special machine. Main Results. It was found that at the increase of tension force from 0.05 N to 0.8 H the value of H-parameter increases from 7×10-6 1/m up to 178×10-6 1/m, respectively; i.e. the coupling coefficient of orthogonal modes in the test fiber is being increased. Thus, it is necessary to consider the longitudinal tension force of fiber in the design and manufacture of the fiber-optic sensors of high accuracy class: the less the fiber winding power, the higher invariance degree of distributed H-parameter. The longitudinal tension force of anisotropic optical fiber with elliptical sheath subjecting to stress equal to 0.2 N is recommended in the process of designing fiber-optic gyroscopes. Practical Relevance. The proposed method of Michelson scanning interferometer is usable in the production process for quality determination of the optical fiber winding: no local defects, value controlling of fiber H-parameter.

  8. Monte Carlo inversion of ultrasonic array data to map anisotropic weld properties.

    Science.gov (United States)

    Zhang, Jie; Hunter, Alan; Drinkwater, Bruce W; Wilcox, Paul D

    2012-11-01

    The quality of an ultrasonic array image depends on accurate information about its acoustic properties. Inaccurate acoustic properties can cause image degradation such as blurring, mislocation of reflectors, and the introduction of artifacts. In this paper, for the specific case of an inhomogeneous and anisotropic austenitic steel weld, Monte Carlo Markov Chain (MCMC) inversion is used to estimate unknown acoustic properties from array data. The approach uses active beacons that transmit ultrasound through the anisotropic weld; the ultrasound is then captured by a receiving array. A forward model of the ultrasonic array data is then optimized with respect to the experimental data using an MCMC inversion. The result of this process is the extraction of a material property map that describes the anisotropy distribution within the weld region. These extracted material properties are then used within an imaging algorithm-the total focusing method in this paper-to produce autofocused images. This MCMC inversion approach is first applied to simulated data to test the convergence, robustness, and accuracy of the method and its implementation. The extracted weld map is used to show improved imaging of defects within the weld, relative to an image formed assuming a constant velocity. Finally, the MCMC inversion approach is used on experimental data from a 110-mm-thick steel plate containing an austenitic weld. Here the extracted weld map is used to show that defect location errors of greater than 5 mm are reduced to around 2 mm when the extracted weld map is used.

  9. Anisotropic dielectric properties of two-dimensional matrix in pseudo-spin ferroelectric system

    Science.gov (United States)

    Kim, Se-Hun

    2016-10-01

    The anisotropic dielectric properties of a two-dimensional (2D) ferroelectric system were studied using the statistical calculation of the pseudo-spin Ising Hamiltonian model. It is necessary to delay the time for measurements of the observable and the independence of the new spin configuration under Monte Carlo sampling, in which the thermal equilibrium state depends on the temperature and size of the system. The autocorrelation time constants of the normalized relaxation function were determined by taking temperature and 2D lattice size into account. We discuss the dielectric constants of a two-dimensional ferroelectric system by using the Metropolis method in view of the Slater-Takagi defect energies.

  10. Far Infrared Optical Properties of Bulk Wurtzite Zinc Oxide Semiconductor

    Institute of Scientific and Technical Information of China (English)

    Pohkok Ooi; Saicheong Lee; Shashiong Ng; Zainuriah Hassan; Haslan Abu Hassan

    2011-01-01

    Polarized far infrared (FIR) reflectance technique was applied to study the optical properties of a bulk wurtzite zinc oxide (ZnO) single crystal. Room temperature polarized FIR reflectance spectra were taken at various angles of incidence, from 20° to 70°. The theoretical polarized FIR reflectance spectra were simulated based on the anisotropic dielectric function model. Good agreement was achieved between the experimental and the theoretical FIR reflectance spectra. Through this work, a complete set of reststrahlen parameters of a bulk wurtzite ZnO at the Brillouin zone centre was obtained. Additionally, other FIR optical properties such as the real and the imaginary parts of the complex dielectric function, real and imaginary parts of the refractive index, the absorption coefficient and the reciprocal of the absorption coefficient were also obtained by using numerical calculation.

  11. Satellite material contaminant optical properties

    Science.gov (United States)

    Wood, B. E.; Bertrand, W. T.; Seiber, B. L.; Kiech, E. L.; Falco, P. M.; Holt, J. D.

    1990-03-01

    The Air Force Wright Research and Development Center and the Arnold Engineering Development Center are continuing a program for measuring optical effects of satellite material outgassing products on cryo-optic surfaces. Presented here are infrared (4000 to 700 cm(-1)) transmittance data for contaminant films condensed on a 77 K germanium window. From the transmittance data, the contaminant film refractive and absorptive indices (n, k) were derived using an analytical thin-film interference model with a nonlinear least-squares algorithm. To date 19 materials have been studied with the optical contents determined for 13 of those. The materials include adhesives, paints, composites, films, and lubricants. This program is continuing and properties for other materials will be available in the future.

  12. A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Pei-tao Wang

    2013-01-01

    Full Text Available Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.

  13. Out-of-plane reflection and refraction of light by anisotropic optical antenna metasurfaces with phase discontinuities.

    Science.gov (United States)

    Aieta, Francesco; Genevet, Patrice; Yu, Nanfang; Kats, Mikhail A; Gaburro, Zeno; Capasso, Federico

    2012-03-14

    Experiments on ultrathin anisotropic arrays of subwavelength optical antennas display out-of-plane refraction. A powerful three-dimensional (3D) extension of the recently demonstrated generalized laws of refraction and reflection shows that the interface imparts a tangential wavevector to the incident light leading to anomalous beams, which in general are noncoplanar with the incident beam. The refracted beam direction can be controlled by varying the angle between the plane of incidence and the antenna array.

  14. Automated optical inspection of liquid crystal display anisotropic conductive film bonding

    Science.gov (United States)

    Ni, Guangming; Du, Xiaohui; Liu, Lin; Zhang, Jing; Liu, Juanxiu; Liu, Yong

    2016-10-01

    Anisotropic conductive film (ACF) bonding is widely used in the liquid crystal display (LCD) industry. It implements circuit connection between screens and flexible printed circuits or integrated circuits. Conductive microspheres in ACF are key factors that influence LCD quality, because the conductive microspheres' quantity and shape deformation rate affect the interconnection resistance. Although this issue has been studied extensively by prior work, quick and accurate methods to inspect the quality of ACF bonding are still missing in the actual production process. We propose a method to inspect ACF bonding effectively by using automated optical inspection. The method has three steps. The first step is that it acquires images of the detection zones using a differential interference contrast (DIC) imaging system. The second step is that it identifies the conductive microspheres and their shape deformation rate using quantitative analysis of the characteristics of the DIC images. The final step is that it inspects ACF bonding using a back propagation trained neural network. The result shows that the miss rate is lower than 0.1%, and the false inspection rate is lower than 0.05%.

  15. Anisotropic thermoelectric properties in layered complex nitrides with α-NaFeO2-type structure

    Directory of Open Access Journals (Sweden)

    Isao Ohkubo

    2016-10-01

    Full Text Available Electronic structures and thermoelectric transport properties of α-NaFeO2-type d0-electron layered complex nitrides AMN2 (A = Sr or Na; M = Zr, Hf, Nb, Ta were evaluated using density-functional theory and Boltzmann theory calculations. Despite the layered crystal structure, all materials had three-dimensional electronic structures. Sr(Zr, HfN2 exhibited isotropic electronic transport properties because of the contribution of the Sr 4d orbitals to the conduction band minimums (CBMs in addition to that of the Zr 4d (Hf 5d orbitals. Na(Nb,TaN2 showed weak anisotropic electronic transport properties due to the main contribution of the Nb 4d (Ta 5d and N 2p orbitals to the CBMs and no contribution of the Na orbitals.

  16. Anisotropic thermoelectric properties in layered complex nitrides with α-NaFeO2-type structure

    Science.gov (United States)

    Ohkubo, Isao; Mori, Takao

    2016-10-01

    Electronic structures and thermoelectric transport properties of α-NaFeO2-type d0-electron layered complex nitrides AMN2 (A = Sr or Na; M = Zr, Hf, Nb, Ta) were evaluated using density-functional theory and Boltzmann theory calculations. Despite the layered crystal structure, all materials had three-dimensional electronic structures. Sr(Zr, Hf)N2 exhibited isotropic electronic transport properties because of the contribution of the Sr 4d orbitals to the conduction band minimums (CBMs) in addition to that of the Zr 4d (Hf 5d) orbitals. Na(Nb,Ta)N2 showed weak anisotropic electronic transport properties due to the main contribution of the Nb 4d (Ta 5d) and N 2p orbitals to the CBMs and no contribution of the Na orbitals.

  17. Anisotropic optical constants, birefringence, and dichroism of wurtzite GaN between 0.6 eV and 6 eV

    Science.gov (United States)

    Shokhovets, S.; Kirste, L.; Leach, J. H.; Krischok, S.; Himmerlich, M.

    2017-07-01

    We report the room-temperature anisotropic dielectric functions (DFs), refractive indices, and absorption coefficients as well as birefringence and dichroism of wurtzite GaN in the spectral range between 0.6 eV and 6 eV. They have been determined by combined spectroscopic ellipsometry, optical retardation, and transmission measurements on a series of m- and c-plane bulk substrates prepared from crystals grown by hydride vapor phase epitaxy. The accuracy of the derived DFs is estimated by investigation of the role of mosaicity-related crystal imperfections, self-consistency test based on a Kramers-Kronig analysis, and examination of the influence of kind of overlayer. We also briefly discuss optical properties of a highly defective near-surface layer of GaN crystals introduced by their mechanical polishing.

  18. Shaped beam scattering by an anisotropic particle

    Science.gov (United States)

    Chen, Zhenzhen; Zhang, Huayong; Huang, Zhixiang; Wu, Xianliang

    2017-03-01

    An exact semi-analytical solution to the electromagnetic scattering from an optically anisotropic particle illuminated by an arbitrarily shaped beam is proposed. The scattered fields and fields within the anisotropic particle are expanded in terms of spherical vector wave functions. The unknown expansion coefficients are determined by using the boundary conditions and the method of moments scheme. For incidence of a Gaussian beam, zero-order Bessel beam and Hertzian electric dipole radiation, numerical results of the normalized differential scattering cross section are given to a uniaxial, gyrotropic anisotropic spheroid and circular cylinder of finite length. The scattering properties are analyzed concisely.

  19. Synthesis, growth, optical and anisotropic mechanical behaviour of organic nonlinear optical imidazolium 2-chloro-4-nitrobenzoate single crystals

    Science.gov (United States)

    Krishnakumar, Varadharajan; Jayaprakash, Jeyaram; Boobas, Singaram; Komathi, Muniraj

    2016-10-01

    The title compound, imidazolium 2-chloro-4-nitrobenzoate (I2C4NB), has been synthesized and optical quality single crystals were grown with a dimension of 4 × 2 × 1 mm3 using an ethanol and acetone (1:1) mixed solvent by slow evaporation solution growth technique. The powder XRD analysis confirmed the crystal structure and found that it is crystallized in the non-centrosymmetric space group P21 with the monoclinic system. The symmetries of molecular vibrations were confirmed by FT-IR spectrum. The CHN(S) analysis confirmed the stoichiometric composition of the grown crystal. It also exhibits a good transparency in the entire visible region (300-800nm) and it was thermally stable up to 131.1 °C. The microhardness measurement shows the anisotropic nature of I2C4NB and also that it belongs to a soft material category. Photoconductivity studies reveal a linear increase of the photocurrent with respect to the applied electric field. HOMO LUMO studies were carried out for the crystal. The second harmonic generation test by the Kurtz powder method shows that the crystal exhibits phase matching and a conversion efficiency which is 2 times that of KDP.

  20. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  1. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation.

    Science.gov (United States)

    Haussener, Sophia; Steinfeld, Aldo

    2012-01-19

    High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  2. Effects of spark plasma sintering conditions on the anisotropic thermoelectric properties of bismuth antimony telluride

    DEFF Research Database (Denmark)

    Han, Li; Hegelund Spangsdorf, Steeven; Van Nong, Ngo

    2016-01-01

    Bismuth antimony telluride (BixSb2-xTe3, 0.4 Sb1.6Te3 samples were prepared under various conditions (temperature, holding time, and ramp......-rate) using spark plasma sintering (SPS). The effects of SPS conditions on the anisotropic thermoelectric properties and microstructure evolutions were systematically investigated. The change of sintering temperature showed stronger influence than other sintering parameters to the resulting thermoelectric...... properties. Samples sintered over the temperature range between 653 K and 773 K showed significant differences in the degrees of orientations. The change was mainly caused by grain growth and re-orientation. Despite of the anisotropy, zT value as high as 1.2 to 1.3 was achieved over the temperature range...

  3. Changes in the mechanical properties and microstructure of anisotropic austenitic stainless sheet steel after uniaxial tensile test

    Directory of Open Access Journals (Sweden)

    Yankov Emil

    2017-01-01

    Full Text Available The aim of the investigation is to study the changes in the characteristics of an austenitic sheet material X5CrNi18-10 (1.4301, AISI 304 after a plastic deformation. Samples are cut out from the sheet material at three different directions - 0°, 45° and 90° angle to the rolling direction. The changes in the mechanical properties and microstructure of the anisotropic austenitic steel are investigated by mechanical tests (uniaxial tension tests and hardness measurements and structural analyses (optical and scanning electron microscopy, X-ray diffraction. It is established that the strain induced phase transformation of the metastable austenite to martensite during the tension tests changes the magnetic properties of the steel. It is found out that the sheet anisotropy effect on the uniform deformation, the thickness reduction and structure of the austenite sheet material is more essential for the plastic deformation behaviour than the strain-induced γ → α′ phase transformation.

  4. Propagation Characteristics of Laser-Generated Rayleigh Waves in Coating-Substrate Structures with Anisotropic and Viscoelastic Properties

    Science.gov (United States)

    Sun, Hong-xiang; Zhang, Shu-yi; Xia, Jian-ping

    2015-06-01

    The propagation characteristics of laser-generated Rayleigh waves in coating-substrate structures with anisotropic and viscoelastic properties have been investigated quantitatively. Based on the plane strain theory, finite element models for simulating laser-generated Rayleigh waves in coating-substrate structures are established, in which the carbon fiber-reinforced epoxy matrix composite and aluminum are used as the coating and/or the substrate alternately. The numerical results exhibit that the characteristics of the laser-generated Rayleigh waves, including attenuation, velocity, and dispersion, are mainly and closely related to the anisotropic and viscoelastic properties of the composite in the coating-substrate structures.

  5. Anisotropic superconducting property studies of single crystal PbTaSe2

    Science.gov (United States)

    Sankar, Raman; Narsinga Rao, G.; Panneer Muthuselvam, I.; Chang, Tay-Rong; Jeng, H. T.; Senthil Murugan, G.; Lee, Wei-Li; Chou, F. C.

    2017-03-01

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  6. Optimum condition of anisotropic plasma etching for improving bending properties of ionic polymer-metal composites.

    Science.gov (United States)

    Choi, N J; Lee, H K; Jung, S; Park, K H

    2010-05-01

    We presented an anisotropic plasma etching technique by reactive ion etcher (RIE) as a new pretreatment method of fabrication of ionic polymer-metal composite (IPMC). We already found that the new technique provided large displacement to the fabricated IPMC in the presence of low applied voltage. However, we did not examine the optimum condition for the anisotropic plasma etching. In this research, we tried to figure out optimum treatment condition of film in etcher. Nafion (by DuPont) films were etched using various etching time and shadow masks with various slit and space sizes. The etched samples were plated with Pt at top and bottom side by Oguro's reduction method. The surface morphology of fabricated IPMCs was characterized by SEM. And, we've measured surface resistance, bending displacement, and driving force in order to check the IPMC properties out. Here, we found that optimum condition for pre-treatment of Nafion was 1 min for etching time under shadow mask with 200 microm slit and 100 microm space.

  7. Anisotropic superconducting property studies of single crystal PbTaSe2.

    Science.gov (United States)

    Sankar, Raman; Rao, G Narsinga; Muthuselvam, I Panneer; Chang, Tay-Rong; Jeng, H T; Murugan, G Senthil; Lee, Wei-Li; Chou, F C

    2017-03-08

    The anisotropic superconducting properties of PbTaSe2 single crystal is reported. Superconductivity with T c  =  3.83  ±  0.02 K has been characterized fully with electrical resistivity ρ(T), magnetic susceptibility χ(T), and specific heat C p (T) measurements using single crystal samples. The superconductivity is type-II with lower critical field H c1 and upper critical field H c2 of 65 and 450 Oe (H⊥  to the ab-plane), 140 and 1500 Oe (H|| to the ab-plane), respectively. These results indicate that the superconductivity of PbTaSe2 is anisotropic. The superconducting anisotropy, electron-phonon coupling λ ep, superconducting energy gap Δ0, and the specific heat jump ΔC/γT c at T c confirms that PbTaSe2 can be categorized as a bulk superconductor.

  8. Effects of anisotropic thermal conduction on wind properties in hot accretion flow

    CERN Document Server

    Bu, De-Fu; Yuan, Ye-Fei

    2016-01-01

    Previous works have clearly shown the existence of winds from black hole hot accretion flow and investigated their detailed properties. In extremely low accretion rate systems, the collisional mean-free path of electrons is large compared with the length-scale of the system, thus thermal conduction is dynamically important. When the magnetic field is present, the thermal conduction is anisotropic and energy transport is along magnetic field lines. In this paper, we study the effects of anisotropic thermal conduction on the wind production in hot accretion flows by performing two-dimensional magnetohydrodynamic simulations. We find that thermal conduction has only moderate effects on the mass flux of wind. But the energy flux of wind can be increased by a factor of $\\sim 10$ due to the increase of wind velocity when thermal conduction is included. The increase of wind velocity is because of the increase of driving forces (e.g. gas pressure gradient force and centrifugal force) when thermal conduction is includ...

  9. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Jun, E-mail: junliu@illinois.edu; Choi, Gyung-Min; Cahill, David G. [Department of Materials Science and Engineering and Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801 (United States)

    2014-12-21

    We use pump-probe metrology based on the magneto-optic Kerr effect to measure the anisotropic thermal conductivity of (001)-oriented MoS{sub 2} crystals. A ≈20 nm thick CoPt multilayer with perpendicular magnetization serves as the heater and thermometer in the experiment. The low thermal conductivity and small thickness of the CoPt transducer improve the sensitivity of the measurement to lateral heat flow in the MoS{sub 2} crystal. The thermal conductivity of MoS{sub 2} is highly anisotropic with basal-plane thermal conductivity varying between 85–110 W m{sup -1} K{sup -1} as a function of laser spot size. The basal-plane thermal conductivity is a factor of ≈50 larger than the c-axis thermal conductivity, 2.0±0.3 W m{sup -1} K{sup -1}.

  10. Electronic and optical properties of pristine and oxidized borophene

    Science.gov (United States)

    Lherbier, Aurélien; Botello-Méndez, Andrés Rafael; Charlier, Jean-Christophe

    2016-12-01

    Borophene, a two-dimensional monolayer of boron atoms, was recently synthesized experimentally and was shown to exhibit polymorphism. In its closed-packed triangular form, borophene is expected to exhibit anisotropic metallic character with relatively high electron velocities. At the same time, very low optical conductivities in the infrared-visible light region were predicted. Based on its promising electronic transport properties and its high transparency, borophene could become a genuine lego piece in the 2D materials assembling game known as the van der Waals heterocrystal approach. However, borophene is naturally degraded in ambient conditions and it is therefore important to assess the mechanisms and the effects of oxidation on borophene monolayers. Optical and electronic properties of pristine and oxidized borophene are here investigated by first-principles approaches. The transparent and conductive properties of borophene are elucidated by analyzing the electronic structure and its interplay with light. Optical response of borophene is found to be strongly affected by oxidation, suggesting that optical measurements can serve as an efficient probe for borophene surface contamination.

  11. Probing anisotropic surface properties and interaction forces of chrysotile rods by atomic force microscopy and rheology.

    Science.gov (United States)

    Yang, Dingzheng; Xie, Lei; Bobicki, Erin; Xu, Zhenghe; Liu, Qingxia; Zeng, Hongbo

    2014-09-16

    Understanding the surface properties and interactions of nonspherical particles is of both fundamental and practical importance in the rheology of complex fluids in various engineering applications. In this work, natural chrysotile, a phyllosilicate composed of 1:1 stacked silica and brucite layers which coil into cylindrical structure, was chosen as a model rod-shaped particle. The interactions of chrysotile brucite-like basal or bilayered edge planes and a silicon nitride tip were measured using an atomic force microscope (AFM). The force-distance profiles were fitted using the classical Derjaguin-Landau-Verwey-Overbeek (DLVO) theory, which demonstrates anisotropic and pH-dependent surface charge properties of brucite-like basal plane and bilayered edge surface. The points of zero charge (PZC) of the basal and edge planes were estimated to be around pH 10-11 and 6-7, respectively. Rheology measurements of 7 vol % chrysotile (with an aspect ratio of 14.5) in 10 mM NaCl solution showed pH-dependent yield stress with a local maximum around pH 7-9, which falls between the two PZC values of the edge and basal planes of the rod particles. On the basis of the surface potentials of the edge and basal planes obtained from AFM measurements, theoretical analysis of the surface interactions of edge-edge, basal-edge, and basal-basal planes of the chrysotile rods suggests the yield stress maximum observed could be mainly attributed to the basal-edge attractions. Our results indicate that the anisotropic surface properties (e.g., charges) of chrysotile rods play an important role in the particle-particle interaction and rheological behavior, which also provides insight into the basic understanding of the colloidal interactions and rheology of nonspherical particles.

  12. Engineering optical properties of semiconductor metafilm superabsorbers

    Science.gov (United States)

    Kim, Soo Jin; Fan, Pengyu; Kang, Ju-Hyung; Brongersma, Mark L.

    2016-04-01

    Light absorption in ultrathin layer of semiconductor has been considerable interests for many years due to its potential applications in various optical devices. In particular, there have been great efforts to engineer the optical properties of the film for the control of absorption spectrums. Whereas the isotropic thin films have intrinsic optical properties that are fixed by materials' properties, metafilm that are composed by deep subwavelength nano-building blocks provides significant flexibilities in controlling the optical properties of the designed effective layers. Here, we present the ultrathin semiconductor metafilm absorbers by arranging germanium (Ge) nanobeams in deep subwavelength scale. Resonant properties of high index semiconductor nanobeams play a key role in designing effective optical properties of the film. We demonstrate this in theory and experimental measurements to build a designing rule of efficient, controllable metafilm absorbers. The proposed strategy of engineering optical properties could open up wide range of applications from ultrathin photodetection and solar energy harvesting to the diverse flexible optoelectronics.

  13. Solidification of Anisotropic Semiconductor Tellurium Samples in Microgravity and Their Properties

    Science.gov (United States)

    Parfeniev, R. V.; Farbshtein, I. I.; Yakimov, S. V.; Shalimov, V. P.; Turchaninov, A. M.

    A research program was partly completed to determine the influence of microgravity on the crystallization and electrical properties of tellurium, as a semiconductor with both anisotropic crystal lattice and energy spectrum. Three different tellurium samples were solidified in space by a modified Bridgman method in the Crystallizator ChSK-1 furnace aboard the MIR space station. The variation of the crystal structure, charge carrier concentration and mobility along the sample length was investigated and compared with material solidified on earth. The lowest impurity and defect concentrations were obtained in partially melted single crystals resolidified by the Bridgman method. The distribution of electric active and neutral defects along the samples with a concentration as small as 10 -5 at% were measured by a galvanomagnetic method at low temperatures. Some peculiarities of the remelting process connected with microgravity were observed.

  14. Molecular Organization Induced Anisotropic Properties of Perylene – Silica Hybrid Nanoparticles

    OpenAIRE

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-01-01

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tet...

  15. Geomechanical and anisotropic acoustic properties of Lower Jurassic Posidonia shales from Whitby (UK)

    Science.gov (United States)

    Zhubayev, Alimzhan; Houben, Maartje; Smeulders, David; Barnhoorn, Auke

    2014-05-01

    The Posidonia Shale Formation (PSF) is one of the possible resource shales for unconventional gas in Northern Europe and currently is of great interest to hydrocarbon exploration and production. Due to low permeability of shales, economically viable production requires hydraulic fracturing of the reservoir. The design of hydrofractures requires an estimate of stress state within the reservoir and geomechanical properties such as Young's modulus and Poisson's ratio. Shales are often highly anisotropic and the models which neglect shale anisotropy may fail to predict the behaviour of hydrofractures. Seismic attenuation anisotropy, on the other hand, can play a key role in quantitative rock characterization. Where the attenuation anisotropy can potentially be linked to anisotropic permeability of shales, its fluid/gas saturation and preferred development of anisotropic fracture orientations. In this research, by utilizing the so-called Thomsen's notations, the elastic anisotropy of our (fractured and unfractured) shales has been investigated using a pulse transmission technique in the ultrasonic frequency range (0.3-1 MHz). Assuming transverse isotropy of the shales, and taking the axis x3 as the axis of rotational symmetry, directional Young's moduli and Poisson's ratios were obtained. The Young's modulus measured parallel to bedding (E1) is found to be larger than the Young's modulus measured orthogonal to bedding (E3). In case of the Poisson's ratios, we found that ν31 is larger than ν12, where νijrelates elastic strain in xj direction to stress applied in xi direction. Finally, attenuation anisotropy in dry and layer-parallel fractured Posidonia shale samples has been studied in the same frequency range. The attenuation of compressional (QP-1) and shear (QS-1) waves increases substantially with a macro (or wavelength) fracture introduction, especially for P and S waves propagating orthogonal to the bedding. In non-fractured and fractured dry shales, QP-1 is

  16. Strain effects on optical polarisation properties in(11(2)2)plane GaN films

    Institute of Scientific and Technical Information of China (English)

    Hao Guo-Dong; Chen Yong-Hai; Fan Ya-Ming; Huang Xiao-Hui; Wang Huai-Bing

    2010-01-01

    We present the theoretical results of the electronic band structure of wurtzite GaN films under biaxial strains in the(1122)-plane.The calculations are performed by the κ·p perturbation theory approach through using the effectivemass Hamiltonian for an arbitrary direction.The results show that the transition energies decrease with the biaxial strains changing from-0.5% to 0.5%.For films of(11(2)2)-plane,the strains are expected to be anisotropic in the growth plane.Such anisotropic strains give rise to valence band mixing which results in dramatic change in optical polarisation property.The strain can also result in optical polarisation switching phenomena.Finally,we discuss the applications of these properties to the(1122)plane GaN-based light-emitting diode and lase diode.

  17. Experimental investigation of local properties and statistics of optical vortices in random wave fields

    DEFF Research Database (Denmark)

    Wang, W.; Hanson, Steen Grüner; Miyamoto, Y.;

    2005-01-01

    We present the first direct experimental evidence of the local properties of optical vortices in a random laser speckle field. We have observed the Berry anisotropy ellipse describing the anisotropic squeezing of phase lines close to vortex cores and quantitatively verified the Dennis angular...... momentum rule for its phase. Some statistics associated with vortices, such as density, anisotropy ellipse eccentricity, and its relation to zero crossings of real and imaginary parts of the random field, are also investigated by experiments....

  18. Synthesis and optical properties studies

    Directory of Open Access Journals (Sweden)

    N.A. El-Ghamaz

    2017-01-01

    Full Text Available 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-phenol (L1 and 4-(4-Amino-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-ylideneamino-benzoic acid (L2 have been synthesized by the condensation reaction of 4-aminoantipyrine (4-AAP and 4-aminophenol or 4-aminobenzoic acid in ethanolic solution and are characterized by various physico-chemical techniques. Thin films of L1 and L2 have been prepared by the conventional spin coating technique. X-ray diffraction patterns (XRD show an amorphous nature for both powder and thin films for L1 and L2 ligands. The optical absorption and refraction properties of L1 and L2 are investigated by spectrophotometric techniques at normal incidence of light in the wavelength range of 200–2500 nm. The absorption spectra show two peaks in the UV region which correspond to π → π∗ transition and a peak in UV–Vis region which may correspond to n → π∗ transition. The values of dispersion parameters Eo, Ed, εL, ε∞ and N/m* are calculated according to the single oscillator model. The presence of the OH group increases the value of ε∞ from 3.21 to 3.32 and the value of N/m* from 7.38 × 1053 to 2.08 × 1054 m−3Kg−1. The optical band transition is found to be indirect allowing fundamental energy gap values of 3.4 and 3.9 eV and onset energy gap values of 2.1 and 2.6 eV for L1 and L2, respectively.

  19. Optical Properties of Non-Crystalline Semiconductors.

    Science.gov (United States)

    1984-01-01

    Instruments, 1974, unpublished. 42. de Neufville, J.P., Photostructural transformations in amorphous solids, 0 in Optical Properties of Solids --New...semiconductors, in Optical Properties of Solids , Nudelman, S., and Mitra, S.S., eds., Plenum, N.Y., 1969, 123. 52. Cody, G.D., Brooks, B.G., and

  20. Two-wave mixing of orthogonally polarized waves via anisotropic dynamic gratings in erbium-doped optical fiber

    Science.gov (United States)

    Stepanov, Serguei; Hernández, Eliseo; Plata, Marcos

    2005-06-01

    We report on observations of transient two-wave mixing (TWM) of orthogonally polarized waves counterpropagating through an Er-doped single-mode optical fiber. Experiments were performed in a 2-m-long moderately birefringent (with beat length ~2 cm) Er-doped fiber without optical pumping at the laser wavelength 1549 nm. The transient TWM signal observed for crossed linear polarizations of the recording waves oriented along two orthogonal birefringence axes of the fiber (i.e., for the interference pattern with spatially modulated state of light polarization only) proved to be approximately half of that observed for parallel polarizations. Direct measurements of the transient polarization hole-burning effect (i.e., that observed for fast switching of the input light linear polarization between two orthogonal orientations of the doped fiber birefringence axes) allow us to attribute formation of the corresponding anisotropic dynamic grating to this effect.

  1. Magneto-optical transport properties of monolayer WSe2

    Science.gov (United States)

    Tahir, M.; Vasilopoulos, P.

    2016-07-01

    The recent experimental realization of a high quality WSe2 leads to the possibility of magneto-optical measurements and the manipulation of the spin and valley degrees of freedom. We study the influence of the very strong spin-orbit coupling and of the anisotropic lifting of the valley pseudospin degeneracy on its magnetotransport properties. The energy spectrum of WSe2 is derived and discussed in the presence of a perpendicular magnetic field B . Correspondingly we evaluate the magneto-optical Hall conductivity and the optical longitudinal conductivity as functions of the frequency, magnetic field, and Fermi energy. They are strongly influenced by the field B and the strong spin splitting. The former exhibits valley polarization and the latter beatings of oscillations. The magneto-optical responses can be tuned in two different regimes: the microwave-to-terahertz regime and the visible-frequency one. The absorption peaks involving the n =0 LL appear in between these two regimes and show a magnetic control of the spin and valley splittings. We also evaluate the power absorption spectrum.

  2. When do fractured media become seismically anisotropic? Some implications on quantifying fracture properties

    Science.gov (United States)

    Yousef, B. M.; Angus, D. A.

    2016-06-01

    Fractures are pervasive features within the Earth's crust and they have a significant influence on the multi-physical response of the subsurface. The presence of coherent fracture sets often leads to observable seismic anisotropy enabling seismic techniques to remotely locate and characterise fracture systems. In this study, we confirm the general scale-dependence of seismic anisotropy and provide new results specific to shear-wave splitting (SWS). We find that SWS develops under conditions when the ratio of wavelength to fracture size (λS / d) is greater than 3, where Rayleigh scattering from coherent fractures leads to an effective anisotropy such that effective medium model (EMM) theory is qualitatively valid. When 1 scattering, where no effective anisotropy develops and hence the SWS measurements are unstable. When λS / d scattering and begin to see behaviour similar to transverse isotropy. We find that seismic anisotropy is more sensitive to fracture density than fracture compliance ratio. More importantly, we observe that the transition from scattering to an effective anisotropic regime occurs over a propagation distance between 1 and 2 wavelengths depending on the fracture density and compliance ratio. The existence of a transition zone means that inversion of seismic anisotropy parameters based on EMM will be fundamentally biased. More importantly, we observe that linear slip EMM commonly used in inverting fracture properties is inconsistent with our results and leads to errors of approximately 400% in fracture spacing (equivalent to fracture density) and 60% in fracture compliance. Although EMM representations can yield reliable estimates of fracture orientation and spatial location, our results show that EMM representations will systematically fail in providing quantitatively accurate estimates of other physical fracture properties, such as fracture density and compliance. Thus more robust and accurate quantitative estimates of in situ fracture

  3. Estimating of the Elastic Properties of the Composite with Anisotropic Ball Inclusions

    Directory of Open Access Journals (Sweden)

    V. S. Zarubin

    2014-01-01

    Full Text Available Scope composites as structural materials sensing mechanical stresses are largely determined by a complex of their elastic properties. Described in the article of review papers devoted to the elastic properties of the composite, it follows that the problem of theoretical evaluation of these characteristics, remains relevant. When considering composites reinforced with spherical inclusions, most famous works of the composite matrix and the inclusion is considered to be isotropic. However, for use as inclusions of metal particles and nanostructured elements often need to consider the anisotropy of the elastic characteristics.In the article for a composite with anisotropic spherical inclusions built two types of estimates of values of the bulk modulus and shear modulus . As background information used elastic properties of the matrix and the inclusions and their content by volume in the composite.The first type is classified as two-sided estimates of desired values that are based on the dual variational formulation of the linear elasticity problem of an inhomogeneous solid body containing alternative functionals (Lagrange and Castigliano. These functionals on the true distribution of strains and stresses in an inhomogeneous body reach the same meaning extremes (minimum and maximum respectively. On the convergence of the distribution of the Lagrange functional application allows you to get an upper bound of desired values, and the use of functional Castigliano - their lower bound.The second type of assessment is built by self-consistency, this method allows for the interaction of a single particle on or matrix composite with a homogeneous isotropic medium having measured the elastic moduli. Averaging over the volume of the composite disturbances arising strains and stresses in the inclusions and matrix particles makes it possible to obtain the calculated dependences for the bulk modulus and shear modulus of the composite. Comparison of these

  4. Optical Properties of GaN and ZnO

    Science.gov (United States)

    Song, J.-H.

    A brief review on the optical properties of wurtzite ZnO and GaN is presented in this chapter with an emphasis on comparison between the materials. The properties of free excitons and impurity-bound excitons, such as their energetic positions and binding energies, are summarized. The localization energy and the ionization energy of the dominant impurities obtained by emission spectroscopy are also presented. Typical aspects of emissions from donor—acceptor pairs, free-to-bound transition, and deep level recombination are discussed. Several experimental characteristics of the relevant heterostructures, InGaN/GaN and MgZnO/ZnO, are also given below. Basic optical methods characterizing the effects of internal electric fields and carrier-localization are summarized. The unique properties of polarization sensitive emissions from nonpolar films are presented. Based on the valence band structures, the polarization selection rules can be obtained in simpler forms. Some recent reports will also be introduced stating that the anisotropic strain in nonpolar films plays an important role in deciding the polarization selectivity. The results of Raman spectroscopy are summarized in the end, with the emphasis on deciding the residual strain and the carrier concentration.

  5. Investigation of low field dielectric properties of anisotropic porous Pb(Zr,Ti)O3 ceramics: Experiment and modeling

    Science.gov (United States)

    Olariu, C. S.; Padurariu, L.; Stanculescu, R.; Baldisserri, C.; Galassi, C.; Mitoseriu, L.

    2013-12-01

    Anisotropic porous Pb(Zr,Ti)O3 ceramics with various porosity degrees have been studied in order to determine the role of the pore shape and orientation on the low-field dielectric properties. Ceramic samples with formula Pb(Zr0.52Ti0.48)0.976Nb0.024O3 with different porosity degrees (dense, 10%, 20%, 40% vol.) have been prepared by solid state reaction. Taking into consideration the shape and orientation of the pore inclusions, the dielectric properties of porous ceramics have been described by using adapted mixing rules models. Rigorous bounds, derived on the basis on Variational Principle, were used to frame dielectric properties of porous composites. The finite element method (FEM) was additionally used to simulate the dielectric response of the porous composites under various applied fields. Among the few effective medium approximation models adapted for anisotropic oriented inclusions, the best results were obtained in case of needle-like shape inclusions (which do not correspond to the real shape of microstructure inclusions). The general case of Wiener bounds limited well the dielectric properties of anisotropic porous composites in case of parallel orientation. Among the theoretical approaches, FEM technique allowed to simulate the distribution of potential and electric field inside composites and provided a very good agreement between the computed permittivity values and experimental ones.

  6. Crack path predictions and experiments in plane structures considering anisotropic properties and material interfaces

    Directory of Open Access Journals (Sweden)

    P.O. Judt

    2015-10-01

    Full Text Available In many engineering applications special requirements are directed to a material's fracture behavior and the prediction of crack paths. Especially if the material exhibits anisotropic elastic properties or fracture toughnesses, e.g. in textured or composite materials, the simulation of crack paths is challenging. Here, the application of path independent interaction integrals (I-integrals, J-, L- and M-integrals is beneficial for an accurate crack tip loading analysis. Numerical tools for the calculation of loading quantities using these path-invariant integrals are implemented into the commercial finite element (FE-code ABAQUS. Global approaches of the integrals are convenient considering crack tips approaching other crack faces, internal boundaries or material interfaces. Curved crack faces require special treatment with respect to integration contours. Numerical crack paths are predicted based on FE calculations of the boundary value problem in connection with an intelligent adaptive re-meshing algorithm. Considering fracture toughness anisotropy and accounting for inelastic effects due to small plastic zones in the crack tip region, the numerically predicted crack paths of different types of specimens with material interfaces and internal boundaries are compared to subcritically grown paths obtained from experiments.

  7. Synthesizing metamaterials with angularly independent effective medium properties based on an anisotropic parameter retrieval technique coupled with a genetic algorithm

    Science.gov (United States)

    Jiang, Zhi Hao; Bossard, Jeremy A.; Wang, Xiande; Werner, Douglas H.

    2011-01-01

    In this paper, we present a method to retrieve the effective electromagnetic parameters of a slab of anisotropic metamaterial from reflection and transmission coefficients (or scattering parameters). In this retrieval method, calculated or measured scattering parameters are employed for plane waves incident obliquely on a metamaterial slab at different angles. Useful analytical expressions are derived for extracting the homogeneous anisotropic medium parameters of a metamaterial. To validate the method, the effective permittivity and permeability tensor parameters for a composite split-ring resonator-wire array are retrieved and shown to be consistent with observations previously reported in the literature. This retrieval method is further incorporated into a genetic algorithm (GA) to synthesize an infrared zero-index-metamaterial with a wide field-of-view, demonstrating the utility of the new design approach. The anisotropic parameter retrieval algorithm, when combined with a robust optimizer such as GA, can provide a powerful design tool for exploiting the anisotropic properties in metamaterials to achieve specific angle dependant or independent responses.

  8. Multi-phase-field study of the effects of anisotropic grain-boundary properties on polycrystalline grain growth

    Science.gov (United States)

    Miyoshi, Eisuke; Takaki, Tomohiro

    2017-09-01

    Numerical studies of the effects of anisotropic (misorientation-dependent) grain-boundary energy and mobility on polycrystalline grain growth have been carried out for decades. However, conclusive knowledge has yet to be obtained even for the simplest two-dimensional case, which is mainly due to limitations in the computational accuracy of the grain-growth models and computer resources that have been employed to date. Our study attempts to address these problems by utilizing a higher-order multi-phase-field (MPF) model, which was developed to accurately simulate grain growth with anisotropic grain-boundary properties. In addition, we also employ general-purpose computing on graphics processing units to accelerate MPF grain-growth simulations. Through a series of simulations of anisotropic grain growth, we succeeded in confirming that both the anisotropies in grain-boundary energy and mobility affect the morphology formed during grain growth. On the other hand, we found the grain growth kinetics in anisotropic systems to follow parabolic law similar to isotropic growth, but only after an initial transient period.

  9. Photorefractive optics materials, properties, and applications

    CERN Document Server

    Yu, Francis T S

    1999-01-01

    The advances of photorefractive optics have demonstrated many useful and practical applications, which include the development of photorefractive optic devices for computer communication needs. To name a couple significant applications: the large capacity optical memory, which can greatly improve the accessible high-speed CD-ROM and the dynamic photorefractive gratings, which can be used for all-optic switches for high-speed fiber optic networks. This book is an important reference both for technical and non-technical staffs who are interested in this field. * Covers the recent development in materials, phenomena, and applications * Includes growth, characterization, dynamic gratings, and liquid crystal PR effect * Includes applications to photonic devices such as large capacity optical memory, 3-D interconnections, and dynamic holograms * Provides the recent overall picture of current trends in photorefractive optics * Includes optical and electronic properties of the materials as applied to dynamic photoref...

  10. Coupled light transport-heat diffusion model for laser dosimetry with dynamic optical properties

    Energy Technology Data Exchange (ETDEWEB)

    London, R.A.; Glinsky, M.E.; Zimmerman, G.B.; Eder, D.C. [Lawrence Livermore National Lab., CA (United States); Jacques, S.L. [Texas Univ., Houston, TX (United States). M.D. Anderson Cancer Center

    1995-03-01

    The effect of dynamic optical properties on the spatial distribution of light in laser therapy is studied via numerical simulations. A two-dimensional, time dependent computer program called LATIS is used. Laser light transport is simulated with a Monte Carlo technique including anisotropic scattering and absorption. Thermal heat transport is calculated with a finite difference algorithm. Material properties are specified on a 2-D mesh and can be arbitrary functions of space and time. Arrhenius rate equations are solved for tissue damage caused by elevated temperatures. Optical properties are functions of tissue damage, as determined by previous measurements. Results are presented for the time variation of the light distribution and damage within the tissue as the optical properties of the tissue are altered.

  11. Characterization of anisotropic elastic properties of the arteries by exponential and polynomial strain energy functions.

    Science.gov (United States)

    Hudetz, A G; Monos, E

    1981-01-01

    Three-dimensional quasi-static mechanical measurements were carried out on cylindrical segments of the dog carotid and iliac arteries for determination of the passive anisotropic elastic properties of the vessel wall. On the basis of passive characteristics of outer diameter vs. intraluminal pressure, and axial extending force vs. intraluminal pressure, picked up at various fixed initial vascular length values, the incremental Young moduli and poisson ratios of the vessel wall were calculated in the 0--33 kPa (0--250 mm Hg) pressure range. The strain energy function of the arteries was approximated by polynomial and exponential models. We found that an exponential energy function with 4-parameters gives more accurate results than the 7- or 12-parameter polynomial functions. According to the results the axial modulus reaches higher values than the tangential and radial moduli at a low tangential stretch level, while at high tangential stretch the tangential modulus is the highest in both carotid and iliac arteries. After elevation of the initial tangential stretch the increase in the tangential modulus is the most pronounced, while the values of radial and axial moduli increased less. A change in the initial axial stretch influences the axial and radial moduli to a similar extent, but has no substantial effect on the value of the tangential modulus. The values of corresponding poisson ratios depend in a similar way on the initial deformation state. The different behaviour of the two Poisson ratios characterizing the mechanical coupling between tangential and axial directions, indicates that the structural coupling between the two main directions is asymmetrical. It is assumed that this property of the passive vascular structure can be explained by the network arrangement of collagen fibres in the vessel wall.

  12. Diffusion of flexible random-coil dextran polymers measured in anisotropic brain extracellular space by integrative optical imaging.

    Science.gov (United States)

    Xiao, Fanrong; Nicholson, Charles; Hrabe, Jan; Hrabetová, Sabina

    2008-08-01

    There are a limited number of methods available to quantify the extracellular diffusion of macromolecules in an anisotropic brain region, e.g., an area containing numerous aligned fibers where diffusion is faster along the fibers than across. We applied the integrative optical imaging method to measure diffusion of the fluorophore Alexa Fluor 488 (molecular weight (MW) 547) and fluorophore-labeled flexible random-coil dextran polymers (dex3, MW 3000; dex75, MW 75,000; dex282, MW 282,000; dex525, MW 525,000) in the extracellular space (ECS) of the anisotropic molecular layer of the isolated turtle cerebellum. For all molecules, two-dimensional images acquired an elliptical shape with major and minor axes oriented along and across, respectively, the unmyelinated parallel fibers. The effective diffusion coefficients, D*(major) and D*(minor), decreased with molecular size. The diffusion anisotropy ratio (DAR = D*(major)/D*(minor)) increased for Alexa Fluor 488 through dex75 but then unexpectedly reached a plateau. We argue that dex282 and dex525 approach the ECS width and deform to diffuse. In support of this concept, scaling theory shows the diffusion behavior of dex282 and dex525 to be consistent with transition to a reptation regime, and estimates the average ECS width at approximately 31 nm. These findings have implications for the interstitial transport of molecules and drugs, and for modeling neurotransmitter diffusion during ectopic release and spillover.

  13. Anisotropic mechanical and optical response and negative Poisson’s ratio in Mo2C nanomembranes revealed by first-principles simulations

    Science.gov (United States)

    Mortazavi, Bohayra; Shahrokhi, Masoud; Makaremi, Meysam; Rabczuk, Timon

    2017-03-01

    Transition metal carbides include a wide variety of materials with attractive properties that are suitable for numerous and diverse applications. A most recent experimental advance could provide a path toward the successful synthesis of large-area and high-quality ultrathin Mo2C membranes with superconducting properties. In the present study, we used first-principles density functional theory calculations to explore the mechanical and optical response of single-layer and free-standing Mo2C. Uniaxial tensile simulations along the armchair and zigzag directions were conducted and we found that while the elastic properties are close along various loading directions, the nonlinear regimes in stress-strain curves are considerably different. We found that Mo2C sheets present negative Poisson’s ratio and thus can be categorized as an auxetic material. Our simulations also reveal that Mo2C films retain their metallic electronic characteristic upon uniaxial loading. We found that for Mo2C nanomembranes the dielectric function becomes anisotropic along in-plane and out-of-plane directions. Our findings can be useful for the practical application of Mo2C sheets in nanodevices.

  14. The CLASS blazar survey - II. Optical properties

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJ; Anton, S; Mack, KH; Neeser, MJ

    2002-01-01

    This paper presents the optical properties of the objects selected in the CLASS blazar survey. Because an optical spectrum is now available for 70 per cent of the 325 sources present in the sample, a spectral classification, based on the appearance of the emission/absorption lines, is possible. A wi

  15. Handbook of the Properties of Optical Materials

    Science.gov (United States)

    1984-01-01

    EFFECTIVE MASS - - MOBILITY - - A-2 ARSEWIC SELENIOE (As2 Se3 ) OPTICAL PROPERTIES TRANSMISSION RANGE: 9 - 11n Optical Absorption Coefficient = 0.079...of 55 KRS-5 as a function of wavelength. A-2120 ZINC SELENIOE ZnSe 0 STRUCTURE CRYSTALLINE SYMMETRY = Cubic, 43m LATTICE CONSTANTS (A) = a = 5.667

  16. Optical properties of ALON (aluminum oxynitride)

    Science.gov (United States)

    Hartnett, T. M.; Bernstein, S. D.; Maguire, E. A.; Tustison, R. W.

    1998-06-01

    The optical properties of ALON (aluminum oxynitride) are presented. Optical scatter and index of refraction, and absorption of several different compositions of ALON are compared. The temperature dependence of emissivity of ALON was measured in the temperature range 46°C to 1200°C.

  17. The CLASS blazar survey - II. Optical properties

    NARCIS (Netherlands)

    Caccianiga, A; Marcha, MJ; Anton, S; Mack, KH; Neeser, MJ

    2002-01-01

    This paper presents the optical properties of the objects selected in the CLASS blazar survey. Because an optical spectrum is now available for 70 per cent of the 325 sources present in the sample, a spectral classification, based on the appearance of the emission/absorption lines, is possible. A

  18. Properties of Single Mode Polymer Optical Fiber

    Institute of Scientific and Technical Information of China (English)

    YANG Dong-xiao

    2003-01-01

    The density,dynamic modulus,Young's modulus,tensile strength,extension properties,Fourier transform infrared spectrum and differential scanning calorimetry have been measured and discussed for single mode polymethyl-methacrylate optical fiber.The results show that the fiber can provide large strain range for polymeric optical fiber Bragg gratings.

  19. Optical Properties of Rotationally Twinned Nanowire Superlattices

    DEFF Research Database (Denmark)

    Bao, Jiming; Bell, David C.; Capasso, Federico

    2008-01-01

    We have developed a technique so that both transmission electron microscopy and microphotoluminescence can be performed on the same semiconductor nanowire over a large range of optical power, thus allowing us to directly correlate structural and optical properties of rotationally twinned zinc ble...

  20. Polarization properties of a photorefractive Bi12SiO20 crystal and their application in an optical correlator

    DEFF Research Database (Denmark)

    Edvold, Bent; Andersen, Peter E.; Buchhave, Preben

    1994-01-01

    is based on an extension of the optical beam-propagation (OBP) method to include all the significant optical properties of the BSO crystal when used in a two-wave mixing configuration, i.e., optical activity, field-induced birefringence, and anisotropic diffraction. The model is able to handle multiple...

  1. Assessing the influence of van der Waals corrected exchange-correlation functionals on the anisotropic mechanical properties of coinage metals

    Science.gov (United States)

    Lee, Ji-Hwan; Park, Jong-Hun; Soon, Aloysius

    2016-07-01

    Current materials-related calculations employ density-functional theory (DFT), commonly using the (semi-)local-density approximations for the exchange-correlation (xc) functional. The difficulties in arriving at a reasonable description of van der Waals (vdW) interactions by DFT-based models is to date a big challenge. In this work, we use various flavors of vdW-corrected DFT xc functionals—ranging from the quasiempirical force-field add-on vdW corrections to self-consistent nonlocal correlation functionals—to study the bulk lattice and mechanical properties (including the elastic constants and anisotropic indices) of the coinage metals (copper, silver, and gold). We critically assess the reliability of the different vdW-corrected DFT methods in describing their anisotropic mechanical properties which have been less reported in the literature. In the context of this work, we regard that our results reiterate the fact that advocating a so-called perfect vdW-inclusive xc functional for describing the general physics and chemistry of these coinage metals could be a little premature. These challenges to modern-day functionals for anisotropically strained coinage metals (e.g., at the faceted surfaces of nanostructures) may well be relevant to other strained material systems.

  2. Statistical Anisotropy from Anisotropic Inflation

    CERN Document Server

    Soda, Jiro

    2012-01-01

    We review an inflationary scenario with the anisotropic expansion rate. An anisotropic inflationary universe can be realized by a vector field coupled with an inflaton, which can be regarded as a counter example to the cosmic no-hair conjecture. We show generality of anisotropic inflation and derive a universal property. We formulate cosmological perturbation theory in anisotropic inflation. Using the formalism, we show anisotropic inflation gives rise to the statistical anisotropy in primordial fluctuations. We also explain a method to test anisotropic inflation using the cosmic microwave background radiation (CMB).

  3. Anisotropic magnetic properties and superzone gap formation in CeGe single crystal.

    Science.gov (United States)

    Das, Pranab Kumar; Kumar, Neeraj; Kulkarni, R; Dhar, S K; Thamizhavel, A

    2012-04-11

    Single crystals of CeGe and its non-magnetic analog LaGe have been grown by the Czochralski method. The CeGe compound crystallizes in the orthorhombic FeB-type crystal structure with the space group Pnma (#62). The anisotropic magnetic properties have been investigated for well oriented single crystals by measuring the magnetic susceptibility, electrical resistivity and heat capacity. It has been found that CeGe orders antiferromagnetically at 10.5 K. Both transport and magnetic studies have revealed large anisotropy, reflecting the orthorhombic crystal structure. The magnetization data at 1.8 K reveal metamagnetic transitions along the [010] direction at 4.8 and 6.4 T and along the [100] direction at a critical field of 10.7 T, while the magnetization along the [001] direction increases linearly without any anomaly up to a field of 16 T. From the magnetic susceptibility and the magnetization measurements it has been found that the [010] direction is the easy axis of magnetization. The electrical resistivity along the three crystallographic directions exhibits an upturn at T(N), indicating superzone gap formation below T(N) in this compound. We have performed crystal electric field analysis on the magnetic susceptibility and the heat capacity data and found that the ground state is a doublet, and the energies of splitting from the ground state to the first and second excited doublet states were estimated to be 39 and 111 K, respectively.

  4. Optical properties of a heated cornstarch mixture

    Science.gov (United States)

    Vazquez-Landaverde, Pedro A.; Morales Sánchez, Eduardo; Huerta-Ruelas, Jorge A.

    2007-03-01

    In this study, the objective was to evaluate optical properties of a corn starch-water mixture as descriptors of its behavior under processing conditions. A solution of corn starch in water was prepared and heated from 25 to 85°C in a temperature-controlled optical cell. For the measurement of optical properties, a polarized laser beam modulated through a photoelastic modulator and an analyzer, was used as optical probe. It was possible to measure transmitted light, along with optical rotation. Optical measurements showed changes related to temperature dependent phenomena such as starch granule swelling and gelatinization, in the ranges 25 to 60°C, 60 to 85°C. Above 80°C transmission values were higher, due to the solution clarification caused by corn starch gelatinization. Regarding optical rotation, it was difficult to obtain reliable measurements at low temperatures due to the high turbidity of the system. However, once gel was formed at higher temperatures, optical rotation and light transmission increased. This study demonstrated that optical techniques are suitable for the study of the behavior of water-starch mixtures under processing conditions such as heating, revealing a promising future for the monitoring of such phenomena in the production line to lower costs and improve product quality.

  5. Anisotropic Thermal Properties of Nanostructured Magnetic, Carbon and Hybrid Magnetic - Carbon Materials

    Science.gov (United States)

    Ramirez, Sylvester

    anisotropy of the thermal conductivity, K/K ⊥ ˜ 675, which is substantially larger even than in the high-quality graphite. The strongly anisotropic heat conduction properties of these films can be useful for the thermal filler applications. The results obtained for the nanostructured magnetic and hybrid materials are important for the renewable energy and electronic applications of permanent magnets.

  6. In vivo anisotropic mechanical properties of dystrophic skeletal muscles measured by anisotropic MR elastographic imaging: the mdx mouse model of muscular dystrophy.

    Science.gov (United States)

    Qin, Eric C; Jugé, Lauriane; Lambert, Simon A; Paradis, Valérie; Sinkus, Ralph; Bilston, Lynne E

    2014-12-01

    To evaluate the utility of mechanical anisotropy (shear storage modulus parallel to fiber/shear storage modulus perpendicular to fiber) measured by combined magnetic resonance (MR) elastography and diffusion-tensor imaging ( DTI diffusion-tensor imaging ) technique (anisotropic MR elastography) to distinguish between healthy and necrotic muscle with different degrees of muscle necrosis in the mdx mouse model of muscular dystrophy. The experimental protocol was approved by the regional animal ethics committee. Twenty-one mdx and 21 wild-type ( WT wild type ) mice were used in our study. Animals were divided into exercised and sedentary groups. Anisotropic MR elastography was used to obtain mechanical anisotropic shear moduli for the lateral gastrocnemius and plantaris muscles in a 7-T MR imager, from which the mechanical anisotropic ratio was calculated. The animals were imaged before and after 10 weeks of a horizontal treadmill running protocol. Spearman rank correlations were used to compare MR elastographic data with muscle necrotic area percentage from histologic analysis. Mechanical anisotropy in WT wild type and mdx mice muscle were compared by using t test and one-way analysis of variance, and receiver operating characteristic curves were constructed by using statistical software. Anisotropic MR elastography was able to be used to distinguish between the muscles of mdx and WT wild type mice, with an area under the receiver operating characteristic curve of 0.8. Strong negative correlation (rs = -0.701; P mechanical anisotropic ratio and the percentage of muscle necrotic area was found. By comparing mice with no or mild (0%-5% mean necrotic area) and severe (>5% mean necrotic area) muscle necrosis, an area under the receiver operating characteristic curve of 0.964 was achieved. Diffusion parameters alone were unable to distinguish between the WT wild type and mdx mice at any time point. The mechanical anisotropic ratio of the shear storage moduli measured by

  7. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  8. Electronic, elastic, and optical properties of monolayer BC2N

    Science.gov (United States)

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian

    2016-12-01

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC2N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC2N increases with the number of C-C and B-N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC2N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m-1), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC2N, revealing monolayer BC2N as a candidate window material.

  9. Anisotropic Mechanical Properties of Plasma-Sprayed Thermal Barrier Coatings at High Temperature Determined by Ultrasonic Method

    Science.gov (United States)

    Wei, Qin; Zhu, Jianguo; Chen, Wei

    2016-02-01

    The mechanical properties of plasma-sprayed thermal barrier coatings (TBC) are of great scientific and technological significance for the design and fabrication of TBC systems. The ultrasonic method combined with a sing-around method for mechanical properties measurement of TBC is deduced and the elastic modulus can be determined in the spray, or longitudinal, direction, and the transverse direction. Tested specimens of plasma-sprayed TBC are detached from the substrate and treated with thermal exposure at 1400 °C. The elastic moduli along the longitudinal and transverse directions of the TBCs are measured by different types of ultrasonic waves combined with a sing-around method, while the Poisson's ratio is also obtained simultaneously. The experimental results indicate that the magnitude of longitudinal elastic modulus is larger than that of the transverse one, and thus the plasma-sprayed TBC has an anisotropic mechanical property. Moreover, the elastic moduli along both longitudinal and transverse directions change with high-temperature exposure time, which consists of a rapid increasing stage followed by a slow decreasing stage. In addition, the magnitude of Poisson's ratio increases slightly from 0.05 to 0.2 with the high-temperature exposure time. Generally, the microstructures in the plasma-sprayed coatings and their evolution in a high-temperature environment are the main causes of the varying anisotropic mechanical properties.

  10. Mathematical modeling and experimental study of polarization echo in optically anisotropic media

    Science.gov (United States)

    Bogdanov, Yu. I.; Kalinkin, A. A.; Kulik, S. P.; Moreva, E. V.; Shershulin, V. A.; Belinsky, L. V.

    2013-01-01

    As optical systems are one of the candidates for implementation of a scalable quantum computer, it is important to develop an adequate method of description of both quantum states of light and operations performed by optical elements. Using the concept of chi-matrix representation of quantum operations and Choi-Jamiolkowski isomorphism we expand Jones calculus to allow description of evolution of mixed polarization states in linear optical systems. The developed method is then used to give a full description of polarization echo effect, which was described in 1 based on an analogy between the effects of polarization optics and spin dynamics. Theoretical predictions are confirmed by reconstructing operations performed by a series of quartz waveplates using quantum process tomography protocols.

  11. Optical Property Analyses of Plant Cells for Adaptive Optics Microscopy

    Science.gov (United States)

    Tamada, Yosuke; Murata, Takashi; Hattori, Masayuki; Oya, Shin; Hayano, Yutaka; Kamei, Yasuhiro; Hasebe, Mitsuyasu

    2014-04-01

    In astronomy, adaptive optics (AO) can be used to cancel aberrations caused by atmospheric turbulence and to perform diffraction-limited observation of astronomical objects from the ground. AO can also be applied to microscopy, to cancel aberrations caused by cellular structures and to perform high-resolution live imaging. As a step toward the application of AO to microscopy, here we analyzed the optical properties of plant cells. We used leaves of the moss Physcomitrella patens, which have a single layer of cells and are thus suitable for optical analysis. Observation of the cells with bright field and phase contrast microscopy, and image degradation analysis using fluorescent beads demonstrated that chloroplasts provide the main source of optical degradations. Unexpectedly, the cell wall, which was thought to be a major obstacle, has only a minor effect. Such information provides the basis for the application of AO to microscopy for the observation of plant cells.

  12. Optical properties of a scorpion (Centruroides limpidus)

    Science.gov (United States)

    Ullrich, Bruno; Duckworth, Robyn M.; Singh, Akhilesh K.; Barik, Puspendu; Mejía-Villanueva, Vicente O.; Garcia-Pérez, Alberto C.

    2016-04-01

    Scorpions, elusive by nature, tend to appear nocturnally and are usually not appreciated when encountered. The exoskeleton is capable of fluorescing allowing for their detection at night in order to prevent undesirable encounters. The specificity of their fluorescing suggests specialized optical features. However, despite the blue-green fluorescence, to the best of our knowledge, no further results have been published on the optical properties of scorpions. Their exoskeletal structure whose versatility provides them protection, camouflage, and flexibility has not been studied under laser excitation and monochromatic light. The experiments reveal the nonlinear optical properties, infrared photoluminescence, and photoconductivity of the epicuticle of scorpions, demonstrating that the scorpion’s outer-covering is a prototype of a semiconducting inherently integrated multifunctional polymeric film with appealing potential applications such as optical logics, photonic frequency converters, novel multiplexers handling electronic and photonic inputs, and lasers.

  13. Optical properties of cluster plasma

    Energy Technology Data Exchange (ETDEWEB)

    Kishimoto, Yasuaki; Tajima, Toshiki [Japan Atomic Energy Research Inst., Neyagawa, Osaka (Japan). Kansai Research Establishment; Downer, M.C.

    1998-03-01

    It is shown that unlike a gas plasma or an electron plasma in a metal, an ionized clustered material (`cluster plasma`) permits propagation below the plasma cut-off of electromagnetic (EM) waves whose phase velocity is close to but below the speed of light. This results from the excitation of a plasma oscillation mode (and/or polarization mode) through the cluster surface which does not exist in usual gaseous plasma. The existence of this new optical mode, cluster mode, is confirmed via numerical simulation. (author)

  14. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold

    Energy Technology Data Exchange (ETDEWEB)

    Cesano, F., E-mail: federico.cesano@unito.it [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Zaccone, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Armentano, I. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Cravanzola, S.; Muscuso, L. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Torre, L. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Kenny, J.M. [ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Monti, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Scarano, D. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy)

    2016-09-01

    Multi-walled carbon nanotubes (MWCNTs)/polypropylene composites were prepared by melt-mixing, by varying the MWCNT content from 1 to 7 wt%, and samples were manufactured by injection moulding technique. DC electrical characterization was performed by the two-probe method in the three main directions: longitudinal and transversal to the flux of the material during the mould filling, and in the through-thickness direction. Moreover, a dedicated setup was adopted to measure the electrical resistance at different depths of the specimen cross-sectional areas. Two different electrical percolation thresholds, calculated at about 2 wt% and 3 wt% of MWCNTs (longitudinally/transversely to the mould filling flux and in the through-thickness directions, respectively), were found. In order to investigate the role of the structure/morphology of the composites on the electrical properties, samples have been cryofractured, chemically etched and characterized by means of scanning electron microscopy. As a result, the observed anisotropic electrical behaviour was associated with the different network morphology, which was detected in the cross-sectional area, caused by the injection moulding process. Based on the observed through-thickness electrical behaviour, a phenomenological DC conduction model has been developed, describing the sample as a multilayer system, being the external layers (skin) less conductive than the internal region (core). This model, combined with the bulk electrical tests, can be considered as a valuable mathematical tool to foresee the electrical behaviour of MWCNT-based composites for designing new industrial injection-moulded components. - Highlights: • (1–7 wt%) MWCNTs/polypropylene composites are made by injection moulding technique. • The mould temperature is affecting the anisotropic electrical properties. • The anisotropic properties are connected with CNTs dispersion/aggregation. • External layers (skin) are less conductive than the

  15. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    Science.gov (United States)

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  16. Uniaxial Strain Effects on Optical Properties of c-plane Wurtzite GaN

    Institute of Scientific and Technical Information of China (English)

    HAO Guo-Dong; CHEN Yong-Hai

    2008-01-01

    We investigate the uniaxial strain effect in the c-plane on optical properties of wurtzite GaN based on k·p theory,the spin-orbit interactions are also taken into account. The energy dispersions show that the uniaxial strain in the c-plane gives an anisotropic energy splitting in the kx-ky plane, which can reduce the density of states. The uniaxial strain also results in giant in-plane optical polarization anisotropy, hence causes the threshold carrier density reduced. We clarify the relations between the uniaxial strain and the optical polarization properties. As a result, it is suggested that the compressive uniaxial strain perpendicular to the laser cavity direction in the c-plane is one of the preferable approaches for the efficient improvement of GaN-based laser performance.

  17. Linear Optical Properties of Gold Colloid

    Directory of Open Access Journals (Sweden)

    Jingmin XIA

    2015-11-01

    Full Text Available Gold colloid was prepared by reducing HAuCl4·4H2O with Na3C6H5O7·2H2O. The morphology, size of gold nanoparticles and the optical property of colloid were characterized by transmission electron microscope and UV-Vis spectrophotometer, respectively. It shows that the gold nanoparticles are in the shape of spheres with diameters less than 8 nm, and the surface plasmon resonance absorption peak is located at about 438 nm. As the volume fraction of gold particles increases, the intensity of absorption peak strengthens. The optical property of gold colloid was analyzed by Maxwell-Garnett (MG effective medium theory in the company of Drude dispersion model. The results show that the matrix dielectric constant is a main factor, which influences the optical property of gold colloid.DOI: http://dx.doi.org/10.5755/j01.ms.21.4.9558

  18. Effective Optical Properties of Plasmonic Nanocomposites

    Directory of Open Access Journals (Sweden)

    Christoph Etrich

    2014-01-01

    Full Text Available Plasmonic nanocomposites find many applications, such as nanometric coatings in emerging fields, such as optotronics, photovoltaics or integrated optics. To make use of their ability to affect light propagation in an unprecedented manner, plasmonic nanocomposites should consist of densely packed metallic nanoparticles. This causes a major challenge for their theoretical description, since the reliable assignment of effective optical properties with established effective medium theories is no longer possible. Established theories, e.g., the Maxwell-Garnett formalism, are only applicable for strongly diluted nanocomposites. This effective description, however, is a prerequisite to consider plasmonic nanocomposites in the design of optical devices. Here, we mitigate this problem and use full wave optical simulations to assign effective properties to plasmonic nanocomposites with filling fractions close to the percolation threshold. We show that these effective properties can be used to properly predict the optical action of functional devices that contain nanocomposites in their design. With this contribution we pave the way to consider plasmonic nanocomposites comparably to ordinary materials in the design of optical elements.

  19. Electronic and optical properties of lead iodide

    DEFF Research Database (Denmark)

    Ahuja, R.; Arwin, H.; Ferreira da Silva, A.

    2002-01-01

    The electronic properties and the optical absorption of lead iodide (PbI2) have been investigated experimentally by means of optical absorption and spectroscopic ellipsometry, and theoretically by a full-potential linear muffin-tin-orbital method. PbI2 has been recognized as a very promising...... detector material with a large technological applicability. Its band-gap energy as a function of temperature has also been measured by optical absorption. The temperature dependence has been fitted by two different relations, and a discussion of these fittings is given. ©2002 American Institute of Physics....

  20. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Feller, M.B.

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  1. The application of the symmetry properties of optical second harmonic generation to studies of interfaces and gases

    Energy Technology Data Exchange (ETDEWEB)

    Feller, Marla Beth [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    Optical second harmonic generation has proven to be a powerful tool for studying interfaces. The symmetry properties of the process allow for surface sensitivity not available with other optical methods. In this thesis, we take advantage of these symmetry properties SHG to study a variety of interesting systems not previously studied with this technique. We show that optical second harmonic generation is an effective surface probe with a submonolayer sensitivity for media without inversion symmetry. We demonstrate the technique at a gallium arsenide surface, exploiting the different symmetry properties of the bulk and surface of the crystal to isolate the surface contribution. We also demonstrate that optical second harmonic generation can be used to determine the anisotropic orientational distribution of a surface monolayer of molecules. We apply the technique to study homogeneously aligned liquid crystal cells. To further explore the LC-polymer interface, we used SHG to study the surface memory effect. The surface memory effect is the rendering of an isotropic interface anisotropic by putting it in contact with an anisotropic bulk. Last, we describe some preliminary measurements of a time-resolved spectroscopic study of the phenomenon of second harmonic generation in a gas. The construction of a 500 microjoule pulsed, tunable laser source is described.

  2. Aero-optic analysis of anisotropic turbulent boundary layer by direct integration

    Science.gov (United States)

    Taylor, S.; Price, J.; Chen, C. P.; Pond, John E.; Sutton, G. W.

    2013-09-01

    Aero-optic aberrations that effect optical sensor performance and laser beam propagation, can be caused by changes in the index-of-refraction field as the optical wave traverses a compressible non-uniform, turbulent flowfield. Mean flowfield non-uniformities cause bore sight error and blurring and, if the mean flowfield is unsteady, jitter. Turbulence causes blurring and high frequency jitter. Blurring also causes the signal-to-noise ratio to decrease and image distortion, and adversely affects centroid location for precision tracking. The objective of this study is to develop an unified approach for whole-field aero-optics prediction using hybrid LES/RANS (Large Eddy Simulation/Reynolds Average Navier-Stokes) turbulence modeling in combination with a newly formulated optical Modulation Transfer Function (MTF). The whole field turbulence includes the near-vehicle boundary layer mean and turbulence, as well as far-field atmospheric turbulence. A flat plate compressible boundary layer case is used to demonstrate the methodology. the abstract two lines below author names and addresses.

  3. Optical properties of low-dimensional materials

    CERN Document Server

    Ogawa, T

    1998-01-01

    This book surveys recent theoretical and experimental studies of optical properties of low-dimensional materials. As an extended version of Optical Properties of Low-Dimensional Materials (Volume 1, published in 1995 by World Scientific), Volume 2 covers a wide range of interesting low-dimensional materials including both inorganic and organic systems, such as disordered polymers, deformable molecular crystals, dilute magnetic semiconductors, SiGe/Si short-period superlattices, GaAs quantum wires, semiconductor microcavities, and photonic crystals. There are excellent review articles by promis

  4. Methods and means of Stokes-polarimetry microscopy of optically anisotropic biological layers

    Science.gov (United States)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Sakhnovskiy, M. Yu.; Sidor, M.; Prydiy, O. G.; Olar, O. I.; Lakusta, I. I.

    2016-12-01

    The results of optical modeling of biological tissues polycrystalline multilayer networks have been presented. Algorithms of reconstruction of parameter distributions were determined that describe the linear and circular birefringence. For the separation of the manifestations of these mechanisms we propose a method of space-frequency filtering. Criteria for differentiation of benign and malignant tissues of the women reproductive sphere were found.

  5. Selectively tunable optical Stark effect of anisotropic excitons in atomically thin ReS2

    Science.gov (United States)

    Sim, Sangwan; Lee, Doeon; Noh, Minji; Cha, Soonyoung; Soh, Chan Ho; Sung, Ji Ho; Jo, Moon-Ho; Choi, Hyunyong

    2016-11-01

    The optical Stark effect is a coherent light-matter interaction describing the modification of quantum states by non-resonant light illumination in atoms, solids and nanostructures. Researchers have strived to utilize this effect to control exciton states, aiming to realize ultra-high-speed optical switches and modulators. However, most studies have focused on the optical Stark effect of only the lowest exciton state due to lack of energy selectivity, resulting in low degree-of-freedom devices. Here, by applying a linearly polarized laser pulse to few-layer ReS2, where reduced symmetry leads to strong in-plane anisotropy of excitons, we control the optical Stark shift of two energetically separated exciton states. Especially, we selectively tune the Stark effect of an individual state with varying light polarization. This is possible because each state has a completely distinct dependence on light polarization due to different excitonic transition dipole moments. Our finding provides a methodology for energy-selective control of exciton states.

  6. Inverse estimation of the elastic and anelastic properties of the porous frame of anisotropic open-cell foams.

    Science.gov (United States)

    Cuenca, Jacques; Göransson, Peter

    2012-08-01

    This paper presents a method for simultaneously identifying both the elastic and anelastic properties of the porous frame of anisotropic open-cell foams. The approach is based on an inverse estimation procedure of the complex stiffness matrix of the frame by performing a model fit of a set of transfer functions of a sample of material subjected to compression excitation in vacuo. The material elastic properties are assumed to have orthotropic symmetry and the anelastic properties are described using a fractional-derivative model within the framework of an augmented Hooke's law. The inverse estimation problem is formulated as a numerical optimization procedure and solved using the globally convergent method of moving asymptotes. To show the feasibility of the approach a numerically generated target material is used here as a benchmark. It is shown that the method provides the full frequency-dependent orthotropic complex stiffness matrix within a reasonable degree of accuracy.

  7. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  8. Eigenview on Jones matrix models of homogeneous anisotropic media

    Directory of Open Access Journals (Sweden)

    Savenkov S.

    2010-06-01

    Full Text Available The polarization of light when it passes through optical medium can change as a result of change in the amplitude (dichroism or phase shift (birefringence of the electric vector. The anisotropic properties of media can be determined from these two optical effects. Our main concern here is to revisit the factor of eigenpolarizations and eigenvalues in modeling of polarization properties of homogeneous media and elucidate certain new features in polarization behavior of birefringent and dichroic media.

  9. Optical properties of graphene nanoribbons

    Science.gov (United States)

    Karimi, Farhad; Knezevic, Irena

    We calculate the dielectric function and optical conductivity of ultra-narrow armchair graphene nanoribbons (AGNRs) and zigzag graphene nanoribbons (ZGNRs) by a self- consistent-field approach within a Markovian master-equation formalism (SCF-MMEF) coupled with full-wave electromagnetic equations. Based on third-nearest-neighbor tight-binding, with appropriate modifications for AGNRs and ZGNRs, we calculate electron dispersions and Bloch wave functions in excellent agreement with the local spin-density approximation (LSDA) results. A generalized Markovian master equation of the Lindblad form, which maintains the positivity of the density matrix, is derived to describe the interaction of the electronic system with an external electromagnetic field (to first order) and with a dissipative environment (to second order). Not only does the SCF-MMEF capture the interband electron-hole-pair generation, but it also accurately accounts for concurrent interband and intraband electron scattering with phonons and impurities. We employ the SCF-MMEF to calculate the dielectric function, complex conductivity, and loss function for both suspended and supported AGNRs and ZGNRs with different widths. Then, we obtain the plasmon dispersion and propagation length from the loss-function maximum. Support by the U.S. Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award DE-SC0008712.

  10. Optical properties of photochromic and thermochromic materials

    Science.gov (United States)

    Mo, Yeon-Gon

    The optical properties of some thin film materials can be altered by an external stimulus. Photochromic and thermochromic materials, including inorganic and organic substances, have optical properties that can be changed in a reversible manner by irradiation and temperature respectively. These materials can be used in applications such as radiation or thermal sensors, information storage devices and smart window applications in buildings and cars. In this work, major effort was concentrated on passive thermal control coatings based on photochromic and thermochromic materials. The inorganic photochromic materials were based on tungsten and molybdenum oxide films and the organic photochromic materials included spiropyrans and spirooxazines. In addition, photochromic composite organic-inorganic films and thermochromic vanadium oxide films were prepared. The samples were synthesized using sputtering, sol-gel process, and thermal oxidation. The optical properties were investigated for the first time by ultraviolet/visible/infrared (UV/VIS/IR) spectroscopic ellipsometry, attenuated total reflection (ATR) infrared ellipsometry, spectrophotometry, and X-ray diffraction (XRD). For amorphous oxide films, the oxygen deficiency was important in determining the photochromic properties of the films. In the mid-infrared region, no photochromism was observed for the films. The optical properties of organic-inorganic composite films changed in the VIS/NIR wavelength region markedly in a reversible process, with UV irradiation. The composite films containing tungsten heteropolyoxometalate (HPOM) showed faster coloration and bleaching than pure tungsten oxide films. The composite films with molybdenum HPOM showed faster coloration and much slower bleaching than tungsten HPOM. The spiropyran and spirooxazine doped polymeric films were investigated for the first time using infrared and ATR ellipsometry. The infrared optical functions obtained by ATR measurements were a little smaller

  11. Optical properties of substituted polyacetylenes

    Science.gov (United States)

    Gontia, Ilarie I.

    In this work we present continuous wave (CW) optical spectroscopies of sustituted polyacetylenes: poly-disabstituted-acetylene (PDPA-nBu) and polyphenylacetylene (PPA). We found that although PDPA-nBu is a degenerate ground state polymer, it shows strong photoluminescence (PL) with quantum efficiency larger than 60%. Polarized PL measurements show that PDPA-nBu emission originates from intrachain excitons rather than from the side groups of the polymer chain. The absorption bands were identified, correlating the experimental results with the model proposed in the literature. The CW photomodulation (PM) spectra of pristine unoxidized and oxidized PDPA-nBu films showed that both solitons and polarons are simultaneously photogenerated. On the contrary, the PM spectrum of PDPA-nBu in toluene solution showed only polaron photogeneration. Using the photoinduced absorption detected magnetic resonance (PADMR) spectroscopy and doping induced electron spin resonance (ESR) we identified the spin of the photogenerated species. For spin 1/2 resonance, polaron, neutral soliton, and charged soliton bands were observed in the lambda-PADMR spectrum. We also investigated the charge transfer (CT) process in the PDPA-nBu/ C60 composites. The absorption spectra in the visible and infrared ranges of PDPA-nBu/C60 blend do not show any evidence for CT in the ground state. Using PL, PM and PADMR spectroscopies we show that in the PDPA-nBu/C60 blends the charge transfer reaction takes place in the excited state. PL spectra measured in films with different C60 concentration showed exciton quenching that is due to the fast CT process. The PM spectrum showed the signature of CT, namely, a PA band that peaks at about 1.15 eV, which is associated with C60 ion resulting from the excitons separation into positively charged polaron on the polymer chain and negative C60 ion. PADMR spectra also showed the signature of the CT reaction. We observed two resonances that were identified in H

  12. Optical properties of spherical gold mesoparticles

    DEFF Research Database (Denmark)

    Evlyukhin, A. B.; Kuznetsov, A. I.; Novikov, S. M.;

    2012-01-01

    Optical properties of spherical gold particles with diameters of 150-650 nm (mesoparticles) are studied by reflectance spectroscopy. Particles are fabricated by laser-induced transfer of metallic droplets onto metal and dielectric substrates. Contributions of higher multipoles (beyond the quadrup...

  13. Optical Properties of Nanoparticles and Nanocomposites

    CSIR Research Space (South Africa)

    Kumbhakar, P

    2014-01-01

    Full Text Available entitled “Optical properties and in vitro biological studies of oligonucleotide-modified quantum dots,” Gérard et al. have reported the synthesis and characterizations of a series of new oligonucleotide-modified CdTe quantum dots (QDs); also they have...

  14. Some optical properties of the spiral inflector

    CERN Document Server

    Toprek, D

    1999-01-01

    This paper compares some optical properties of different spiral inflectors using the program CASINO. The electric field distribution in the inflectors has been numerically calculated from an electric potential map produced by the program RELAX3D. The magnetic field is assumed to be constant. We have also made an effort to minimize the inflector fringe field using the RELAX3D program. (author)

  15. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots

  16. Comparative properties of optically clear epoxy encapsulants

    Science.gov (United States)

    Edwards, Maury; Zhou, Yan

    2001-12-01

    Three epoxy systems were evaluated for physical dn optical properties. The three systems chosen for the study were selected on the basis of their optical clarity, color and chemistry. Three distinctly different chemistries were chosen, aromatic epoxy-amine cured. Aromatic epoxy- anhydride cured and cycloaliphatic epoxy-anhydride cured. All three systems remained optically clear and water-white after full cure. The three selected systems were tested for physical properties, adhesion and light transmission properties. Light transmission was measured after thermal and humidity exposure. Adhesion was measured after humidity exposure only. Both of the epoxy-anhydride systems performed well in optical properties but poorer in adhesion as compared to the epoxy-amine system. The aromatic epoxy- amine system discolored badly during thermal exposure at 100 C. Data generated from this work will be used in selecting clear encapsulating materials for photonics applications. No single system offers optimal performance in all areas. The best compromise material is the aromatic epoxy-anhydride system.

  17. Optical Properties of Semiconductor Quantum Dots

    NARCIS (Netherlands)

    Perinetti, U.

    2011-01-01

    This thesis presents different optical experiments performed on semiconductor quantum dots. These structures allow to confine a small number of electrons and holes to a tiny region of space, some nm across. The aim of this work was to study the basic properties of different types of quantum dots mad

  18. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Hossein Rabbani

    2013-01-01

    Full Text Available In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  19. Pulse transient hot strip technique adapted for slab sample geometry to study anisotropic thermal transport properties of μm-thin crystalline films.

    Science.gov (United States)

    Ma, Y; Gustavsson, J S; Haglund, A; Gustavsson, M; Gustafsson, S E

    2014-04-01

    A new method based on the adaptation of the Pulse Transient Hot Strip technique to slab sample geometry has been developed for studying thermal conductivity and thermal diffusivity of anisotropic thin film materials (conductivity in the 0.01-100 W/mK range, deposited on thin substrates (i.e., wafers). Strength of this technique is that it provides a well-controlled thermal probing depth, making it possible to probe a predetermined depth of the sample layer and thereby avoiding the influence from material(s) deeper down in the sample. To verify the technique a series of measurements were conducted on a y-cut single crystal quartz wafer. A Hot Strip sensor (32-μm wide, 3.2-mm long) was deposited along two orthogonal crystallographic (x- and z-) directions and two independent pulse transients were recorded. Thereafter, the data was fitted to our theoretical model, and the anisotropic thermal transport properties were determined. Using a thermal probing depth of only 30 μm, we obtained a thermal conductivity along the perpendicular (parallel) direction to the z-, i.e., optic axis of 6.48 (11.4) W/mK, and a thermal diffusivity of 3.62 (6.52) mm(2)/s. This yields a volumetric specific heat of 1.79 MJ/mK. These values agree well with tabulated data on bulk crystalline quartz supporting the accuracy of the technique, and the obtained standard deviation of less than 2.7% demonstrates the precision of this new measurement technique.

  20. Characterization of Aerogel's Optical Properties

    Science.gov (United States)

    Justen, Abigail; Young, Jonathan

    2013-10-01

    Aerogel is used in the kaon aerogel Cerenkov detector at Jefferson Lab. Kaons are identified by the number of photons created through Cerenkov radiation emitted as the kaon travels through the aerogel. Depending on the refractive index of the aerogel, kaons of different momenta can be detected and distinguished from protons. Therefore, a uniform refractive index in the detector is important to reduce uncertainty in the Cerenkov radiation. We found the refractive index of the aerogel by shining a red construction laser through it and measuring how far the beam refracted. The refractive index of aerogel is also directly related to the density of aerogel. The humidity in the air, if absorbed, could also affect the refractive index. To test the effect of humidity on aerogel we used a humidity controlled environment between 80 and 100 percent on aerogel from Matsushita Electric Works, Ltd, Japan Fine Ceramic Center, and Novosibirsk. Finally, we tested the transmittance of aerogel tiles with a UV/Vis photospectrometer to find the correlation between transmittance and the tile's properties. Tiles with the highest transmittance will allow for the most accurate count of the photons produced through Cerenkov radiation. The results from these experiments will be presented. Supported in Part by NSF Grant 1019521 and 1039446.

  1. Quantum optical properties in plasmonic systems

    Science.gov (United States)

    Ooi, C. H. Raymond

    2015-04-01

    Plasmonic metallic particle (MP) can affect the optical properties of a quantum system (QS) in a remarkable way. We develop a general quantum nonlinear formalism with exact vectorial description for the scattered photons by the QS. The formalism enables us to study the variations of the dielectric function and photon spectrum of the QS with the particle distance between QS and MP, exciting laser direction, polarization and phase in the presence of surface plasmon resonance (SPR) in the MP. The quantum formalism also serves as a powerful tool for studying the effects of these parameters on the nonclassical properties of the scattered photons. The plasmonic effect of nanoparticles has promising possibilities as it provides a new way for manipulating quantum optical properties of light in nanophotonic systems.

  2. Anisotropic pair superfluidity of trapped two-component Bose gases in an optical lattice

    Science.gov (United States)

    Li, Yongqiang; He, Liang; Hofstetter, Walter

    2013-09-01

    We theoretically investigate the pair-superfluid phase of two-component ultracold gases with attractive inter-species interactions in an optical lattice. We establish the phase diagram for filling n = 1 at zero and finite temperatures, by applying bosonic dynamical mean-field theory, and observe stable pair-superfluid and charge-density wave quantum phases for asymmetric hopping of the two species. While the pair superfluid is found to be robust in the presence of a harmonic trap, we observe that it is destroyed already by a small population imbalance of the two species.

  3. Anisotropic magnetic, transport and thermodynamic properties of novel tetragonal Ce{sub 2}RhGa{sub 12} compound

    Energy Technology Data Exchange (ETDEWEB)

    Nallamuthu, S.; Rashid, T.P. [Department of Physics, National Institute of Technology, Tiruchirappalli 620 0015 (India); Krishnakumar, V. [Department of Physics, Periyar University, Salem 636 011 (India); Besnard, Celine [Laboratory of Crystallography, University of Geneva, 24 Quai Ernest-Ansermet, CH-1211 Geneva 4 (Switzerland); Hagemann, Hans [Department of Physical Chemistry, University of Geneva, Geneva (Switzerland); Reiffers, Marian [Faculty of Humanities and Natural Sciences, Presov University, Presov (Slovakia); Nagalakshmi, R., E-mail: nagaphys@yahoo.com [Department of Physics, National Institute of Technology, Tiruchirappalli 620 0015 (India)

    2014-08-01

    Highlights: • Ce{sub 2}RhGa{sub 12} crystallizes in tetragonal structure having space-group P4/nbm. • Anisotropic magnetic, transport and thermodynamic properties are investigated. • The antiferromagnetic ordering temperature is 3.5 K. • Sommerfeld parameter γ ≈ 423 mJ/mol K{sup 2}. - Abstract: We report on a comprehensive study of the magnetization, resistivity and heat capacity on the single crystals of Ce{sub 2}RhGa{sub 12} synthesized using Ga flux. Single crystal X-ray diffraction data confirm the tetragonal Pb/nbm structure of Ce{sub 2}RhGa{sub 12}, which is isostructural to Ce{sub 2}PdGa{sub 12}. Ce{sub 2}RhGa{sub 12} orders antiferromagnetically at T{sub N} = 3.5 K and exhibits anisotropic magnetic behavior, inferred from the magnetization and resistivity data, taken along the two principal crystallographic directions of the crystal, viz., along [1 0 0] and [0 0 1]. The anisotropic magnetic response of Ce{sub 2}RhGa{sub 12} establishes [0 0 1] as the easy axis of magnetization, and a weak meta-magnetic transition is also observed in the magnetic isotherm at 2 K along the same axis. A sharp peak in specific heat signals the bulk antiferromagnetic transition at T{sub N} = 3.5 K, which shifts to lower temperatures in low applied fields. The electrical resistivity along the two directions shows metallic behavior from 300 K down to 1.8 K and establishes Ce{sub 2}RhGa{sub 12} as a normal, trivalent cerium compound.

  4. Transparent aluminium nanowire electrodes with optical and electrical anisotropic response fabricated by defocused ion beam sputtering

    Energy Technology Data Exchange (ETDEWEB)

    Repetto, Diego, E-mail: diegorepet@gmail.com; Giordano, Maria Caterina, E-mail: marinagiordano88@gmail.com; Martella, Christian, E-mail: christian.martella@gmail.com; Buatier de Mongeot, Francesco, E-mail: buatier@fisica.unige.it

    2015-02-01

    Highlights: • Self-organized Al nanowires were grown on glass substrates by ion beam sputtering. • Al nanowire pattern exhibit electrical and optical anisotropy. • Al NW pattern can be used as transparent electrodes for optoelectronic devices. - Abstract: Self-organized Al nanowire (NW) electrodes have been obtained by defocused Ion Beam Sputtering (IBS) of polycrystalline Al films grown by sputter deposition. The electrical sheet resistance of the electrode has been acquired in situ during ion bombardment of the samples, evidencing an increase of the electronic transport anisotropy as a function of ion fluence between the two directions parallel and orthogonal to the NWs axis. Optical spectra in transmission also show a large dichroism between the two directions, suggesting the role of localized plasmons in the UV spectral range. The results show that Al NW electrodes, prepared under experimental conditions which are compatible with those of conventional industrial coaters and implanters, could represent a low cost alternative to the transparent conductive oxides employed in optoelectronic devices.

  5. Optical Transmission Properties of Dielectric Aperture Arrays

    Science.gov (United States)

    Yang, Tao

    Optical detection devices such as optical biosensors and optical spectrometers are widely used in many applications for the functions of measurements, inspections and analysis. Due to the large dimension of prisms and gratings, the traditional optical devices normally occupy a large space with complicated components. Since cheaper and smaller optical devices are always in demand, miniaturization has been kept going for years. Thanks to recent fabrication advances, nanophotonic devices such as semiconductor laser chips have been growing in number and diversity. However, the optical biosensor chips and the optical spectrometer chips are seldom reported in the literature. For the reason of improving system integration, the study of ultra-compact, low-cost, high-performance and easy-alignment optical biosensors and optical spectrometers are imperative. This thesis is an endeavor in these two subjects and will present our research work on studying the optical transmission properties of dielectric aperture arrays and developing new optical biosensors and optical spectrometers. The first half of the thesis demonstrates that the optical phase shift associated with the surface plasmon (SP) assisted extraordinary optical transmission (EOT) in nano-hole arrays fabricated in a metal film has a strong dependence on the material refractive index value in close proximity to the holes. A novel refractive index sensor based on detecting the EOT phase shift is proposed by building a model. This device readily provides a 2-D biosensor array platform for non-labeled real-time detection of a variety of organic and biological molecules in a sensor chip format, which leads to a high packing density, minimal analyte volumes, and a large number of parallel channels while facilitating high resolution imaging and supporting a large space-bandwidth product (SBP). Simulation (FDTD Solutions, Lumerical Solutions Inc) results indicate an achievable sensitivity limit of 4.37x10-9 refractive index

  6. Self-collimation in photonic crystals with anisotropic constituents

    Institute of Scientific and Technical Information of China (English)

    J. W. Haus; M. Siraj; P. Prasad; P. Markowicz

    2007-01-01

    @@ In a photonic crystal composed of anisotropic constituents we quantify the range of input angles and the degree of collimation of the beam inside the crystal. The optical properties of a photobleached 4-dimethylamino-N-methyl-4-stilbazolium-tosylate (DAST) crystal are used in our model to demonstrate the efficacy of the self-collimation features.

  7. Optical second-harmonic diffraction study of anisotropic surface diffusion: CO on Ni(110)

    Energy Technology Data Exchange (ETDEWEB)

    Xiao, X.; Zhu, X.D.; Daum, W.; Shen, Y.R. (Department of Physics, University of California, Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, California 94720 (United States))

    1992-10-15

    We describe in detail a technique using optical second-harmonic (SH) diffraction from a one-dimensional laser-induced monolayer grating to probe surface diffusion of adsorbates and its anisotropy on a solid surface. The case of CO on Ni(110) is used as a demonstration. The two orthogonal and independent diffusion tensor components along (1{bar 1}0) and (001) are measured, exhibiting a strong anisotropy in both the activation energy {ital E}{sub diff} and the preexponential factor {ital D}{sub 0} in the diffusion coefficients. A compensation effect between {ital E}{sub diff} and {ital D}{sub 0} is observed. In comparison with CO/Ni(111) and CO/Ni(100), our result suggests that the Ni(110) surface seen by CO is much smoother than Ni(111) and Ni(100). Both advantages and limitations of the present technique are mentioned and possible complications in the data analysis are discussed.

  8. Anisotropic magnetic properties and crystal electric field studies on CePd2Ge2 single crystal.

    Science.gov (United States)

    Maurya, Arvind; Kulkarni, R; Dhar, S K; Thamizhavel, A

    2013-10-30

    The anisotropic magnetic properties of the antiferromagnetic compound CePd2Ge2, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by the Czochralski method. From the electrical transport, magnetization and heat capacity data, the Néel temperature is confirmed to be 5.1 K. Anisotropic behaviour of the magnetization and resistivity is observed along the two principal crystallographic directions-namely, [100] and [001]. The isothermal magnetization measured in the magnetically ordered state at 2 K exhibits a spin reorientation at 13.5 T for the field applied along the [100] direction, whereas the magnetization is linear along the [001] direction attaining a value of 0.94 μ(B)/Ce at 14 T. The reduced value of the magnetization is attributed to the crystalline electric field (CEF) effects. A sharp jump in the specific heat at the magnetic ordering temperature is observed. After subtracting the phononic contribution, the jump in the heat capacity amounts to 12.5 J K(-1)mol(-1) which is the expected value for a spin ½ system. From the CEF analysis of the magnetization data the excited crystal field split energy levels were estimated to be at 120 K and 230 K respectively, which quantitatively explains the observed Schottky anomaly in the heat capacity. A magnetic phase diagram has been constructed based on the field dependence of magnetic susceptibility and the heat capacity data.

  9. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  10. Optical Properties of Relativistic Plasma Mirrors

    CERN Document Server

    Vincenti, H; Kahaly, S; Martin, Ph; Quéré, F

    2013-01-01

    The advent of ultrahigh-power femtosecond lasers creates a need for optical components suitable to handle ultrahigh light intensities. Due to the unavoidable laser-induced ionization of matter, these components will have to be based on a plasma medium. An archetype of such optical elements is a plasma mirror, created when an intense femtosecond laser pulse impinges on a solid target. It consists of a dense plasma, formed by the laser field itself, which specularly reflects the main part of the pulse. Plasma mirrors have major potential applications as active optical elements to manipulate the temporal and spatial properties of intense laser beams, in particular for the generation of intense attosecond pulses of light. We investigate the basic physics involved in the deformation of a plasma mirror resulting from the light pressure exerted by the ultraintense laser during reflection, by deriving a simple model of this fundamental process, which we validate both numerically and experimentally. The understanding ...

  11. Optical properties of organic semiconductor thin films. Static spectra and real-time growth studies

    Energy Technology Data Exchange (ETDEWEB)

    Heinemeyer, Ute

    2009-07-20

    The aim of this work was to establish the anisotropic dielectric function of organic thin films on silicon covered with native oxide and to study their optical properties during film growth. While the work focuses mainly on the optical properties of Diindenoperylene (DIP) films, also the optical response of Pentacene (PEN) films during growth is studied for comparison. Spectroscopic ellipsometry and differential reflectance spectroscopy are used to determine the dielectric function of the films ex-situ and in-situ, i.e. in air and in ultrahigh vacuum. Additionally, Raman- and fluorescence spectroscopy is utilized to characterize the DIP films serving also as a basis for spatially resolved optical measurements beyond the diffraction limit. Furthermore, X-ray reflectometry and atomic force microscopy are used to determine important structural and morphological film properties. The absorption spectrum of DIP in solution serves as a monomer reference. The observed vibronic progression of the HOMO-LUMO transition allows the determination of the Huang-Rhys parameter experimentally, which is a measure of the electronic vibrational coupling. The corresponding breathing modes are measured by Raman spectroscopy. The optical properties of DIP films on native oxide show significant differences compared to the monomer spectrum due to intermolecular interactions. First of all, the thin film spectra are highly anisotropic due to the structural order of the films. Furthermore the Frenkel exciton transfer is studied and the energy difference between Frenkel and charge transfer excitons is determined. Real-time measurements reveal optical differences between interfacial or surface molecules and bulk molecules that play an important role for device applications. They are not only performed for DIP films but also for PEN films. While for DIP films on glass the appearance of a new mode is visible, the spectra of PEN show a pronounced energy red-shift during growth. It is shown how the

  12. Engineering optical properties using plasmonic nanostructures

    Science.gov (United States)

    Tamma, Venkata Ananth

    Plasmonic nanostructures can be engineered to take on unusual optical properties not found in natural materials. The optical responses of plasmonic materials are functions of the structural parameters and symmetry of the nanostructures, material parameters of the nanostructure and its surroundings and the incidence angle, frequency and polarization state of light. The scattering and hence the visibility of an object could be reduced by coating it with a plasmonic material. In this thesis, presented is an optical frequency scattering cancelation device composed of a silicon nanorod coated by a plasmonic gold nanostructure. The principle of operation was theoretically analyzed using Mie theory and the device design was verified by extensive numerical simulations. The device was fabricated using a combination of nanofabrication techniques such as electron beam lithography and focused ion beam milling. The optical responses of the scattering cancelation device and a control sample of bare silicon rod were directly visualized using near-field microscopy coupled with heterodyne interferometric detection. The experimental results were analyzed and found to match very well with theoretical prediction from numerical simulations thereby validating the design principles and our implementation. Plasmonic nanostructures could be engineered to exhibit unique optical properties such as Fano resonance characterized by narrow asymmetrical lineshape. We present dynamic tuning and symmetry lowering of Fano resonances in plasmonic nanostructures fabricated on flexible substrates. The tuning of Fano resonance was achieved by application of uniaxial mechanical stress. The design of the nanostructures was facilitated by extensive numerical simulations and the symmetry lowering was analyzed using group theoretical methods. The nanostructures were fabricated using electron beam lithography and optically characterized for various mechanical stress. The experimental results were in good

  13. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  14. Optical properties of coumarins containing copolymers

    Science.gov (United States)

    Skowronski, L.; Krupka, O.; Smokal, V.; Grabowski, A.; Naparty, M.; Derkowska-Zielinska, B.

    2015-09-01

    We investigate the optical properties such as absorption coefficient, refractive index, real and imaginary parts of dielectric function and energy band gap of coumarin-containing copolymers thin films by means of spectroscopic ellipsometry (SE) combined with transmittance measurements (T) and atomic force microscopy (AFM). We found that the optical properties of coumarin-containing copolymers strongly depend from length of alkyl spacer as well as the type of substitution in coumarin moiety. In our case the refractive index as well as the energy band gap of coumarin-containing copolymer decrease with increase the length of alkyl spacer. Additionally, the lengthening of the alkyl spacer brings the bathochromic shifts of the absorption spectra towards longer wavelengths.

  15. Optical properties of stabilized copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Mohindroo, Jeevan Jyoti, E-mail: jjmdav@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Department of Chemistry, DAV College, Amritsar, Punjab India (India); Garg, Umesh Kumar, E-mail: Umeshkgarg@gmail.com [Punjab Technical University, Kapurthala Punjab (India); Guru Teg Bahadur Khalsa College of IT, Malout, Punjab (India); Sharma, Anshul Kumar [Department of Physics, Guru Nanak Dev University, Amritsar 143005 (India)

    2016-05-06

    Optical studies involving calculation of Band Gap of the synthesized copper nanoparticles were carried out in the wavelength range of 500 to 650 nm at room temperature, the particles showed high absorption at 550 nm indicating their good absorptive properties. In this method water is used as the medium for reduction of copper ions in to copper Nanoparticles the stabilization of copper Nanoparticles was studied with starch both as a reductant and stabilizer,. The reaction mixture was heated using a kitchen microwave for about 5 minutes to attain the required temp for the reaction. The pH of the solution was adjusted to alkaline using 5% solution of NaOH. Formation of Copper Nanoparticles was indicated by change in color of the solution from blue to yellowish black which is supported by the UV absorption at 570 nm.the synthesized particles were washed with water and alcohol. The optical properties depend upon absorption of radiations which in turn depends upon ratio of electrons and holes present in the material and also on the shape of the nanoparticles. In the present investigation it was observed that optical absorption increases with increase in particle size. The optical band gap for the Nanoparticles was obtained from plots between hv vs. (αhv){sup 2} and hv vs. (αhv){sup 1/2}. The value of Band gap came out to be around 1.98–2.02 eV which is in close agreement with the earlier reported values.

  16. Polarimetric Properties of Optically Resonant Nanostructures

    Science.gov (United States)

    Theisen, Michael John

    Optically resonant nanostructures have been incorporated into a variety of devices used in a number of different fields. In this thesis, we explore optically resonant nanostructures in two forms. First we investigate a relatively new material, gallium implanted silicon (Si:Ga). We cover the fabrication process and experimentally find the optical properties as a function of both dose and wavelength. We then use the properties of this new material to create suspended arrays of Si:Ga nanowires, and determine their optical characteristics. In the second part of this thesis, we use more conventional materials and fabrication procedures to investigate the phase effects of guided mode resonators. We look at the spectral phase effects for a grating coupled silicon-on-insulator based guided mode resonator. We also look the angular phase effects of a surface plasmon polariton based guided mode resonator, comparing experimental results to theory calculated with rigorous coupled wave analysis for both cases. In addition, the guided mode resonance is modeled as a Fano resonance to gain insight into the functional form of the phase. Knowing the phase response of guided mode resonances may allow the creation of guided mode resonance based devices with higher sensitivity than traditional reflectance based devices.

  17. Optical Mapping of Release Properties in Synapses

    OpenAIRE

    Pablo Ariel; Ryan, Timothy A.

    2010-01-01

    Synapses are important functional units that determine how information flows through the brain. Understanding their biophysical properties and the molecules that underpin them is an important goal of cellular neuroscience. Thus, it is of interest to develop protocols that allow easy measurement of synaptic parameters in model systems that permit molecular manipulations. Here, we used a sensitive and high-time resolution optical approach that allowed us to characterize two functional parameter...

  18. Properties of an optical soliton gas

    Science.gov (United States)

    Schwache, A.; Mitschke, F.

    1997-06-01

    We consider light pulses propagating in an optical fiber ring resonator with anomalous dispersion. New pulses are fed into the resonator in synchronism with its round-trip time. We show that solitary pulse shaping leads to a formation of an ensemble of subpulses that are identified as solitons. All solitons in the ensemble are in perpetual relative motion like molecules in a fluid; thus we refer to the ensemble as a soliton gas. Properties of this soliton gas are determined numerically.

  19. Polymer based nanocomposites with tailorable optical properties

    Science.gov (United States)

    Colombo, Annalisa; Simonutti, Roberto

    2014-09-01

    Transparent polymers are extensively used in everyday life, from windows to computer displays, from food packaging to lenses. A possible approach for modulating their optical properties (refractive index, transparency, color and luminescence) is to change the chemical structure of the polymer, however this option is in many cases economically prohibitive. Our approach, instead, relies in the use of standard polymers with the supplement of specific nanostructured additives able to tune the final property of the material. Among others, the cases of luminescent solar concentrators based on poly(methylmethacrylate) containing luminescent quantum dots and highly transparent polymer nanocomposites with high refractive index will be presented.

  20. Optical properties of nasal septum cartilage

    Science.gov (United States)

    Bagratashvili, Nodar V.; Sviridov, Alexander P.; Sobol, Emil N.; Kitai, Moishe S.

    1998-05-01

    Optical parameters (scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g) of hyaline cartilage were studied for the first time. Optical properties of human and pig nasal septum cartilage, and of bovine ear cartilage were examined using a spectrophotometer with an integrating sphere, and an Optical Multi-Channel Analyser. We measured total transmission Tt, total reflection Rt, and on-axis transmission Ta for light propagating through cartilage sample, over the visible spectral range (14000 - 28000 cm-1). It is shown that transmission and reflection spectra of human, pig and bovine cartilage are rather similar. It allows us to conclude that the pig cartilage can be used for in-vivo studies instead of human cartilage. The data obtained were treated by means of the one-dimensional diffusion approximation solution of the optical transport equation. We have found scattering coefficient s, absorption coefficient k and scattering anisotropy coefficient g by the iterative comparison of measured and calculated Tt, Rt and Ta values for human and pig cartilage. We found, in particular, that for 500 nm irradiation s equals 37,6 plus or minus 3.5 cm-1, g equals 0,56 plus or minus 0.05, k approximately equals 0,5 plus or minus 0.3 cm-1. The above data were used in Monte Carlo simulation for spatial intensity profile of light scattered by a cartilage sample. The computed profile was very similar to the profile measured using an Optical Multi-Channel Analyzer (OMA).

  1. Influence of out-of-plane response on optical properties of two-dimensional materials: First principles approach

    Science.gov (United States)

    Matthes, Lars; Pulci, Olivia; Bechstedt, Friedhelm

    2016-11-01

    The ab initio calculation of optical spectra of sheet crystals usually arranges them in a three-dimensional superlattice with a sufficiently large interlayer distance. We show how the resulting frequency-dependent dielectric tensor is related to the anisotropic optical conductivity of an individual sheet or to the dielectric tensor of a corresponding film with thickness d . Their out-of-plane component is taken into account, in contrast to usual treatments. We demonstrate that the generalized transfer-matrix method to model the optical properties of a layer system containing a sheet crystal accounts for all tensor components. As long as d ≪λ (λ -wavelength of light) this generalized formulation of the optical properties for anisotropic two-dimensional (2D) systems of arbitrary thickness reproduces the limits found in literature that are based either on electromagnetic boundary conditions for a conducting surface or on an isotropic dielectric tensor. For s -polarized light, the results are independent of the sheet description. For oblique incidence of p -polarized light, the tensor nature of the optical conductivity (or the dielectric function) of the sheet crystal strongly impacts on reflectance, transmittance, and absorbance due to the out-of-plane optical conductivity. The limit d →0 should be taken in the final expressions. Example spectra are given for the group-IV honeycomb 2D crystals graphene and silicene.

  2. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  3. Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals

    CERN Document Server

    Wu, Liang; Morimoto, Takahiro; Nair, Nityan L; Thewalt, Eric; Little, Arielle; Analytis, James G; Moore, Joel E; Orenstein, J

    2016-01-01

    Although Weyl fermions have proven elusive in high-energy physics, their existence as emergent quasiparticles was recently predicted in certain crystalline solids in which either inversion or time-reversal symmetry is broken\\cite{WanPRB2011,BurkovPRL2011, WengPRX2015,HuangNatComm2015}. The subsequent search for Weyl fermions in condensed matter soon led to their detection\\cite{XuScience2015, LvPRX2015, YangNatPhys2015} in transition metal monopnictides (TMMPs) such as TaAs, a class of noncentrosymmetric materials that heretofore received only limited attention. Now that the Weyl semimetal state in TMMPs is confirmed, the question arises as to whether these materials will exhibit novel, enhanced, or technologically applicable electronic properties. The TMMPs are polar metals, a rare subset of inversion-breaking crystals that would allow spontaneous polarization, were it not screened by conduction electrons\\cite{anderson1965symmetry,shi2013ferroelectric,kim2016polar}. Despite the absence of spontaneous polariza...

  4. Optical properties of polypropylene upon recycling.

    Science.gov (United States)

    De Santis, Felice; Pantani, Roberto

    2013-01-01

    In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity) are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP) was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  5. Optical Properties of Polypropylene upon Recycling

    Directory of Open Access Journals (Sweden)

    Felice De Santis

    2013-01-01

    Full Text Available In the last few years there has been an increasing interest in the possibility of recycling polymeric materials, using physical recycling. However, is it well known that polymers experience a depletion of all the properties upon recycling. These effects have been widely characterized in the literature for what concerns the mechanical or rheological properties. The changes of optical properties after recycling have been much less studied, even if, especially in food packaging, optical characteristics (above all the opacity are of extreme importance, and thus it is quite significant to assess the effect of recycling on these properties. In this work, the influence of recycling steps on the opacity of films of a commercial grade of isotactic polypropylene (i-PP was studied. The material was extruded several times to mimic the effect of recycling procedures. After extrusion, films were obtained by cooling samples of material at different cooling rates. The opacity of the obtained films was then measured and related to their crystallinity and morphology. It was found that opacity generally increases on increasing the amount of α phase and for the same amount of α phase on increasing the size of the spherulites.

  6. Nonlinear optical properties of semiconductor nanocrystals

    Science.gov (United States)

    Ricard, Gianpiero Banfi Vittorio Degiorgio Daniel

    1998-05-01

    This review is devoted to the description of recent experimental results concerning the nonlinear optical properties of semiconductor-doped glasses SDGs with particular emphasis on the regime in which the energy of the incident photon is smaller than the energy gap. A considerable theoretical and experimental effort has been devoted in the last 10years to the fundamental aspects of quantumconfined structures, which have properties somewhat intermediate between the bulk crystals and atoms or molecules. From this point of view, SDGs represent an easily available test system, and optical techniques have been a major diagnostic tool. Luminescence and absorption spectroscopy were extensively used to characterize the electronic states. The experiments aimed at the measurement of the real and imaginary parts of the third-order optical susceptibility of SDGs below the bandgap are described in some detail, and the results obtained with different techniques are compared. Besides the intrinsic fast nonlinearity due to bound electrons, SDGs may present a larger but much slower nonlinearity due to the free carriers generated by two-photon absorption. This implies that experiments have to be properly designed for separation of the two effects. In this article we stress the importance of a detailed structural characterization of the samples. Knowledge of the volume fraction occupied by the nanocrystals is necessary in order to derive from the experimental data the intrinsic nonlinearity and to compare it with the bulk nonlinearity. We discuss recent experiments in which the dependence of the intrinsic nonlinearity on the crystal size is derived by performing, on the samples, measurements of the real part and imaginary part of the nonlinear optical susceptibility and measurements of crystal size and volume fraction. Structural characterization is of interest also for a better understanding of the physical processes underlying the growth of crystallites in SDGs. The average size of

  7. Optical properties of quasiperiodically arranged semiconductor nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Werchner, Marco

    2009-12-18

    This work consists of two parts which are entitled ''One-Dimensional Resonant Fibonacci Quasicrystals'' and ''Resonant Tunneling of Light in Silicon Nanostructures''. A microscopic theory has been applied to investigate the optical properties of the respective semiconductor nanostructures. The studied one-dimensional resonant Fibonacci quasicrystals consist of GaAs quantum wells (QW) that are separated by either a large spacer L or a small one S. These spacers are arranged according to the Fibonacci sequence LSLLSLSL.. The average spacing satisfies a generalized Bragg condition with respect to the 1s-exciton resonance of the QWs. A theory, that makes use of the transfer-matrix method and that allows for the microscopic description of many-body effects such as excitation-induced dephasing caused by the Coulomb scattering of carriers, has been applied to compute the optical spectra of such structures. A pronounced sharp reflectivity minimum is found in the vicinity of the heavy-hole resonance both in the measured as well as in the calculated linear 54-QW spectra. Specifically, the influence of the carrier density, of the QW arrangement, of a detuning away from the exact Bragg condition, of the average spacing as well as of the ratio of the optical path lengths of the large and small spacers L and S, respectively, and of the QW number on the optical properties of the samples have been studied. Additionally, self-similarity among reflection spectra corresponding to different QW numbers that exceed a Fibonacci number by one is observed, which identifies certain spectral features as true fingerprints of the Fibonacci spacing. In the second part, resonant tunneling of light in stacked structures consisting of alternating parallel layers of silicon and air have been studied theoretically.Light may tunnel through the air barrier due to the existence of evanescent waves inside the air layers if the neighboring silicon layer is close

  8. On the optical properties of plasmonic glasses

    Science.gov (United States)

    Antosiewicz, Tomasz J.; Langhammer, Christoph; Apell, S. Peter

    2014-12-01

    We report on the optical properties of plasmonic glasses which are metal-dielectric composites composed of metallic inclusions in a host dielectric medium. The investigated structures are of quasi-random nature, described by the pair correlation function, featuring a minimum center-to-center distance between metallic inclusions and long range randomness. Plasmonic glasses exhibiting short-range order only may be fabricated using bottom-up, self-assembly methods and have been utilized in a number of applications such as plasmonic sensing or plasmon-enhanced solar harvesting, and may be also employed for certain non-linear applications. It is therefore important to quantify their properties. Using theoretical methods we investigate optical of 1D, 2D, and 3D structures composed of amorphous distributions of metallic spheres. It is shown, that the response of the constituent element, i.e. the single sphere localized surface plasmon resonance, is modified by the scattered fields of the other spheres in such a way that its peak position, peak amplitude, and full-width at half-maximum exhibit damped oscillations. The oscillation amplitude is set by the particle density and for the peak position may vary by up to 0.3 eV in the optical regime. Using a modified coupled dipole approach we calculate the effective (average) polarizability of plasmonic glasses and discuss their spectra as a function of the dimensionality, angle of incidence and polarization, and the minimum center-to-center distance. The analytical model is complemented and validated by T-Matrix calculations of the optical cross-sections of amorphous arrays of metallic spheres obtained using a modification of the Random Sequential Adsorption algorithm for lines, surfaces, and volumes.

  9. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties

    Science.gov (United States)

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel De Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-03-01

    Layered (Bi1-xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1-xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1-xInx)2Te3 solid solution are obtained.

  10. Anisotropic layered Bi2Te3-In2Te3 composites: control of interface density for tuning of thermoelectric properties

    Science.gov (United States)

    Liu, Dongmei; Li, Xinzhong; Borlido, Pedro Miguel de Castro; Botti, Silvana; Schmechel, Roland; Rettenmayr, Markus

    2017-01-01

    Layered (Bi1−xInx)2Te3-In2Te3 (x = 0.075) composites of pronounced anisotropy in structure and thermoelectric properties were produced by zone melting and subsequent coherent precipitation of In2Te3 from a (Bi1−xInx)2Te3 (x > 0.075) matrix. Employing solid state phase transformation, the Bi2Te3/In2Te3 interface density was tuned by modifying the driving force for In2Te3 precipitation. The structure-property relationship in this strongly anisotropic material is characterized thoroughly and systematically for the first time. Unexpectedly, with increasing Bi2Te3/In2Te3 interface density, an increase in electrical conductivity and a decrease in the absolute Seebeck coefficient were found. This is likely to be due to electron accumulation layers at the Bi2Te3/In2Te3 interfaces and the interplay of bipolar transport in Bi2Te3. Significantly improved thermoelectric properties of Bi2Te3-In2Te3 composites as compared to the single phase (Bi1−xInx)2Te3 solid solution are obtained. PMID:28272541

  11. Infrared optical properties of gold nanoantenna arrays

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Daniel; Neubrech, Frank; Pucci, Annemarie [Kirchhoff Institute for Physics, Heidelberg (Germany); Gui, Han; Enders, Dominik; Nagao, Tadaaki [National Institute for Materials Science, Tsukuba (Japan)

    2011-07-01

    Antenna-like gold nanoparticles are proven to be well-suited for spectroscopic applications due to their tuneable plasmonic properties. Excited resonantly by electromagnetic radiation, they are able to strongly enhance the local electromagnetic field. This effect can be exploited for example for surface-enhanced infrared (IR) spectroscopy, making the detection of very small amounts of molecules possible. Although the investigation of single particles is possible, well-arranged arrays of nanoantennas promise to have greater potential for possible sensor applications since the overall sensitivity can be increased if several nanoantennas interact. In this paper, we report on the IR optical properties of gold nanoantenna arrays and show the dependence of characteristic resonance parameters from the geometrical arrangement of the antennas on the substrate. The stripe-like, polycrystalline gold nanoantennas with rectangular cross-sections were produced by electron beam lithography on silicon wafers. The resonance characteristics were extracted from spectroscopic measurements with our IR microscope. Special focus herein is on interaction between nanoantennas in direction perpendicular to the long particle axis. It is shown that beginning from a crucial distance, the optical properties change dramatically if the gap between the nanoantennas is further decreased.

  12. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  13. Co-doping as a tool for tuning the optical properties of singlewalled carbon nanotubes: A first principles study

    Science.gov (United States)

    Sharma, Deepa; Jaggi, Neena

    2017-07-01

    This paper presents a first principles study on the effect of co-doping on various optical spectra of a zigzag single-walled carbon nanotube (SWCNT). Optical spectra of a pristine SWCNT, SWCNT co-doped with Aluminum (Al) & Phosphorus (P) and another one co-doped with Al, P and Nitrogen (N) have been calculated using density functional theory (DFT).The theory has been implemented using the Cambridge sequential total energy package (CASTEP) code available as a userfriendly module with the software 'Material Studio'. Polarized and unpolarized light as well as light through polycrystalline media have been considered. The dependence of various spectra on the status of incident light presents a clear evidence of anisotropicity in the optical properties. Analysis of the simulated spectra involves calculation and comparison of different optical properties like dielectric function, reflectivity, refractive index, conductivity and loss function for the pristine and co-doped SWCNTs. Noticeable variations are observed in the optical properties on simultaneously doping the SWCNT with Al and P and then further introducing N atom into the structure so that it can be concluded that co-doping (simultaneous doping with different combinations of dopants) can be evolved as a novel and effective tool for tailoring the optical properties of SWCNTs as per the requirements while designing an optical device. It will prove to be highly significant for effective designing of SWCNT based sensitive optical devices for a variety of technological applications.

  14. New two-dimensional boron nitride allotropes with attractive electronic and optical properties

    Science.gov (United States)

    Shahrokhi, Masoud; Mortazavi, Bohayra; Berdiyorov, Golibjon R.

    2017-03-01

    Using first principles calculations, structural, electronic and optical properties of five new 2D boron nitride (BN) allotropes have been studied. The results exhibit that the cohesive energy for all these five new allotrope is positive such as all these systems are stable; therefore, it is possible to synthesize these structures in experiments. It is found that the band gap of all new 2D BN allotropes is smaller than the h-BN sheet. In our calculations the dielectric tensor is derived within the random phase approximation (RPA). Specifically, the dielectric function, refraction index and the loss function, of the 2D BN allotropes are calculated for both parallel and perpendicular electric field polarizations. The results show that the optical spectra are anisotropic along these two polarizations. The results obtained from our calculations are beneficial to practical applications of these 2D BN allotropes in optoelectronics and electronics.

  15. Nonlinear optical properties of induced transmission filters.

    Science.gov (United States)

    Owens, Daniel T; Fuentes-Hernandez, Canek; Hales, Joel M; Perry, Joseph W; Kippelen, Bernard

    2010-08-30

    The nonlinear optical (NLO) properties of induced transmission filters (ITFs) based on Ag are experimentally determined using white light continuum pump-probe measurements. The experimental results are supported using simulations based on the matrix transfer method. The magnitude of the NLO response is shown to be 30 times that of an isolated Ag film of comparable thickness. The impacts of design variations on the linear and NLO response are simulated. It is shown that the design can be modified to enhance the NLO response of an ITF by a factor of 2 or more over a perfectly matched ITF structure.

  16. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  17. Modelling the Electro-Optic Properties of Liquid Crystals.

    Science.gov (United States)

    MacGregor, Alastair R.

    Available from UMI in association with The British Library. Requires signed TDF. Liquid crystals (LCs) have been recognised as a phase of matter intermediate between solid and liquid for about 100 years. During this time a large variety of mesophases have been discovered but it is only recently that their physics have begun to be understood. However if LCs are to continue to compete successfully in the displays market an improved understanding of their electro-optic properties must be gained. This thesis describes work carried out on two different types of LC: nematic and ferroelectric chiral smectic C (SmC^{*} ). In the former the molecules are orientationally ordered and randomly positioned while in the latter they are orientationally ordered and arranged in layers. The local mean molecular orientation is called the director and defines the uniaxial optic axis in both types of LC. In a nematic guest-host (NGH) LC an anisotropically absorbing dye is dissolved in the LC and the dye molecules align so that their maximum absorption axis is parallel to the director. When an electric field is applied to a cell containing NGHLC the molecules tend to rotate, because of their dielectric anisotropy, and alter the cell's transmittance. Previous attempts to model the change in optical transmittance with voltage have assumed that the LC and dye molecules are perfectly aligned with the director. In this work the disorder of the molecules about the director is taken into account and the overall agreement between theory and experiment is improved considerably. A method of calculating how the SmC^ {*} director configuration and layer orientation vary with voltage is presented. This method is tested by calculating the transmittance of a 7 mu m thick SmC^{* } LC cell for different azimuthal orientations of the cell between crossed polarisers. It is shown that the theoretical and measured orientations which give minimum transmittance are in good agreement. It is also shown that the

  18. Broadband optical characterization of material properties

    DEFF Research Database (Denmark)

    Nielsen, Otto Højager Attermann

    , as well as details of the absorption spectrum which relate to chemical composition. The thesis focuses on two production process from the food industry. The first process is from the dairy industry where discrimination between chemical and structural properties is of importance. To explore...... inspection system for spectrallyresolved Static Light Scattering (SLS). (II) Photon Time-of-Flight (PToF) spectroscopy, which is a state of the art technique for characterization of turbid media. (III) A new hyperspectral imaging system based on full-field illumination by diffuse laser light. This thesis...... the fermentation process. It has also been shown that the optical inspection methods sense changes to structural properties before any are detected by traditional mechanical rheology. Finally, the developed hyperspectral imaging system was used to quantify the content of astaxanthin in fish feed, and performed...

  19. Optical Properties of Topological Insulator Bragg Gratings

    CERN Document Server

    Crosse, J A

    2015-01-01

    Using the transfer matrix formalism, we study the transmission properties of a Bragg grating constructed from a layered axionic material. Such a material can be realized by a topological insulator subject to a time-symmetry breaking perturbation, such as an external magnetic field or surface magnetic impurities. Whilst the reflective properties of the structure are only negligibly changed by the presence of the axionic material, the grating induces Faraday and Kerr rotations in the transmitted and reflected light, respectively. These rotations are proportional to the number of layers and the strength of the time-symmetry breaking perturbation. In areas of low reflectivity the rotation angle of TE polarization decreases with increasing incidence angle while the TM polarization increases with increasing incidence angle with the converse occurring in areas of high reflectivity. The formalism and results will be useful in the development of optical and photonic devices based on topological insulators, devices whi...

  20. BOREAS TE-10 Leaf Optical Properties

    Science.gov (United States)

    Hall, Forrest G. (Editor); Papagno, Andrea (Editor); Chan, Stephen S.; Middleton, Elizabeth

    2000-01-01

    The Boreal Ecosystem-Atmospheric Study (BOREAS) TE-10 (Terrestrial Ecology) team collected several data sets in support of its efforts to characterize and interpret information on the reflectance, transmittance, gas exchange, oxygen evolution, and biochemical properties of boreal vegetation. This data set describes the spectral optical properties (reflectance and transmittance) of boreal forest conifers and broadleaf tree leaves as measured with a Spectron Engineering SE590 spectroradiometer at the Southern Study Area Old Black Spruce (SSA OBS), Old Jack Pine (OJP), Young Jack Pine (YJP), Old Aspen (OA), Old Aspen Auxiliary (OA-AUX), Young Aspen Auxiliary (YA-AUX), and Young Aspen (YA) sites. The data were collected during the growing seasons of 1994 and 1996 and are stored in tabular ASCII files. The data files are available on a CD-ROM (see document number 20010000884), or from the Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC).

  1. Optical properties of matrix confined species

    Science.gov (United States)

    Lezhnina, M. M.; Kynast, U. H.

    2010-11-01

    A majority of optically functional materials can be perceived as a liaison between ionic or molecular guests and a more or less rigid host. The guests exhibit an optical function, whereas the host provides suitable space, both of them synergistically complementing each other. The embracement of guests and hosts is often very intimate, as e.g. in typical phosphors, where luminescent ions even become part of the host. While the host-guest terminology usually is not applied to such marriages, the term becomes appropriate, if the host grants some degrees of spatial freedom, yet giving order and structure to its guests. Zeolites, clays and inverse opals are porous materials naturally providing hospitable cavities, channels or other compartments, and at the same time the guests are often demanded to occupy preassigned positions within these, or to structurally adapt to the interior host topology. Whereas zeolites and clays are merely patient providers of guest space, inverse opals, can actively turn the light on and off. The present article summarises and highlights recent experimental evidence, ongoing research and some envisaged merits resulting from the interaction of matrix confined luminescent ions, complexes and molecules with a focus on the optical properties of rare earth based materials.

  2. Optical properties of titanium dioxide nanotube arrays

    Energy Technology Data Exchange (ETDEWEB)

    Abdelmoula, Mohamed [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Department of Materials Science, Carnegie Mellon University, Pittsburgh, PA 15213 (United States); Sokoloff, Jeffrey; Lu, Wen-Tao; Menon, Latika [Department of Physics, Northeastern University, Boston, Massachusetts 02115 (United States); Close, Thomas; Richter, Christiaan, E-mail: christiaan.richter@rit.edu [Department of Chemical Engineering, Rochester Institute of Technology, Rochester, New York, 14623 (United States)

    2014-01-07

    We present experimental measurements and a theoretical analysis of the near UV to NIR optical properties of free standing titania nanotube arrays. An improved understanding of the optical physics of this type of nanostructure is important to several next generation solar energy conversion technologies. We measured the transmission, reflection, and absorption of the electromagnetic spectrum from 300 nm to 1000 nm (UV to NIR) of titania nanotube arrays. We measured the total, specular, and diffuse reflection and transmission using both single point detection and an integrating sphere spectrometer. We find that the transmission, but not the reflection, of light (UV to NIR) through the nanotube array is well-explained by classic geometric optics using an effective medium model taking into account the conical geometry of the nanotubes. For wavelengths shorter than ∼500 nm, we find the surprising result that the reflection coefficient for light incident on the open side of the nanotube array is greater than the reflection coefficient for light incident on the closed “floor” of the nanotube array. We consider theoretical models based on the eikonal approximation, photonic crystal band theory, and a statistical treatment of scattering to explain the observed data. We attribute the fact that light with wavelengths shorter than 500 nm is more highly reflected from the open than the closed tube side as being due to disorder scattering inside the nanotube array.

  3. Optical properties of nano-silicon

    Indian Academy of Sciences (India)

    S Tripathy; R K Soni; S K Ghoshal; K P Jain

    2001-06-01

    We investigated the optical properties of silicon clusters and Si nanocrystallites using photoluminescence (PL) and Raman scattering technique. Broad luminescence band in the red region was observed from Si-doped SiO2 thin films deposited by co-sputtering of Si and SiO2 on -type Si (100) substrates, annealed in Ar and O2 atmosphere. Nanocrystalline Si particles fabricated by pulsed plasma processing technique showed infrared luminescence from as grown film at room temperature. Raman spectra from these films consisted of broad band superimposed on a sharp line near 516 cm–1 whose intensity, frequency, and width depend on the particle sizes arising from the phonon confinement in the nanocrystalline silicon. We also performed PL, Raman and resonantly excited PL measurements on porous silicon film to compare the optical properties of Si nanostructures grown by different techniques. An extensive computer simulation using empirical pseudopotential method was carried out for 5–18 atoms Si clusters and the calculated gap energies were close to our PL data.

  4. Optical Properties of Black Silicon: An Analysis

    Science.gov (United States)

    Marthi, Sita Rajyalaxmi; Sekhri, Suramya; Ravindra, N. M.

    2015-09-01

    Silicon (Si) continues to be the dominant semiconducting material used in photovoltaic technology for the manufacture of solar cells. Si, an indirect band gap semiconducting material, has a reflectance of about 30% in the visible range of wavelengths. Standard Si solar cells are not entirely useful in the infrared spectrum region. In order to enhance the performance of silicon solar cells, reflectance losses must be minimized and absorption must be maximized. In the solar cell industry, anti-reflection (AR) coating is used to suppress reflection losses. AR coatings are limited in use because they only reduce the reflectance for a narrow range of wavelengths and incident angle since their functionality is based on a quarter-wavelength coating. Surface texturing is a technique, by which the reflectivity is reduced in a wide range of wavelengths. Black silicon (B-Si) is a material with surface roughness in the micron scale. B-Si, when used instead of crystalline Si (c-Si), offers the possibility to increase the absorption of light in the visible and infrared range of wavelengths. B-Si has a very low reflectivity in the visible range of wavelengths. It exhibits high absorptance in the visible and infrared region. The main objective of this paper is to study the optical properties of B-Si by simulation and compare them with the simulated and experimental optical properties of B-Si and c-Si.

  5. Accurate simulation of optical properties in dyes.

    Science.gov (United States)

    Jacquemin, Denis; Perpète, Eric A; Ciofini, Ilaria; Adamo, Carlo

    2009-02-17

    Since Antiquity, humans have produced and commercialized dyes. To this day, extraction of natural dyes often requires lengthy and costly procedures. In the 19th century, global markets and new industrial products drove a significant effort to synthesize artificial dyes, characterized by low production costs, huge quantities, and new optical properties (colors). Dyes that encompass classes of molecules absorbing in the UV-visible part of the electromagnetic spectrum now have a wider range of applications, including coloring (textiles, food, paintings), energy production (photovoltaic cells, OLEDs), or pharmaceuticals (diagnostics, drugs). Parallel to the growth in dye applications, researchers have increased their efforts to design and synthesize new dyes to customize absorption and emission properties. In particular, dyes containing one or more metallic centers allow for the construction of fairly sophisticated systems capable of selectively reacting to light of a given wavelength and behaving as molecular devices (photochemical molecular devices, PMDs).Theoretical tools able to predict and interpret the excited-state properties of organic and inorganic dyes allow for an efficient screening of photochemical centers. In this Account, we report recent developments defining a quantitative ab initio protocol (based on time-dependent density functional theory) for modeling dye spectral properties. In particular, we discuss the importance of several parameters, such as the methods used for electronic structure calculations, solvent effects, and statistical treatments. In addition, we illustrate the performance of such simulation tools through case studies. We also comment on current weak points of these methods and ways to improve them.

  6. Linear and nonlinear optical properties of chalcogenide microstructured optical fibers

    Science.gov (United States)

    Trolès, Johann; Brilland, Laurent; Caillaud, Celine; Renversez, Gilles; Mechin, David; Adam, Jean-Luc

    2015-03-01

    Chalcogenide glasses are known for their large transparency in the mid-infrared and their high linear refractive index (>2). They present also a high non-linear coefficient (n2), 100 to 1000 times larger than for silica, depending on the composition. we have developed a casting method to prepare the microstructured chalcogenide preform. This method allows optical losses as low as 0.4 dB/m at 1.55 µm and less than 0.05 dB/m in the mid IR. Various chalcogenide MOFs operating in the IR range has been fabricated in order to associate the high non-linear properties of these glasses and the original MOF properties. For example, small core fibers have been drawn to enhance the non linearities for telecom applications such as signal regeneration and generation of supercontinuum sources. On another hand, in the 3-12 µm window, single mode fibers and exposed core fibers have been realized for Gaussian beams propagation and sensors applications respectively.

  7. Investigation of Mechanical Properties of Magneto-Rheological Ethylene Propylene Diene Monomer and Natural Rubber Type Synthetic Rubbers for Both Isotropic and Anisotropic Situations

    Directory of Open Access Journals (Sweden)

    Uğur Mazlum

    2015-12-01

    Full Text Available Magneto-rheological (MR materials are in a smart material class that has the rheological properties to be quickly and reversibly controlled with the external magnetic field applications. Considering the technological developments the rubber-like smart materials has had a more functional usage area with magneto- rheological effect. This study investigates the axial mechanical properties of magneto-rheological Ethylene Propylene Diene Monomer (EPDM and Natural Rubber (NR type synthetic rubbers for isotropic and anisotropic situations. Also, these composite materials were built by means of hot press systems as either isotropic or anisotropic using magnetic field application after addition of ferromagnetic powders. The influence of magnetic field was investigated. In this study, NR rubber was found to be more susceptible in terms of smart material properties unlike EPDM synthetic rubber.

  8. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    CERN Document Server

    Schmidt, Daniel

    2013-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example ...

  9. Anisotropic laser properties of Yb:Ca3La2(BO3)4 disordered crystal

    Science.gov (United States)

    Wang, Lisha; Xu, Honghao; Pan, Zhongben; Han, Wenjuan; Chen, Xiaowen; Liu, Junhai; Yu, Haohai; Zhang, Huaijin

    2016-08-01

    A study is carried out experimentally on the anisotropy in the laser action of Yb:Ca3La2(BO3)4 disordered crystal, demonstrated with the output coupling changed over a wide range from 0.5% to 40%. Complex polarization state variation with output coupling and evolution with pump power are observed in the laser operation achieved with a- and c-cut crystal samples. A maximum output power of 8.2 W is produced at wavelengths around 1043 nm, with an incident pump power of 24.9 W, the optical-to-optical efficiency being 33%. The polarized absorption and emission cross section spectra are also presented.

  10. Optical properties of one-dimensional photonic crystals containing graphene-based hyperbolic metamaterials

    Science.gov (United States)

    Madani, Amir; Entezar, Samad Roshan

    2017-07-01

    The transmission properties of a one-dimensional photonic crystal made of alternate layers of an isotropic ordinary dielectric and a graphene-based hyperbolic metamaterial are studied theoretically using the transfer matrix method. The metamaterial layers show hyperbolic dispersion in certain frequency range and are considered as an anisotropic effective medium in which the optical axis is normal to the graphene layers. It is shown that the structure has some photonic band gaps in both the hyperbolic and elliptical frequency regions of the hyperbolic metamaterial layers, which are tunable by changing the chemical potential of the graphene monolayers. Moreover, the characteristics of the transverse-magnetic (TM)-polarized photonic band gaps remarkably depend on the orientation of the optical axis of the hyperbolic metamaterial layers. It is found that the electric field intensity of the propagating modes from the hyperbolic metamaterial frequency region is concentrated in the high-index isotropic layers and the electric field intensity of the propagating modes from the elliptical frequency region is concentrated in the low-index anisotropic layers.

  11. Review on Optical and Electrical Properties of Conducting Polymers

    Directory of Open Access Journals (Sweden)

    Manisha Bajpai

    2016-01-01

    Full Text Available We reviewed optical and electrical properties of conjugated polymers. The charge transport models to describe the hole and electron transport mechanism are also included in the electrical properties of conjugated polymers. The effect of optical and electrical properties after doping is also indexed in this paper.

  12. Anisotropic Grid Generation

    Science.gov (United States)

    2016-03-24

    tensor . The...release. Figure 2. Examples of previous anisotropic surfaces include the original holographic tensor impedance surface created by the author (left... tensor that can be extracted from the properties of each unit cell. This impedance tensor can be mapped back onto the surface, and simulations of

  13. Pure quadratic or higher-order optical effects in anisotropic crystals induced by external dc fields and probed by a single low-intensity plane electromagnetic wave

    Science.gov (United States)

    Melnichuk, Mike; Wood, Lowell T.

    2017-07-01

    The determination of a clear theoretical demarcation between a true or a false quadratic or higher-order low-intensity optical effect induced by an externally applied static or quasistatic (dc) vector field in anisotropic crystals is the scope of the present work. A complete set of necessary and sufficient conditions required for the practical possibility of direct detection, measurement, and tabulation of only those pure optical contributions is finally obtained. The dc electro-optic effect stands out as the most representative of all of these low-power dc optical effects. However, although the dc Kerr effect remains the main topic of application of the analytical treatment developed in this work, the current theoretical formalism is extended to include other dc conventional crystal optics effects, such as electrogyration, electroabsorption, and externally induced ray or energy propagation. Even more, the theoretical conditions are further generalized to apply to any pure higher-order crystal optics effect induced by external dc fields. These can be electric, magnetic, force, and even temperature or concentration gradient fields. The current treatment does not extend to multiple-beam high-intensity nonlinear optics effects induced by optical (ac) fields. Compared to previously published expressions, a more general Fresnel equation is also provided here together with the most general Jones vectors describing the eigenpolarizations of the single probing beam of light. All the generalizations and extensions mentioned in this article are valid as long as the field-dependent coefficients of the particular optical effect under consideration satisfy the equation of a positive-definite complex Hermitian form.

  14. OM85. Basic Properties of Optical Materials Summaries of Papers.

    Science.gov (United States)

    1985-05-01

    Optical Properties of Solids (Academic, New York, 1972) Ch.3. 7. D.B. Tanner, A.J...12, (1973). 6. T. Fleisch and R. Abermann, Thin Solid FilffF-42, 255-263 (1977). 7. F. Wooten, Optical Properties of Solids (Academic Press, New York...resolve cp structure. Such mea- surements are still lacking for many common semiconducting materials. REFERENCES 1. D.E. Aspnes, in Optical Properties of Solids :

  15. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic

    DEFF Research Database (Denmark)

    Giesen, EB; Ding, Ming; Dalstra, M;

    2001-01-01

    ). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them...

  16. Electronic and optical properties of Praseodymium trifluoride

    Energy Technology Data Exchange (ETDEWEB)

    Saini, Sapan Mohan, E-mail: smsaini.phy@nitrr.ac.in [Department of Physics, National Institute of Technology, Raipur-492010, (CG) (India)

    2014-10-24

    We report the role of f- states on electronic and optical properties of Praseodymium trifluoride (PrF{sub 3}) compound. Full potential linearized augmented plane wave (FPLAPW) method with the inclusion of spin orbit coupling has been used. We employed the local spin density approximation (LSDA) and Coulomb-corrected local spin density approximation (LSDA+U). LSDA+U is known for treating the highly correlated 4f electrons properly. Our theoretical investigation shows that LSDA+U approximation reproduce the correct insulating ground state of PrF{sub 3}. On the other hand there is no significant difference of reflectivity calculated by LSDA and LSDA+U. We find that the reflectivity for PrF{sub 3} compound stays low till around 7 eV which is consistent with their large energy gaps. Our calculated reflectivity compares well with the experimental data. The results are analyzed in the light of transitions involved.

  17. Optical properties of thin polymer films

    Science.gov (United States)

    Kasarova, Stefka N.; Sultanova, Nina G.; Petrova, Tzveta; Dragostinova, Violeta; Nikolov, Ivan

    2009-10-01

    In this report three types of optical polymer thin films deposited on glass substrates are investigated. Transmission spectra of the polymer samples are obtained in the range from 400 nm to 1500 nm. A laser microrefractometer has been used to measure the refractive indices of the examined materials at 406, 656, 910 and 1320 nm. Dispersion properties of the polymer films are analyzed on the base of the Cauchy-Schott's and Sellmeier`s approximations. Dispersion coefficients are calculated and dispersion charts in the visible and near infrared spectral regions are presented and compared. Abbe numbers of mean and partial dispersion of the polymer films are obtained. Calculation of refractive indices at many laser emission wavelengths in the considered spectral range is accomplished.

  18. Tellurium quantum dots: Preparation and optical properties

    Science.gov (United States)

    Lu, Chaoyu; Li, Xueming; Tang, Libin; Lai, Sin Ki; Rogée, Lukas; Teng, Kar Seng; Qian, Fuli; Zhou, Liangliang; Lau, Shu Ping

    2017-08-01

    Herein, we report an effective and simple method for producing Tellurium Quantum dots (TeQDs), zero-dimensional nanomaterials with great prospects for biomedical applications. Their preparation is based on the ultrasonic exfoliation of Te powder dispersed in 1-methyl-2-pyrrolidone. Sonication causes the van der Waals forces between the structural hexagons of Te to break so that the relatively coarse powder breaks down into nanoscale particles. The TeQDs have an average size of about 4 nm. UV-Vis absorption spectra of the TeQDs showed an absorption peak at 288 nm. Photoluminescence excitation (PLE) and photoluminescence (PL) are used to study the optical properties of TeQDs. Both the PLE and PL peaks revealed a linear relationship against the emission and excitation energies, respectively. TeQDs have important potential applications in biological imaging and catalysis as well as optoelectronics.

  19. Optical mapping of release properties in synapses

    Directory of Open Access Journals (Sweden)

    Pablo Ariel

    2010-08-01

    Full Text Available Synapses are important functional units that determine how information flows through the brain. Understanding their biophysical properties and the molecules that underpin them is an important goal of cellular neuroscience. Thus, it is of interest to develop protocols that allow easy measurement of synaptic parameters in model systems that permit molecular manipulations. Here, we used a sensitive and high-time resolution optical approach that allowed us to characterize two functional parameters critical to presynaptic efficacy: vesicle fusion probability (Pv and readily releasable pool size (RRP. We implemented two different approaches to determine the RRP size that were in broad agreement: depletion of the RRP by high frequency stimulation and saturation of the calcium sensor during single action potential stimuli. Our methods are based on reporters that provide a robust, quantitative, purely presynaptic readout and present a new avenue to study molecules that affect synaptic vesicle exocytosis.

  20. Analysis on the anisotropic electromechanical properties of lead magnoniobate titanate single crystal for ring type ultrasonic motors

    Directory of Open Access Journals (Sweden)

    Xiang Shi

    2016-11-01

    Full Text Available This work discussed the optimized cut of single crystal lead magnoniobate titanate (PMNT for use of ring type travelling wave ultrasonic motors (USMs, according to anisotropic analysis on electromechanical properties. The selection criterion of crystal orientation relies on the circular uniformity of the induced travelling wave amplitude on the stator surface. By calculating the equivalent elastic coefficient c11 and lateral piezoelectric constant d31, the optimal crystal orientations were proposed for PMNT single crystals poled along different directions. For single crystal poled along c directions, the optimal orientation lies along [001]c with d31=-1335pC/N and k31=0.87. The crystallographic orientation [025]c is the optimized orientation for single crystals poled along c direction with d31=199pC/N and k31=0.55. The optimal orientation of 1R configuration is [332¯]c with a large enhancement of d31 = 1201 and k31=0.92.

  1. Analysis on the anisotropic electromechanical properties of lead magnoniobate titanate single crystal for ring type ultrasonic motors

    Science.gov (United States)

    Shi, Xiang; Huang, Wenbin; Li, Fei; Li, Zhenrong; Xu, Zhuo; Jiang, Xiaoning; Wei, Xiaoyong

    2016-11-01

    This work discussed the optimized cut of single crystal lead magnoniobate titanate (PMNT) for use of ring type travelling wave ultrasonic motors (USMs), according to anisotropic analysis on electromechanical properties. The selection criterion of crystal orientation relies on the circular uniformity of the induced travelling wave amplitude on the stator surface. By calculating the equivalent elastic coefficient c11 and lateral piezoelectric constant d31, the optimal crystal orientations were proposed for PMNT single crystals poled along different directions. For single crystal poled along c directions, the optimal orientation lies along [001]c with d31=-1335pC/N and k31=0.87. The crystallographic orientation [025]c is the optimized orientation for single crystals poled along c direction with d31=199pC/N and k31=0.55. The optimal orientation of 1R configuration is [332 ¯ ] c with a large enhancement of d31 = 1201 and k31=0.92.

  2. Preparation and Magnetic Properties of Anisotropic (Sm,PrCo5/Fe Nanocomposites Particles via Electroless Plating

    Directory of Open Access Journals (Sweden)

    Shi Wang

    2014-01-01

    Full Text Available Anisotropic (Sm,PrCo5/Fe nanocomposites particles were prepared by electroless plating iron on the surface of (Sm,PrCo5 nanoflakes after being prepared by ball milling for 4 h. A uniform and continuous coating layer was obtained due to the addition of complexing agent and the particle size of the reduced Fe particles was in the range of 10~20 nm. When the nominal addition of Fe was 15 wt%, the nanocomposites show enhanced remnant and saturation magnetization: Mr=53.35 emu/g, Ms=73.08 emu/g compared to the noncoated nanoflakes with Mr=48.52 emu/g, Ms=60.15 emu/g, while the coercivity drops from 10.33 kOe to 8.89 kOe. The effect of Fe content on the magnetic properties of the magnets is also discussed.

  3. Intricate short-range ordering and strongly anisotropic transport properties of Li(1-x)Sn(2+x)As₂.

    Science.gov (United States)

    Lee, Kathleen; Kaseman, Derrick; Sen, Sabyasachi; Hung, Ivan; Gan, Zhehong; Gerke, Birgit; Pöttgen, Rainer; Feygenson, Mikhail; Neuefeind, Jörg; Lebedev, Oleg I; Kovnir, Kirill

    2015-03-18

    A new ternary compound, Li(1-x)Sn(2+x)As2, 0.2 < x < 0.4, was synthesized via solid-state reaction of elements. The compound crystallizes in a layered structure in the R3̅m space group (No. 166) with Sn-As layers separated by layers of jointly occupied Li/Sn atoms. The Sn-As layers are comprised of Sn3As3 puckered hexagons in a chair conformation that share all edges. Li/Sn atoms in the interlayer space are surrounded by a regular As6 octahedron. Thorough investigation by synchrotron X-ray and neutron powder diffraction indicate no long-range Li/Sn ordering. In contrast, the local Li/Sn ordering was revealed by synergistic investigations via solid-state (6,7)Li NMR spectroscopy, HRTEM, STEM, and neutron and X-ray pair distribution function analyses. Due to their different chemical natures, Li and Sn atoms tend to segregate into Li-rich and Sn-rich regions, creating substantial inhomogeneity on the nanoscale. The inhomogeneous local structure has a high impact on the physical properties of the synthesized compounds: the local Li/Sn ordering and multiple nanoscale interfaces result in unexpectedly low thermal conductivity and highly anisotropic resistivity in Li(1-x)Sn(2+x)As2.

  4. Optical and thermal properties in ultrafast laser surface nanostructuring on biodegradable polymer

    Science.gov (United States)

    Yada, Shuhei; Terakawa, Mitsuhiro

    2015-03-01

    We investigate the effect of optical and thermal properties in laser-induced periodic surface structures (LIPSS) formation on a poly-L-lactic acid (PLLA), a biodegradable polymer. Surface properties of biomaterials are known to be one of the key factors in tissue engineering. Methods to process biomaterial surfaces have been studied widely to enhance cell adhesive and anisotropic properties. LIPSS formation has advantages in a dry processing which is able to process complex-shaped surfaces without using a toxic chemical component. LIPSS, however, was difficult to be formed on PLLA due to its thermal and optical properties compared to other polymers. To obtain new perspectives in effect of these properties above, LIPSS formation dependences on wavelength, pulse duration and repetition rate have been studied. At 800 nm of incident wavelength, high-spatial frequency LIPSS (HSFL) was formed after applying 10000 femtosecond pulses at 1.0 J/cm2 in laser fluence. At 400 nm of the wavelength, HSFL was formed at fluences higher than 0.20 J/cm2 with more than 3000 pulses. Since LIPSS was less formed with lower repetition rate, certain heat accumulation may be required for LIPSS formation. With the pulse duration of 2.0 ps, higher laser fluence as well as number of pulses compared to the case of 120 fs was necessary. This indicates that multiphoton absorption process is essential for LIPSS formation. Study on biodegradation modification was also performed.

  5. Optical properties of thin nanosilicon films

    Science.gov (United States)

    Buchenko, Viktor V.; Rodionova, Tatiana V.; Sutyagina, Anastasia S.; Goloborodko, Andrey A.; Multian, Volodymyr V.; Uklein, Andrii V.; Gayvoronsky, Volodymyr Ya.

    2016-12-01

    Present paper is devoted to the investigation of the nanosilicon films internal structure effect on optical properties. Atomic force microscopy results reveal that the films with different thickness have fundamentally different grain size distribution (samples with the film thickness less than 50 nm have single-mode grain size distribution, while samples with the film thickness more than 50 nm have multi-mode distribution of grain size). The correlation between grain size of nanosilicon films, photoluminescence and scattering indicatrix was shown. Well-isolated vibronic structures were observed on the ultraviolet-visible photoluminescence spectrum from nanosilicon films with the thickness more than 10 nm. The photoluminescence spectra in the red range correlate with the nanosilicon grain size distribution due to the effect of the quantum confinement. However, due to the complex shape of the grains mathematical modeling of photoluminescence spectrum is complicated. Both scattering indicatrix and photoluminescence reveal the multi-mode grain size distribution of the films with thickness more than 50 nm. The comparative analysis of theoretical results of optical radiation scattering by nanosilicon films with experimental ones is illustrated. Mathematical modeling of the scattering indicatrix shows the correlation of average grain size from scattering and photoluminescence data.

  6. Anisotropic electronic and magnetic properties of the quasi-two-dimensional heavy-fermion antiferromagnet CeRhIn{sub 5}

    Energy Technology Data Exchange (ETDEWEB)

    Cornelius, A. L.; Arko, A. J.; Sarrao, J. L.; Hundley, M. F.; Fisk, Z.

    2000-12-01

    We have used high pulsed magnetic fields to 50 T to observe de Haas--van Alphen oscillations in the tetragonal antiferromagnet CeRhIn{sub 5}, which has an enhanced value of the electronic specific heat coefficient {gamma}{approx}>420 mJ/molK{sup 2}. For Tanisotropic spin-density wave opening a gap in the Fermi surface. The low-temperature magnetization reveals a magnetic phase transition that appears to be first order in nature. Quantum oscillations, which are observed for Tanisotropic Fermi surface. The temperature dependence of the amplitudes of the quantum oscillations shows anomalous behavior for B{parallel}[001] as a maximum at T{sup *}{approx}1.2 K is observed which we attribute to a gap opening in the anisotropic Fermi surface. The electronic and magnetic properties are anisotropic due to the quasi-two-dimensional crystal structure.

  7. Directed assembly of nanoparticles monitored by liquid crystal topological defects for advanced optical properties of the composites (Conference Presentation)

    Science.gov (United States)

    Lacaze, Emmanuelle

    2016-09-01

    Directed assembly of nanoparticles is a promising alternative for original nanoparticle organizations. New kinds of optical properties are expected when semi-conductive or metallic nanoparticles are concerned. Using liquid crystal matrices oriented by their interfaces, it is possible to induce anisotropic nanoparticle organizations. We can then investigate the influence of these matrices on the optical properties of the nanoparticles. I will show how to create hierarchical arrays of oriented topological defects in thin smectic films that act as efficient traps for a specific localization and orientation of nanoparticles [1]. I will show how specific nanoparticle assemblies can be obtained, depending on the nanoparticle size and shape. Fluorescent nanorods trapped in smectic dislocations become strictly oriented along a single direction, providing, a fine control of the polarization of the emmitted single photons [2]. Similarly the orientation of gold nanorods leads to the control of their luminescence as well as of their plasmon resonance by light polarization. I will show that, when the nanoparticle concentration is increased, single chains are formed, and can lead to a strong anisotropic electromagnetic coupling between the particles [3]. We are not only capable of linearly confining the particles, but also of varying the inter-particle interactions and thus modifing their optical properties which are sensitive to the inter-particle distance [4]. [1] D. Coursault, Soft Matter 12 (2016) 629. [2] L. Pelliser et al, Adv. Funct. Mat. 25 (2015) 1719. [3] D. Coursault et al., Adv. Mat. 24 (2012) 1461. [4] D. Coursault et al., ACSNano 9 (2015) 11678.

  8. What is the Brillouin zone of an anisotropic photonic crystal?

    Science.gov (United States)

    Sivarajah, P.; Maznev, A. A.; Ofori-Okai, B. K.; Nelson, K. A.

    2016-02-01

    The concept of the Brillouin zone (BZ) in relation to a photonic crystal fabricated in an optically anisotropic material is explored both experimentally and theoretically. In experiment we used femtosecond laser pulses to excite THz polaritons and image their propagation in lithium niobate and lithium tantalate photonic crystal (PhC) slabs. We directly measured the dispersion relation inside PhCs and observed that the lowest band gap expected to form at the BZ boundary forms inside the BZ in the anisotropic lithium niobate PhC. Our analysis shows that in an anisotropic material the BZ—defined as the Wigner-Seitz cell in the reciprocal lattice—is no longer bounded by Bragg planes and thus does not conform to the original definition of the BZ by Brillouin. We construct an alternative Brillouin zone defined by Bragg planes and show its utility in identifying features of the dispersion bands. We show that for an anisotropic two-dimensional PhC without dispersion, the Bragg plane BZ can be constructed by applying the Wigner-Seitz method to a stretched or compressed reciprocal lattice. We also show that in the presence of the dispersion in the underlying material or in a slab waveguide, the Bragg planes are generally represented by curved surfaces rather than planes. The concept of constructing a BZ with Bragg planes should prove useful in understanding the formation of dispersion bands in anisotropic PhCs and in selectively tailoring their optical properties.

  9. Surface chemistry manipulation of gold nanorods preserves optical properties for bio-imaging applications

    Energy Technology Data Exchange (ETDEWEB)

    Polito, Anthony B.; Maurer-Gardner, Elizabeth I.; Hussain, Saber M., E-mail: saber.hussain@us.af.mil [Air Force Research Laboratory, Molecular Bioeffects Branch, Bioeffects Division, Human Effectiveness Directorate (United States)

    2015-12-15

    Due to their anisotropic shape, gold nanorods (GNRs) possess a number of advantages for biosystem use including, enhanced surface area and tunable optical properties within the near-infrared (NIR) region. However, cetyl trimethylammonium bromide-related cytotoxicity, overall poor cellular uptake following surface chemistry modifications, and loss of NIR optical properties due to material intracellular aggregation in combination remain as obstacles for nanobased biomedical GNR applications. In this article, we report that tannic acid-coated 11-mercaptoundecyl trimethylammonium bromide (MTAB) GNRs (MTAB-TA) show no significant decrease in either in vitro cell viability or stress activation after exposures to A549 human alveolar epithelial cells. In addition, MTAB-TA GNRs demonstrate a substantial level of cellular uptake while displaying a unique intracellular clustering pattern. This clustering pattern significantly reduces intracellular aggregation, preserving the GNRs NIR optical properties, vital for biomedical imaging applications. These results demonstrate how surface chemistry modifications enhance biocompatibility, allow for higher rate of internalization with low intracellular aggregation of MTAB-TA GNRs, and identify them as prime candidates for use in nanobased bio-imaging applications.Graphical Abstract.

  10. Growth and magnetooptical properties of anisotropic TbF3 single crystals

    Science.gov (United States)

    Valiev, Uygun V.; Karimov, Denis N.; Burdick, Gary W.; Rakhimov, Rakhim; Pelenovich, Vasiliy O.; Fu, Dejun

    2017-06-01

    This paper investigates the Faraday effect and absorption and luminescence spectra of single-crystal TbF3 measured at 90 K and 300 K. The optical-quality single-phase TbF3 crystals (structural type β-YF3) were grown by the Bridgman technique. Faraday rotation angles were measured at remagnetization along the [100] crystallographic axis. Low temperature optical measurements were carried out along the [100] axis. "Quasi-doublet" sublevels with energy at 0 cm-1, 65 cm-1, and 190 cm-1, and also a singlet sublevel with energy at 114 cm-1 located in the ground 7F6 multiplet were determined from the low temperature luminescence spectra. The Van-Vleck behavior of the magnetic susceptibility χb can be satisfactorily explained by the magnetic mixing of wave functions belonging to the ground and first excited "quasi-doublet" sublevels at 0 and 65 cm-1, respectively. Analysis of the oscillation dependences of the rotation angle showed that the value of the natural birefringence (Δn ≈ 0.0186) remains nearly constant within the wavelength and temperature ranges under investigation. As the temperature decreases, we find significant increases in the oscillation amplitude of the rotation angle and in the Verdet constant V. The spectral dependences V(χ) are linear throughout the temperature range. The magnetooptical activity of TbF3 can be explained by means of the spin- and parity-allowed electric-dipole 4f → 5d transitions in the Tb3+ ions.

  11. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  12. 3D Printing Biocompatible Polyurethane/Poly(lactic acid)/Graphene Oxide Nanocomposites: Anisotropic Properties.

    Science.gov (United States)

    Chen, Qiyi; Mangadlao, Joey Dacula; Wallat, Jaqueline; De Leon, Al; Pokorski, Jonathan K; Advincula, Rigoberto C

    2017-02-01

    Blending thermoplastic polyurethane (TPU) with poly(lactic acid) (PLA) is a proven method to achieve a much more mechanically robust material, whereas the addition of graphene oxide (GO) is increasingly applied in polymer nanocomposites to tailor further their properties. On the other hand, additive manufacturing has high flexibility of structure design which can significantly expand the application of materials in many fields. This study demonstrates the fused deposition modeling (FDM) 3D printing of TPU/PLA/GO nanocomposites and its potential application as biocompatible materials. Nanocomposites are prepared by solvent-based mixing process and extruded into filaments for FDM printing. The addition of GO largely enhanced the mechanical property and thermal stability of the nanocomposites. Interestingly, we found that the mechanical response is highly dependent on printing orientation. Furthermore, the 3D printed nanocomposites exhibit good biocompatibility with NIH3T3 cells, indicating promise as biomaterials scaffold for tissue engineering applications.

  13. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    Science.gov (United States)

    Liu, Jinming; Wu, Kai; Wang, Jian-Ping

    2016-05-01

    Cubic FeCo alloy nanoparticles (NPs) with body-centered cubic (bcc) phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM) to superferromagetism (SFM). Zero-field-cooled (ZFC) and field-cooled (FC) curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  14. Magnetic properties of cubic FeCo nanoparticles with anisotropic long chain structure

    Directory of Open Access Journals (Sweden)

    Jinming Liu

    2016-05-01

    Full Text Available Cubic FeCo alloy nanoparticles (NPs with body-centered cubic (bcc phase were prepared using sputter based gas-condensation method. When the NPs formed long chain assemblies, the magnetic properties were quite different from that of well-dispersed NPs. Most of the well-dispersed NPs were superparamagnetic at room temperature while the long chain NP assemblies were ferromagnetic with coercivities around 765 Oe, which displayed quite different magnetic properties. The ferromagnetism of long chain NPs was from the exchange coupling between NPs, which eventually led to the transition from superparamagnetism (SPM to superferromagetism (SFM. Zero-field-cooled (ZFC and field-cooled (FC curves were obtained and long chain NP assemblies displayed ferromagnetism at the temperature ranging from 10 K to 400 K. Time-dependent remanent magnetic moment curves also indicated that the long chain structure had better thermal stability due to the strong exchange coupling.

  15. ElAM: A computer program for the analysis and representation of anisotropic elastic properties

    Science.gov (United States)

    Marmier, Arnaud; Lethbridge, Zoe A. D.; Walton, Richard I.; Smith, Christopher W.; Parker, Stephen C.; Evans, Kenneth E.

    2010-12-01

    The continuum theory of elasticity has been used for more than a century and has applications in many fields of science and engineering. It is very robust, well understood and mathematically elegant. In the isotropic case elastic properties are easily represented, but for non-isotropic materials, even in the simple cubic symmetry, it can be difficult to visualise how properties such as Young's modulus or Poisson's ratio vary with stress/strain orientation. The ElAM ( Elastic Anisotropy Measures) code carries out the required tensorial operations (inversion, rotation, diagonalisation) and creates 3D models of an elastic property's anisotropy. It can also produce 2D cuts in any given plane, compute averages following diverse schemes and query a database of elastic constants to support meta-analyses. Program summaryProgram title: ElAM1.0 Catalogue identifier: AEHB_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEHB_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 43 848 No. of bytes in distributed program, including test data, etc.: 2 498 882 Distribution format: tar.gz Programming language: Fortran90 Computer: Any Operating system: Linux, Windows (XP, Vista) RAM: Depends chiefly on the size of the arrays representing elastic properties in 3D Classification: 7.7 Nature of problem: Representation of elastic moduli and ratios, and of wave velocities, in 3D; automatic discovery of unusual elastic properties. Solution method: Stiffness matrix (6×6) inversion and conversion to compliance tensor (3×3×3×3), tensor rotation, dynamic matrix diagonalisation, simple optimisation, postscript and VRML output preparation. Running time: Dependent on angular accuracy and size of elastic constant database (from a few seconds to a few hours). The tests provided take from a

  16. Dielectric and electro-optical properties of polymer-stabilized liquid crystal. II. Polymer PiBMA dispersed in MBBA

    Science.gov (United States)

    Tripathi, Pankaj Kumar; Pande, Mukti; Singh, Shri

    2016-09-01

    In continuation of our earlier work (Pande et al. in Appl Phys A 122:217-226, 2016), we report the results of dielectric and electro-optical properties of pure MBBA and PSLC (polymer PiBMA dispersed in MBBA) systems. The polymer networks domains formed are found to be anisotropic and are oriented in the direction of electric field for both the planar and homeotropic alignment cells. The dielectric anisotropy, optical anisotropy, response time, threshold voltage, splay elastic constant and rotational viscosity were observed for both the LC and PSLC systems with electric field. The liquid crystal properties are affected significantly with increasing concentration of polymer in pure LC material. It has been observed that the polymer networks interaction plays a major role in changing the properties of PSLC system. The effect of dielectric loss and dielectric permittivity on both pure LC and PSLC systems is also discussed.

  17. Tissue Papers in Turkey and Some Physical and Optical Properties

    Directory of Open Access Journals (Sweden)

    Ahmet TUTUŞ

    2016-04-01

    Full Text Available The objective of study was to determine some properties of tissue papers and identify the position in Turkey. Napkins, toilet papers and paper towels used in this study were supplied from 5 different companies. Physical and optical properties of these papers were investigated and compared them to each other. Grammage, moisture content, crepe, bulk, density, tensile strength, thickness, water retention value and water absorption time were determined as physical properties and brightness and whiteness values were measured as optical properties. According to obtained results, the best results in physical and optical properties of napkins, toilet papers and paper towels belong to C, E and A Company, respectively.

  18. Synthesis, characterization and optical properties of nanoparticles

    Science.gov (United States)

    Li, Shoutian

    ZnO, Si, silica, Ge, Ga oxide, W oxide and Mo oxide nanoparticles have been synthesized and characterized, and their optical properties have been investigated. These particles were synthesized by a Laser Vaporization and Controlled Condensation (LVCC) technique in a modified diffusion cloud chamber. The particles deposited on smooth substrates reveal highly organized web-like structures with uniform micrometer size pores. The effect of solvents on the web-like structures was also investigated. ZnO nanoparticles were also prepared by wet chemical methods such as the reversed micelle and sol solutions technique. The photoluminescence quantum yield is enhanced 10 times once the surfaces of the ZnO nanoparticles are coated with a layer of stearate molecules. Many techniques have been used to characterize the nanoparticles. SEM gives information about particle size and morphology; X-ray diffraction and Raman spectroscopy determine the crystallinity and crystal structure; XPS and FTIR reveal the surface chemical composition; UV-vis spectroscopy and photoluminescence measurements characterize the optical properties of nanoparticles. Silica nanoparticles, prepared in an amorphous phase, show bright blue photoluminescence upon irradiation with UV light, but the luminescence has a very short lifetime (less than 20 ns). Si nanoparticles, with a diamond-like crystal phase, acquire oxidized-surfaces on exposure to air. The surface-oxidized Si nanocrystals show a short- lived blue emission characteristic of the SiO2 coating and a longer-lived red emission at room temperature. The lifetime of the red emission depends on the emission wavelength. Some substituted benzene molecules and tungsten oxide nanoparticles can quench the red photoluminescence of the Si nanocrystals. Tungsten oxide and molybdenum oxide nanoparticles show photochromic properties: they change color to blue when irradiated. The photons drive a transition from one chemical state to another. The color change of

  19. Electronic and Optical Properties of Few Layer Black Phosphorus and Black Phosphorus Nanoribbons from First Principles Calculations

    Science.gov (United States)

    Tran, Vy

    Recently, a new semiconducting 2D material, black phosphorus, has piqued the interest of research groups in the field. In its bulk form, black phosphorus was synthesized over a century ago and in 2014 devices based on thin flakes of black phosphorus were successfully realized. This was a crucial step towards the exploration and characterization of this material. However, because this material was virtually ignored until this point, many open questions needed to be quickly addressed. Fundamental properties such as the band gap, carrier mobility, optical spectrum, and thermal transport had not been established. Furthermore, the effect of extrinsic factors such as the number of layers, external electric fields, and applied strain had not been explored. How these extrinsic factors affect the tunability of the aforementioned physical properties is of utmost importance for device engineers. Using first principle computations based on density functional theory and the GW approximation including many-electron effects, we calculate the fundamental electronic and optical properties of few-layer black phosphorus. Beyond basic calculations, such as the band structure, quasiparticle band gap, and optical absorption spectrum, we dig deeper to explore the origin and nature of some of black phosphorus' unusual and surprising properties. These properties include the existence of relativistic Dirac fermions as charge carriers, a highly anisotropic band structure, an anisotropic optical absorption spectrum, quasi-1D excitonic features, and an ultra-high sensitivity to a gate electric field. In the first chapter, we discuss the properties of few-layer black phosphorus. We calculate the quasiparticle band gap, and excitonic optical spectra for 1-4 layers. We provide an empirical formula in the form of a power law to fit the calculated results and predict the values for larger layer numbers. We also propose an effective mass hydrogenic model to describe the excitonic spectra calculated

  20. Influence of Coalescence on the Anisotropic Mechanical and Electrical Properties of Nickel Powder/Polydimethylsiloxane Composites

    Directory of Open Access Journals (Sweden)

    Sung-Hwan Jang

    2016-03-01

    Full Text Available Multifunctional polymer-based composites have been widely used in various research and industrial applications, such as flexible and stretchable electronics and sensors and sensor-integrated smart structures. This study investigates the influence of particle coalescence on the mechanical and electrical properties of spherical nickel powder (SNP/polydimethylsiloxane (PDMS composites in which SNP was aligned using an external magnetic field. With the increase of the volume fraction of the SNP, the aligned SNP/PDMS composites exhibited a higher tensile strength and a lower ultimate strain. In addition, the composites with aligned SNP showed a lower percolation threshold and a higher electrical conductivity compared with those with randomly dispersed SNP. However, when the concentration of the SNP reached a certain level (40 vol. %, the anisotropy of the effective material property became less noticeable than that of the lower concentration (20 vol. % composites due to the change of the microstructure of the particles caused by the coalescence of the particles at a high concentration. This work may provide rational methods for the fabrication of aligned composites.

  1. Non-destructive determination of anisotropic mechanical properties of pharmaceutical solid dosage forms.

    Science.gov (United States)

    Akseli, I; Hancock, B C; Cetinkaya, C

    2009-07-30

    The mechanical property anisotropy of compacts made from four commercially available pharmaceutical excipient powders (microcrystalline cellulose, lactose monohydrate, ascorbic acid, and aspartame) was evaluated. The speed of pressure (longitudinal) waves in the uni-axially compressed cubic compacts of each excipient in the three principle directions was determined using a contact ultrasonic method. Average Young's moduli of each compact in the axial (x) and radial (y and z) directions were characterized. The contact ultrasonic measurements revealed that average Young's modulus values vary with different testing orientations which indicate Young's modulus anisotropy in the compacts. The extent of Young's modulus anisotropy was quantified by using a dimensionless ratio and was found to be significantly different for each material (microcrystalline cellulose>lactose>aspartame>ascorbic acid). It is also observed that using the presented contact method, compacts at high solid fraction (0.857-0.859) could be differentiated than those at the solid fraction of 0.85 in their groups. The presented contact ultrasonic method is an attractive tool since it has the advantages of being sensitive to solid fraction ratio, non-destructive, requiring small amount of material and rapid. It is noteworthy that, since the approach provides insight into the performance of common pharmaceutical materials and fosters increased process knowledge, it can be applied to broaden the understanding of the effect of the mechanical properties on the performance (e.g., disintegration profiles) of solid oral dosage forms.

  2. Thermo-optical properties of embedded silver nanoparticles

    Science.gov (United States)

    Rashidi Huyeh, M.; Shirdel Havar, M.; Palpant, B.

    2012-11-01

    Thermo-optical properties of nanocomposite materials consisting of noble metal nanoparticles dispersed in a dielectric medium are appropriate for many applications as imaging, nonlinear optics, or optical monitoring of local thermal exchanges. Here, we analyze the thermo-optical response of silver nanoparticles. The contribution of inter- and intraband transitions to the thermo-optical index of bulk silver is first extracted using experimental results reported earlier in the literature. The influence of these two contributions on the thermo-optical properties of silver nanoparticles embedded in glass is then investigated. The results show that these properties are essentially due to the intraband thermo-optical contribution in the vicinity of the surface plasmon resonance of the nanoparticles, while they are dominated by the interband contribution close to the interband transition threshold.

  3. Structural and Optical Properties and Emerging Applications of Metal Nanomaterials

    Institute of Scientific and Technical Information of China (English)

    Tammy Y.Olson; Jin Z.Zhang

    2008-01-01

    Nanomaterials possess intriguing optical properties that depend sensitively on size, shape, and material content of the structures. Controlling such structural characteristics of the nanostructures allows the tailoring of their physical and chemical properties, e.9. optical, electronic, and catalytic, to achieve what is desired for specific applications of interest. This review will cover the development of various shapes for silver and gold nanomaterials with emphasis on their relation to optical properties. Examples of various modern synthetic methods and characterization techniques are highlighted. The influence of the metal nanomaterial's shape and optical absorption on surface enhanced Raman scattering (SERS) and a final note on new emerging applications of metal nanostructures are also discussed.

  4. Optical properties and photoluminescence of tetrahexyl-sexithiophene allotropes

    NARCIS (Netherlands)

    Botta, C; Destri, S; Porzio, W; Bongiovanni, G; Loi, MA; Mura, A; Tubino, R

    2001-01-01

    The optical absorption, Raman scattering and photoluminescence of two phases of tetrahexyl-sexithiophene (4HT6) display properties coherently related to the different molecular conformations imposed by the chain packing. We analyse the temperature dependence of the optical properties of a sample in

  5. Optical properties and photoluminescence of tetrahexyl-sexithiophene allotropes

    NARCIS (Netherlands)

    Botta, C; Destri, S; Porzio, W; Bongiovanni, G; Loi, MA; Mura, A; Tubino, R

    2001-01-01

    The optical absorption, Raman scattering and photoluminescence of two phases of tetrahexyl-sexithiophene (4HT6) display properties coherently related to the different molecular conformations imposed by the chain packing. We analyse the temperature dependence of the optical properties of a sample in

  6. Assessing Uncertainties in Satellite Ocean Color Bio-Optical Properties

    Science.gov (United States)

    2012-10-01

    Uncertainties in retrievals of bio -optical properties from satellite ocean color imagery are related to a variety of factors, including errors...associated with sensor calibration and degradation, atmospheric correction, and the bio -optical inversion algorithms. Here we examine the impact of...water-leaving radiances (nLw) and downstream bio -optical properties, such as the absorption and backscattering coefficients and chlorophyll. We use a

  7. Electrical dissipation and material properties of in-plane anisotropic superconducting YBCO films

    CERN Document Server

    Czerwinka, P S

    2001-01-01

    vortex liquid-to-glass phase transition model (VG). In all cases, the data can be successfully collapsed when scaled under the VG algorithm forming the expected master curves for temperatures above and below the vortex-glass 'transition' temperature T sub V sub G (B). However, between film systems we observe wide variations of the critical exponent z(theta,B) and T sub V sub G (B) as a function of field strength (B) and field orientation (theta). This lack of 'universality' does not allow interpretation of the scaling as evidence for a vortex liquid-to-glass phase transition. We find quantitative evidence in support of alternative scaling models which are based upon conventional flux-flow/creep theories and distributions of vortex-pinning strength. We investigate the growth, material and electrical properties of a wide variety of YBa sub 2 Cu sub 3 O sub 7 sub - subdelta films (40-480nm). The films range from c-axis normal to c-axis parallel to the film plane and were grown upon SrTiO sub 3 (STO) and LaSrGaO ...

  8. Structural, optical, thermal and mechanical properties of Urea tartaric acid single crystals

    Science.gov (United States)

    Vinothkumar, P.; Rajeswari, K.; Kumar, R. Mohan; Bhaskaran, A.

    2015-06-01

    Urea tartaric acid (UT) an organic nonlinear optical (NLO) material was synthesized from aqueous solution and the crystals were grown by the slow evaporation technique. The single crystal X-ray diffraction (XRD) analysis revealed that the UT crystal belongs to the orthorhombic system. The functional groups of UT have been identified by the Fourier transform infrared spectral studies. The optical transparent window in the visible and near the IR regions was investigated. The transmittance of UT has been used to calculate the refractive index (n) as a function of the wavelength. The nonlinear optical property of the grown crystal has been confirmed by the Kurtz powder second harmonic generation test. The birefringence of the crystal was determined using a tungsten halogen lamp source. The laser induced surface damage threshold for the grown crystal was measured using the Nd:YAG laser. The anisotropic in mechanical property of the grown crystals was studied using Vicker's microhardness tester at different planes. The etch pit density of UT crystals was investigated. The thermal behavior of UT was investigated using the TG-DTA and DSC studies.

  9. Anisotropic transport properties in the phase-separated La0.67Ca0.33MnO3/NdGaO3 (001) films

    Science.gov (United States)

    Hong-Rui, Zhang; Yuan-Bo, Liu; Shuan-Hu, Wang; De-Shun, Hong; Wen-Bin, Wu; Ji-Rong, Sun

    2016-07-01

    The anisotropic transport property was investigated in a phase separation La0.67Ca0.33MnO3 (LCMO) film grown on (001)-oriented NdGaO3 (NGO) substrate. It was found that the resistivity along the b-axis is much higher than that along the a-axis. Two resistivity peaks were observed in the temperature dependent measurement along the b-axis, one located at 91 K and the other centered at 165 K. Moreover, we also studied the response of the resistivities along the two axes to various electric currents, magnetic fields, and light illuminations. The resistivities along the two axes are sensitive to the magnetic field. However, the electric current and light illumination can influence the resistivity along the b-axis obviously, but have little effect on the resistivity along the a-axis. Based on these results, we believe that an anisotropic-strain-controlled MnO6 octahedra shear-mode deformation may provide a mechanism of conduction filaments paths along the a-axis, which leads to the anisotropic transport property. Project supported by the National Basic Research Program of China (Grant Nos. 2011CB921801, 2012CB921403, and 2013CB921701) and the National Natural Science Foundation of China (Grant Nos. 11074285, 51372064, and 11134007).

  10. Anisotropic metamaterials for microwave antennas and infrared nanostructured thin films

    Science.gov (United States)

    Jian, Zhihao

    Wave-matter interactions have long been investigated to discover unknown physical phenomena and exploited to achieve improved device performance throughout the electromagnetic spectrum ranging from quasi-static limit to microwave frequencies, and even at infrared and optical wavelengths. As a nascent but fast growing field, metamaterial technology, which relies on clusters of artificially engineered subwavelength structures, has been demonstrated to provide a wide variety of exotic electromagnetic properties unattainable in natural materials. This dissertation presents the research on novel anisotropic metamaterials for tailoring microwave radiation and infrared scattering of nanostructured thin films. First, a new inversion algorithm is proposed for retrieving the anisotropic effective medium parameters of a slab of metamaterial. Secondly, low-loss anisotropic metamaterial lenses and coatings are introduced for improving the gain and/or bandwidth for a variety of antennas. In particular, a quad-beam high-gain lens for a quarter-wave monopole, a low-profile grounded leaky metamaterial coating for slot antenna, and an ultra-thin anisotropic metamaterial bandwidth-enhancing coating for a quarter-wave monopole are experimentally demonstrated. In the infrared regime, novel nanostructured metamaterial free-standing thin-films, which are inherently anisotropic, are introduced for achieving exotic index properties and further for practical photonic devices. In particular, a low-loss near-infrared fishnet zero-index metamaterial, a dispersionengineered optically-thin, low-loss broadband metamaterial filter with a suppressed group delay fluctuation in the mid-infrared, and a conformal dual-band near-perfectly absorbing coating in the mid-infrared are experimentally demonstrated. These explorations show the great promise anisotropic metamaterials hold for the flexible manipulation of electromagnetic waves and their broad applicability in a wide spectrum range.

  11. OPTICAL PROPERTIES OF CARBAMIDE AQUEOUS SOLUTIONS

    Directory of Open Access Journals (Sweden)

    E. V. Avramenko

    2016-03-01

    Full Text Available Subject of Research. The paper presents the results of measurements of refractometric properties (refractive index n, its temperature factor dn/dt and the ultraviolet spectral absorption in carbonic acid diamide aqueous solutions (carbamide depending on solid residue mass fraction md = 0-50 % and on temperaturet = 10-70 °C.Method of Research. Laboratory methods ofliquid-phase medium refractometry and ultraviolet spectrophotometry were applied for the research. We carried out computational modeling of electronic states spectrum for the carbonic acid diamide molecule and theoretical calculation of the fundamental electronic absorption of the molecule in the ultraviolet wavelenght region.Main Results. We have established that the solution concentration md has a nonlinear character and may be represented by the quadratic polynomial with the error Δn= ± 0,0005. We have shown the refractive indexdependence on temperature n(t changes in linear fashion att = 10-70 °C.At that, the inclination of lines n(t increases at the increase of md; so, the temperature factor dn/dt may be approximated by the quadratic polynomial. Transmission spectra of solutions in the spectral region λ= 225-760 nm have no special features except for the sharp edge in the short-wavelength region; the fundamental electronic absorptionis responsible for it. We have established that dispersion dependences of the refraction index n(λ;md in aqueous solutions of carbamide at λ= 360-760 nm and at md = 0-50 % may be calculated with the satisfactory error without additional adjustable parameters from the ultraviolet absorption data in terms of the one-dimentional oscillator Lorentz model.PracticalRelevance. Representedmeasurements of carbonic acid diamide aqueous solutions optical properties may be applied for the adjustment and calibration of commercial refractometers at processing lines of the AdBlue reagent manufacture for the selective catalytic reduction (SCR of motor transport

  12. Nanometer-scale structural, tribological, and optical properties of ultrathin poly(diacetylene) films

    Energy Technology Data Exchange (ETDEWEB)

    CARPICK,ROBERT W.; SASAKI,DARRYL Y.; BURNS,ALAN R.

    2000-04-17

    The ability to create organized ultrathin films using organic molecules provides systems whose chemical, mechanical, and optical properties can be controlled for specific applications. In particular, polymerization of oriented mono- and multi-layer films containing the diacetylene group has produced a variety of robust, highly oriented, and environmentally responsive films with unique chromatic properties. These two-dimensional poly(diacetylene) (PDA) films, where the conjugation runs parallel to the film surface, have previously been prepared in a variety of forms. Of particular interest is the optical absorption of PDA due to its {pi}-conjugated backbone. A wide variety of PDA materials, including bulk crystals, thin films, and solutions, exhibit a chromatic transition involving a significant shift in absorption from low to high energy bands of the visible spectrum, thus the PDA appears to transform from a blue to a red color. In addition, the red form is highly fluorescent, while the blue form is not. This transition can be brought about by heat binding of specific biological targets and applied stress (mechanochromism), among others. In this paper, the authors discuss the Langmuir deposition of ultrathin PDA films and the subsequent measurement of their structural, optical, and mechanical properties at the nanometer scale. By altering the head group functionality, the authors can choose between mono- and tri-layer PDA film structures. Measurements with the atomic force microscope (AFM) reveal strongly anisotropic friction properties that are correlated with the orientation of the conjugated polymer backbone orientation. Furthermore, the authors can use the AFM tip or a near field scanning optical microscope (NSOM) tip to locally convert the PDA from the blue form to the red form via applied stress. This represents the first time that mechanochromism has been observed at the nanometer scale. Dramatic structural changes are associated with this mechanochromic

  13. Thermo-optical properties of optically stimulated luminescence in feldspars

    DEFF Research Database (Denmark)

    Poolton, N.R.J.; Bøtter-Jensen, L.; Johnsen, O.

    1995-01-01

    Optically stimulated luminescence processes in feldspars are subject to competing thermal enhancement and quenching processes: this article describes the thermal enhancement effects for orthoclase, albite and plagioclase feldspars. It is demonstrated that certain lattice vibrational modes can...

  14. Nonlinear optical properties of metal nanoparticle composites for optical applications

    Energy Technology Data Exchange (ETDEWEB)

    Takeda, Y. E-mail: takeda.yoshihiko@nims.go.jp; Kishimoto, N

    2003-05-01

    Optical absorption and nonlinear optical response were investigated for nanoparticle composites in amorphous SiO{sub 2} fabricated by negative Ta ion implantation at 60 keV. X-ray photoelectron spectroscopy was used to identify Ta and the oxide formation in the matrix. Optical absorption clearly indicated a surface plasmon peak at 2.2 eV and the peak resulted from formation of nanoparticles embedded in the matrix. The measured absorption was compared with calculated ones, evaluated by Maxwell-Garnett theory. Nonlinear absorption was measured with a pump-probe method using a femtosecond laser system. The pumping laser transiently bleached the surface plasmon band and lead to the nonlinearity. The transient response recovered in several picoseconds and behaved in terms of electron dynamics in metallic nanoparticles. The Ta nanoparticle composite is one of the promising candidates for nonlinear optical materials with good thermal stability.

  15. Optical properties of mouse biotissues and their optical phantoms

    Science.gov (United States)

    Krainov, A. D.; Mokeeva, A. M.; Sergeeva, E. A.; Agrba, P. D.; Kirillin, M. Yu.

    2013-08-01

    Based on spectrophotometric measurements in the range of 700-1100 nm performed with the use of an integrating sphere, we have obtained absorption and scattering spectra of internal organs of mouse, as well as of aqueous solutions of India ink and Lipofundin, which are basic model media for creating optical phantoms of biological tissues. To retrieve the spectra of optical characteristics, we have used original formulas that relate the parameters of the medium with measured spectrophotometric characteristics and that are constructed based on classical analytical models of propagation of light in turbid media. As a result of comparison of spectra of biotissues and model media, we have developed a mixture of Lipofundin and India ink serving as mouse optical phantoms for problems of optical medical diagnostics.

  16. Optical properties of marine waters and the development of bio-optical algorithms

    Digital Repository Service at National Institute of Oceanography (India)

    Desa, E.

    This paper presents the primary optical variables used in the measurement of the optical properties of marine waters. How can in-situ measurements be used in the optical recognition of coastal and open ocean waters. We then look at bio...

  17. Inferring inherent optical properties and water constituent profiles from apparent optical properties.

    Science.gov (United States)

    Fan, Yongzhen; Li, Wei; Calzado, Violeta Sanjuan; Trees, Charles; Stamnes, Snorre; Fournier, Georges; McKee, David; Stamnes, Knut

    2015-07-27

    The BP09 experiment conducted by the Centre for Maritime Research and Experimentation in the Ligurian Sea in March 2009 provided paired vertical profiles of nadir-viewing radiances L(u)(z) and downward irradiances E(d)(z) and inherent optical properties (IOPs, absorption, scattering and backscattering coefficients). An inversion algorithm was implemented to retrieve IOPs from apparent optical properties (AOPs, radiance reflectance R(L), irradiance reflectance R(E) and diffuse attenuation coefficient K(d)) derived from the radiometric measurements. Then another inversion algorithm was developed to infer vertical profiles of water constituent concentrations, including chlorophyll-a concentration, non-algal particle concentration, and colored dissolved organic matter from the retrieved IOPs based on a bio-optical model. The algorithm was tested on a synthetic dataset and found to give reliable results with an accuracy better than 1%. When the algorithm was applied to the BP09 dataset it was found that good retrievals of IOPs could be obtained for sufficiently deep waters, i.e. for L(u)(z) and E(d)(z) measurements conducted to depths of 50 m or more. This requirement needs to be satisfied in order to obtain a good estimation of the backscattering coefficient. For such radiometric measurements a correlation of 0.88, 0.96 and 0.93 was found between retrieved and measured absorption, scattering and backscattering coefficients, respectively. A comparison between water constituent values derived from the measured IOPs and in-situ measured values, yielded a correlation of 0.80, 0.78, and 0.73 for chlorophyll-a concentration, non-algal particle concentration, and absorption coefficient of colored dissolved organic matter at 443 nm, respectively. This comparison indicates that adjustments to the bio-optical model are needed in order to obtain a better match between inferred and measured water constituent values in the Ligurian Sea using the methodology developed in this paper.

  18. New nonlinear optical materials based on ferrofluids

    Energy Technology Data Exchange (ETDEWEB)

    Huang, J P [Department of Physics, Fudan University, Shanghai 200433 (China); Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz (Germany); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Yu, K W [Department of Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China); Institute of Theoretical Physics, Chinese University of Hong Kong, Shatin, NT, Hong Kong (China)

    2006-01-01

    We exploit theoretically a new class of magneto-controlled nonlinear optical material based on ferrofluids in which ferromagnetic nanoparticles are coated with a nonmagnetic metallic nonlinear shell. Such an optical material can have anisotropic nonlinear optical properties and a giant enhancement of nonlinearity, as well as an attractive figure of merit.

  19. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa3

    Science.gov (United States)

    Parvin, F.; Hossain, M. A.; Ali, M. S.; Islam, A. K. M. A.

    2015-01-01

    The rare occurrence of type-I superconductivity in binary system ScGa3 has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ~13 eV and thus ScGa3 can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa3 are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0-1000 K and 0-40 GPa, respectively. The calculated electron-phonon coupling constant λ=0.52 yields Tc=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg-Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  20. Mechanical, electronic, optical, thermodynamic properties and superconductivity of ScGa{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Parvin, F. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Hossain, M.A. [Department of Physics, Mawlana Bhashani Science and Technology University, Santosh, Tangail 1902 (Bangladesh); Ali, M.S. [Department of Physics, Rajshahi University, Rajshahi (Bangladesh); Islam, A.K.M.A., E-mail: azi46@ru.ac.bd [International Islamic University Chittagong, 154/A College Road, Chittagong 4203 (Bangladesh)

    2015-01-15

    The rare occurrence of type-I superconductivity in binary system ScGa{sub 3} has experimentally been shown recently. In the present paper we study the electronic, optical, thermodynamic properties and some aspects of superconductivity of this compound using first-principles calculations. The mechanical properties like elastic constants, bulk modulus, shear modulus, Pugh's ductility index, Young's modulus, Poisson's ratio, elastic anisotropy factor, Peierls stress are calculated for the first time. The material is anisotropic and brittle. Electronic band structure, density of states, Fermi surfaces and bonding nature have also been studied. The optical functions are estimated and discussed for the first time. The high reflectivity is found in the ultraviolet regions up to ∼13 eV and thus ScGa{sub 3} can serve as a possible shielding material for ultraviolet radiation. Thermal effects on some macroscopic properties of ScGa{sub 3} are predicted using the quasi-harmonic Debye model and phonon approximation in the temperature and hydrostatic pressure in the ranges of 0–1000 K and 0–40 GPa, respectively. The calculated electron–phonon coupling constant λ=0.52 yields T{sub c}=2.6 K, which is in very good agreement with the experimentally observed value. The value of the coupling constant and the Ginzburg–Landau parameter (κ=0.09) indicate that the compound is a weak-coupled type-I rare binary BCS superconductor.

  1. Effective-mass model and magneto-optical properties in hybrid perovskites.

    Science.gov (United States)

    Yu, Z G

    2016-06-24

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  2. Effective-mass model and magneto-optical properties in hybrid perovskites

    Science.gov (United States)

    Yu, Z. G.

    2016-06-01

    Hybrid inorganic-organic perovskites have proven to be a revolutionary material for low-cost photovoltaic applications. They also exhibit many other interesting properties, including giant Rashba splitting, large-radius Wannier excitons, and novel magneto-optical effects. Understanding these properties as well as the detailed mechanism of photovoltaics requires a reliable and accessible electronic structure, on which models of transport, excitonic, and magneto-optical properties can be efficiently developed. Here we construct an effective-mass model for the hybrid perovskites based on the group theory, experiment, and first-principles calculations. Using this model, we relate the Rashba splitting with the inversion-asymmetry parameter in the tetragonal perovskites, evaluate anisotropic g-factors for both conduction and valence bands, and elucidate the magnetic-field effect on photoluminescence and its dependence on the intensity of photoexcitation. The diamagnetic effect of exciton is calculated for an arbitrarily strong magnetic field. The pronounced excitonic peak emerged at intermediate magnetic fields in cyclotron resonance is assigned to the 3D±2 states, whose splitting can be used to estimate the difference in the effective masses of electron and hole.

  3. Real-time monitoring and visualization of the multi-dimensional motion of an anisotropic nanoparticle

    Science.gov (United States)

    Go, Gi-Hyun; Heo, Seungjin; Cho, Jong-Hoi; Yoo, Yang-Seok; Kim, Minkwan; Park, Chung-Hyun; Cho, Yong-Hoon

    2017-03-01

    As interest in anisotropic particles has increased in various research fields, methods of tracking such particles have become increasingly desirable. Here, we present a new and intuitive method to monitor the Brownian motion of a nanowire, which can construct and visualize multi-dimensional motion of a nanowire confined in an optical trap, using a dual particle tracking system. We measured the isolated angular fluctuations and translational motion of the nanowire in the optical trap, and determined its physical properties, such as stiffness and torque constants, depending on laser power and polarization direction. This has wide implications in nanoscience and nanotechnology with levitated anisotropic nanoparticles.

  4. Effect of Na substitution on electronic and optical properties of CuInS{sub 2} chalcopyrite semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Mishra, S.; Ganguli, B., E-mail: biplabg@nitrkl.ac.in

    2015-12-15

    Electronic & optical properties of Na substituted CuNaIn{sub 2}S{sub 4} chalcopyrite semiconductors are significantly modified due to Na substitution in the Cu deficient CuInS{sub 2} semiconductor. These properties are obtained form first principle calculation using density functional theory based tight binding Linear muffin tin orbital method. The presence of Na alters the structural distortion and enhances strengths of Cu d and S p hybridization in CuNaIn{sub 2}S{sub 4}. This effect reduces band gap, in agreement with experimental observations and modify other properties significantly. Calculations of optical matrix elements (OME) and joint density of states (JDOS) show that effects of Na substitution on optical properties come through p–d hybridization and structural distortion. OME contribution is prominent near band edge. Both systems show anisotropic optical properties. - Graphical abstract: The figure shows the band structure and total density of states of CuNaIn{sub 2}S{sub 4}. It illustrates energy bands at various symmetry points, band gap and contribution of various orbitals.

  5. SMEX02 Atmospheric Aerosol Optical Properties Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set consists of observations of atmospheric parameters including spectral aerosol optical depths, precipitable water, sky radiance distributions and...

  6. Effective Dielectric, Magnetic and Optical Properties of Isotropic and Anisotropic Suspensions of Ferroic Nano-Particles

    Science.gov (United States)

    2013-06-01

    June 3, 2013) to participate in the programme “The Mathematics of Liquid Crystals” in the Isaac Newton Institute for Mathematical Sciences. One talk...Pinkevych to Cambridge, United Kingdom (May 16 – June 3, 2013) to participate in the programme “The Mathematics of Liquid Crystals” in the Isaac Newton

  7. Optical Properties of Nanoparticle Systems Mie and Beyond

    CERN Document Server

    Quinten, Michael

    2011-01-01

    Unlike other books who concentrate on metallic nanoparticles with sizes less than 100 nm, the author discusses optical properties of particles with (a) larger size and (b) of any material. The intention of this book is to fill the gap in the description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter. The author concentrates on the linear optical properties elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter

  8. Seismic wave propagation in anisotropic ice – Part 1: Elasticity tensor and derived quantities from ice-core properties

    Directory of Open Access Journals (Sweden)

    A. Diez

    2014-08-01

    Full Text Available A preferred orientation of the anisotropic ice crystals influences the viscosity of the ice bulk and the dynamic behaviour of glaciers and ice sheets. Knowledge about the distribution of crystal anisotropy, to understand its contribution to ice dynamics, is mainly provided by crystal orientation fabric (COF data from ice cores. However, the developed anisotropic fabric does not only influence the flow behaviour of ice, but also the propagation of seismic waves. Two effects are important: (i sudden changes in COF lead to englacial reflections and (ii the anisotropic fabric induces an angle dependency on the seismic velocities and, thus, also recorded traveltimes. A framework is presented here to connect COF data with the elasticity tensor to determine seismic velocities and reflection coefficients for cone and girdle fabrics from ice-core data. We connect the microscopic anisotropy of the crystals with the macroscopic anisotropy of the ice mass, observable with seismic methods. Elasticity tensors for different fabrics are calculated and used to investigate the influence of the anisotropic ice fabric on seismic velocities and reflection coefficients, englacially as well as for the ice-bed contact. Our work, therefore, provides a contribution to remotely determine the state of bulk ice anisotropy.

  9. Resonating properties of passive spherical optical microcavities

    Institute of Scientific and Technical Information of China (English)

    Wen Li(李文); Ruopeng Wang(王若鹏)

    2004-01-01

    As an optically pumped device, the lasing characteristics of a spherical microcavity laser depend on the optical pumping processes. These characteristics can be described in term of the Q factor and the optical field distribution in a microsphere. We derived analytical expressions and carried out numerical calculation for Q factor and optical field. The Q factor is found to be oscillatory functions of the radius of a microsphere and the pumping wavelength, and the pumping efficiency for a resonating microsphere is much higher than that for an anti-resonating microsphere. Using tunable lasers as pumping sources is suggested in order to achieve a higher pumping efficiency. Numerical calculation on optical field distribution in spherical microcavities shows that a well focused Gaussian beam is a suitable incident wave for cavity quantum electrodynamics experiments in which strong confinement of optical field in the center of a microsphere is requested, but higher order spherical wave should be used instead for exciting whispering-gallery-mode (WGM) microsphere lasers, for the purpose of favoring optical energy transferring to WGM in optical microspheres.

  10. Optical properties of graphene antidot lattices

    DEFF Research Database (Denmark)

    Pedersen, Thomas Garm; Flindt, Christian; Pedersen, Jesper Goor

    2008-01-01

    demonstrate that this artificial nanomaterial is a dipole-allowed direct-gap semiconductor with a very pronounced optical-absorption edge. Hence, optical infrared spectroscopy should be an ideal probe of the electronic structure. To address realistic experimental situations, we include effects due to disorder...

  11. Effect of Fe, Co, Si and Ge impurities on optical properties of graphene sheet

    Energy Technology Data Exchange (ETDEWEB)

    Kheyri, A. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Nourbakhsh, Z., E-mail: z.nourbakhsh@sci.ui.ac.ir [Physics Department, Faculty of Science, University of Isfahan, Isfahan (Iran, Islamic Republic of); Darabi, E. [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of)

    2016-08-01

    The electronic and linear optical properties of pure graphene and impurity-graphene (with Fe, Co, Si and Ge impurities) sheets are investigated by using the full potential linear augmented plane wave plus local orbital (FPLAPW + lo) in the framework of the density functional theory (DFT). The calculated results are obtained within the generalized gradient approximation using the Perdew–Burke–Ernzerhof scheme in the presence of spin-orbit interaction. The band structure, partial electron density of states, dielectric function, absorption coefficient, optical conductivity, extinction index, energy loss function, reflectivity and the refraction index of these sheets for parallel and perpendicular electromagnetic wave polarization to sheet are investigated. The optical conductivity of Si-graphene and Ge-graphene sheets for the parallel electromagnetic wave polarization to the sheet starts with a gap about 0.4 eV confirms that these sheets have semiconductor behavior. Also the optical spectra of these sheets are anisotropic along these two wave polarizations. The dielectric function in the static limit of pure graphene sheet for perpendicular electromagnetic wave polarization to sheet does not significant change in the presence of Si, Ge, Fe and Co impurities. The static refractive index of Fe-graphene and Co-graphene sheets for parallel electromagnetic wave polarization to sheet is much larger than the corresponding value of pure graphene sheet. - Highlights: • Graphene sheet with Fe and Co impurities is metal. • Graphene sheet with Si and Ge impurities is semiconductor with 0.2 eV energy band gap. • These sheets optical spectra have metallic behavior for perpendicular polarization. • These sheets optical spectra have semiconductor behavior for parallel polarization. • Graphene sheet with Si and Ge impurities can use for optoelectronic devices.

  12. Optical properties of photoreceptor and retinal pigment epithelium cells investigated with adaptive optics optical coherence tomography

    Science.gov (United States)

    Liu, Zhuolin

    Human vision starts when photoreceptors collect and respond to light. Photoreceptors do not function in isolation though, but share close interdependence with neighboring photoreceptors and underlying retinal pigment epithelium (RPE) cells. These cellular interactions are essential for normal function of the photoreceptor-RPE complex, but methods to assess these in the living human eye are limited. One approach that has gained increased promise is high-resolution retinal imaging that has undergone tremendous technological advances over the last two decades to probe the living retina at the cellular level. Pivotal in these advances has been adaptive optics (AO) and optical coherence tomography (OCT) that together allow unprecedented spatial resolution of retinal structures in all three dimensions. Using these high-resolution systems, cone photoreceptor are now routinely imaged in healthy and diseased retina enabling fundamental structural properties of cones to be studied such as cell spacing, packing arrangement, and alignment. Other important cell properties, however, have remained elusive to investigation as even better imaging performance is required and thus has resulted in an incomplete understanding of how cells in the photoreceptor-RPE complex interact with light. To address this technical bottleneck, we expanded the imaging capability of AO-OCT to detect and quantify more accurately and completely the optical properties of cone photoreceptor and RPE cells at the cellular level in the living human retina. The first objective of this thesis was development of a new AO-OCT method that is more precise and sensitive, thus enabling a more detailed view of the 3D optical signature of the photoreceptor-RPE complex than was previously possible (Chapter 2). Using this new system, the second objective was quantifying the waveguide properties of individual cone photoreceptor inner and outer segments across the macula (Chapter 3). The third objective extended the AO

  13. Anisotropic thermoelectric properties of layered compounds in SnX2 (X = S, Se): a promising thermoelectric material.

    Science.gov (United States)

    Sun, Bao-Zhen; Ma, Zuju; He, Chao; Wu, Kechen

    2015-11-28

    Thermoelectrics interconvert heat to electricity and are of great interest in waste heat recovery, solid-state cooling and so on. Here we assessed the potential of SnS2 and SnSe2 as thermoelectric materials at the temperature gradient from 300 to 800 K. Reflecting the crystal structure, the transport coefficients are highly anisotropic between a and c directions, in particular for the electrical conductivity. The preferred direction for both materials is the a direction in TE application. Most strikingly, when 800 K is reached, SnS2 can show a peak power factor (PF) of 15.50 μW cm(-1) K(-2) along the a direction, while a relatively low value (11.72 μW cm(-1) K(-2)) is obtained in the same direction of SnSe2. These values are comparable to those observed in thermoelectrics such as SnSe and SnS. At 300 K, the minimum lattice thermal conductivity (κmin) along the a direction is estimated to be about 0.67 and 0.55 W m(-1) K(-1) for SnS2 and SnSe2, respectively, even lower than the measured lattice thermal conductivity of Bi2Te3 (1.28 W m(-1) K(-1) at 300 K). The reasonable PF and κmin suggest that both SnS2 and SnSe2 are potential thermoelectric materials. Indeed, the estimated peak ZT can approach 0.88 for SnSe2 and a higher value of 0.96 for SnS2 along the a direction at a carrier concentration of 1.94 × 10(19) (SnSe2) vs. 2.87 × 10(19) cm(-3) (SnS2). The best ZT values in SnX2 (X = S, Se) are comparable to that in Bi2Te3 (0.8), a typical thermoelectric material. We hope that this theoretical investigation will provide useful information for further experimental and theoretical studies on optimizing the thermoelectric properties of SnX2 materials.

  14. Tuned longitudinal surface plasmon resonance and third-order nonlinear optical properties of gold nanorods.

    Science.gov (United States)

    Tsutsui, Yushi; Hayakawa, Tomokatsu; Kawamura, Go; Nogami, Masayuki

    2011-07-08

    In order to elucidate the relationship for third-order nonlinear optical properties of anisotropic metal nanoparticles between the incident laser wavelength and surface plasmon resonance (SPR) wavelength, gold nanorods (GNRs) with a tuned longitudinal SPR mode in frequency were prepared by seed-mediated methods with two different surfactants, cetyltrimethylammonium bromide (CTAB) and benzyldimethylammonium chloride (BDAC). The real and imaginary parts of the third-order nonlinear optical susceptibilities χ(3) were examined by near-infrared (800 nm) femtosecond Z-scan and I-scan techniques for various gold sols with SPR wavelengths of 530 nm (spheres), 800 nm (nanorods) and 1000 nm (nanorods), named as 530GNSs, 800GNRs and 1000GNRs, respectively. All the samples showed intrinsically third-order nonlinear optical refractive responses. However, as for the real part of χ(3) for one particle, 800GNRs whose plasmon peak was tuned to the incident laser wavelength exhibited a Reχ(3) value 45 times stronger than 530GNSs. More interestingly, the imaginary part of χ(3) was more greatly influenced at the tuned SPR wavelength. Here we first demonstrate that 800GNRs showed plasmon-enhanced saturable absorption (SA) due to a longitudinal SPR tuned to the incident laser wavelength.

  15. Measurement of Optical Properties of Small Particles

    Energy Technology Data Exchange (ETDEWEB)

    Arakawa, E.T.; Tuminello, P.S. [Oak Ridge National Lab., TN (United States); Khare, B.N. [NASA Ames Research Center, Moffett Field, CA (United States); Millham, M.E. [USAMCCOM, Edgewood Research, Development, and Engineering Center, Aberdeen Proving Ground, MD (United States); Authier, S. [Ecole Superiere d`Optique, Orsay (France); Pierce, J. [University of Tennessee, Knoxville, TN (United States)

    1997-12-01

    We have measured the optical constants of montmorillonite and the separated coats and cores of B. subtilis spores over the wavelength interval from 200 nm to 2500 nm. The optical constants of kaolin were obtained over the wavelength interval from 130 nm to 2500 nm. Our results are applicable to the development of systems for detection of airborne biological contaminants. Future work will include measurement of the optical constants of B. cereus spores, B. sub tilts vegetative cells, egg albumin, illite, and a mixture (by weight) of one third kaolin, one third montmorillonite, and one third illite.

  16. Nonlinear optical properties of Au/PVP composite thin films

    Institute of Scientific and Technical Information of China (English)

    Shen Hong; Cheng Bo-Lin; Lu Guo-Wei; Wang Wei-Tian; Guan Dong-Yi; Chen Zheng-Hao; Yang Guo-Zhen

    2005-01-01

    Colloidal Au and poly(vinylpyrrolidone) (PVP) composite thin films are fabricated by spin-coating method. Linear optical absorption measurements of the Au/PVP composite films indicate an absorption peak around 530 nm due to the surface plasmon resonance of gold nanoparticles. Nonlinear optical properties are studied using standard Z-scan technique, and experimental results show large optical nonlinearities of the Au/PVP composite films. A large value of films.

  17. Hyperspherical theory of anisotropic exciton

    CERN Document Server

    Muljarov, E A; Tikhodeev, S G; Bulatov, A E; Birman, Joseph L; 10.1063/1.1286772

    2012-01-01

    A new approach to the theory of anisotropic exciton based on Fock transformation, i.e., on a stereographic projection of the momentum to the unit 4-dimensional (4D) sphere, is developed. Hyperspherical functions are used as a basis of the perturbation theory. The binding energies, wave functions and oscillator strengths of elongated as well as flattened excitons are obtained numerically. It is shown that with an increase of the anisotropy degree the oscillator strengths are markedly redistributed between optically active and formerly inactive states, making the latter optically active. An approximate analytical solution of the anisotropic exciton problem taking into account the angular momentum conserving terms is obtained. This solution gives the binding energies of moderately anisotropic exciton with a good accuracy and provides a useful qualitative description of the energy level evolution.

  18. Measurement of inherent optical properties in the Arabian Sea

    Digital Repository Service at National Institute of Oceanography (India)

    Suresh, T.; Desa, E.; Kurian, J.; Mascarenhas, A.A.M.Q.

    Inherent optical properties, absorption and began attenuation were measured in situ using a reflective tube absorption meter at nint wavelength, 412, 440, 488, 510, 555, 630, 650, 676 and 715 nm, in the Arabian Sea during March. Since inherent...

  19. OPTICAL AND DYNAMIC PROPERTIES OF UNDOPED AND DOPED SEMICONDUCTOR NANOSTRUCTURES

    Energy Technology Data Exchange (ETDEWEB)

    Grant, C D; Zhang, J Z

    2007-09-28

    This chapter provides an overview of some recent research activities on the study of optical and dynamic properties of semiconductor nanomaterials. The emphasis is on unique aspects of these properties in nanostructures as compared to bulk materials. Linear, including absorption and luminescence, and nonlinear optical as well as dynamic properties of semiconductor nanoparticles are discussed with focus on their dependence on particle size, shape, and surface characteristics. Both doped and undoped semiconductor nanomaterials are highlighted and contrasted to illustrate the use of doping to effectively alter and probe nanomaterial properties. Some emerging applications of optical nanomaterials are discussed towards the end of the chapter, including solar energy conversion, optical sensing of chemicals and biochemicals, solid state lighting, photocatalysis, and photoelectrochemistry.

  20. Spectroscopic properties of rare earths in optical materials

    CERN Document Server

    Parisi, Jürgen; Osgood, R; Warlimont, Hans; Liu, Guokui; Jacquier, Bernard

    2005-01-01

    Aimed at researchers and graduate students, this book provides up-to-date information for understanding electronic interactions that impact the optical properties of rare earth ions in solids. Its goal is to establish a connection between fundamental principles and the materials properties of rare-earth activated luminescent and laser optical materials. The theoretical survey and introduction to spectroscopic properties include electronic energy level structure, intensities of optical transitions, ion-phonon interactions, line broadening, and energy transfer and up-conversion. An important aspect of the book lies in its deep and detailed discussions on materials properties and the potential of new applications such as optical storage, information processing, nanophotonics, and molecular probes that have been identified in recent experimental studies. This volume will be a valuable reference book on advanced topics of rare earth spectroscopy and materials science.

  1. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This work concerns the development of a prototype of a Volume Scattering Function (VSF) sensor for measurement of this inherent optical property(IOP) of seawater....

  2. Compact All Solid State Oceanic Inherent Optical Property Sensor Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Light propagation in the sea and the consequent remote sensing signals seen by aircraft and spacecraft is fundamentally governed by the inherent optical properties...

  3. Tailored synthesis of superparamagnetic gold nanoshells with tunable optical properties.

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Q.; Ge, J.; Goebl, J.; Hu, Y.; Sun, Y.; Yin, Y.; Center for Nanoscale Materials; Univ. of California at Riverside

    2010-05-04

    Multifunctional Au nanoshells with tunable optical properties and fast magnetic response have been fabricated through a sequence of sol-gel, surface-protected etching, and seed-mediated growth processes. The use of a porous silica layer enhances the uniformity of nanoshell growth, the reproducibility of the synthesis, and the structural and optical stability of the products.

  4. Tuning of copper nanocrystals optical properties with their shapes.

    Science.gov (United States)

    Salzemann, C; Brioude, A; Pileni, M-P

    2006-04-13

    Copper nanocrystals are obtained by chemical reduction of copper ions in mixed reverse micelles. A large excess of reducing agent favors producing a new generation of shaped copper nanocrystals as nanodisks, elongated nanocrystals, and cubes. By using UV-Visible spectroscopy and numerical optical simulations we demonstrate that the optical properties are tuned by the relative proportions of spheres and nanodisks.

  5. Focusing and imaging properties of diffractive optical elements with star-ring topological structure

    Science.gov (United States)

    Ke, Jie; Zhang, Junyong; Zhang, Yanli; Sun, Meizhi

    2015-08-01

    A kind of diffractive optical elements (DOE) with star-ring topological structure is proposed and their focusing and imaging properties are studied in detail. The so-called star-ring topological structure denotes that a large number of pinholes distributed in many specific zone orbits. In two dimensional plane, this structure can be constructed by two constrains, one is a mapping function, which yields total potential zone orbits, corresponding to the optical path difference (OPD); the other is a switching sequence based on the given encoded seed elements and recursion relation to operate the valid zone orbits. The focusing and imaging properties of DOE with star-ring topological structure are only determined by the aperiodic sequence, and not relevant to the concrete geometry structure. In this way, we can not only complete the traditional symmetrical DOE, such as circular Dammam grating, Fresnel zone plates, photon sieves, and their derivatives, but also construct asymmetrical elements with anisotropic diffraction pattern. Similarly, free-form surface or three dimensional DOE with star-ring topological structure can be constructed by the same method proposed. In consequence of smaller size, lighter weight, more flexible design, these elements may allow for some new applications in micro and nanphotonics.

  6. Recent development and applications of an optical method for measurements of thermophysical properties

    Science.gov (United States)

    Nagashima, A.

    1995-09-01

    The experimental determination of thermophysical properties has been greatly improved by the introduction of laser technology. The laser beam is used for sensing and also for heating (or exciting) the specimen. The advantage of using a laser beam is most strongly felt in the measurement of the thermal conductivity or the thermal diffusivity, which are some of the most difficult properties to measure. Interesting features of new techniques for investigating various aspects of thermal conductivity in fluids and solids are reviewed. An optical method, the so-called forced Rayleigh scattering method, or the laser-induced optical-grating method, has been developed and used extensively by the present author's group. The method is a high-speed remote-sensing method which can also quantitatively detect anisotropy, namely, direction dependence of heat conduction in the material. It was used for determination of the thermal diffusivity and its anisotropic behavior for high-temperature materials such as molten salts, liquid crystals, extended polymer samples, and flowing polymer melts under shear. Interesting applications of the method were demonstrated also for thermal diffusivity “mapping” and microscale measurement.

  7. Anisotropic optical polarization dependence on internal strain in AlGaN epilayer grown on Al x Ga1-x N templates

    Science.gov (United States)

    Long, Hanling; Wu, Feng; Zhang, Jun; Wang, Shuai; Chen, Jingwen; Zhao, Chong; Feng, Zhe Chuan; Xu, Jintong; Li, Xiangyang; Dai, Jiangnan; Chen, Changqing

    2016-10-01

    Anisotropic optical polarization of AlGaN has been one of the major challenges responsible for the poor efficiency of AlGaN-based ultraviolet light emitting diodes (UV LEDs). In this work, we experimentally investigated the effect of internal strain on the optical polarization of AlGaN epilayers which were pseudomorphically grown on Al x Ga1-x N templates with Al composition changing from 0.1 to 0.42. High-resolution x-ray diffraction and reciprocal space mapping were conducted to determine the crystal quality and strain status. Polarization-dependent photoluminescence (PL) measurement was performed to study the degree of polarization (DOP) of light emission from lateral facet of the AlGaN epilayer. The result showed that the DOP increased from  -0.69 to  -0.24 with the in-plane strain changing from tensile status (1.19%) to compressive status (-0.70%) and it exhibited a strong dependence of the DOP on the strain. These results demonstrated that the compressive in-plane strain could facilitate TE mode emission from AlGaN, which providing a potential way to enhance the surface light emission of AlGaN-based UV LEDs via strain management of the active region.

  8. The optical Tamm states at the edges of a photonic crystal bounded by one or two layers of a strongly anisotropic nanocomposite

    Science.gov (United States)

    Vetrov, S. Ya.; Bikbaev, R. G.; Timofeev, I. V.

    2017-07-01

    The optical Tamm states localized at the edges of a photonic crystal bounded by a nanocomposite on its one or both sides are investigated. The nanocomposite consists of metal nanoinclusions with an orientation-ordered spheroidal shape, which are dispersed in a transparent matrix, and is characterized by the effective resonance permittivity. The spectrum of transmission of the longitudinally and transversely polarized waves by such structures at the normal incidence of light was calculated. The spectral manifestation of the Tamm states caused by negative values of the real part of the effective permittivity in the visible spectral range was studied. Features of the spectral manifestation of the optical Tamm states for different degrees of extension of spheroidal nanoparticles and different periods of a photonic crystal were investigated. It is demonstrated that splitting of the frequency due to elimination of degeneracy of the Tamm states localized at the interfaces between the photonic crystal and nanocomposite strongly depends on the volume fraction of the spheroids in the nanocomposite and on the ratio between the polar and equatorial semiaxes of the spheroid. Each of the two orthogonal polarizations of the incident wave has its own dependence of splitting on the nanoparticle density, which makes the transmission spectra polarization-sensitive. It is shown that the Tamm state is affected by the size-dependent permittivity of anisotropic nanoparticles.

  9. Airborne LIDAR as a tool for estimating inherent optical properties

    Science.gov (United States)

    Trees, Charles; Arnone, Robert

    2012-06-01

    LIght Detection and Ranging (LIDAR) systems have been used most extensively to generate elevation maps of land, ice and coastal bathymetry. There has been space-, airborne- and land-based LIDAR systems. They have also been used in underwater communication. What have not been investigated are the capabilities of LIDARs to measure ocean temperature and optical properties vertically in the water column, individually or simultaneously. The practical use of bathymetric LIDAR as a tool for the estimation of inherent optical properties remains one of the most challenging problems in the field of optical oceanography. LIDARs can retrieve data as deep as 3-4 optical depths (e.g. optical properties can be measured through the thermocline for ~70% of the world's oceans). Similar to AUVs (gliders), UAV-based LIDAR systems will increase temporal and spatial measurements by several orders of magnitude. The LIDAR Observations of Optical and Physical Properties (LOOPP) Conference was held at NURC (2011) to review past, current and future LIDAR research efforts in retrieving water column optical/physical properties. This new observational platform/sensor system is ideally suited for ground truthing hyperspectral/geostationary satellite data in coastal regions and for model data assimilation.

  10. Using electron microscopy to calculate optical properties of biological samples

    OpenAIRE

    Wu, Wenli; Radosevich, Andrew J.; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K.; Szleifer, Igal; Backman, Vadim

    2016-01-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy...

  11. Noise and saturation properties of semiconductor quantum dot optical amplifiers

    DEFF Research Database (Denmark)

    Berg, Tommy Winther; Mørk, Jesper

    2002-01-01

    We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved.......We present a detailed theoretical analysis of quantum dot optical amplifiers. Due to the presence of a reservoir of wetting layer states, the saturation and noise properties differ markedly from bulk or QW amplifiers and may be significantly improved....

  12. Optical properties of silicon germanium waveguides at telecommunication wavelengths.

    Science.gov (United States)

    Hammani, Kamal; Ettabib, Mohamed A; Bogris, Adonis; Kapsalis, Alexandros; Syvridis, Dimitris; Brun, Mickael; Labeye, Pierre; Nicoletti, Sergio; Richardson, David J; Petropoulos, Periklis

    2013-07-15

    We present a systematic experimental study of the linear and nonlinear optical properties of silicon-germanium (SiGe) waveguides, conducted on samples of varying cross-sectional dimensions and Ge concentrations. The evolution of the various optical properties for waveguide widths in the range 0.3 to 2 µm and Ge concentrations varying between 10 and 30% is considered. Finally, we comment on the comparative performance of the waveguides, when they are considered for nonlinear applications at telecommunications wavelengths.

  13. Optical Properties of Volcanic Ash: Improving Remote Sensing Observations

    Science.gov (United States)

    Whelley, P.; Colarco, P. R.; Aquila, V.; Krotkov, N. A.; Bleacher, J. E.; Garry, W. B.; Young, K. E.; Lima, A. R.; Martins, J. V.; Carn, S. A.

    2015-12-01

    Many times each year explosive volcanic eruptions loft ash into the atmosphere. Global travel and trade rely on aircraft vulnerable to encounters with airborne ash. Volcanic ash advisory centers (VAACs) rely on dispersion forecasts and satellite data to issue timely warnings. To improve ash forecasts model developers and satellite data providers need realistic information about volcanic ash microphysical and optical properties. In anticipation of future large eruptions we can study smaller events to improve our remote sensing and modeling skills so when the next Pinatubo 1991 or larger eruption occurs, ash can confidently be tracked in a quantitative way. At distances >100km from their sources, drifting ash plumes, often above meteorological clouds, are not easily detected from conventional remote sensing platforms, save deriving their quantitative characteristics, such as mass density. Quantitative interpretation of these observations depends on a priori knowledge of the spectral optical properties of the ash in UV (>0.3μm) and TIR wavelengths (>10μm). Incorrect assumptions about the optical properties result in large errors in inferred column mass loading and size distribution, which misguide operational ash forecasts. Similarly, simulating ash properties in global climate models also requires some knowledge of optical properties to improve aerosol speciation. Recent research has identified a wide range in volcanic ash optical properties among samples collected from the ground after different eruptions. The database of samples investigated remains relatively small, and measurements of optical properties at the relevant particle sizes and spectral channels are far from complete. Generalizing optical properties remains elusive, as does establishing relationships between ash composition and optical properties, which are essential for satellite retrievals. We are building a library of volcanic ash optical and microphysical properties. In this presentation we show

  14. Fractures in anisotropic media

    Science.gov (United States)

    Shao, Siyi

    Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The

  15. Ultraviolet-visible bulk optical properties of randomly distributed soot.

    Science.gov (United States)

    Renard, J B; Hadamcik, E; Brogniez, C; Berthet, G; Worms, J C; Chartier, M; Pirre, M; Ovarlez, J; Ovarlez, H

    2001-12-20

    The presence of soot in the lower stratosphere was recently established by in situ measurements. To isolate their contribution to optical measurements from that of background aerosol, the soot's bulk optical properties must be determined. Laboratory measurements of extinction and polarization of randomly distributed soot were conducted. For all soot, measurements show a slight reddening extinction between 400 and 700 nm and exhibit a maximum of 100% polarization at a scattering angle of 75 +/- 5 degrees. Such results cannot be reproduced by use of Mie theory assumptions. The different optical properties of soot and background stratospheric aerosol could allow isolation of soot in future analyses of stratospheric measurements.

  16. Optical properties of a-Si:B films

    Energy Technology Data Exchange (ETDEWEB)

    Alias, M.F.A.; Al-Douri, A.A.J.; Hasoon, F.S. (Solar Energy Research Center, Scientific Research Council, Baghdad (IQ)); Al-Foadi, A.H. (Al-Mustansiryah Univ., Baghdad (IQ). Coll. of Science); Kazmerski, L.L. (Solar Energy Research Inst., Golden, CO (USA))

    1989-01-01

    The optical properties of p-type a-Si films prepared by thermal evaporation have been studied. The films were prepared under different conditions which include variation of substrate and annealing temperature and dopant percentage of boron. The properties actually studied include the optical absorption and the optical gap which increased as the film annealed at higher temperature. However it decreased for films deposited at higher substrate temperature and doping concentration, whereas the increased substrate and annealing temperatures caused decrease in energy of localized and recombination states. (author).

  17. Structural and optical properties of Si-doped Ag clusters

    KAUST Repository

    Mokkath, Junais Habeeb

    2014-03-06

    The structural and optical properties of AgN and Ag N-1Si1 (neutral, cationic, and anionic) clusters (N = 5 to 12) are systematically investigated using the density functional based tight binding method and time-dependent density functional theory, providing insight into recent experiments. The gap between the highest occupied and lowest unoccupied molecular orbitals and therefore the optical spectrum vary significantly under Si doping, which enables flexible tuning of the chemical and optical properties of Ag clusters. © 2014 American Chemical Society.

  18. Electro-optical properties of tetragonal KNbO3

    Indian Academy of Sciences (India)

    P U Sastry

    2007-06-01

    Linear electro-optical tensor coefficients and optical susceptibility of tetragonal KNbO3 are calculated using a formalism based on bond charge theory. Results are in close agreement with the experimental data. The covalent Nb–O bonding network comprising the distorted NbO6 octahedral groups in the structure is found to be a major contributor to the electro-optic coefficients making these groups more sensitive to these properties than the KO12 groups. The orientations of the chemical bonds play an important role in determining these properties.

  19. Optical properties of nanowire metamaterials with gain

    DEFF Research Database (Denmark)

    Isidio de Lima, Joaquim Junior; Adam, Jost; Rego, Davi

    2016-01-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide....... The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice...... constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications....

  20. Nonlinear optical properties of ultrathin metal layers

    DEFF Research Database (Denmark)

    Lysenko, Oleg

    2016-01-01

    . The optical characterization of the plasmonic waveguides is performed using femtosecond and picosecond optical pulses. Two nonlinear optical effects in the strip plasmonic waveguides are experimentally observed and reported. The first effect is the nonlinear power transmission of the plasmonic mode......-order nonlinear susceptibility of the plasmonic mode in the gold strip waveguides significantly depends on the metal layer thickness and laser pulse duration. This dependence is explained in detail in terms of the free-electron temporal dynamics in gold. The third-order nonlinear susceptibility of the gold layer...... duration dependence of the third-order nonlinear susceptibility of gold is calculated in the broad range from tens of femtoseconds to tens of picoseconds using the two-temperature model of the free-electron temporal dynamics of gold, and shows the saturation of the thirdorder nonlinear susceptibility...

  1. Optical properties of nanowire metamaterials with gain

    Science.gov (United States)

    Lima, Joaquim; Adam, Jost; Rego, Davi; Esquerre, Vitaly; Bordo, Vladimir

    2016-11-01

    The transmittance, reflectance and absorption of a nanowire metamaterial with optical gain are numerically simulated and investigated. It is assumed that the metamaterial is represented by aligned silver nanowires embedded into a semiconductor matrix, made of either silicon or gallium phosphide. The gain in the matrix is modeled by adding a negative imaginary part to the dielectric function of the semiconductor. It is found that the optical coefficients of the metamaterial depend on the gain magnitude in a non-trivial way: they can both increase and decrease with gain depending on the lattice constant of the metamaterial. This peculiar behavior is explained by the field redistribution between the lossy metal nanowires and the amplifying matrix material. These findings are significant for a proper design of nanowire metamaterials with low optical losses for diverse applications.

  2. Optical properties and structure of beryllium lead silicate glasses

    Energy Technology Data Exchange (ETDEWEB)

    Zhidkov, I. S., E-mail: i.s.zhidkov@urfu.ru [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002, Russia and Institute of Metal Physics, Russian Academy of Sciences-Ural Division, S. Kovalevskoi Str. 18, 620990 Yekaterinburg (Russian Federation); Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A. [Ural Federal University, Mira Str. 19, Yekaterinburg, 620002 (Russian Federation)

    2014-10-21

    Luminescence and optical properties and structural features of (BeO){sub x}(PbO⋅SiO{sub 2}){sub 1−x} glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  3. Optical properties and structure of beryllium lead silicate glasses

    Science.gov (United States)

    Zhidkov, I. S.; Zatsepin, A. F.; Cholakh, S. O.; Kuznetsova, Yu. A.

    2014-10-01

    Luminescence and optical properties and structural features of (BeO)x(PbOṡSiO2)1-x glasses (x = 0 ÷ 0.3) are investigated by means of optical absorption and photoluminescence spectroscopy and X-ray diffraction. The regularities of the formation of the optical absorption edge and static disorder are studied. It is shown that the optical absorption and luminescence are determined by transitions between localized states of lead ions. The impact of beryllium oxide on optical and luminescence properties and electronic structure of bands tails is discussed. The presence of two different concentration ranges with various short-range order structure and band tails nature has been established.

  4. Optical and dielectric properties of double helix DNA thin films

    Energy Technology Data Exchange (ETDEWEB)

    Soenmezoglu, Savas, E-mail: svssonmezoglu@kmu.edu.tr [Department of Physics, Faculty of Kamil Ozdag Science, Karamanoglu Mehmetbey University, 70100, Karaman (Turkey); Ates Soenmezoglu, Ozlem [Department of Biology, Faculty of Kamil Ozdag Science, Karamanoglu Mehmetbey University, 70100, Karaman (Turkey)

    2011-12-01

    In this work, the thin film of wheat DNA was deposited by spin-coating technique onto glass substrate, and the optical and dielectric properties of the double helix DNA thin film were investigated. The optical constants such as refractive index, extinction coefficient, dielectric constant, dissipation factor, relaxation time, and optical conductivity were determined from the measured transmittance spectra in the wavelength range 190-1100 nm. Meanwhile, the dispersion behavior of the refractive index was studied in terms of the single oscillator Wemple-DiDomenico (W-D) model, and the physical parameters of the average oscillator strength, average oscillator wavelength, average oscillator energy, the refractive index dispersion parameter and the dispersion energy were achieved. Furthermore, the optical band gap values were calculated by W-D model and Tauc model, respectively, and the values obtained from W-D model are in agreement with those determined from the Tauc model. The analysis of the optical absorption data indicates that the optical band gap E{sub g} was indirect transitions. These results provide some useful references for the potential application of the DNA thin films in fiber optic, solar cell and optoelectronic devices. Highlights: {yields} The optical constants of DNA in full UV-vis spectrum were determined. {yields} The change in optical and dielectric property demonstrates that this material has potential to be used as a novel technology. {yields} DNA shows promise to be more suitable material than other materials currently being used for photonic devices.

  5. Thermal and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Silva A. Ferreira da

    2001-01-01

    Full Text Available Thermal diffusivity and optical absorption have been investigated for porous silicon, at room temperature, using photoacoustic spectroscopy. The experimental results obtained conform well with the existing studies recently published. The value obtained for thermal diffusivity is 0.045 ± 0.002 cm²/s.The absorption onsets show energy structures, differing from the ordinary semiconductor of bulk type.

  6. Investigation of Nonlinear Optical Properties of Semiconductors.

    Science.gov (United States)

    1984-02-23

    optical studies of InSb NI. W. Goodwin" and D. G. Seiler Center jo .4pphed Quurntm Electronics, Department of Phytics , North 1exu.% State Unuvpieroty...lnSb, in zero magnetic field, is that of Pidgeon anJ data, aside from two-photon absorption, could be ab- co-workers,’ who give references to other

  7. Linear and Nonlinear Plasmonics from Isotropic and Anisotropic Integrated Nanocomposites for Quantum Information Applications

    Science.gov (United States)

    2014-01-09

    nanoparticles (NPs) were added to luminescent porous silicon by drop casting. These NPs interact with this system by modifying its optical properties ...response by Au NPs in sapphire: Nonlinear optical response of Au metallic NPs, synthesized and embedded in sapphire by using ion implantation, as a...Linear and nonlinear plasmonics from isotropic and anisotropic integrated nanocomposites for quantum information applications. Jorge-Alejandro Reyes

  8. Estimation of Korean paddy field soil properties using optical reflectance

    Science.gov (United States)

    An optical sensing approach based on diffuse reflectance has shown potential for rapid and reliable on-site estimation of soil properties. Important sensing ranges and the resulting regression models useful for soil property estimation have been reported. In this study, a similar approach was applie...

  9. Ab initio calculation of the optical and magneto-optical properties of moderately correlated magnetic solids

    NARCIS (Netherlands)

    Perlov, A.; Chadov, S.; Ebert, H.; Chioncel, L.; Lichtenstein, A.I.; Katsnelson, M.I.

    2004-01-01

    An approach for the calculation of the optical and magneto-optical properties of solids based on the one-particle Green function is introduced in the framework of the linear muffin-tin orbital (LMTO) method. The approach keeps all advantages of the more accurate Korringa-Kohn-Rostoker (KKR) scheme a

  10. Measuring optical properties of a blood vessel model using optical coherence tomography

    Science.gov (United States)

    Levitz, David; Hinds, Monica T.; Tran, Noi; Vartanian, Keri; Hanson, Stephen R.; Jacques, Steven L.

    2006-02-01

    In this paper we develop the concept of a tissue-engineered optical phantom that uses engineered tissue as a phantom for calibration and optimization of biomedical optics instrumentation. With this method, the effects of biological processes on measured signals can be studied in a well controlled manner. To demonstrate this concept, we attempted to investigate how the cellular remodeling of a collagen matrix affected the optical properties extracted from optical coherence tomography (OCT) images of the samples. Tissue-engineered optical phantoms of the vascular system were created by seeding smooth muscle cells in a collagen matrix. Four different optical properties were evaluated by fitting the OCT signal to 2 different models: the sample reflectivity ρ and attenuation parameter μ were extracted from the single scattering model, and the scattering coefficient μ s and root-mean-square scattering angle θ rms were extracted from the extended Huygens-Fresnel model. We found that while contraction of the smooth muscle cells was clearly evident macroscopically, on the microscopic scale very few cells were actually embedded in the collagen. Consequently, no significant difference between the cellular and acellular samples in either set of measured optical properties was observed. We believe that further optimization of our tissue-engineering methods is needed in order to make the histology and biochemistry of the cellular samples sufficiently different from the acellular samples on the microscopic level. Once these methods are optimized, we can better verify whether the optical properties of the cellular and acellular collagen samples differ.

  11. Optical near-field excitation at the semiconductor band edge: Field distributions, anisotropic transitions and quadrupole enhancement

    NARCIS (Netherlands)

    Heydt, von der A.; Knorr, A.; Hanewinkel, B.; Koch, S.W.

    2000-01-01

    The optical near-field response of a three dimensional subwavelength aperture-semiconductor system is analyzed within a finite difference time domain scheme for Maxwell's and excitonic material equations. The analysis includes the field modification due to the high refractive index environment and t

  12. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties.

    Science.gov (United States)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  13. Lanthanide upconversion luminescence at the nanoscale: fundamentals and optical properties

    Science.gov (United States)

    Nadort, Annemarie; Zhao, Jiangbo; Goldys, Ewa M.

    2016-07-01

    Upconversion photoluminescence is a nonlinear effect where multiple lower energy excitation photons produce higher energy emission photons. This fundamentally interesting process has many applications in biomedical imaging, light source and display technology, and solar energy harvesting. In this review we discuss the underlying physical principles and their modelling using rate equations. We discuss how the understanding of photophysical processes enabled a strategic influence over the optical properties of upconversion especially in rationally designed materials. We subsequently present an overview of recent experimental strategies to control and optimize the optical properties of upconversion nanoparticles, focussing on their emission spectral properties and brightness.

  14. Analysis of magneto-optical properties for three-dimensional photonic crystals in high-symmetry arrangement doped by metamaterials and uniaxial materials

    Science.gov (United States)

    Yu, Bing; Li, Heming; Wang, Shenyun; Wan, Fayu; Ge, Junxiang

    2016-11-01

    In this paper, we use a modified plane wave expansion (PWE) method to investigate the properties of photonic band gaps (PBGs) for the extraordinary mode in the three-dimensional (3D) photonic crystals (PCs) which are composed of the anisotropic dielectric (the uniaxial materials) spheres immersed in the homogeneous metamaterials (epsilon-negative materials) background with high-symmetry (body-centered-cubic) lattices, as the magneto-optical Voigt effects are considered. The equations for calculating the PBGs in the first irreducible Brillouin zone are theoretically derived. It is numerically illustrated that the anisotropic PBGs and two flattened band regions can be achieved. The influences of the ordinary-refractive index, extraordinary-refractive index, filling factor of dielectric spheres, electronic plasma frequency and cyclotron frequency on the magneto-optical properties of such 3D PCs also are studied in detail, respectively, and some corresponding physical explanations are given. The numerical results demonstrate that the anisotropy can open partial band gaps in the proposed PCs, and the complete PBGs can be obtained compared with the conventional PCs only containing the isotropic material with similar structures. The bandwidths of PBGs can be tuned by introducing the epsilon-negative materials into such PCs containing the uniaxial materials. The anisotropic PBGs can be manipulated by the parameters as mentioned above. As the proposed PCs with high-symmetry lattices, the complete PBGs can be obtained by introducing the uniaxial materials.

  15. Optical and electrical properties of glycine manganese chloride crystal

    Science.gov (United States)

    Venkatesan, G.; Kathiravan, V.; Pari, S.

    2017-06-01

    The organo-metal material of Glycine Manganese Chloride has been grown by solvent evaporation solution growth method. Single crystal XRD study has been carried out to confirm the grown crystal. FT-IR was recorded to identify the functional groups present in the crystal. The linear optical property of the grown crystal was analyzed by UV-Vis spectrum. Third order nonlinear optical properties was measured by Z-scan technique using Nd:YAG laser at 532 nm. Fluorescence emission revealed that can serve as a photo active material. Impedance and dielectric studies were also carried out for the material. Thermal property of the sample was analyzed by TG and DTA studies. The predicted NLO properties, UV-Vis absorbance and Z-scan studies indicate that the attractive material for optical applications.

  16. A method for estimating optical properties of dusty cloud

    Institute of Scientific and Technical Information of China (English)

    Tianhe Wang; Jianping Huang

    2009-01-01

    Based on the scattering properties of nonspherical dust aerosol,a new method is developed for retrieving dust aerosol optical depths of dusty clouds.The dusty clouds are defined as the hybrid system of dust plume and cloud.The new method is based on transmittance measurements from surface-based instruments multi-filter rotating shadowband radiometer(MFRSR)and cloud parameters from lidar measurements.It uses the difference of absorption between dust aerosols and water droplets for distinguishing and estimating the optical properties of dusts and clouds,respectively.This new retrieval method is not sensitive to the retrieval error of cloud properties and the maximum absolute deviations of dust aerosol and total optical depths for thin dusty cloud retrieval algorithm are only 0.056 and 0.1.respectively,for given possible uncertainties.The retrieval error for thick dusty cloud mainly depends on lidar-based total dusty cloud properties.

  17. Repulsion of polarised particles from anisotropic materials with a near-zero permittivity component

    Institute of Scientific and Technical Information of China (English)

    Francisco J Rodríguez-Fortu(n)o; Anatoly V Zayats

    2016-01-01

    Reduction of adhesion and stiction is crucial for robust operation on nanomechanical and optofluidic devices as well as atom and molecule behaviour near surfaces.It can be achieved using electric charging,magnetic materials or light pressure and optical trapping.Here we show that a particle scattering or emitting in close proximity to an anisotropic substrate can experience a repulsive force if one of the diagonal components of the permittivity tensor is close to zero.We derive an analytic condition for the existence of such repulsive force depending on the optical properties of the substrate.We also demonstrate the effect using realistic anisotropic metamaterial implementations of a substrate.The anisotropic metamaterial approach using metal-dielectric and graphene-dielectric multilayers provides a tuneable spectral range and a very broad bandwidth of electromagnetic repulsion forces,in contrast to isotropic substrates.

  18. Designing Optical Properties in DNA-Programmed Nanoparticle Superlattices

    Science.gov (United States)

    Ross, Michael Brendan

    A grand challenge of modern science has been the ability to predict and design the properties of new materials. This approach to the a priori design of materials presents a number of challenges including: predictable properties of the material building blocks, a programmable means for arranging such building blocks into well understood architectures, and robust models that can predict the properties of these new materials. In this dissertation, we present a series of studies that describe how optical properties in DNA-programmed nanoparticle superlattices can be predicted prior to their synthesis. The first chapter provides a history and introduction to the study of metal nanoparticle arrays. Chapter 2 surveys and compares several geometric models and electrodynamics simulations with the measured optical properties of DNA-nanoparticle superlattices. Chapter 3 describes silver nanoparticle superlattices (rather than gold) and identifies their promise as plasmonic metamaterials. In chapter 4, the concept of plasmonic metallurgy is introduced, whereby it is demonstrated that concepts from materials science and metallurgy can be applied to the optical properties of mixed metallic plasmonic materials, unveiling rich and tunable optical properties such as color and asymmetric reflectivity. Chapter 5 presents a comprehensive theoretical exploration of anisotropy (non-spherical) in nanoparticle superlattice architectures. The role of anisotropy is discussed both on the nanoscale, where several desirable metamaterial properties can be tuned from the ultraviolet to near-infrared, and on the mesoscale, where the size and shape of a superlattice is demonstrated to have a pronounced effect on the observed far-field optical properties. Chapter 6 builds upon those theoretical data presented in chapter 5, including the experimental realization of size and shape dependent properties in DNA-programmed superlattices. Specifically, nanoparticle spacing is explored as a parameter that

  19. Magneto-optical properties of paramagnetic superrotors

    CERN Document Server

    Milner, A A; Floß, J; Averbukh, I Sh; Milner, V

    2014-01-01

    We study the dynamics of paramagnetic molecular superrotors in an external magnetic field. Optical centrifuge is used to create dense ensembles of oxygen molecules in ultra-high rotational states. In the presence of magnetic field, the gas of centrifuged molecules becomes optically birefringent, which indicates preferential alignment of molecular axes along the field direction. The experimental observations are supported by numerical calculations and explained by means of an intuitive qualitative model, in which the effect of the applied magnetic field on the distribution of molecular axes is mediated by the spin-rotation coupling. We show that the induced magneto-rotational birefringence is more robust with respect to collisions than the rotational coherence, and that this robustness increases with increasing angular momentum.

  20. Fundamental Stellar Properties from Optical Interferometry

    CERN Document Server

    van Belle, Gerard T; Boyajian, Tabetha; Harper, Graham; Hummel, Christian; Pedretti, Ettore; Baines, Ellyn; White, Russel; Ravi, Vikram; Ridgway, Steve

    2010-01-01

    High-resolution observations by visible and near-infrared interferometers of both single stars and binaries have made significant contributions to the foundations that underpin many aspects of our knowledge of stellar structure and evolution for cool stars. The CS16 splinter on this topic reviewed contributions of optical interferometry to date, examined highlights of current research, and identified areas for contributions with new observational constraints in the near future.

  1. Germanium quantum dots: Optical properties and synthesis

    Science.gov (United States)

    Heath, James R.; Shiang, J. J.; Alivisatos, A. P.

    1994-07-01

    Three different size distributions of Ge quantum dots (≳200, 110, and 60 Å) have been synthesized via the ultrasonic mediated reduction of mixtures of chlorogermanes and organochlorogermanes (or organochlorosilanes) by a colloidal sodium/potassium alloy in heptane, followed by annealing in a sealed pressure vessel at 270 °C. The quantum dots are characterized by transmission electron microscopy, x-ray powder diffraction, x-ray photoemission, infrared spectroscopy, and Raman spectroscopy. Colloidal suspensions of these quantum dots were prepared and their extinction spectra are measured with ultraviolet/visible (UV/Vis) and near infrared (IR) spectroscopy, in the regime from 0.6 to 5 eV. The optical spectra are correlated with a Mie theory extinction calculation utilizing bulk optical constants. This leads to an assignment of three optical features to the E(1), E(0'), and E(2) direct band gap transitions. The E(0') transitions exhibit a strong size dependence. The near IR spectra of the largest dots is dominated by E(0) direct gap absorptions. For the smallest dots the near IR spectrum is dominated by the Γ25→L indirect transitions.

  2. Mueller-matrix mapping of optically anisotropic fluorophores of molecular biological tissues in the diagnosis of death causes

    Science.gov (United States)

    Ushenko, A. G.; Dubolazov, A. V.; Ushenko, V. A.; Ushenko, Yu. A.; Pidkamin, L. Y.; Soltys, I. V.; Zhytaryuk, V. G.; Pavlyukovich, N.

    2016-09-01

    A model of generalized optical anisotropy of polycrystalline networks of albumin and globulin of human brain liquor has been suggested. The polarization-phase method of spatial and frequency differentiation of linear and circular birefringence coordinate distributions have been analytically substantiated. A set of criteria of the dynamics of necrotic changes of polarization-phase images of liquor polycrystalline films for determination of death coming prescription has been detected and substantiated.

  3. Optical Properties of Magnetron sputtered Nickel Thin Films

    Science.gov (United States)

    Twagirayezu, Fidele; Geerts, Wilhelmus J.; Cui, Yubo

    2015-03-01

    The study of optical properties of Nickel (Ni) is important, given the pivotal role it plays in the semiconductor and nano-electronics technology. Ni films were made by DC and RF magnetron sputtering in an ATC Orion sputtering system of AJA on various substrates. The optical properties were studied ex situ by variable angle spectroscopic (220-1000 nm) ellipsometry at room temperature. The data were modeled and analyzed using the Woollam CompleteEase Software fitting ellipsometric and transmission data. Films sputtered at low pressure have optical properties similar to that of Palik. Films sputtered at higher pressure however have a lower refraction index and extinction coefficient. It is expected from our results that the density of the sputtered films can be determined from the ellipsometric quantities. Our experiments also revealed that Ni is susceptible to a slow oxidation changing its optical properties over the course of several weeks. The optical properties of the native oxide differ from those of reactive sputtered NiO similar as found by. Furthermore the oxidation process of our samples is characterized by at least two different time constants.

  4. Controlling the coexistence of structural phases and the optical properties of gallium nanoparticles with optical excitation

    Science.gov (United States)

    MacDonald, K. F.; Fedotov, V. A.; Pochon, S.; Stevens, G.; Kusmartsev, F. V.; Emel'yanov, V. I.; Zheludev, N. I.

    2004-08-01

    We have observed reversible structural transformations, induced by optical excitation at 1.55 μm, between the β, γ and liquid phases of gallium in self-assembled gallium nanoparticles, with a narrow size distribution around 50 nm, on the tip of an optical fiber. Only a few tens of nanowatts of optical excitation per particle are required to control the transformations, which take the form of a dynamic phase coexistence and are accompanied by substantial changes in the optical properties of the nanoparticle film. The time needed to achieve phase equilibrium is in the microsecond range, and increases sharply near the transition temperatures.

  5. Electronic and optical properties of a metal-organic framework with ab initio many-body perturbation theory

    Science.gov (United States)

    Berland, Kristian; Lee, Kyuho; Sharifzadeh, Sahar; Neaton, Jeffrey B.

    2015-03-01

    With their unprecedented surface area, and their structural and chemical tunability, metal-organic frameworks (MOFs) are being thoroughly explored for applications related to gas storage. Less studied are their electronic, excited-state, and optical properties. Here we explored such properties of Mg-MOF-74 using a combination of density functional theory (DFT) and many-body perturbation theory (MBPT) within the GW approximation and the Bethe-Salpeter equation (BSE) approach. The near-gap electronic conduction states were found to fall into two distinct categories: molecular-like and 1d-dispersive. Further, using the BSE approach, we predict a strongly anisotropic absorption spectrum, which we link to the nature of its strongly-bound excitons. Our calculations are found to be in good agreement with experimental absorption spectra, validating our theoretical approach. This work is supported by Chalmers Area of Advance: Materials, Vetenskapsradet, DOE, and computational resources provided by NERSC.

  6. Optical and Electrical Properties of Nanostructured Metallic Electrical Contacts

    CERN Document Server

    Toranzos, Victor J; Mochán, W Luis; Zerbino, Jorge O

    2016-01-01

    We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation...

  7. Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO{sub 1-x}F{sub x} (x = 0, 0.1, 0.2, 0.25 and 0.3)

    Energy Technology Data Exchange (ETDEWEB)

    You, Y B; Hsiao, T K; Chang, B C; Tai, M F; Ku, H C [Department of Physics, National Tsing Hua University, Hsinchu 30013, Taiwan (China); Hsu, Y Y [Department of Physics, National Taiwan Normal University, Taipei 10677, Taiwan (China); Wei, Z; Ruan, K Q; Li, X G, E-mail: ypyou@phys.nthu.edu.tw [Department of Physics, University of Science and Technology of China, Hefei 230026 (China)

    2011-01-01

    Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO{sub 1-x}F{sub x} (x = 0, 0.1, 0.2, 0.25 and 0.3) are reported. Due to the Fe spin-orbital related anisotropic exchange coupling, all the tetragonal microcrystalline powders in epoxy were aligned at room temperature using the field-rotation method where the tetragonal ab-plane is parallel to the magnetic alignment field B{sub a} of 0.9 T and the c-axis parallels to the rotating axis. Anisotropic magnetic properties are studied through low temperature magnetic measurements along the c-axis and paralleled to the ab-plane of aligned samples in both zero-field-cooled (ZFC) and field-cooled (FC) modes. The under-doped compound (x = 0.1) is not superconducting with an antiferromagnetic Neel temperature T{sub N} {approx} 40 K, while the two optimum-doped compounds (x = 0.2 and 0.25) show high superconducting transition temperatures T{sub c} of 49K and 50K, respectively. The variation of anisotropic structural and magnetic properties for this system are discussed and compared with the previously reported 52 K anisotropic superconductor Sm{sub 0.95}La{sub 0.05}FeAsO{sub 0.85}F{sub 0.15}.

  8. Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3)

    Science.gov (United States)

    You, Y. B.; Hsiao, T. K.; Chang, B. C.; Tai, M. F.; Hsu, Y. Y.; Ku, H. C.; Wei, Z.; Ruan, K. Q.; Li, X. G.

    2011-01-01

    Anisotropic structural and magnetic properties of the field-aligned superconducting system SmFeAsO1-xFx (x = 0, 0.1, 0.2, 0.25 and 0.3) are reported. Due to the Fe spin-orbital related anisotropic exchange coupling, all the tetragonal microcrystalline powders in epoxy were aligned at room temperature using the field-rotation method where the tetragonal ab-plane is parallel to the magnetic alignment field Ba of 0.9 T and the c-axis parallels to the rotating axis. Anisotropic magnetic properties are studied through low temperature magnetic measurements along the c-axis and paralleled to the ab-plane of aligned samples in both zero-field-cooled (ZFC) and field-cooled (FC) modes. The under-doped compound (x = 0.1) is not superconducting with an antiferromagnetic Néel temperature TN ~ 40 K, while the two optimum-doped compounds (x = 0.2 and 0.25) show high superconducting transition temperatures Tc of 49K and 50K, respectively. The variation of anisotropic structural and magnetic properties for this system are discussed and compared with the previously reported 52 K anisotropic superconductor Sm0.95La0.05FeAsO0.85F0.15.

  9. Electrodeposited CdTe{emdash}optical properties

    Energy Technology Data Exchange (ETDEWEB)

    Rakhshani, A.E. [Physics Department, Kuwait University, PO Box 5969, Safat 13060 (Kuwait)

    1997-06-01

    For the measurement of optical constants, the electrodeposited films of CdTe were lifted off their opaque substrates and transferred onto glass slides using a transparent liquid adhesive. This technique proved to give results more reliable than those obtained on samples in which CdTe is deposited on CdS-coated conducting glass. The measured optical dispersion in the photon energy range of E{lt}1.5eV is in excellent agreement with that for the single crystal. The optical absorption coefficient was determined in the E{lt}3.5eV range and was compared with that for the single crystal. The results revealed two direct allowed transitions at 1.50 eV [{Gamma}{sub 8}valenceband(VB){r_arrow}{Gamma}{sub 6}conductionband(CB)] and 2.43 eV [{Gamma}{sub 7}(VB){r_arrow}{Gamma}{sub 6}(CB)] and three indirect allowed transitions at 1.27 eV [L{sub 4,5}(VB){r_arrow}{Gamma}{sub d}], 1.83 eV [L{sub 6}(VB){r_arrow}{Gamma}{sub d}], and 2.84 eV [{Gamma}{sub 8}(VB){r_arrow}L{sub 6}(CB)]. The 1.27 and the 1.83 eV transitions, which have not been reported previously and were not detected in single-crystal data, are attributed to the transitions to a grain-boundary-related defect energy band {Gamma}{sub d}, 0.65 eV above {Gamma}{sub 8} (VB). The indirect transitions at 1.83 and 2.84 eV are assisted by phonons having energies of 80 and 84 meV, respectively. {copyright} {ital 1997 American Institute of Physics.}

  10. Electrodeposited CdTe—optical properties

    Science.gov (United States)

    Rakhshani, A. E.

    1997-06-01

    For the measurement of optical constants, the electrodeposited films of CdTe were lifted off their opaque substrates and transferred onto glass slides using a transparent liquid adhesive. This technique proved to give results more reliable than those obtained on samples in which CdTe is deposited on CdS-coated conducting glass. The measured optical dispersion in the photon energy range of E<1.5 eV is in excellent agreement with that for the single crystal. The optical absorption coefficient was determined in the E<3.5 eV range and was compared with that for the single crystal. The results revealed two direct allowed transitions at 1.50 eV [Γ8 valence band(VB)→Γ6 conduction band(CB)] and 2.43 eV [Γ7(VB)→Γ6(CB)] and three indirect allowed transitions at 1.27 eV [L4,5(VB)→Γd], 1.83 eV [L6(VB)→Γd], and 2.84 eV [Γ8(VB)→L6(CB)]. The 1.27 and the 1.83 eV transitions, which have not been reported previously and were not detected in single-crystal data, are attributed to the transitions to a grain-boundary-related defect energy band Γd, 0.65 eV above Γ8 (VB). The indirect transitions at 1.83 and 2.84 eV are assisted by phonons having energies of 80 and 84 meV, respectively.

  11. Optical Properties of Bismuth Tellurite Based Glass

    Directory of Open Access Journals (Sweden)

    Hooi Ming Oo

    2012-04-01

    Full Text Available A series of binary tellurite based glasses (Bi2O3x (TeO2100−x was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi3+ increase, this is due to the increased polarization of the ions Bi3+ and the enhanced formation of non-bridging oxygen (NBO. The Fourier transform infrared spectroscopy (FTIR results show the bonding of the glass sample and the optical band gap, Eopt decreases while the refractive index increases when the ion Bi3+ content increases.

  12. Optical properties of bismuth tellurite based glass.

    Science.gov (United States)

    Oo, Hooi Ming; Mohamed-Kamari, Halimah; Wan-Yusoff, Wan Mohd Daud

    2012-01-01

    A series of binary tellurite based glasses (Bi(2)O(3))(x) (TeO(2))(100-) (x) was prepared by melt quenching method. The density, molar volume and refractive index increase when bismuth ions Bi(3+) increase, this is due to the increased polarization of the ions Bi(3+) and the enhanced formation of non-bridging oxygen (NBO). The Fourier transform infrared spectroscopy (FTIR) results show the bonding of the glass sample and the optical band gap, E(opt) decreases while the refractive index increases when the ion Bi(3+) content increases.

  13. Structural Stability and Optical Properties of Nanomaterials with Reconstructed Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Puzder, A; Williamson, A; Reboredo, F; Galli, G

    2003-10-24

    The authors present density functional and quantum Monte Carlo calculations of the stability and optical properties of semiconductor nanomaterials with reconstructed surfaces. they predict the relative stability of silicon nanostructures with reconstructed and unreconstructed surfaces, and show that surface step geometries unique to highly curved surfaces dramatically reduce the optical gaps and decrease excitonic lifetimes. These predictions provide an explanation of both the variations in the photoluminescence spectra of colloidally synthesized nanoparticles and observed deep gap levels in porous silicon.

  14. Nonlinear Optical Properties and Femtosecond Laser Micromachining of Special Glasses

    OpenAIRE

    Almeida,Juliana M. P.; Gustavo F. B. Almeida; Boni, Leonardo De; Cleber R. Mendonça

    2015-01-01

    Materials specially designed for photonics have been at the vanguard of chemistry, physics and materials science, driven by the development of new technologies. One particular class of materials investigated in this context are glasses, that in principle should exhibit high third order optical nonlinearities and fast response time, whose optical properties can be tailored by compositional changes, such as, for instance, the incorporation of metallic nanoparticles to explore plasmon resonances...

  15. Thin Film Solar Cells and their Optical Properties

    Directory of Open Access Journals (Sweden)

    Stanislav Jurecka

    2006-01-01

    Full Text Available In this work we report on the optical parameters of the semiconductor thin film for solar cell applications determination. The method is based on the dynamical modeling of the spectral reflectance function combined with the stochastic optimization of the initial reflectance model estimation. The spectral dependency of the thin film optical parameters computations is based on the optical transitions modeling. The combination of the dynamical modeling and the stochastic optimization of the initial theoretical model estimation enable comfortable analysis of the spectral dependencies of the optical parameters and incorporation of the microstructure effects on the solar cell properties. The results of the optical parameters ofthe i-a-Si thin film determination are presented.

  16. Optical properties of lead–bismuth cuprous glasses

    Indian Academy of Sciences (India)

    P T Deshmukh; D K Burghate; V S Deogaonkar; S P Yawale; S V Pakade

    2003-10-01

    The optical transmission and absorption spectra in UV–VIS were recorded in the wavelength range 350–800 nm for different glass compositions in the system (CuO)(PbO)50–(Bi2O3)50 ( = 2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 20.0). Absorption coefficient (), optical energy gap (opt), refractive index (D), optical dielectric constant ($\\varepsilon_{\\infty}^{′}$), measure of extent of band tailing ( ), constant () and ratio of carrier concentration to the effective mass (/*) have been reported. The effects of compositions of glasses on these parameters have been discussed. It has been indicated that a small compositional modification of the glasses lead to an important change in all the optical properties including non-linear behaviour. The optical parameters were found to be almost the same for different glasses in the same family.

  17. An investigation of aerosol optical properties: Atmospheric implications and influences

    Science.gov (United States)

    Penaloza-Murillo, Marcos A.

    An experimental, observational, and theoretical investigation of aerosol optical properties has been made in this work to study their implications and influences on the atmosphere. In the laboratory the scientific and instrumental methodology consisted of three parts, namely, aerosol generation, optical and mass concentration measurements, and computational calculations. In particular the optical properties of ammonium sulfate and caffeine aerosol were derived from measurements made with a transmissometer cell-reciprocal- integrating nephelometer (TCRIN), equipped with a laser beam at 632.8 nm, and by applying a Mie theory computer code The aerosol generators, optical equipment and calibration procedures were reviewed. The aerosol shape and size distribution were studied by means of scanning electron microscopy and the Gumprecht- Sliepcevich/Lipofsky-Green extinction-sedimentation method. In particular the spherical and cylindrical shape were considered. During this investigation, an alternative method for obtaining the optical properties of monodisperse spherical non-absorbing aerosol using a cell-transmissometer, which is based on a linearisation of the Lambert-Beer law, was found. In addition, adapting the TCRIN to electrooptical aerosol studies, the optical properties of a circular-cylindrical aerosol of caffeine were undertaken under the condition of random orientation in relation with the laser beam, and perpendicular orientation to it. A theoretical study was conducted to assess the sensitivity of aerosol to a change of shape under different polarisation modes. The aerosol optical properties, obtained previously in the laboratory, were then used to simulate the direct radiative forcing. The calculations and results were obtained by applying a one- dimensional energy-balance box model. The influence of atmospheric aerosol on the sky brightness due to a total solar eclipse was studied using the photometric and meteorological observations made during the

  18. Thermoelectric properties, electronic structure and optoelectronic properties of anisotropic Ba{sub 2}Tl{sub 2}CuO{sub 6} single crystal from DFT approach

    Energy Technology Data Exchange (ETDEWEB)

    Reshak, A.H. [New Technologies - Research Center, University of West, Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Khan, Saleem Ayaz, E-mail: sayaz_usb@yahoo.com [New Technologies - Research Center, University of West, Bohemia, Univerzitni 8, 30614 Pilsen (Czech Republic)

    2014-03-15

    First principle calculation was performed for the electronic structure, electronic charge density, Fermi surface, optical and thermoelectric properties of Ba{sub 2}Tl{sub 2}CuO{sub 6} compound. From the electronic band structure the two overlapping bands and the density of state at Fermi level (29.2 states/Ryd-cell) confirms the superconducting behavior. Colors of the Fermi surface elucidate speed of electrons and strength of the superconductivity as well. The bonding nature was investigated using the calculated charge density contour plot, it shows mixed ionic-covalent nature of Cu3O and Tl3O while Ba3O shows dominant ionic nature with small covalency. The optical properties were calculated and discussed in details. The calculated uniaxial anisotropy value (0.7913) clarifies a considerable anisotropy between two dominant tensor components of dielectric function. Moreover the evaluation of Seebeck coefficient and thermal conductivity conform that the compound is much suitable for thermoelectric applications. - Highlights: • DFT calculation, for density of state at Fermi level confirm the superconducting behavior of Ba{sub 2}Tl{sub 2}CuO{sub 6}. • Colors of the Fermi surface show speed of electrons and strength of superconductor. • Electronic charge density was obtained which illuminate bonding nature. • The calculated uniaxial anisotropy is 0.7913, indicating the strong anisotropy. • Seebeck coefficient and thermal conductivity were calculated and discussed.

  19. Using electron microscopy to calculate optical properties of biological samples.

    Science.gov (United States)

    Wu, Wenli; Radosevich, Andrew J; Eshein, Adam; Nguyen, The-Quyen; Yi, Ji; Cherkezyan, Lusik; Roy, Hemant K; Szleifer, Igal; Backman, Vadim

    2016-11-01

    The microscopic structural origins of optical properties in biological media are still not fully understood. Better understanding these origins can serve to improve the utility of existing techniques and facilitate the discovery of other novel techniques. We propose a novel analysis technique using electron microscopy (EM) to calculate optical properties of specific biological structures. This method is demonstrated with images of human epithelial colon cell nuclei. The spectrum of anisotropy factor g, the phase function and the shape factor D of the nuclei are calculated. The results show strong agreement with an independent study. This method provides a new way to extract the true phase function of biological samples and provides an independent validation for optical property measurement techniques.

  20. Origin of Interplanetary Dust through Optical Properties of Zodiacal Light

    CERN Document Server

    Yang, Hongu

    2015-01-01

    This study investigates the origin of interplanetary dust particles (IDPs) through the optical properties, albedo and spectral gradient, of zodiacal light. The optical properties were compared with those of potential parent bodies in the solar system, which include D-type (as analogue of cometary nuclei), C-type, S-type, X-type, and B-type asteroids. We applied Bayesian inference on the mixture model made from the distribution of these sources, and found that >90% of the interplanetary dust particles originate from comets (or its spectral analogues, D-type asteroids). Although some classes of asteroids (C-type and X-type) may make a moderate contribution, ordinary chondrite-like particles from S-type asteroids occupy a negligible fraction of the interplanetary dust cloud complex. The overall optical properties of the zodiacal light were similar to those of chondritic porous IDPs, supporting the dominance of cometary particles in zodiacal cloud.

  1. Determination of optical properties by variation of boundary conditions

    Science.gov (United States)

    Nickell, Stephan; Essenpreis, Matthias; Kraemer, U.; Kohl-Bareis, Matthias; Boecker, Dirk

    1998-01-01

    Propagation of photons in multiple scattering media depends on absorbing and scattering properties as well as the boundary conditions of the semi-infinite medium. A new method is shown that makes use of differences in boundary conditions to determine the optical properties. Induced are these different conditions by varying the reflectivity of a sensor head. We describe the influence of the change in reflectivity with the common diffusion theory. By building a ratio between the spatially-resolved diffuse reflectance under different boundary conditions it is possible to calculate the optical properties of homogeneous phantoms. Due to optical heterogeneities in living tissue, limitations of the method was observed, which restricts the application to in vivo measurements.

  2. Measuring the optical properties of IceCube drill holes

    Directory of Open Access Journals (Sweden)

    Rongen Martin

    2016-01-01

    Full Text Available The IceCube Neutrino Observatory consists of 5160 digital optical modules (DOMs in a cubic kilometer of deep ice below the South Pole. The DOMs record the Cherenkov light from charged particles interacting in the ice. A good understanding of the optical properties of the ice is crucial to the quality of the event reconstruction. While the optical properties of the undisturbed ice are well understood, the properties of the refrozen drill holes still pose a challenge. A new data-acquisition and analysis approach using light originating from LEDs within one DOM detected by the photomultiplier of the same DOM will be described. This method allows us to explore the scattering length in the immediate vicinity of the considered DOMs.

  3. Photoconductive and nonlinear optical properties of composites based on metallophthalocyanines

    Science.gov (United States)

    Vannikov, A. V.; Grishina, A. D.; Gorbunova, Yu. G.; Tsivadze, A. Yu.

    2015-08-01

    The photoconductive, photorefractive and nonlinear optical properties of composites from polyvinylcarbazole or aromatic polyimide containing supramolecular ensembles of (tetra-15-crown-5) - phthalocyaninato gallium, indium, - phthalocyaninateacetato yttrium, - phthalocyaninato ruthenium with axially coordinated pyrazine molecules were investigated at 633, 1030 and 1064nmusing continuous and pulsed lasers. Supramolecular ensembles (SE) were prepared through dissolution of molecular metallophthalocyanines in tetrachloroethane (TCE) and subsequent treatment via three cycles of heating to 90∘C and slow cooling to room temperature. The zscan method in femtosecond and nanosecond regimeswas used for measuring nonlinear optical properties phthalocyaninato indium and yttrium in TCE solutions and polymer films. It was established that effect of heavy metallic atom is basic factor which determines the quantum yield, photorefractive amplification of laser object beam, dielectric susceptibility of third order and nonlinear optical properties of metallophthalocyanines.

  4. Dependence of optical properties of calcium bismuthates on synthesis conditions

    Science.gov (United States)

    Shtarev, D. S.; Shtareva, A. V.

    2016-08-01

    The article studies optical properties of calcium bismuthate nanoparticles of different composition. For the first time the synthesis of these compounds was produced by the pyrolysis of organic precursors using an organic solvent. Characterization of particles was made by scanning electron microscopy and X-ray analysis. The optical properties were investigated by diffuse reflectance spectroscopy (DRS). It is shown that the type of crystal lattice of the particles of calcium bismuthate determines the possibility to control the optical properties of nanoparticles by varying their composition. The conclusions about the production process and the composition of calcium bismuthate, the most promising for use as a photocatalyst of visible light and solar cells, were made.

  5. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.;

    2015-01-01

    species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... frustules. We have observed, when incident light interacts w ith the micro-structured frustule it is multiple diffracted giving rise to wavelength dependent multiple focal points and other optical effects. Experimental results have been simulated and well confirmed by free space FFT propagation routine...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...

  6. Optical Properties Of Nanometer-Scale Structures

    CERN Document Server

    Kudykina, T A

    2016-01-01

    Two approaches (micro- and macro- investigations) are used to determine the dimension dependences of the optical parameters of the nanometer-scale layers of materials. It is shown that both an index of refraction and coefficient of absorption depend strongly on the thickness of the layer. In this region of thicknesses, the dimension resonance occurs, where an index of refraction has a maximum and a coefficient of absorption has a minimum. The numerical calculation of the optical parameters of some materials (Ag, Al, Fe, Ge, Si, Se, Te) have been carried out with the use of the experimental data of reflection and transparency of thin layers, obtained in a series of works, and with our formulas for the wave amplitudes and the laws of refractions. The analogues of the Fresnel formulas and the Snell law have been derived from the Maxwell boundary conditions where the absorption and conductivity of media were taken into account. The use of our formulas for the wave amplitudes leads to the fulfillment of the conser...

  7. Nonlinear optical properties of sodium copper chlorophyllin in aqueous solution.

    Science.gov (United States)

    Li, Jiangting; Peng, Yufeng; Han, Xueyun; Guo, Shaoshuai; Liang, Kunning; Zhang, Minggao

    2017-06-16

    Sodium copper chlorophyllin (SCC), as one of the derivatives of chlorophyll - with its inherent green features; good stability for heat, light, acids and alkalies; unique antimicrobial capability; and particular deodori zation performance - is widely applied in some fields such as the food industry, medicine and health care, daily cosmetic industry etc. SCC, as one of the metal porphyrins, has attracted much attention because of its unique electronic band structure and photon conversion performance. To promote the application of SCC in materials science; energy research and photonics, such as fast optical communications; and its use in nonlinear optical materials, solar photovoltaic cells, all-optical switches, optical limiters and saturable absorbers, great efforts should be dedicated to studying its nonlinear optical (NLO) properties. In this study, the absorption spectra and NLO properties of SCC in aqueous solution at different concentrations were measured. The Z-scan technique was used to determine NLO properties. The results indicated that the absorption spectra of SCC exhibit 2 characteristic absorption peaks located at the wavelengths 405 and 630 nm, and the values of the peaks increase with increasing SCC concentration. The results also showed that SCC exhibits reverse saturation absorption and negative nonlinear refraction (self-defocusing). It can be seen that SCC has good optical nonlinearity which will be convenient for applications in materials science, energy research and photonics.

  8. A general methodology for inverse estimation of the elastic and anelastic properties of anisotropic open-cell porous materials—with application to a melamine foam

    Energy Technology Data Exchange (ETDEWEB)

    Cuenca, Jacques, E-mail: jcuenca@kth.se; Van der Kelen, Christophe; Göransson, Peter [Marcus Wallenberg Laboratory for Sound and Vibration Research, Royal Institute of Technology (KTH), Teknikringen 8, SE-10044 Stockholm (Sweden)

    2014-02-28

    This paper proposes an inverse estimation method for the characterisation of the elastic and anelastic properties of the frame of anisotropic open-cell foams used for sound absorption. A model of viscoelasticity based on a fractional differential constitutive equation is used, leading to an augmented Hooke's law in the frequency domain, where the elastic and anelastic phenomena appear as distinctive terms in the stiffness matrix. The parameters of the model are nine orthotropic elastic moduli, three angles of orientation of the material principal directions and three parameters governing the anelastic frequency dependence. The inverse estimation consists in numerically fitting the model on a set of transfer functions extracted from a sample of material. The setup uses a seismic-mass measurement repeated in the three directions of space and is placed in a vacuum chamber in order to remove the air from the pores of the sample. The method allows to reconstruct the full frequency-dependent complex stiffness matrix of the frame of an anisotropic open-cell foam and in particular it provides the frequency of maximum energy dissipation by viscoelastic effects. The characterisation of a melamine foam sample is performed and the relation between the fractional-derivative model and other types of parameterisations of the augmented Hooke's law is discussed.

  9. Nonlinear optical properties of manganese porphyrin-incorporated PVC film

    Directory of Open Access Journals (Sweden)

    Jeong-Hyon Ha

    2010-12-01

    Full Text Available We measured thermally originated solid phase nonlinear optical properties of manganese porphyrin-incorporated PVC polymer film using CW low-power Z-scan and optical power limiting methods. The nonlinear refractive index (n2 of this porphyrin film is estimated to have a negative value of 7.2 ⅹ10-5 cm2/W at 632.8 nm and to be larger than that of ZnTPP in the Nafion film. The photodegradation effect common in the solution phase appears to be minor in this solid phase system. The large nonlinear effect is thought to limit the optical power due to the aperture effect.

  10. Optical Writing of Magnetic Properties by Remanent Photostriction.

    Science.gov (United States)

    Iurchuk, V; Schick, D; Bran, J; Colson, D; Forget, A; Halley, D; Koc, A; Reinhardt, M; Kwamen, C; Morley, N A; Bargheer, M; Viret, M; Gumeniuk, R; Schmerber, G; Doudin, B; Kundys, B

    2016-09-02

    We present an optically induced remanent photostriction in BiFeO_{3}, resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO_{3}/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO_{3}. Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

  11. Optical Writing of Magnetic Properties by Remanent Photostriction

    Science.gov (United States)

    Iurchuk, V.; Schick, D.; Bran, J.; Colson, D.; Forget, A.; Halley, D.; Koc, A.; Reinhardt, M.; Kwamen, C.; Morley, N. A.; Bargheer, M.; Viret, M.; Gumeniuk, R.; Schmerber, G.; Doudin, B.; Kundys, B.

    2016-09-01

    We present an optically induced remanent photostriction in BiFeO3 , resulting from the photovoltaic effect, which is used to modify the ferromagnetism of Ni film in a hybrid BiFeO3/Ni structure. The 75% change in coercivity in the Ni film is achieved via optical and nonvolatile control. This photoferromagnetic effect can be reversed by static or ac electric depolarization of BiFeO3 . Hence, the strain dependent changes in magnetic properties are written optically, and erased electrically. Light-mediated straintronics is therefore a possible approach for low-power multistate control of magnetic elements relevant for memory and spintronic applications.

  12. Low-repetition rate femtosecond laser writing of optical waveguides in KTP crystals: analysis of anisotropic refractive index changes.

    Science.gov (United States)

    Butt, Muhammad Ali; Nguyen, Huu-Dat; Ródenas, Airán; Romero, Carolina; Moreno, Pablo; Vázquez de Aldana, Javier R; Aguiló, Magdalena; Solé, Rosa Maria; Pujol, Maria Cinta; Díaz, Francesc

    2015-06-15

    We report on the direct low-repetition rate femtosecond pulse laser microfabrication of optical waveguides in KTP crystals and the characterization of refractive index changes after the thermal annealing of the sample, with the focus on studying the potential for direct laser fabricating Mach-Zehnder optical modulators. We have fabricated square cladding waveguides by means of stacking damage tracks, and found that the refractive index decrease is large for vertically polarized light (c-axis; TM polarized) but rather weak for horizontally polarized light (a-axis; TE polarized), this leading to good near-infrared light confinement for TM modes but poor for TE modes. However, after performing a sample thermal annealing we have found that the thermal process enables a refractive index increment of around 1.5x10(-3) for TE polarized light, while maintaining the negative index change of around -1x10(-2) for TM polarized light. In order to evaluate the local refractive index changes we have followed a multistep procedure: We have first characterized the waveguide cross-sections by means of Raman micro-mapping to access the lattice micro-modifications and their spatial extent. Secondly we have modeled the waveguides following the modified region sizes obtained by micro-Raman with finite element method software to obtain a best match between the experimental propagation modes and the simulated ones. Furthermore we also report the fabrication of Mach-Zehnder structures and the evaluation of propagation losses.

  13. Optical properties of organic and semiconductor nanostructures

    NARCIS (Netherlands)

    Jeukens, C.R.L.P.N.

    2005-01-01

    Nanostructures have at least one of their dimensions in the range 1-100 nm. Fabricating new, well-defined nanoscale objects and studying their physical properties is of importance, because it can lead to the development of potentially useful materials, novel device applications, and the discovery of

  14. Prediction of nonlinear optical properties of large organic molecules

    Science.gov (United States)

    Cardelino, Beatriz H.

    1992-01-01

    The preparation of materials with large nonlinear responses usually requires involved synthetic processes. Thus, it is very advantageous for materials scientists to have a means of predicting nonlinear optical properties. The prediction of nonlinear optical properties has to be addressed first at the molecular level and then as bulk material. For relatively large molecules, two types of calculations may be used, which are the sum-over-states and the finite-field approach. The finite-field method was selected for this research, because this approach is better suited for larger molecules.

  15. Nonlocal optical properties in periodic lattice of graphene layers.

    Science.gov (United States)

    Chern, Ruey-Lin; Han, Dezhuan

    2014-02-24

    Based on the effective medium model, nonlocal optical properties in periodic lattice of graphene layers with the period much less than the wavelength are investigated. Strong nonlocal effects are found in a broad frequency range for TM polarization, where the effective permittivity tensor exhibits the Lorentzian resonance. The resonance frequency varies with the wave vector and coincides well with the polaritonic mode. Nonlocal features are manifest on the emergence of additional wave and the occurrence of negative refraction. By examining the characters of the eigenmode, the nonlocal optical properties are attributed to the excitation of plasmons on the graphene surfaces.

  16. Liquid Xe scintillation calorimetry and Xe optical properties

    CERN Document Server

    Baldini, A; Cei, F; Doke, T; Grassi, M; Haruyama, T; Mihara, S; Mori, T; Nicolò, D; Nishiguchi, H; Ootani, W; Ozone, K; Papa, A; Pazzi, R; Sawada, R; Sergiampietri, F; Signorelli, G; Suzuki, S; Terasawa, K

    2004-01-01

    The optical properties of LXe in the vacuum ultra violet (VUV), determining the performance of a scintillation calorimeter, are discussed in detail. The available data, measured in a wider spectral region from visible to UV light, and in a large range of Xe densities, from gas to liquid, are examined. It is shown that this information can be used for deriving the LXe optical properties in the VUV. A comparison is made with the few direct measurements in LXe for VUV light resulting from the LXe excitation by ionizing particles. A useful relation is obtained which connects the Rayleigh scattering length to the refractive index in LXe.

  17. Simulation of integrated optical network (IPON) properties

    Science.gov (United States)

    Siska, Petr; Koudelka, Petr; Latal, Jan; Vitasek, Jan; Kepak, Stanislav; Vašinek, Vladimír.

    2014-09-01

    There is an increasing pressure nowadays on the efficient use of existing ICT infrastructure in order to provide the latest services for corporate customers or end users. With the increase in number of services, requirements for optical networks of all hierarchies are increasing as well. This increase in the requirements, however, involves risks which must be faced by Internet service providers. These include the maximum use of spectral range, bandwidth and reachable distance, suppression of dispersion effect, route planning efficiency, CAPEX and OPEX costs management, or successful combination of technologies of deployed networks. The aim of this article is to present the problems associated with interconnection of WDM-PON and ver.2 EPON (IEEE 802.3ah standard). The entire simulation is based on real parameters, which were provided by the manufacturers of the technologies and then measured in the laboratory. Then we were able to perform simulations based on more realistic features of these technologies.

  18. Processing, properties, and applications of sol-gel silica optics

    Science.gov (United States)

    Nogues, Jean-Luc R.; LaPaglia, Anthony J.

    1989-12-01

    For many years the market share maintained by U.S. optics manufacturers has been declining continuously caused in part by intense competition principally from countries in the Far East, and in part by the lack of a highly trained cadre of opticians to replace the current generation. This fact could place in jeopardy the defense system of the United States in case of international war. For example, in 1987, optical glass component imports accounted for approximately 50 percent of the Department of Defense (DOD) consumption. GELTECH's sol-gel technology is a new process for making a high quality optical glass and components for commercial and military uses. This technology offers in addition to being a local source of optics, the possibility to create new materials for high-tech optical applications, and the elimination of the major part of grinding and polishing for which the skill moved off-shore. This paper presents a summary of the solgel technology for the manufacture of high quality optical glass and components. Properties of pure silica glass made by solgel process (Type V and Type VI silicas) are given and include: ultraviolet, visible and near infrared spectrophotometry, optical homogeneity and thermal expansion. Many applications such as near net shape casting or Fresnel lens surface replication are discussed. Several potential new applications offered by the solgel technology such as organic-inorganic composites for non linear optics or scintillation detection are also reported in this paper.

  19. Optical and magneto-optical properties of aligned Ni nanowires embedded in polydimethylsiloxane

    Energy Technology Data Exchange (ETDEWEB)

    Hamidi, S.M., E-mail: m_hamidi@sbu.ac.ir [Magneto-plasmonic lab, Laser and plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Sobhani, A. [Magneto-plasmonic lab, Laser and plasma Research Institute, G. C. Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Aftabi, A. [Physics department, Shahid Beheshti University, Tehran (Iran, Islamic Republic of); Najafi, M. [Department of materials engineering, Hamedan university of technology, Hamedan (Iran, Islamic Republic of)

    2015-01-15

    We report the magnetic, optical and magneto-optical properties of aligned Nickel nanowires embedded in polydimethylsiloxane matrix. The NWs prepared by electrodeposition method in anodic alumina template and then dispersed in ethanol and placed in a heater to evaporate the ethanol and finally dispersed in PDMS matrix to reach to the composite. The used external magnetic field arranges the NWs and our aligned NWs were investigated by magnetic hysteresis loop, surface plasmon resonance and spectral magneto-optical techniques. Our results show that these aligned NWs have a sufficient squareness, a strong increase of the magneto-optical response in visible range and very good surface plasmon resonance. - Highlights: • Magnetic, optical and magneto-optical properties of aligned Nickel nanowires embedded in polydimethylsiloxane matrix have been investigated. • Magnetic hysteresis loop, surface plasmon resonance and spectral magneto-optical techniques have been measured. • Aligned NWs have a sufficient squareness. • Strong increase of the magneto-optical response takes place in the visible range. • Very good surface plasmon resonance has been occurred.

  20. Viscoelastic and optical properties of four different PDMS polymers

    Science.gov (United States)

    Deguchi, Shinji; Hotta, Junya; Yokoyama, Sho; Matsui, Tsubasa S.

    2015-09-01

    Polydimethylsiloxane (PDMS) is the most commonly used silicone elastomer with a wide range of applications including microfluidics and microcontact printing. Various types of PDMS are currently available, and their bulk material properties have been extensively investigated. However, because the properties are rarely compared in a single study, it is often unclear whether the large disparity of the reported data is attributable to the difference in methodology or to their intrinsic characteristics. Here we report on viscoelastic properties and optical properties of four different PDMS polymers, i.e. Sylgard-184, CY52-276, SIM-360, and KE-1606. Our results show that all the PDMSs are highly elastic rather than viscoelastic at the standard base/curing agent ratios, and their quantified elastic modulus, refractive index, and optical cleanness are similar but distinct in magnitude.

  1. Experimental Investigation of the Anisotropic Mechanical Properties of a Columnar Jointed Rock Mass: Observations from Laboratory-Based Physical Modelling

    Science.gov (United States)

    Ji, H.; Zhang, J. C.; Xu, W. Y.; Wang, R. B.; Wang, H. L.; Yan, L.; Lin, Z. N.

    2017-07-01

    Because of the complex geological structure, determination of the field mechanical parameters of the columnar jointed rock mass (CJRM) was a challenging task in the design and construction of the Baihetan hydropower plant. To model the mechanical behaviour of the CJRM, uniaxial compression tests were conducted on artificial CJRM specimens with geological structure similar to that found in the actual CJRM. Based on the test results, the anisotropic deformation and strength were mainly analysed. The empirical correlations of evaluating the field mechanical parameters were derived based on the joint factor approach and the modulus reduction factor method. The findings of the physical model tests were then used to estimate the field moduli and unconfined compressive strengths of the Baihetan CJRM. The results predicted by physical model tests were compared with those obtained from the field tests and the RMR classification system. It is concluded that physical model tests were capable of providing valuable estimations on the field mechanical parameters of the CJRM.

  2. Optical and Thermal Properties of In2S3

    Directory of Open Access Journals (Sweden)

    Faycel Saadallah

    2011-01-01

    Full Text Available Photothermal deflection spectroscopy (PDS is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  3. Optical and Thermal Properties of In2S3

    OpenAIRE

    Faycel Saadallah; Neila Jebbari; Najoua Kammoun; Noureddine Yacoubi

    2011-01-01

    Photothermal deflection spectroscopy (PDS) is carried out in order to investigate thermal and optical properties of Al doped In2S3. The influence of thermal annealing on its gap energy as well as its thermal properties is revealed. In this way, we notice that thermal conductivity is increased and the gap energy is reduced. These features are probably due to the improvement of the crystalline structure of the sample.

  4. Synthesis and Optical Properties of ZnO Nanostructures

    OpenAIRE

    2008-01-01

    One-dimensional ZnO nanostructures have great potential applications in the fields of optoelectronic and sensor devices. Therefore, it is really important to realize the controllable growth of one-dimensional ZnO nanostructures and investigate their properties. The main points for this thesis are not only to successfully realize the controllable growth of ZnO nonawires, nanorods and quantum dots (QDs), and also investigate the structure and optical properties in detail by the methods of scan ...

  5. Optical modelling data for room temperature optical properties of organic–inorganic lead halide perovskites

    Directory of Open Access Journals (Sweden)

    Yajie Jiang

    2015-06-01

    Full Text Available The optical properties of perovskites at ambient temperatures are important both to the design of optimised solar cells as well as in other areas such as the refinement of electronic band structure calculations. Limited previous information on the optical modelling has been published. The experimental fitting parameters for optical constants of CH3NH3PbI3−xClx and CH3NH3PbI3 perovskite films are reported at 297 K as determined by detailed analysis of reflectance and transmittance data. The data in this study is related to the research article “Room temperature optical properties of organic–inorganic lead halide perovskites” in Solar Energy Materials & Solar Cells [1].

  6. On the digital holographic interferometry of fibrous material, I: Optical properties of polymer and optical fibers

    Science.gov (United States)

    Yassien, K. M.; Agour, M.; von Kopylow, C.; El-Dessouky, H. M.

    2010-05-01

    Digital holographic interferometry (DHI) was utilized for investigating the optical properties of polymer and optical fibers. The samples investigated here were polyvinylidene fluoride (PVDF) polymer fiber and graded-index (GRIN) optical fiber. The phase shifting Mach-Zehnder interferometer was used to obtain five phase-shifted holograms, in which the phase difference between two successive holograms is π/2, for each fiber sample. These holograms were recorded using a CCD camera and were combined to gain the complex wavefield, which was numerically reconstructed using the convolution approach into amplitude and phase distributions. The reconstructed phase distribution was used to determine the refractive index, birefringence and refractive index profile of the studied samples. The mean refractive index has been measured with an accuracy up to 4×10 -4. The main advantage of DHI is to overcome the manual focusing limitations by means of the numerical focusing. The results showed accurate measurements of the optical properties of fibers.

  7. Nonlinear optical and optical limiting properties of polymeric carboxyl phthalocyanine coordinated with rare earth atom

    Science.gov (United States)

    Zhao, Peng; Wang, Zonghua; Chen, Jishi; Zhou, Yu; Zhang, Fushi

    2017-04-01

    The nonlinear optical properties of the polymeric carboxyl phthalocyanine with lanthanum (LaPPc.COOH), holmium (HoPPc.COOH) and ytterbium (YbPPc.COOH) as centric atom, were investigated by the Z-scan method using a picosecond 532 nm laser. The synthesized phthalocyanines had steric polymeric structure and dissolved well in aqueous solution. The nonlinear optical response of them was attributed to the reverse saturable absorption and self-focus refraction. The nonlinear absorption properties decreased with the centric atoms changing from La, Ho to Yb. The largest second-order hyperpolarizability and optical limiting response threshold of LaPPc.COOH were 3.89 × 10-29 esu and 0.32 J/cm2, respectively. The reverse saturable absorption was explained by a three level mode of singlet excited state under the picosecond irradiation. The result indicates the steric structure presented additive stability of these polymeric phthalocyanines for their application as potential optical limiting materials.

  8. Optical properties of aluminum oxide thin films and colloidal nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Koushki, E., E-mail: ehsan.koushki@yahoo.com [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Physics Department, Hakim Sabzevari University, Sabzevar (Iran, Islamic Republic of); Mousavi, S.H. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Jafari Mohammadi, S.A. [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany); Department of Chemistry, College of Science, Islamshahr Branch, Islamic Azad University, Tehran (Iran, Islamic Republic of); Majles Ara, M.H. [Photonics Laboratory, Physics Faculty, Kharazmi University, Tehran (Iran, Islamic Republic of); Oliveira, P.W. de [INM—Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken (Germany)

    2015-10-01

    In this work, we prepared thin films of aluminum oxide (Al{sub 2}O{sub 3}) with different thicknesses, using a wet chemical process. The Al{sub 2}O{sub 3} nanoparticles with an average size of 40 nm were dispersed in water and deposited on soda glass substrates. The morphology of the resulting thin films was characterized by means of scanning electron microscopy. The optical properties of the thin films were studied by measuring reflectance and transmittance. A theoretical description of the reflection and transmission mechanism of the films was developed by measuring the thickness and spectral behavior of the refractive index. Numerical evaluations were used for modeling the optical spectra of the thin films of alumina. By fitting numerical curves to the experimental data, the extinction coefficient and refractive index were obtained. The dielectric constant and optical properties of the colloidal solution of the particles were also studied. - Highlights: • Optical properties of alumina thin films and nanocolloids were investigated. • New theoretical depiction of transmission and reflection from the thin films was evaluated. • Interference in reflection from thin films was studied. • Real and imaginary parts of the dielectric constant for alumina nanoparticles were calculated. • Using a novel method, evaluation of optical dispersion and UV–visible absorption were performed.

  9. Peculiarities of spectral properties of a one-dimensional photonic crystal with an anisotropic defect layer of the nanocomposite with resonant dispersion

    Energy Technology Data Exchange (ETDEWEB)

    Vetrov, S Ya; Timofeev, I V [L.V.Kirensky Institute of Physics, Siberian Branch of the Russian Academy of Sciences, Academgorodok, Krasnoyarsk (Russian Federation); Pankin, P S [Siberian Federal University, Krasnoyarsk (Russian Federation)

    2014-09-30

    We have studied the spectral properties of a one-dimensional photonic crystal with a structure defect that represents an anisotropic nanocomposite layer sandwiched between two multilayer dielectric mirrors. The nanocomposite consists of metallic nanoscale inclusions of orientationally ordered spheroidal shape, dispersed in a transparent matrix, and is characterised by an effective resonant permittivity. Each of the two orthogonal polarisations of probe radiation corresponds to a particular plasmon resonant frequency of the nanocomposite. The problem of calculating the transmittance spectrum of the waves with s- and p-polarisations for such structures is solved. Spectral manifestation of splitting of the defect mode depending on the structure parameters and volumetric fraction of the nanospheroids is studied. The essential dependence of the position of maxima of the defect modes in the bandgap of the photonic crystal and their splitting on the incidence angle, polarisation, and the ratio of lengths of the polar and equatorial semi-axes of the spheroidal nanoparticles is shown. (photonic crystals)

  10. Planck-scale constraints on anisotropic Lorentz and C P T invariance violations from optical polarization measurements

    Science.gov (United States)

    Kislat, Fabian; Krawczynski, Henric

    2017-04-01

    Lorentz invariance is the fundamental symmetry of Einstein's theory of special relativity and has been tested to a great level of detail. However, theories of quantum gravity at the Planck scale indicate that Lorentz symmetry may be broken at that scale, motivating further tests. While the Planck energy is currently unreachable by experiment, tiny residual effects at attainable energies can become measurable when photons propagate over sufficiently large distances. The Standard-Model extension (SME) is an effective field-theory approach to describe low-energy effects of quantum gravity theories. Lorentz- and C P T -symmetry-violating effects are introduced by adding additional terms to the Standard-Model Lagrangian. These terms can be ordered by the mass dimension of the corresponding operator, and the leading terms of interest have dimension d =5 . Effects of these operators are a linear variation of the speed of light with photon energy, and a rotation of the linear polarization of photons quadratic in photon energy, as well as anisotropy. We analyze optical polarization data from 72 active galactic nuclei and GRBs and derive the first set of limits on all 16 coefficients of mass dimension d =5 of the SME photon sector. Our constraints imply a lower limit on the energy scale of quantum gravity of 1 06 times the Planck energy, severely limiting the phase space for any theory that predicts a rotation of the photon polarization quadratic in energy.

  11. Prediction of anisotropic material behavior based on multiresolution continuum mechanics in consideration of a characteristic length scale

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Dock Jin; Choi, Jae Boong; Kim, Moon Ki [Sungkyunkwan Univ., Suwon (Korea, Republic of); Chang, Yoon Suk [Kyunghee Univ., Suwon (Korea, Republic of)

    2012-09-15

    New advanced materials have received more attention from many scientists and engineers because of their outstanding chemical, electrical, thermal, optical, and mechanical properties. Since the design of advanced material by experiments requires high cost and time, numerical approaches have always been of great interest. In this paper, finite element analysis of anisotropic material behavior has been carried out based on a multiresolution continuum theory. Gurson Tvergaard Needleman (GTN) damage model has been applied as a constitutive model at macroscale. Effects of plastic anisotropy on deformation behavior are assessed using Hill's 48 yield function for anisotropic material and von Mises yield function for isotropic material, respectively. The material parameters for both isotropic and anisotropic damage models have systematically been determined from microstructure through unit cell modeling. The newly proposed linear approximation of local velocity gradient resolved the underdetermined problem of the previous homogenization process. Anisotropic material behaviors of a tensile specimen have been investigated by the proposed multiresolution continuum theory.

  12. Deep seawater inherent optical properties in the Southern Ionian Sea

    CERN Document Server

    Riccobene, G; Ambriola, M; Ameli, F; Amore, I; Anghinolfi, M; Anzalone, A; Avanzini, C; Barbarino, G C; Barbarito, E; Battaglieri, M; Bellotti, R; Beverini, N; Bonori, M; Bouhadef, B; Brescia, M; Cacopardo, G; Cafagna, F; Capone, A; Caponetto, L; Castorina, E; Ceres, A; Chiarusi, T; Circella, M; Cocimano, R; Coniglione, R; Cordelli, M; Costa, M; Cuneo, S; D'Amico, A; De Bonis, G; De Marzo, C; De Rosa, G; De Vita, R; Distefano, C; Falchini, E; Fiorello, C; Flaminio, V; Fratini, K; Gabrielli, A; Galeotti, S; Gandolfi, E; Grimaldi, A; Habel, R; Leonora, E; Lo Presti, D; Lonardo, A; Longo, G; Lucarelli, F; Maccioni, E; Margiotta, A; Martini, A; Masullo, R; Megna, R; Migneco, E; Mongelli, M; Montaruli, T; Morganti, M; Musumeci, M; Nicolau, C A; Orlando, A; Osipenko, M; Osteria, G; Papaleo, R; Pappalardo, V; Petta, C; Piattelli, P; Raffaelli, F; Raia, G; Randazzo, N; Reito, S; Ricco, G; Ripani, M; Rovelli, A; Ruppi, M; Russo, G V; Russo, S; Sapienza, P; Schuller, J P; Sedita, M; Shirokov, E; Simeone, F; Sipala, V; Spurio, M; Taiuti, M; Terreni, G; Trasatti, L; Urso, S; Valente, V; Vicini, P

    2006-01-01

    The NEMO (NEutrino Mediterranean Observatory) Collaboration has been carrying out since 1998 an evaluation programme of deep sea sites suitable for the construction of the future Mediterranean km3 Cerenkov neutrino telescope. We investigated the seawater optical and oceanographic properties of several deep sea marine areas close to the Italian Coast. Inherent optical properties (light absorption and attenuation coefficients) have been measured as a function of depth using an experimental apparatus equipped with standard oceanographic probes and the commercial transmissometer AC9 manufactured by WETLabs. This paper reports on the visible light absorption and attenuation coefficients measured in deep seawater of a marine region located in the Southern Ionian Sea, 60-100 km SE of Capo Passero (Sicily). Data show that blue light absorption coefficient is about 0.015 1/m (corresponding to an absorption length of 67 m) close to the one of optically pure water and it doe not show seasonal variation.

  13. Optical properties of proton-irradiated polyacrylonitrile film

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hwa Su; Baek, Ga Young; Jung, Jin Mook; Choi, Jae Hak [Dept. of Polymer Science and Engineering, Chungnam National University, Daejeon (Korea, Republic of); Hwang, In Tae; Jung, Chan Hee; Shin, Jun Hwa [Research Division for Industry and Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup (Korea, Republic of)

    2016-11-15

    In this study, the effect of high-energy proton irradiation on the optical properties of polyacrylonitrile (PAN) films was investigated. PAN thin films spin-coated on a substrate were irradiated 150 keV proton ions at various fluences. The changes in the chemical structure and optical properties were investigated by FT-IR and UV-vis spectroscopy. The results of the FT-IR analysis revealed that the cyclization reaction took place by proton irradiation and the degree of cyclization increased with an increasing fluence. Based on the UV-vis analysis, the optical band gap of PAN decreased from 2.84 to 2.52 eV with an increasing fluence due to the formation of carbon clusters by proton irradiation. In addition, the number of carbon atoms per carbon cluster and the number of carbon atoms per conjugation length were found to be increased with an increasing fluence.

  14. Chiral nanophotonics chiral optical properties of plasmonic systems

    CERN Document Server

    Schäferling, Martin

    2017-01-01

    This book describes the physics behind the optical properties of plasmonic nanostructures focusing on chiral aspects. It explains in detail how the geometry determines chiral near-fields and how to tailor their shape and strength. Electromagnetic fields with strong optical chirality interact strongly with chiral molecules and, therefore, can be used for enhancing the sensitivity of chiroptical spectroscopy techniques. Besides a short review of the latest results in the field of plasmonically enhanced enantiomer discrimination, this book introduces the concept of chiral plasmonic near-field sources for enhanced chiroptical spectroscopy. The discussion of the fundamental properties of these light sources provides the theoretical basis for further optimizations and is of interest for researchers at the intersection of nano-optics, plasmonics and stereochemistry. .

  15. Optical properties of epitaxial YAG:Yb films

    Science.gov (United States)

    Ubizskii, S. B.; Matkovskii, A. O.; Melnyk, S. S.; Syvorotka, I. M.; Müller, V.; Peters, V.; Petermann, K.; Beyertt, A.; Giesen, A.

    2004-03-01

    This work deals with the investigation of the optical properties of epitaxial YAG:Yb films and their suitability as gain media for thin disk lasers. Epitaxial films of YAG:Yb were grown by the liquid phase epitaxy method in air on the (111)-oriented YAG substrates. The thickness of the grown layers was from 30 to 260 m. The melt composition was varied to obtain the desired doping level from 10 to 15% and to optimize the optical properties. The best epitaxial films were colourless and had an Yb3+ luminescence lifetime of more than 950 s, which is very close to the intrinsic lifetime of the Yb ions in the bulk YAG single crystals. These films were tested in a thin disk laser setup with 24 absorption passes of the 940 nm pumping beam. The maximum output power at 1.03 m wavelength in CW operation reached more than 60 W and the optical efficiency was close to 30%.

  16. Database of optical properties of cosmic dust analogues (DOP)

    CERN Document Server

    Ilyin, V N; Babenko, V A; Beletsky, S A; Henning, T; Jäger, C; Khlebtsov, N G; Litvinov, P V; Mutschke, H; Tishkovets, V P; Waters, L B F M; Henning, Th.

    2003-01-01

    We present a database containing information on different aspects of calculation and usage of the optical properties of small non-spherical particles -- cosmic dust analogues. The main parts of the DOP are a review of available methods of the light scattering theory, collection of light scattering codes, special computational tools, a graphic library of the optical properties (efficiencies, albedo, asymmetry factors, etc.), a database of the optical constants for astronomy, a bibliographic database of light scattering works, and links to related Internet resources. The general purpose of the DOP having the address http://www.astro.spbu.ru/DOP is twofold -- to help scientists to apply the light scattering theory in astronomy and to give students and beginners a possibility quickly to get necessary knowledge on the subject.

  17. Correlation between surface microstructure and optical properties of porous silicon

    Directory of Open Access Journals (Sweden)

    Saeideh Rhramezani Sani

    2007-12-01

    Full Text Available   We have studied the effect of increasing porosity and its microstructure surface variation on the optical and dielectric properties of porous silicon. It seems that porosity, as the surface roughness within the range of a few microns, shows quantum effect in the absorption and reflection process of porous silicon. Optical constants of porous silicon at normal incidence of light with wavelength in the range of 250-3000 nm have been calculated by Kramers-Kroning method. Our experimental analysis shows that electronic structure and dielectric properties of porous silicon are totally different from silicon. Also, it shows that porous silicon has optical response in the visible region. This difference was also verified by effective media approximation (EMA.

  18. Optical Properties of Astronomical Silicates in the Far-infrared

    Science.gov (United States)

    Rinehart, Stephen A,; Benford, Dominic J.; Dwek, Eli; Henry, Ross M.; Nuth, Joseph A., III; Silverberg, Robert f.; Wollack, Edward J.

    2008-01-01

    Correct interpretation of a vast array of astronomical data relies heavily on understanding the properties of silicate dust as a function of wavelength, temperature, and crystallinity. We introduce the QPASI-T (Optical Properties of Astronomical Silicates with Infrared Techniques) project to address the need for high fidelity optical characterization data on the various forms of astronomical dust. We use two spectrometers to provide extinction data for silicate samples across a wide wavelength range (from the near infrared to the millimeter). New experiments are in development that will provide complementary information on the emissivity of our samples, allowing us to complete the optical characterization of these dust materials. In this paper, we present initial results from several materials including amorphous iron silicate, magnesium silicate and silica smokes, over a wide range of temperatures, and discuss the design and operation of our new experiments.

  19. AlN Bandgap Temperature Dependence from its Optical Properties

    Science.gov (United States)

    2008-06-07

    AlN bandgap temperature dependence from its optical properties E. Silveira a,, J.A. Freitas b, S.B. Schujman c, L.J. Schowalter c a Depto. de Fisica ...range. The energy gap in semiconductors in general changes due to contributions from the electron–phonon interaction and due to the lattice thermal

  20. Parameterization of the Optical Properties of Sulfate Aerosols.

    Science.gov (United States)

    Li, J.; Wong, J. G. D.; Dobbie, J. S.; Chýlek, P.

    2001-01-01

    Parameterizations of the shortwave optical properties of ammonium sulfate [(NH4)2SO4], ammonium bisulfate (NH4HSO4), and sulfuric acid (H2SO4) are provided as functions of relative humidity for high and low spectral resolution band models. The optical property parameterization is simple in form and in its dependence on relative humidity. The growth of the aerosol particles is based on equilibrium saturation theory, and the optical properties are computed from Mie theory. The optical properties necessary for the most commonly used radiative transfer methods are provided.Results show that when relative humidity effects are included in the backscatter fraction the radiative forcing is found to be a more sensitive function of near infrared wavelengths compared to visible wavelengths. For increasing relative humidity, sulfuric acid is found to have a larger effect on radiative forcing compared to the forcing by ammonium sulfate or ammonium bisulfate. Also, as relative humidity increases, forcing increases to higher values for smaller mode size distributions compared to forcing by larger mode distributions. These parameterizations will enable climate forcing studies to be performed with radiative transfer schemes that more accurately represent sulfate influences on the radiation balance.

  1. Optical properties of bio-inspired peptide nanotubes

    Science.gov (United States)

    Handelman, Amir; Apter, Boris; Rosenman, Gil

    2016-04-01

    Supramolecular self-assembled bio-inspired peptide nanostructures are favorable to be implemented in diverse nanophotonics applications due to their superior physical properties such as wideband optical transparency, high second-order nonlinear response, waveguiding properties and more. Here, we focus on the optical properties found in di-phenylalanine peptide nano-architectures, with special emphasize on their linear and nonlinear optical waveguiding effects. Using both simulation and experiments, we show their ability to passively guide light at both fundamental and second-harmonic frequencies. In addition, we show that at elevated temperatures, 140-180°C, these native supramolecular structures undergo irreversible thermally induced transformation via re-assembling into completely new thermodynamically stable phase having nanofiber morphology similar to those of amyloid fibrils. In this new phase, the peptide nanofibers lose their second-order nonlinear response, while exhibit profound modification of optoelectronic properties followed by the appearance of visible (blue and green) photoluminescence (PL). Our study propose a new generation of multifunctional optical waveguides with variety of characteristics, which self-assembled into 1D-elongated nanostructures and could be used as building blocks of many integrated photonic devices.

  2. Ellipsometric identification of collective optical properties of silver nanocrystal arrays

    NARCIS (Netherlands)

    Wormeester, Herbert; Henry, Anne-Isabelle; Kooij, E. Stefan; Poelsema, Bene; Pileni, Marie-Paule

    2006-01-01

    The optical properties of silver nanocrystal arrays are investigated using spectroscopic ellipsometry in combination with polarized reflection measurements. Analysis of the ellipsometry and reflectometry spectra in terms of the “thin island film” theory enables a transparent identification of the co

  3. Determination of the optical properties of rat tissue

    CSIR Research Space (South Africa)

    Singh, A

    2010-01-01

    Full Text Available of light with tissue. Such interaction is influenced by the optical properties such as the absorption (ua) and reduced scattering (us') coefficients of the tissue. When consulting the literature however one finds there exists a huge discrepancy between...

  4. Optical properties, ethylene production and softening in mango fruits

    NARCIS (Netherlands)

    Eccher Zerbini, P.C.; Vanoli, M.; Rizzolo, A.; Grassi, M.; Meirelles de Azevedo Pementel, A.; Spinelli, L.; Torricelli, A.

    2015-01-01

    Firmness decay, chlorophyll breakdown and carotenoid accumulation, controlled by ethylene, are major ripening events in mango fruit. Pigment content and tissue structure affect the optical properties of the mesocarp, which can be measured nondestructively in the intact fruit by time-resolved reflect

  5. OPTICAL-PROPERTIES OF DISORDERED MOLECULAR AGGREGATES - A NUMERICAL STUDY

    NARCIS (Netherlands)

    FIDDER, H; KNOESTER, J; WIERSMA, DA

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  6. Optical properties of disordered molecular aggregates : A numerical study

    NARCIS (Netherlands)

    Fidder, Henk; Knoester, Jasper; Wiersma, Douwe A.

    1991-01-01

    We present results of numerical simulations on optical properties of linear molecular aggregates with diagonal and off-diagonal disorder. In contrast to previous studies, we introduce off-diagonal disorder indirectly through Gaussian randomness in the molecular positions; this results in a strongly

  7. Nonlinear Optical BBO Crystals: Growth, Properties and Applications

    Institute of Scientific and Technical Information of China (English)

    唐鼎元

    2000-01-01

    Low temperature phase barium metaborate β-BaB2O4 (BBO) is an important nonlinear optical material. Up to now, the BBO single crystals with large size and good optical quality were grown from Na2O or NaF fluxed solvents by the top-seeded solution growth (TSSG) technique with or without pulling. In order to improve the growth rate and quality of BBO crystals, several new techniques such as continuous feeding, forced stirring and cooling growing crystals etc. have been suggested. Applications of BBO as an excellent nonlinear optical crystal include mainly frequency conversion of various laser radiation, high average power frequency conversion, frequency doubling of ultrashort pulses and broadly tunable optical parametric oscillators (OPO).This paper is a brief review on the growth, properties and applications of BBO crystals.

  8. The Optical Properties of Nanostructured Ta2O5 Films

    Institute of Scientific and Technical Information of China (English)

    Minmin Zhu; Wei Miao; Zhengjun Zhang

    2006-01-01

    Amorphous Ta2O5 films were prepared on Si (100) substrates by thermal oxidization. The film consisted of amorphous Ta2O5 nanostructure that grew vertically and compactly at a large range. It was found that Ta2O5 films became crystalline when annealed at or above 650℃ and remained amorphous below 650℃. The effects of annealing on the optical properties of Ta2O5 film were also discussed. It is estimated that the refraction indexes and the optical energy gaps of both amorphous Ta2O5 film and crystal one are stable. The optical energy gap of as-deposited Ta2O5 film is about 4.81 eV. The above results indicate that Ta2O5 films have a promising application in the optical devices.

  9. Interconnection of polarization properties and coherence of optical fields.

    Science.gov (United States)

    Zenkova, Claudia Yu

    2014-04-01

    Theoretical and experimental approaches to diagnosing internal spin and orbital optical flows and the corresponding optical forces caused by these flows are offered. These approaches are based on the investigation of the motion of the particles tested in the formed optical field. The dependence of the above-mentioned forces upon the size and optical properties of the particles is demonstrated. The possibility of using kinematic values defining the motion dynamics of particles of the Rayleigh light scattering mechanism to make a quantitative assessment of the degree of coherence of mutually orthogonal waves that are linearly polarized in the incidence plane is demonstrated. The feasibility of using the above mentioned approach, its shortcomings, and its advantages over the interfering method for estimating the degree of coherence are analyzed.

  10. Optical properties of nanostructured InSe thin films

    Science.gov (United States)

    El-Nahass, M. M.; Saleh, Abdul-Basit A.; Darwish, A. A. A.; Bahlol, M. H.

    2012-03-01

    Thin films of InSe were prepared by thermal evaporation technique. The as-deposited films have nano-scale crystalline nature and the annealing enhanced the degree of crystallinity. The optical properties of nanocrystalline thin films of InSe were studied using spectrophotometric measurements of transmittance, T, and reflectance, R, at normal incidence of light in the wavelength range 200-2500 nm. The optical constants (refractive index, n, and absorption index, k) were calculated using a computer program based on Murmann's exact equations. The calculated optical constants are independent of the film thickness. The optical dispersion parameters have been analysed by single oscillator model. The type of transition in InSe films is indirect allowed with a value of energy gap equals to 1.10 eV, which increased to 1.23 eV upon annealing.

  11. Optical properties of infrared FELs from the FELI Facility II

    Energy Technology Data Exchange (ETDEWEB)

    Saeki, K.; Okuma, S.; Oshita, E. [Free Electron Laser Institute, Osaka (Japan)] [and others

    1995-12-31

    The FELI Facility II has succeeded in infrared FEL oscillation at 1.91 {mu} m using a 68-MeV, 40-A electron beam from the FELI S-band linac in February 27, 1995. The FELI Facility II is composed of a 3-m vertical type undulator ({lambda}u=3.8cm, N=78, Km a x=1.4, gap length {ge}20mm) and a 6.72-m optical cavity. It can cover the wavelength range of 1-5{mu}m. The FELs can be delivered from the optical cavity to the diagnostics room through a 40-m evacuated optical pipeline. Wavelength and cavity length dependences of optical properties such as peak power, average power, spectrum width, FEL macropulse, FEL transverse profile are reported.

  12. Gamma-beam propagation in the anisotropic medium

    CERN Document Server

    Maisheev, V A

    2000-01-01

    Propagation of gamma-beam in the anisotropic medium is considered. The simpliest example of such a medium of the general type is a combination of the two linearly polarized monochromatic laser waves with different frequencies (dichromatic wave). The optical properties of this combination are described with the use of the permittivity tensor. The refractive indices and polarization characteristics of normal electromagnetic waves propagating in the anisotropic medium are found. The relations, describing variations of gamma-beam intensity and Stokes parameters as functions of propagation length are obtained. The influence of laser wave intensity on the propagation process are calculated. The gamma-beam intensity losses in the dichromatic wave depend on the initial circular polarization of gamma-quanta. This effect is also applied to the single crystals, which are oriented in some regions of coherent pair production. In principle, the single crystal sensitivity to a circular polarization can be used for determina...

  13. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    Science.gov (United States)

    Zhao, Ying-Ying; Wang, Jing; Kuang, Hao; Hu, Feng-Xia; Liu, Yao; Wu, Rong-Rong; Zhang, Xi-Xiang; Sun, Ji-Rong; Shen, Bao-Gen

    2015-04-01

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  14. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    KAUST Repository

    Zhao, Ying-Ying

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  15. Anisotropism of the Non-Smooth Surface of Butterfly Wing

    Institute of Scientific and Technical Information of China (English)

    Gang Sun; Yan Fang; Qian Cong; Lu-quan Ren

    2009-01-01

    Twenty-nine species of butterflies were collected for observation and determination of the wing surfaces using a Scanning Electron Microscope (SEM). Butterfly wing surface displays structural anisotropism in micro-, submicro- and nano-scales. The scales on butterfly wing surface arrange like overlapping roof tiles. There are submicrometric vertical gibbosities, horizontal links, and nano-protuberances on the scales. First-incline-then-drip method and first-drip-then-incline method were used to measure the Sliding Angle (SA) of droplet on butterfly wing surface by an optical Contact Angle (CA) measuring system.Relatively smaller sliding angles indicate that the butterfly wing surface has fine self-cleaning property. Significantly different SAs in various directions indicate the anisotropic self-cleaning property of butterfly wing surface. The SAs on the butterfly wing surface without scales are remarkably larger than those with scales, which proves the crucial role of scales in determining the self-cleaning property. Butterfly wing surface is a template for design and fabrication of biomimetic materials and self-cleaning substrates. This work may offer insights into how to design directional self-cleaning coatings and anisotropic wetting surface.

  16. Investigation of anisotropic thermal transport in polymers using infrared thermography

    Science.gov (United States)

    Nieto Simavilla, David; Venerus, David; Schieber, Jay

    2014-03-01

    During manufacturing, the anisotropic nature of thermal transport in flowing polymers plays an important role in the final properties of materials. In our laboratory, we have investigated anisotropic thermal conductivity in polymers subjected to deformation using an optical technique based on Forced Rayleigh Scattering (FRS). For over a decade, our setup has been the only one capable of testing the linear relationship between anisotropy in thermal conductivity and stress, known as the stress-thermal rule. In order to overcome some of the limitations in the optical properties of materials inherent to FRS, we have recently developed a complementary technique based on infrared thermography (IRT). We validate IRT technique by comparing measurements of anisotropy in thermal conductivity on crosslinked networks against those obtained with FRS. The main advantage of IRT method is that, it allows us to study optically thick materials, including polymers that are prone to strain induced crystallization. Additionally, examination of IRT transient state experiments enables us to study the effect of deformation on other properties such as specific heat capacity.

  17. Estimation of aerosol optical properties from all-sky imagers

    Science.gov (United States)

    Kazantzidis, Andreas; Tzoumanikas, Panagiotis; Salamalikis, Vasilios; Wilbert, Stefan; Prahl, Christoph

    2015-04-01

    Aerosols are one of the most important constituents in the atmosphere that affect the incoming solar radiation, either directly through absorbing and scattering processes or indirectly by changing the optical properties and lifetime of clouds. Under clear skies, aerosols become the dominant factor that affect the intensity of solar irradiance reaching the ground. It has been shown that the variability in direct normal irradiance (DNI) due to aerosols is more important than the one induced in global horizontal irradiance (GHI), while the uncertainty in its calculation is dominated by uncertainties in the aerosol optical properties. In recent years, all-sky imagers are used for the detection of cloud coverage, type and velocity in a bouquet of applications including solar irradiance resource and forecasting. However, information about the optical properties of aerosols could be derived with the same instrumentation. In this study, the aerosol optical properties are estimated with the synergetic use of all-sky images, complementary data from the Aerosol Robotic Network (AERONET) and calculations from a radiative transfer model. The area of interest is Plataforma Solar de Almería (PSA), Tabernas, Spain and data from a 5 month period are analyzed. The proposed methodology includes look-up-tables (LUTs) of diffuse sky radiance of Red (R), Green (G) and Blue (B) channels at several zenith and azimuth angles and for different atmospheric conditions (Angström α and β, single scattering albedo, precipitable water, solar zenith angle). Based on the LUTS, results from the CIMEL photometer at PSA were used to estimate the RGB radiances for the actual conditions at this site. The methodology is accompanied by a detailed evaluation of its robustness, the development and evaluation of the inversion algorithm (derive aerosol optical properties from RGB image values) and a sensitivity analysis about how the pre-mentioned atmospheric parameters affect the results.

  18. Optical Properties of GaSb Nanofibers

    Directory of Open Access Journals (Sweden)

    Perez-Bergquist Alejandro

    2011-01-01

    Full Text Available Abstract Amorphous GaSb nanofibers were obtained by ion beam irradiation of bulk GaSb single-crystal wafers, resulting in fibers with diameters of ~20 nm. The Raman spectra and photoluminescence (PL of the ion irradiation-induced nanofibers before and after annealing were studied. Results show that the Raman intensity of the GaSb LO phonon mode decreased after ion beam irradiation as a result of the formation of the amorphous nanofibers. A new mode is observed at ~155 cm-1 both from the unannealed and annealed GaSb nanofiber samples related to the A1g mode of Sb–Sb bond vibration. Room temperature PL measurements of the annealed nanofibers present a wide feature band at ~1.4–1.6 eV. The room temperature PL properties of the irradiated samples presents a large blue shift compared to bulk GaSb. Annealed nanofibers and annealed nanofibers with Au nanodots present two different PL peaks (400 and 540 nm, both of which may originate from Ga or O vacancies in GaO. The enhanced PL and new band characteristics in nanostructured GaSb suggest that the nanostructured fibers may have unique applications in optoelectronic devices.

  19. Optical Properties of Photovoltaic Organic-Inorganic Lead Halide Perovskites.

    Science.gov (United States)

    Green, Martin A; Jiang, Yajie; Soufiani, Arman Mahboubi; Ho-Baillie, Anita

    2015-12-03

    Over the last several years, organic-inorganic lead halide perovskites have rapidly emerged as a new photovoltaic contender. Although energy conversion efficiency above 20% has now been certified, improved understanding of the material properties contributing to these high performance levels may allow the progression to even higher efficiency, stable cells. The optical properties of these new materials are important not only to device design but also because of the insight they provide into less directly accessible properties, including energy-band structures, binding energies, and likely impact of excitons, as well as into absorption and inverse radiative recombination processes.

  20. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  1. Aerosol Optical Properties over Northwestern European Seas

    Science.gov (United States)

    Avgousta Floutsi, Athina; Korras Carraca, Marios Bruno; Matsoukas, Christos; Riva, Riccardo; Biskos, George

    2017-04-01

    Atmospheric aerosols, both natural and anthropogenic, can affect the regional and global climate through their direct, indirect, and semi-direct effects on the radiative energy budget of the Earth-atmosphere system. In order to quantify these effects it is necessary to determine the aerosol load. An effective way to do this is by measuring the aerosol optical depth (AOD). Besides AOD, the Fine mode Fraction (AOD of particles smaller than 1 μm / total AOD, FF) is a useful parameter for the characterization of the aerosol and provides a good proxy for particle size. In this study, we investigate the spatial and temporal variability of the AOD and FF over the Western and Northwestern European Seas (43° N - 67° N, 10° W - 31° E), where significant sources of both natural and anthropogenic particles are located. Anthropogenic particles (mostly fine mode) originate from ship activity, or from urban-industrial and biomass-burning processes in the European countries. The natural, coarse mode particles are primarily sea salt. The study is performed using Collection 006 Level-3 mean daily aerosol data from the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument on board Aqua satellite, available in 1° × 1° resolution (ca. 100 km × 100 km) over the period 2002- 2014. Our results indicate significant spatial variability of the aerosol load over the study region. The highest AOD values (up to 0.32 on annual level) are observed over the English Channel and the coasts of the Netherlands and Germany. In these regions the highest FF values are also observed (up to 0.77), indicating a relatively large contribution of anthropogenic particles to the aerosol load. Offshore, both AOD and FF are lower compared to coastal regions, indicating the predominance of maritime aerosols (sea salt). The data also show a clear seasonal cycle, with larger aerosol load during spring and summer (AOD up to 0.60), and lower during autumn and winter (AOD up to 0.30). A similar

  2. Optical properties of fly ash. Volume 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Self, S.A.

    1994-12-01

    Research performed under this contract was divided into four tasks under the following headings: Task 1, Characterization of fly ash; Task 2, Measurements of the optical constants of slags; Task 3, Calculations of the radiant properties of fly ash dispersions; and Task 4, Measurements of the radiant properties of fly ash dispersions. Tasks 1 and 4 constituted the Ph.D. research topic of Sarbajit Ghosal, while Tasks 2 and 3 constituted the Ph.D. research topic of Jon Ebert. Together their doctoral dissertations give a complete account of the work performed. This final report, issued in two volumes consists of an executive summary of the whole program followed by the dissertation of Ghosal and Ebert. Volume 2 contains the dissertation of Ebert which covers the measurements of the optical constants of slags, and calculations of the radiant properties of fly ash dispersions. A list of publications and conference presentations resulting from the work is also included.

  3. Multiwavelength optical properties of compact dust aggregates in protoplanetary disks

    CERN Document Server

    Min, M; Woitke, P; Dominik, C; Ménard, F

    2015-01-01

    In protoplanetary disks micron-size dust grains coagulate to form larger structures with complex shapes and compositions. The coagulation process changes the absorption and scattering properties of particles in the disk in significant ways. To properly interpret observations of protoplanetary disks and to place these observations in the context of the first steps of planet formation, it is crucial to understand the optical properties of these complex structures. We derive the optical properties of dust aggregates using detailed computations of aggregate structures and compare these computa- tionally demanding results with approximate methods that are cheaper to compute in practice. In this way we wish to understand the merits and problems of approximate methods and define the context in which they can or cannot be used to analyze observations of objects where significant grain growth is taking place. For the detailed computations we used the discrete dipole approximation (DDA), a method able to compute the in...

  4. Comparing optical properties of different species of diatoms

    DEFF Research Database (Denmark)

    Maibohm, Christian; Friis, Søren Michael Mørk; Su, Y.

    2015-01-01

    Diatoms are single cellular algae encapsulate d in an external wall of micro-structured porous silica called the frustule. Diatoms are present in all water environments and contribute with 20-25 % of the global primary production of oxygen by photosynthesis. The appearance of the frustule is very...... species dependent with huge variety in size, shape, and micro- structure. We have experimentally investigated optical properties of frustules of several species of diatoms to further understand light harvesting properties together with commo n traits, effects and differences between the different...... analysis software. The software uses parameters which are extracted from experimental im ages as basis for simulation and allows us to extract the influence of the different elements of the frustule. The information could be used both for predicting optical properties of diatoms and by changing frustule...

  5. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  6. Structural, electronic and optical properties of well-known primary explosive: Mercury fulminate

    Energy Technology Data Exchange (ETDEWEB)

    Yedukondalu, N.; Vaitheeswaran, G., E-mail: gvsp@uohyd.ernet.in [Advanced Centre of Research in High Energy Materials (ACRHEM), University of Hyderabad, Prof. C. R. Rao Road, Gachibowli, Hyderabad, Telangana 500046 (India)

    2015-11-28

    Mercury Fulminate (MF) is one of the well-known primary explosives since 17th century and it has rendered invaluable service over many years. However, the correct molecular and crystal structures are determined recently after 300 years of its discovery. In the present study, we report pressure dependent structural, elastic, electronic and optical properties of MF. Non-local correction methods have been employed to capture the weak van der Waals interactions in layered and molecular energetic MF. Among the non-local correction methods tested, optB88-vdW method works well for the investigated compound. The obtained equilibrium bulk modulus reveals that MF is softer than the well known primary explosives Silver Fulminate (SF), silver azide and lead azide. MF exhibits anisotropic compressibility (b > a > c) under pressure, consequently the corresponding elastic moduli decrease in the following order: C{sub 22} > C{sub 11} > C{sub 33}. The structural and mechanical properties suggest that MF is more sensitive to detonate along c-axis (similar to RDX) due to high compressibility of Hg⋯O non-bonded interactions along that axis. Electronic structure and optical properties were calculated including spin-orbit (SO) interactions using full potential linearized augmented plane wave method within recently developed Tran-Blaha modified Becke-Johnson (TB-mBJ) potential. The calculated TB-mBJ electronic structures of SF and MF show that these compounds are indirect bandgap insulators. Also, SO coupling is found to be more pronounced for 4d and 5d-states of Ag and Hg atoms of SF and MF, respectively. Partial density of states and electron charge density maps were used to describe the nature of chemical bonding. Ag—C bond is more directional than Hg—C bond which makes SF to be more unstable than MF. The effect of SO coupling on optical properties has also been studied and found to be significant for both (SF and MF) of the compounds.

  7. Structural, electronic and optical properties of ilmenite and perovskite CdSnO3 from DFT calculations.

    Science.gov (United States)

    Sesion, P D; Henriques, J M; Barboza, C A; Albuquerque, E L; Freire, V N; Caetano, E W S

    2010-11-03

    CdSnO(3) ilmenite and perovskite crystals were investigated using both the local density and generalized gradient approximations, LDA and GGA, respectively, of the density functional theory (DFT). The electronic band structures, densities of states, dielectric functions, optical absorption and reflectivity spectra related to electronic transitions were obtained, as well as the infrared absorption spectra after computing the vibrational modes of the crystals at q = 0. Dielectric optical permittivities and polarizabilities at ω = 0 and ∞ were also calculated. The results show that GGA-optimized geometries are more accurate than LDA ones, and the Kohn-Sham band structures obtained for the CdSnO(3) polymorphs confirm that ilmenite has an indirect band gap, while perovskite has a direct band gap, both being semiconductors. Effective masses for both crystals are obtained for the first time, being highly isotropic for electrons and anisotropic for holes. The optical properties reveal a very small degree of anisotropy of both crystals with respect to different polarization planes of incident light. The phonon calculation at q = 0 for perovskite CdSnO(3) does not show any imaginary frequencies, in contrast to a previous report suggesting the existence of a more stable crystal of perovskite CdSnO(3) with ferroelectric properties.

  8. First principles study of effects of vacancies on electronic, magnetic and optical properties of InN nanosheet

    Science.gov (United States)

    Farzan, M.; Elahi, S. M.; Abolhassani, M. R.; Salehi, H.

    2017-05-01

    Based on the first principle study within the generalized gradient approximation (GGA) in the density functional theory (DFT) implemented in Wien2k code, the effects of vacancies on electronic, magnetic and optical properties of InN nanosheet were investigated. We found that the vacancies in InN nanosheet induce spin polarized states in the band gap, and VN-defect, VIn-defect and VIn&N-defect induce local magnetic moments of (-0.01)μB , 3.0μB and 2.0μB , respectively. Also, we calculated the dielectric function, refraction index, extinction index, reflectivity, absorption coefficient, optical conductivity and energy loss function of the perfect InN nanosheet and VN-defect, VIn-defect and VIn&N-defect of InN nanosheet for both polarization directions of light, i.e. E||x (electric field parallel to nanosheet) and E||z (electric field perpendicular to nanosheet). Our results show that InN nanosheet is a semiconductor which is dependent on the type of vacancies and that the optical properties of perfect and defective InN nanosheets are anisotropic for both polarization states.

  9. Structural, electronic and optical properties of ilmenite and perovskite CdSnO{sub 3} from DFT calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sesion Jr, P D [Escola de Ciencias e Tecnologia, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte (Brazil); Henriques, J M [Departamento de Fisica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, 59072-970 Natal, Rio Grande do Norte (Brazil); Barboza, C A; Albuquerque, E L [Departamento de Biofisica e Farmacologia, Universidade Federal do Rio Grande do Norte, 59072-900 Natal, Rio Grande do Norte (Brazil); Freire, V N [Departamento de Fisica, Universidade Federal do Ceara, 60455-970 Fortaleza, Ceara (Brazil); Caetano, E W S, E-mail: ewcaetano@gmail.co [Instituto Federal de Educacao, Ciencia e Tecnologia do Ceara, Avenida 13 de Maio, 2081, Benfica, 60040-531 Fortaleza, Ceara (Brazil)

    2010-11-03

    CdSnO{sub 3} ilmenite and perovskite crystals were investigated using both the local density and generalized gradient approximations, LDA and GGA, respectively, of the density functional theory (DFT). The electronic band structures, densities of states, dielectric functions, optical absorption and reflectivity spectra related to electronic transitions were obtained, as well as the infrared absorption spectra after computing the vibrational modes of the crystals at q = 0. Dielectric optical permittivities and polarizabilities at {omega} = 0 and {infinity} were also calculated. The results show that GGA-optimized geometries are more accurate than LDA ones, and the Kohn-Sham band structures obtained for the CdSnO{sub 3} polymorphs confirm that ilmenite has an indirect band gap, while perovskite has a direct band gap, both being semiconductors. Effective masses for both crystals are obtained for the first time, being highly isotropic for electrons and anisotropic for holes. The optical properties reveal a very small degree of anisotropy of both crystals with respect to different polarization planes of incident light. The phonon calculation at q = 0 for perovskite CdSnO{sub 3} does not show any imaginary frequencies, in contrast to a previous report suggesting the existence of a more stable crystal of perovskite CdSnO{sub 3} with ferroelectric properties.

  10. Electrochemical and Optical Properties of Magnesium-Alloy Hydrides Reviewed

    Directory of Open Access Journals (Sweden)

    Thirugnasambandam G. Manivasagam

    2012-10-01

    Full Text Available As potential hydrogen storage media, magnesium based hydrides have been systematically studied in order to improve reversibility, storage capacity, kinetics and thermodynamics. The present article deals with the electrochemical and optical properties of Mg alloy hydrides. Electrochemical hydrogenation, compared to conventional gas phase hydrogen loading, provides precise control with only moderate reaction conditions. Interestingly, the alloy composition determines the crystallographic nature of the metal-hydride: a structural change is induced from rutile to fluorite at 80 at.% of Mg in Mg-TM alloy, with ensuing improved hydrogen mobility and storage capacity. So far, 6 wt.% (equivalent to 1600 mAh/g of reversibly stored hydrogen in MgyTM(1-yHx (TM: Sc, Ti has been reported. Thin film forms of these metal-hydrides reveal interesting electrochromic properties as a function of hydrogen content. Optical switching occurs during (dehydrogenation between the reflective metal and the transparent metal hydride states. The chronological sequence of the optical improvements in optically active metal hydrides starts with the rare earth systems (YHx, followed by Mg rare earth alloy hydrides (MgyGd(1-yHx and concludes with Mg transition metal hydrides (MgyTM(1-yHx. In-situ optical characterization of gradient thin films during (dehydrogenation, denoted as hydrogenography, enables the monitoring of alloy composition gradients simultaneously.

  11. Optical properties of porous chalcogenide films for sensor application

    Science.gov (United States)

    Lalova, A.; Todorov, R.

    2012-12-01

    The object of the present work is investigation of the optical properties of obliquely deposited thin films from As - S - Ge system. Aiming to obtain high porous coatings the deposition rate was varied in the range of 0.05-10 nm/s. The conditions for deposition of thin As - S - Ge films with columnar structure and high porosity were established. The role of the actual deposition conditions on the optical properties is examined. The optical constants (refractive index, n and absorption coefficient, α) and thickness, d as well as the optical band gap, Eg, and slope parameter B in dependence of the deposition angle and rate are determined from specrophotometric measurements in the spectral range 400-2000 nm applying the Swanepoel's envelope method and Tauc's procedure. Increasing of the value of n from 2.40 to 1.83 for thin film with composition As10Ge30S60 with increasing deposition angle from 0° to 75° is observed. The possibility of using the thin films for optical sensing of SO2 and H2S was examined. Reversible changes of the refractive index, Δn = 0.015 were observed as a consequence of treatment virgin - exposure to H2SO4 vapors- annealing at 120 °C.

  12. Effects of anisotropy in simple lattice geometries on many-body properties of ultracold fermions in optical lattices

    Science.gov (United States)

    Golubeva, Anna; Sotnikov, Andrii; Hofstetter, Walter

    2015-10-01

    We study the effects of anisotropic hopping amplitudes on quantum phases of ultracold fermions in optical lattices described by the repulsive Fermi-Hubbard model. In particular, using dynamical mean-field theory (DMFT) we investigate the dimensional crossover between the isotropic square and the isotropic cubic lattice. We analyze the phase transition from the antiferromagnetic to the paramagnetic state and observe a significant change in the critical temperature: depending on the interaction strength, the anisotropy can lead to both a suppression or increase. We also investigate the localization properties of the system, such as the compressibility and double occupancy. Using the local-density approximation in combination with DMFT we conclude that density profiles can be used to detect the mentioned anisotropy-driven transitions.

  13. Development of graphene oxide materials with controllably modified optical properties

    Science.gov (United States)

    Naumov, Anton; Galande, Charudatta; Mohite, Aditya; Ajayan, Pulickel; Weisman, R. Bruce

    2015-03-01

    One of the major current goals in graphene research is modifying its optical and electronic properties through controllable generation of band gaps. To achieve this, we have studied the changes in optical properties of reduced graphene oxide (RGO) in water suspension upon the exposure to ozone. Ozonation for the periods of 5 to 35 minutes has caused a dramatic bleaching of its absorption and the concurrent appearance of strong visible fluorescence in previously nonemissive samples. These observed spectral changes suggest a functionalization-induced band gap opening. The sample fluorescence induced by ozonation was found to be highly pH-dependent: sharp and structured emission features resembling the spectra of molecular fluorophores were present at basic pH values, but this emission reversibly broadened and red-shifted in acidic conditions. These findings are consistent with excited state protonation of the emitting species in acidic media. Oxygen-containing addends resulting from the ozonation were detected by XPS and FTIR spectroscopy and related to optical transitions in localized graphene oxide fluorophores by computational modeling. Further research will be directed toward producing graphene-based optoelectronic devices with tailored and controllable optical properties.

  14. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Science.gov (United States)

    Stankova, N. E.; Atanasov, P. A.; Nikov, Ru. G.; Nikov, R. G.; Nedyalkov, N. N.; Stoyanchov, T. R.; Fukata, N.; Kolev, K. N.; Valova, E. I.; Georgieva, J. S.; Armyanov, St. A.

    2016-06-01

    This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm-2 for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm-2 and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm-2. The threshold laser fluence needed to induce incubation process after certain number of pulses of 8 is different for every wavelength irradiation as the values increase from 1.0 for 266 nm up to 16 J cm-2 for 1064 nm. The incubation and the ablation processes occur in the PDMS elastomer material during its pulsed laser treatment are a complex function of the wavelength, fluence, number of pulses and the material properties as well.

  15. Scintillations of higher order laser beams in anisotropic atmospheric turbulence.

    Science.gov (United States)

    Baykal, Yahya; Luo, Yujuan; Ji, Xiaoling

    2016-11-20

    The scintillation index of higher order laser beams is examined when such beams propagate in anisotropic atmospheric turbulence. Anisotropy is introduced through non-Kolmogorov atmospheric turbulence. The scintillation index results are obtained by employing the Rytov method solution; thus the results are valid for weak anisotropic atmospheric turbulence and for horizontal links. Variations in the scintillations are shown for various higher order laser modes against the changes in the optical source size, power law exponent of anisotropic non-Kolmogorov spectrum, anisotropic factors, and link length. Our results can be used in the design of optical wireless communication systems used between airplanes.

  16. Quantum Electrostatic Model for Optical Properties of Nanoscale Gold Films

    Directory of Open Access Journals (Sweden)

    Qian Haoliang

    2015-11-01

    Full Text Available The optical properties of thin gold films with thickness varying from 2.5 nm to 30 nm are investigated. Due to the quantum size effect, the optical constants of the thin gold film deviate from the Drude model for bulk material as film thickness decreases, especially around 2.5 nm, where the electron energy level becomes discrete. A theory based on the self-consistent solution of the Schrödinger equation and the Poisson equation is proposed and its predictions agree well with experimental results.

  17. Electronic and optical properties of CuInTe2

    Science.gov (United States)

    Shankar, A.; Thapa, R. K.; Mandal, P. K.

    2016-10-01

    The electronic and optical properties of a ternary chalcopyrite compound CuInTe2 with diamond like structure have been studied. The calculations are carried out using the density functional theory (DFT) based full potential-linearized augmented plane wave (FP- LAPW) method within the framework of GGA and modified Becke Johnson (mBJ) potential approach. The presence of direct energy band gap of 0.8 eV suggests the sample material can be a good material for solar cell application. The study of the optical response of the material against the incident photon energy radiation indicates the material can be an effective candidate for the optoelectronic devices.

  18. Optical properties of CdS-glass nanocomposites

    Science.gov (United States)

    Popov, Ivan D.; Kuznetsova, Yulia V.; Sergeev, Alexander A.; Rempel, Svetlana V.; Rempel, Andrey A.

    2017-09-01

    CdS-glass nanocomposite included CdS nanoparticles in it have been synthesized. CdS nanoparticles in silicate glass matrix have an average diameter from 3 to 7.5 nm depending on a heat treatment regime. As was demonstrated using the methods of spectrophotometry and luminescence in the UV, visible and NIR optical ranges, optical properties of the nanocomposite significantly depends on the size of nanoparticles. The high temperature treatment has lead to increase the luminescence intensity. At the same time, the contribution of the lifetime of the slower decay component was increased.

  19. Effective optical properties of supported silicon nanopillars at telecommunication wavelengths

    Science.gov (United States)

    Pérez-Chávez, V.; Simonsen, I.; Maradudin, A. A.; Blaize, S.; Méndez, E. R.

    2017-09-01

    We measure and calculate the optical response of a structure consisting of a square array of subwavelength silicon posts on a silicon substrate at telecommunication wavelengths. By the use of the reduced Rayleigh equations and the Fourier modal method (rigorous coupled wave analysis) we calculate the reflectivity of this structure illuminated from vacuum by normally incident light. The calculated reflectivities together with experimentally determined ones, are used to test the accuracy of effective medium theories of the optical properties of structured silicon surfaces, and to estimate the effective refractive index of such surfaces produced by a homogeneous layer model.

  20. Optical properties of neodymium doped lanthanum scandium borate

    Energy Technology Data Exchange (ETDEWEB)

    Jang, Won Kweon [Hanseo University, Seosan (Korea, Republic of); Kim, Tae Hoon; Yu, Young Moon [Korea Photonics Technology Institute, Kwangju (Korea, Republic of)

    2001-11-15

    Optical characteristics of neodymium doped lanthanium scandium borate, newly developed crystal, was investigated. Technical description of crystal growth and its dependence on optical property were investigated with comparison to other laser crystals. Its potential as commercial laser crystal for microchip laser fabrication was observed with fundamental lasing experiments. It was possible for lanthanium scandium borate to be highly doped with neodymium ion without crystal defect, and it is an advantage for microchip laser host material. The laser operation was investigated in the fundamental with microchip system.

  1. Response properties of cat AMLS neurons to optic flow stimuli

    Institute of Scientific and Technical Information of China (English)

    LI; Baowang(李宝旺); LI; Bing(李兵); CHEN; Hui(陈辉); XU; Ying(徐颖); DIAO; Yuncheng(刁云程)

    2002-01-01

    Spiral and translation stimuli were used to investigate the response properties of cat AMLS (anteromedial lateral suprasylvian area) neurons to optic flow. The overwhelming majority of cells could be significantly excited by the two modes of stimuli and most responsive cells displayed obvious direction selectivity. It is the first time to find a visual area in mammalian brain preferring rotation stimuli. Two representative hypotheses are discussed here on the neural mechanism of optic flow analysis in visual cortex, and some new viewpoints are proposed to explain the experimental results.

  2. Linear and nonlinear optical properties of tellurite glasses

    Science.gov (United States)

    Jin, Zhian

    Tellurite glasses have been widely studied from bulk materials to structured devices, with the emphasis on the development of nonlinear optical fibers to demonstrate the functionalities of supercontinuum generation, erbium doped fiber amplifier and Raman amplifiers, etc. The new type tellurite-based optical fibers exhibit superior advantages over conventional silica ones, due to their high optical nonlinearity, broad transmission window, high rare earth element solubility and Raman gain intensity. Like silica fibers, tellurite fibers may also incorporate various fiber structures including solid core-cladding one and microstructure one (e.g. photonic crystal). The fiber loss was ever reported as low as ˜1dB/m using rod-in-tube fabrication process. Beyond all those progresses, little success has been made on improving the optical nonlinear property of tellurite glasses chi(3) ˜ 50 times bigger than fused silica). The challenge remains for tellurite glasses that their optical nonlinearity is more than 1 order smaller to compare with chalcogenides, although they are more stable chemically and structurally. In this work, after carefully reviewing the trend of optical nonlinearity for solid glasses, we adopted two strategies to potentially increase the linear and third-order optical nonlinear properties for tellurite glasses. A more polarizable electronic excitation may be achievable by introducing chalcogen elements (e.g. Sulfur or Selenium) into TeO2 vitreous network and synthesizing glasses with a linear helical chainlike structure. The ab initio computational results of microscopic hyper-polarizabilities of hypothetical mixed - 2 - tellurite chalcogenide glass molecular structure (TeO2(TeOX)n) confirmed the enhanced effect as Te-X (X=S or Se) bonds exist and the molecular size (n) grows. Quantitative estimates of the macroscopic linear and nonlinear properties for a mixed glass made from chains of n = 5 units leads to a conclusion that the extra Te-S (or Te

  3. Structural, electronic and optical properties of brookite phase titanium dioxide

    Science.gov (United States)

    Samat, M. H.; Taib, M. F. M.; Hassan, O. H.; Yahya, M. Z. A.; Ali, A. M. M.

    2017-04-01

    Structural, electronic and optical properties of titanium dioxide (TiO2) in brookite phase were studied via first-principles calculations in the framework of density functional theory (DFT). The exchange-correlation functional from local density approximation (LDA) and generalized gradient approximation (GGA) were used to calculate the properties of brookite TiO2. The structural parameters of brookite in orthorhombic structure (Pbca space group) are in good agreement with the previous theoretical and experimental data. The obtained direct band gaps from GGA are slightly higher than LDA. Both LDA and GGA band gaps underestimate the experimental band gap due to the well-known limitation of DFT. The density of states (DOS) displays the hybridization of O 2p and Ti 3d states and Mulliken population analysis presents the net charge of Ti and O atoms in brookite. The dielectric function was also analyzed together with other optical properties such as refractive index, reflectivity, loss function and absorption coefficient. The first-principles calculations on the least studied TiO2 in brookite phase using different exchange-correlation functional from LDA and GGA provide theoretical understanding about its structural, electronic and optical properties. Besides, these results would give a better support for technological applications concerning TiO2 materials using brookite phase.

  4. Structural, optical and thermal properties of nanoporous aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Ghrib, Taher, E-mail: taher.ghrib@yahoo.fr

    2015-01-10

    Highlights: • A simple electrochemical technique is presented and used to manufacture a porous aluminum layer. • Manufactured pores of 40 nm diameter and 200 nm depth are filled by nanocrystal of silicon and graphite. • Dimensions of pores increase with the anodization current which ameliorate the optical and thermal properties. • A new thermal method is presented which permit to determine the pores density and the layer thickness. • All properties show that the manufactured material can be used with success in solar cells. - Abstract: In this work the structural, thermal and optical properties of porous aluminum thin film formed with various intensities of anodization current in sulfuric acid are highlighted. The obtained pores at the surface are filled by sprayed graphite and nanocrystalline silicon (nc-Si) thin films deposited by plasma enhancement chemical vapor deposition (PECVD) which the role is to improve its optical and thermal absorption giving a structure of an assembly of three different media such as deposited thin layer (graphite or silicon)/(porous aluminum layer filled with the deposited layer)/(Al sample). The effect of anodization current on the microstructure of porous aluminum and the effect of the deposited layer were systematically studied by atomic force microscopy (AFM), transmission electron microscopy (TEM) and Raman spectroscopy. The thermal properties such as the thermal conductivity (K) and thermal diffusivity (D) are determined by the photothermal deflection (PTD) technique which is a non destructive technique. Based on this full characterization, it is demonstrated that the thermal and optical characteristics of these films are directly correlated to their micro-structural properties.

  5. All-optical switching and nonlinear optical properties of HBT in ethanol solution

    Institute of Scientific and Technical Information of China (English)

    Zheng Jia-Jin; Zhang Gui-Lan; Guo Yang-Xue; Li Xiang-Ping; Chen Wen-Ju

    2007-01-01

    This paper demonstrates an all-optical switching model system comprising a single pulsed pump beam at 355 nm and a CW He-Ne signal beam at 632.8 nm with 2-(2'-hydroxyphenyl)benzothiazole (HBT) in ethanol solution. The origins of the optical switching effect were discussed. By the study of nonlinear optical properties for HBT in ethanol solvent, this paper verified that the excited-state intramolecular proton transfer (ESIPT) effect of HBT and the thermal effect of solvent worked on quite different time scales and together induced the change of the refractive index of HBT solution, leading to the signal beam deflection. The results indicated that the HBT molecule could be an excellent candidate for high-speed and high-sensitive optical switching devices.

  6. Modeling silica aerogel optical performance by determining its radiative properties

    Directory of Open Access Journals (Sweden)

    Lin Zhao

    2016-02-01

    Full Text Available Silica aerogel has been known as a promising candidate for high performance transparent insulation material (TIM. Optical transparency is a crucial metric for silica aerogels in many solar related applications. Both scattering and absorption can reduce the amount of light transmitted through an aerogel slab. Due to multiple scattering, the transmittance deviates from the Beer-Lambert law (exponential attenuation. To better understand its optical performance, we decoupled and quantified the extinction contributions of absorption and scattering separately by identifying two sets of radiative properties. The radiative properties are deduced from the measured total transmittance and reflectance spectra (from 250 nm to 2500 nm of synthesized aerogel samples by solving the inverse problem of the 1-D Radiative Transfer Equation (RTE. The obtained radiative properties are found to be independent of the sample geometry and can be considered intrinsic material properties, which originate from the aerogel’s microstructure. This finding allows for these properties to be directly compared between different samples. We also demonstrate that by using the obtained radiative properties, we can model the photon transport in aerogels of arbitrary shapes, where an analytical solution is difficult to obtain.

  7. Anisotropic metamaterial devices

    Directory of Open Access Journals (Sweden)

    Wei Xiang Jiang

    2009-12-01

    Full Text Available In the last few years, a rapid development has been achieved in a subject area, so called optical transformation, which is based on the property of metric invariance in Maxwell's equations. Optical transformation, also known as transformation optics, allows metamaterials to be tailor-made according to practical needs. In this paper, we have reviewed the recent progress on the parametric design of transformation devices, such as invisibility cloaks, electromagnetic (EM concentrator, EM-wave converter, etc. The technique of optical transformation can also be applied when the sources are included in the transformed space.

  8. Magneto-optic properties and optical parameter of thin MnCo films

    Directory of Open Access Journals (Sweden)

    E Attaran Kakhki

    2009-09-01

    Full Text Available Having precise hysterics loop of thin ferroelectric and ferromagnetic layers for optical switching and optical storages are important. A hysterieses loop can be achieved from a phenomenon call the magneto-optic effect. The magneto-optic effect is the rotation of a linear polarized electromagnetic wave propagated through a ferromagnetic medium. When light is transmitted through a layer of magnetic material the result is called the Faraday effects and in the reflection mode Kerr effect. In the present work we prepared a thin layer of MnxCo3-xO4 (0≤ x ≤ 1 and a binary form of MnO/Co3O4 by the spray pyrolysis method. The films have been characterized by a special set up of magneto-optic hysterics loop plotter containing a polarized He- Ne laser beam and a special electronic circuit. Faraday rotation were measured for these films by hysterics loop plotter and their optical properties were also obtained by spatial software designed for this purpose according to Swane Poel theoretical method. The measurements show that the samples at diluted Mn study has are ferromagnetic and the magneto-optic rotation show a good enhance respect to the single Co layers. Also, the study has shown that the MnCo oxide layer have two different energy gaps and by increasing of Mn this energy decreases and fall to 0.13 eV.

  9. Solution synthesis, optical properties, and bioimaging applications of silicon nanocrystals.

    Science.gov (United States)

    McVey, Benjamin F P; Tilley, Richard D

    2014-10-21

    Understanding and unlocking the potential of semiconductor nanocrystals (NCs) is important for future applications ranging from biomedical imaging contrast agents to the next generation of solar cells and LEDs. Silicon NCs (Si NCs) have key advantages compared with other semiconductor NCs due to silicon's high natural abundance, low toxicity and strong biocompatibility, and unique size, and surface dependent optical properties. In this Account, we review and discuss the synthesis, surface modification, purification, optical properties, and applications of Si NCs. The synthetic methods used to make Si NCs have improved considerably in the last 5-10 years; highly monodisperse Si NCs can now be produced on the near gram scale. Scaled-up syntheses have allowed scientists to drive further toward the commercial utilization of Si NCs. The synthesis of doped Si NCs, through addition of a simple elemental precursor to a reaction mixture or by the production of a single source precursor, has shown great promise. Doped Si NCs have demonstrated unique or enhanced properties compared with pure Si NCs, for example, magnetism due to the presence of magnetic metals like Fe and Mn. Surface reactions have reached a new level of sophistication where organic (epoxidation and diol formation) and click (thiol based) chemical reactions can be carried out on attached surface molecules. This has led to a wide range of biocompatible functional groups as well as a degree of emission tuneability. The purification of Si NCs has been improved through the use of size separation columns and size selective precipitation. These purification approaches have yielded highly monodisperse and pure Si NCs previously unachieved. This has allowed scientists to study the size and surface dependent properties and toxicity and enabled the use of Si NCs in biomedical applications. The optical properties of Si NCs are complex. Using a combination of characterization techniques, researchers have explored the

  10. Structure and optical properties of CdSe chalcogenide semiconductors

    Science.gov (United States)

    Ganaie, Mohsin; Prince, Zulfequar, M.

    2015-08-01

    CdSe bulk sample has been prepared by melt-quenching technique and were characterized with XRD, SEM, FTIR, and electrical measurements. Thin films were deposited by thermal evaporation technique on ultra clean glass substrates under a high vacuum of 10-6 Torr. An XRD measurement reveals the coexistence of glassy and crystalline phase in bulk sample. SEM studies shows single phase, porous, and granular surface morphology of powder CdSe alloy. Optical properties (optical gap, absorption coefficient, extinction coefficient, refractive index) are calculated in the range of 190-1100nm. Analysis of the optical measurement shows that the non-direct transition is predominant and the band gap come outs to be 1.751eV. Dc conductivity measurement is thermally activated process which shows the semiconducting nature of the sample having activation energy 0.31eV.

  11. Linear and nonlinear magneto-optical properties of monolayer phosphorene

    Science.gov (United States)

    Nguyen, Chuong V.; Ngoc Hieu, Nguyen; Duque, C. A.; Quoc Khoa, Doan; Van Hieu, Nguyen; Van Tung, Luong; Vinh Phuc, Huynh

    2017-01-01

    We theoretically study the magneto-optical properties of monolayer phosphorene under a perpendicular magnetic field. We evaluate linear, third-order nonlinear, and total absorption coefficients and relative refractive index changes as functions of the photon energy and the magnetic field, and show that they are strongly influenced by the magnetic field. The magneto-optical absorption coefficients and relative refractive index changes appear in two different regimes: the microwave to THz and the visible frequency. The amplitude of intra-band transition peaks is larger than that of the inter-band transitions. The resonant peaks are blue-shifted with the magnetic field. Our results demonstrate the potential of monolayer phosphorene as a new two-dimensional material for applications in nano-electronic and optical devices as a promising alternative to graphene.

  12. Optical Properties of Graphene in Magnetic and Electric fields

    CERN Document Server

    Lin, Chiun-Yan; Huang, Yao-Kung; Lin, Ming-Fa

    2016-01-01

    Optical properties of graphene are explored by using the generalized tight-binding model. The main features of spectral structures, the form, frequency, number and intensity, are greatly enriched by the complex relationship among the interlayer atomic interactions, the magnetic quantization and the Coulomb potential energy. Absorption spectra have the shoulders, asymmetric peaks and logarithmic peaks, coming from the band-edge states of parabolic dispersions, the constant-energy loops and the saddle points, respectively. The initial forbidden excitation region is only revealed in even-layer AA stacking systems. Optical gaps and special structures can be generated by an electric field. The delta-function-like structures in magneto-optical spectra, which present the single, twin and double peaks, are associated with the symmetric, asymmetric and splitting Landau-level energy spectra, respectively. The single peaks due to the non-tilted Dirac cones exhibit the nearly uniform intensity. The AAB stacking possesses...

  13. Optical properties of geometrically optimized graphene quantum dots

    Science.gov (United States)

    Bugajny, Paweł; Szulakowska, Ludmiła; Jaworowski, Błazej; Potasz, Paweł

    2017-01-01

    We derive effective tight-binding model for geometrically optimized graphene quantum dots and based on it we investigate corresponding changes in their optical properties in comparison to ideal structures. We consider hexagonal and triangular dots with zigzag and armchair edges. Using density functional theory methods we show that displacement of lattice sites leads to changes in atomic distances and in consequence modifies their energy spectrum. We derive appropriate model within tight-binding method with edge-modified hopping integrals. Using group theoretical analysis, we determine allowed optical transitions and investigate oscillatory strength between bulk-bulk, bulk-edge and edge-edge transitions. We compare optical joint density of states for ideal and geometry optimized structures. We also investigate an enhanced effect of sites displacement which can be designed in artificial graphene-like nanostructures. A shift of absorption peaks is found for small structures, vanishing with increasing system size.

  14. Optical properties of polydimethylsiloxane (PDMS) during nanosecond laser processing

    Energy Technology Data Exchange (ETDEWEB)

    Stankova, N.E., E-mail: nestankova@yahoo.com [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Atanasov, P.A.; Nikov, Ru.G.; Nikov, R.G.; Nedyalkov, N.N.; Stoyanchov, T.R. [Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsaridradsko shose Boul., Sofia 1784 (Bulgaria); Fukata, N. [International Center for Materials for NanoArchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan); Kolev, K.N.; Valova, E.I.; Georgieva, J.S.; Armyanov, St.A. [Rostislaw Kaischew Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Block 11, Sofia 1113 (Bulgaria)

    2016-06-30

    Highlights: • Ns-laser (266, 355, 532 and 1064 nm) processing of medical grade PDMS is performed. • Investigation of the optical transmittance as a function of the laser beam parameters. • Analyses of laser treated area by optical & laser microscope and μ-Raman spectrometry. • Application as (MEAs) neural interface for monitor and stimulation of neural activity. - Abstract: This article presents experimental investigations of effects of the process parameters on the medical grade polydimethylsiloxane (PDMS) elastomer processed by laser source with irradiation at UV (266 and 355 nm), VIS (532 nm) and NIR (1064 nm). Systematic experiments are done to characterize how the laser beam parameters (wavelength, fluence, and number of pulses) affect the optical properties and the chemical composition in the laser treated areas. Remarkable changes of the optical properties and the chemical composition are observed. Despite the low optical absorption of the native PDMS for UV, VIS and NIR wavelengths, successful laser treatment is accomplished due to the incubation process occurring below the polymer surface. With increasing of the fluence and the number of the pulses chemical transformations are revealed in the entire laser treated area and hence decreasing of the optical transmittance is observed. The incubation gets saturation after a certain number of pulses and the laser ablation of the material begins efficiently. At the UV and VIS wavelengths the number of the initial pulses, at which the optical transmittance begins to reduce, decreases from 16 up to 8 with increasing of the laser fluence up to 1.0, 2.5 and 10 J cm{sup −2} for 266, 355 and 532 nm, respectively. In the case of 1064 nm the optical transmittance begins to reduce at 11th pulse incident at a fluence of 13 J cm{sup −2} and the number of the pulses decreases to 8 when the fluence reaches value of 16 J cm{sup −2}. The threshold laser fluence needed to induce incubation process after certain

  15. Prism coupling technique investigation of elasto-optical properties of thin polymer films

    NARCIS (Netherlands)

    Ay, Feridun; Kocabas, Askin; Kocabas, Coskun; Aydinli, Atilla; Agan, Sedat

    2004-01-01

    The use of thin polymer films in optical planar integrated optical circuits is rapidly increasing. Much interest, therefore, has been devoted to characterizing the optical and mechanical properties of thin polymer films. This study focuses on measuring the elasto-optical properties of three differen

  16. Optical properties and electron dynamics in carbon nanodots

    Science.gov (United States)

    Wen, Xiaoming; Huang, Shujuan; Conibeer, Gavin; Shrestha, Santosh; Yu, Pyng; Toh, Yon-Rui; Tang, Jau

    2013-12-01

    Carbon nanodots (CNDs) have emerged as fascinating materials with exceptional electronic and optical properties, and thus they offer promising applications in photonics, photovoltaics and photocatalysis. Herein we study the optical properties and electron dynamics in CNDs using steady state and time-resolved spectroscopy. The photoluminescence (PL) is determined to originate from both core and surface. The massive surface fluorophores result in a broad spectral fluorescence. In addition to various synthesis techniques, it is demonstrated that the PL of CNDs can be extended from the blue to the near infrared by thermal assisted growth. Directional electron transfer was observed as fast as femtosecond in CND-graphene oxide nanocomposites from CND into graphene oxide. These results suggest CNDs can be promising in many applications.

  17. Growth morphologies and optical properties of LTA single crystal.

    Science.gov (United States)

    Liu, Xiaojing; Ren, Miaojuan; Chen, Gang; Wang, Peiji

    2013-12-01

    Atomic force microscopy (AFM) has been used to study the growth morphologies of l-threonine acetate (abbreviated as LTA) crystal. Spiral growth hillocks and typical step patterns are described and discussed. Nuclei with various shapes often distribute at the larger step terraces. Eventually, in order to investigate microscopic second order nonlinear optical properties of LTA crystals, the molecular dipole moment (μ), polarizability (α), and first hyperpolarizability (β) were computed using a series of basis sets including polarized and diffuse functions at the framework of Hartree-Fock and density functional theory methods. The study is helpful to the further development of l-threonine analogs with improved nonlinear optical properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. Investigation on Growth and Optical Properties of LVCC Single Crystals

    Directory of Open Access Journals (Sweden)

    N. Sheen Kumar

    2014-11-01

    Full Text Available L-valine cadmium chloride (LVCC single crystals were grown by slow evaporation technique with different concentrations (0.25, 0.5, 0.75 and 1.0 mole of CdCl2. All the grown crystals were subjected to single crystal X-ray diffraction analysis. Solid state parameters were calculated for the grown crystals. The optical properties of the crystals were investigated by UV-Vis. absorption spectroscopy. The results revealed that, the wider bandgap and large transparency in the visible region along with higher polarizability of the grown crystals are highly useful in optoelectronic devices. Also according to our needs, one can tune the optical and electrical properties of LVCC crystals by adjusting the concentration of CdCl2 in LVCC.

  19. Research on lunar materials. [optical, chemical, and electrical properties

    Science.gov (United States)

    Gold, T.

    1978-01-01

    Abstracts of 14 research reports relating to investigations of lunar samples are presented. The principal topics covered include: (1) optical properties of surface and core samples; (2) chemical composition of the surface layers of lunar grains: Auger electron spectroscopy of lunar soil and ground rock samples; (3) high frequency electrical properties of lunar soil and rock samples and their relevance for the interpretation of lunar radar observations; (4) the electrostatic dust transport process; (5) secondary electron emission characteristics of lunar soil samples and their relevance to the dust transportation process; (6) grain size distribution in surface soil and core samples; and (7) the optical and chemical effects of simulated solar wind (2keV proton and a particle radiation) on lunar material.

  20. Optical Properties of Pyrolytic Carbon Films Versus Graphite and Graphene.

    Science.gov (United States)

    Dovbeshko, Galyna I; Romanyuk, Volodymyr R; Pidgirnyi, Denys V; Cherepanov, Vsevolod V; Andreev, Eugene O; Levin, Vadim M; Kuzhir, Polina P; Kaplas, Tommi; Svirko, Yuri P

    2015-12-01

    We report a comparative study of optical properties of 5-20 nm thick pyrolytic carbon (PyC) films, graphite, and graphene. The complex dielectric permittivity of PyC is obtained by measuring polarization-sensitive reflectance and transmittance spectra of the PyC films deposited on silica substrate. The Lorentz-Drude model describes well the general features of the optical properties of PyC from 360 to 1100 nm. By comparing the obtained results with literature data for graphene and highly ordered pyrolytic graphite, we found that in the visible spectral range, the effective dielectric permittivity of the ultrathin PyC films are comparable with those of graphite and graphene.

  1. Tb3+concentration dependent optical properties and energy transfer in

    Institute of Scientific and Technical Information of China (English)

    曹春燕

    2013-01-01

    By controlling the concentration of Tb3+, a series of GdF3 samples were synthesized by a hydrothermal method without any surfactant. The samples were characterized by X-ray diffraction (XRD) patterns, field emission scanning electron microscopy (FE-SEM) images, photoluminescence (PL) excitation and emission spectra as well as luminescent dynamic decay curves. The opti-cal properties of Tb3+, the concentration quenching phenomenon of Tb3+, and the energy transfer from host Gd3+to Tb3+were inves-tigated and discussed based on the concentration of Tb3+in the GdF3 samples. The experimental results suggested that the optical properties of Tb3+and the energy transfer from host Gd3+to Tb3+could be adjusted by the concentration of Tb3+in the samples.

  2. Optical and electrical properties of nanostructured metallic electrical contacts

    Science.gov (United States)

    Toranzos, Victor J.; Ortiz, Guillermo P.; Mochán, W. Luis; Zerbino, Jorge O.

    2017-01-01

    We study the optical and electrical properties of silver films with a graded thickness obtained through metallic evaporation in vacuum on a tilted substrate to evaluate their use as semitransparent electrical contacts. We measure their ellipsometric coefficients, optical transmissions and electrical conductivity for different widths, and we employ an efficient recursive method to calculate their macroscopic dielectric function, their optical properties and their microscopic electric fields. The topology of very thin films corresponds to disconnected islands, while very wide films are simply connected. For intermediate widths the film becomes semicontinuous, multiply connected, and its microscopic electric field develops hotspots at optical resonances which appear near the percolation threshold of the conducting phase, yielding large ohmic losses that increase the absorptance above that of a corresponding homogeneous film. Optimizing the thickness of the film to maximize its transmittance above the percolation threshold of the conductive phase we obtained a film with transmittance T  =  0.41 and a sheet resistance Rs\\text{max}≈ 2.7 Ω . We also analyze the observed emission frequency shift of porous silicon electroluminescent devices when Ag films are used as solid electrical contacts in replacement of electrolytic ones.

  3. Optical properties of distyrylbenzene chromophores and their segmented copolymers

    Energy Technology Data Exchange (ETDEWEB)

    Benfaremo, N.; Sandman, D.J.; Tripathy, S.; Kumar, J.; Yang, K.; Rubner, M.F.; Lyons, C.

    1998-07-01

    A new segmented polymer consisting of a distyrylbenzene chromophore separated by polyethylene glycol segments has been prepared by two independent methods: a novel, polymer analogous Mitsunobu reaction and convention double displacement reaction. The polymer is soluble in a variety of organic solvents, forms excellent, optically clear films and exhibits strong fluorescence. The properties of the chromophore and the polymer, as well as the scope and limitations of the novel Mitsonobu polymerization are presented. Attempts to use polymer in electroluminescent devices are also discussed.

  4. Optical properties of natural phenols in aqueous media

    Science.gov (United States)

    Vusovich, Olga; Sultimova, Natalia; Tchaikovskaya, Olga; Sokolova, Irina; Vasilieva, Nina

    2015-11-01

    Currently, the study of the photochemistry of natural phenols is relevant as it has a fundamental and a practical importance. The optical properties of natural phenols are studied: 3-methoxy-4-hydroxybenzaldehyde (vanillin) and 3- hydroxy-4-methoxybenzaldehyde (isovanillin), 4-hydroxy-3-methoxybenzoic acid (vanillic acid). The processes of proton transfer in the investigated molecules in ground and excited states under exposure to lamp and laser emissions are presented using the methods of electron spectroscopy and quantum chemistry.

  5. EFFECT OF KIESELGUHR FILTRATION ON OPTICAL PROPERTIES OF BEER

    OpenAIRE

    Helena Frančáková; Štefan Dráb; Miriam Solgajová; Žigmund Tóth; Tatiana Bojňanská

    2013-01-01

    Looks of beer is an important factor which is associated with high clarity. Clarity of beer is a basic precondition of its good marketability and consumer satisfaction. Beer filtration is ideal tool to create required optical properties. There is a high accent on this operation in brewery and minibrewery. The process of filtering removes unwanted haze-active substances in order to increase clarity and overall stability of beer. Objective method to expressing clarity of beer is nephelometric d...

  6. Properties of nonreciprocal light propagation in a nonlinear optical isolator

    OpenAIRE

    Roy, Dibyendu

    2016-01-01

    Light propagation in a nonlinear optical medium is nonreciprocal for spatially asymmetric linear permittivity. We here examine physical mechanism and properties of such nonreciprocity (NR). For this, we calculate transmission of light through a two-level atom asymmetrically coupled to light inside open waveguides. We determine the critical intensity of incident light for maximum NR and a dependence of the corresponding NR on asymmetry in the coupling. Surprisingly, we find that it is mainly c...

  7. Photoinduced nanocomposites—creation, modification, linear and nonlinear optical properties

    Science.gov (United States)

    Bityurin, N.; Alexandrov, A.; Afanasiev, A.; Agareva, N.; Pikulin, A.; Sapogova, N.; Soustov, L.; Salomatina, E.; Gorshkova, E.; Tsverova, N.; Smirnova, L.

    2013-07-01

    UV irradiation of materials consisting of a polymer matrix that possesses precursors of noble metals followed by annealing results in creation of metal nanoparticles within the irradiated domains. Such photoinduced nanocomposites are promising for photonics applications due to the strong alteration of their optical properties compared to initial nonirradiated materials. We report our results on the synthesis and investigation of two kinds of these materials: (a) Photoinduced Au nanocomposites based on PMMA matrices, including bulk materials prepared by means of the polymerization technique;

  8. Interplay between internal structure and optical properties of thermosensitive nanogels

    OpenAIRE

    Ledesma-Motolinía, Mónica; Braibanti, Marco; Rojas-Ochoa, Luis F.; Haro-Pérez, Catalina

    2016-01-01

    The structural and optical properties of thermosensitive particles, nanogels, are studied by light scattering and refractometry as a function of temperature. Nanogels are composed of poly- N-Isopropopylacrylamide, a polymer that shrinks at temperatures higher than its lower critical solution temperature, 33 °C. The internal nanogel structure obtained by light scattering is well modeled by assuming a constant radial mass density profile convoluted with a Gaussian function. Moreover, we introdu...

  9. Study of synthesis and optical properties of Cu nanoparticles

    Science.gov (United States)

    Singh, Jaiveer; Devi Lodhi, Pavitra; Choudhary, K. K.; Kaurav, Netram

    2017-05-01

    Nanoparticles of Copper (Cu) have attracted great interest in recent years because of their unique physical and optical properties that are of industrial importance. To understand their basic properties, Cu nanoparticles were synthesized by Polyol method. The synthesized powder was characterized by X-ray diffraction (XRD) and Fourier Transform Infrared Spectroscopy (FTIR). The average particle size and lattice parameter estimated by XRD were found to be ~42.5 nm and 3.617 Å respectively. The results suggest suitability of these nanoparticles as dopants in other materials such as polymer materials and oxides.

  10. Structure/property relationships in non-linear optical materials

    Energy Technology Data Exchange (ETDEWEB)

    Cole, J.M. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)]|[Durham Univ. (United Kingdom); Howard, J.A.K. [Durham Univ. (United Kingdom); McIntyre, G.J. [Institut Max von Laue - Paul Langevin (ILL), 38 - Grenoble (France)

    1997-04-01

    The application of neutrons to the study of structure/property relationships in organic non-linear optical materials (NLOs) is described. In particular, charge-transfer effects and intermolecular interactions are investigated. Charge-transfer effects are studied by charge-density analysis and an example of one such investigation is given. The study of intermolecular interactions concentrates on the effects of hydrogen-bonding and an example is given of two structurally similar molecules with very disparate NLO properties, as a result of different types of hydrogen-bonding. (author). 3 refs.

  11. Optical and magnetic properties of PAA@Fe nanocomposite films

    Directory of Open Access Journals (Sweden)

    Jing-jing Zhang

    2013-07-01

    Full Text Available A simple method to fabricate porous anodic alumina films embedded with Fe is reported. The films exhibit vivid structural colors and magnetic properties after being synthesized by an ac electrodeposition method. The optical properties of the samples can be effectively tuned by varying the oxidation time of aluminum. The coercivity mechanism of the Fe nanowires in our case is consistent with fanning reversal mode. PAA@Fe films can be used in many areas including decoration, display and multifunctional anti-counterfeiting applications.

  12. Anisotropic characterization of magnetorheological materials

    Science.gov (United States)

    Dohmen, E.; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) [1-3] or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) [4]. The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle.

  13. Simultaneous Measurement of Thermal Diffusivity and Thermal Conductivity by Means of Inverse Solution for One-Dimensional Heat Conduction (Anisotropic Thermal Properties of CFRP for FCEV)

    Science.gov (United States)

    Kosaka, Masataka; Monde, Masanori

    2015-11-01

    For safe and fast fueling of hydrogen in a fuel cell electric vehicle at hydrogen fueling stations, an understanding of the heat transferred from the gas into the tank wall (carbon fiber reinforced plastic (CFRP) material) during hydrogen fueling is necessary. Its thermal properties are needed in estimating heat loss accurately during hydrogen fueling. The CFRP has anisotropic thermal properties, because it consists of an adhesive agent and layers of the CFRP which is wound with a carbon fiber. In this paper, the thermal diffusivity and thermal conductivity of the tank wall material were measured by an inverse solution for one-dimensional unsteady heat conduction. As a result, the thermal diffusivity and thermal conductivity were 2.09 × 10^{-6}{ m}2{\\cdot }{s}^{-1} and 3.06{ W}{\\cdot }{m}{\\cdot }^{-1}{K}^{-1} for the axial direction, while they were 6.03 × 10^{-7} {m}2{\\cdot }{s}^{-1} and 0.93 {W}{\\cdot }{m}^{-1}{\\cdot }{K}^{-1} for the radial direction. The thermal conductivity for the axial direction was about three times higher than that for the radial direction. The thermal diffusivity shows the same trend in both directions because the thermal capacity, ρ c, is independent of direction, where ρ is the density and c is the heat capacity.

  14. Optical Properties of ZnO Nanoparticles Capped with Polymers

    Directory of Open Access Journals (Sweden)

    Atsushi Noguchi

    2011-06-01

    Full Text Available Optical properties of ZnO nanoparticles capped with polymers were investigated. Polyethylene glycol (PEG and polyvinyl pyrrolidone (PVP were used as capping reagents. ZnO nanoparticles were synthesized by the sol-gel method. Fluorescence and absorption spectra were measured. When we varied the timing of the addition of the polymer to the ZnO nanoparticle solution, the optical properties were drastically changed. When PEG was added to the solution before the synthesis of ZnO nanoparticles, the fluorescence intensity increased. At the same time, the total particle size increased, which indicated that PEG molecules had capped the ZnO nanoparticles. The capping led to surface passivation, which increased fluorescence intensity. However, when PEG was added to the solution after the synthesis of ZnO nanoparticles, the fluorescence and particle size did not change. When PVP was added to the solution before the synthesis of ZnO nanoparticles, aggregation of nanoparticles occurred. When PVP was added to the solution after the synthesis of ZnO nanoparticles, fluorescence and particle size increased. This improvement of optical properties is advantageous to the practical usage of ZnO nanoparticles, such as bioimaging

  15. Optical properties of femtosecond laser-treated diamond

    Science.gov (United States)

    Calvani, P.; Bellucci, A.; Girolami, M.; Orlando, S.; Valentini, V.; Lettino, A.; Trucchi, D. M.

    2014-10-01

    A laser-induced periodic surface structure (LIPSS) has been fabricated on polycrystalline diamond by an ultrashort Ti:Sapphire pulsed laser source ( λ = 800 nm, P = 3 mJ, 100 fs) in a high vacuum chamber (LIPSS with a ripple period of about 170 nm, shorter than the laser wavelength. Raman spectra of processed sample do not point out any evident sp 2 content, and diamond peak presents a right shift, indicating a compressive stress. The investigation of optical properties of fs-laser surface textured diamond is reported. Spectral photometry in the range 200/2,000 nm wavelength shows a significant increase of visible and infrared absorption (more than 80 %) compared to untreated specimens (less than 40 %). The analysis of optical characterization data highlights a close relationship between fabricated LIPSS and absorption properties, confirming the optical effectiveness of such a treatment as a light-trapping structure for diamond: these properties, reported for the first time, open the path for new applications of CVD diamond.

  16. Optical Properties and Immunoassay Applications of Noble Metal Nanoparticles

    Directory of Open Access Journals (Sweden)

    Shaoli Zhu

    2010-01-01

    Full Text Available Noble metal, especially gold (Au and silver (Ag nanoparticles exhibit unique and tunable optical properties on account of their surface plasmon resonance (SPR. In this paper, we mainly discussed the theory background of the enhanced optical properties of noble metal nanoparticles. Mie theory, transfer matrix method, discrete dipole approximation (DDA method, and finite-difference time domain (FDTD method applied brute-force computational methods for different nanoparticles optical properties. Some important nanostructure fabrication technologies such as nanosphere lithography (NSL and focused ion beam (FIB are also introduced in this paper. Moreover, these fabricated nanostructures are used in the plasmonic sensing fields. The binding signal between the antibody and antigen, amyloid-derived diffusible ligands (ADDLs-potential Alzheimer's disease (AD biomarkers, and staphylococcal enterotixn B (SEB in nano-Moore per liter (nM concentration level are detected by our designed nanobiosensor. They have many potential applications in the biosensor, environment protection, food security, and medicine safety for health, and so forth, fields.

  17. THz - ToF Optical Layer Analysis (OLA) to determine optical properties of dielectric materials

    Science.gov (United States)

    Spranger, Holger; Beckmann, Jörg

    2017-02-01

    Electromagnetic waves with frequencies between 0.1 and 10 THz are described as THz-radiation (T-ray). The ability to penetrate dielectric materials makes T-rays attractive to reveal discontinuities in polymer and ceramic materials. THz-Time Domain Spectroscopy Systems (THz-TDS) are available on the market today which operates with THz-pulses transmitted and received by optically pumped semiconductor antennas. In THz-TDS the travelling time (ToF) and shape of the pulse is changed if it interacts with the dielectric material and its inherent discontinuities. A tomogram of the object under the test can be reconstructed from time of flight diffraction (ToFD) scans if a synthetic focusing aperture (SAFT) algorithm is applied. The knowledge of the base materials shape and optical properties is essential for a proper reconstruction result. To obtain these properties a model is assumed which describes the device under the test as multilayer structure composed of thin layers with different dielectric characteristics. The Optical Layer Analysis (OLA) is able to fulfill these requirements. A short description why the optical properties are crucial for meaningful SAFT reconstruction results will be given first. Afterwards the OLA will be derived and applied on representative samples to discuss and evaluate its benefits and limits.

  18. Investigation of multiple optical and biometric properties of optic nerve head (Conference Presentation)

    Science.gov (United States)

    Hong, Young-Joo; Chan, Aaron C.; Kasaragod, Deepa K.; Makita, Shuichi; Miura, Masahiro; Yasuno, Yoshiaki

    2017-02-01

    Glaucoma is a group of eye diseases which results in optic nerve damage and vision loss. Optical coherence tomography (OCT) has been widely used to investigate geometric risk factor of glaucoma. However, material properties of ONH are also important to understand intra-ocular pressure related stress. We developed Jones-matrix based multifunctional posterior eye OCT (JM-OCT), which uses 1-μm band swept-source with a 100-kHz A-line rate. It provides three different optical properties, attenuation coefficient (AC), local birefringence (LB), and optical coherence angiography (OCA). We investigated the utility those properties for the investigation of normal ONH cases. 3 mm x 3 mm area around ONH was scanned for each eye, and biometric parameters were measured in hospital. Statistical analyses were performed with the mean values of above parameters at the regions of prelamina, lamina cribrosa, peripapillary sclera, and peripapillary nerve fiber layer, and biometric parameters of age, axial eye length, refractive error, and intraocular pressure. In qualitative observation, the lamina cribrosa generally shows more hyper signals in AC, LB, and OCA than prelamina. In t-test, AC, LB, and OCA showed significant difference (p eye length is positively correlated with LB and AC in lamina cribrosa. And these LB and AC are also negatively correlated with the refractive error. Age was found to be negatively correlated with OCA in lamina cribrosa.

  19. Enhancement of non-resonant dielectric cloaks using anisotropic composites

    CERN Document Server

    Takezawa, Akihiro

    2014-01-01

    The effectiveness of homogenized anisotropic materials in non-resonant dielectric multilayer cloaking is studied. Because existing multilayer cloaking by isotropic materials can be regarded as homogenous anisotropic cloaking from a macroscopic view, they can be efficiently designed by handling the physical properties of anisotropic materials directly. Anisotropic properties can be realized in two-phase composites if the physical properties of the material are within appropriate bounds. The optimized anisotropic physical properties are identified by a numerical optimization technique based on a full-wave simulation using the finite element method. The cloaking performance measured by the total scattering width is improved by about 10% compared with existing multilayer cloaking by isotropic materials in eight-layer cylindrical cloaking materials. The same performance with eight-layer cloaking by isotropic materials is achieved by three-layer cloaking using anisotropic materials. Cloaking with a about 50% reduct...

  20. Non-linear optical titanyl arsenates: Crystal growth and properties

    Science.gov (United States)

    Nordborg, Jenni Eva Louise

    Crystals are appreciated not only for their appearance, but also for their unique physical properties which are utilized by the photonic industry in appliances that we come across every day. An important part of enabling the technical use of optical devices is the manufacture of crystals. This dissertation deals with a specific group of materials called the potassium titanyl phosphate (KIP) family, known for their non-linear optical and ferroelectric properties. The isomorphs vary in their linear optical and dielectric properties, which can be tuned to optimize device performance by forming solid solutions of the different materials. Titanyl arsenates have a wide range of near-infrared transmission which makes them useful for tunable infrared lasers. The isomorphs examined in the present work were primarily RbTiOASO4 (RTA) and CsTiOAsO4 (CTA) together with the mixtures RbxCs 1-xTiOAsO4 (RCTA). Large-scale crystals were grown by top seeding solution growth utilizing a three-zone furnace with excellent temperature control. Sufficiently slow cooling and constant upward lifting produced crystals with large volumes useable for technical applications. Optical quality RTA crystals up to 10 x 12 x 20 mm were grown. The greater difficulty in obtaining good crystals of CTA led to the use of mixed RCTA materials. The mixing of rubidium and cesium in RCTA is more favorable to crystal growth than the single components in pure RTA and CTA. Mixed crystals are rubidium-enriched and contain only 20-30% of the cesium concentration in the flux. The cesium atoms show a preference for the larger cation site. The network structure is very little affected by the cation substitution; consequently, the non-linear optical properties of the Rb-rich isomorphic mixtures of RTA and CTA can be expected to remain intact. Crystallographic methods utilizing conventional X-ray tubes, synchrotron radiation and neutron diffraction have been employed to investigate the properties of the atomic