WorldWideScience

Sample records for anisotropic magnetoresistive sensor

  1. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Semitransparent anisotropic and spin Hall magnetoresistance sensor enabled by spin-orbit torque biasing

    Science.gov (United States)

    Yang, Yumeng; Xu, Yanjun; Xie, Hang; Xu, Baoxi; Wu, Yihong

    2017-07-01

    We demonstrate an ultrathin and semitransparent anisotropic and spin Hall magnetoresistance sensor based on NiFe/Pt heterostructures. The use of a spin-orbit torque effective field for transverse biasing allows us to reduce the total thickness of the sensors down to 3-4 nm, thereby leading to the semitransparency. Despite the extremely simple design, the spin-orbit torque effective field biased NiFe/Pt sensor exhibits levels of linearity and sensitivity comparable to those of sensors using more complex linearization schemes. In a proof-of-concept design using a full Wheatstone bridge comprising four sensing elements, we obtained a sensitivity up to 202.9 mΩ Oe-1, a linearity error below 5%, and a detection limit down to 20 nT. The transmittance of the sensor is over 50% in the visible range.

  3. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...

  4. Anisotropic magnetoresistance in a Fermi glass

    International Nuclear Information System (INIS)

    Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)

    1986-01-01

    Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity

  5. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from the se...

  6. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  7. Recent Developments of Magnetoresistive Sensors for Industrial Applications

    Directory of Open Access Journals (Sweden)

    Lisa Jogschies

    2015-11-01

    Full Text Available The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR and the giant magnetoresistive (GMR effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si, over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling.

  8. Recent Developments of Magnetoresistive Sensors for Industrial Applications.

    Science.gov (United States)

    Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher

    2015-11-12

    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).

  9. Variation of magnetoresistive sensitivity maps of patterned giant magnetoresistance sensors

    International Nuclear Information System (INIS)

    Foss-Schroeder, Sheryl; van Ek, Johannes; Song, Dian; Louder, Darrell; Al-Jumaily, Ghanim; Ryan, Pat; Prater, Craig; Hachfeld, Ed; Wilson, Matt; Tench, Robert

    2001-01-01

    A scanning probe microscope which combines probe contacts for the supply of current with a magnetic force microscope (MFM) for fully automated imaging of electrically active, patterned sensor-like devices across a wafer was developed. This was used for magnetoresistive sensitivity mapping (MSM) of giant magnetoresistive sensors with different stabilization schemes. Multiple measurements of sensors showed that the MSM images were very repeatable. The complex image patterns varied significantly from sensor to sensor across a wafer. With MFM tips magnetized perpendicular to the ferromagnetic films in the sensor, MSM signals at the top and bottom of the sensor were significantly more intense than signals at the sensor interior. Results from micromagnetic calculations were found to be consistent with the experimental observations. [copyright] 2001 American Institute of Physics

  10. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  11. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer

    Czech Academy of Sciences Publication Activity Database

    Gould, C.; Rüster, C.; Jungwirth, Tomáš; Girgis, E.; Schott, G. M.; Giraud, R.; Brunner, K.; Schmidt, G.; Molenkamp, L. W.

    2004-01-01

    Roč. 93, č. 11 (2004), 117203/1-117203/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor spintronics * tunneling anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  12. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  13. Anisotropic magnetoresistance of GaMnAs ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Vašek, Petr; Svoboda, Pavel; Novák, Vít; Cukr, Miroslav; Výborný, Karel; Jurka, Vlastimil; Stuchlík, Jiří; Orlita, Milan; Maude, D. K.

    2010-01-01

    Roč. 23, č. 6 (2010), 1161-1163 ISSN 1557-1939 R&D Projects: GA AV ČR KAN400100652; GA MŠk MEB020928 Grant - others:EU EuroMagNET II(XE) Egide 19535NF Institutional research plan: CEZ:AV0Z10100521 Keywords : GaMnAs * anisotropic magnetoresistance * hydrogenation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2010

  14. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  15. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Heine, G.

    1999-05-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 b . The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single crystals is interpreted as the suppression of the fluctuation-conductivity enhancement including orbital and spin contributions, whereas the negative magnetoresistance arises from the reduction of the fluctuation-induced pseudogap in the single-electron density-of-states by the magnetic field. For higher temperatures a transition to the normal-state magnetoresistance occurs for the in-plane transport. In the less anisotropic YBa2CU307 b thin films the positive out-of-plane magnetoresistance near T, changes sign to a negative magnetoresistance at higher temperatures. This behavior is also consistent with predictions from the theory of thermodynamic order-parameter fluctuations. The agreement of the fluctuation theory with the experimental findings is excellent for samples from the over doped side of the phase diagram, but deteriorate with decreasing carrier concentration. This behavior is interpreted by the dominating d-wave symmetry of the superconducting order

  16. Anomalously large anisotropic magnetoresistance in a perovskite manganite.

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X Z; Matsui, Y; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E Ward; Zhang, Jiandi

    2009-08-25

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La(0.69)Ca(0.31)MnO(3), leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a "colossal" AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings.

  17. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  18. Tunneling anisotropic magnetoresistance via molecular π orbitals of Pb dimers

    Science.gov (United States)

    Schöneberg, Johannes; Ferriani, Paolo; Heinze, Stefan; Weismann, Alexander; Berndt, Richard

    2018-01-01

    Pb dimers on a ferromagnetic surface are shown to exhibit large tunneling anisotropic magnetoresistance (TAMR) due to molecular π orbitals. Dimers oriented differently with respect to the magnetization directions of a ferromagnetic Fe double layer on W(110) were made with a scanning tunneling microscope. Depending on the dimer orientations, TAMR is absent or as large as 20% at the Fermi level. General arguments and first-principles calculations show that mixing of molecular orbitals due to spin-orbit coupling, which leads to TAMR, is maximal when the magnetization is oriented parallel to the dimer axis.

  19. Tunneling anisotropic magnetoresistance in single-molecule magnet junctions

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Jiao, Hujun; Liang, J.-Q.

    2012-08-01

    We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotropic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and the sign of TAMR are tunable by the bias voltage, suggesting a new spin-valve device with only one magnetic electrode in molecular spintronics.

  20. Anisotropic magnetoresistance components in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Rushforth, A.W.; Výborný, Karel; King, C.S.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.; Irvine, A.C.; Vašek, Petr; Novák, Vít; Olejník, Kamil; Sinova, J.; Jungwirth, Tomáš; Gallagher, B. L.

    2007-01-01

    Roč. 99, č. 14 (2007), 147207/1-147207/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 Grant - others:UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.944, year: 2007

  1. Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions

    Czech Academy of Sciences Publication Activity Database

    Giddings, A.D.; Makarovsky, O. N.; Khalid, M.N.; Yasin, S.; Edmonds, K. W.; Campion, R. P.; Wunderlich, J.; Jungwirth, Tomáš; Williams, D.A.; Gallagher, B. L.; Foxon, C. T.

    2008-01-01

    Roč. 10, č. 8 (2008), 085004/1-085004/9 ISSN 1367-2630 R&D Projects: GA ČR GEFON/06/E002; GA MŠk LC510; GA ČR GA202/05/0575; GA ČR GA202/04/1519 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor * nanoconstriction * tunneling anisotropic magnetoresistance , Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2008

  2. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  3. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables

  4. Anisotropic Magnetoresistance and Anisotropic Tunneling Magnetoresistance due to Quantum Interference in Ferromagnetic Metal Break Junctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D

    2006-01-01

    We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance w...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....

  5. Anisotropic magnetoresistance components in (Ga,Mn)As.

    Science.gov (United States)

    Rushforth, A W; Výborný, K; King, C S; Edmonds, K W; Campion, R P; Foxon, C T; Wunderlich, J; Irvine, A C; Vasek, P; Novák, V; Olejník, K; Sinova, Jairo; Jungwirth, T; Gallagher, B L

    2007-10-05

    We explore the basic physical origins of the noncrystalline and crystalline components of the anisotropic magnetoresistance (AMR) in (Ga,Mn)As. The sign of the noncrystalline AMR is found to be determined by the form of spin-orbit coupling in the host band and by the relative strengths of the nonmagnetic and magnetic contributions to the Mn impurity potential. We develop experimental methods yielding directly the noncrystalline and crystalline AMR components which are then analyzed independently. We report the observation of an AMR dominated by a large uniaxial crystalline component and show that AMR can be modified by local strain relaxation. Generic implications of our findings for other dilute moment systems are discussed.

  6. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  7. Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes

    NARCIS (Netherlands)

    Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2013-01-01

    Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been

  8. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  9. Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions.

    Science.gov (United States)

    Yang, D Z; Wang, T; Sui, W B; Si, M S; Guo, D W; Shi, Z; Wang, F C; Xue, D S

    2015-09-01

    We report a large but asymmetric magnetoresistance in silicon p-n junctions, which contrasts with the fact of magnetoresistance being symmetric in magnetic metals and semiconductors. With temperature decreasing from 293 K to 100 K, the magnetoresistance sharply increases from 50% to 150% under a magnetic field of 2 T. At the same time, an asymmetric magnetoresistance, which manifests itself as a magnetoresistance voltage offset with respect to the sign of magnetic field, occurs and linearly increases with magnetoresistance. More interestingly, in contrast with other materials, the lineshape of anisotropic magnetoresistance in silicon p-n junctions significantly depends on temperature. As temperature decreases from 293 K to 100 K, the width of peak shrinks from 90° to 70°. We ascribe these novel magnetoresistance to the asymmetric geometry of the space charge region in p-n junction induced by the magnetic field. In the vicinity of the space charge region the current paths are deflected, contributing the Hall field to the asymmetric magnetoresistance. Therefore, the observed temperature-dependent asymmetry of magnetoresistance is proved to be a direct consequence of the spatial configuration evolution of space charge region with temperature.

  10. Linear position sensing using magnetoresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Bratland, T.; Wan, H. [Honeywell Inc., Plymouth, MN (United States). Solid State Electronics Center

    2001-07-01

    This paper presents a non-contact, non-wear-out solution for long span absolute linear position sensing. This solution utilizes an array of magnetoresistive (MR) sensors, a magnet and signal conditioning electronics. The sensors are used to determine the position of a magnet that is attached to a moving object. In addition to mechanical benefits, this solution offers a high accuracy, low power solution. In this paper we will discuss the operating principles, system error and applications of this approach. This approach will be beneficial in applications for linear position or displacement, LVDT replacements, proximity detection, valve positioning, shaft travel, automotive steering, brake and throttle position systems. This will be used in industries including automotive, aviation and industrial process control. (orig.)

  11. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors.

    Science.gov (United States)

    Ravelo Arias, Sergio Iván; Ramírez Muñoz, Diego; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-12-17

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  12. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2015-06-01

    Full Text Available We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College, aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF, which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program and POES (Polar-orbiting Operational Environmental Satellites spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  13. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  14. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  15. Anomalous Nernst and anisotropic magnetoresistive heating in a lateral spin valve

    NARCIS (Netherlands)

    Slachter, Abraham; Bakker, Frank Lennart; van Wees, Bart Jan

    2011-01-01

    We measured the anomalous Nernst effect and anisotropic magnetoresistive heating in a lateral multiterminal permalloy/copper spin valve using all-electrical lock-in measurements. To interpret the results, a threedimensional thermoelectric finite-element model is developed. Using this model, we

  16. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yang-Yang; Zhang, Bin-Bin; Yao, Shu-Hua, E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn; Zhou, Jian, E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn; Zhang, Shan-Tao; Lu, Ming-Hui [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Li, Xiao; Chen, Y. B., E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Yan-Feng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China)

    2016-06-13

    Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe{sub 2}, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 10{sup 4}% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (∼1.4 × 10{sup 4}%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.

  17. Strain driven anisotropic magnetoresistance in antiferromagnetic La$_{0.4}$Sr$_{0.6}$MnO$_{3}$

    OpenAIRE

    Wong, A. T.; Beekman, C.; Guo, H.; Siemons, W.; Gai, Z.; Arenholz, E.; Takamura, Y.; Ward, T. Z.

    2014-01-01

    We investigate the effects of strain on antiferromagnetic (AFM) single crystal thin films of La 1-x Sr x MnO 3 (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic...

  18. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    Czech Academy of Sciences Publication Activity Database

    Galceran, R.; Fina, I.; Cisneros-Fernandez, J.; Bozzo, B.; Frontera, C.; Lopez-Mir, L.; Deniz, H.; Park, K.W.; Park, B.G.; Balcells, J.; Martí, Xavier; Jungwirth, Tomáš; Martínez, B.

    2016-01-01

    Roč. 6, Oct (2016), 1-6, č. článku 35471. ISSN 2045-2322 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016

  19. Anisotropic giant magnetoresistance in NbSb2

    Science.gov (United States)

    Wang, Kefeng; Graf, D.; Li, Lijun; Wang, Limin; Petrovic, C.

    2014-12-01

    The magnetic field response of the transport properties of novel materials and then the large magnetoresistance effects are of broad importance in both science and application. We report large transverse magnetoreistance (the magnetoresistant ratio ~ 1.3 × 105% in 2 K and 9 T field, and 4.3 × 106% in 0.4 K and 32 T field, without saturation) and field-induced metal-semiconductor-like transition, in NbSb2 single crystal. Magnetoresistance is significantly suppressed but the metal-semiconductor-like transition persists when the current is along the ac-plane. The sign reversal of the Hall resistivity and Seebeck coefficient in the field, plus the electronic structure reveal the coexistence of a small number of holes with very high mobility and a large number of electrons with low mobility. The large MR is attributed to the change of the Fermi surface induced by the magnetic field which is related to the Dirac-like point, in addition to orbital MR expected for high mobility metals.

  20. Anisotropic giant magnetoresistance in NbSb2

    Science.gov (United States)

    Wang, Kefeng; Graf, D.; Li, Lijun; Wang, Limin; Petrovic, C.

    2014-01-01

    The magnetic field response of the transport properties of novel materials and then the large magnetoresistance effects are of broad importance in both science and application. We report large transverse magnetoreistance (the magnetoresistant ratio ~ 1.3 × 105% in 2 K and 9 T field, and 4.3 × 106% in 0.4 K and 32 T field, without saturation) and field-induced metal-semiconductor-like transition, in NbSb2 single crystal. Magnetoresistance is significantly suppressed but the metal-semiconductor-like transition persists when the current is along the ac-plane. The sign reversal of the Hall resistivity and Seebeck coefficient in the field, plus the electronic structure reveal the coexistence of a small number of holes with very high mobility and a large number of electrons with low mobility. The large MR is attributed to the change of the Fermi surface induced by the magnetic field which is related to the Dirac-like point, in addition to orbital MR expected for high mobility metals. PMID:25476239

  1. Boltzmann theory of engineered anisotropic magnetoresistance in (Ga, Mn)As

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Abolfath, M.; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2002-01-01

    Roč. 81, č. 21 (2002), s. 4029-4031 ISSN 0003-6951 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002

  2. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    Czech Academy of Sciences Publication Activity Database

    Kriegner, D.; Výborný, Karel; Olejník, Kamil; Reichlová, Helena; Novák, Vít; Martí, Xavier; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; Springholz, G.; Holý, V.; Jungwirth, Tomáš

    2016-01-01

    Roč. 7, Jun (2016), 1-7, č. článku 11623. ISSN 2041-1723 R&D Projects: GA ČR GA15-13436S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.124, year: 2016

  3. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2006-01-01

    Roč. 97, č. 7 (2006), 077201/1-077201/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant - others:EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006

  4. Detection of magnetic resonance signals using a magnetoresistive sensor

    Science.gov (United States)

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  5. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....

  6. Theoretical Prediction of a Giant Anisotropic Magnetoresistance in Carbon Nanoscrolls.

    Science.gov (United States)

    Chang, Ching-Hao; Ortix, Carmine

    2017-05-10

    Snake orbits are trajectories of charge carriers curving back and forth that form at an interface where either the magnetic field direction or the charge carrier type are inverted. In ballistic samples, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic fields. Here we show that signatures of snake orbits can also be found in the opposite diffusive transport regime. We illustrate this by studying the classical magnetotransport properties of carbon tubular structures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls, the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.

  7. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors.

    Science.gov (United States)

    Tavassolizadeh, Ali; Rott, Karsten; Meier, Tobias; Quandt, Eckhard; Hölscher, Hendrik; Reiss, Günter; Meyners, Dirk

    2016-11-11

    Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  8. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Tavassolizadeh

    2016-11-01

    Full Text Available Magnetostrictive tunnel magnetoresistance (TMR sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJs with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of −3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and −311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and −260 for tensile and compressive stresses, respectively, under a −3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  9. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Alfadhel

    2016-05-01

    Full Text Available A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS, is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  10. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-07

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  11. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  12. Temperature dependence of anisotropic magnetoresistance in antiferromagnetic Sr{sub 2}IrO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.; Seinige, H.; Tsoi, M., E-mail: tsoi@physics.utexas.edu [Physics Department, University of Texas at Austin, Austin, Texas 78712 (United States); Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States); Cao, G. [Center for Advanced Materials, University of Kentucky, Lexington, Kentucky 40506 (United States); Zhou, J.-S.; Goodenough, J. B. [Texas Materials Institute, University of Texas at Austin, Austin, Texas 78712 (United States)

    2015-05-07

    Temperature-dependent magnetotransport properties of the antiferromagnetic semiconductor Sr{sub 2}IrO{sub 4} are investigated with point-contact devices. The point-contact technique allows to probe very small volumes and, therefore, to look for electronic transport on a microscopic scale. Point-contact measurements with single crystals of Sr{sub 2}IrO{sub 4} were intended to see whether the additional local resistance associated with a small contact area between a sharpened Cu tip and the antiferromagnet shows magnetoresistance (MR) such as that seen in bulk crystals. Point-contact measurements at liquid nitrogen temperature revealed large MRs (up to 28%) for modest magnetic fields (250 mT) applied within an IrO{sub 2} (ab) plane with angular dependence showing a crossover from four-fold to two-fold symmetry with an increasing magnetic field. Point contact measurement exhibits distinctive anisotropic magnetoresistance (AMR) in comparison to a bulk experiment, imposing intriguing questions about the mechanism of AMR in this material. Temperature-dependent MR measurements show that the MR falls to zero at the Neel temperature, but the temperature dependence of the MR ratio differs qualitatively from that of the resistivity. This AMR study helps to unveil the entanglement between electronic transport and magnetism in Sr{sub 2}IrO{sub 4} while the observed magnetoresistive phenomena can be potentially used to sense the antiferromagnetic order parameter in spintronic applications.

  13. High Dynamic Magnetic Beam Current Measurements by Means of Optimised Magneto-Resistance (MR) Sensor Engineering

    CERN Document Server

    Hape, M; Ricken, W

    2005-01-01

    The GSI-FAIR project (facility for antiprotons and ion research) will comprehend DC currents up to around 5 A in the SIS 100 synchrotron and after bunch compression down to 50 ns pulse length the peak currents will reach up to 100 A. To meet these higher demands of beam current measurements new sensor techniques are foreseen. The measurement device itself will be designed in form of a clip-on ampere-meter. The air gap of the flux concentrator is assumed to be around 5 mm and thus, the estimated maximum field therein is around 30 mT for a beam current of 100 A peak. The resolution of this device is aimed to be 1 mA in beam current, corresponding to a system dynamic of around 105. This high demands of beam current measurement require more sophisticated sensor types than just using a Hall probe. The characteristics of AMR (anisotropic magneto-resistance), GMR (giant magneto-resistance) and GMI (giant magneto-impedance) sensors like hysteresis, linearity and sensitivity have been measured within the magnetic fiel...

  14. Temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance in (Ga,Mn)As codoped with Li

    Science.gov (United States)

    Miyakozawa, Shohei; Chen, Lin; Matsukura, Fumihiro; Ohno, Hideo

    2016-03-01

    We evaluate the temperature dependence of in-plane magnetic anisotropy and anisotropic magnetoresistance (AMR) in (Ga,Mn)As codoped with Li by magnetotransport measurements. We find that the signs of in-plane uniaxial anisotropy and AMR change at the same temperature of ˜75 K, and that the sign of planar Hall effect does not depend on temperature.

  15. On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Wang, Shan Xiang; Hansen, Mikkel Fougt

    2015-01-01

    Magnetoresistive sensors are widely used for biosensing by detecting the signal from magnetic labels bound to a functionalized area that usually covers the entire sensor structure. Magnetic labels magnetized by a homogeneous applied magnetic field weaken and strengthen the applied field when...

  16. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    Science.gov (United States)

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931

  17. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Kučera, Jan; Sinova, J.; Rushforth, A.W.; Gallagher, B. L.; Jungwirth, Tomáš

    2009-01-01

    Roč. 80, č. 16 (2009), 165204/1-165204/8 ISSN 1098-0121 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * diluted magnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://arxiv.org/abs/0906.3151

  18. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard

    2015-01-01

    We investigate the self-heating of magnetoresistive sensors used for measurements on magnetic beads in magnetic biosensors. The signal from magnetic beads magnetized by the field due to the sensor bias current is proportional to the bias current squared. Therefore, we aim to maximize the bias...... current while limiting the sensor self-heating. We systematically characterize and model the Joule heating of magnetoresistive sensors with different sensor geometries and stack compositions. The sensor heating is determined using the increase of the sensor resistance as function of the bias current...

  19. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the di......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches...

  20. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang

    2017-12-26

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  1. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang

    2017-12-26

    The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.

  2. Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices.

    Science.gov (United States)

    Kamerbeek, Alexander M; Ruiter, Roald; Banerjee, Tamalika

    2018-01-22

    There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO 3 Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO 3 . In a different set of devices, a thin amorphous AlO x interlayer inserted between Co and Nb:SrTiO 3 , reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO 3 for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO 3 . We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO 3 and discuss ways to further enhance the TAMR.

  3. High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-01-01

    Full Text Available High field linear magnetoresistance is an important feature for magnetic sensors applied in magnetic levitating train and high field positioning measurements. Here, we investigate linear magnetoresistance in Pt/FePt/ZnO/Fe/Pt multilayer magnetic sensor, where FePt and Fe ferromagnetic layers exhibit out-of-plane and in-plane magnetic anisotropy, respectively. Perpendicular anisotropy L10-FePt reference layer with large coercivity and high squareness ratio was obtained by in situ substrate heating. Linear magnetoresistance is observed in this sensor in a large range between +5 kOe and −5 kOe with the current parallel to the film plane. This L10-FePt based sensor is significant for the expansion of linear range and the simplification of preparation for future high field magnetic sensors.

  4. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  5. A device model framework for magnetoresistive sensors based on the Stoner-Wohlfarth model

    Science.gov (United States)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-05-01

    The Stoner-Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model.

  6. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current...

  7. Anisotropic magnetoresistance and anomalous Nernst effect in exchange biased permalloy/(1 0 0) NiO single-crystal

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J., E-mail: joseholanda@df.ufpe.br; Maior, D.S.; Azevedo, A.; Rezende, S.M.

    2017-06-15

    Highlights: • We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer Py/(100) NiO single-Crystal. • The shift of the hysteresis loop, measured with the different techniques, yield approximately the same value of H{sub EB}. • In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. • The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films. - Abstract: We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer consisting of a thin film of permalloy deposited on a single crystal antiferromagnetic NiO (1 0 0). The exchange bias field (H{sub EB}) value was obtained by means of AMR, ANE and magnetization hysteresis measurements. The shift of the hysteresis loop, measured with the three different techniques, yield approximately the same value of H{sub EB.} In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films.

  8. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  9. Detection of current-driven magnetic domains in [Co/Pd] nanowire by tunneling magnetoresistive sensor

    Science.gov (United States)

    Okuda, Mitsunobu; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Saito, Nobuo; Hayashi, Naoto; Nakagawa, Shigeki

    2015-05-01

    Current-driven magnetic domain walls in magnetic nanowires have attracted a great deal of interest in terms of both physical studies and engineering applications. The anomalous Hall effect measurement is widely used for detecting the magnetization direction of current-driven magnetic domains in a magnetic nanowire. However, the problem with this measurement is that the detection point for current-driven domain wall motion is fixed at only the installed sensing wire across the specimen nanowire. A potential solution is the magnetic domain scope method, whereby the distribution of the magnetic flux leaking from the specimen can be analyzed directly by contact-scanning a tunneling magnetoresistive field sensor on a sample. In this study, we fabricated specimen nanowires consisting of [Co (0.3)/Pd (1.2)]21/Ta(3) films (units in nm) with perpendicular magnetic anisotropy on Si substrates. A tunneling magnetoresistive sensor was placed on the nanowire surface and a predetermined current pulse was applied. Real-time detection of the current-driven magnetic domain motion was successful in that the resistance of the tunneling magnetoresistive sensor was changed with the magnetization direction beneath the sensor. This demonstrates that magnetic domain detection using a tunneling magnetoresistive sensor is effective for the direct analysis of micro magnetic domain motion.

  10. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  11. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first...... melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying....... The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition....

  12. On-line irradiation testing of a Giant Magneto-Resistive (GMR) sensor

    Energy Technology Data Exchange (ETDEWEB)

    Olfert, J.; Luloff, B.; MacDonald, D.; Lumsden, R., E-mail: jeff.olfert@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Magneto-resistive sensors are rapidly gaining favour for magnetic field sensing applications owing to their high sensitivity, small size, and low cost. Their metallic, nonsemiconductor construction makes them excellent candidates for use in the harsh environments present in nuclear and space applications. In this work, a commercially available magneto-resistive sensor was irradiated up to a total gamma dose of 2 MGy (200 Mrad), and online testing was performed to monitor the sensor throughout the irradiation to detect any degradation. No significant evidence of degradation of the sensor characteristics was observed. A very small (< 1%) change in the bridge balance of the sensor as a function of accumulated dose was detected. (author)

  13. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  14. Prospect for room temperature tunneling anisotropic magnetoresistance effect: Density of statesanisotropies in CoPt systems

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Mašek, Jan; Jungwirth, Tomáš

    2006-01-01

    Roč. 73, č. 2 (2006), 024418/1-024418/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100530 Institutional research plan: CEZ:AV0Z10100521 Keywords : tunneling magnetoresistance * metallic ferromagnets * magnetocrystalline anisotropies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  15. Temperature-dependent anisotropic magnetoresistance inversion behaviors in Fe{sub 3}O{sub 4} films

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kap Soo [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2017-02-01

    We address the abnormal anisotropic magnetoresistance (AMR) reversal feature of half-metallic polycrystalline Fe{sub 3}O{sub 4} films occurring at a specific temperature. Experimental results revealed a positive to negative MR transition in the Fe{sub 3}O{sub 4} films at 264 K, which reflect the influence of additional domain wall scattering. These features was described by a correlation between domain wall resistance and inversion behavior of AMR with additional domain wall scattering factors. We further describe a possible model based on systematic structural and electrical measurements that employs a temperature-dependent domain wall width and spin diffusion length of the conducting electrons. This model allows for spin-flipping scattering of spin polarized electrons inside a proper domain width.

  16. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO2/Pt Resistive Switching Memory.

    Science.gov (United States)

    Li, Leilei; Liu, Yang; Teng, Jiao; Long, Shibing; Guo, Qixun; Zhang, Meiyun; Wu, Yu; Yu, Guanghua; Liu, Qi; Lv, Hangbing; Liu, Ming

    2017-12-01

    Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO 2 /Pt CBRAM device with magnetic CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET behaviors have been studied. Using two kinds of magnetic measurement methods, we measured the anisotropic magnetoresistance (AMR) of the CF at different temperatures to reflect the magnetic structure characteristics. By rotating the direction of the magnetic field and by sweeping the magnitude, we obtained the spatial direction as well as the easy-axis of the CF. The results indicate that the easy-axis of the CF is along the direction perpendicular to the top electrode plane. The maximum magnetoresistance was found to appear when the angle between the direction of magnetic field and that of the electric current in the CF is about 30°, and this angle varies slightly with temperature, indicating that the current is tilted.

  17. Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element.

    Science.gov (United States)

    Lόpez-Mir, L; Frontera, C; Aramberri, H; Bouzehouane, K; Cisneros-Fernández, J; Bozzo, B; Balcells, L; Martínez, B

    2018-01-16

    Multiple spin functionalities are probed on Pt/La 2 Co 0.8 Mn 1.2 O 6 /Nb:SrTiO 3 , a device composed by a ferromagnetic insulating barrier sandwiched between non-magnetic electrodes. Uniquely, La 2 Co 0.8 Mn 1.2 O 6 thin films present strong perpendicular magnetic anisotropy of magnetocrystalline origin, property of major interest for spintronics. The junction has an estimated spin-filtering efficiency of 99.7% and tunneling anisotropic magnetoresistance (TAMR) values up to 30% at low temperatures. This remarkable angular dependence of the magnetoresistance is associated with the magnetic anisotropy whose origin lies in the large spin-orbit interaction of Co 2+ which is additionally tuned by the strain of the crystal lattice. Furthermore, we found that the junction can operate as an electrically readable magnetic memory device. The findings of this work demonstrate that a single ferromagnetic insulating barrier with strong magnetocrystalline anisotropy is sufficient for realizing sensor and memory functionalities in a tunneling device based on TAMR.

  18. Lab-on-chip cytometry based on magnetoresistive sensors for bacteria detection in milk.

    Science.gov (United States)

    Fernandes, Ana C; Duarte, Carla M; Cardoso, Filipe A; Bexiga, Ricardo; Cardoso, Susana; Freitas, Paulo P

    2014-08-21

    Flow cytometers have been optimized for use in portable platforms, where cell separation, identification and counting can be achieved in a compact and modular format. This feature can be combined with magnetic detection, where magnetoresistive sensors can be integrated within microfluidic channels to detect magnetically labelled cells. This work describes a platform for in-flow detection of magnetically labelled cells with a magneto-resistive based cell cytometer. In particular, we present an example for the validation of the platform as a magnetic counter that identifies and quantifies Streptococcus agalactiae in milk.

  19. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Science.gov (United States)

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  20. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  1. Transport theory for disordered multiple-band systems: Anomalous Hall effect and anisotropic magnetoresistance

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Tserkovnyak, Y.; Výborný, Karel; Sinova, J.

    2009-01-01

    Roč. 79, č. 19 (2009), 19529/1-19529/19 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic materials * Hall effect * magnetoresistance * quasiparticles * spin-orbit interactions * two-dimensional electro n gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.79.195129

  2. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO.sub.x./sub./Pt structures

    Czech Academy of Sciences Publication Activity Database

    Park, B.G.; Wunderlich, J.; Williams, D.A.; Joo, S.J.; Jung, K.Y.; Shin, K. H.; Olejník, Kamil; Shick, Alexander; Jungwirth, Tomáš

    2008-01-01

    Roč. 100, č. 8 (2008), 087204/1-087204/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 EU Projects: European Commission(XE) 015728 - NANOSPIN Grant - others:UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : tunneling magnetoresistance * metallic ferromagnets * magnetocrystalline anisotropies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  3. Giant Magnetoresistive Sensors and Magnetic Labels for Chip-Scale Detection of Immunosorbent Assays

    Energy Technology Data Exchange (ETDEWEB)

    Millen, Rachel Lora [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The combination of giant magnetoresistive sensors, magnetic labeling strategies, and biomolecule detection is just beginning to be explored. New readout methods and assay formats are necessary for biomolecules detection to flourish. The work presented in this dissertation describes steps toward the creation of a novel detection method for bioassays utilizing giant magnetoresistive sensors as the readout method. The introduction section contains a brief review of some of the current methods of bioassay readout. The theoretical underpinnings of the giant magnetoresistive effect are also discussed. Finally, the more prominent types of giant magnetoresistive sensors are described, as well as their complicated fabrication. Four data chapters follow the introduction; each chapter is presented as a separate manuscript, either already published or soon to be submitted. Chapter 1 presents research efforts toward the production of a bioassay on the surface of a gold-modified GMR sensor. The testing of this methodology involved the capture of goat a-mouse-coated magnetic nanoparticles on the mouse IgG-modified gold surface. The second, third and fourth chapters describe the utilization of a self-referenced sample stick for scanning across the GMR sensor. The sample stick consisted of alternating magnetic reference and bioactive gold addresses. Chapter 2 is concerned with the characterization of both the scanning readout method and the binding and detection of streptavidin-coated magnetic particles to a biotinylated surface. Chapter 3 advances the sample stick readout with the use of the system for detection of a sandwich immunoassay with rabbit IgG proteins. Finally, simultaneous detection of three IgG proteins is demonstrated in Chapter 4. The dissertation is concluded with a brief summary of the research presented and a discussion of the possible future applications and direction of this work.

  4. Anisotropic magnetoresistance of spin-orbit coupledcarriers scattered from polarized magnetic impurities

    Czech Academy of Sciences Publication Activity Database

    Trushin, M.; Výborný, Karel; Moraczewski, P.; Kovalev, A.A.; Schliemann, J.; Jungwirth, Tomáš

    2009-01-01

    Roč. 80, č. 13 (2009), 134405/1-134405/14 ISSN 1098-0121 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : Boltzmann equation * conduction bands * enhanced magnetoresistance * Fermi surface * ferromagnetic materials * gallium compounds * III-V semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.80.134405

  5. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.

    Science.gov (United States)

    Zhao, Wei; Luo, Jin; Shan, Shiyao; Lombardi, Jack P; Xu, Yvonne; Cartwright, Kelly; Lu, Susan; Poliks, Mark; Zhong, Chuan-Jian

    2015-09-16

    The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors.

    Science.gov (United States)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik; Hansen, Mikkel Fougt

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy and precision with which the coverage can be determined from a single sensor measurement. We show that statistical fluctuations between samples may reduce the sensitivity and dynamic range of a sensor significantly when the functionalized area is larger than the sensor area. Hence, the statistics of sampling is essential to sensor design. For illustration, we analyze three important published cases for which statistical fluctuations are dominant, significant, and insignificant, respectively.

  7. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′-Fe4N thin films

    Directory of Open Access Journals (Sweden)

    Kazuki Kabara

    2016-05-01

    Full Text Available Transverse anisotropic magnetoresistance (AMR effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C 2 tr exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C 2 tr shows a positive small value (0.12% from 300 K to 50 K. However, the C 2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C 2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C 2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002.

  8. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films

    Science.gov (United States)

    Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas

    2015-03-01

    Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  9. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the...

  10. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility ...

  11. Magnetocardiography and magnetoencephalography measurements at room temperature using tunnel magneto-resistance sensors

    Science.gov (United States)

    Fujiwara, Kosuke; Oogane, Mikihiko; Kanno, Akitake; Imada, Masahiro; Jono, Junichi; Terauchi, Takashi; Okuno, Tetsuo; Aritomi, Yuuji; Morikawa, Masahiro; Tsuchida, Masaaki; Nakasato, Nobukazu; Ando, Yasuo

    2018-02-01

    Magnetocardiography (MCG) and magnetoencephalography (MEG) signals were detected at room temperature using tunnel magneto-resistance (TMR) sensors. TMR sensors developed with low-noise amplifier circuits detected the MCG R wave without averaging, and the QRS complex was clearly observed with averaging at a high signal-to-noise ratio. Spatial mapping of the MCG was also achieved. Averaging of MEG signals triggered by electroencephalography (EEG) clearly observed the phase inversion of the alpha rhythm with a correlation coefficient as high as 0.7 between EEG and MEG.

  12. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  13. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  14. Development of a Magneto-Resistive Angular Position Sensor for Space Mechanisms

    Science.gov (United States)

    Hahn, Robert; Schmidt, Tilo; Seifart, Klaus; Olberts, Bastian; Romera, Fernando

    2016-01-01

    Magnetic microsystems in the form of magneto-resistive (MR) sensors are firmly established in automobiles and industrial applications. They are used to measure travel, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In some science missions, the technology is already applied, however, the designs are proprietary and case specific, for instance in case of the angular sensors used for JPL/NASA's Mars rover Curiosity [1]. Since 2013 HTS GmbH and Sensitec GmbH have teamed up to develop and qualify a standardized yet flexible to use MR angular sensor for space mechanisms. Starting with a first assessment study and market survey performed under ESA contract, a very strong industry interest in novel, contactless position measurement means was found. Currently a detailed and comprehensive development program is being performed by HTS and Sensitec. The objective of this program is to advance the sensor design up to Engineering Qualification Model level and to perform qualification testing for a representative space application. The paper briefly reviews the basics of magneto-resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The key applications and specification are presented and the preliminary baseline mechanical and electrical design will be discussed. An outlook on the upcoming development and test stages as well as the qualification program will be provided.

  15. In-plane tunneling anisotropic magnetoresistance in (Ga,Mn)As/GaAs Esaki diodes in the regime of the excess current

    Energy Technology Data Exchange (ETDEWEB)

    Shiogai, J. [Department of Materials Science, Tohoku University, Sendai 980-8579, Miyagi (Japan); Institute of Materials Research, Tohoku University, Sendai 980-8577, Miyagi (Japan); Ciorga, M., E-mail: mariusz.ciorga@ur.de; Utz, M.; Schuh, D.; Bougeard, D.; Weiss, D. [Institute of Experimental and Applied Physics, University of Regensburg, D-93040 Regensburg (Germany); Kohda, M.; Nitta, J. [Department of Materials Science, Tohoku University, Sendai 980-8579, Miyagi (Japan); Nojima, T. [Institute of Materials Research, Tohoku University, Sendai 980-8577, Miyagi (Japan)

    2015-06-29

    We investigate the angular dependence of the tunneling anisotropic magnetoresistance in (Ga,Mn)As/n-GaAs spin Esaki diodes in the regime where the tunneling process is dominated by the excess current through midgap states in (Ga,Mn)As. We compare it to similar measurements performed in the regime of band-to-band tunneling. Whereas the latter show biaxial symmetry typical for magnetic anisotropy observed in (Ga,Mn)As samples, the former is dominated by uniaxial anisotropy along the 〈110〉 axes.

  16. Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor

    OpenAIRE

    García Vidal, Enrique; Ramírez Muñoz, Diego; Ravelo Arias, Sergio Iván; Sánchez Moreno, Jaime; Cardoso, Susana; Ferreira, Ricardo; Freitas, Paulo

    2017-01-01

    In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an e...

  17. Electronic Energy Meter Based on a Tunnel Magnetoresistive Effect (TMR) Current Sensor.

    Science.gov (United States)

    Vidal, Enrique García; Muñoz, Diego Ramírez; Arias, Sergio Iván Ravelo; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; Freitas, Paulo

    2017-09-26

    In the present work, the design and microfabrication of a tunneling magnetoresistance (TMR) electrical current sensor is presented. After its physical and electrical characterization, a wattmeter is developed to determine the active power delivered to a load from the AC 50/60 Hz mains line. Experimental results are shown up to 1000 W of power load. A relative uncertainty of less than 1.5% with resistive load and less than 1% with capacitive load was obtained. The described application is an example of how TMR sensing technology can play a relevant role in the management and control of electrical energy.

  18. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  19. Hall effect enhanced low-field sensitivity in a three-contact extraordinary magnetoresistance sensor

    KAUST Repository

    Sun, Jian

    2012-06-06

    An extraordinary magnetoresistance (EMR) device with a 3-contact geometry has been fabricated and characterized. A large enhancement of the output sensitivity at low magnetic fields compared to the conventional EMR device has been found, which can be attributed to an additional influence coming from the Hall effect. Output sensitivities of 0.19 mV/T at zero-field and 0.2 mV/T at 0.01 T have been measured in the device, which is equivalent to the ones of the conventional EMR sensors with a bias of ∼0.04 T. The exceptional performance of EMR sensors in the high field region is maintained in the 3-contact device.

  20. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  1. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  2. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor

    KAUST Repository

    Li, Fuquan

    2014-09-01

    Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6. μm wide microwire, which attracted the magnetic beads from a distance of 60. μm, when a current of 30. mA was applied. A sensing space of 30. μm in length and 6. μm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8. μm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30. min with a sample volume in the μl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. © 2014 Elsevier B.V.

  3. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  4. A Current Sensor Based on the Giant Magnetoresistance Effect: Design and Potential Smart Grid Applications

    Directory of Open Access Journals (Sweden)

    Shan X. Wang

    2012-11-01

    Full Text Available Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A−1, linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C−1 with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  5. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro

    2017-06-13

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  6. Hybrid Integration of Magnetoresistive Sensors with MEMS as a Strategy to Detect Ultra-Low Magnetic Fields

    Directory of Open Access Journals (Sweden)

    João Valadeiro

    2016-05-01

    Full Text Available In this paper, we describe how magnetoresistive sensors can be integrated with microelectromechanical systems (MEMS devices enabling the mechanical modulation of DC or low frequency external magnetic fields to high frequencies using MEMS structures incorporating magnetic flux guides. In such a hybrid architecture, lower detectivities are expected when compared with those obtained for individual sensors. This particularity results from the change of sensor’s operating point to frequencies above the 1/f noise knee.

  7. Investigation of contactless detection using a giant magnetoresistance sensor for detecting prostate specific antigen.

    Science.gov (United States)

    Sun, Xuecheng; Zhi, Shaotao; Lei, Chong; Zhou, Yong

    2016-08-01

    This paper presents a contactless detection method for detecting prostate specific antigen with a giant magnetoresistance sensor. In contactless detection case, the prostate specific antigen sample preparation was separated from the sensor that prevented the sensor from being immersed in chemical solvents, and made the sensor implementing in immediately reuse without wash. Experimental results showed that applied an external magnetic field in a range of 50 Oe to 90 Oe, Dynabeads with a concentration as low as 0.1 μg/mL can be detected by this system and could give an approximate quantitation to the logarithmic of Dynabeads concentration. Sandwich immunoassay was employed for preparing PSA samples. The PSA capture was implemented on a gold film modified with a self-assembled monolayer and using biotinylated secondary antibody against PSA and streptavidinylated Dynabeads. With DC magnetic field in the range of 50 to 90 Oe, PSA can be detected with a detection limit as low as 0.1 ng/mL. Samples spiked with different concentrations of PSA can be distinguished clearly. Due to the contactless detection method, the detection system exhibited advantages such as convenient manipulation, reusable, inexpensive, small weight. So, this detection method was a promising candidate in biomarker detection, especially in point of care detection.

  8. Giant magnetoresistance (GMR) sensors from basis to state-of-the-art applications

    CERN Document Server

    Reig, Candid; Mukhopadhyay, Subhas Chandra

    2013-01-01

    Since the discovery of the giant magnetoresistance (GMR) effect in 1988, spintronics has been presented as a new technology paradigm, awarded by the Nobel Prize in Physics in 2007. Initially used in read heads of hard disk drives, and while disputing a piece of the market to the flash memories, GMR devices have broadened their range of usage by growing towards magnetic field sensing applications in a huge range of scenarios. Potential applications at the time of the discovery have become real in the last two decades. Definitively, GMR was born to stand. In this sense, selected successful approaches of GMR based sensors in different applications: space, automotive, microelectronics, biotechnology … are collected in the present book. While keeping a practical orientation, the fundamentals as well as the current trends and challenges of this technology are also analyzed. In this sense, state of the art contributions from academy and industry can be found through the contents. This book can be used by starting ...

  9. Tunnelling anisotropic magnetoresistance of Fe/GaAs/Ag(001) junctions from first principles: effect of hybridized interface resonances

    Czech Academy of Sciences Publication Activity Database

    Sýkora, R.; Turek, Ilja

    2012-01-01

    Roč. 24, č. 36 (2012), 365801/1-365801/10 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 Keywords : tunnel junctions * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  10. Anisotropic magnetoresistance of individual CoFeB and Ni nanotubes with values of up to 1.4% at room temperature

    Directory of Open Access Journals (Sweden)

    Daniel Rüffer

    2014-07-01

    Full Text Available Magnetic nanotubes (NTs are interesting for magnetic memory and magnonic applications. We report magnetotransport experiments on individual 10 to 20 μm long Ni and CoFeB NTs with outer diameters ranging from 160 to 390 nm and film thicknesses of 20 to 40 nm. The anisotropic magnetoresistance (AMR effect studied from 2 K to room temperature (RT amounted to 1.4% and 0.1% for Ni and CoFeB NTs, respectively, at RT. We evaluated magnetometric demagnetization factors of about 0.7 for Ni and CoFeB NTs having considerably different saturation magnetization. The relatively large AMR value of the Ni nanotubes is promising for RT spintronic applications. The large saturation magnetization of CoFeB is useful in different fields such as magnonics and scanning probe microscopy using nanotubes as magnetic tips.

  11. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  12. Magnetoresistance sensitivity mapping of the localized response of contiguous and lead-overlaid sensors

    International Nuclear Information System (INIS)

    Sankar, Sandra

    2003-01-01

    Magnetoresistance sensitivity mapping (MSM) was used to investigate the local response of magnetic recording sensors without convolution of the writer, magnetic media and data channel. From a 2D map of the local sensor response, the intrinsic pulse shape and magnetic track profile are readily obtained. Pulse-width is a concern for high data rate since if pulse-width is too broad, individual transitions become difficult to distinguish. Track profiles are important because due to the small difference between magnetic write-width and magnetic read-width, side reading will lead to an increase in noise. Three experiments are discussed: the dependence of the pulse-width (PW50) of the standard contiguous junction (CJ) design on shield-to-shield spacing; a comparison of the pulse shape of lead-overlaid (LOL) and CJ designs; and a comparison of the magnetic track profile (including track-width and skirt ratio) of LOL and CJ designs. The LOL design offers an increased sensitivity; however, as seen from MSM, the penalties are broadening of the track and pulse profiles. These are a direct result of the finite current in the lead overlay region and an increased shield-to-shield spacing in that region. The MSM image shows a curvature, which is associated with the topography of the top shield due to the lead overlay

  13. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance.

    Science.gov (United States)

    Bodnar, S Yu; Šmejkal, L; Turek, I; Jungwirth, T; Gomonay, O; Sinova, J; Sapozhnik, A A; Elmers, H-J; Kläui, M; Jourdan, M

    2018-01-24

    Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn 2 Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn 2 Au(001) thin films were generated by pulse current densities of ≃10 7  A/cm 2 . The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.

  14. A high-resolution tunneling magneto-resistance sensor interface circuit

    Science.gov (United States)

    Li, Xiangyu; Yin, Liang; Chen, Weiping; Gao, Zhiqiang; Liu, Xiaowei

    2017-02-01

    In this paper, a chopper instrumentation amplifier and a high-precision and low-noise CMOS band gap reference in a standard 0.5 μm CMOS technology for a tunneling magneto-resistance (TMR) sensor is presented. The noise characteristic of TMR sensor is an important factor in determining the performance of the sensor. In order to obtain a larger signal to noise ratio (SNR), the analog front-end chip ASIC weak signal readout circuit of the sensor includes the chopper instrumentation amplifier; the high-precision and low-noise CMOS band gap reference. In order to achieve the low noise, the chopping technique is applied in the first stage amplifier. The low-frequency flicker noise is modulated to high-frequency by chopping switch, so that the modulator has a better noise suppression performance at the low frequency. The test results of interface circuit are shown as below: At a single 5 V supply, the power dissipation is 40 mW; the equivalent offset voltage is less than 10 uV; the equivalent input noise spectral density 30 nV/Hz1/2(@10 Hz), the equivalent input noise density of magnetic is 0.03 nTHz1/2(@10 Hz); the scale factor temperature coefficient is less than 10 ppm/∘C, the equivalent input offset temperature coefficient is less than 70 nV/∘C; the gain error is less than 0.05%, the common mode rejection ratio is greater than 120 dB, the power supply rejection ratio is greater than 115 dB; the nonlinear is 0.1% FS.

  15. Anisotropic mobility and carrier dynamics in the β-type BEDT-TTF salts as studied by inter-layer transverse magnetoresistance

    Directory of Open Access Journals (Sweden)

    Shigeharu Sugawara and Masafumi Tamura

    2013-01-01

    Full Text Available A new method to estimate an in-plane conduction anisotropy in a quasi-two-dimensional (q2D layered conductor by measuring the inter-layer transverse magnetoresistance is proposed. We applied this method to layered organic conductors β-(BEDT-TTF2X (BEDT-TTF = bis(ethylenedithiotetrathiafulvalene, C10H8S8; X = IBr2, I2Br by applying magnetic field rotating within the basal plane at 4.2 K. We found the anisotropic behaviour of carrier mobility μ. From this, anomalous distribution of carrier lifetime τ on the Fermi surface is derived, by the use of Fermi surface data reported for the materials. Calculations of the non-uniform susceptibility χ0(q suggest that carrier scattering is enhanced at specific k-points related to partial nesting of the Fermi surface. The present method is thus demonstrated to be an efficient experimental tool to elucidate anisotropic carrier dynamics in q2D conductors.

  16. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A.

  17. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  18. Coulomb blockade anisotropic magnetoresistance and voltage controlled magnetic switching in a ferromagnetic GaMnAs single electron transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Irvine, A.C.; Kaestner, B.; Shick, Alexander; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2007-01-01

    Roč. 310, - (2007), s. 1883-1888 ISSN 0304-8853 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : ferromagnetic semiconductors * magnetoresistance * single-electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  19. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  20. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    OpenAIRE

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-01-01

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this...

  1. Magnetic anisotropies and rotational hysteresis in Ni81Fe19/Fe50Mn50 films: A study by torque magnetometry and anisotropic magnetoresistance

    Science.gov (United States)

    da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.

    2018-04-01

    Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.

  2. Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Koo, T.Y.; Park, S.H.; Lee, K.; Jeong, Y.H.

    1997-01-01

    Thin films of perovskite manganite La 0.7 Ca 0.3 MnO 3 were grown epitaxially on SrTiO 3 (100), MgO(100) and LaAlO 3 (100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO 3 , MgO, and LaAlO 3 , respectively, while the unit cell of the bulk is cubic. It is found that the samples with a cubic unit cell show smaller peak magnetoresistance at low fields (approx-lt 1T) than the noncubic ones do. The present result demonstrates that the magnetoresistance of La 0.7 Ca 0.3 MnO 3 at low fields can be controlled by lattice distortion via externally imposed strains. copyright 1997 American Institute of Physics

  3. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Melilli, G.; Madon, B.; Wegrowe, J.-E., E-mail: jean-eric.wegrowe@polytechnique.edu; Clochard, M.-C., E-mail: clochard@cea.fr

    2015-12-15

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α{sub irrad}) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  4. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  5. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    International Nuclear Information System (INIS)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-01-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α irrad ) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  6. High-resolution imaging with two-axis orthogonal magneto-resistive sensor based eddy current probe

    Science.gov (United States)

    Wincheski, Buzz; Simpson, John; Seebo, Jeffery P.; Powell, Jessica

    2012-05-01

    A two-channel magneto-resistive sensor with an embedded, single-strand eddy current inducer has been fabricated and tested for applications including sensory material characterization and the analysis of intermittent contact along compression boundaries and fatigue cracks. A rapid scanning technique has also been implemented to enable high-resolution imaging of relatively large areas in modest times. Applications of the probe for high-resolution imaging of calibration artifacts and sensory materials are presented. Finite element modeling of the probe is also presented and compared with experimental measurements with good agreement.

  7. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  8. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  9. Anomalous Anisotropic Magnetoresistance And Magnetization In Mn3.69Bi95.69Fe0.62

    Directory of Open Access Journals (Sweden)

    A. V. Terekhov

    2017-12-01

    Full Text Available It was found that the Mn3.69Bi95.69Fe0.62 consists of two phases, namely of a bismuth matrix and BiMn inclusions. It is shown that the samples have a crystalline texture. Independently on the applied field orientation, maximum on the temperature dependence of magnetization is detected at Tmax ≈ 85 K, which is associated with the reorientation transition of the magnetic moments of Mn for αBiMn phase. In turn, the electrical resistivity ρ(T also demonstrates maximum at Tmax ≈58 K in a magnetic field of 800 kA/m when H⊥I. It is established that the maximum of ρ(T increases and is shifted toward higher temperature Tmax≈94 K when field increasing up to 2400 kA/m. At the same time no clear maximum on ρ(T is observed for H||I. It is shown that the relative magnetoresistance, Δρ/ρ0, is increased both with decreasing temperature and with increase of the magnetic field. The measured enhancement reaches Δρ/ρ0≈250% for H||I and Δρ/ρ0≈2400% for H⊥I in magnetic field of 2400 kA/m. Thus, the strong anisotropy of ρ(T and Δρ/ρ0(T is established both for H⊥I and H||I. Possible explanation of observed anomalous behavior of the temperature dependences of the electrical resistivity in magnetic fields has been proposed.

  10. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian

    2013-04-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment are required, this design is not only easier from a technological point of view, but it also has the potential to reduce damage introduced to the semiconductor during fabrication. The device shows a similar magnetoresistance ratio as a conventional one but it has a lower sensitivity. Because of the reduced resistance, and hence less noise, high magnetic field resolution is maintained. © 1980-2012 IEEE.

  11. Acoustic source localization in anisotropic plates with "Z" shaped sensor clusters.

    Science.gov (United States)

    Yin, Shenxin; Cui, Zhiwen; Kundu, Tribikram

    2018-03-01

    A new sensor cluster orientation is proposed to localize an acoustic source in a plate from the time difference of arrival (TDOA) with the help of only four to eight sensors. This technique requires neither a priori knowledge of the plate material properties nor a dense array of sensors to localize the acoustic source in isotropic as well as anisotropic plates. It is achieved by placing four sensors in a cluster in the shape of letter "Z" over a small region of the plate and a second Z-shaped cluster at another location of the plate. Experimental results show that it is possible to accurately localize the acoustic source with this new configuration. It reduces the number of sensors required for acoustic source localization in an anisotropic plate. Although one cluster in principle is capable of localizing the acoustic source in absence of any experimental error for accurate source localization in presence of experimental error two such Z-shaped clusters are needed. In the currently available technique three L-shaped clusters having a total of 9 sensors are needed to achieve the same level of confidence in the acoustic source localization. Thus, the proposed new technique reduces the number of sensors by 1 (from 9 to 8) for confidently and accurately predicting the acoustic source. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  13. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  14. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  15. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian

    2010-11-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show that the width and the length-width ratio of InAs are important geometrical parameters for the EMR effect along with the placement of the leads. Approximately the same EMR effect was obtained for both IVVI and VIIV configurations when the applied magnetic field ranged from -1T to 1T. In an optimized geometry the EMR effect can reach 43000% at 1Tesla for IVVI and 42700% at 1 Tesla for the VIIV configuration. ©2010 IEEE.

  16. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration.

    Science.gov (United States)

    Lei, Huaming; Wang, Kan; Ji, Xiaojun; Cui, Daxiang

    2016-12-14

    Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  17. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR Sensors in Differential Configuration

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2016-12-01

    Full Text Available Magnetic nanoparticles (MNPs are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR sensors for quantification of MNPs present in lateral flow strips (LFSs. The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  18. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna

    2014-04-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area. © (2014) Trans Tech Publications.

  19. Tunable three-axis magnetoresistance sensor with a spin-polarised current

    Science.gov (United States)

    Chang, Jui-Hang; Chang, Ching-Ray

    2015-10-01

    A three-axis magnetic tunnel junction sensor with three ferromagnetic layers to achieve a linear and hysteresis-free response is proposed and studied analytically. We show that the orientation of the easy axis of the sensor and the sensitivity are tunable by changing the density of a injected spin-polarised current. Additionally, the sensors integrated in a full Wheatstone bridge can have perpendicular and transverse sensing capability in different initial magnetisation arrangements. A value of 0.35% TMR/Oe is observed in sensing the perpendicular field. These findings indicate that a three-axis sensor can be fabricated more easily on a flat substrate.

  20. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  1. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  2. Large tunneling anisotropic magnetoresistance in La0.7Sr0.3MnO3/pentacene/Cu structures prepared on SrTiO3 (110) substrates

    Science.gov (United States)

    Kamiya, Takeshi; Miyahara, Chihiro; Tada, Hirokazu

    2017-01-01

    We investigated tunneling anisotropic magnetoresistance (TAMR) at the interface between pentacene and La0.7Sr0.3MnO3 (LSMO) thin films prepared on SrTiO3 (STO) (110) substrates. The dependence of the TAMR ratio on the magnetic field strength was approximately ten times larger than that of the magnetic field angle at a high magnetic field. This large difference in the TAMR ratio is explained by the interface magnetic anisotropy of strain-induced LSMO thin films on a STO (110) substrate, which has an easy axis with an out-of-plane component. We also note that the TAMR owing to out-of-plane magnetization was positive at each angle of the in-plane magnetic field. This result implies that active control of the interface magnetic anisotropy between organic materials and ferromagnetic metals should realize nonvolatile and high-efficiency TAMR devices.

  3. Finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor

    KAUST Repository

    Sun, Jian

    2011-08-06

    In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89 × 104% and 0.02%/(10-4 T), respectively, at 1 Tesla. For values of contact resistivity up to 10-8cm2 the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5 × 10-6 cm2 of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. © Springer Science+Business Media, LLC 2011.

  4. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation.

    Science.gov (United States)

    Bailey, Joseph; Long, Nicholas; Hunze, Arvid

    2017-09-28

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.

  5. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  6. Comment on "Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure" [J. Appl. Phys. 113, 063903 (2013)

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Henriksen, Anders Dahl; Rizzi, Giovanni

    2013-01-01

    In a recent paper, Sinha et al. compared sensitivities of planar Hall effect sensors with different geometries that are all based on the anisotropic magnetoresistance of permalloy. They write that the sensitivity of a planar Hall effect sensor with a ring geometry is a factor of √2 larger than...

  7. Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure” [J. Appl. Phys. 113, 063903 (2013)

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Henriksen, Anders Dahl; Rizzi, Giovanni

    2013-01-01

    In a recent paper, Sinha et al. compared sensitivities of planar Hall effect sensors with different geometries that are all based on the anisotropic magnetoresistance of permalloy. They write that the sensitivity of a planar Hall effect sensor with a ring geometry is a factor of √2 larger than th...

  8. Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor

    International Nuclear Information System (INIS)

    Singh, W Sharatchandra; Rao, B P C; Vaidyanathan, S; Jayakumar, T; Raj, Baldev

    2008-01-01

    Giant magneto-resistive (GMR) sensors are attractive for magnetic flux leakage measurements, especially for the detection of shallow near-side cracks and deeply located defects. An optimized measurement system with magnetic yoke, GMR sensor and selective amplifier has been devised to detect the tangential component of leakage flux from various near-side notches and far-side notches (widths 0.5 mm and 1.0 mm, respectively) in 12 mm thick carbon steel plates. Far-side notches located at nearly 11 mm below the measurement surface have been detected with a good signal-to-noise ratio. The performance of the GMR sensor with lift off has also been studied for possible non-contact examination of hot surfaces and a lift off of 2 mm is expected to ensure the saturation-free detection of near-side as well as far-side notches

  9. Large, Linear, and Tunable Positive Magnetoresistance of Mechanically Stable Graphene Foam-Toward High-Performance Magnetic Field Sensors.

    Science.gov (United States)

    Sagar, Rizwan Ur Rehman; Galluzzi, Massimiliano; Wan, Caihua; Shehzad, Khurram; Navale, Sachin T; Anwar, Tauseef; Mane, Rajaram S; Piao, Hong-Guang; Ali, Abid; Stadler, Florian J

    2017-01-18

    Here, we present the first observation of magneto-transport properties of graphene foam (GF) composed of a few layers in a wide temperature range of 2-300 K. Large room-temperature linear positive magnetoresistance (PMR ≈ 171% at B ≈ 9 T) has been detected. The largest PMR (∼213%) has been achieved at 2 K under a magnetic field of 9 T, which can be tuned by the addition of poly(methyl methacrylate) to the porous structure of the foam. This remarkable magnetoresistance may be the result of quadratic magnetoresistance. The excellent magneto-transport properties of GF open a way toward three-dimensional graphene-based magnetoelectronic devices.

  10. Giant Magnetoresistance

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 13; Issue 4. Giant Magnetoresistance - Nobel Prize in Physics 2007. Debakanta Samal P S Anil Kumar. General Article Volume 13 Issue 4 April 2008 pp 343-354. Fulltext. Click here to view fulltext PDF. Permanent link:

  11. A thin film magnetoresistive angle detector

    NARCIS (Netherlands)

    Eijkel, C.J.M.; Wieberdink, Johan W.; Fluitman, J.H.J.; Popma, T.J.A.; Groot, Peter; Leeuwis, Henk

    1990-01-01

    An overview is given of the results of our research on a contactless angle detector based on the anisotropic magnetoresistance effect (AMR effect) in a permalloy thin film. The results of high-temperature annealing treatment of the pemalloy film are discussed. Such a treatment suppresses the effects

  12. Evolution and sign control of square-wave-like anisotropic magneto-resistance in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3}/LaAlO{sub 3}(001) manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Keating, S.; Chow, K. H., E-mail: khchow@ualberta.ca; Jung, J., E-mail: jjung@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2016-04-14

    We investigated magneto-transport properties of a compressively strained spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} (LPCMO) thin film micro-bridge deposited on LaAlO{sub 3}. Angular dependence of the magneto-resistance R(θ) of this bridge, where θ is the angle between the magnetic field and the current directions in the film plane, exhibits sharp positive and negative percolation jumps near T{sub MIT}. The sign and the magnitude of these jumps can be tuned using the magnetic field. Such behavior has not been observed in LPCMO micro-bridges subjected to tensile strain, indicating a correlation between the type of the lattice strain, the distribution of electronic domains, and the anisotropic magneto-resistance in spatially confined manganite systems.

  13. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

    2014-05-07

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 μm and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

  14. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures.

    Science.gov (United States)

    Lin, Tao; Tang, Chi; Alyahayaei, Hamad M; Shi, Jing

    2014-07-18

    In bilayers consisting of Pd and yttrium iron garnet (Y(3)Fe(5)O(12) or YIG), we observe vanishingly small room-temperature conventional anisotropic magnetoresistance but large new magnetoresistance that is similar to the spin Hall magnetoresistance previously reported in Pt-YIG bilayers. We report a temperature dependence study of the two magnetoresistance effects in Pt-YIG bilayers. As the temperature is decreased, the new magnetoresistance shows a peak, whereas the anisotropic magnetoresistance effect starts to appear and increases monotonically. We find that the magnetoresistance peak shifts to lower temperatures in thicker Pd samples, a feature characteristic of the spin current effect. The distinct temperature dependence reveals fundamentally different mechanisms responsible for the two effects in such hybrid structures.

  15. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka P.

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  16. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  17. Magnetoresistive logic and biochip

    International Nuclear Information System (INIS)

    Brueckl, Hubert; Brzeska, Monika; Brinkmann, Dirk; Schotter, J.Joerg; Reiss, Guenter; Schepper, Willi; Kamp, P.-B.; Becker, Anke

    2004-01-01

    While some magnetoresistive devices based on giant magnetoresistance or spin-dependent tunneling are already commercialized, a new branch of development is evolving towards magnetoresistive logic with magnetic tunnel junctions. Furthermore, the new magnetoelectronic effects show promising properties in magnetoresistive biochips, which are capable of detecting even single molecules (e.g. DNA) by functionalized magnetic markers. The unclear limits of this approach are discussed with two model systems

  18. Anisotropic magnetoresistance in an antiferromagnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Fina, I.; Martí, Xavier; Yi, D.; Liu, J.; Chu, J.-H.; Rayan-Serrao, C.; Suresha, S.; Shick, Alexander; Železný, Jakub; Jungwirth, Tomáš; Fontcuberta, J.; Ramesh, R.

    2014-01-01

    Roč. 5, SEP (2014), "4671-1"-"4671-7" ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR(CZ) GAP204/10/0330 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antiferromagnets * semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014

  19. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    Energy Technology Data Exchange (ETDEWEB)

    Yong, G J; Kolagani, R M; Adhikari, S; Mundle, R M; Cox, D W; Davidson III, A L; Liang, Y; Drury, O B; Hau-Riege, S P; Gardner, C; Ables, E; Bionta, R M; Friedrich, S

    2008-12-17

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd{sub 0.67}Sr{sub x0.33}MnO{sub 3}, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors.

  20. Real-time Ethylene Sensor Based on Chemical Anisotropic Nanochannel Impedance Spectroscopy, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — NASA has need of a real-time sensor capable of <25ppb detection of ethylene for off-world greenhouse monitoring. NanoLab proposes the use of a fundamentally new...

  1. Prospect for tunneling anisotropic magneto-resistance in ferrimagnets: spin-orbit coupling effects in Mn.sub.3./sub.Ge and Mn.sub.3./sub.Ga

    Czech Academy of Sciences Publication Activity Database

    Khmelevskyi, S.; Shick, Alexander; Mohn, P.

    2016-01-01

    Roč. 109, č. 22 (2016), s. 1-4, č. článku 222402. ISSN 0003-6951 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magneto-resistance * ferrimagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  2. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    Science.gov (United States)

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  3. Magnetic anisotropy and magnetoresistance in Co-based multilayers: a polarised neutron reflectivity study

    International Nuclear Information System (INIS)

    Yusuf, S.M.

    2000-01-01

    We have studied giant magnetoresistance (GMR) and anisotropic magnetoresistance (AMR) effects by carrying out magnetization, magnetoresistance and polarized neutron reflectivity measurements on epitaxial Co/Re multilayers. Polarized neutron reflectivity study with polarization analysis gives a direct way to sense the direction of sublattice magnetization and coupling between magnetic layers. The evolution of magnetic structure as a function of the strength and direction of the applied magnetic field has been studied. The AMR effect observed in magnetoresistance study has been explained in the light of observed magnetic structure. (author)

  4. Colossal magnetoresistance manganites

    Indian Academy of Sciences (India)

    Keywords. Manganites; colossal magnetoresistance; strongly correlated electron systems; metal-insulator transitions and other electronic transitions; Jahn-Teller polarons and electron-phonon interaction.

  5. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the information on the

  6. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  7. Permalloy Thin-film Magnetic Sensors

    NARCIS (Netherlands)

    Groenland, J.P.J.; Eijkel, C.J.M.; Fluitman, J.H.J.; de Ridder, R.M.

    1992-01-01

    An introduction to the theory of the anisotropic magnetoresistance effect in ferromagnetic thin films is given, ending in a treatment of the minimalization of the free energy which is the result of the intrinsic and extrinsic anisotropies of the thin-film structure. The anisotropic magnetoresistance

  8. Anomalous interlayer magnetoresistance in bilayer crystals

    International Nuclear Information System (INIS)

    Smith, M F

    2012-01-01

    The interlayer magnetotransport of a model layered metal is calculated semiclassically. Each layer contains parallel quasi-1D wires but the orientation of wires within each layer is perpendicular to the orientation of wires in adjacent layers. The model has a highly anisotropic amplitude for interlayer electron transfer and is used to illustrate simply the effects that this anisotropy has on the magnetotransport. Strong positive magnetoresistance is calculated for magnetic fields parallel to the current, with the size of magnetoresistance varying inversely with the interlayer hopping amplitude. For fields perpendicular to the current, the magnetoresistance depends qualitatively on the orientation of the field: it scales linearly with the field strength B when the field points toward intersections of 1D Fermi surfaces belonging to individual layers, and scales as √B when the field points between intersections. In a weak field, the resistance is maximum when the field is orientated parallel to the current and minimum when it is perpendicular to the current. Magnetoresistance oscillations are also studied. The implications for more general models of multilayer metals are discussed. (paper)

  9. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  10. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  11. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    Science.gov (United States)

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-06-17

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

  12. Anomalous electronic structure and magnetoresistance in TaAs2.

    Science.gov (United States)

    Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-06-07

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  13. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    International Nuclear Information System (INIS)

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  14. Anisotropy of magnetoresistance on trapping magnetic fields in granular HTSC

    CERN Document Server

    Sukhanov, A A

    2003-01-01

    The features of magnetoresistance in Bi (Pb)-HTSC ceramics with the magnetic fields trapped are investigated. It is found that on trapping magnetic flux the magnetoresistance in granular HTSC becomes anisotropic. Moreover, for magnetic fields H parallel and currents perpendicular to field H sub i which induces the trapping the magnetoresistance field dependence DELTA R(H) is nonmonotonic and the magnetoresistance is negative for small fields H < Hinv. The effect of trapped field and transport current and their orientations on the dependence DELTA R(H) is investigated. In particular, it is found that the field of magnetoresistance sign inversion Hinv almost linearly grows with increase of the effective trapped magnetic fields. Hinv decreases down to zero as the angle between fields H and H sub i increases up to pi/2 and slightly decreases with increasing transport current. The results are treated in terms of the model of magnetic flux trapping in superconducting grains or 'loops' embedded in a matrix of wea...

  15. Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (1 1 0) substrates

    International Nuclear Information System (INIS)

    Tang, Y.L.; Zhu, Y.L.; Meng, H.; Zhang, Y.Q.; Ma, X.L.

    2012-01-01

    Nd 0.45 Sr 0.55 MnO 3 is an A-type antiferromagnetic manganite showing obvious angular-dependent magnetoresistance, which can be tuned by misfit strain. The misfit strain relaxation of Nd 0.45 Sr 0.55 MnO 3 thin films is of both fundamental and technical importance. In this paper, microstructures of epitaxial Nd 0.45 Sr 0.55 MnO 3 thin films grown on SrTiO 3 (1 1 0) substrates by pulsed laser deposition were investigated by means of (scanning) transmission electron microscopy. The Nd 0.45 Sr 0.55 MnO 3 thin films exhibit a two-layered structure: a continuous perovskite layer epitaxial grown on the substrate followed by epitaxially grown columnar nanostructures. An approximately periodic array of misfit dislocations is found along the interface with line directions of both 〈1 1 1〉 and [0 0 1]. High-resolution (scanning) transmission electron microscopy reveals that all the misfit dislocations possess a〈1 1 0〉-type Burgers vectors. A formation mechanism based on gliding or climbing of the dislocations is proposed to elucidate this novel misfit dislocation configuration. These misfit dislocations have complex effects on the strain relaxation and microstructure of the films, and thus their influence needs further consideration for heteroepitaxial perovskite thin film systems, especially for films grown on substrates with low-symmetry surfaces such as SrTiO 3 (1 1 0) and (1 1 1), which are attracting attention for their potentially new functions.

  16. Modeling the planar configuration of extraordinary magnetoresistance

    International Nuclear Information System (INIS)

    El-Ahmar, S; Pozniak, A A

    2015-01-01

    Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)

  17. Large, non-saturating magnetoresistance in WTe2.

    Science.gov (United States)

    Ali, Mazhar N; Xiong, Jun; Flynn, Steven; Tao, Jing; Gibson, Quinn D; Schoop, Leslie M; Liang, Tian; Haldolaarachchige, Neel; Hirschberger, Max; Ong, N P; Cava, R J

    2014-10-09

    Magnetoresistance is the change in a material's electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors, in magnetic memory, and in hard drives at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

  18. Large, Tunable Magnetoresistance in Nonmagnetic III-V Nanowires.

    Science.gov (United States)

    Li, Sichao; Luo, Wei; Gu, Jiangjiang; Cheng, Xiang; Ye, Peide D; Wu, Yanqing

    2015-12-09

    Magnetoresistance, the modulation of resistance by magnetic fields, has been adopted and continues to evolve in many device applications including hard-disk, memory, and sensors. Magnetoresistance in nonmagnetic semiconductors has recently raised much attention and shows great potential due to its large magnitude that is comparable or even larger than magnetic materials. However, most of the previous work focus on two terminal devices with large dimensions, typically of micrometer scales, which severely limit their performance potential and more importantly, scalability in commercial applications. Here, we investigate magnetoresistance in the impact ionization region in InGaAs nanowires with 20 nm diameter and 40 nm gate length. The deeply scaled dimensions of these nanowires enable high sensibility with less power consumption. Moreover, in these three terminal devices, the magnitude of magnetoresistance can be tuned by the transverse electric field controlled by gate voltage. Large magnetoresistance between 100% at room temperature and 2000% at 4.3 K can be achieved at 2.5 T. These nanoscale devices with large magnetoresistance offer excellent opportunity for future high-density large-scale magneto-electric devices using top-down fabrication approaches, which are compatible with commercial silicon platform.

  19. Magnetoresistance in La0.7Ca0.3MnO3-YBa2Cu3O7 F/S/F trilayers

    International Nuclear Information System (INIS)

    Pena, V.; Visani, C.; Bruno, F.; Garcia-Barriocanal, J.; Arias, D.; Rivera, A.; Sefrioui, Z.; Leon, C.; Te Velthuis, S.G.E.; Hoffmann, A.; Nemes, N.; Garcia-Hernandez, M.; Martinez, J.L.; Santamaria, J.

    2007-01-01

    We report large magnetoresistance in ferromagnet/superconductor/ferromagnet structures made of La 0.7 Ca 0.3 MnO 3 and YBa 2 Cu 3 O 7 at temperatures along the resistive transition. We find that the magnetoresistance phenomenon is independent on the orientation of electric current versus field. Furthermore, the effect is also independent on the sweep rate of the magnetic field. This excludes interpretations in terms of spontaneous vortices or anisotropic magnetoresistance of the ferromagnetic layers and supports the view that the magnetoresistance phenomenon originates at the spin-dependent transport of quasiparticles transmitted from the ferromagnetic electrodes into the superconductor

  20. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  1. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  2. Magnetoresistance effect in (La, Sr)MnO3 bicrystalline films.

    Science.gov (United States)

    Alejandro, G; Steren, L B; Pastoriza, H; Vega, D; Granada, M; Sánchez, J C Rojas; Sirena, M; Alascio, B

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La(0.75)Sr(0.25)MnO(3) films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  3. Magnetoresistance effect in (La, Sr)MnO{sub 3} bicrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, G; Pastoriza, H; Granada, M; Rojas Sanchez, J C; Sirena, M; Alascio, B [Centro Atomico Bariloche (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Pcia. de Rio Negro (Argentina); Steren, L B; Vega, D, E-mail: galejand@cab.cnea.gov.a [Centro Atomico Constituyentes (CNEA), 1650 San MartIn, Pcia. de Buenos Aires (Argentina)

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La{sub 0.75}Sr{sub 0.25}MnO{sub 3} films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  4. Percolative Theory of Organic Magnetoresistance and Fringe-Field Magnetoresistance

    Science.gov (United States)

    Flatté, Michael E.

    2013-03-01

    A recently-introduced percolation theory for spin transport and magnetoresistance in organic semiconductors describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Increases in the spin-flip rate open up ``spin-blocked'' pathways to become viable conduction channels and hence, as the spin-flip rate changes with magnetic field, produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with measurements of the shape and saturation of measured magnetoresistance curves. We find that the threshold hopping distance is analogous to the branching parameter of a phenomenological two-site model, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance. Regimes of slow and fast hopping magnetoresistance are uniquely characterized by their line shapes. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory. Extensions to this theory also describe fringe-field magnetoresistance, which is the influence of fringe magnetic fields from a nearby unsaturated magnetic electrode on the conductance of an organic film. This theory agrees with several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect. All work done in collaboration with N. J. Harmon, and fringe-field magnetoresistance work in collaboration also with F. Macià, F. Wang, M. Wohlgenannt and A. D. Kent. This work was supported by an ARO MURI.

  5. Giant magnetoresistance An ab-initio description

    CERN Document Server

    Binder, J

    2000-01-01

    A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened KORRINGA-KOHNROSTOKER method. Scattering at impurity atoms in the multilayers is described by means of a GREEN's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the BOLTZMANN equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the BOLTZMANN equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the...

  6. Magnetic giant magnetoresistance commercial off the shelf for space applications

    DEFF Research Database (Denmark)

    Michelena, M.D.; Oelschlägel, Wulf; Arruego, I.

    2008-01-01

    The increase of complexity and miniaturizing level of Aerospace platforms make use of commercial off the shelf (COTS) components constitute a plausible alternative to the use of military or rad-tolerant components. In this work, giant magnetoresistance commercial sensors are studied to be used...

  7. Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    OpenAIRE

    Kundys, B.; Meny, C.; Gibbs, M. R. J.; Da Costa, V.; Viret, M.; Acosta, M.; Colson, D.; Doudin, B.

    2012-01-01

    We present a magnetoresistive-photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe fi...

  8. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    out. Keywords. Tunnelling magnetoresistance; tunnel boundary; disorder; double perovskite. PACS Nos 75.47.−m; 73.40.Gk; 72.80.Ga. 1. Introduction. Magnetoresistance (MR) is the property of a material to change the value of its electri- cal resistance when an external magnetic field is applied. This phenomenon was first.

  9. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer

    Science.gov (United States)

    Mietta, José L.; Jorge, Guillermo; Martín Negri, R.

    2014-08-01

    A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40-350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe3O4@Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe3O4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects.

  10. Current perpendicular to plane giant magnetoresistance and tunneling magnetoresistance treated with unified model

    NARCIS (Netherlands)

    Jonkers, PAE

    2002-01-01

    The conceptual similarity between current perpendicular to plane giant magnetoresistance (CPP-GMR) and tunneling magnetoresistance (TMR) is exploited by utilizing a unified single-particle model accounting for both types of magnetoresistance. By defining structures composed of ferromagnetic,

  11. Transverse thermal magnetoresistance of potassium

    International Nuclear Information System (INIS)

    Newrock, R.S.; Maxfield, B.W.

    1976-01-01

    Results are presented of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 0 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. A number of relationships are observed between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T,H) is given reasonably well by W(T,H)T = W(T,0)T + AH + BH 2 , where both A and B are temperature-dependent coefficients. Results show that A = A 0 + A 1 T 3 , while B(T) cannot be expressed as any simple power law. A 0 is dependent on the RRR, while A 1 is independent of the RRR. Two relationships are found between corresponding coefficients in the electrical and thermal magnetoresistance: (i) the Wiedmann--Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron--phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. It is concluded that at least a portion of the anomalous electrical and thermal magnetoresistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects

  12. Tunnel magnetoresistance of magnetic molecules with spin-vibron coupling

    Directory of Open Access Journals (Sweden)

    Ahmed Kenawy

    2017-05-01

    Full Text Available The effect of molecular vibrations on the tunnel magnetoresistance (TMR of a magnetic tunnel junction with a single spin-anisotropic molecule interconnecting its electrodes is investigated theoretically. We demonstrate that if these vibrations couple at the same time to the charge of tunneling electrons and to the spin of the molecule, the spin anisotropy of such a molecule becomes enhanced. This has, in turn, a profound impact on the TMR of such a device showing that molecular vibrations lead to a significant change of spin-polarized transport, differing for the parallel and antiparallel magnetic configuration of the junction.

  13. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  14. Anomalous magnetoresistance in Fibonacci multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  15. Giant Magnetoresistance in Nanogranular Magnets

    OpenAIRE

    Glatz, A.; Beloborodov, I. S.; Vinokur, V. M.

    2007-01-01

    We study the giant magnetoresistance of nanogranular magnets in the presence of an external magnetic field and finite temperature. We show that the magnetization of arrays of nanogranular magnets has hysteretic behaviour at low temperatures leading to a double peak in the magnetoresistance which coalesces at high temperatures into a single peak. We numerically calculate the magnetization of magnetic domains and the motion of domain walls in this system using a combined mean-field approach and...

  16. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2014-01-01

    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  17. Study of the different magnetoresistance sources in Ag/Co multilayers

    CERN Document Server

    Paje, S E; Andres, J P; Riveiro, J M

    2003-01-01

    We report results on magnetoresistance and magnetic properties of sputtered Ag/Co multilayers and their relation to structural properties. We found two components of the magnetoresistance: isotropic and anisotropic. The first one is found to be related to cobalt particles at the interfaces between magnetic and nonmagnetic layers and also to cobalt particles diluted into the silver layers. The other contribution is related to ferromagnetic multidomain Co layers. The results on magnetoresistance and magnetization at low fields, and conductivity measurements, give clear proof of a transition from granular to continuous structure of the magnetic layer. For example, in a Ag/Co multilayer series with silver thickness of 20 A, such a transition occurs for a cobalt thickness around 5 A.

  18. Anomalous magnetoresistance in the spinel superconductor LiTi2O4.

    Science.gov (United States)

    Jin, K; He, G; Zhang, X; Maruyama, S; Yasui, S; Suchoski, R; Shin, J; Jiang, Y; Yu, H S; Yuan, J; Shan, L; Kusmartsev, F V; Greene, R L; Takeuchi, I

    2015-05-20

    LiTi2O4 is a unique compound in that it is the only known spinel oxide superconductor. The lack of high quality single crystals has thus far prevented systematic investigations of its transport properties. Here we report a careful study of transport and tunnelling spectroscopy in epitaxial LiTi2O4 thin films. An unusual magnetoresistance is observed which changes from nearly isotropic negative to prominently anisotropic positive as the temperature is decreased. We present evidence that shows that the negative magnetoresistance likely stems from the suppression of local spin fluctuations or spin-orbit scattering centres. The positive magnetoresistance suggests the presence of an orbital-related state, also supported by the fact that the superconducting energy gap decreases as a quadratic function of magnetic field. These observations indicate that the spin-orbital fluctuations play an important role in LiTi2O4 in a manner similar to high-temperature superconductors.

  19. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  20. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  1. Anisotropic universe with anisotropic sources

    Science.gov (United States)

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  2. Deposition temperature influence on sputtered nanogranular magnetoresistive composites

    Energy Technology Data Exchange (ETDEWEB)

    Mujika, M. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain)]. E-mail: mmujika@ceit.es; Arana, S. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Castano, E. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain)

    2007-09-15

    Among different physical principles magnetic sensors for low magnetic field detection can be based on, granular giant magnetoresistances have been studied due to their high sensitivity to small field changes and gradual magnetoresistance change at low fields. Following this aim, nanogranular Ag-Co thin films, deposited by DC co-sputtering from Ag and Co targets at different deposition temperatures have been tested. Samples have been grown at room temperature, 100 and 200 deg. C and annealed in a mixture of N{sub 2} and H{sub 2} at 200 and 300 deg. C for 45 min. The samples that have shown the best performance have been subjected to two sets of measurements where an external field has been applied in-plane and perpendicular to the film plane. The best performance has been shown by the samples deposited at room temperature and annealed at 300 deg. C, reporting a maximum value of magnetoresistance of 16.7% at 1.4 T and a linear sensitivity of 63%/T between 0.04 and 0.07 T within a magnetoresistance range varying from 1.5% to 3% when subjected to an in-plane external field.

  3. Deposition temperature influence on sputtered nanogranular magnetoresistive composites

    International Nuclear Information System (INIS)

    Mujika, M.; Arana, S.; Castano, E.

    2007-01-01

    Among different physical principles magnetic sensors for low magnetic field detection can be based on, granular giant magnetoresistances have been studied due to their high sensitivity to small field changes and gradual magnetoresistance change at low fields. Following this aim, nanogranular Ag-Co thin films, deposited by DC co-sputtering from Ag and Co targets at different deposition temperatures have been tested. Samples have been grown at room temperature, 100 and 200 deg. C and annealed in a mixture of N 2 and H 2 at 200 and 300 deg. C for 45 min. The samples that have shown the best performance have been subjected to two sets of measurements where an external field has been applied in-plane and perpendicular to the film plane. The best performance has been shown by the samples deposited at room temperature and annealed at 300 deg. C, reporting a maximum value of magnetoresistance of 16.7% at 1.4 T and a linear sensitivity of 63%/T between 0.04 and 0.07 T within a magnetoresistance range varying from 1.5% to 3% when subjected to an in-plane external field

  4. Mobility controlled linear magnetoresistance with 3D anisotropy in a layered graphene pallet

    KAUST Repository

    Zhang, Qiang

    2016-09-27

    A bulk sample of pressed graphene sheets was prepared under hydraulic pressure (similar to 150 MPa). The cross-section of the sample demonstrates a layered structure, which leads to 3D electrical transport properties with anisotropic mobility. The electrical transport properties of the sample were measured over a wide temperature (2-400 K) and magnetic field (-140 kOe <= H <= 140 kOe) range. The magnetoresistance measured at a fixed temperature can be described by R(H, theta) = R(epsilon H-theta, 0) with epsilon(theta) =(cos(2)theta + gamma(-2) sin(2)theta)(1/2), where gamma is the mobility anisotropy constant and theta is the angle between the normal of the sample plane and the magnetic field. The large linear magnetoresistance (up to 36.9% at 400 K and 140 kOe) observed at high fields is ascribed to a classical magnetoresistance caused by mobility fluctuation (Delta mu). The magnetoresistance value at 140 kOe was related to the average mobility () because of the condition Delta mu < . The carrier concentration remained constant and the temperature-dependent resistivity was proportional to the average mobility, as verified by Kohler\\'s rule. Anisotropic dephasing length was deduced from weak localization observed at low temperatures.

  5. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  6. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    Abstract. Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain ...

  7. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    2015-05-28

    May 28, 2015 ... Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain ...

  8. Vortex dynamics in supraconductors in the presence of anisotropic pinning

    International Nuclear Information System (INIS)

    Soroka, O.K.

    2004-01-01

    Vortex dynamics in two different classes of superconductors with anisotropic unidirected pinning sites was experimentally investigated by magnetoresistivity measurements: YBCO-films with unidirected twins and Nb-films deposited on faceted Al 2 O 3 substrate surfaces. For the interpretation of the experimental results a theoretical model based on the Fokker-Planck equation was used. It was proved by X-ray measurements that YBCO films prepared on (001) NdGaO 3 substrates exhibit only one twin orientation in contrast to YBCO films grown on (100) SrTiO 3 substrates. The magnetoresistivity measurements of the YBCO films with unidirected twin boundaries revealed the existence of two new magnetoresistivity components, which is a characteristic feature of a guided vortex motion: an odd longitudinal component with respect to the magnetic field sign reversal and an even transversal component. However, due to the small coherence length in YBCO and the higher density of point-like defects comparing to high-quality YBCO single crystals, the strength of the isotropic point pinning was comparable with the strength of the pinning produced by twins. This smeared out all e ects caused by the pinning anisotropy. The behaviour of the odd longitudinal component was found to be independent of the transport current direction with respect to the twin planes. The magnetoresistivity measurements of faceted Nb films demonstrated the appearance of an odd longitudinal and even transversal component of the magnetoresistivity. The temperature and magnetic field dependences of all relevant magnetoresistivity components were measured. The angles between the average vortex velocity vector and the transport current direction calculated from the experimental data for the different transport current orientations with respect to the facet ridges showed that the vortices moved indeed along the facet ridges. An anomalous Hall effect, i.e. a sign change of the odd transversal magnetoresistivity, has been

  9. Giant magnetoresistance and extraordinary magnetoresistance in inhomogeneous semiconducting DyNiBi

    OpenAIRE

    Casper, Frederick; Felser, Claudia

    2007-01-01

    The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal-insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.

  10. Colossal Magnetoresistance Manganites and Related Prototype Devices

    OpenAIRE

    Liu, Yukuai; Yin, Yuewei; Li, Xiaoguang

    2013-01-01

    We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTiO3 pn junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions ...

  11. Molecular beam epitaxy of single crystal colossal magnetoresistive material

    International Nuclear Information System (INIS)

    Eckstein, J.N.; Bozovic, I.; Rzchowski, M.; O'Donnell, J.; Hinaus, B.; Onellion, M.

    1996-01-01

    The authors have grown films of (LaSr)MnO 3 (LSMO) and (LaCa)MnO 3 (LCMO) using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). Depending on growth conditions, substrate lattice constant and the exact cation stoichiometry, the films are either pseudomorphic or strain relaxed. The pseudomorphic films show atomically flat surfaces, with a unit cell terrace structure that is a replica of that observed on the slightly vicinal substrates, while the strain relaxed films show bumpy surfaces correlated with a dislocation network. All films show tetragonal structure and exhibit anisotropic magnetoresistance, with a low field response, (1/R)(dR/dH) as large as 5 T -1

  12. Angle Dependence of the Orbital Magnetoresistance in Bismuth

    Directory of Open Access Journals (Sweden)

    Aurélie Collaudin

    2015-06-01

    Full Text Available We present an extensive study of angle-dependent transverse magnetoresistance in bismuth, with a magnetic field perpendicular to the applied electric current and rotating in three distinct crystallographic planes. The observed angular oscillations are confronted with the expectations of semiclassic transport theory for a multivalley system with anisotropic mobility and the agreement allows us to quantify the components of the mobility tensor for both electrons and holes. A quadratic temperature dependence is resolved. As Hartman argued long ago, this indicates that inelastic resistivity in bismuth is dominated by carrier-carrier scattering. At low temperature and high magnetic field, the threefold symmetry of the lattice is suddenly lost. Specifically, a 2π/3 rotation of magnetic field around the trigonal axis modifies the amplitude of the magnetoresistance below a field-dependent temperature. By following the evolution of this anomaly as a function of temperature and magnetic field, we map the boundary in the (field, temperature plane separating two electronic states. In the less symmetric state, confined to low temperature and high magnetic field, the three Dirac valleys cease to be rotationally invariant. We discuss the possible origins of this spontaneous valley polarization, including a valley-nematic scenario.

  13. Light controlled magnetoresistance and magnetic field controlled photoresistance in CoFe film deposited on BiFeO3

    Science.gov (United States)

    Kundys, B.; Meny, C.; Gibbs, M. R. J.; Da Costa, V.; Viret, M.; Acosta, M.; Colson, D.; Doudin, B.

    2012-06-01

    We present a magnetoresistive—photoresistive device based on the interaction of a piezomagnetic CoFe thin film with a photostrictive BiFeO3 (BFO) substrate that undergoes light-induced strain. The magnitude of the resistance and magnetoresistance in the CoFe film can be controlled by the wavelength of the incident light on the BiFeO3. Moreover, a light-induced decrease in anisotropic magnetoresistance is detected due to an additional magnetoelastic contribution to magnetic anisotropy of the CoFe film. This effect may find applications in photo-sensing systems, wavelength detectors and can possibly open a research development in light-controlled magnetic switching properties for next generation magnetoresistive memory devices.

  14. Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridization.

    Science.gov (United States)

    Rakhmilevitch, David; Sarkar, Soumyajit; Bitton, Ora; Kronik, Leeor; Tal, Oren

    2016-03-09

    Molecular junctions based on ferromagnetic electrodes allow the study of electronic spin transport near the limit of spintronics miniaturization. However, these junctions reveal moderate magnetoresistance that is sensitive to the orbital structure at their ferromagnet-molecule interfaces. The key structural parameters that should be controlled in order to gain high magnetoresistance have not been established, despite their importance for efficient manipulation of spin transport at the nanoscale. Here, we show that single-molecule junctions based on nickel electrodes and benzene molecules can yield a significant anisotropic magnetoresistance of up to ∼200% near the conductance quantum G0. The measured magnetoresistance is mechanically tuned by changing the distance between the electrodes, revealing a nonmonotonic response to junction elongation. These findings are ascribed with the aid of first-principles calculations to variations in the metal-molecule orientation that can be adjusted to obtain highly spin-selective orbital hybridization. Our results demonstrate the important role of geometrical considerations in determining the spin transport properties of metal-molecule interfaces.

  15. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures.

    Science.gov (United States)

    Nakayama, Hiroyasu; Kanno, Yusuke; An, Hongyu; Tashiro, Takaharu; Haku, Satoshi; Nomura, Akiyo; Ando, Kazuya

    2016-09-09

    We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.

  16. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    Science.gov (United States)

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  17. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail : egelhoff@nist.gov; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.

    2005-01-01

    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  18. Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films

    Science.gov (United States)

    Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian

    2018-02-01

    The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.

  19. Highly Anisotropic Conductors.

    Science.gov (United States)

    Wan, Jiayu; Song, Jianwei; Yang, Zhi; Kirsch, Dylan; Jia, Chao; Xu, Rui; Dai, Jiaqi; Zhu, Mingwei; Xu, Lisha; Chen, Chaoji; Wang, Yanbin; Wang, Yilin; Hitz, Emily; Lacey, Steven D; Li, Yongfeng; Yang, Bao; Hu, Liangbing

    2017-11-01

    Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ || /σ ⊥ ) in the order of 10 11 , and anisotropic thermal conductivity (κ || /κ ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  1. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  2. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  3. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  4. Anisotropic tunneling resistance in a phosphorene-based magnetic barrier

    Science.gov (United States)

    Zhai, Feng; Hu, Wei; Lu, Junqiang

    2017-10-01

    We investigate the ballistic tunneling transport properties of a monolayer of black phosphorus under a magnetic barrier. The conductance of the system depends strongly on the orientation of the magnetic barrier, which is suppressed maximally when the magnetic barrier is oriented along the armchair direction. The mechanism relies on the highly anisotropic energy dispersion of phosphorene and the magnetic-barrier-induced suppression of available phase space for transmission. The magnetoresistance is enhanced by the reduction of the band gap under the same effective mass components.

  5. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  6. Giant magnetoresistance through a single molecule.

    Science.gov (United States)

    Schmaus, Stefan; Bagrets, Alexei; Nahas, Yasmine; Yamada, Toyo K; Bork, Annika; Bowen, Martin; Beaurepaire, Eric; Evers, Ferdinand; Wulfhekel, Wulf

    2011-03-01

    Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

  7. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  8. Scanning magneto-resistance microscopy with FIB trimmed yoke-type magneto-resistive tape heads

    NARCIS (Netherlands)

    Phillips, G.N.; Eisenberg, M.; Eisenberg, M.; Persat, N.; Draaisma, E.A.; Abelmann, Leon; Lodder, J.C.

    2001-01-01

    Scanning magneto-resistance microscopy has been performed with thin film yoke-type magneto-resistive tape heads possessing eight channels. The read flux guides of these channels have been trimmed down from 24 μm to widths varying between 5.5 μm and 148 nm by focused ion beam milling with Ga+ ions.

  9. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  10. Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}.

    Science.gov (United States)

    Thoutam, L R; Wang, Y L; Xiao, Z L; Das, S; Luican-Mayer, A; Divan, R; Crabtree, G W; Kwok, W K

    2015-07-24

    Extremely large magnetoresistance (XMR) was recently discovered in WTe_{2}, triggering extensive research on this material regarding the XMR origin. Since WTe_{2} is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe_{2}: (1) WTe_{2} is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R(H,θ)=R(ϵ_{θ}H) with ϵ_{θ}=(cos^{2}θ+γ^{-2}sin^{2}θ)^{1/2}, θ being the magnetic field angle with respect to the c axis of the crystal and γ being the mass anisotropy and (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe_{2}, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.

  11. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  12. Rapid detection of Escherichia coli O157:H7 using tunneling magnetoresistance biosensor

    Science.gov (United States)

    Wu, Yuanzhao; Liu, Yiwei; Zhan, Qingfeng; Liu, J. Ping; Li, Run-Wei

    2017-05-01

    A rapid method for the sensitive detection of bacteria using magnetic immunoassay, which are measured with a tunneling magnetoresistance (TMR) sensor, is described. For the measurement of Escherichia coli O157:H7 (E. coli O157:H7) bacteria, the target was labeled by magnetic beads through magnetic immunoassay. The magnetic beads produce a weak magnetic fringe field when external field is applied, thus induce the magnetoresistance change of TMR sensor. A detection limit of 100 CFU/mL E. coli O157:H7 bacteria in 5 hours was obtained. With its high sensitive and rapid detection scheme based on the TMR biosensor, the detection system is an excellent candidate suitable and promising for food safety and biomedical detection.

  13. Magnetoresistance in the superconducting state at the (111) LaAlO3/SrTiO3 interface

    Science.gov (United States)

    Davis, S.; Huang, Z.; Han, K.; Ariando, Venkatesan, T.; Chandrasekhar, V.

    2017-10-01

    Condensed-matter systems that simultaneously exhibit superconductivity and ferromagnetism are rare due the antagonistic relationship between conventional spin-singlet superconductivity and ferromagnetic order. In materials in which superconductivity and magnetic order are known to coexist (such as some heavy-fermion materials), the superconductivity is thought to be of an unconventional nature. Recently, the conducting gas that lives at the interface between the perovskite band insulators LaAlO3 (LAO) and SrTiO3 (STO) has also been shown to host both superconductivity and magnetism. Most previous research has focused on LAO/STO samples in which the interface is on the (001) crystal plane. Relatively little work has focused on the (111) crystal orientation, which has hexagonal symmetry at the interface, and has been predicted to have potentially interesting topological properties, including unconventional superconducting pairing states. Here we report measurements of the magnetoresistance of (111) LAO/STO heterostructures at temperatures at which they are also superconducting. As with the (001) structures, the magnetoresistance is hysteretic, indicating the coexistence of magnetism and superconductivity, but in addition, we find that this magnetoresistance is anisotropic. Such an anisotropic response is completely unexpected in the superconducting state and suggests that (111) LAO/STO heterostructures may support unconventional superconductivity.

  14. Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    KAUST Repository

    Sun, Jian

    2013-06-27

    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices

  15. Angle-dependent magnetoresistance and quantum oscillations in high-mobility semimetal LuPtBi

    KAUST Repository

    Xu, Guizhou

    2017-03-14

    The recent discovery of ultrahigh mobility and large positive magnetoresistance in topologically non-trivial Half-Heusler semimetal LuPtBi provides a unique playground for studying exotic physics and significant perspective for device applications. As an fcc-structured electron-hole-compensated semimetal, LuPtBi theoretically exhibits six symmetrically arranged anisotropic electron Fermi pockets and two nearly-spherical hole pockets, offering the opportunity to explore the physics of Fermi surface with a simple angle-related magnetotransport properties. In this work, through the angle-dependent transverse magnetoresistance measurements, in combination with high-field SdH quantum oscillations, we achieved to map out a Fermi surface with six anisotropic pockets in the high-temperature and low-field regime, and furthermore, identify a possible magnetic field driven Fermi surface change at lower temperatures. Reasons account for the Fermi surface change in LuPtBi are discussed in terms of the field-induced electron evacuation due to Landau quantization.

  16. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors

    Directory of Open Access Journals (Sweden)

    Vytautas Markevicius

    2016-01-01

    Full Text Available The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  17. Magnetoresistance in Hybrid Pt/CoFe2O4 Bilayers Controlled by Competing Spin Accumulation and Interfacial Chemical Reconstruction.

    Science.gov (United States)

    Vasili, Hari Babu; Gamino, Matheus; Gàzquez, Jaume; Sánchez, Florencio; Valvidares, Manuel; Gargiani, Pierluigi; Pellegrin, Eric; Fontcuberta, Josep

    2018-04-11

    Pure spin currents have potential for use in energy-friendly spintronics. They can be generated by a flow of charge along a nonmagnetic metal with large spin-orbit coupling. This produces a spin accumulation at the surfaces, controllable by the magnetization of an adjacent ferromagnetic layer. Paramagnetic metals typically used are close to ferromagnetic instability and thus magnetic proximity effects can contribute to the observed angular-dependent magnetoresistance (ADMR). As interface phenomena govern the spin conductance across the metal/ferromagnetic-insulator heterostructures, unraveling these distinct contributions is pivotal for a full understanding of spin current conductance. Here, we report X-ray absorption and magnetic circular dichroism (XMCD) at Pt M and (Co, Fe) L absorption edges and atomically resolved energy electron loss spectroscopy (EELS) data of Pt/CoFe 2 O 4 bilayers, where CoFe 2 O 4 layers have been capped by Pt grown at different temperatures. It was found that the ADMR differs dramatically, dominated either by spin Hall magnetoresistance (SMR) associated with the spin Hall effect or by anisotropic magnetoresistance. The XMCD and EELS data indicate that the Pt layer grown at room temperature does not display any magnetic moment, whereas when grown at a higher temperature, it becomes magnetic due to interfacial Pt-(Co, Fe) alloying. These results enable differentiation of spin accumulation from interfacial chemical reconstructions and tailoring of the angular-dependent magnetoresistance.

  18. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  19. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  20. Anisotropic light diffusion: an oxymoron?

    Science.gov (United States)

    Kienle, Alwin

    2007-05-25

    Light propagation in anisotropic random media is studied in the steady-state and time domains. Solutions of the anisotropic diffusion equation are compared to results obtained by the Monte Carlo method. Contrary to what has been reported so far, we find that even in the "diffusive regime" the anisotropic diffusion equation does not describe correctly the light propagation in anisotropic random media.

  1. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  2. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  3. On the magnetoresistance of heavy fermion compounds

    International Nuclear Information System (INIS)

    Lee Chengchung; Chen Chung

    1992-09-01

    Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs

  4. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  5. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  6. Magnetoresistances in Ni80Fe20-ITO granular film

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Yang Yanxia; Xiong Yuanqiang; Chen Peng

    2012-01-01

    Highlights: ► Magnetoresistance (MR) in Ni 80 Fe 20 -ITO granular film are investigated. ► MR is positive at high temperature, and is negative at low temperature. ► MR results from the competition among three mechanisms. - Abstract: The magnetic properties, electrical properties and magnetoresistance are investigated in Ni 80 Fe 20 -ITO granular film with various volume fractions V NF of Ni 80 Fe 20 . The room temperature magnetization hysteresis of sample with V NF = 25% shows superparamagnetic behavior. Current-voltage curve of sample with V NF = 25% at 175 K shows typical tunneling-type behavior. The magnetoresistances of samples with low V NF are positive at high temperature, and are negative at low temperature. The temperature-dependent magnetoresistances result from the competition among ordinary magnetoresistances, the granular-typed tunneling magnetoresistance and the spin-mixing induced magnetoresistances.

  7. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    Science.gov (United States)

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  8. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    International Nuclear Information System (INIS)

    Zsurzsa, S.; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H c ) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H c =H co +a/d n with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H c ) and magnetoresistance. • H c depends on Co layer thickness according to H c =H co +a/d n with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  9. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  10. Enhanced temperature-independent magnetoresistance below the ...

    Indian Academy of Sciences (India)

    Introduction. The giant and colossal magnetoresistance (GMR and CMR, respectively) effects in doped manganite films on LaAlO3 substrate grown by pulsed laser deposition (PLD), has greatly ... The SQUID magnetometer was used to measure the magnetization of the film at a field of H = 50 Oe. 3. Results and discussion.

  11. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  12. Optimization of the response of magnetoresistive elements

    NARCIS (Netherlands)

    Eijkel, C.J.M.; Fluitman, J.H.J.

    A way to optimize the output signal of a general thin-film magnetoresistive element with a homogeneous magnetization field as used in applications with a saturating external magnetic field is presented. The element is assumed to be operated by four-point measurement. In order to be able to compare

  13. Enhanced temperature-independent magnetoresistance below the ...

    Indian Academy of Sciences (India)

    The film exhibits a large nearly temperature-independent magnetoresistance around 99% in the temperature regime below p. The zero field-cooled (ZFC) and field-cooled (FC) magnetization data at 50 Oe shows irreversibility between the ZFC and FC close to the ferromagnetic transition temperature c = 250 K. The ZFC ...

  14. Structure and magnetic properties of colossal magnetoresistance ...

    Indian Academy of Sciences (India)

    5Sr0.5CoO3 ... phenomenon of colossal magnetoresistance (CMR) that occur in these compounds. The structural and magnetic properties of these ... strain field that reduces with temperature. The Co–O2–Co bond angle is found to be 168◦.

  15. Magnetoresistance of a Low-k Dielectric

    Science.gov (United States)

    McGowan, Brian Thomas

    Low-k dielectrics have been incorporated into advanced computer chip technologies as a part of the continuous effort to improve computer chip performance. One drawback associated with the implementation of low-k dielectrics is the large leakage current which conducts through the material, relative to silica. Another drawback is that the breakdown voltage of low-k dielectrics is low, relative to silica [1]. This low breakdown voltage makes accurate reliability assessment of the failure mode time dependent dielectric breakdown (TDDB) in low-k dielectrics critical for the successful implementation of these materials. The accuracy with which one can assess this reliability is currently a topic of debate. These material drawbacks have motivated the present work which aims both to contribute to the understanding of electronic conduction mechanisms in low-k dielectrics, and to improve the ability to experimentally characterize changes which occur within the material prior to TDDB failure. What follows is a study of the influence of an applied magnetic field on the conductivity of a low-k dielectric, or in other words, a study of the material's magnetoresistance. This study shows that low-k dielectrics used as intra-level dielectrics exhibit a relatively large negative magnetoresistance effect (˜2%) at room temperature and with modest applied magnetic fields (˜100 Oe). The magnetoresistance is attributed to the spin dependence of trapping electrons from the conduction band into localized electronic sites. Mixing of two-electron spin states via interactions between electron spins and the the spins of hydrogen nuclei is suppressed by an applied magnetic field. As a result, the rate of trapping is reduced, and the conductivity of the material increases. This study further demonstrates that the magnitude of the magnetoresistance changes as a function of time subjected to electrical bias and temperature stress. The rate that the magnetoresistance changes correlates to the

  16. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    Science.gov (United States)

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-01

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin-orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase.

  17. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  18. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  19. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  20. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  1. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  2. Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors

    Science.gov (United States)

    Harmon, N. J.; Flatté, M. E.

    2012-02-01

    A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the threshold hopping distance is analogous a phenomenological two-site model's branching parameter, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance.

  3. Magnetoresistance in RCo2 spin-fluctuation systems

    International Nuclear Information System (INIS)

    Gratz, E.; Nowotny, H.; Enser, J.; Bauer, E.; Hense, K.

    2004-01-01

    The effect of the spin fluctuations on the field and temperature dependence of the magnetoresistance in ScCo 2 and LuCo 2 was studied. The experimental data where explained assuming two competing mechanisms determining the magnetoresistance of these substances. One is the 'normal magnetoresistance' caused by the influence of the Lorentz force on conduction electron trajectories. The other is due to the suppression of the spin fluctuations caused by an external magnetic field. This interplay give rise to a pronounced drop of the magnetoresistance towards the lower temperature range

  4. Polarization dependent asymmetric magneto-resistance features in nanocrystalline diamond films

    International Nuclear Information System (INIS)

    Bhattacharyya, Somnath; Churochkin, Dmitry

    2014-01-01

    Polar angle-dependence of magneto-resistance (AMR) in heavily nitrogen-incorporated ultra-nanocrystalline diamond (UNCD) films is recorded by applying high magnetic fields, which shows strong anisotropic features at low temperatures. The temperature-dependence of MR and AMR can reveal transport in the weak-localization regime, which is explained by using a superlattice model for arbitrary values of disorder and angles. While a propagative Fermi surface model explains the negative MR features for low degree of disorder the azimuthal angle-dependent MR shows field dependent anisotropy due to the aligned conducting channels on the layers normal to film growth direction. The analysis of MR and AMR can extract the temperature dependence of dephasing time with respect to the elastic scattering time which not only establishes quasi-two dimensional features in this system but also suggests a potential application in monitoring the performance of UNCD based quantum devices.

  5. Colossal Magnetoresistance in thin films of the Mott metal CaVO3

    Science.gov (United States)

    Lu, Jiwei

    2011-03-01

    Bulk Ca VO3 (CVO) is a Pauli paramagnetic metal with a singe 3d electron. Some unusual drastic changes in the magneto-resistance, magnetic susceptibility and the Hall effect have been reported in single crystal CVO. We have simultaneously synthesized epitaxial CVO films grown on three differently oriented SrTi O3 substrates. The temperature dependent conductivity of these CVO films demonstrated very strong Fermi metal behavior and the resistance ratio, defined as R(300 K)/R (2K) was more than 3000. Colossal magneto-resistance (MR) as well as large crystalline anisotropic was observed at low temperatures. The maximum MR, defined as (R(7 T)-R(0 T))/R(0 T)*100 %, was over 1500 % at 2 K and 7 Telsa on the CVO films deposited on a (110) SrTiO3 single crystal substrate, and didn't show any sign of saturation. An MR of over ~ 500 % and ~ 200 % were observed on (111) and (100) orientation films under the same condition, respectively. The MR ratio was much larger than that of single crystal CVO. We will discuss the peculiar MR in association with the magnetic ordering, oxygen stoichiometry and Fermi surface. The author is grateful to the financial support by the ARO.

  6. Tuning giant magnetoresistance in rolled-up Co-Cu nanomembranes by strain engineering.

    Science.gov (United States)

    Müller, Christian; Bof Bufon, Carlos Cesar; Makarov, Denys; Fernandez-Outon, Luis E; Macedo, Waldemar A A; Schmidt, Oliver G; Mosca, Dante Homero

    2012-11-21

    Compact rolled-up Co-Cu nanomembranes of high quality with different numbers of windings are realized by strain engineering. A profound analysis of magnetoresistance (MR) is performed for tubes with a single winding and a varied number of Co-Cu bilayers in the stack. Rolled-up nanomembranes with up to 12 Co-Cu bilayers are successfully fabricated by tailoring the strain state of the Cr bottom layer. By carrying out an angular dependent study, we ruled out the contribution from anisotropic MR and confirm that rolled-up Co-Cu multilayers exhibit giant magnetoresistance (GMR). No significant difference of MR is found for a single wound tube compared with planar devices. In contrast, MR in tubes with multiple windings is increased at low deposition rates of the Cr bottom layer, whereas the effect is not observable at higher rates, suggesting that interface roughness plays an important role in determining the GMR effect of the rolled-up nanomembranes. Furthermore, besides a linear increase of the MR with the number of windings, the self-rolling of nanomembranes substantially reduces the device footprint area.

  7. Gate tunable magneto-resistance of ultra-thin W Te2 devices

    Science.gov (United States)

    Liu, Xin; Zhang, Zhiran; Cai, Chaoyi; Tian, Shibing; Kushwaha, Satya; Lu, Hong; Taniguchi, Takashi; Watanabe, Kenji; Cava, Robert J.; Jia, Shuang; Chen, Jian-Hao

    2017-06-01

    In this work, the magneto-resistance (MR) of ultra-thin WTe2/BN heterostructures far away from electron-hole equilibrium is measured. The change of MR of such devices is found to be determined largely by a single tunable parameter, i.e. the amount of imbalance between electrons and holes. We also found that the magnetoresistive behavior of ultra-thin WTe2 devices is well-captured by a two-fluid model. According to the model, the change of MR could be as large as 400 000%, the largest potential change of MR among all materials known, if the ultra-thin samples are tuned to neutrality when preserving the mobility of 167 000 cm2 V-1 s-1 observed in bulk samples. Our findings show the prospects of ultra-thin WTe2 as a variable magnetoresistance material in future applications such as magnetic field sensors, information storage and extraction devices, and galvanic isolators. The results also provide important insight into the electronic structure and the origin of the large MR in ultra-thin WTe2 samples.

  8. Magnetoresistance and Anti-Ferromagnetic Coupling in FM-Graphene-FM Trilayers

    Science.gov (United States)

    Cobas, Enrique D.; van't Erve, Olaf M. J.; Cheng, Shu-Fan; Jonker, Berend T.

    Both high-magnetoresistance(MR) minority spin filtering and anti-ferromagnetic (AFM) coupling have been predicted for FM|Graphene|FM vertical heterostructures. Our previous experiments demonstrated ordinary magnetoresistance in NiFe-Graphene-Co heterostructures and no evident AFM coupling. Here we present experimental results that confirm both MR minority spin filtering and AFM coupling in high-quality FM|Graphene|FM heterostructures. The heterostructures were fabricated by a combination of sputtering, chemical vapor deposition and electron beam evaporation. The stack was patterned into symmetric cross-bar structures using Ar ion milling. Measurements show negative magnetoresistance in excess of 10 percent, confirming spin-filtering, and weak anti-ferromagnetic coupling throughout the temperature range 15K to 300K. The temperature dependence of the MR was studied and found consistent with thermal excitation of spin waves in the ferromagnetic electrodes. Junction resistance-area products are in the range of 10 Ωcm2. These heterostructures provide a fast and low-power magnetic field sensor in the sub-100 Oe range and are a step towards high-MR low RA-product MRAM junctions.

  9. High magnetoresistance at low magnetic fields in self-assembled ZnO-Co nanocomposite films.

    Science.gov (United States)

    Jedrecy, N; Hamieh, M; Hebert, C; Perriere, J

    2017-07-27

    The solid phase growth of self-assembled nanocrystals embedded in a crystalline host matrix opens up wide perspectives for the coupling of different physical properties, such as magnetic and semiconducting. In this work, we report the pulsed laser growth at room temperature of thin films composed of a dispersed array of ferromagnetic Co (0001) nanoclusters with an in-plane mono-size width of 1.3 nm, embedded in a ZnO (0001) crystalline matrix. The as-grown films lead to very high values of magnetoresistance, ranging at 9 T from -11% at 300 K to -19% at 50 K, with a steep decrease of the magnetoresistance at low magnetic fields. We establish the relationship between the magnetoresistance behavior and the magnetic response of the Co nanocluster assembly. A spin-dependent tunneling of the electrons between the Co nanoclusters through and by the semi-insulating ZnO host is achieved in our films, promising with regard to magnetic field sensors or Si-integrated spintronic devices. The effects of thermal annealing are also discussed.

  10. Sound localization in an anisotropic plate using electret microphones.

    Science.gov (United States)

    Hoseini Sabzevari, S Amir; Moavenian, Majid

    2017-01-01

    Acoustic source localization without knowing the velocity profile in anisotropic plates is still one of the most challenging areas in this field. The current time-of-flight based approaches for localization in anisotropic media, are based on using six high sampling sensors. The number of sensors and the corresponding large amount of data, would make those methods inefficient in practical applications. Although there are many different non-time-of-flight based approaches such as machine learning, or soft computing based methods that can be used for localization with a less number of sensors, they are not as accurate as time-of-flight based techniques. In this article, a new approach which requires only four low sampling rate sensors to localize acoustic source in an anisotropic plate is proposed. In this technique, four electret low sampling rate sensors in two clusters are installed on the plate surface. The presented method uses attenuation analysis in a suitable frequency band to decrease the number of sensors. The approach is experimentally tested and verified on an airplane composite nose by applying artificially generated acoustic emissions (Hsu-Nielsen source). The results reveal that the accuracy of proposed technique depends on distinction of dominant frequency band. A stethoscope as a physical filter is employed to reduce the sensitivity of the technique and delineation of frequency band. The suggested technique improves the accuracy of localization prediction. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Application of magnetic sensors in automation control

    International Nuclear Information System (INIS)

    Hou Chunhong; Qian Zhenghong

    2011-01-01

    Controls in automation need speed and position feedback. The feedback device is often referred to as encoder. Feedback technology includes mechanical, optical, and magnetic, etc. All advance with new inventions and discoveries. Magnetic sensing as a feedback technology offers certain advantages over other technologies like optical one. With new discoveries like GMR (Giant Magneto-Resistance), TMR (Tunneling Magneto-Resistance) becoming feasible for commercialization, more and more applications will be using advanced magnetic sensors in automation. This paper offers a general review on encoder and applications of magnetic sensors in automation control.

  12. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  13. An anisotropic tertiary creep damage constitutive model for anisotropic materials

    International Nuclear Information System (INIS)

    Stewart, Calvin M.; Gordon, Ali P.; Ma, Young Wha; Neu, Richard W.

    2011-01-01

    When an anisotropic material is subject to creep conditions and a complex state of stress, an anisotropic creep damage behavior is observed. Previous research has focused on the anisotropic creep damage behavior of isotropic materials but few constitutive models have been developed for anisotropic creeping solids. This paper describes the development of a new anisotropic tertiary creep damage constitutive model for anisotropic materials. An advanced tensorial damage formulation is implemented which includes both material orientation relative to loading and the degree of creep damage anisotropy in the model. A variation of the Norton-power law for secondary creep is implemented which includes the Hill's anisotropic analogy. Experiments are conducted on the directionally-solidified bucket material DS GTD-111. The constitutive model is implemented in a user programmable feature (UPF) in ANSYS FEA software. The ability of the constitutive model to regress to the Kachanov-Rabotnov isotropic tertiary creep damage model is demonstrated through comparison with uniaxial experiments. A parametric study of both material orientation and stress rotation are conducted. Results indicate that creep deformation is modeled accurately; however an improved damage evolution law may be necessary. - Highlights: → The deformation of anisotropic creeping solid is directionally dependent. → Few constitutive models have been developed to deal with anisotropic behavior. → A transversely-isotropic nickel base superalloy, DS GTD-111, is studied. → A vector constitutive model based on the Kachanov-Rabotnov formulation is developed. → The new model accurately models deformation at various orientations.

  14. Stripe domains and magnetoresistance in thermally deposited nickel films

    International Nuclear Information System (INIS)

    Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.

    2004-01-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane

  15. Study of magnetoresistance and conductance of bicrystal grain ...

    Indian Academy of Sciences (India)

    at ferromagnetic transition temperature [4,5]. From a practical point of view, large mag- ... tics of these microbridges were studied using four-probe technique. For magnetoresistance measurements, magnetic field has been applied in the plane of the film, parallel to the grain boundary. Magnetoresistance ratio (MRR) has ...

  16. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  17. Colossal Magnetoresistance in La-Y-Ca-Mn-O Films

    NARCIS (Netherlands)

    Chen, L.H.; Tiefel, T.H.; Jin, S.; Palstra, T.T.M.; Ramesh, R.; Kwon, C.

    1996-01-01

    Magnetoresistance behavior of La0.60Y0.07CaMnOx, thin films epitaxially grown on LaAlO3 has been investigated. The films exhibit colossal magnetoresistance with the MR ratio in excess of 10^8% at ~60K, H = 7T, which is the highest ever reported for thin film manganites. The partial substitution of

  18. Material Induced Anisotropic Damage in DP600

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2013-01-01

    Plasticity induced damage development in metals is anisotropic by nature. The anisotropy in damage is driven by two different phenomena; anisotropic deformation state i.e. Load Induced Anisotropic Damage (LIAD) and anisotropic microstructure i.e. Material Induced Anisotropic Damage (MIAD). The

  19. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, T.Y.

    2009-01-01

    The temperature and magnetic field dependence of angular dependent magnetoresistance (AMR) along two orthogonal directions ([100] and [01]) was investigated in a charge-orbital-ordered Sm0.5Ca0.5MnO3 (SCMO) film grown on (011)-oriented SrTiO3 substrates. A dramatic decrease of AMR magnitude in both...

  20. Magnetoresistance effect in a both magnetically and electrically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu, Mao-Wang; Yang, Guo-Jian

    2007-01-01

    We propose a magnetoresistance device in a both magnetically and electrically modulated two-dimensional electron gas, which can be realized experimentally by the deposition, on the top and bottom of a semiconductor heterostructure, of two parallel metallic ferromagnetic strips under an applied voltage. It is shown that a considerable magnetoresistance effect can be achieved in such a device due to the significant transmission difference for electrons through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio depends strongly on the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to realize magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems, and this system may be used as a voltage-tunable magnetoresistance device

  1. Hopping magnetotransport via nonzero orbital momentum states and organic magnetoresistance.

    Science.gov (United States)

    Alexandrov, Alexandre S; Dediu, Valentin A; Kabanov, Victor V

    2012-05-04

    In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.

  2. Large magnetoresistance effect in nitrogen-doped silicon

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-05-01

    Full Text Available In this work, we reported a large magnetoresistance effect in silicon by ion implantation of nitrogen atoms. At room temperature, the magnetoresistance of silicon reaches 125 % under magnetic field 1.7 T and voltage bias -80 V. By applying an alternating magnetic field with a frequency (f of 0.008 Hz, we find that the magnetoresistance of silicon is divided into f and 2f two signal components, which represent the linear and quadratic magnetoresistance effects, respectively. The analysis based on tuning the magnetic field and the voltage bias reveals that electric-field-induced space-charge effect plays an important role to enhance both the linear and quadratic magnetoresistance effects. Observation as well as a comprehensive explanation of large MR in silicon, especially based on semiconductor CMOS implantation technology, will be an important progress towards magnetoelectronic applications.

  3. Spin-flip induced magnetoresistance in positionally disordered organic solids.

    Science.gov (United States)

    Harmon, N J; Flatté, M E

    2012-05-04

    A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.

  4. Large magnetoresistance tunnelling through a magnetically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu Maowang; Zhang Lide

    2003-01-01

    Based on a combination of an inhomogeneous magnetic field and a two-dimensional electron gas, we have constructed a giant magnetoresistance nanostructure, which can be realized experimentally by the deposition of two parallel ferromagnetic strips on top of a semiconductor heterostructure. We have theoretically studied the magnetoresistance for electrons tunnelling through this nanostructure. It is shown that there exists a significant transmission difference between the parallel and antiparallel magnetization configurations, which leads to a large magnetoresistance. It is also shown that the magnetoresistance ratio strongly depends not only on incident electronic energy but also on the ferromagnetic strips, and thus a much larger magnetoresistance ratio can be obtained by properly fabricating the ferromagnetic strips in the system

  5. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  6. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  7. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    Science.gov (United States)

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  8. TOPICAL REVIEW: Tunneling magnetoresistance from a symmetry filtering effect

    Directory of Open Access Journals (Sweden)

    William H Butler

    2008-01-01

    Full Text Available This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe–MgO–Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory.

  9. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  10. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    International Nuclear Information System (INIS)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.; Peres, M. L.; Castro, S. de; Soares, D. A. W.; Wiedmann, S.; Zeitler, U.; Abramof, E.; Rappl, P. H. O.; Mengui, U. A.

    2014-01-01

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF 2 exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linear magnetoresistance response has a maximum for small BaF 2 doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.

  11. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  12. Large linear magnetoresistance and magnetothermopower in layered SrZnSb$_2$

    OpenAIRE

    Wang, Kefeng; Petrovic, C.

    2016-01-01

    We report the large linear magnetoresistance ($\\sim 300\\%$ in 9 T field at 2 K) and magnetothermopower in layered SrZnSb$_2$ crystal with quasi-two-dimensional Sb layers. A crossover from the semiclassical parabolic field dependent magnetoresistance to linear field dependent magnetoresistance with increasing magnetic field is observed. The magnetoresistance behavior can be described very well by combining the semiclassical cyclotron contribution and the quantum limit magnetoresistance. Magnet...

  13. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  14. Electrical properties and granular magnetoresistance in nanomanganite

    Directory of Open Access Journals (Sweden)

    َAli Rostamnejadi

    2017-05-01

    Full Text Available In this research single phaseLa0.7(Sr 1-xBax0.3MnO3(x =0, 0.1 , 0.2 , 0.3 nanomanganite with crystalline size of 18-28 nm have been prepared by sol gel method. The structural properties have been studied using X-ray diffraction spectra with its Rietveld analysis and scaning electron microscope images. The magnetic and elctrical properties have been investigated by measuring the ac magnetic susceptibility and resistivity in the presence of magnetic fields in the range of 0-20 kOe. The obtained results from ac magnetic susceptibility show that the Curie temperture of the samples are above room temperture. The results of resistivity show that the metal-insulator phase transition temperture of and compounds are below room temperture. The resistivity of the samples strongly decreases and their magnetoresistance almost linearly increases by incrasing the applied magnetic field at different tempertures. The value of magnetoresistance for compound is 10 % and 14 % at 275 K and 200 K, and for compound is 13 %  and 27 % at 275 K and 100 K, respectively which are suitable for magnetic field sensing applications. The magneto-transport properties of nanomanganite are described in terms of spin dependent scattering of charge carriers from grain boundaries and their spin dependent tunneling between grains. 

  15. An investigation of manganites exhibiting colossal magnetoresistance

    CERN Document Server

    Coldea, A I

    2001-01-01

    charge-ordered regions with possible phase separation. Magnetic field-induced transitions are reported and the effect of granularity on the magnetoresistance is studied. Effects of magnetic dilution with non-magnetic Ga and Rh ions on perovskite manganites, (La/Nd) sub 2 sub - sub x Sr sub x Mn(Ga/Rh)O sub 6 , are presented in Chapter 4. The random distribution of magnetic ions on the manganese network affects both the magnetic and electrical properties. As a function of hole doping x, La sub 2 sub - sub x Sr sub x MnGaO sub 6 compounds are ferromagnetic at low doping (x 0.3) become magnetically disordered due to the frustration induced by competing ferromagnetic and antiferromagnetic interactions. The Rh dilution helps stabilize the ferromagnetic phase in La sub 1 sub . sub 5 Sr sub 0 sub . sub 5 MnRhO sub 6. All compounds are insulating due to the charge localization induced by the random potential created by the local structural and magnetic disorder. The observed magnetoresistance is discussed either in ...

  16. Resistivity dependence of magnetoresistance in Co/ZnO films.

    Science.gov (United States)

    Quan, Zhi-Yong; Zhang, Li; Liu, Wei; Zeng, Hao; Xu, Xiao-Hong

    2014-01-06

    We report the dependence of magnetoresistance effect on resistivity (ρ) in Co/ZnO films deposited by magnetron sputtering at different sputtering pressures with different ZnO contents. The magnitude of the resistivity reflects different carrier transport regimes ranging from metallic to hopping behaviors. Large room-temperature magnetoresistance greater than 8% is obtained in the resistivity range from 0.08 to 0.5 Ω · cm. The magnetoresistance value decreases markedly when the resistivity of the films is less than 0.08 Ω · cm or greater than 0.5 Ω · cm. When 0.08 Ω · cm magnetoresistance effect. When ρ > 0.5 Ω · cm, the spin-independent higher-order hopping (N > 2) comes into play and decreases the tunneling magnetoresistance value. For the samples with ρ magnetoresistance is mainly ascribed to the formation of percolation paths through interconnected elongated metallic Co particles. This observation is significant for the improvement of room-temperature magnetoresistance value for future spintronic devices.

  17. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    Science.gov (United States)

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  18. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  19. Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes.

    Science.gov (United States)

    Luo, Xin; Fang, Chi; Wan, Caihua; Cai, Jialin; Liu, Yong; Han, Xiufeng; Lu, Zhihong; Shi, Wenhua; Xiong, Rui; Zeng, Zhongming

    2017-04-07

    This article reports the characterization of WTe 2 thin flake magnetoresistance and Hall resistivity. We found it does not exhibit magnetoresistance saturation when subject to high fields, in a manner similar to their bulk characteristics. The linearity of Hall resistivity in our devices confirms the compensation of electrons and holes. By relating experimental results to a classic two-band model, the lower magnetoresistance values in our samples is demonstrated to be caused by decreased carrier mobility. The dependence of mobility on temperature indicates the main role of optical phonon scattering at high temperatures. Our results provide more detailed information on carrier behavior and scattering mechanisms in WTe 2 thin films.

  20. Colossal magnetoresistance in manganites and related prototype devices

    International Nuclear Information System (INIS)

    Liu Yu-Kuai; Yin Yue-Wei; Li Xiao-Guang

    2013-01-01

    We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTiO 3 p—n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  1. Large magnetoresistance in La-Ca-Mn-O films

    International Nuclear Information System (INIS)

    Chen, L.H.; Jin, S.; Tiefel, T.H.; Ramesh, R.; Schurig, D.

    1995-01-01

    A very large magnetoresistance value in excess of 10 6 % has been obtained at 110 K, H = 6 T in La-Ca-Mn-O thin films epitaxially grown on LaAlO 3 substrates by pulsed laser deposition. The as-deposited film exhibits a substantial magnetoresistance value of 39,000%, which is further improved by heat treatment. A strong dependence of the magnetoresistance on film thickness was observed, with the value reduced by orders of magnitude when the film is made thicker than ∼2,000 angstrom. This behavior is interpreted in terms of lattice strain in the La-Ca-Mn-O films

  2. Mutual influence between current-induced giant magnetoresistance and radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2DES.

    Science.gov (United States)

    Samaraweera, R L; Liu, H-C; Wang, Z; Reichl, C; Wegscheider, W; Mani, R G

    2017-07-11

    Radiation-induced magnetoresistance oscillations are examined in the GaAs/AlGaAs 2D system in the regime where an observed concurrent giant magnetoresistance is systematically varied with a supplementary dc-current, I dc . The I dc tuned giant magnetoresistance is subsequently separated from the photo-excited oscillatory resistance using a multi-conduction model in order to examine the interplay between the two effects. The results show that the invoked multiconduction model describes the observed giant magnetoresistance effect even in the presence of radiation-induced magnetoresistance oscillations, the magnetoresistance oscillations do not modify the giant magnetoresistance, and the magnetoresistance oscillatory extrema, i.e., maxima and minima, disappear rather asymmetrically with increasing I dc . The results suggest the interpretation that the I dc serves to suppress scattering between states near the Fermi level in a strong magnetic field limit.

  3. Open and closed Fermi surface contributions to the anomalous angular magnetoresistance of α-(BEDT-TTF)2RbHg(SCN)4

    International Nuclear Information System (INIS)

    Athas, G.J.; Klepper, S.J.; Brooks, J.S.; Tokumoto, M.; Kinoshita, N.; Tanaka, Y.

    1994-01-01

    Anomalous angular magnetoresistance (AMR) in the quasi-two dimensional organic conductor α-(BEDT-TTF) 2 RbHg(SCN) 4 is reported. The AMR appears as oscillations with sharp minima below the anitiferromagnetic ordering temperature. The period of these oscillations is anisotropic with respect to the plane of rotation cutting through the conducting layers. Above the ordering temperature, the nature of the AMR changes fundamentally. We propose a model for the AMR that incorporates both open and closed Fermi surfaces, and discuss how temperature and field dependent behaviors of the individual FS contribute to the conductivity. (orig.)

  4. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  5. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  6. Extraction of overlapping radiation-induced magnetoresistance oscillations and bell-shaped giant magnetoresistance in the GaAs/AlGaAs 2DES using a multiconduction model

    Science.gov (United States)

    Samaraweera, R. L.; Liu, H. C.; Wang, Z.; Wegscheider, W.; Mani, R. G.

    2017-06-01

    We present an experimental study aimed at extracting the microwave radiation-induced magnetoresistance oscillations from the bell-shape giant magnetoresistance in high mobility GaAs/AlGaAs devices using a multi-conduction model. The results show that the multi-conduction model describes the observed giant magnetoresistance effect and the model helps to extract radiation-induced magnetoresistance oscillations, over a wider parameter space.

  7. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  8. Effect of quantum tunneling on spin Hall magnetoresistance.

    Science.gov (United States)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y 3 Fe 5 O 12 ) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  9. Optically Tunable Magnetoresistance Effect: From Mechanism to Novel Device Application.

    Science.gov (United States)

    Liu, Pan; Lin, Xiaoyang; Xu, Yong; Zhang, Boyu; Si, Zhizhong; Cao, Kaihua; Wei, Jiaqi; Zhao, Weisheng

    2017-12-28

    The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

  10. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  11. Magnetoresistance anomaly in DyFeCo thin films

    International Nuclear Information System (INIS)

    Wu, J. C.; Wu, C. S.; Wu, Te-ho; Chen, Bing-Mau; Shieh, Han-Ping D.

    2001-01-01

    Microstructured rare-earth - transition-metal DyFeCo films have been investigated using magnetoresistance and extraordinary Hall-effect measurements. The Hall loops reveal variation of coercive fields depending on the linewidth and the composition of the films. The magnetoresistance curves, with changes up to as high as 1.3%, show positive/negative magnetoresistance peaks centered on the coercive fields depending on the linewidth of the films only. The variation of the coercivity can be attributed to the magnetic moment canting between the Dy and FeCo subcomponents and the existence of the diverged magnetization on the edges, and the anomalous magnetoresistance peaks observed are discussed with the existing theories. [copyright] 2001 American Institute of Physics

  12. Evaluation of Magnetoresistive RAM for Space Applications

    Science.gov (United States)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  13. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  14. Magnetoresistance and ion bombardment induced magnetic patterning

    International Nuclear Information System (INIS)

    Hoeink, V.

    2008-01-01

    In this thesis the combination of the magnetic patterning of the unidirectional anisotropy and the tunnel magnetoresistance effect is investigated. In my diploma thesis, it has been shown that it is in principle possible to use the magnetic patterning by ion bombardment to magnetically structure the pinned layer in magnetic tunnel junctions (MTJs) with alumina barrier. Furthermore, it has been shown that the side effects which have been observed after this treatment can be at least reduced by an additional heating step. Starting from this point, the applicability of ion bombardment induced magnetic patterning (IBMP) in general and the combination of IBMP and MTJs in particular is investigated and new applications are developed. (orig.)

  15. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  16. Oscillations in magnetoresistance and interlayer coupling in magnetic sandwich structures

    International Nuclear Information System (INIS)

    Barnas, J.; Bulka, B.

    1997-01-01

    Kubo formalism is used to calculate the magnetoresistance due to magnetization rotation in a structure consisting two magnetic films separated by nonmagnetic layer. In the approximation of an uniform relaxation time of each layer, the oscillatory term in magnetoresistance corresponds to the oscillation period which depends on the potential barriers at the interfaces. This period is longer than the oscillation period observed in the coupling parameter. (author)

  17. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

    International Nuclear Information System (INIS)

    Anisimov, M. A.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Filipov, V. B.; Shitsevalova, N. Yu.; Kuznetsov, A. V.; Sluchanko, N. E.

    2009-01-01

    The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB 6 and NdB 6 ) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB 6 and NdB 6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (-Δρ/ρ ∝ H 2 ), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB 6 and NdB 6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB 6 and NdB 6 , ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χ loc has been estimated. It has been demonstrated that, in the temperature range T N loc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χ loc ∝ (T - Θ p ) -1 .

  18. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  19. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  20. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials.

    Science.gov (United States)

    Dierking, Ingo; Al-Zangana, Shakhawan

    2017-10-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  1. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  2. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Science.gov (United States)

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  3. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  4. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    International Nuclear Information System (INIS)

    Huang, S X; Chen, Fei; Zang, Jiadong; Chien, C L; Kang, Jian; Shu, G J; Chou, F C

    2016-01-01

    The B20 chiral magnets with broken inversion symmetry and C 4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe 0.85 Co 0.15 Si that directly reveals the broken C 4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase. (paper)

  5. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2.

    Science.gov (United States)

    Kumar, Nitesh; Sun, Yan; Xu, Nan; Manna, Kaustuv; Yao, Mengyu; Süss, Vicky; Leermakers, Inge; Young, Olga; Förster, Tobias; Schmidt, Marcus; Borrmann, Horst; Yan, Binghai; Zeitler, Uli; Shi, Ming; Felser, Claudia; Shekhar, Chandra

    2017-11-21

    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighboring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP 2 and MoP 2 , which are type-II Weyl semimetals with robust Weyl points by transport, angle resolved photoemission spectroscopy and first principles calculations. Our single crystals of WP 2 display an extremely low residual low-temperature resistivity of 3 nΩ cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. We observe a large suppression of charge carrier backscattering in WP 2 from transport measurements. These properties are likely a consequence of the novel Weyl fermions expressed in this compound.

  6. Thermal stability of a Co/Cu giant magnetoresistance (GMR) multilayer system

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, V., E-mail: vitaliy.vovk@materials.ox.ac.uk [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Schmitz, G. [Institut fuer Materialphysik, Westf. Wilhelms-Universitaet Muenster, Wilhelm-Klemm-Str. 10, 48149 Muenster (Germany)

    2009-04-15

    Critical limitations exist regarding the thermal stability of multilayer giant magnetoresistance (GMR) sensors due to significant contribution of layer interfaces and grain boundaries to their performance. This paper addresses the stability of, and thermal reaction in Co/Cu magnetoresistive systems. Thin film multilayers were deposited by ion beam sputtering on top of preformed tungsten tips. The multilayers were then analyzed by a wide-angle tomographic atom probe (WATAP) in the as-prepared state and after heat treatments in the temperature range from 150 to 550 {sup o}C. As revealed by the WATAP analysis, Co breakthroughs along grain boundaries in the Cu spacers appear at 450 {sup o}C. This morphological change leads to a deterioration of the GMR effect due to the magnetostatic ferromagnetic coupling between Co layers. Furthermore, a strong effect of Cu layers faceting is observed after annealing in the same temperature range, which may lead to the deterioration of the layered structure on high-angle grain boundaries.

  7. Linear unsaturating magnetoresistance in disordered systems

    Science.gov (United States)

    Lai, Ying Tong; Lara, Silvia; Love, Cameron; Ramakrishnan, Navneeth; Adam, Shaffique

    Theoretical works have shown that disordered systems exhibit classical magnetoresistance (MR). In this talk, we examine a variety of experimental systems that observe linear MR at high magnetic fields, including silver chalcogenides, graphene, graphite and Weyl semimetals. We show that a careful analysis of the magnitude of the MR, as well as the field strength at which the MR changes from quadratic to linear, reveal important properties of the system, such as the ratio of the root-mean-square fluctuations in the carrier density and the average carrier density. By looking at other properties such as the zero-field mobility, we show that this carrier density inhomogeneity is consistent with what is known about the microscopic impurities in these experiments. The application of this disorder-induced MR to a variety of different experimental scenarios underline the universality of these theoretical models. This work is supported by the Singapore National Research Foundation (NRF-NRFF2012-01) and the Singapore Ministry of Education and Yale-NUS College through Grant Number R-607-265-01312.

  8. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Soriano, D. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Pedersen, J. G. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Roche, S. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  9. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-01-01

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO 2 /FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO 2 /FGNPA junction also drastically enhances TMR ratios up to ∼100%

  10. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  11. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  12. Fusion neutron effects on magnetoresistivity of copper stabilizer materials

    International Nuclear Information System (INIS)

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-01-01

    Eight copper wires were repeatedly irradiated at 4.2 to 4.4 K with 14.8 MV neutrons and isochronally annealed at temperatures up to 34 0 C for a total of five cycles. Their electrical resistances were monitored during irradiation under zero applied magnetic field. After each irradiation the magnetoresistances were measured in applied transverse magnetic fields of up to 12 T. Then the samples were isochronally annealed to observe the recovery of the resistivity and magnetoresistivity. After each anneal at the highest temperature (34 0 C), some of the damage remained and contributed to the damage state observed following the subsequent irradiation. In this way, we were able to observe how the changes in magnetoresistance would accumulate during the repeated irradiations and anneals expected to be characteristic of fusion reactor magnets. For each succeeding irradiation the fluence was chosen to produce approximately the same final magnetoresistance at 12 T, taking account of the accumulating residual radiation damage. The increment of magnetoresistivity added by the irradiation varied from 35 to 65% at 12 T and from 50 to 90% at 8 T for the various samples

  13. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  14. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  15. Studies of colossal magnetoresistive oxides with radioactive isotopes

    CERN Document Server

    CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Amaral, V S; Araújo, J P; Butz, T; Correia, J G; Dubourdieu, C; Habermeier, H U; Lourenço, A A; Marques, J G; Da Silva, M F A; Senateur, J P; Soares, J C; Sousa, J B; Suryan, R; Tokura, Y; Tavares, P B; Tomioka, Y; Tröger, W; Vantomme, A; Vieira, J M; Wahl, U; Weiss, F P; INTC

    2000-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magnetoresistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+ \\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non-stoichiometry: -learning the role of defects in the optimisation of magnetoresistive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic phase...

  16. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  17. Quantum conductance in electrodeposited nanocontacts and magnetoresistance measurements

    DEFF Research Database (Denmark)

    Elhoussine, F.; Encinas, A.; Mátéfi-Tempfli, Stefan

    2003-01-01

    The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus of conduct......The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus...... of conductance during their dissolution in units of e/h, as expected for ferromagnetic ballistic nanocontacts. The measurement of the positive and negative magnetoresistance in Co-Ni nanocontacts was also elaborated....

  18. Phase shift of oscillatory magnetoresistance in a double-cross thin film structure of La0.3Pr0.4Ca0.3MnO3 via strain-engineered elongation of electronic domains

    Science.gov (United States)

    Alagoz, H. S.; Prasad, B.; Jeon, J.; Blamire, M. G.; Chow, K. H.; Jung, J.

    2018-02-01

    The subtle balance between the competing electronic phases in manganites due to complex interplay between spin, charge, and orbital degrees of freedom could allow one to modify the properties of electronically phase separated systems. In this paper, we show that the phase shift in the oscillatory magnetoresistance ρ (θ ) can be modified by engineering strain driven elongation of electronic domains in La0.3Pr0.4Ca0.3MnO3 (LPCMO) thin films. Strain-driven elongation of magnetic domains can produce different percolation paths and hence different anisotropic magnetoresistance responses. This tunability provides a unique control that is unattainable in conventional 3 d ferromagnetic metals and alloys.

  19. Anisotropic magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films grown by dc-sputtering

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Prieto, P.; Baca, E.

    2005-01-01

    We have conducted a comprehensive study of the in-plane/out-of-plane magnetic and magnetotransport properties on (001)-oriented La 2/3 Ca 1/3 MnO 3 films epitaxially grown on single crystal (001)-SrTiO 3 substrates by dc-sputtering at high oxygen pressure. The films grew under tensile strain imposed by the lattice mismatch with the substrate. SQUID magnetometry indicated the presence of magnetocrystalline anisotropy at temperatures below the ferromagnetic Curie temperature T C with the easy plane being the film plane. Resistance measurements in magnetic field strengths of up to 6 T, applied both normal and parallel to the film plane, evidenced a distinctive dependence of the resistivity below T C on the angle of the applied field with respect to the plane of the film. During these measurements, transport current and applied magnetic field was all along maintained perpendicular to each other. Neither low-field magnetoresistance (LFMR) nor large magnetoresistance hysteresis were observed on these samples, suggesting that the tensile strain in the first monolayers has been partially released. Additionally, by rotating the sample 360 around an axis parallel to film plane, in magnetic fields ≥2 T, a quadratic sinusoidal dependence of the magnetoresistance (MR) on the polar angle θ was observed. These results can be consistently interpreted in frame of a generalized version of the theory of anisotropic magnetoresistance in transition-metal ferromagnets. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi

    Science.gov (United States)

    Kakihana, Masashi; Aoki, Dai; Nakamura, Ai; Honda, Fuminori; Nakashima, Miho; Amako, Yasushi; Nakamura, Shota; Sakakibara, Toshiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2018-02-01

    EuPtSi crystallizes in the cubic chiral structure (P213, No. 198), which is the same as the non-centrosymmetric space group of MnSi with the skyrmion structure, and orders antiferromagnetically below a Néel temperature TN = 4.05 K. The magnetization at 2 K for the [111] direction indicates two metamagnetic transitions at the magnetic fields HA1 = 9.2 kOe and HA2 = 13.8 kOe and saturates above Hc = 26.6 kOe. The present magnetic phase between HA1 and HA2 is most likely closed in the (H,T) phase and is observed in a wide temperature range from 3.6 to 0.5 K. In this magnetic phase known as the A-phase, we found giant additional Hall resistivity ΔρH(H) and magnetoresistance Δρ(H), reaching ΔρH(H) = 0.12 µΩ·cm and Δρ(H) = 1.4 µΩ·cm, respectively. These findings are obtained for H || [111] and [100], but not for H || [110] and [112], revealing an anisotropic behavior in the new material EuPtSi.

  1. Magnetoresistance of Mn-decorated topological line defects in graphene

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2015-01-13

    We study the spin polarized transport through Mn-decorated 8-5-5-8 topological line defects in graphene using the nonequilibrium Green\\'s function formalism. Strong preferential bonding overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism, in particular for full coverage of all octagonal hollow sites by Mn atoms. In contrast to the magnetoresistance of graphene nanoribbon edges, the proposed system is well controlled and therefore suitable for applications.

  2. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices.

    Science.gov (United States)

    Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng

    2016-11-23

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.

  3. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...

  4. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  5. Mutual influence between current-induced giant magnetoresistance and radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2DES

    OpenAIRE

    Samaraweera, R. L.; Liu, H.-C.; Wang, Z.; Reichl, C.; Wegscheider, W.; Mani, R. G.

    2017-01-01

    Radiation-induced magnetoresistance oscillations are examined in the GaAs/AlGaAs 2D system in the regime where an observed concurrent giant magnetoresistance is systematically varied with a supplementary dc-current, I dc . The I dc tuned giant magnetoresistance is subsequently separated from the photo-excited oscillatory resistance using a multi-conduction model in order to examine the interplay between the two effects. The results show that the invoked multiconduction model describes the obs...

  6. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  7. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

  8. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  9. Study of magnetoresistance and conductance of bicrystal grain ...

    Indian Academy of Sciences (India)

    ... is dominated by inelastic tunneling via pairs of manganese atoms and tunneling through disordered oxides. At higher temperatures ( > 175 K), magnetic scattering process is dominating. Decrease of bicrystal grain boundary contribution in magnetoresistance with the increase in temperature is due to enhanced spin-flip ...

  10. Magnetoresistance, electrical conductivity, and Hall effect of glassy carbon

    Energy Technology Data Exchange (ETDEWEB)

    Baker, D.F.

    1983-02-01

    These properties of glassy carbon heat treated for three hours between 1200 and 2700/sup 0/C were measured from 3 to 300/sup 0/K in magnetic fields up to 5 tesla. The magnetoresistance was generally negative and saturated with reciprocal temperature, but still increased as a function of magnetic field. The maximum negative magnetoresistance measured was 2.2% for 2700/sup 0/C material. Several models based on the negative magnetoresistance being proportional to the square of the magnetic moment were attempted; the best fit was obtained for the simplest model combining Curie and Pauli paramagnetism for heat treatments above 1600/sup 0/C. Positive magnetoresistance was found only in less than 1600/sup 0/C treated glassy carbon. The electrical conductivity, of the order of 200 (ohm-cm)/sup -1/ at room temperature, can be empirically written as sigma = A + Bexp(-CT/sup -1/4) - DT/sup -1/2. The Hall coefficient was independent of magnetic field, insensitive to temperature, but was a strong function of heat treatment temperature, crossing over from negative to positive at about 1700/sup 0/C and ranging from -0.048 to 0.126 cm/sup 3//coul. The idea of one-dimensional filaments in glassy carbon suggested by the electrical conductivity is compatible with the present consensus view of the microstructure.

  11. Study of magnetoresistance and conductance of bicrystal grain ...

    Indian Academy of Sciences (India)

    Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature > 175 K. At low temperature, - characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of ...

  12. Mixed-phase description of colossal magnetoresistive manganites

    Czech Academy of Sciences Publication Activity Database

    Weiáe, A.; Loos, Jan; Fehske, H.

    2003-01-01

    Roč. 68, č. 2 (2003), s. 024402-1 - 021102-6 ISSN 0163-1829 Grant - others:DFG(DE) 436 TSE 113/33/0-2 Institutional research plan: CEZ:AV0Z1010914 Keywords : polarons * metal-insulator transitions * colossal magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  13. High field magnetoresistance in Co-Al-O nanogranular films

    Czech Academy of Sciences Publication Activity Database

    Chayka, Oleksandr; Kraus, Luděk; Lobotka, P.; Sechovsky, V.; Kocourek, Tomáš; Jelínek, Miroslav

    2006-01-01

    Roč. 300, - (2006), s. 293-299 ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) IAA1010204 Institutional research plan: CEZ:AV0Z10100520 Keywords : granular system * superparamagnetism * tunneling magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  14. Tuning spin transport properties and molecular magnetoresistance through contact geometry.

    Science.gov (United States)

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its "closed" and "open" conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  15. Magnetoresistance at artificial interfaces in epitaxial ferromagnetic thin films

    International Nuclear Information System (INIS)

    Fontcuberta, J.; Bibes, M.; Martinez, B.; Trtik, V.; Ferrater, C.; Sanchez, F.; Varela, M.

    2000-01-01

    Epitaxial La 2/3 Sr 1/3 MnO 3 and SrRuO 3 thin films have been grown by laser ablation on single-crystalline SrTiO 3 substrates. Prior to manganite or ruthenate deposition tracks have been patterned on the SrTiO 3 substrate by using an appropriately focused laser beam. In the experiments here reported linear tracks have been formed. The magnetotransport properties of the films, particularly the magnetoresistance, along paths parallel and perpendicular to the track have been extensively investigated and compared to similar data recorded on films grown on bicrystalline STO substrates. Whereas in LSMO a significant low-field tunnel magnetoresistance develops across the artificial interface, in SRO this tunnel contribution is absent. However, a significant high-field magnetoresistance is observed for both metallic and ferromagnetic systems. The results are analysed and discussed within the framework of the current understanding of double exchange and itinerant ferromagnets. Magnetoresistance data for various configurations of the track array are presented

  16. The magnetoresistivity of some rare-earth metals

    International Nuclear Information System (INIS)

    Webber, G.D.

    1978-10-01

    The thesis describes measurements of the low temperature transverse magnetoresistivities of single crystals of rare-earth metals in magnetic fields up to 8 Tesla. A general introduction to the rare-earths, their magnetic properties and a review of the basic theory and mechanism of magnetoresistivity is given. Details of the crystal structure, growth of single crystals and sample mounting method follow. The experimental equipment and measuring techniques are then described. The low temperature transverse magnetoresistivity of polycrystalline lanthanum and single crystal praseodymium for the temperature range 4.2 - 30K is measured. The separation of the spin-disorder and Fermi-surface orbital effect contributions are described and the theoretical and experimental spin-disorder values compared. Magnetoresistivity measurements for neodymium single crystals (4.2 - 30K) are compared with the magnetic properties determined from neutron diffraction studies. Results for gadolinium single crystals (4.2 - 200K) are compared for two different impurity levels and with previous work. (UK)

  17. Metafluid with anisotropic dynamic mass

    International Nuclear Information System (INIS)

    Gumen, L.N.; Arriaga, J.; Krokhin, A.A.

    2011-01-01

    We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhibits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Using the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass tensor of the metafluid. The proposed formula is very general - it is valid for arbitrary Bravais lattices and arbitrary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with prescribed anisotropy.

  18. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  19. Exact anisotropic polytropic cylindrical solutions

    Science.gov (United States)

    Sharif, M.; Sadiq, Sobia

    2018-03-01

    In this paper, we study anisotropic compact stars with static cylindrically symmetric anisotropic matter distribution satisfying polytropic equation of state. We formulate the field equations as well as the corresponding mass function for the particular form of gravitational potential z(x)=(1+bx)^{η } (η =1, 2, 3) and explore exact solutions of the field equations for different values of the polytropic index. The values of arbitrary constants are determined by taking mass and radius of compact star (Her X-1). We find that resulting solutions show viable behavior of physical parameters (density, radial as well as tangential pressure, anisotropy) and satisfy the stability condition. It is concluded that physically acceptable solutions exist only for η =1, 2.

  20. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  1. Temperature dependence of magnetoresistive properties in bottom spin valve films employing very thin Cu spacers

    Energy Technology Data Exchange (ETDEWEB)

    Jo, Soonchul [School of Electronic Engineering, Soongsil University, Seoul 156-743 (Korea, Republic of)]. E-mail: jschul@ssu.ac.kr; Seigler, Michael A. [Seagate Research, Pittsburgh, PA 15222 (United States)

    2007-09-15

    Temperature dependence of magnetoresistive properties in bottom spin valve films having very thin Cu spacers are reported. NiFeCr55 A/NiFe10 A/IrMn70 A/CoFetA/Ru4 A/CoFe(t+3)A/Cu/CoFe tA/NiFe10 A/Ta50 A bottom spin valve films were deposited using a DC magnetron sputter deposition system. Magnetoresistance (MR) ratio reached a maximum of 13.5% and 11.9% at the Cu thickness of 10.4 A, when the thickness of the CoFe layers t was 20 and 10 A, respectively. Unlike the top spin valves reported earlier, the dip in the MR ratio was not observed when the interlayer coupling between the free layer and reference layer became zero. Sheet resistance change (DR{sub s}) reached a maximum of 4.22 {omega}/{open_square} at the Cu spacer thickness of 10 A when the CoFe thickness t was 10 A. Temperature dependences of MR ratio, DR{sub s}, interlayer coupling field (H {sub i}), and sensitivity showed mostly monotonic decrease as the temperature was increased up to 200 deg. C. It turns out that DR{sub s} for the film having 10.4 A of Cu spacer thickness at 200 deg. C was larger than the DR{sub s} for the film having 20 A of Cu spacer thickness at 40 deg. C. This suggests a high output voltage of the spin valve sensor made of the thin Cu spacer even at high operating temperature. These very thin Cu spacers could be utilized for very small devices where the interlayer coupling field is dominated by high demagnetizing fields.

  2. Acoustic source localization in an anisotropic plate without knowing its material properties - A new approach.

    Science.gov (United States)

    Park, Won Hyun; Packo, Pawel; Kundu, Tribikram

    2017-08-01

    Acoustic source localization (ASL) in a highly anisotropic plate is a challenging task. The basic assumption in many of the currently available techniques is that the wave propagates along a straight line from the source to the receiving sensor. However, waves in anisotropic solids propagate along curved lines and form non-circular wave fronts. As a result, for a highly anisotropic solid the acoustic source localization techniques that assume straight line propagation of waves from the source to the receiver are bound to produce a significant error. In this paper a new technique is introduced for acoustic source localization in an anisotropic plate by dealing with non-circular shape of wave fronts. Direction vectors of the wave fronts are computed from the Time-Difference-Of-Arrivals (TDOA) at three sensors placed in a cluster, then they are cast into a geometric vector analysis or an optimization process to accurately obtain the acoustic source location. Two common wave front shapes in highly anisotropic plates, rhombus and ellipse, are analyzed. Following this analysis, the acoustic source could be successfully localized without knowing the material properties of the plate. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Tunneling Negative Magnetoresistance via δ Doping in a Graphene-Based Magnetic Tunnel Junction

    International Nuclear Information System (INIS)

    Yuan Jian-Hui; Chen Ni; Mo Hua; Zhang Yan; Zhang Zhi-Hai

    2016-01-01

    We investigate the tunneling magnetoresistance via δ doping in a graphene-based magnetic tunnel junction in detail. It is found that the transmission probability and the conductance oscillates with the position and the aptitude of the δ doping. Also, both the transmission probability and the conductance at the parallel configuration are suppressed by the magnetic field more obviously than that at the antiparallel configuration, which implies a large negative magnetoresistance for this device. The results show that the negative magnetoresistance of over 300% at B = 1.0 T is observed by choosing suitable doped parameters, and the temperature plays an important role in the magnetoresistance. Thus it is possible to open a way to effectively manipulate the magnetoresistance devices, and to make a type of magnetoresistance device by controlling the structural parameter of the δ doping. (paper)

  4. Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films

    International Nuclear Information System (INIS)

    Shreekala, R.; Rajeswari, M.; Ghosh, K.; Goyal, A.; Gu, J.Y.; Kwon, C.; Trajanovic, Z.; Boettcher, T.; Greene, R.L.; Ramesh, R.; Venkatesan, T.

    1997-01-01

    We report our study of the effect of crystallinity on the magnetoresistance in epitaxial and polycrystalline La 2/3 Ba 1/3 MnO 3 and La 2/3 Ca 1/3 MnO 3 thin films. Magnetoresistance in epitaxial films exhibits field dependence and temperature dependence similar to bulk single crystals and sintered bulk ceramics. The polycrystalline films exhibit a markedly different behavior. The magnetoresistance in this case shows either a monotonic increase or saturation with decreasing temperature in contrast to that of epitaxial films in which the magnetoresistance peaks close to the ferromagnetic transition temperature. The field dependence in the polycrystalline films is also remarkably different. At low fields, we observe a sharp drop in resistance followed by a more gradual decrease at higher fields. Our data suggest that in addition to the intrinsic magnetoresistance, grain-boundary transport contributes significantly to the magnetoresistance in polycrystalline films. copyright 1997 American Institute of Physics

  5. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  6. Anomalous magnetoresistance effect in sputtered TbFeCo relating to dispersed magnetic moment

    International Nuclear Information System (INIS)

    Yumoto, S.; Toki, K.; Okada, O.; Gokan, H.

    1988-01-01

    The electric resistance is sputtered TbFeCo has been measured at room temperature as a function of magnetic field perpendicular to the film plane. Two kinds of anomalous magnetoresistance have been observed. One is a magnetoresistance peak in the magnetization reversal region. The other is reversible change proportional to the applied magnetic field, appearing in the other region. The magnetoresistance peak agrees well with a curve calculated from experimental Hall loop, using a phenomenological relation between anomalous magnetoresistance and anomalous Hall voltage. The magnetoresistance peak is found to originate from magnetic domain walls. The linear magnetoresistance change for TM dominant samples appears in a direction opposite to that for RE dominant samples. The linear change can't be derived from Hall loop

  7. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide.

    Science.gov (United States)

    Niu, Q; Yu, W C; Yip, K Y; Lim, Z L; Kotegawa, H; Matsuoka, E; Sugawara, H; Tou, H; Yanase, Y; Goh, Swee K

    2017-06-05

    In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.

  8. Magnetoresistance anisotropy of ultrathin epitaxial La0.83Sr0.17MnO3 films

    Science.gov (United States)

    Balevičius, Saulius; Tornau, Evaldas E.; ŽurauskienÄ--, Nerija; Stankevič, Voitech; Šimkevičius, Česlovas; TolvaišienÄ--, Sonata; PlaušinaitienÄ--, Valentina; Abrutis, Adulfas

    2017-12-01

    We present the study of temperature dependence of resistivity (ρ), magnetoresistance (MR), and magnetoresistance anisotropy (AMR) of thin epitaxial La0.83Sr0.17MnO3 films. The films with thickness from 4 nm to 140 nm were grown on an NdGaO3 (001) substrate by a pulsed injection metal organic chemical vapor deposition technique. We demonstrate that the resistivity of these films significantly increases and the temperature Tm of the resistivity maximum in ρ(T) dependence decreases with the decrease of film thickness. The anisotropy of ρ(T) dependence with respect to the electrical current direction along the [100] or [010] crystallographic axis of the film is found for ultrathin films (4-8 nm) at temperatures close to Tm. Both MR and AMR, measured in magnetic fields up to 0.7 T applied in the film plane parallel and perpendicular to the current direction, have shown strong dependence on the film thickness. It was also found that the anisotropy of magnetoresistance could change its sign from positive (thicker films) to negative (ultrathin films) and obtain very small values at a certain intermediate thickness (20 nm) when the current is flowing perpendicular to the easy magnetization axis [010]. While the positive AMR effect was assigned to the conventional magnetic ordering of manganites, the AMR of ultrathin films was influenced by the pinning of magnetization to the easy axis. The temperature dependence and change of the AMR sign with film thickness is shown to be well described by the two-region model (more strained closer to the film substrate and more relaxed further from it) assuming that the relative concentration of both regions changes with the film thickness. The possibility to use the effect of the AMR compensation for the development of scalar in-plane magnetic field sensors is discussed.

  9. Challenges and trends in the development of a magnetoresistive biochip portable platform

    International Nuclear Information System (INIS)

    Martins, Veronica C.; Germano, Jose; Cardoso, Filipe A.; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moises; Fonseca, Luis P.; Freitas, P.P.

    2010-01-01

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  10. Interaction-induced huge magnetoresistance in a high mobility two-dimensional electron gas

    Energy Technology Data Exchange (ETDEWEB)

    Bockhorn, L.; Haug, R. J. [Institut für Festkörperphysik, Leibniz Universität Hannover, D-30167 Hannover (Germany); Gornyi, I. V. [Institut für Nanotechnologie, Karlsruher Institut of Technology, D-76021 Karlsruhe (Germany); Schuh, D. [Institut für Experimentelle und Angewandte Physik, Universität Regensburg, D-93053 Regensburg (Germany); Wegscheider, W. [ETH Zürich (Switzerland)

    2013-12-04

    A strong negative magnetoresistance is observed in a high-mobility two-dimensional electron gas in a GaAs/Al{sub 0.3}Ga{sub 0.7}As quantum well. We discuss that the negative magnetoresistance consists of a small peak induced by a combination of two types of disorder and a huge magnetoresistance explained by the interaction correction to the conductivity for mixed disorder.

  11. Magnetoresistance of amorphous CuZr: weak localization in a three dimensional system

    International Nuclear Information System (INIS)

    Bieri, J.B.; Fert, A.; Creuzet, G.

    1984-01-01

    Observations of anomalous magnetoresistance in amorphous CuZr at low temperature are reported. The magnetoresistance can be precisely accounted for in theoretical models of localization for 3-dimensional metallic systems in the presence of strong spin-orbit interactions (with a significant additional contribution from the quenching of superconducting fluctuations at the lowest temperatures). Magnetoresistance measurements on various other systems show that such 3-dimensional localization effects are very generally observed in amorphous alloys. (author)

  12. Magnetoresistance of individual ferromagnetic GaAs/(Ga,Mn)As core-shell nanowires

    OpenAIRE

    Butschkow, Christian H.; Reiger, Elisabeth; Geißler, Stefan; Rudolph, Andreas; Soda, Marcello; Schuh, Dieter; Woltersdorf, Georg; Wegscheider, Werner; Weiss, Dieter

    2011-01-01

    We investigate, angle dependent, the magnetoresistance (MR) of individual self-assembled ferromagnetic GaAs/(Ga,Mn)As core-shell nanowires at cryogenic temperatures. The shape of the MR traces and the observed strong anisotropies in transport can be ascribed to the interplay of the negative magnetoresistance effect and a strong uniaxial anisotropy with the magnetic easy direction pointing along the wire axis. The magnetoresistance can be well described by a quantitative analysis based on the ...

  13. Large linear magnetoresistance from neutral defects in Bi$_2$Se$_3$

    OpenAIRE

    Kumar, Devendra; Lakhani, Archana

    2016-01-01

    The chalcogenide Bi$_2$Se$_3$ can attain the three dimensional (3D) Dirac semimetal state under the influence of strain and microstrain. Here we report the presnece of large linear magnetoresistance in such a Bi$_2$Se$_3$ crystal. The magnetoresistance has quadratic form at low fields which crossovers to linear above 4 T. The temperature dependence of magnetoresistance scales with carrier mobility and the crossover field scales with inverse of mobility. Our analysis suggest that the linear ma...

  14. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  15. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  16. Wheatstone bridge giant-magnetoresistance based cell counter.

    Science.gov (United States)

    Lee, Chiun-Peng; Lai, Mei-Feng; Huang, Hao-Ting; Lin, Chi-Wen; Wei, Zung-Hang

    2014-07-15

    A Wheatstone bridge giant magnetoresistance (GMR) biosensor was proposed here for the detection and counting of magnetic cells. The biosensor was made of a top-pinned spin-valve layer structure, and it was integrated with a microchannel possessing the function of hydrodynamic focusing that allowed the cells to flow in series one by one and ensured the accuracy of detection. Through measuring the magnetoresistance variation caused by the stray field of the magnetic cells that flowed through the microchannel above the GMR biosensor, we can not only detect and count the cells but we can also recognize cells with different magnetic moments. In addition, a magnetic field gradient was applied for the separation of different cells into different channels. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Giant negative magnetoresistance in Ni(quinoline-8-selenoate)2.

    Science.gov (United States)

    Black, Nicholas; Daiki, Tonouchi; Matsushita, Michio M; Woollins, J Derek; Awaga, Kunio; Robertson, Neil

    2017-12-20

    The magnetic, structural, conductivity and magnetoresistance properties of [Ni(quinoline-8-selenoate) 2 ] ([Ni(qs) 2 ]) have been studied. Despite the insolubility of the material necessitating its study as a powdered sample, a remarkably high conductivity has been measured. The conductivity is an order of magnitude greater than the thin-film processable thiol analogue previously reported and has been interpreted through the same space-charge limited conduction mechanism with charges injected from the electrodes. The introduction of selenium, results in a material with conductivity approaching metallic due to the enhanced interaction between adjacent molecules. Additionally, under an applied magnetic field, the material displays a negative magnetoresistance effect above 35% at 2 K. The effect can still be observed at 200 K and is interpreted in terms of a double-exchange mechanism.

  18. Enhanced magnetoresistance in the binary semimetal NbAs2 due to improved crystal quality

    Science.gov (United States)

    Yokoi, K.; Murakawa, H.; Komada, M.; Kida, T.; Hagiwara, M.; Sakai, H.; Hanasaki, N.

    2018-02-01

    We have observed an extremely large magnetoresistance exceeding 1.9 million at 1.7 K at 40 T for a single crystal of the binary semimetal NbAs2. The magnetoresistive behavior for this compound is quantitatively reproduced by a semiclassical two-carrier model in which the significant enhancement of magnetoresistance is attributed to the almost full compensation of the hole and electron densities (0.994 6 ×105cm2 /V .s ). Our results indicate that binary semimetals with higher carrier densities have a great potential for exhibiting a further divergent increase in magnetoresistance merely through an improvement in crystal quality.

  19. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  20. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  1. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  2. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  3. Asymmetric tunable tunneling magnetoresistance in single-electron transistors

    CERN Document Server

    Pirmann, M; Schön, G

    2000-01-01

    We show that the tunneling magnetoresistance (TMR) of a ferromagnetic single-electron transistor in the sequential tunneling regime shows asymmetric Coulomb blockade oscillations as a function of gate voltage if the individual junction-TMRs differ. The relative amplitude of these oscillations grows significantly if the bias voltage is increased, becoming as large as 30% when the bias voltage is comparable to the charging energy of the single-electron transistor. This might be useful for potential applications requiring a tunable TMR.

  4. Magnetoresistance of Si(001) MOSFETs with high concentration of electrons

    Czech Academy of Sciences Publication Activity Database

    Smrčka, Ludvík; Makarovsky, O. N.; Schemenchinskii, S. G.; Vašek, Petr; Jurka, Vlastimil

    2004-01-01

    Roč. 22, - (2004), s. 320-323 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754; GA ČR GA202/96/0036 Institutional research plan: CEZ:AV0Z1010914 Keywords : Si MOSFET * magnetoresistance * Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  5. Low-field magnetoresistance anisotropy in strained ultrathin Pr0.67Sr0.33MnO3 films

    International Nuclear Information System (INIS)

    Wang, H.S.; Li, Q.

    1999-01-01

    The authors have studied the anisotropic low-field magnetoresistance (LFMR) in ultrathin Pr 0.67 sr 0.33 MnO 3 (PSMO) films epitaxially grown on LaAlO 3 (LAO), STiO 3 (STO), and NdGaO 3 (NGO) substrates which impose compressive, tensile, and nearly-zero strains in the films. The compressively-strained films show a very large negative LFMR in a perpendicular magnetic field and a much smaller MR in a parallel field, while the tensile-strain films show positive LFMR in a perpendicular field and negative MR in a parallel field. The results are interpreted based on the strain-induced magnetic anisotropy

  6. Negative magnetoresistance in Dirac semimetal Cd3As2.

    Science.gov (United States)

    Li, Hui; He, Hongtao; Lu, Hai-Zhou; Zhang, Huachen; Liu, Hongchao; Ma, Rong; Fan, Zhiyong; Shen, Shun-Qing; Wang, Jiannong

    2016-01-08

    A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 10(17) cm(-3) at 300 K to 2.2 × 10(16) cm(-3) below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed.

  7. Giant magnetoresistance in lateral metallic nanostructures for spintronic applications.

    Science.gov (United States)

    Zahnd, G; Vila, L; Pham, V T; Marty, A; Beigné, C; Vergnaud, C; Attané, J P

    2017-08-25

    In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

  8. Magnetoresistance and magnetic breakdown phenomenon in amorphous magnetic alloys

    International Nuclear Information System (INIS)

    Chen Hui-yu; Gong Xiao-yu

    1988-01-01

    Transverse magnetoresistance in amorphous magnetic alloys (Fe/sub 1-//sub x/CO/sub x/) 82 Cu/sub 0.4/Si/sub 4.4/B/sub 13.2/ were measured at room temperature and in the magnetic field range 0--15 kOe. For large magnetic field, three different functional dependences of magnetoresistance on magnetic field strength have been found as follows: (1) Δrho/rho approaches saturation. (2) Δrho/rho increases proportionally to H 2 . (3) For x = 0.15, a sharp Δrho/rho peak appears at a certain magnetic field strength in spatial angular orientation of both magnetic field and electric currents. Case (3) is a magnetic breakdown phenomenon. Magnetic breakdown occurs at the gap between the spin-up and spin-down sheets of the Fermi surface. This gap is the spin-orbit gap and its magnitude is a sensitive function of magnetization. Hence the magnitude and width of the magnetoresistance peak and the magnetic field strength at the peak point are functions of angular orientation of both magnetic field and electric current

  9. Thickness Dependent Interlayer Magnetoresistance in Multilayer Graphene Stacks

    Directory of Open Access Journals (Sweden)

    S. C. Bodepudi

    2016-01-01

    Full Text Available Chemical Vapor Deposition grown multilayer graphene (MLG exhibits large out-of-plane magnetoresistance due to interlayer magnetoresistance (ILMR effect. It is essential to identify the factors that influence this effect in order to explore its potential in magnetic sensing and data storage applications. It has been demonstrated before that the ILMR effect is sensitive to the interlayer coupling and the orientation of the magnetic field with respect to the out-of-plane (c-axis direction. In this work, we investigate the role of MLG thickness on ILMR effect. Our results show that the magnitude of ILMR effect increases with the number of graphene layers in the MLG stack. Surprisingly, thicker devices exhibit field induced resistance switching by a factor of at least ~107. This effect persists even at room temperature and to our knowledge such large magnetoresistance values have not been reported before in the literature at comparable fields and temperatures. In addition, an oscillatory MR effect is observed at higher field values. A physical explanation of this effect is presented, which is consistent with our experimental scenario.

  10. Voltage induced control and magnetoresistance of magnetically frustrated systems

    Science.gov (United States)

    Kalitsov, A.; Chshiev, M.; Canals, B.; Lacroix, C.

    2010-03-01

    The discovery of giant magnetoresistance [1] (GMR) in magnetic nanostructures has generated a new field of spin-based electronics (spintronics) [2]. This advent has considerably increased an interest in related phenomenon in bulk materials, colossal magnetoresistance [3] (CMR), which is several orders higher than GMR, and can be viewed as an ``intrinsic'' property of material. The CMR is typically observed in certain manganite compounds with characteristic magnetic fields of several Tesla. Such fields make them inappropriate for use in spintronic applications where appropriate scale should be about Oersteds. Here we promote magnetically frustrated (MF) bulk materials [4] as a possible alternative for spintronic applications with high magnetoresistance (MR) which can be controlled with relatively small voltages. We demonstrate that MR of MF systems may reach extremely high values and their magnetic configuration may be controlled by applied voltage. The proposed phenomenon is the bulk material analog of spin transfer torque [5] used in spin-valve structures. This work was supported by Nanosciences Foundation (France). [1] M. Baibich et al, Phys. Rev. Lett. 61, 2472 (1988); [2] S. Wolf, Science, 294, 1488 (2001); [3] S. Jin et al, Science, 264, 413 (1994); [4] J. Gardner et al, arXiv:0906.3661; [5] J. Slonczewski, JMMM 159, L1 (1996).

  11. Magnetic and magnetoresistance studies of the evolution of the magnetic layer structure with Co layer thickness in electrodeposited Co-Cu/Cu multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Subir Kumar, E-mail: sghosh@barc.gov.in [Materials Processing Division, Bhabha Atomic Research Centre, Trombay, Mumbai-400085 (India); Chowdhury, Prashanta [Surface Engineering Division, National Aerospace Laboratories, Bangalore-560 017 (India); Dogra, Anjana [Superconductivity and Cryogenics Division, National Physical Laboratory, Dr. K. S. Krishnan Marg, New Delhi-110012 (India)

    2013-02-15

    The structural transformation of electrochemically deposited Co-Cu/Cu multilayers with magnetic layer thickness was monitored via measurements of magnetization and magnetoresistance. For this, electrodeposition of [Co (t{sub Co} nm)/Cu (4 nm)]{sub 50} multilayers were carried out by varying the Co-layer thickness (t{sub Co}) down to 0.2 nm from a sulfate based single solution electrolyte. Magnetization measurements showed the appearance of anisotropy, increase in remanence magnetization and coercivity with systematic increase of t{sub Co} from 0.2 to 1 nm. Magnetic field direction dependent magnetoresistance (MR) measurements revealed that the isotropy in MR changes with t{sub Co} from tridimensional at 0.2 nm to in-plane at 0.4 nm to fully anisotropic at 1.0 nm. This illustrated that a fully granular magnetic Co-layer structure (t{sub Co}=0.2 nm) transforms into discontinuous layered one (t{sub Co}=0.4 nm) due to coalescence of suparparamagnetic regions to a continuous ferromagnetic layer (t{sub Co}=1 nm). - Highlights: Black-Right-Pointing-Pointer This paper shows magnetic field orientation dependent MR measurement is a valuable tool. Black-Right-Pointing-Pointer Directional MR measurements can probe magnetic layer structure in magnetic multilayers. Black-Right-Pointing-Pointer Granular SPM to isolated in plane island to fully covered FM layer is identified.

  12. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a 'parent' compound of 112-type iron pnictide superconductors.

    Science.gov (United States)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2017-12-07

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca 0.73 La 0.27 FeAs 2 single crystal, which is regarded as a 'parent' compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s /T N ) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)  =  Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s /T N , the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs 2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

  13. Perpendicular Giant Magnetoresistance and Magnetic Properties of Co/Cu Nanowire Arrays Affected by Period Number and Copper Layer Thickness

    Directory of Open Access Journals (Sweden)

    Juan Han

    2016-01-01

    Full Text Available One-dimensional magnetic nanowires have attracted much attention in the last decades due to their unique physical properties and potential applications in magnetic recording and spintronics. In this work, ordered arrays of Co/Cu multilayered nanowires which can be exploited to develop magnetoresistive sensors were successfully prepared using porous anodic alumina (PAA templates. The structure and morphology of the multilayered nanowire arrays were characterized by transmission electron microscopy and scanning electron microscopy. The nanowire arrays are highly ordered and the average diameter is about 50 nm, which is controlled by the pore diameter of the PAA templates. The influences of period number and Cu layer thickness on the magnetic and the giant magnetoresistance (GMR properties were investigated. The coercivity and remanence ratio increase first and then gradually tend to be stable with the increase of period number and the Cu layer thickness, while the GMR ratio increases first and then decreases with the increase of the period number accompanied by an oscillatory behavior of GMR as the Cu layer thickness changes, which are ascribed to the spin dependence electron scattering in the multilayers. The optimum GMR of −13% appears at Co (50 nm/Cu (5 nm with 200 deposition cycles in our experimental conditions.

  14. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  15. Reflection of light from an anisotropic medium

    OpenAIRE

    Ignatovich, Filipp V.; Ignatovich, Vladimir

    2010-01-01

    We present here a general approach to treat reflection and refraction of light of arbitrary polarization from single axis anisotropic plates. We show that reflection from interface inside the anisotropic medium is accompanied by beam splitting and can create surface waves.

  16. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  17. An integrated low 1/f noise and high-sensitivity CMOS instrumentation amplifier for TMR sensors

    Science.gov (United States)

    Gao, Zhiqiang; Luan, Bo; Zhao, Jincai; Liu, Xiaowei

    2017-03-01

    In this paper, a very low 1/f noise integrated Wheatstone bridge magnetoresistive sensor ASIC based on magnetic tunnel junction (MTJ) technology is presented for high sensitivity measurements. The present CMOS instrumentation amplifier employs the gain-boost folded-cascode structure based on the capacitive-feedback chopper-stabilized technique. By chopping both the input and the output of the amplifier, combined with MTJ magnetoresistive sensitive elements, a noise equivalent magnetoresistance 1 nT/Hz1/2 at 2 Hz, the equivalent input noise spectral density 17 nV/Hz1/2(@2Hz) is achieved. The chip-scale package of the TMR sensor and the instrumentation amplifier is only about 5 mm × 5 mm × 1 mm, while the whole DC current dissipates only 2 mA.

  18. Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Czech Academy of Sciences Publication Activity Database

    Reichlová, Helena; Novák, Vít; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Maryško, Miroslav; Wunderlich, Joerg

    2016-01-01

    Roč. 3, č. 7 (2016), 1-5, č. článku 076406. ISSN 2053-1591 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets * tunneling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.068, year: 2016

  19. Large magnetic anisotropy and tunneling anisotropic magnetoresistance in bi-metallic layered nanostructures: Case study of Mn/W(001)

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Ondráček, Martin; Mryasov, O. N.; Jungwirth, Tomáš

    2008-01-01

    Roč. 78, č. 5 (2008), 054413/1-054413/5 ISSN 1098-0121 R&D Projects: GA ČR GA202/07/0456; GA MŠk LC510; GA ČR GEFON/06/E002; GA ČR GA202/07/0644 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : magnetic anisotropy energy * surface * mangan * tungsten * calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  20. Performance of Focused Ion Beam Trimmed Yoke-Type Magnetoresistive Heads for Magnetic Microscopy

    NARCIS (Netherlands)

    Phillips, G.N.; Eisenberg, M.; Eisenberg, Martin; Draaisma, Eddie A.; Abelmann, Leon; Lodder, J.C.

    2002-01-01

    Thin-film yoke-type magnetoresistive (MR) tape heads with eight channels have been used for scanning mag-netoresistance microscopy. The NiFe read flux guides of the channels have been trimmed down from 12 um to widths varying between 5 um and 100 nm by focused ion-beam milling with Ga+ions. The

  1. High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film

    Directory of Open Access Journals (Sweden)

    Kurlyandskaya, G. V.

    2000-08-01

    Full Text Available A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had μm dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.

    Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å. El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de μm lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.

  2. Stability of anisotropic stellar filaments

    Science.gov (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.

    2017-12-01

    The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.

  3. Warm anisotropic inflationary universe model

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  4. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  5. Giant current-perpendicular-to-plane magnetoresistance in multilayer graphene as grown on nickel.

    Science.gov (United States)

    Bodepudi, S C; Singh, A P; Pramanik, S

    2014-05-14

    Strong magnetoresistance effects are often observed in ferromagnet-nonmagnet multilayers, which are exploited in state-of-the-art magnetic field sensing and data storage technologies. In this work we report a novel current-perpendicular-to-plane magnetoresistance effect in multilayer graphene as grown on a catalytic nickel surface by chemical vapor deposition. A negative magnetoresistance effect of ∼10(4)% has been observed, which persists even at room temperature. This effect is correlated with the shape of the 2D peak as well as with the occurrence of D peak in the Raman spectrum of the as-grown multilayer graphene. The observed magnetoresistance is extremely high as compared to other known materials systems for similar temperature and field range and can be qualitatively explained within the framework of "interlayer magnetoresistance" (ILMR).

  6. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays

    International Nuclear Information System (INIS)

    Boltaev, A.P.; Pudonin, F.A.; Sherstnev, I.A.; Egorov, D.A.; Kozmin, A.M.

    2017-01-01

    Process of magnetization and magnetoresistance have been studied in nanoisland bilayer systems of FeNi-Co. Hysteresis loops show characteristic features (steps) most clearly observed in certain orientations of the sample in a magnetic field. To explain these features the concept of flat magnetic exchange spring has been introduced for nanoisland bilayers. It has been proposed that additional magnetoresistance can be the result of spin-dependent scattering of electrons in the area of flat magnetic exchange spring. Magnetoresistance studies of bilayer systems has shown that additional magnetoresistance occurs at the same magnetic fields as steps on hysteresis loops. - Highlights: • Metallic FeNi-Co bilayers are studied. • FeNi and Co layers magnetize independently. • Concept of flat spin spring is proposed. • Additional magnetoresistance occurs in intermediate magnetic fields.

  7. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays

    Energy Technology Data Exchange (ETDEWEB)

    Boltaev, A.P.; Pudonin, F.A. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); Sherstnev, I.A., E-mail: sherstnev@lebedev.ru [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); Egorov, D.A. [National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Kozmin, A.M. [National Research University of Electronic Technology, Shokin Square, 1, Zelenograd, 124482 Moscow (Russian Federation)

    2017-04-15

    Process of magnetization and magnetoresistance have been studied in nanoisland bilayer systems of FeNi-Co. Hysteresis loops show characteristic features (steps) most clearly observed in certain orientations of the sample in a magnetic field. To explain these features the concept of flat magnetic exchange spring has been introduced for nanoisland bilayers. It has been proposed that additional magnetoresistance can be the result of spin-dependent scattering of electrons in the area of flat magnetic exchange spring. Magnetoresistance studies of bilayer systems has shown that additional magnetoresistance occurs at the same magnetic fields as steps on hysteresis loops. - Highlights: • Metallic FeNi-Co bilayers are studied. • FeNi and Co layers magnetize independently. • Concept of flat spin spring is proposed. • Additional magnetoresistance occurs in intermediate magnetic fields.

  8. 3000% high-field magnetoresistance in super-lattices of CoFe nanoparticles

    International Nuclear Information System (INIS)

    Tan, Reasmey P.; Carrey, Julian; Respaud, Marc; Desvaux, Celine; Renaud, Philippe; Chaudret, Bruno

    2008-01-01

    We report on magnetotransport measurements on millimeter-large super-lattices of CoFe nanoparticles surrounded by an organic layer. Electrical properties are typical of Coulomb blockade in three-dimensional arrays of nanoparticles. A large high-field magnetoresistance, reaching up to 3000%, is measured between 1.8 and 10 K. This exceeds by two orders of magnitude magnetoresistance values generally measured in arrays of 3d transition metal ferromagnetic nanoparticles. The magnetoresistance amplitude scales with the magnetic field/temperature ratio and displays an unusual exponential dependency with the applied voltage. The magnetoresistance abruptly disappears below 1.8 K. We propose that the magnetoresistance is due to some individual paramagnetic moments localized between the metallic cores of the nanoparticles, the origin of which is discussed

  9. Topological Phase Transition-Induced Triaxial Vector Magnetoresistance in (Bi1-xInx)2Se3 Nanodevices.

    Science.gov (United States)

    Zhang, Minhao; Wang, Huaiqiang; Mu, Kejun; Wang, Pengdong; Niu, Wei; Zhang, Shuai; Xiao, Guiling; Chen, Yequan; Tong, Tong; Fu, Dongzhi; Wang, Xuefeng; Zhang, Haijun; Song, Fengqi; Miao, Feng; Sun, Zhe; Xia, Zhengcai; Wang, Xinran; Xu, Yongbing; Wang, Baigeng; Xing, Dingyu; Zhang, Rong

    2018-02-27

    We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi 1-x In x ) 2 Se 3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

  10. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  11. Optimization of magnetic parameters for toggle magnetoresistance random access memory

    International Nuclear Information System (INIS)

    Wang Shengyuan; Fujiwara, Hideo

    2005-01-01

    The magnetic parameters of the synthetic antiferromagnetic (SAF) elements for toggle-mode magnetoresistance random access memories (Toggle-MRAMs) have been optimized using the critical field curves obtained by analytical method with the aid of numerical calculations, to maximize the operating field margin taking into account the required memory density, storage lifetime, half-select disturb robustness, and the available strength of operating field. The control of especially low-exchange coupling strength in the SAF in addition to the increase of the operating field has been found to be essential for the development of toggle-MRAM in near future

  12. Current perpendicular to plane giant magnetoresistance in laminated nanostructures

    International Nuclear Information System (INIS)

    Vedyayev, A.; Zhukov, I.; Dieny, B.

    2005-01-01

    We theoretically studied spin-dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of giant magnetoresistance (GMR). This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones even though lamination induces a significant increase in CPP resistance

  13. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  14. Multiprobe perpendicular giant magnetoresistance measurements on isolated multilayered nanowires

    International Nuclear Information System (INIS)

    Elhoussine, F.; Vila, L.; Piraux, L.; Faini, G.

    2005-01-01

    By combining electrochemical deposition into nanopores with electron-beam lithography, we developed an experiment setup to probe the giant magnetoresistance effects with current perpendicular to the plane (CPP-GMR) on isolated nanowires. Here we present four-probe magnetotransport measurements on multilayered Co (55 nm)/Cu (5 nm) nanowires of 100 nm diameter. The multiprobe technique allowed us to measure high GMR ratio on wire segments as short as 500 nm, without any additional contact resistance. We present different magnetic behaviors and GMR ratios depending on the measured segment and the applied field orientation. Results are discussed in terms of the CPP-GMR theory

  15. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  16. Magnetoresistance of UPdSn and pressure effect

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A.; Nakotte, H.; Kamarád, Jiří; Sechovský, V.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1197-1200 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GP202/01/D045; GA ČR GA106/02/0943 Grant - others:NSF(US) DMR-0094241; NSF(US) INT-9722777 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * UPdSn * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  17. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Luis, E-mail: luismoragajaramillo@gmail.com [Universidad Central de Chile, Toesca 1783, Santiago 8370178 (Chile); Henriquez, Ricardo, E-mail: rahc.78@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bravo, Sergio, E-mail: bravo.castillo.sergio@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Solis, Basilio, E-mail: bsolis1984@gmail.com [Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn (Germany)

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  18. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Science.gov (United States)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-03-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found.

  19. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  20. Towards a magnetoresistive platform for neural signal recording

    Science.gov (United States)

    Sharma, P. P.; Gervasoni, G.; Albisetti, E.; D'Ercoli, F.; Monticelli, M.; Moretti, D.; Forte, N.; Rocchi, A.; Ferrari, G.; Baldelli, P.; Sampietro, M.; Benfenati, F.; Bertacco, R.; Petti, D.

    2017-05-01

    A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices.

  1. Heusler compounds with perpendicular magnetic anisotropy and large tunneling magnetoresistance

    Science.gov (United States)

    Faleev, Sergey V.; Ferrante, Yari; Jeong, Jaewoo; Samant, Mahesh G.; Jones, Barbara; Parkin, Stuart S. P.

    2017-07-01

    In the present work we suggest a recipe for finding tetragonal Heusler compounds with perpendicular magnetic anisotropy (PMA) that also exhibit large tunneling magnetoresistance (TMR) when used as electrodes in magnetic tunnel junction devices with suitable tunneling barrier materials. We performed density-functional theory calculations for 286 Heusler compounds and identified 116 stable tetragonal compounds. Ten of these compounds are predicted to have strong PMA and, simultaneously, exponentially increasing TMR with increasing tunneling barrier thickness due to the so-called Brillouin zone spin filtering effect. Experimental measurements performed for 25 Heusler compounds theoretically identified as tetragonal show that ten of these compounds indeed have tetragonal structure with PMA.

  2. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  3. Highly anisotropic magneto-transport and field orientation dependent oscillations in aligned carbon nanotube/epoxy composites

    Science.gov (United States)

    Wells, Brian; Kumar, Raj; Reynolds, C. Lewis; Peters, Kara; Bradford, Philip D.

    2017-12-01

    Carbon nanotubes (CNTs) have been widely investigated as additive materials for composites with potential applications in electronic devices due to their extremely large electrical conductivity and current density. Here, highly aligned CNT composite films were created using a sequential layering fabrication technique. The degree of CNT alignment leads to anisotropic resistance values which varies >400× in orthogonal directions. Similarly, the magnetoresistance (MR) of the CNT composite differs depending upon the relative direction of current and the applied magnetic field. A suppression of negative to positive MR crossover was also observed. More importantly, an overall positive magnetoresistance behavior with localized +/- oscillations was discovered at low fields which persists up to room temperature when the current (I) and in-plane magnetic field (B) were parallel to the axis of CNT (B∥I∥CNT), which is consistent with Aharonov-Bohm oscillations in our CNT/epoxy composites. When the current, applied magnetic field, and nanotube axis are aligned, the in-plane MR is positive instead of negative as observed for all other field, current, and tube orientations. Here, we provide in-depth analysis of the conduction mechanism and anisotropy in the magneto-transport properties of these aligned CNT-epoxy composites.

  4. Viscous anisotropic hydrodynamics for the Gubser flow

    Science.gov (United States)

    Martinez, M.; McNelis, M.; Heinz, U.

    2017-11-01

    In this work we describe the dynamics of a highly anisotropic system undergoing boost-invariant longitudinal and azimuthally symmetric radial expansion (Gubser flow) for arbitrary shear viscosity to entropy density ratio. We derive the equations of motion of dissipative anisotropic hydrodynamics by applying to this situation the moments method recently derived by Molnár et al. (MNR) [E. Molnar, H. Niemi, and D. H. Rischke, "Derivation of anisotropic dissipative fluid dynamics from the Boltzmann equation," Phys. Rev. D93 no. 11, (2016) 114025, arxiv:arXiv:1602.00573 [nucl-th], E. Molnar, H. Niemi, and D. H. Rischke, "Closing the equations of motion of anisotropic fluid dynamics by a judicious choice of a moment of the Boltzmann equation," Phys. Rev. D94 no. 12, (2016) 125003, arxiv:arXiv:1606.09019 [nucl-th

  5. Modelling Coulomb Collisions in Anisotropic Plasmas

    Science.gov (United States)

    Hellinger, P.; Travnicek, P. M.

    2009-12-01

    Collisional transport in anisotropic plasmas is investigated comparing the theoretical transport coefficients (Hellinger and Travnicek, 2009) for anisotropic particles with the results of the corresponding Langevin equation, obtained as a generalization of Manheimer et al. (1997). References: Hellinger, P., and P. M. Travnicek (2009), On Coulomb collisions in bi-Maxwellian plasmas, Phys. Plasmas, 16, 054501. Manheimer, W. M., M. Lampe and G. Joyce (1997), Langevin representation of Coulomb collisions in PIC simulations, J. Comput. Phys., 138, 563-584.

  6. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  7. Penetration effect in uniaxial anisotropic metamaterials

    Science.gov (United States)

    Vytovtov, K.; Barabanova, E.; Zouhdi, S.

    2018-02-01

    Plane harmonic wave propagation along an interface between vacuum and a semi-infinite anisotropic metamaterial is considered. Possibility of penetration effect in the considered case is studied. It is shown that there is a bulk wave within the anisotropic metamaterial with an arbitrary orientation of the anisotropy axis. It is also proved that a reflected wave must propagate perpendicularly to the interface in the case of the extraordinary wave. Moreover, no wave is reflected in the case of ordinary wave propagation.

  8. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  9. A wireless magnetoresistive sensing system for an intraoral tongue-computer interface.

    Science.gov (United States)

    Park, Hangue; Kiani, Mehdi; Lee, Hyung-Min; Kim, Jeonghee; Block, Jacob; Gosselin, Benoit; Ghovanloo, Maysam

    2012-12-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, and wireless assistive technology (AT) that infers users' intentions by detecting their voluntary tongue motion and translating them into user-defined commands. Here we present the new intraoral version of the TDS (iTDS), which has been implemented in the form of a dental retainer. The iTDS system-on-a-chip (SoC) features a configurable analog front-end (AFE) that reads the magnetic field variations inside the mouth from four 3-axial magnetoresistive sensors located at four corners of the iTDS printed circuit board (PCB). A dual-band transmitter (Tx) on the same chip operates at 27 and 432 MHz in the Industrial/Scientific/Medical (ISM) band to allow users to switch in the presence of external interference. The Tx streams the digitized samples to a custom-designed TDS universal interface, built from commercial off-the-shelf (COTS) components, which delivers the iTDS data to other devices such as smartphones, personal computers (PC), and powered wheelchairs (PWC). Another key block on the iTDS SoC is the power management integrated circuit (PMIC), which provides individually regulated and duty-cycled 1.8 V supplies for sensors, AFE, Tx, and digital control blocks. The PMIC also charges a 50 mAh Li-ion battery with constant current up to 4.2 V, and recovers data and clock to update its configuration register through a 13.56 MHz inductive link. The iTDS SoC has been implemented in a 0.5-μm standard CMOS process and consumes 3.7 mW on average.

  10. A Wireless Magnetoresistive Sensing System for an Intraoral Tongue-Computer Interface

    Science.gov (United States)

    Park, Hangue; Kiani, Mehdi; Lee, Hyung-Min; Kim, Jeonghee; Block, Jacob; Gosselin, Benoit; Ghovanloo, Maysam

    2015-01-01

    Tongue drive system (TDS) is a tongue-operated, minimally invasive, unobtrusive, and wireless assistive technology (AT) that infers users’ intentions by detecting their voluntary tongue motion and translating them into user-defined commands. Here we present the new intraoral version of the TDS (iTDS), which has been implemented in the form of a dental retainer. The iTDS system-on-a-chip (SoC) features a configurable analog front-end (AFE) that reads the magnetic field variations inside the mouth from four 3-axial magnetoresistive sensors located at four corners of the iTDS printed circuit board (PCB). A dual-band transmitter (Tx) on the same chip operates at 27 and 432 MHz in the Industrial/Scientific/Medical (ISM) band to allow users to switch in the presence of external interference. The Tx streams the digitized samples to a custom-designed TDS universal interface, built from commercial off-the-shelf (COTS) components, which delivers the iTDS data to other devices such as smartphones, personal computers (PC), and powered wheelchairs (PWC). Another key block on the iTDS SoC is the power management integrated circuit (PMIC), which provides individually regulated and duty-cycled 1.8 V supplies for sensors, AFE, Tx, and digital control blocks. The PMIC also charges a 50 mAh Li-ion battery with constant current up to 4.2 V, and recovers data and clock to update its configuration register through a 13.56 MHz inductive link. The iTDS SoC has been implemented in a 0.5-μm standard CMOS process and consumes 3.7 mW on average. PMID:23853258

  11. Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Arijit Mitra

    2016-05-01

    Full Text Available We have observed large tunneling Magnetoresistance (TMR in amine functionalized octahedral nanoparticle assemblies. Amine monolayer on the surface of nanoparticles acts as an insulating barrier between the semimetal Fe3O4 nanoparticles and provides multiple tunnel junctions where inter-granular tunneling is plausible. The tunneling magnetoresistance recorded at room temperature is 38% which increases to 69% at 180 K. When the temperature drops below 150 K, coulomb staircase is observed in the current versus voltage characteristics as the charging energy exceeds the thermal energy. A similar study is also carried out with spherical nanoparticles. A 24% TMR is recorded at room temperature which increases to 41% at 180 K for spherical particles. Mössbauer spectra reveal better stoichiometry for octahedral particles which is attainable due to lesser surface disorder and strong amine coupling at the facets of octahedral Fe3O4 nanoparticles. Less stoichiometric defect in octahedral nanoparticles leads to a higher value of spin polarization and therefore larger TMR in octahedral nanoparticles.

  12. Theory of the negative magnetoresistance in magnetic metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, R.Q.; Falicov, L.M. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1993-04-01

    The Boltzman equation is solved for a system consisting of alternating ferromagnetic normal metallic layers. The in-plane conductance of the film is calculated for two configurations: successive ferromagnetic layers aligned parallel and antiparallel to each other. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by application of an extemal magnetic field. The calculation depends on geometric parameters (the thicknesses of the layers); intrinsic metal parameters (number of conduction electrons, magnetization and effective masses in the layers); bulk sample properties (conductivity relaxation times); and interface scattering properties (diffuse scattering versus potential scattering at the interfaces). It is found that a large negative magnetoresistance requires, in general, considerable asymmetry in the interface scattering for the two spin orienmtions. All qualitative features of the experiments are reproduced. Quantitative agreement can be achieved with sensible values of the parameters. The effect can be conceptually explained based on considerations of phase-space availability for an electron of a given spin orientation as it travels through the multilayer sample in the various configurations and traverses the interfaces.

  13. Spin-polarized magnetic tunnelling magnetoresistive effects in various junctions

    Science.gov (United States)

    Miyazaki, T.; Tezuka, N.; Kumagai, S.; Ando, Y.; Kubota, H.; Murai, J.; Watabe, T.; Yokota, M.

    1998-03-01

    Recent progress concerning spin-polarized magnetic tunnelling effects for (i) trilayer standard ferromagnet (F)/insulator (I)/ferromagnet (F) junctions, (ii) spin-valve-type junctions, (iii) trilayer or multilayer ferromagnet/granular/ferromagnet junctions and (iv) F/I/F junction with a `wedge-geometry' insulator is reviewed. Special emphasis is placed on the dependence of the tunnel magnetoresistance ratio on temperature and also the intensity of the applied voltage. It was found that the resistance for the saturation magnetization state, 0022-3727/31/6/009/img1, and the tunnelling magnetoresistance ratio, TMR, of an 0022-3727/31/6/009/img2 junction decreased rapidly with increasing temperature, whereas those of a 0022-3727/31/6/009/img3 junction were insensitive to temperature. Concerning the bias voltage dependence of 0022-3727/31/6/009/img1 and TMR, the same tendency with temperature was observed for 0022-3727/31/6/009/img2 and 0022-3727/31/6/009/img3 junctions. Spin-valve-type junction exchange biased by a FeMn layer exhibits a relatively large TMR ratio up to about 400 K.

  14. Mechanics of anisotropic spring networks.

    Science.gov (United States)

    Zhang, T; Schwarz, J M; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  15. Rotational discontinuities in anisotropic plasmas

    International Nuclear Information System (INIS)

    Omidi, N.

    1992-01-01

    The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense

  16. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  17. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures.

    Science.gov (United States)

    Gopinadhan, Kalon; Shin, Young Jun; Jalil, Rashid; Venkatesan, Thirumalai; Geim, Andre K; Castro Neto, Antonio H; Yang, Hyunsoo

    2015-09-21

    Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of ∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron-nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen-Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications.

  18. Study of the temperature dependence of giant magnetoresistance in metallic granular composite

    International Nuclear Information System (INIS)

    Ju Sheng; Li, Z.-Y.

    2002-01-01

    The temperature dependence of the giant magnetoresistance of metallic granular composite is studied. It is considered that the composite contains both large magnetic grains with surface spin S' and small magnetic impurities. It is found that the decrease of surface spin S' of grain is the main cause of an almost linear decrease of giant magnetoresistance with the increase of temperature in high temperature range. The magnetic impurities, composed of several atoms, lead to an almost linear increase of the giant magnetoresistance with the decrease of temperature in low temperature range. Our calculations are in good agreement with recent experimental data for metallic nanogranular composites

  19. Negative magnetoresistance in perpendicular of the superlattices axis weak magnetic field at scattering of impurity ions

    International Nuclear Information System (INIS)

    Askerov, B. M.; Figarova, R.; Guseynov, G.I.

    2012-01-01

    Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass

  20. Resistance and magnetoresistance of annealed amorphous carbon films containing Fe3C nanograins

    International Nuclear Information System (INIS)

    Lee Yuhua; Han Taichun; Wur, C.-S.

    2004-01-01

    The temperature-dependent resistance and the field-dependent magnetoresistance were measured for films annealed at temperatures from 250 deg. C to 550 deg. C for a period of 60 min. Results of temperature-dependent resistance show electrical tunneling conductance in the films annealed at T a =250 deg. C and 350 deg. C only. The largest magnetoresistance ratio (MR) of 23% at temperature T=2 K was observed for T a =350 deg. C. The variations of both the temperature dependence of resistance and the magnetoresistance with the annealing temperature are discussed

  1. Role of dipolar interactions on morphologies and tunnel magnetoresistance in assemblies of magnetic nanoparticles

    Science.gov (United States)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2018-05-01

    We undertake comprehensive simulations of 2d arrays (Lx ×Ly) of magnetic nanoparticles (MNPs) with dipole-dipole interactions by solving LLG equations. Our primary interest is to understand the correspondence between equilibrium spin (ES) morphologies and tunnel magnetoresistance (TMR) as a function of Θ - the ratio of the dipolar to the anisotropy strength, sample size Lx , aspect ratio Ar =Ly /Lx and the direction of the applied field H → = HêH . The parameter Θ is varied by choosing three distinct particles: (i) α -Fe2O3 (Θ ≃ 0) , (ii) Co (Θ ≃ 0.37) and (iii) Fe3O4 (Θ ≃ 1.28) . Our main observations are as follows: (a) For weakly interacting spins (Θ ≃ 0) , the morphology has randomly oriented magnetic moments for all sample sizes and aspect ratios. The TMR exhibits a peak value of 50% at the coercive field Hc . It is robust with respect to Lx and Ar , and isotropic with respect to êH . (b) For strong interactions (Θ > 1) , the moments order in the plane of the sample. The ES morphology comprises of magnetically aligned regions interspersed with flux closure loops. For fields along x or y, the maximum TMR amplitude decrease to ∼30%. For êH = z ̂ , it drops to ∼3%. The TMR is robust with respect to Lx and Ar and isotropic in the x and y directions only. (c) In strongly interacting samples (Θ > 1) with Lx comparable to the size of a flux closure loop, increasing Ar creates ferromagnetic chains in the sample oriented along y or - y . Consequently, for êH = y ̂ , the TMR magnitude for Ar = 1 is ∼33% while that for Ar = 32 drops to ∼16%. For êH = x ̂ on the other hand, it is ∼30% and independent of Ar . The TMR of long ribbons of MNPs has a strong dependence on Ar and is anisotropic in all three directions.

  2. Anisotropic nanomaterials: structure, growth, assembly, and functions

    Science.gov (United States)

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  3. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  4. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    Directory of Open Access Journals (Sweden)

    Z. H. Zhang

    2015-03-01

    Full Text Available The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.

  5. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

    NARCIS (Netherlands)

    Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Gesprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y.T.; Bauer, G.E.W.; Saitoh, E.; Goennenwein, S.T.B.

    2013-01-01

    We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or

  6. Magnetoresistance of tungsten thin wafer at the multichannel surface scattering of conduction electrons

    International Nuclear Information System (INIS)

    Lutsishin, P.P.; Nakhodkin, T.N.

    1982-01-01

    The magnetoresistance of tungsten thin wafer with the (110) surface was studied at the adsorption of tungsten dioxide. The method of low-energy electron diffraction was used to study the symmetry of ordered surface structures. Using the method of the magnetoresistance measurement the character of the scattering of conduction electrons was investigated. THe dependence of magnetoresistance on the surface concentration of tungsten dioxide correlated w1th the structure of the surface layer of atoms, what was explained with allowance for diffraction of conduction electrons at the metal boundary. The magnetoresistance maximum for the (2x2) structure, which characterised decrease in surface conduction under the conditions of static skin effect, was explained by multichannel mirror reflection with the recombinations of electron and ho.le sections of Fermi Surface

  7. Magnetoresistance in amorphous NdFeB/FeB compositionally modulated multilayers

    International Nuclear Information System (INIS)

    Peral, G.; Briones, F.; Vicent, J.L.

    1991-01-01

    Resistance measurements have been done in amorphous Nd 12 Fe 80 B 8 sputtered films and in amorphous sputtered Nd 26 Fe 68 B 6 /Fe 92 B 8 multilayers between 6 and 150 K with applied magnetic field parallel (LMR) and perpendicular (TMR) up to 7 T. The samples were grown by dc triode sputtering, with nominal unequal (2:1) layer thicknesses. The layered character of the samples have been tested by x-ray diffraction. Longitudinal magnetoresistance (LMR) is positive and transverse magnetoresistance (TMR) is negative. The magnetoresistance values are higher than in amorphous ferromagnets, and multilayering of these alloys produces much larger magnetoresistance values than either alloy alone and there is a strong dependence on the multilayer wavelength. The MR shows a weak temperature dependence in the temperature interval that was investigated

  8. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires.

    Science.gov (United States)

    Sapkota, Keshab R; Chen, Weimin; Maloney, F Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  9. Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study.

    Science.gov (United States)

    Cai, P L; Hu, J; He, L P; Pan, J; Hong, X C; Zhang, Z; Zhang, J; Wei, J; Mao, Z Q; Li, S Y

    2015-07-31

    The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe2 single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically from 1.25×10(5)% under ambient pressure to 7.47×10(3)% under 23.6 kbar, which is likely caused by the relative change of Fermi surfaces. These results support the scenario that the perfect balance between the electron and hole populations is the origin of the extremely large magnetoresistance in WTe2.

  10. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  11. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Vélez, Saül; Golovach, Vitaly N; Bedoya-Pinto, Amilcar; Isasa, Miren; Sagasta, Edurne; Abadia, Mikel; Rogero, Celia; Hueso, Luis E; Bergeret, F Sebastian; Casanova, Fèlix

    2016-01-08

    We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.

  12. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  13. Towards a magnetoresistive platform for neural signal recording

    Directory of Open Access Journals (Sweden)

    P. P. Sharma

    2017-05-01

    Full Text Available A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices.

  14. Magnetoresistance effect in permalloy nanowires with various types of notches

    Science.gov (United States)

    Gao, Y.; You, B.; Wang, J.; Yuan, Y.; Wei, L. J.; Tu, H. Q.; Zhang, W.; Du, J.

    2018-05-01

    Suppressing the stochastic domain wall (DW) motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR) measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller) change of resistance always corresponds to larger (smaller) depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  15. Even-odd effects in magnetoresistance of ferromagnetic domain walls

    Science.gov (United States)

    Dzero, M.; Gor'kov, L. P.; Zvezdin, A. K.; Zvezdin, K. A.

    2003-03-01

    The difference in the density of states for the spin’s majority and minority bands in a ferromagnet changes the electrostatic potential along the domains, introducing discontinuities of the potential at domain boundaries. The value of the discontinuity oscillates with the number of domains. Discontinuity depends on the positions of domain walls, their motion, or the collapse of domain walls in applied magnetic field. Large values of the magnetoresistance are explained in terms of spin accumulation. We suggest a type of domain wall in nanowires made of itinerant ferromagnets, in which the magnetization vector changes without rotation. The absence of transverse magnetization components allows considerable spin accumulation, assuming the spin relaxation length LS is large enough.

  16. Spin accumulation and magnetoresistance of ferromagnetic domain walls

    Science.gov (United States)

    Dzero, Maxim; Gor'kov, Lev; Zvezdin, Anatolii; Zvezdin, Konstantin

    2003-03-01

    Taking into account the difference in the density of states between the spin's majority and minority bands in a ferromagnet, we obtain a spatial behavior of the electrostatic potential at the domain wall boundaries. The value of discontinuity oscillates with the number of domains and contains information about system as a whole, such as the positions of the domain walls or collapse of the domain walls when an external magnetic field is applied. We explain experimentally observed values of magnetoresistance in terms of spin accumulation effects. For the latter we suggest that in nanowires made of itinerant ferromagnets a new type of domain walls is realized, in which system prefers to reduce the value of magnetization rather then rotating it going from one domain to another. We also discuss the questions related to conditions of stability of linear domain walls.

  17. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  18. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  19. Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2.

    Science.gov (United States)

    Zhang, Enze; Chen, Rui; Huang, Ce; Yu, Jihai; Zhang, Kaitai; Wang, Weiyi; Liu, Shanshan; Ling, Jiwei; Wan, Xiangang; Lu, Hai-Zhou; Xiu, Faxian

    2017-02-08

    Transitional metal ditelluride WTe 2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe 2 . Here, we report a successful synthesis of mono- to few-layer WTe 2 via chemical vapor deposition. Using atomically thin WTe 2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe 2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe 2 as a promising platform for exotic electronic and spintronic device applications.

  20. Magnetoresistance and Shubnikov-de Haas oscillation in YSb

    Science.gov (United States)

    Yu, Qiao-He; Wang, Yi-Yan; Lou, Rui; Guo, Peng-Jie; Xu, Sheng; Liu, Kai; Wang, Shancai; Xia, Tian-Long

    2017-07-01

    YSb crystals are grown and the transport properties under magnetic field are measured. The resistivity exhibits metallic behavior under zero magnetic field and the low-temperature resistivity shows a clear upturn once a moderate magnetic field is applied. The upturn is greatly enhanced by increasing magnetic field. At low temperature (2.5 K) and high field (14 T), the transverse magnetoresistance (MR) is quite large (3.47×10^4%) . In addition, the Shubnikov-de Haas (SdH) oscillation has also been observed in YSb. The possible trivial Berry phase extracted from the SdH oscillation, the band structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrate that YSb is a topologically trivial material. The extremely large MR (XMR) in YSb may originate from the electron-hole compensation.

  1. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Condrea, E., E-mail: condrea@nano.asm.md [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); Gilewski, A. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); MagNet, 50-421 Wroclaw (Poland); Nicorici, A. [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2016-03-11

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  2. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    International Nuclear Information System (INIS)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-01-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  3. Tunneling magnetoresistance in ferromagnetic planar hetero-nanojunctions

    KAUST Repository

    Useinov, Arthur

    2010-05-03

    We present a theoretical study of the tunneling magnetoresistance (TMR) in nanojunctions between non-identical ferromagnetic metals in the framework of the quasiclassical approach. The lateral size of a dielectric oxide layer, which is considered as a tunneling barrier between the metallic electrodes, is comparable with the mean-free path of electrons. The dependence of the TMR on the bias voltage, physical parameters of the dielectric barrier, and spin polarization of the electrodes is studied. It is demonstrated that a simple enough theory can give high TMR magnitudes of several hundred percent at bias voltages below 0.5 V. A qualitative comparison with the available experimental data is given. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Studies of Colossal Magnetoresistive Oxides with Radioactive Isotopes

    CERN Multimedia

    2002-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magneto- resistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+\\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non- stoichiometry: - learning the role of defects in the optimisation of magnetoresestive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic p...

  5. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  6. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    International Nuclear Information System (INIS)

    Luo, Zhaochu; Zhang, Xiaozhong

    2015-01-01

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally

  7. Current-induced magnetoresistance oscillations in two-dimensional electron systems

    OpenAIRE

    Lei, X. L.

    2006-01-01

    Electric current-induced magnetoresistance oscillations recently discovered in two-dimensional electron systems are analyzed using a microscopic scheme for nonlinear magnetotransport direct controlled by the current. The magnetoresistance oscillations are shown to result from drift-motion assisted electron scatterings between Landau levels. The theoretical predictions not only reproduce all the main features observed in the experiments but also disclose other details of the phenomenon.

  8. Oscillating Magnetoresistance in Graphene p-n Junctions at Intermediate Magnetic Fields.

    Science.gov (United States)

    Overweg, Hiske; Eggimann, Hannah; Liu, Ming-Hao; Varlet, Anastasia; Eich, Marius; Simonet, Pauline; Lee, Yongjin; Watanabe, Kenji; Taniguchi, Takashi; Richter, Klaus; Fal'ko, Vladimir I; Ensslin, Klaus; Ihn, Thomas

    2017-05-10

    We report on the observation of magnetoresistance oscillations in graphene p-n junctions. The oscillations have been observed for six samples, consisting of single-layer and bilayer graphene, and persist up to temperatures of 30 K, where standard Shubnikov-de Haas oscillations are no longer discernible. The oscillatory magnetoresistance can be reproduced by tight-binding simulations. We attribute this phenomenon to the modulated densities of states in the n- and p-regions.

  9. Preliminary experiment on the negative magneto-resistance effect in a weakly ionized discharge plasma

    Energy Technology Data Exchange (ETDEWEB)

    Nagata, M.

    2002-04-01

    Compared with the interest in the magneto-resistance effect in solid conductors, the effect in a gas plasma has hardly been addressed. In this work, a theoretical result that a magneto-resistance in an infinite plasma decreases is examined experimentally in an actual discharge plasma. Furthermore, a modified expression for the ambipolar diffusion coefficient in the case where electrons are scattered by heavy neutral atoms is presented. (author)

  10. Head-wave coefficients in anisotropic media

    Science.gov (United States)

    Chapman, Chris

    2018-03-01

    Reflections and transmissions from interfaces can generate head waves. Although the kinematic properties of head waves are modelled simply using ray concepts, the dynamic properties require an extension of ray theory or the use of wave theory. Head waves are important in exploration and crustal seismology as they indicate the existence of an interface and the velocity of the generating wave. Head waves have been described in the literature for isotropic media but the extension to anisotropic media seems to be lacking. The expressions for the head-wave coefficients using ray concepts or wave theory differ, and their equality is not obvious. This paper extends the theory for head-wave coefficients to anisotropic media using both ray theory and wave theory, and generalizes the proof of equality of the two methods. Simple numerical examples confirm this equality and indicate how the head-wave results can be calculated in anisotropic media and included in a ray-tracing algorithm.

  11. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  12. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  13. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  14. Colossal anisotropic resistivity and oriented magnetic domains in strained La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Yang, Shengwei; Liu, Yukuai; Zhao, Wenbo; Feng, Lei; Li, Xiaoguang, E-mail: lixg@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Haibiao; Lu, Qingyou [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China)

    2014-05-19

    Magnetic and resistive anisotropies have been studied for the La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films with different thicknesses grown on low symmetric (011)-oriented (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} substrates. In the magnetic and electronic phase separation region, a colossal anisotropic resistivity (AR) of ∼10{sup 5}% and an anomalous large anisotropic magnetoresistance can be observed for 30 nm film. However, for 120 nm film, the maximum AR decreases significantly (∼2 × 10{sup 3}%) due to strain relaxation. The colossal AR is strongly associated with the oriented formation of magnetic domains, and the features of the strain effects are believed to be useful for the design of artificial materials and devices.

  15. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions

    Directory of Open Access Journals (Sweden)

    Sreetama Banerjee

    2017-07-01

    Full Text Available We report light-induced negative organic magnetoresistance (OMAR measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynylpentacene (TIPS-pentacene planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron–hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  16. Quantum and classical contributions to linear magnetoresistance in topological insulator thin films

    International Nuclear Information System (INIS)

    Singh, Sourabh; Gopal, R. K.; Sarkar, Jit; Mitra, Chiranjib

    2016-01-01

    Three dimensional topological insulators possess backscattering immune relativistic Dirac fermions on their surface due to nontrivial topology of the bulk band structure. Both metallic and bulk insulating topological insulators exhibit weak-antilocalization in the low magnetic field and linear like magnetoresistance in higher fields. We explore the linear magnetoresistance in bulk insulating topological insulator Bi 2-x Sb x Te 3-y Se y thin films grown by pulsed laser deposition technique. Thin films of Bi 2-x Sb x Te 3-y Se y were found to be insulating in nature, which conclusively establishes the origin of linear magnetoresistance from surface Dirac states. The films were thoroughly characterized for their crystallinity and composition and then subjected to transport measurements. We present a careful analysis taking into considerations all the existing models of linear magnetoresistance. We comprehend that the competition between classical and quantum contributions to magnetoresistance results in linear magnetoresistance in high fields. We observe that the cross-over field decreases with increasing temperature and the physical argument for this behavior is explained.

  17. Light-induced magnetoresistance in solution-processed planar hybrid devices measured under ambient conditions.

    Science.gov (United States)

    Banerjee, Sreetama; Bülz, Daniel; Reuter, Danny; Hiller, Karla; Zahn, Dietrich R T; Salvan, Georgeta

    2017-01-01

    We report light-induced negative organic magnetoresistance (OMAR) measured in ambient atmosphere in solution-processed 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-pentacene) planar hybrid devices with two different device architectures. Hybrid electronic devices with trench-isolated electrodes (HED-TIE) having a channel length of ca. 100 nm fabricated in this work and, for comparison, commercially available pre-structured organic field-effect transistor (OFET) substrates with a channel length of 20 µm were used. The magnitude of the photocurrent as well as the magnetoresistance was found to be higher for the HED-TIE devices because of the much smaller channel length of these devices compared to the OFETs. We attribute the observed light-induced negative magnetoresistance in TIPS-pentacene to the presence of electron-hole pairs under illumination as the magnetoresistive effect scales with the photocurrent. The magnetoresistance effect was found to diminish over time under ambient conditions compared to a freshly prepared sample. We propose that the much faster degradation of the magnetoresistance effect as compared to the photocurrent was due to the incorporation of water molecules in the TIPS-pentacene film.

  18. Effect of pressure on the magnetoresistance of single crystal Nd0.5Sr0.36Pb0.14MnO3-δ

    International Nuclear Information System (INIS)

    Khazeni, K.; Jia, Y.X.; Lu, L.; Crespi, V.H.; Cohen, M.L.; Zettl, A.

    1996-01-01

    To investigate the observed huge variations in magnetoresistance between different samples of manganite perovskites we have performed the first high-pressure measurement of magnetoresistance in single crystal Nd 0.5 Sr 0.36 Pb 0.14 MnO 3-δ . Both resistivity and magnetoresistance are strongly suppressed upon application of pressure. The decrease in magnetoresistance with increasing pressure rules out substrate-induced compressive strain as a source of enhanced magnetoresistance. Instead, the magnetoresistance differences between samples are ascribed primarily to the more abrupt nature of the semiconductorlike to metallic phase transition at lower temperatures. copyright 1996 The American Physical Society

  19. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  20. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  1. Sensors for low frequency electromagnetic radiation

    International Nuclear Information System (INIS)

    Huber, E.; Urban, M.

    1996-01-01

    For estimating the personal exposure from low fequency electric and magnetic fields suitable measurement systems are necessary. Investigations of appropriate magnetic and electric field probes and sensors have been done as a basis for a pocket sized personal dosimeter. There exist many different sensors, which can be used for the measurement of static and low frequency magnetic fields, such as inductive transducers, hall generators, tunnel diode oscillators, flux gate sensors and magnetoresistive sensors. In contrast to the magnetic sensors there are less different sensor types based on different physical detection principles available showing a sufficient sensitivity for low frequency electrical fields. Important is the knowledge on the feed back of the sensor itself on the detected field strength. Whether a sensor is suitable for a certain application is depending on its frequency related sensitivity, its signal to noise ratio, linearity and detection range, sensitivity to environmental influences as temperature, humidity etc. This presentation will focus on some important basic aspects of the measurement of low frequency electrical and magnetic fields for radiation protection purposes. (author)

  2. Study of dependence upon the magnetic field and transport current of the magnetoresistive effect in YBCO-based bulk composites

    International Nuclear Information System (INIS)

    Balaev, D A; Prus, A G; Shaykhutdinov, K A; Gokhfeld, D M; Petrov, M I

    2007-01-01

    The magnetoresistive properties of bulk YBCO + CuO and YBCO+BaPb 0.75 Sn 0.25 O 3 composites for different orientations of external magnetic field H and macroscopic transport current j have been measured. These composites exhibit large magnetoresistance in weak magnetic fields ( 2 θ. This fact suggests that the flux flow in the intergrain boundaries is responsible for the large magnetoresistive effect observed in the composites

  3. Thermal stability of Py/Cu and Co/Cu giant magnetoresistance (GMR) multilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, Vitaliy

    2007-07-01

    NiFe/Cu and Co/Cu multilayer systems have been studied regarding the mechanisms of thermal degradation of the giant magnetoresistance effect (GMR). The different thermodynamics of the studied systems results in different mechanisms of the GMR degradation as shown by highest resolution nanoanalysis using the three dimensional wide angle tomographic atom probe. According to the TAP analysis, GMR deterioration in Py/Cu system occurs due to the broadening of the layer interfaces observed at 250 C. In contrast, due to the strong demixing tendency, Co/Cu multilayers remain stable up to 450 C. At higher temperatures ferromagnetic bridging of the neighboring Co layers takes place leading to the GMR breakdown. In both Py/Cu and Co/Cu systems recrystallization is induced at 350-450 C, which is accompanied by a change in the crystallographic orientation from <111> to <100> wire texture. The reaction may be utilized to produce GMR sensor layers of remarkable thermal stability. Although the systems of interest are equivalent in respect of the observed phenomenon, the Ni{sub x}Fe{sub 1-x}/Cu system is chosen for a detailed analysis because it allows a precise control of the lattice constant by varying the Fe content in the Ni{sub x}Fe{sub 1-x} layer. It is shown that the crystallographic reorientation is triggered by the minimization of lattice mismatch elastic energy. Moreover, the counteraction between the elastic and interfacial energy minimizations exerts a critical influence on the recrystallization probability. (orig.)

  4. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  5. The Effect of Anisotropic Scatter on Atmospheric Neutron Transport

    Science.gov (United States)

    2015-03-26

    THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS MARCH 2015 Nicholas J...iii AFIT-ENP-MS-15-M-085 THE EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT THESIS Presented to the...EFFECT OF ANISOTROPIC SCATTER ON ATMOSPHERIC NEUTRON TRANSPORT Nicholas J. McIntee, BSE Major, USA Committee Membership: Dr. Kirk A. Mathews

  6. Hypersurface-homogeneous cosmological models with anisotropic ...

    Indian Academy of Sciences (India)

    2016-12-05

    Dec 5, 2016 ... DOI 10.1007/s12043-016-1317-4. Hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. M K VERMA1, S CHANDEL2 and SHRI RAM2,∗. 1Department of Mathematics, Baba Banarasi Das National Institute of Technology & Management,.

  7. Anisotropic Hanle line shape via magnetothermoelectric phenomena

    NARCIS (Netherlands)

    Das, Kumar; Dejene, Fasil; van Wees, Bart; Vera Marun, Ivan

    2016-01-01

    We observe anisotropic Hanle line shape with unequal in-plane and out-of-plane nonlocal signals for spin precession measurements carried out on lateral metallic spin valves with transparent interfaces. The conventional interpretation for this anisotropy corresponds to unequal spin relaxation times

  8. Adaptive slices for acquisition of anisotropic BRDF

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    (2018) ISSN 2096-0433 R&D Projects: GA ČR GA17-18407S Institutional support: RVO:67985556 Keywords : anisotropic BRDF * slice * sampling Subject RIV: BD - Theory of Information http://library.utia.cas.cz/separaty/2018/RO/vavra-0486116.pdf

  9. Theory of anisotropic diamagnetism, local moment magnetization ...

    Indian Academy of Sciences (India)

    Theory of anisotropic diamagnetism, local moment magnetization and carrier spin-polarization in Pb1-EuTe ... Gopalpur 761 002, India; Department of Physics, Jagannath Institute for Technology and Management, Parlakhemundi 761 211, India; Department of Physics, Berhampur University, Berhampur 760 007, India ...

  10. Hypersurface-homogeneous cosmological models with anisotropic ...

    Indian Academy of Sciences (India)

    The present study deals with hypersurface-homogeneous cosmological models with anisotropic dark energy in Saez–Ballester theory of gravitation. Exact solutions of field equations are obtained by applying a special law of variation of Hubble's parameter that yields a constant negative value of the deceleration parameter.

  11. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    We study a spatially homogeneous and anisotropic cosmological model in the Einstein gravitational theory with a minimally coupled scalar field. We consider a non-interacting combination of scalar field and perfect fluid as the source of matter components which are separately conserved. The dynamics of cosmic scalar ...

  12. Algebraic solution of an anisotropic nonquadratic potential

    International Nuclear Information System (INIS)

    Boschi Filho, H.; Vaidya, A.N.

    1990-06-01

    We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs

  13. Modelling anisotropic water transport in polymer composite

    Indian Academy of Sciences (India)

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were ...

  14. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed ...

  15. Acoustic reflection from the boundary of anisotropic ...

    Indian Academy of Sciences (India)

    Vertical slownesses of waves at a boundary of an anisotropic thermoviscoelastic medium are calculated as roots of a polynomial equation of degree eight. Out of the corresponding eight waves, the four, which travel towards the boundary are identified as upgoing waves. Remaining four waves travel away from the boundary ...

  16. Ray tracing in anisotropic media with singularities

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2001-01-01

    Roč. 145, č. 1 (2001), s. 265-276 ISSN 0956-540X R&D Projects: GA ČR GA205/00/1350 Institutional research plan: CEZ:AV0Z3012916 Keywords : anisotropic media * ray tracing * singularities Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.366, year: 2001

  17. Minimally coupled scalar field cosmology in anisotropic ...

    Indian Academy of Sciences (India)

    2017-01-03

    Jan 3, 2017 ... a phantom field [24,25], quintom [26,27], k-essence. [28], tachyon [29] and so forth. It is well known that the evolution of the Uni- verse admits a scenario of anisotropic expansion and gains a lot of interest, under the light of the recently announced Planck Probe results [7]. The Bianchi models, which describe ...

  18. Modelling anisotropic water transport in polymer composite ...

    Indian Academy of Sciences (India)

    Abstract. This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation ...

  19. The method of images for anisotropic media

    International Nuclear Information System (INIS)

    Iosilevskii, Ya.A.

    1978-01-01

    The method of images is suggested to construct a scalar macroscopic field (dynamic or static) of a point source in an anisotropic half-space or flat slab. The field is found for an arbitrary orientation of the boundaries with respect to the crystallographic axes. (Auth.)

  20. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a "parent" compound of 112-type iron pnictide superconductors.

    Science.gov (United States)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2017-11-21

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca0.73La0.27FeAs2 single crystal, which is regarded as a "parent" compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (Ts/TN) is quasi-two-dimensional (2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)=Δρ/ρ(0) (μ0Hcosθ), θ being the magnetic field angle with respect to the c axis. While such a 2D scaling becomes invalid at temperatures below Ts/TN, the three-dimensional (3D) scaling approach by inclusion of the anisotropy of Fermi surface is efficient, indicating that the appearance of 3D Fermi surface contributed to the anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 pz orbital) around the Γ point in CaFeAs2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs. © 2017 IOP Publishing Ltd.