WorldWideScience

Sample records for anisotropic magnetoresistive sensor

  1. Space magnetometer based on an anisotropic magnetoresistive hybrid sensor

    Science.gov (United States)

    Brown, P.; Whiteside, B. J.; Beek, T. J.; Fox, P.; Horbury, T. S.; Oddy, T. M.; Archer, M. O.; Eastwood, J. P.; Sanz-Hernández, D.; Sample, J. G.; Cupido, E.; O'Brien, H.; Carr, C. M.

    2014-12-01

    We report on the design and development of a low resource, dual sensor vector magnetometer for space science applications on very small spacecraft. It is based on a hybrid device combining an orthogonal triad of commercial anisotropic magnetoresistive (AMR) sensors with a totem pole H-Bridge drive on a ceramic substrate. The drive enables AMR operation in the more sensitive flipped mode and this is achieved without the need for current spike transmission down a sensor harness. The magnetometer has sensitivity of better than 3 nT in a 0-10 Hz band and a total mass of 104 g. Three instruments have been launched as part of the TRIO-CINEMA space weather mission, inter-calibration against the International Geomagnetic Reference Field model makes it possible to extract physical signals such as field-aligned current deflections of 20-60 nT within an approximately 45 000 nT ambient field.

  2. Molecular anisotropic magnetoresistance

    Science.gov (United States)

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-12-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by 3 d transition-metal wires. We show that a gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symmetry filtering properties of the molecules. We further discuss how this molecular anisotropic magnetoresistance (MAMR) can be tuned by the proper choice of materials and their electronic properties.

  3. Molecular anisotropic magnetoresistance

    OpenAIRE

    Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy

    2015-01-01

    Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by $3d$ transition-metal wires. We show that the gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symm...

  4. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin;

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...

  5. Tunneling anisotropic magnetoresistance in organic spin valves

    OpenAIRE

    Grünewald, M; M. Wahler; Schumann, F; Michelfeit, M.; Gould, C.; Schmidt, R.; Würthner, F.; Schmidt, G.; Molenkamp, L. W.

    2011-01-01

    We report the observation of tunneling anisotropic magnetoresistance (TAMR) in an organic spin-valve-like structure with only one ferromagnetic electrode. The device is based on a new high mobility perylene diimide-based n-type organic semiconductor. The effect originates from the tunneling injection from the LSMO contact and can thus occur even for organic layers which are too thick to support the assumption of tunneling through the layer. Magnetoresistance measurements show a clear spin-val...

  6. Anomalous anisotropic magnetoresistance effects in graphene

    Directory of Open Access Journals (Sweden)

    Yiwei Liu

    2014-09-01

    Full Text Available We investigate the effect of external stimulus (temperature, magnetic field, and gases adsorptions on anisotropic magnetoresistance (AMR in multilayer graphene. The graphene sample shows superlinear magnetoresistance when magnetic field is perpendicular to the plane of graphene. A non-saturated AMR with a value of −33% is found at 10 K under a magnetic field of 7 T. It is surprisingly to observe that a two-fold symmetric AMR at high temperature is changed into a one-fold one at low temperature for a sample with an irregular shape. The anomalous AMR behaviors may be understood by considering the anisotropic scattering of carriers from two asymmetric edges and the boundaries of V+(V- electrodes which serve as active adsorption sites for gas molecules at low temperature. Our results indicate that AMR in graphene can be optimized by tuning the adsorptions, sample shape and electrode distribution in the future application.

  7. Recent Developments of Magnetoresistive Sensors for Industrial Applications.

    Science.gov (United States)

    Jogschies, Lisa; Klaas, Daniel; Kruppe, Rahel; Rittinger, Johannes; Taptimthong, Piriya; Wienecke, Anja; Rissing, Lutz; Wurz, Marc Christopher

    2015-11-12

    The research and development in the field of magnetoresistive sensors has played an important role in the last few decades. Here, the authors give an introduction to the fundamentals of the anisotropic magnetoresistive (AMR) and the giant magnetoresistive (GMR) effect as well as an overview of various types of sensors in industrial applications. In addition, the authors present their recent work in this field, ranging from sensor systems fabricated on traditional substrate materials like silicon (Si), over new fabrication techniques for magnetoresistive sensors on flexible substrates for special applications, e.g., a flexible write head for component integrated data storage, micro-stamping of sensors on arbitrary surfaces or three dimensional sensing under extreme conditions (restricted mounting space in motor air gap, high temperatures during geothermal drilling).

  8. Anisotropic magnetoresistance dominant in a three terminal Hanle measurement

    Science.gov (United States)

    Malec, Christopher; Miller, Michael M.; Johnson, Mark

    2016-02-01

    Experiments are performed on mesoscopic nonlocal lateral spin valves with aluminum channels and Permalloy electrodes. Four-terminal magnetoresistance and Hanle measurements characterize the spin accumulation with results that compare well with published work. Three-terminal Hanle measurements of the Permalloy/aluminum (Py/Al) interfaces show bell-shaped curves that can be fit to Lorentzians. These curves are three orders of magnitude larger than the spin accumulation. Using anisotropic magnetoresistance measurements of individual Permalloy electrodes, we demonstrate that the three-terminal measurements are dominated by anisotropic magnetoresistance effects unrelated to spin accumulation.

  9. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables sensor

  10. Low-frequency noise characterization of a magnetic field monitoring system using an anisotropic magnetoresistance

    CERN Document Server

    Mateos, I; Lobo, A

    2016-01-01

    A detailed study about magnetic sensing techniques based on anisotropic magnetoresistive sensors shows that the technology is suitable for low-frequency space applications like the eLISA mission. Low noise magnetic measurements at the sub-millihertz frequencies were taken by using different electronic noise reduction techniques in the signal conditioning circuit. We found that conventional modulation techniques reversing the sensor bridge excitation do not reduce the potential $1/f$ noise of the magnetoresistors, so alternative methods such as flipping and electro-magnetic feedback are necessary. In addition, a low-frequency noise analysis of the signal conditioning circuits has been performed in order to identify and minimize the different main contributions from the overall noise. The results for chip-scale magnetoresistances exhibit similar noise along the eLISA bandwidth ($0.1\\,{\\rm mHz}-1\\,{\\rm Hz}$) to the noise measured by means of the voluminous fluxgate magnetometers used in its precursor mission, kn...

  11. Anisotropic Magnetoresistance of Cobalt Films Prepared by Thermal Evaporation

    Directory of Open Access Journals (Sweden)

    Yuttanun PANSONG

    2005-01-01

    Full Text Available Cobalt films on silicon substrates were prepared by thermal evaporation. By evaporating 0.05 g of cobalt for 80-240 s, a thickness from 21.1 to 67.7 nm was obtained with a deposition rate about 0.26-0.32 nm per second. The 29 nm-thick cobalt film exhibited magnetoresistance (MR ranging from -0.0793% (field perpendicular to the current to +0.0134% (field parallel to the current with saturation in a 220 mT magnetic field. This MR was attributed to anisotropic magnetoresistance (AMR since changing the angle between the field and the current (θ gave rise to a change in the electrical resistance (Rθ. The results agreed with the theory since the plot between Rθ and cos2θ could be linearly fitted. AMR was not observed in non-ferromagnetic gold films whose resistance was insensitive to the angle between the current and magnetic field.

  12. Angular dependence of anisotropic magnetoresistance in magnetic systems

    Science.gov (United States)

    Zhang, Steven S.-L.; Zhang, Shufeng

    2014-05-01

    Anisotropic magnetoresistance (AMR), whose physical origin is attributed to the combination of spin dependent scattering and spin orbital coupling (SOC), usually displays simple angular dependence for polycrystalline ferromagnetic metals. By including generic spin dependent scattering and spin Hall (SH) terms in the Ohm's law, we explicitly show that various magneto-transport phenomena such as anomalous Hall (AH), SH, planar Hall (PH) and AMR could be quantitatively related for bulk polycrystalline ferromagnetic metals. We also discuss how AMR angular dependence is affected by the presence of interfacial SOC in magnetic layered structure.

  13. Anisotropic magnetoresistivity in structured elastomer composites: modelling and experiments.

    Science.gov (United States)

    Mietta, José Luis; Tamborenea, Pablo I; Martin Negri, R

    2016-08-14

    A constitutive model for the anisotropic magnetoresistivity in structured elastomer composites (SECs) is proposed. The SECs considered here are oriented pseudo-chains of conductive-magnetic inorganic materials inside an elastomer organic matrix. The pseudo-chains are formed by fillers which are simultaneously conductive and magnetic dispersed in the polymer before curing or solvent evaporation. The SEC is then prepared in the presence of a uniform magnetic field, referred to as Hcuring. This procedure generates the pseudo-chains, which are preferentially aligned in the direction of Hcuring. Electrical conduction is present in that direction only. The constitutive model for the magnetoresistance considers the magnetic pressure, Pmag, induced on the pseudo-chains by an external magnetic field, H, applied in the direction of the pseudo-chains. The relative changes in conductivity as a function of H are calculated by evaluating the relative increase of the electron tunnelling probability with Pmag, a magneto-elastic coupling which produces an increase of conductivity with magnetization. The model is used to adjust experimental results of magnetoresistance in a specific SEC where the polymer is polydimethylsiloxane, PDMS, and fillers are microparticles of magnetite-silver (referred to as Fe3O4[Ag]). Simulations of the expected response for other materials in both superparamagnetic and blocked magnetic states are presented, showing the influence of the Young's modulus of the matrix and filler's saturation magnetization. PMID:27418417

  14. Anisotropic Magnetoresistance and Anisotropic Tunneling Magnetoresistance due to Quantum Interference in Ferromagnetic Metal Break Junctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D

    2006-01-01

    We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....

  15. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  16. Magnetoresistive sensors for surveillance and remote sensing

    Science.gov (United States)

    Dalichaouch, Yacine; Perry, Alexander R.; Whitecotton, Brian W.; Moeller, Charles R.; Czipott, Peter V.

    2001-02-01

    Quantum Magnetics (QM) has developed a sensing array using small and lightweight magnetoresistive (MR) sensors. These sensors, which operate at room temperature with high sensitivity and wide bandwidth, provide new operational performance capabilities. The wide bandwidth makes them ideal for both passive and active detection techniques. Using a DSP-based electronics developed by QM, we have been able to operate these sensors with an unprecedented noise performance at low frequencies. Recent tests using an MR room temperature gradiometer show that its resolution equals that of a fluxgate room-temperature gradiometer we have previously developed. These results represent an important development for both attended and unattended ground sensor applications since MR sensors cost about ten times less than fluxgate sensors.

  17. Linearization strategies for high sensitivity magnetoresistive sensors

    Science.gov (United States)

    Silva, Ana V.; Leitao, Diana C.; Valadeiro, João; Amaral, José; Freitas, Paulo P.; Cardoso, Susana

    2015-10-01

    Ultrasensitive magnetic field sensors envisaged for applications on biomedical imaging require the detection of low-intensity and low-frequency signals. Therefore linear magnetic sensors with enhanced sensitivity low noise levels and improved field detection at low operating frequencies are necessary. Suitable devices can be designed using magnetoresistive sensors, with room temperature operation, adjustable detected field range, CMOS compatibility and cost-effective production. The advent of spintronics set the path to the technological revolution boosted by the storage industry, in particular by the development of read heads using magnetoresistive devices. New multilayered structures were engineered to yield devices with linear output. We present a detailed study of the key factors influencing MR sensor performance (materials, geometries and layout strategies) with focus on different linearization strategies available. Furthermore strategies to improve sensor detection levels are also addressed with best reported values of ˜40 pT/√Hz at 30 Hz, representing a step forward the low field detection at room temperature.

  18. Giant single-molecule anisotropic magnetoresistance at room temperature.

    Science.gov (United States)

    Li, Ji-Jun; Bai, Mei-Lin; Chen, Zhao-Bin; Zhou, Xiao-Shun; Shi, Zhan; Zhang, Meng; Ding, Song-Yuan; Hou, Shi-Min; Schwarzacher, Walther; Nichols, Richard J; Mao, Bing-Wei

    2015-05-13

    We report an electrochemically assisted jump-to-contact scanning tunneling microscopy (STM) break junction approach to create reproducible and well-defined single-molecule spintronic junctions. The STM break junction is equipped with an external magnetic field either parallel or perpendicular to the electron transport direction. The conductance of Fe-terephthalic acid (TPA)-Fe single-molecule junctions is measured and a giant single-molecule tunneling anisotropic magnetoresistance (T-AMR) up to 53% is observed at room temperature. Theoretical calculations based on first-principles quantum simulations show that the observed AMR of Fe-TPA-Fe junctions originates from electronic coupling at the TPA-Fe interfaces modified by the magnetic orientation of the Fe electrodes with respect to the direction of current flow. The present study highlights new opportunities for obtaining detailed understanding of mechanisms of charge and spin transport in molecular junctions and the role of interfaces in determining the MR of single-molecule junctions. PMID:25894840

  19. Gilbert damping and anisotropic magnetoresistance in iron-based alloys

    Science.gov (United States)

    Berger, L.

    2016-07-01

    We use the two-current model of Campbell and Fert to understand the compositional dependence of the Gilbert damping parameter in certain iron alloys. In that model, spin-up and spin-down carriers have different resistivities ρ↑ and ρ↓. We emphasize the part of the Gilbert parameter, called Gsf, generated by spin-flip interband processes. Both Gsf and the anisotropic magnetoresistance Δρ are proportional to the square of the spin-orbit parameter, and also proportional to ρ↑. In bcc alloys of iron with V, Cr, Mo, etc. solutes on the left of iron in the periodic table, ρ↑ is increased by a scattering resonance (Gomes and Campbell, 1966, 1968). Then ρ↑, Δρ, and Gsf all exhibit a peak at the same moderate concentration of the solute. We find the best fit between this theory and existing experimental data of Gilbert damping for Fe-V epitaxial films at room temperature (Cheng, 2006; Scheck et al., 2007). At room temperature, the predicted Gsf peak is masked by a background arising from non-flip intraband processes. At elevated temperatures, the peak is expected to become more prominent, and less hidden in the background.

  20. Fractional modeling of the AC large-signal frequency response in magnetoresistive current sensors.

    Science.gov (United States)

    Ravelo Arias, Sergio Iván; Ramírez Muñoz, Diego; Moreno, Jaime Sánchez; Cardoso, Susana; Ferreira, Ricardo; de Freitas, Paulo Jorge Peixeiro

    2013-01-01

    Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function Z(t)(JF) is obtained considering it as the relationship between sensor output voltage and input sensing current, Z(t)(jf)= V(o, sensor)(jf)/I(sensor)(jf). The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR), giant magnetoresistance (GMR), spin-valve (GMR-SV) and tunnel magnetoresistance (TMR). The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications. PMID:24351648

  1. Anisotropic Magnetotransport and Exotic Longitudinal Linear Magnetoresistance in WTe2 Crystals

    OpenAIRE

    Zhao, Yanfei; Liu, Haiwen; Yan, Jiaqiang; An, Wei; Liu, Jun; Zhang, Xi; Jiang, Hua; Li, Qing; Wang, Yong; Li, Xin-Zheng; Mandrus, David; Xie, X. C.; Pan, Minghu; Wang, Jian

    2015-01-01

    WTe2 semimetal, as a typical layered transition-metal dichalcogenide, has recently attracted much attention due to the extremely large, non-saturating parabolic magnetoresistance in perpendicular field. Here, we report a systematic study of the angular dependence of the magnetoresistance in WTe2 single crystal. The violation of the Kohler rule and a significant anisotropic magnetotransport behavior in different magnetic field directions are observed. Surprisingly, when the applied field is pa...

  2. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  3. Lateral flow immunoassay using magnetoresistive sensors

    Science.gov (United States)

    Taton, Kristin; Johnson, Diane; Guire, Patrick; Lange, Erik; Tondra, Mark

    2009-05-01

    Magnetic particles have been adapted for use as labels in biochemical lateral flow strip tests. Standard gold particle lateral flow assays are generally qualitative; however, with magnetic particles, quantitative results can be obtained by using electronic detection systems with giant magnetoresistive (GMR) sensors. As described here, these small integrated sensor chips can detect the presence of magnetic labels in capture spots whose volume is approximately 150 μm×150 μm×150 μm. The range of linear detection is better than two orders of magnitude; the total range is up to four orders of magnitude. The system was demonstrated with both indirect and sandwich enzyme-linked immunosorbent assays (ELISAs) for protein detection of rabbit IgG and interferon-γ, respectively, achieving detection of 12 pg/ml protein. Ultimately, the goal is for the detector to be fully integrated into the lateral flow strip backing to form a single consumable item that is interrogated by a handheld electronic reader.

  4. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  5. Effects of substrate temperature and annealing on the anisotropic magnetoresistive property of NiFe films

    Institute of Scientific and Technical Information of China (English)

    WU Ping; WANG Fengping; QIU Hong; PAN Liqing; TIAN Yue

    2003-01-01

    Ni83Fe17 films with a thickness of about 100 nm were deposited on thermal oxidized silicon substrates at ambient temperature, 240, 350, and 410℃ by DC magnetron sputtering. The deposition rate was about 0.11 nm/s. The as-deposited films were annealed at 450, 550, and 650℃, respectively, in a vacuum lower than 3 x 10-3 Pa for 1 h. The Ni83Fe17 films mainly grow with a crystalline orientation of [111] in the direction of the film growth. With the annealing temperature increasing, the [ 111] orientation enhances. For films deposited at all four different temperatures, the significant improvement on anisotropic magnetoresistance occurs at the annealing temperature higher than 550℃. But for films deposited at ambient temperatures and 240℃, the anisotropic magnetoresistance can only rise to about 1% after 650℃ annealing. For films deposited at 350℃ and 410℃, the anisotropic magnetoresistance rises to about 3.8% after 650℃ annealing. The atomic force microscopy (AFM) observation shows a significant increase in grain size of the film deposited at 350℃ atter 650℃annealing. The decrease in resistivity and the increase in anisotropic magnetoresistance are caused by the decrease in point defects, the increase in grain size, and the improvement in lattice structure integrity of the films.

  6. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin;

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160pM an...

  7. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2016-06-01

    Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe2, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 104% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (˜1.4 × 104%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.

  8. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

    OpenAIRE

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2016-01-01

    Recently, the extremely large magnetoresistance observed in transition metal telluride, like WTe$_2$, attracted much attention because of the potential applications in magnetic sensor. Here we report the observation of extremely large magnetoresistance as 3.0$\\times$10$^4$ % measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (~1.4$\\times$10$^4$ %) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal...

  9. Tuning magnetic nanostructures and flux concentrators for magnetoresistive sensors

    Science.gov (United States)

    Yin, Xiaolu; Liu, Yen-Fu; Ewing, Dan; Ruder, Carmen K.; De Rego, Paul J.; Edelstein, A. S.; Liou, Sy-Hwang

    2015-09-01

    The methods for the optimization of the magnetoresistive (MR) sensors are to reduce sources of noises, to increase the signal, and to understand the involved fundamental limitations. The high-performance MR sensors result from important magnetic tunnel junction (MTJ) properties, such as tunneling magnetoresistance ratio (TMR), coercivity (Hc), exchange coupling field (He), domain structures, and noise properties as well as the external magnetic flux concentrators. All these parameters are sensitively controlled by the magnetic nanostructures, which can be tuned by varying junction free layer nanostructures, geometry, and magnetic annealing process etc. In this paper, we discuss some of efforts that an optimized magnetic sensor with a sensitivity as high as 5,146 %/mT. This sensitivity is currently the highest among all MR-type sensors that have been reported. The estimated noise of our magnetoresistive sensor is 47 pT/Hz1/2 at 1 Hz. This magnetoresistance sensor dissipates only 100 μW of power while operating under an applied voltage of 1 V at room temperature.

  10. Tunnel anisotropic magnetoresistance in CoFeB|MgO|Ta junctions

    Energy Technology Data Exchange (ETDEWEB)

    Hatanaka, S.; Miwa, S., E-mail: miwa@mp.es.osaka-u.ac.jp; Matsuda, K.; Nawaoka, K.; Tanaka, K.; Morishita, H.; Goto, M.; Mizuochi, N.; Shinjo, T.; Suzuki, Y. [Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-8531 (Japan)

    2015-08-24

    We found that CoFeB|MgO|Ta tunnel junctions exhibit tunnel anisotropic magnetoresistance (TAMR) at room temperature. The tunnel junctions exhibit positive magnetoresistance with the application of a magnetic field normal to the film plane. The dependencies on the applied magnetic field angle and MgO thickness reveal that the magnetoresistance originates from the TAMR, caused by the spin polarization and the spin-orbit interaction at the CoFeB|MgO interface. We also found that the TAMR can be used to detect ferromagnetic resonance in the CoFeB. This detection method could be useful for the characterization of nanomagnets that are free from the spin-transfer effect and the stray field of a reference layer, unlike conventional magnetic tunnel junctions.

  11. Tunneling Anisotropic Magnetoresistance in Co/AlOx/Au Tunnel Junctions

    CERN Document Server

    Liu, R S; Canali, C M; Samuelson, L; Pettersson, H

    2008-01-01

    We observe spin-valve-like effects in nano-scaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer.

  12. Tunneling anisotropic magnetoresistance in Co/AlOx/Au tunnel junctions.

    Science.gov (United States)

    Liu, R S; Michalak, L; Canali, C M; Samuelson, L; Pettersson, H

    2008-03-01

    We observe spin-valve-like effects in nanoscaled thermally evaporated Co/AlOx/Au tunnel junctions. The tunneling magnetoresistance is anisotropic and depends on the relative orientation of the magnetization direction of the Co electrode with respect to the current direction. We attribute this effect to a two-step magnetization reversal and an anisotropic density of states resulting from spin-orbit interaction. The results of this study points to future applications of novel spintronics devices involving only one ferromagnetic layer. PMID:18254603

  13. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-07

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  14. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Alfadhel

    2016-05-01

    Full Text Available A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS, is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  15. A Magnetoresistive Tactile Sensor for Harsh Environment Applications.

    Science.gov (United States)

    Alfadhel, Ahmed; Khan, Mohammed Asadullah; Cardoso, Susana; Leitao, Diana; Kosel, Jürgen

    2016-01-01

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature. PMID:27164113

  16. Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer.

    Science.gov (United States)

    Gould, C; Rüster, C; Jungwirth, T; Girgis, E; Schott, G M; Giraud, R; Brunner, K; Schmidt, G; Molenkamp, L W

    2004-09-10

    We introduce a new class of spintronic devices in which a spin-valve-like effect results from strong spin-orbit coupling in a single ferromagnetic layer rather than from injection and detection of a spin-polarized current by two coupled ferromagnets. The effect is observed in a normal-metal-insulator-ferromagnetic-semiconductor tunneling device. This behavior is caused by the interplay of the anisotropic density of states in (Ga,Mn)As with respect to the magnetization direction and the two-step magnetization reversal process in this material. PMID:15447375

  17. Anisotropic magnetoresistance and current-perpendicular-to-plane giant magnetoresistance in epitaxial NiMnSb-based multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, B.; Sakuraba, Y., E-mail: Yuya.Sakuraba@nims.go.jp; Sukegawa, H.; Li, S.; Furubayashi, T. [National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Qu, G.; Hono, K. [National Institute for Materials Science (NIMS), 1-2-1, Sengen, Tsukuba, Ibaraki 305-0047 (Japan); Graduate School Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8571 (Japan)

    2016-01-14

    We fabricated (001)-oriented C1{sub b}-NiMnSb epitaxial films on MgO substrate by a magnetron sputtering system and systematically investigated the structure, magnetic property, and anisotropic magnetoresistance (AMR) effect. NiMnSb film was deposited using a stoichiometric NiMnSb target which has Mn-deficient (Mn ∼ 28.7 at. %) off-stoichiometric composition ratio. We have investigated bulk spin-polarization in NiMnSb films by measuring AMR on the basis of recent study for half-metallic L2{sub 1}-Heusler compounds. Although the negative sign of AMR ratio, which is indicative of half-metallic nature, was observed in the single layer NiMnSb films, the magnitude of AMR ratio (−0.10% at RT) was about half of the largest value reported for half-metallic L2{sub 1}-Heusler compounds. The current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) devices of NiMnSb/Ag/NiMnSb show MR ratio of 13.2% at 10 K and 4.2% at 300 K, which is higher than the previous result for NiMnSb/Cu/NiMnSb CPP-GMR devices [Caballero et al., J. Magn. Magn. Mater. 198–199, 55 (1999)], but much less than the CPP-GMR using L2{sub 1}-Heusler electrodes. The reduction of intrinsic bulk spin-polarization originating from the Mn-deficiency in NiMnSb layer is expected to be the main reason for small MR values.

  18. Handheld, giant magnetoresistive-sensor-based eddy current probes

    Science.gov (United States)

    Brady, S. K.; Palmer, D. D.

    2012-05-01

    The minimum crack length detectable with conventional eddy current probes increases dramatically as the thickness of metal through which the inspection is performed increases. The skin depth phenomenon is unavoidable, and demands low frequency inspection, hindering sensitivity. However, one time derivative introduced by Faraday's Law can be avoided by using giant magnetoresistive sensors to detect eddy currents instead of conventional coils, improving sensitivity. The theory will be explained, along with some probe designs and the observed benefits in sensitivity.

  19. Interfacial exchange coupling induced anomalous anisotropic magnetoresistance in epitaxial γ'-Fe₄N/CoN bilayers.

    Science.gov (United States)

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-02-18

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ'-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ'-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ'-Fe4N layer and interfacial spin scattering.

  20. Magnetoresistive sensor for absolute position detection

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1984-01-01

    A digital measurement principle for absolute position is decscribed. The position data is recorded serially into a single track of a hard-magnetic layer with the help of longitudinal saturation recording. Detection is possible by means of an array of sensor elements which can be made of a substrate.

  1. On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Wang, Shan Xiang; Hansen, Mikkel Fougt

    2015-01-01

    Magnetoresistive sensors are widely used for biosensing by detecting the signal from magnetic labels bound to a functionalized area that usually covers the entire sensor structure. Magnetic labels magnetized by a homogeneous applied magnetic field weaken and strengthen the applied field when they...

  2. Imaging Ferromagnetic Tracers with a Magnetoresistive Sensors Array

    Science.gov (United States)

    Leyva, Juan A.; Carneiro, Antonio A. O.; Murta, Luís O.; Baffa, O.

    2006-09-01

    The aim of this work was to study the feasibility to obtain images from a distribution of ferromagnetic tracers using a magnetoresistive multichannel sensor array (MRA). A magnetic imaging system formed by a linear array composed of 12 magnetoresistive sensors (Honeywell HMC 1001) was constructed covering a scanning area of (16×18) cm2. The signal was pre-processed for off-set correction and interpolation to generate a matrix of (256×256). The point spread function of the MRA was evaluated and the sensors were spaced accordingly. The magnetic images were generated by mapping the response of the MRA at short distances from the presence of a magnetite powder dispersed in planar phantoms with different shapes. The phantoms were magnetized by a pulse field of approximately 80 mT produced by a Helmholtz coil. Using the Wiener filtering, the magnetic source images were obtained. We conclude that this biomagnetic method can be successfully used to generate planar functional images of the gastrointestinal tract using magnetic markers in the near field.

  3. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    Energy Technology Data Exchange (ETDEWEB)

    Yamanoi, K.; Yokotani, Y. [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Cui, X. [Graduate School of Information Science and Electrical Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395 (Japan); Yakata, S. [Department of Information Electronics, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295 (Japan); Kimura, T., E-mail: t-kimu@phys.kyushu-u.ac.jp [Department of Physics, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan); Research Center for Quantum Nano-Spin Sciences, Kyushu University, 6-10-1 Hakozaki, Fukuoka 812-8581 (Japan)

    2015-12-21

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.

  4. Stability of standing spin wave in permalloy thin film studied by anisotropic magnetoresistance effect

    Science.gov (United States)

    Yamanoi, K.; Yokotani, Y.; Cui, X.; Yakata, S.; Kimura, T.

    2015-12-01

    We have investigated the stability for the resonant spin precession under the strong microwave magnetic field by a specially developed detection method using the anisotropic magnetoresistance effect. The electrically separated excitation and detection circuits enable us to investigate the influence of the heating effect and the nonuniform spin dynamics independently. The large detecting current is found to induce the field shift of the resonant spectra because of the Joule heating. From the microwave power dependence, we found that the linear response regime for the standing spin wave is larger than that for the ferromagnetic resonance. This robust characteristic of the standing spin wave is an important advantage for the high power operation of the spin-wave device.

  5. Spin pumping and anisotropic magnetoresistance voltages in magnetic bilayers: Theory and experiment

    Science.gov (United States)

    Azevedo, A.; Vilela-Leão, L. H.; Rodríguez-Suárez, R. L.; Lacerda Santos, A. F.; Rezende, S. M.

    2011-04-01

    We investigate experimentally and theoretically the dc voltage generated in ferromagnetic and nonmagnetic metal bilayers under ferromagnetic resonance. The voltage is given by a superposition of the contributions from spin pumping (VSP) and anisotropic magnetoresistance (VAMR). A theoretical model is presented that separately determines VSP and VAMR as a function of the applied static field intensity as well the in-plane angle. The model is used to interpret a detailed set of data obtained in a series of Ni81Fe19/Pt samples excited by in-plane ferromagnetic resonance. The results show excellent agreement between theory and the measured voltages as a function of the Permalloy and Pt layer thicknesses. Our findings show that the quantitative separation of both effects is crucial to the interpretation of experiments and the determination of the spin Hall angle and spin-diffusion length.

  6. Long phase coherence length and anisotropic magnetoresistance in MgZnO thin film

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Meng; Xu, Yonggang; Yu, Guolin, E-mail: yug@mail.sitp.ac.cn; Lin, Tie; Hu, Gujin; Chu, Junhao [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China); Wang, Hao; Zhang, Huahan, E-mail: huahan@xmu.edu.cn [Department of Physics, Xiamen University, Xiamen 361005 (China); Dai, Ning [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Science, Shanghai 200083 (China); Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026 (China); Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou 213164 (China)

    2015-04-21

    We comprehensively investigate magnetotransport properties of MgZnO thin film grown on ZnO substrate by molecular-beam epitaxy. We measure the weak localization effect and extract the electron phase coherence length by fitting to a three-dimensional weak localization theory and by analyzing the different changing rate of the magnetoresistance, results of which are in good agreement with each other. The phase coherence length ranges from 38.4±1    nm at 50 K to 99.8±3.6 nm at 1.4  K, almost the same as that of ZnO nanoplates and In-doped ZnO nanowires, and its temperature dependence is found to scale as T{sup −3/4}. Meanwhile, we study the anisotropic magnetoresistance resulting from the geometric effect as well as the Lorentz force induced path-length effect, which will be enhanced in higher magnetic fields.

  7. Very large tunneling anisotropic magnetoresistance of a (Ga,Mn)As/GaAs/(Ga,Mn)As stack.

    Science.gov (United States)

    Rüster, C; Gould, C; Jungwirth, T; Sinova, J; Schott, G M; Giraud, R; Brunner, K; Schmidt, G; Molenkamp, L W

    2005-01-21

    We report the discovery of a very large tunneling anisotropic magnetoresistance in an epitaxially grown (Ga,Mn)As/GaAs/(Ga,Mn)As structure. The key novel spintronics features of this effect are as follows: (i) both normal and inverted spin-valve-like signals; (ii) a large nonhysteretic magnetoresistance for magnetic fields perpendicular to the interfaces; (iii) magnetization orientations for extremal resistance are, in general, not aligned with the magnetic easy and hard axis; (iv) enormous amplification of the effect at low bias and temperatures. PMID:15698223

  8. Strain-induced anisotropic low-field magnetoresistance of La-Sr-Mn-O thin films

    Science.gov (United States)

    Choi, Kyung-Ku; Taniyama, Tomoyasu; Yamazaki, Yohtaro

    2001-12-01

    Sputtered La0.71Sr0.29Mn1.01O3-δ (LSMO) thin films on (001) SrTiO3, polycrystalline yttria-stabilized zirconia (YSZ) and (112¯0) sapphire substrates demonstrate the distinctive low-field magnetoresistance (MR) correlated with the microstructure and the strain of the films. The epitaxial LSMO film on (001) SrTiO3 shows the in-plane magnetic anisotropy with [110] easy axis and the attendant anisotropic MR. The polycrystalline films on YSZ and sapphire substrates with grain sizes from 20 to 60 nm exhibit different anisotropic feature of transport: the isotropic MR of the film on YSZ and the large anisotropy on sapphire substrates. Moreover, in the (112¯0) film plane of sapphire substrate, the [1¯100]SAP magnetic easy axis appears due to a large tensile stress, and the longitudinal MR becomes pronounced along the [0001]SAP hard axis. This implies that the anisotropy of the low-field MR is attributed to the stress induced by the thermal expansion mismatch between film and substrate. These results emphasize that the low-field MR in the polycrystalline manganite can be advanced by the strain induced magnetic anisotropy.

  9. Low field colossal anisotropic magnetoresistance in spatially confined electronically phase separated La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} microbridges

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, J., E-mail: jaechun1@ualberta.ca; Alagoz, H. S.; Jung, J., E-mail: jjung@ualberta.ca; Chow, K. H., E-mail: khchow@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2015-08-03

    Colossal in-plane anisotropic magnetoresistance (AMR) of >16 000% has been engineered in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} films. Recalling that typical AMR values in films are only a few percent, these results mark an astonishing increase that might potentially lead to fabrication of manganite-based switching and sensor devices. The unique colossal behavior is discussed within the context of anisotropic domain growth.

  10. Magnetoresistive-superconducting mixed sensors for biomagnetic applications

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier-Lecoeur, M. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Fermon, C., E-mail: claude.fermon@cea.f [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France); Dyvorne, H.; Jacquinot, J.F.; Polovy, H.; Walliang, A.L. [DSM/IRAMIS/SPEC, CEA Saclay, 91191 Gif sur Yvette Cedex (France)

    2010-05-15

    When coupled to a giant magnetoresistive (GMR) sensor, a superconducting loop containing a constriction can be a very sensitive magnetometer. It has thermal noise levels of few fT/sqrt(Hz), comparable to low-T{sub c} SQUID noise, with a flat frequency response. These mixed sensors are good candidates for detection of weak biomagnetic signals, like a cardiac or neuronal signature. Furthermore, being sensitive to the flux, mixed sensors can be used for nuclear magnetic resonance (NMR) detection and Magnetic Resonance Imaging (MRI) especially at low fields. They are very robust and accept strong RF pulses with a very short recovery time compared to tuned RF coils, which allow measurements of broad signals (short relaxation time or multiple resonances). We will first present the last generation sensors having a noise level of 3 fT/sqrt(Hz) and we will show signals measured at low frequency (magnetocardiography-magnetoencephalography range) and at higher frequency (NMR signals). The use of additional flux transformers for improving the signal-to-noise will be discussed. Finally, we will present perspectives for low-field MRI, which can be combined with neural signal detection (MEG), especially for brain anatomy and temporal response on the same experimental setup.

  11. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard;

    2015-01-01

    current while limiting the sensor self-heating. We systematically characterize and model the Joule heating of magnetoresistive sensors with different sensor geometries and stack compositions. The sensor heating is determined using the increase of the sensor resistance as function of the bias current...

  12. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl;

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the di......We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches...

  13. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    Science.gov (United States)

    Kriegner, D.; Výborný, K.; Olejník, K.; Reichlová, H.; Novák, V.; Marti, X.; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V. V.; Springholz, G.; Holý, V.; Jungwirth, T.

    2016-06-01

    Commercial magnetic memories rely on the bistability of ordered spins in ferromagnetic materials. Recently, experimental bistable memories have been realized using fully compensated antiferromagnetic metals. Here we demonstrate a multiple-stable memory device in epitaxial MnTe, an antiferromagnetic counterpart of common II-VI semiconductors. Favourable micromagnetic characteristics of MnTe allow us to demonstrate a smoothly varying zero-field antiferromagnetic anisotropic magnetoresistance (AMR) with a harmonic angular dependence on the writing magnetic field angle, analogous to ferromagnets. The continuously varying AMR provides means for the electrical read-out of multiple-stable antiferromagnetic memory states, which we set by heat-assisted magneto-recording and by changing the writing field direction. The multiple stability in our memory is ascribed to different distributions of domains with the Néel vector aligned along one of the three magnetic easy axes. The robustness against strong magnetic field perturbations combined with the multiple stability of the magnetic memory states are unique properties of antiferromagnets.

  14. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ'-Fe4N thin films

    Science.gov (United States)

    Kabara, Kazuki; Tsunoda, Masakiyo; Kokado, Satoshi

    2016-05-01

    Transverse anisotropic magnetoresistance (AMR) effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C2 tr ) exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C2 tr shows a positive small value (0.12%) from 300 K to 50 K. However, the C2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a) were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002).

  15. Anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures

    Directory of Open Access Journals (Sweden)

    B. Xia

    2012-12-01

    Full Text Available Topological insulator is composed of an insulating bulk state and time reversal symmetry protected two-dimensional surface states. One of the characteristics of the surface states is the locking between electron momentum and spin orientation. Here, we report a novel in-plane anisotropic magnetoresistance in topological insulator Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures. To explain the novel effect, we propose that the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructure forms a spin-valve or Giant magnetoresistance device due to spin-momentum locking. The novel in-plane anisotropic magnetoresistance can be explained as a Giant magnetoresistance effect of the Bi1.5Sb0.5Te1.8Se1.2/CoFe heterostructures.

  16. Large anisotropic normal-state magnetoresistance in clean MgB2 thin films.

    Science.gov (United States)

    Li, Qi; Liu, B T; Hu, Y F; Chen, J; Gao, H; Shan, L; Wen, H H; Pogrebnyakov, A V; Redwing, J M; Xi, X X

    2006-04-28

    We report a large normal-state magnetoresistance with temperature-dependent anisotropy in very clean epitaxial MgB2 thin films (residual resistivity much smaller than 1 microOmega cm) grown by hybrid physical-chemical vapor deposition. The magnetoresistance shows a complex dependence on the orientation of the applied magnetic field, with a large magnetoresistance (Delta(rho)/(rho)0=136%) observed for the field H perpendicular ab plane. The angular dependence changes dramatically as the temperature is increased, and at high temperatures the magnetoresistance maximum changes to H||ab. We attribute the large magnetoresistance and the evolution of its angular dependence with temperature to the multiple bands with different Fermi surface topology in MgB2 and the relative scattering rates of the sigma and pi bands, which vary with temperature due to stronger electron-phonon coupling for the sigma bands.

  17. Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Science.gov (United States)

    Reichlová, H.; Novák, V.; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Maryško, M.; Wunderlich, J.; Marti, X.; Jungwirth, T.

    2016-07-01

    We investigate the thickness and temperature dependence of a series of Ni{}0.8Fe{}0.2/Ir{}0.2Mn{}0.8 bilayer samples with varying thickness ratio of the ferromagnet/antiferromagnet ({{t}}{{FM}}/{{t}}{{AFM}}) in order to explore the exchange coupling strengths in tunneling anisotropic magnetoresistance (TAMR) devices. Specific values of {{t}}{{FM}}/{{t}}{{AFM}} lead to four distinct scenarios with specific electric responses to moderate magnetic fields. The characteristic dependence of the measured TAMR signal on applied voltage allows us to confirm its persistence up to room temperature despite an overlapped contribution by a thermal magnetic noise.

  18. Tunneling anisotropic magnetoresistance driven by resonant surface states: first-principles calculations on an Fe(001) surface.

    Science.gov (United States)

    Chantis, Athanasios N; Belashchenko, Kirill D; Tsymbal, Evgeny Y; van Schilfgaarde, Mark

    2007-01-26

    Fully relativistic first-principles calculations of the Fe(001) surface demonstrate that resonant surface (interface) states may produce sizable tunneling anisotropic magnetoresistance in magnetic tunnel junctions with a single magnetic electrode. The effect is driven by the spin-orbit coupling. It shifts the resonant surface band via the Rashba effect when the magnetization direction changes. We find that spin-flip scattering at the interface is controlled not only by the strength of the spin-orbit coupling, but depends strongly on the intrinsic width of the resonant surface states. PMID:17358794

  19. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  20. Magnetic anisotropy and anisotropic magnetoresistance in strongly phase separated manganite thin films

    Science.gov (United States)

    Kandpal, Lalit M.; Singh, Sandeep; Kumar, Pawan; Siwach, P. K.; Gupta, Anurag; Awana, V. P. S.; Singh, H. K.

    2016-06-01

    The present study reports the impact of magnetic anisotropy (MA) on magnetotransport properties such as the magnetic transitions, magnetic liquid behavior, glass transition and anisotropic magnetoresistance (AMR) in epitaxial film (thickness 42 nm) of strongly phase separated manganite La5/8-yPryCa3/8MnO3 (y≈0.4). Angle dependent magnetization measurement confirms the out-of-plane magnetic anisotropy with the magnetic easy axes aligned in the plane of the film and the magnetic hard axis along the normal to the film plane. The more prominent divergence between the zero filed cooled (ZFC) and field cooled warming (FCW) and the stronger hysteresis between the field cooled cooling (FCC) and FCW magnetization for H ∥ shows the weakening of the magnetic liquid along the magnetic hard axis. The peak at Tp≈42 K in FCW magnetization, which characterizes the onset of spin freezing shifts down to Tp≈18 K as the field direction is switched from the easy axes (H ∥) to the hard axis (H ⊥). The glass transition, which appears at Tg≈28 K for H ∥ disappears for H ⊥. The easy axis magnetization (M∣∣) appears to saturate around H~20 kOe, but the hard axis counterpart (M⊥) does not show such tendency even up to H=50 kOe. MA appears well above the ferromagnetic (FM) transition at T≈170 K, which is nearly the same as the Neel temperature (TN) of M⊥ - T . The temperature dependent resistivity measured at H=10 kOe applied along the easy axis (ρ|| - T) and the hard axis (ρ⊥ - T) shows insulator metal transition (IMT) at ≈106 K and ≈99 K in the cooling cycle, respectively. The large difference between ρ⊥ - T and ρ|| - T during the cooling cycle and in the vicinity of IMT results in huge AMR of ≈-142% and -115%. The observed properties have been explained in terms of the MA induced variation in the relative fraction of the coexisting magnetic phases.

  1. Detection of current-driven magnetic domains in [Co/Pd] nanowire by tunneling magnetoresistive sensor

    Science.gov (United States)

    Okuda, Mitsunobu; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Saito, Nobuo; Hayashi, Naoto; Nakagawa, Shigeki

    2015-05-01

    Current-driven magnetic domain walls in magnetic nanowires have attracted a great deal of interest in terms of both physical studies and engineering applications. The anomalous Hall effect measurement is widely used for detecting the magnetization direction of current-driven magnetic domains in a magnetic nanowire. However, the problem with this measurement is that the detection point for current-driven domain wall motion is fixed at only the installed sensing wire across the specimen nanowire. A potential solution is the magnetic domain scope method, whereby the distribution of the magnetic flux leaking from the specimen can be analyzed directly by contact-scanning a tunneling magnetoresistive field sensor on a sample. In this study, we fabricated specimen nanowires consisting of [Co (0.3)/Pd (1.2)]21/Ta(3) films (units in nm) with perpendicular magnetic anisotropy on Si substrates. A tunneling magnetoresistive sensor was placed on the nanowire surface and a predetermined current pulse was applied. Real-time detection of the current-driven magnetic domain motion was successful in that the resistance of the tunneling magnetoresistive sensor was changed with the magnetization direction beneath the sensor. This demonstrates that magnetic domain detection using a tunneling magnetoresistive sensor is effective for the direct analysis of micro magnetic domain motion.

  2. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    Energy Technology Data Exchange (ETDEWEB)

    Bruckner, Florian, E-mail: florian.bruckner@tuwien.ac.at [Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Bergmair, Bernhard [Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Brueckl, Hubert [Center for Integrated Sensor Systems, Danube University Krems, Viktor-Kaplan-Str. 2E, 2700 Wiener Neustadt (Austria); Palmesi, Pietro; Buder, Anton [Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria); Satz, Armin [Infineon Technologies Austria AG, Siemensstrasse 2, 9500 Villach (Austria); Suess, Dieter [Christian Doppler Laboratory for Advanced Magnetic Sensing and Materials, Institute of Solid State Physics, Vienna University of Technology, Wiedner Hauptstrasse 8-10, 1040 Vienna (Austria)

    2015-05-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior.

  3. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  4. Lab-on-Chip Cytometry Based on Magnetoresistive Sensors for Bacteria Detection in Milk

    Directory of Open Access Journals (Sweden)

    Ana C. Fernandes

    2014-08-01

    Full Text Available Flow cytometers have been optimized for use in portable platforms, where cell separation, identification and counting can be achieved in a compact and modular format. This feature can be combined with magnetic detection, where magnetoresistive sensors can be integrated within microfluidic channels to detect magnetically labelled cells. This work describes a platform for in-flow detection of magnetically labelled cells with a magneto-resistive based cell cytometer. In particular, we present an example for the validation of the platform as a magnetic counter that identifies and quantifies Streptococcus agalactiae in milk.

  5. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Rizzi, Giovanni, E-mail: giori@nanotech.dtu.dk; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F., E-mail: mikkel.hansen@nanotech.dtu.dk

    2015-04-15

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor.

  6. Giant Magnetoresistive Sensors and Magnetic Labels for Chip-Scale Detection of Immunosorbent Assays

    Energy Technology Data Exchange (ETDEWEB)

    Millen, Rachel Lora [Iowa State Univ., Ames, IA (United States)

    2005-01-01

    The combination of giant magnetoresistive sensors, magnetic labeling strategies, and biomolecule detection is just beginning to be explored. New readout methods and assay formats are necessary for biomolecules detection to flourish. The work presented in this dissertation describes steps toward the creation of a novel detection method for bioassays utilizing giant magnetoresistive sensors as the readout method. The introduction section contains a brief review of some of the current methods of bioassay readout. The theoretical underpinnings of the giant magnetoresistive effect are also discussed. Finally, the more prominent types of giant magnetoresistive sensors are described, as well as their complicated fabrication. Four data chapters follow the introduction; each chapter is presented as a separate manuscript, either already published or soon to be submitted. Chapter 1 presents research efforts toward the production of a bioassay on the surface of a gold-modified GMR sensor. The testing of this methodology involved the capture of goat a-mouse-coated magnetic nanoparticles on the mouse IgG-modified gold surface. The second, third and fourth chapters describe the utilization of a self-referenced sample stick for scanning across the GMR sensor. The sample stick consisted of alternating magnetic reference and bioactive gold addresses. Chapter 2 is concerned with the characterization of both the scanning readout method and the binding and detection of streptavidin-coated magnetic particles to a biotinylated surface. Chapter 3 advances the sample stick readout with the use of the system for detection of a sandwich immunoassay with rabbit IgG proteins. Finally, simultaneous detection of three IgG proteins is demonstrated in Chapter 4. The dissertation is concluded with a brief summary of the research presented and a discussion of the possible future applications and direction of this work.

  7. High sensitivity detection of molecular recognition using magnetically labelled biomolecules and magnetoresistive sensors.

    Science.gov (United States)

    Graham, D L; Ferreira, H A; Freitas, P P; Cabral, J M S

    2003-04-01

    Small magnetoresistive spin valve sensors (2 x 6 microm(2)) were used to detect the binding of single streptavidin functionalized 2 microm magnetic microspheres to a biotinylated sensor surface. The sensor signals, using 8 mA sense current, were in the order of 150-400 microV for a single microsphere depending on sensor sensitivity and the thickness of the passivation layer over the sensor surface. Sensor saturation signals were 1-2 mV representing an estimated 6-20 microspheres, with a noise level of approximately 10 microV. The detection of biomolecular recognition for the streptavidin-biotin model was shown using both single and differential sensor architectures. The signal data compares favourably with previously reported signals for high numbers of magnetic microspheres detected using larger multilayered giant magnetoresistance sensors. A wide range of applications is foreseen for this system in the development of biochips, high sensitivity biosensors and the detection of single molecules and single molecule interactions. PMID:12604266

  8. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik;

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location of the...... is essential to sensor design. For illustration, we analyze three important published cases for which statistical fluctuations are dominant, significant, and insignificant, respectively....

  9. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco;

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility...... spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility...

  10. Low field anisotropic colossal magnetoresistance in Sm0.53Sr0.47MnO3 thin films

    Science.gov (United States)

    Srivastava, Manoj K.; Singh, M. P.; Kaur, Amarjeet; Razavi, F. S.; Singh, H. K.

    2011-12-01

    Sm0.53Sr0.47MnO3 (SSMO) thin films (thicknesses ˜200 nm) were deposited by on-axis dc magnetron sputtering on the single crystal LSAT (001) substrates. These films are oriented along the out of plane c-direction. The ferromagnetic and insulator-metal transition occurs at TC ˜ 96 and TIM ˜ 91 K, respectively. The magnetization easy axis is observed to lie in the plane of the film while the magnetic hard axis is found to be along the normal to this. The magnetotransport of the SSMO films, which was measured as a function of angle (θ) between the magnetic field (H) and plane of the film, shows colossal anisotropy. Magnetoresistance (MR) decreases drastically as θ increases from 0° (H//easy axis) to 90° (H//hard axis). The out-of-plane anisotropic MR is as high as 88% at H = 3.6 kOe and 78 K. The colossal anisotropy has been explained in terms of the magnetic anisotropies at play and the magnetic domain motion in applied magnetic field.

  11. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  12. Nanoparticle-Structured Highly Sensitive and Anisotropic Gauge Sensors.

    Science.gov (United States)

    Zhao, Wei; Luo, Jin; Shan, Shiyao; Lombardi, Jack P; Xu, Yvonne; Cartwright, Kelly; Lu, Susan; Poliks, Mark; Zhong, Chuan-Jian

    2015-09-16

    The ability to tune gauge factors in terms of magnitude and orientation is important for wearable and conformal electronics. Herein, a sensor device is described which is fabricated by assembling and printing molecularly linked thin films of gold nanoparticles on flexible microelectrodes with unusually high and anisotropic gauge factors. A sharp difference in gauge factors up to two to three orders of magnitude between bending perpendicular (B(⊥)) and parallel (B(||)) to the current flow directions is observed. The origin of the unusual high and anisotropic gauge factors is analyzed in terms of nanoparticle size, interparticle spacing, interparticle structure, and other parameters, and by considering the theoretical aspects of electron conduction mechanism and percolation pathway. A critical range of resistivity where a very small change in strain and the strain orientation is identified to impact the percolation pathway in a significant way, leading to the high and anisotropic gauge factors. The gauge anisotropy stems from molecular and nanoscale fine tuning of interparticle properties of molecularly linked nanoparticle assembly on flexible microelectrodes, which has important implication for the design of gauge sensors for highly sensitive detection of deformation in complex sensing environment or on complex curved surfaces such as wearable electronics and skin sensors. PMID:26037089

  13. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  14. Development of a Magneto-Resistive Angular Position Sensor for Space Mechanisms

    Science.gov (United States)

    Hahn, Robert; Schmidt, Tilo; Seifart, Klaus; Olberts, Bastian; Romera, Fernando

    2016-01-01

    Magnetic microsystems in the form of magneto-resistive (MR) sensors are firmly established in automobiles and industrial applications. They are used to measure travel, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In some science missions, the technology is already applied, however, the designs are proprietary and case specific, for instance in case of the angular sensors used for JPL/NASA's Mars rover Curiosity [1]. Since 2013 HTS GmbH and Sensitec GmbH have teamed up to develop and qualify a standardized yet flexible to use MR angular sensor for space mechanisms. Starting with a first assessment study and market survey performed under ESA contract, a very strong industry interest in novel, contactless position measurement means was found. Currently a detailed and comprehensive development program is being performed by HTS and Sensitec. The objective of this program is to advance the sensor design up to Engineering Qualification Model level and to perform qualification testing for a representative space application. The paper briefly reviews the basics of magneto-resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The key applications and specification are presented and the preliminary baseline mechanical and electrical design will be discussed. An outlook on the upcoming development and test stages as well as the qualification program will be provided.

  15. Exchange Bias Tuning for Magnetoresistive Sensors by Inclusion of Non-Magnetic Impurities.

    Science.gov (United States)

    Sharma, Parikshit Pratim; Albisetti, Edoardo; Monticelli, Marco; Bertacco, Riccardo; Petti, Daniela

    2016-07-04

    The fine control of the exchange coupling strength and blocking temperature ofexchange bias systems is an important requirement for the development of magnetoresistive sensors with two pinned electrodes. In this paper, we successfully tune these parameters in top- and bottom-pinned systems, comprising 5 nm thick Co40Fe40B20 and 6.5 nm thick Ir22Mn78 films. By inserting Ru impurities at different concentrations in the Ir22Mn78 layer, blocking temperatures ranging from 220 °C to 100 °C and exchange bias fields from 200 Oe to 60 Oe are obtained. This method is then applied to the fabrication of sensors based on magnetic tunneling junctions consisting of a pinned synthetic antiferromagnet reference layer and a top-pinned sensing layer. This work paves the way towards the development of new sensors with finely tuned magnetic anisotropies.

  16. Magnetoresistive sensors for angle, position, and electrical current measurement in demanding environments

    Science.gov (United States)

    Doms, Marco; Slatter, Rolf

    2014-06-01

    Nowadays, magnetoresistive (MR) sensors are used in a wide range of applications. In general, the MR-effect describes the change of the electrical resistance in an external magnetic field. MR sensors are not only used for measuring magnetic fields and rotational or linear motion, but also for non-contact switching applications and furthermore for highly dynamic current measurement. This is largely the result of increasingly complex demands on the sensors for e.g. high performance electrical drives. The sensors must not only be accurate and dynamic, but must also be robust under difficult operating conditions and exhibit very high reliability. Due to their physical working principle and their small size, MR sensors are especially suited to work in harsh environments like high or low temperature, radiation, pressure or mechanical shock. This paper describes the principle of operation, manufacturing process and benefits of MR sensors. This will be followed by a description of practical application examples from the automotive, oil and gas, renewable energy and space fields, where MR sensors are successfully applied in very small envelopes at very low /very high temperatures, under high pressure, high mechanical loading and under strong radiation.

  17. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications.

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N; Ali, Kharudin; Razali, Ramdan

    2016-02-26

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  18. Hall effect enhanced low-field sensitivity in a three-contact extraordinary magnetoresistance sensor

    KAUST Repository

    Sun, Jian

    2012-06-06

    An extraordinary magnetoresistance (EMR) device with a 3-contact geometry has been fabricated and characterized. A large enhancement of the output sensitivity at low magnetic fields compared to the conventional EMR device has been found, which can be attributed to an additional influence coming from the Hall effect. Output sensitivities of 0.19 mV/T at zero-field and 0.2 mV/T at 0.01 T have been measured in the device, which is equivalent to the ones of the conventional EMR sensors with a bias of ∼0.04 T. The exceptional performance of EMR sensors in the high field region is maintained in the 3-contact device.

  19. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor

    KAUST Repository

    Li, Fuquan

    2014-09-01

    Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6. μm wide microwire, which attracted the magnetic beads from a distance of 60. μm, when a current of 30. mA was applied. A sensing space of 30. μm in length and 6. μm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8. μm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30. min with a sample volume in the μl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. © 2014 Elsevier B.V.

  20. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  1. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-01-01

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids. PMID:23202221

  2. Superparamagnetic nanoparticle quantification using a giant magnetoresistive sensor and permanent magnets

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jongwon, E-mail: skywalker03@gmail.com

    2015-09-01

    Magnetic nanoparticles are used in various biological applications such as magnetic resonance imaging (MRI), biological separation, drug delivery or as biomarker. In the case of biomarker, the magnetic particle and a measurand are combined via biological reactions and then detected by magnetic field sensors for a qualitative or quantitative measurement. In the present work, we introduce a commercially available giant magnetoresistive (GMR) sensor for the quantitative measurement of superparamagnetic nanoparticles, which were injected into a glass capillary tube. A pair of permanent magnets standing diagonally opposite to each other was utilized to provide vertical and horizontal magnetic fields for particle magnetization and sensor bias, respectively. In addition, the permanent magnets solved the uniformity problem of generated magnetic fields in previous biomarker detection systems. Using the proposed measurement setup, an output signal change of 0.407 V was achieved for a 1 μg change in the magnetic particle mass. The detection limit was 43.5 ng. - Highlights: • We introduce a GMR sensor for the superparamagnetic nanoparticles quantification. • Permanent magnets were utilized for particle magnetization and sensor bias. • The system sensitivity was 0.407 V per 1 µg of particles. • The limit of detection was 43.5 ng.

  3. Investigation of contactless detection using a giant magnetoresistance sensor for detecting prostate specific antigen.

    Science.gov (United States)

    Sun, Xuecheng; Zhi, Shaotao; Lei, Chong; Zhou, Yong

    2016-08-01

    This paper presents a contactless detection method for detecting prostate specific antigen with a giant magnetoresistance sensor. In contactless detection case, the prostate specific antigen sample preparation was separated from the sensor that prevented the sensor from being immersed in chemical solvents, and made the sensor implementing in immediately reuse without wash. Experimental results showed that applied an external magnetic field in a range of 50 Oe to 90 Oe, Dynabeads with a concentration as low as 0.1 μg/mL can be detected by this system and could give an approximate quantitation to the logarithmic of Dynabeads concentration. Sandwich immunoassay was employed for preparing PSA samples. The PSA capture was implemented on a gold film modified with a self-assembled monolayer and using biotinylated secondary antibody against PSA and streptavidinylated Dynabeads. With DC magnetic field in the range of 50 to 90 Oe, PSA can be detected with a detection limit as low as 0.1 ng/mL. Samples spiked with different concentrations of PSA can be distinguished clearly. Due to the contactless detection method, the detection system exhibited advantages such as convenient manipulation, reusable, inexpensive, small weight. So, this detection method was a promising candidate in biomarker detection, especially in point of care detection. PMID:27379844

  4. Giant magnetoresistance (GMR) sensors from basis to state-of-the-art applications

    CERN Document Server

    Reig, Candid; Mukhopadhyay, Subhas Chandra

    2013-01-01

    Since the discovery of the giant magnetoresistance (GMR) effect in 1988, spintronics has been presented as a new technology paradigm, awarded by the Nobel Prize in Physics in 2007. Initially used in read heads of hard disk drives, and while disputing a piece of the market to the flash memories, GMR devices have broadened their range of usage by growing towards magnetic field sensing applications in a huge range of scenarios. Potential applications at the time of the discovery have become real in the last two decades. Definitively, GMR was born to stand. In this sense, selected successful approaches of GMR based sensors in different applications: space, automotive, microelectronics, biotechnology … are collected in the present book. While keeping a practical orientation, the fundamentals as well as the current trends and challenges of this technology are also analyzed. In this sense, state of the art contributions from academy and industry can be found through the contents. This book can be used by starting ...

  5. Localization for the Non-Invasive Detecting Capsule in GI Tract Utilizing Permanent Magnet and Magnetoresistive Sensors

    Institute of Scientific and Technical Information of China (English)

    HE Wen-hui; YAN Guo-zheng; GUO Xu-dong

    2007-01-01

    The paper reports the localization principle and method for the capsule in the non-invasive detecting system of gastrointestinal (GI) tract utilizing one permanent and three magnetoresistive sensors. When the capsule is localized in practice, the permanent magnet is fixed inside the capsule, and the four magnetoresistive sensors are installed outside body. The permanent magnet's coordinate values can be solved by the magnetic dipole theory and optimum iterated method. The experiment shows the localization distance can reach 300 mm by employing the HMCI023 magnetoresistive sensors and the NdFeB45 φ9 mm × 5 mm permanent magnet, and the errors of single coordinate direction and radius vector are 0 - 58 mm and 0.1-62.9 mm respectively. The localization precision is acceptable basically, and it has some possibilities improving the precision and distance in the future. Moreover, the localization system makes the localization be reality because of decreasing the number of sensors, and it economizes the capsule's volume because of decreasing the permanent magnet's dimension, too.

  6. Tunneling anisotropic magnetoresistance in La2/3Sr1/3MnO3/LaAlO3/Pt tunnel junctions

    Directory of Open Access Journals (Sweden)

    R. Galceran

    2016-04-01

    Full Text Available The magnetotransport properties of La2/3Sr1/3MnO3(LSMO/ LaAlO3(LAO/Pt tunneling junctions have been analyzed as a function of temperature and magnetic field. The junctions exhibit magnetoresistance (MR values of about 37%, at H=90 kOe at low temperature. However, the temperature dependence of MR indicates a clear distinct origin than that of conventional colossal MR. In addition, tunneling anisotropic MR (TAMR values around 4% are found at low temperature and its angular dependence reflects the expected uniaxial anisotropy. The use of TAMR response could be an alternative of much easier technological implementation than conventional MTJs since only one magnetic electrode is required, thus opening the door to the implementation of more versatile devices. However, further studies are required in order to improve the strong temperature dependence at the present stage.

  7. Bias voltage dependence of tunneling anisotropic magnetoresistance in magnetic tunnel junctions with MgO and Al2O3 tunnel barriers.

    Science.gov (United States)

    Gao, Li; Jiang, Xin; Yang, See-Hun; Burton, J D; Tsymbal, Evgeny Y; Parkin, Stuart S P

    2007-11-30

    Tunneling anisotropic magnetoresistance (TAMR) is observed in tunnel junctions with transition metal electrodes as the moments are rotated from in-plane to out-of-plane in sufficiently large magnetic fields that the moments are nearly parallel to one another. A complex angular dependence of the tunneling resistance is found with twofold and fourfold components that vary strongly with bias voltage. Distinctly different TAMR behaviors are obtained for devices formed with highly textured crystalline MgO(001) and amorphous Al2O3 tunnel barriers. A tight-binding model shows that a fourfold angular dependence can be explained by the presence of an interface resonant state that affects the transmission of the contributing tunneling states through a spin-orbit interaction. PMID:18233308

  8. Magnetoresistance sensitivity mapping of the localized response of contiguous and lead-overlaid sensors

    International Nuclear Information System (INIS)

    Magnetoresistance sensitivity mapping (MSM) was used to investigate the local response of magnetic recording sensors without convolution of the writer, magnetic media and data channel. From a 2D map of the local sensor response, the intrinsic pulse shape and magnetic track profile are readily obtained. Pulse-width is a concern for high data rate since if pulse-width is too broad, individual transitions become difficult to distinguish. Track profiles are important because due to the small difference between magnetic write-width and magnetic read-width, side reading will lead to an increase in noise. Three experiments are discussed: the dependence of the pulse-width (PW50) of the standard contiguous junction (CJ) design on shield-to-shield spacing; a comparison of the pulse shape of lead-overlaid (LOL) and CJ designs; and a comparison of the magnetic track profile (including track-width and skirt ratio) of LOL and CJ designs. The LOL design offers an increased sensitivity; however, as seen from MSM, the penalties are broadening of the track and pulse profiles. These are a direct result of the finite current in the lead overlay region and an increased shield-to-shield spacing in that region. The MSM image shows a curvature, which is associated with the topography of the top shield due to the lead overlay

  9. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Science.gov (United States)

    Moreno, Jaime Sánchez; Muñoz, Diego Ramírez; Cardoso, Susana; Berga, Silvia Casans; Antón, Asunción Edith Navarro; de Freitas, Paulo Jorge Peixeiro

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A. PMID:22163748

  10. A non-invasive thermal drift compensation technique applied to a spin-valve magnetoresistive current sensor.

    Science.gov (United States)

    Sánchez Moreno, Jaime; Ramírez Muñoz, Diego; Cardoso, Susana; Casans Berga, Silvia; Navarro Antón, Asunción Edith; Peixeiro de Freitas, Paulo Jorge

    2011-01-01

    A compensation method for the sensitivity drift of a magnetoresistive (MR) Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC). No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from -10 A to +10 A. PMID:22163748

  11. A Non-Invasive Thermal Drift Compensation Technique Applied to a Spin-Valve Magnetoresistive Current Sensor

    Directory of Open Access Journals (Sweden)

    Paulo Jorge Peixeiro de Freitas

    2011-02-01

    Full Text Available A compensation method for the sensitivity drift of a magnetoresistive (MR Wheatstone bridge current sensor is proposed. The technique was carried out by placing a ruthenium temperature sensor and the MR sensor to be compensated inside a generalized impedance converter circuit (GIC. No internal modification of the sensor bridge arms is required so that the circuit is capable of compensating practical industrial sensors. The method is based on the temperature modulation of the current supplied to the bridge, which improves previous solutions based on constant current compensation. Experimental results are shown using a microfabricated spin-valve MR current sensor. The temperature compensation has been solved in the interval from 0 °C to 70 °C measuring currents from −10 A to +10 A.

  12. The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors.

    Science.gov (United States)

    Tran, Trong-Hieu; Chao, Paul Chang-Po; Chien, Ping-Chieh

    2016-01-01

    This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR) linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an "MR reader" stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs) and analog-to-digital converters (ADCs). The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR) ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB) over the input range of 0.5-2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-micron complementary metal oxide semiconductor (CMOS) technology for verification with a chip size of 6.61 mm², while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL) is -0.79-0.95 LSB while the differential non-linearity (DNL) is -0.68-0.72 LSB. The effective number of bits (ENOB) of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement measurement error is within

  13. The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors

    Directory of Open Access Journals (Sweden)

    Trong-Hieu Tran

    2016-09-01

    Full Text Available This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an “MR reader” stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs and analog-to-digital converters (ADCs. The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB over the input range of 0.5–2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC 0.35-micron complementary metal oxide semiconductor (CMOS technology for verification with a chip size of 6.61 mm2, while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL is −0.79–0.95 LSB while the differential non-linearity (DNL is −0.68–0.72 LSB. The effective number of bits (ENOB of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement

  14. The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors.

    Science.gov (United States)

    Tran, Trong-Hieu; Chao, Paul Chang-Po; Chien, Ping-Chieh

    2016-01-01

    This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR) linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an "MR reader" stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs) and analog-to-digital converters (ADCs). The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR) ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB) over the input range of 0.5-2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC) 0.35-micron complementary metal oxide semiconductor (CMOS) technology for verification with a chip size of 6.61 mm², while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL) is -0.79-0.95 LSB while the differential non-linearity (DNL) is -0.68-0.72 LSB. The effective number of bits (ENOB) of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement measurement error is within

  15. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian

    2013-04-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment are required, this design is not only easier from a technological point of view, but it also has the potential to reduce damage introduced to the semiconductor during fabrication. The device shows a similar magnetoresistance ratio as a conventional one but it has a lower sensitivity. Because of the reduced resistance, and hence less noise, high magnetic field resolution is maintained. © 1980-2012 IEEE.

  16. High signal output in current-perpendicular-to-the-plane giant magnetoresistance sensors using In-Zn-O-based spacer layers

    Science.gov (United States)

    Nakatani, Tomoya; Mihajlović, Goran; Read, John C.; Choi, Young-suk; Childress, Jeffrey R.

    2015-09-01

    We report current-perpendicular-to-the-plane giant magnetoresistance (CPP-GMR) sensors with a conductive Ag/In-Zn-O (IZO)/Zn trilayer as the spacer layer. Magnetoresistance ratios as high as 26% at resistance-area product (RA) = 60-120 mΩ µm2 were obtained in thin, polycrystalline spin valves suitable for modern read sensors of hard disk drives (HDDs). The large CPP-GMR values are attributed to the large spin-dependent scattering at the interfaces of the ferromagnet/IZO-based spacer junctions. The maximum voltage output of sensors with Ag/IZO/Zn spacers was ΔVmax = 11.3 mV, significantly larger than that observed for metallic AgSn spacers (2.3 mV). Such improved properties are important for HDD read heads with recording densities larger than 1 Tbit/in.2.

  17. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  18. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano, Andreina; Kerkhoff, Hans G.

    2015-01-01

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of failu

  19. Magnetization reversal signatures in the magnetoresistance of magnetic multilayers

    OpenAIRE

    Prieto Martin, Jose Luis; Romera Rabasa, Miguel; Akerman, Johanna; Perna, Paolo; Rodrigo, C.; Muñoz, Manuel; Bollero, Alberto; Maccariello, Davide; Fernández Cuñado, José Luis; E. Jiménez; Mikuszeit, Nikolai; Cros, Vincent; Camarero, Julio; Miranda, Rodolfo

    2012-01-01

    The simultaneous determination of magnetoresistance and vectorial-resolved magnetization hysteresis curves in a spin valve structure reveals distinct magnetoresistive features for different magnetic field orientations, which are directly related to the magnetization reversal processes. Measurements performed in the whole angular range demonstrate that the magnetoresistive response originates from the intrinsic anisotropic angular dependence of the magnetization orientation between the two fer...

  20. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    OpenAIRE

    Seung Yol Jeong; Sooyeon Jeong; Sang Won Lee; Sung Tae Kim; Daeho Kim; Hee Jin Jeong; Joong Tark Han; Kang-Jun Baeg; Sunhye Yang; Mun Seok Jeong; Geon-Woong Lee

    2015-01-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electr...

  1. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian

    2010-11-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show that the width and the length-width ratio of InAs are important geometrical parameters for the EMR effect along with the placement of the leads. Approximately the same EMR effect was obtained for both IVVI and VIIV configurations when the applied magnetic field ranged from -1T to 1T. In an optimized geometry the EMR effect can reach 43000% at 1Tesla for IVVI and 42700% at 1 Tesla for the VIIV configuration. ©2010 IEEE.

  2. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna

    2014-04-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area. © (2014) Trans Tech Publications.

  3. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  4. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  5. Automotive Throttle Position Sensor Based on Giant Magnetoresistance Effect%基于巨磁阻效应的车用节气门位置传感器

    Institute of Scientific and Technical Information of China (English)

    赵允喜

    2011-01-01

    Throttle position sensor is an important part of EFI engine, the traditional contact throttle sensor can not meet the needs. An automotive throttle position sensor based on giant magnetic effect is designed using giant magnetoresistance chip as inductive components. In the structure and material of traditional throttle position sensor is improved and optimized. Compared with the traditional magnets, the results show that sensitivity and resolution of the throttle position sensor has obviously improved. It is certificated that the design of the throttle position sensor based on giant magnetoresistance effect is feasible.%节气门位置传感器(TPS)是电子控制燃油喷射式发动机上的重要组成部分,传统的接触式节气门传感器已不能满足现代人们的需求。文章设计了一款基于巨磁效应的车用TPS,采用巨磁阻芯片作为感应元件,在结构和材料上对传统TPS进行改进和优化,并和传统的磁钢进行比较,结果表明,此款TPS在灵敏度和分辨率上有明显改善。证明了基于巨磁阻效应的TPS的设计可行。

  6. Enhanced response and sensitivity of self-corrugated graphene sensors with anisotropic charge distribution

    Science.gov (United States)

    Yol Jeong, Seung; Jeong, Sooyeon; Won Lee, Sang; Tae Kim, Sung; Kim, Daeho; Jin Jeong, Hee; Tark Han, Joong; Baeg, Kang-Jun; Yang, Sunhye; Seok Jeong, Mun; Lee, Geon-Woong

    2015-06-01

    We introduce a high-performance molecular sensor using self-corrugated chemically modified graphene as a three dimensional (3D) structure that indicates anisotropic charge distribution. This is capable of room-temperature operation, and, in particular, exhibiting high sensitivity and reversible fast response with equilibrium region. The morphology consists of periodic, “cratered” arrays that can be formed by condensation and evaporation of graphene oxide (GO) solution on interdigitated electrodes. Subsequent hydrazine reduction, the corrugated edge area of the graphene layers have a high electric potential compared with flat graphene films. This local accumulation of electrons interacts with a large number of gas molecules. The sensitivity of 3D-graphene sensors significantly increases in the atmosphere of NO2 gas. The intriguing structures have several advantages for straightforward fabrication on patterned substrates, high-performance graphene sensors without post-annealing process.

  7. Noise in small magnetic systems-applications to very sensitive magnetoresistive sensors

    Energy Technology Data Exchange (ETDEWEB)

    Pannetier, M. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France)]. E-mail: mpannetier@cea.fr; Fermon, C. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France); Le Goff, G. [CAPMAG/DRECAM, CEA Saclay 91191 Gif-sur-Yvette Cedex (France); Simola, J. [Elekta Neuromag Oy, P.O. Box 68, FIN-00511 Helsinki (Finland); Kerr, E. [SFI-Nanosciences Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland); Coey, J.M.D. [SFI-Nanosciences Laboratory, Physics Department, Trinity College, Dublin 2 (Ireland)

    2005-04-15

    Reduction for 1/f noise (or random telegraph noise) is a crucial issue for small magnetic sensors which is strongly related to structural properties and magnetic configuration. We show how it is possible to eliminate magnetic noise at low frequency in GMR/TMR sensors by a combination of cross anisotropies, window frame shapes and suitably designed magnetoresisitive stack. These sensors are superior to almost all existing field and flux sensors. Results are presented on a mixed sensor, where a superconducting loop acts as a flux-to-field transformer to the GMR sensor. This device is suitable for detection of biomagnetic signals, such as in magnetocardiography or in magnetoencephalography. Measurements on niobium-based and YBCO-based sensors are presented, leading to sensitivity of 30 fT/{radical}Hz at 77 K for small samples. Sensitivity lower than 1 fT/{radical}(Hz) is expected with appropriate design and use of TMR or CMR layers, which makes these a powerful alternative to SQUIDs.

  8. Finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor

    KAUST Repository

    Sun, Jian

    2011-08-06

    In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89 × 104% and 0.02%/(10-4 T), respectively, at 1 Tesla. For values of contact resistivity up to 10-8cm2 the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5 × 10-6 cm2 of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. © Springer Science+Business Media, LLC 2011.

  9. Magnetoresistance of electrodeposited NiFeCu alloys

    Energy Technology Data Exchange (ETDEWEB)

    Esmaili, S., E-mail: esmaili@shirazu.ac.ir [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Bahrololoom, M.E. [Department of Materials Science and Engineering, School of Engineering, Shiraz University, Shiraz (Iran, Islamic Republic of); Peter, L. [Research Institute for Solid State Physics and Optics, Hungarian Academy of Sciences, Budapest (Hungary)

    2012-01-01

    NiFeCu alloy films were electrodeposited from baths containing nickel sulfate and/or nickel sulfamate. All samples were pulse plated in the potentiostatic mode. The room temperature magnetoresistances of the films were measured showing anisotropic magnetoresistances up to 1.5%. The anisotropic magnetoresistances increased with the addition of sulfamic acid to the sulfate bath. Samples deposited from the bath with high sulfamate concentration showed a giant magnetoresistance behavior. To characterize the films, scanning electron microscopy and X-ray diffraction were used.

  10. Microscopic origin of magnetoresistance

    Directory of Open Access Journals (Sweden)

    Christian Heiliger

    2006-11-01

    Full Text Available Tunneling magnetoresistance is one of the basic effects of spintronics with the potential for applications in sensors and IT, where the spin degree of freedom of electrons is exploited. Successful application requires control of the materials and processes involved on the atomic scale. To support experimental developments, predict new materials, and optimize the effect, first-principle electronic structure calculations based on density functional theory are the most powerful tool. The method gives an insight into the microscopic origin of spin-dependent tunneling. The main components of a planar tunnel junction – barrier, leads, and their interface – and their specific role for tunneling magnetoresistance are discussed for one of the standard systems, Fe/MgO/Fe.

  11. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi2Te3

    International Nuclear Information System (INIS)

    We have studied angle dependent magnetoresistance of Bi2Te3 thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  12. Evolution and sign control of square-wave-like anisotropic magneto-resistance in spatially confined La0.3Pr0.4Ca0.3MnO3/LaAlO3(001) manganite thin films

    Science.gov (United States)

    Alagoz, H. S.; Jeon, J.; Keating, S.; Chow, K. H.; Jung, J.

    2016-04-01

    We investigated magneto-transport properties of a compressively strained spatially confined La0.3Pr0.4Ca0.3MnO3 (LPCMO) thin film micro-bridge deposited on LaAlO3. Angular dependence of the magneto-resistance R(θ) of this bridge, where θ is the angle between the magnetic field and the current directions in the film plane, exhibits sharp positive and negative percolation jumps near TMIT. The sign and the magnitude of these jumps can be tuned using the magnetic field. Such behavior has not been observed in LPCMO micro-bridges subjected to tensile strain, indicating a correlation between the type of the lattice strain, the distribution of electronic domains, and the anisotropic magneto-resistance in spatially confined manganite systems.

  13. Dynamic detection of ferrofluid with giant magnetoresistance sensor%巨磁电阻传感器对铁磁流体的动态检测

    Institute of Scientific and Technical Information of China (English)

    石海平; 冯洁; 陈翔; 李福泉

    2011-01-01

    A giant magnetoresistance ( GMR) sensor with integrated microfludic channel was studied for the dynamic detection of ferrofluid. The microfludic channel is integrated by SU-8 glue and PDMS bonding. The ferrofluid is a 10 nm Fe3 O4 suspension. The dynamic detection is carried out by directly measuring the fringe fields generated from superparamagnetic beads when the ferrofluid passes the active sensing area of a GMR sensor. To maximizing the detection sensitivity, the effect of the applied magnetic fields on both the sensor sensitivity and bead fringe fields is taken into account. Experiment results ahow that GMR sensors can detect the ferrofluid flow, and the sensor signals are proportional to the bead concentration of the ferrofluid in the microfludic channel.%研究一种集成微流道的巨磁电阻(GMR)传感器对铁磁流体的动态检测.利用SU-8胶和PDMS键合在巨磁电阻传感器上集成微流道.铁磁流体为直径10 nm的Fe304悬浮溶液.巨磁电阻传感器通过直接测量铁磁流体流过有效检测区域时磁珠的感应场,实现对铁磁流体的动态检测.为使检测的灵敏度最大,综合考虑了外加磁场对传感器灵敏度和磁珠感应场的影响.实验结果表明巨磁电阻传感器能够检测到铁磁流体的流动,且传感器信号与微流道中铁磁流体的磁珠浓度成正比.

  14. Electrical and Magnetoresistive studies Nd doped on La-Ba-Mn-O3 Manganites for Low-field Sensor application

    Directory of Open Access Journals (Sweden)

    H. Abdullah

    2009-01-01

    Full Text Available Problem statement: Electrical and magnetoresistive properties of the Nd doped (La1-xNdx0.5Ba0.5MnO3 type samples with 0 ≤ x ≤ 1.0 had been prepared using the solid state reaction. These materials are extensively studied by the substitution of rare-earth compound is to understand the nature of transport phenomena in each system. Approach: The samples were calcined at 900°C for 12 h, pelletized and sintered at 1300°C for 24 h. Electrical property had been determined by using standard four-point probe resistivity measurement within a temperature range of 30-300 K. The Magnetoresistance (MR was measured using a conventional four terminal method with magnetic fields of H≤ 1 T at 90, 100, 150, 200, 250, 270 and 300 K. Results: The metal-insulator transition temperature, TP shifted towards lower temperatures as Nd doping increased followed by decreasing of the activation energy (Ea, The observed behavior had been explained on the basis of oxygen deficiency present in the samples. The electrical resistivity data were analyzed using various theoretical models and it had been concluded that the electrical resistivity data in the low temperature regime (TTp were explained using variable range mechanism. All samples exhibit LFMR and HFMR regime, except x = 1 at higher temperature. Overall, MR drops slowly when temperature was increased. All doping concentration gives small variation in MR (~8.97-~63.49%. The highest MR value of 63.49% was observed at 150 K for the x = 1 sample. Conclusion: In this case, it showed that LFMR can be observed at a temperature 90 K. it provided a large variation of LFMR in range of ~100-~160% MR/Tesla. These values were very sensitive for low-field application and therefore it's also acceptable as a requirement for a sensing element.

  15. Monte Carlo calculations of the magnetoresistance in magnetic multilayer structures with giant magnetoresistance effects

    Science.gov (United States)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskiy, D. E.

    2016-06-01

    A Monte Carlo study of trilayer and spin-valve magnetic structures with giant magnetoresistance effects is carried out. The anisotropic Heisenberg model is used for description of magnetic properties of ultrathin ferromagnetic films forming these structures. The temperature and magnetic field dependences of magnetic characteristics are considered for ferromagnetic and antiferromagnetic configurations of these multilayer structures. The methodology for determination of the magnetoresistance by the Monte Carlo method is introduced; this permits us to calculate the magnetoresistance of multilayer structures for different thicknesses of the ferromagnetic films. The calculated temperature dependence of the magnetoresistance agrees very well with the experimental results measured for the Fe(0 0 1)–Cr(0 0 1) multilayer structure and CFAS–Ag–CFAS–IrMn spin-valve structure based on the half-metallic Heusler alloy Co2FeAl0.5Si0.5.

  16. Titanic Magnetoresistance in WTe2

    OpenAIRE

    Ali, Mazhar N.; Xiong, Jun; Flynn, Steven; Gibson, Quinn; Schoop, Leslie; Haldolaarachchige, Neel; Ong, N. P.; Tao, Jing; Cava, R. J.

    2014-01-01

    Magnetoresistance is the change of a material's electrical resistance in response to an applied magnetic field. In addition to its intrinsic scientific interest, it is a technologically important property, placing it in "Pasteur's quadrant" of research value: materials with large magnetorsistance have found use as magnetic sensors 1, in magnetic memory 2, hard drives 3, transistors 4, and are the subject of frequent study in the field of spintronics 5, 6. Here we report the observation of an ...

  17. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Science.gov (United States)

    Gooneratne, Chinthaka P.; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jürgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device. PMID:27571084

  18. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization.

    Science.gov (United States)

    Gooneratne, Chinthaka P; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G; Kosel, Jürgen

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads(®) demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead(®) SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads(®) travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  19. Strong spin-orbit coupling and Zeeman spin splitting in angle dependent magnetoresistance of Bi{sub 2}Te{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dey, Rik, E-mail: rikdey@utexas.edu; Pramanik, Tanmoy; Roy, Anupam; Rai, Amritesh; Guchhait, Samaresh; Sonde, Sushant; Movva, Hema C. P.; Register, Leonard F.; Banerjee, Sanjay K. [Microelectronics Research Center, University of Texas at Austin, Austin, Texas 78758 (United States); Colombo, Luigi [Texas Instruments, Dallas, Texas 75243 (United States)

    2014-06-02

    We have studied angle dependent magnetoresistance of Bi{sub 2}Te{sub 3} thin film with field up to 9 T over 2–20 K temperatures. The perpendicular field magnetoresistance has been explained by the Hikami-Larkin-Nagaoka theory alone in a system with strong spin-orbit coupling, from which we have estimated the mean free path, the phase coherence length, and the spin-orbit relaxation time. We have obtained the out-of-plane spin-orbit relaxation time to be small and the in-plane spin-orbit relaxation time to be comparable to the momentum relaxation time. The estimation of these charge and spin transport parameters are useful for spintronics applications. For parallel field magnetoresistance, we have confirmed the presence of Zeeman effect which is otherwise suppressed in perpendicular field magnetoresistance due to strong spin-orbit coupling. The parallel field data have been explained using both the contributions from the Maekawa-Fukuyama localization theory for non-interacting electrons and Lee-Ramakrishnan theory of electron-electron interactions. The estimated Zeeman g-factor and the strength of Coulomb screening parameter agree well with the theory. Finally, the anisotropy in magnetoresistance with respect to angle has been described by the Hikami-Larkin-Nagaoka theory. This anisotropy can be used in anisotropic magnetic sensor applications.

  20. Colossal magnetoresistive La0.7(Pb1-xSrx)0.3MnO3 films for bolometer and magnetic sensor applications

    International Nuclear Information System (INIS)

    We report on electrical and magnetic properties of a continuous series of solid solutions La0.7(Pb1-xSrx)0.3MnO3 prepared by the pulsed laser deposition technique on LaAlO3 and SrTiO3 single crystals. Strict compositional control enables us to tailor the metal-to-semiconductor phase transition from 266 to 327 K, the maximum of temperature coefficient of resistance from 10.2%K-1 to 3.2%K-1, and maximum of magnetoresistance ratio at 7 kOe from 41% to 17% for x=0 and x=1 correspondingly. The ferromagnetic resonance linewidth ranges from 124 to 300 Oe, indicating low microwave loss and the films uniformity. Noise spectroscopy performed in the 2 Hz - 20 kHz range reveals two components: Johnson noise (independent of frequency and bias current) and excess 1/f noise proportional to the square of the bias current. Very low excess noise (normalized value γ/n varying in the range from 10-20 to 10-22cm3) has been achieved due to the epitaxial quality of the fabricated films. Using these films, an infrared radiation bolometer and weak magnetic field sensor have been built and tested. The bolometer resolves the noise equivalent temperature difference as low as 120 nK/√Hz at 30 Hz frame frequency, while the magnetic field sensor shows the noise equivalent magnetic field difference of 50 μOe/√Hz at 1 kHz and optimum bias magnetic field applied. [copyright] 2001 American Institute of Physics

  1. Electronic Structure Basis for the Extraordinary Magnetoresistance in WTe2

    Science.gov (United States)

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A. V.; Cava, R. J.; Valla, T.

    2014-11-01

    The electronic structure basis of the extremely large magnetoresistance in layered nonmagnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at low temperatures, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic Fermi surface from which the pronounced anisotropy of the magnetoresistance follows. A change in the Fermi surface with temperature was found and a high-density-of-states band that may take over conduction at higher temperatures and cause the observed turn-on behavior of the magnetoresistance in WTe2 was identified.

  2. Colossal Magnetoresistive Manganite Based Fast Bolometric X-ray Sensors for Total Energy Measurements of Free Electron Lasers

    International Nuclear Information System (INIS)

    Bolometric detectors based on epitaxial thin films of rare earth perovskite manganites have been proposed as total energy monitors for X-ray pulses at the Linac Coherent Light Source free electron laser. We demonstrate such a detector scheme based on epitaxial thin films of the perovskite manganese oxide material Nd0.67Srx0.33MnO3, grown by pulsed laser deposition on buffered silicon substrates. The substrate and sensor materials are chosen to meet the conflicting requirements of radiation hardness, sensitivity, speed and linearity over a dynamic range of three orders of magnitude. The key challenge in the material development is the integration of the sensor material with Si. Si is required to withstand the free electron laser pulse impact and to achieve a readout speed three orders of magnitude faster than conventional cryoradiometers for compatibility with the Linac Coherent Light Source pulse rate. We discuss sensor material development and the photoresponse of prototype devices. This Linac Coherent Light Source total energy monitor represents the first practical application of manganite materials as bolometric sensors

  3. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  4. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, Johannes Petrus Jacobus

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the informatio

  5. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metal–oxide–semiconductor integration

    International Nuclear Information System (INIS)

    Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metal–oxide–semiconductor modules

  6. An in-depth noise model for giant magnetoresistance current sensors for circuit design and complementary metal–oxide–semiconductor integration

    Energy Technology Data Exchange (ETDEWEB)

    Roldán, A., E-mail: amroldan@ugr.es; Roldán, J. B. [Department of Electronics and Computer Technology, University of Granada (Spain); Reig, C. [Department of Electronic Engineering, University of Valencia (Spain); Cardoso, S. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Instituto Superior Técnico (IST), Av. Rovisco Pais, 1000-029 Lisbon (Portugal); Cardoso, F. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Ferreira, R. [International Iberian Nanotechnology Laboratory, Braga (Portugal); Freitas, P. P. [INESC-MN and IN, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); International Iberian Nanotechnology Laboratory, Braga (Portugal)

    2014-05-07

    Full instrumentation bridges based on spin valve of giant magnetoresistance and magnetic tunnel junction devices have been microfabricated and experimentally characterized from the DC and noise viewpoint. A more realistic model of these devices was obtained in this work, an electrical and thermal model previously developed have been improved in such a way that noise effects are also included. We have implemented the model in a circuit simulator and reproduced the experimental measurements accurately. This provides a more realistic and complete tool for circuit design where magnetoresistive elements are combined with well-known complementary metal–oxide–semiconductor modules.

  7. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  8. Quantized magnetoresistance in atomic-size contacts.

    Science.gov (United States)

    Sokolov, Andrei; Zhang, Chunjuan; Tsymbal, Evgeny Y; Redepenning, Jody; Doudin, Bernard

    2007-03-01

    When the dimensions of a metallic conductor are reduced so that they become comparable to the de Broglie wavelengths of the conduction electrons, the absence of scattering results in ballistic electron transport and the conductance becomes quantized. In ferromagnetic metals, the spin angular momentum of the electrons results in spin-dependent conductance quantization and various unusual magnetoresistive phenomena. Theorists have predicted a related phenomenon known as ballistic anisotropic magnetoresistance (BAMR). Here we report the first experimental evidence for BAMR by observing a stepwise variation in the ballistic conductance of cobalt nanocontacts as the direction of an applied magnetic field is varied. Our results show that BAMR can be positive and negative, and exhibits symmetric and asymmetric angular dependences, consistent with theoretical predictions. PMID:18654248

  9. 新型磁电阻效应实验仪研制及应用%Development and application of one new type of magnetoresistance experimental apparatus

    Institute of Scientific and Technical Information of China (English)

    倪敏; 许美新; 时晨

    2012-01-01

    利用新型的磁电阻效应实验仪对多层膜巨磁电阻传感器、自旋阀巨磁电阻传感器以及各向异性磁电阻传感器的电阻随外加磁场的变化进行了研究,从而了解各种磁电阻的特性.该新型仪器可在高校实验中应用,有助于学生掌握磁电阻传感器的定标方法,测量并计算3种磁电阻传感器灵敏度,也可用于研究3种磁电阻传感器输出电压与通电导线电流的关系,以及磁电阻的其他效应.%The new type of magnetoresistance experimental apparatus was designed and utilized to investigate the electrical resistance change with applied external magnetic field for three types of magnetoresistance sensors including multilayer giant magnetic resistance, spin valve giant magnetic resistance and anisotropic magnetic resistance, thereby understanding the characteristics of each megnetoresistance. The new equipment could be used in the experiments for college students and help them to learn the calibration method of the magnetoresistance sensor, measure and calculate the sensitivity of three magnetoresistance sensors. It also can be used to study the relationship between the output voltage and electrical current for magnetoresislance sensors.

  10. Magnetoresistive waves in plasmas

    International Nuclear Information System (INIS)

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed

  11. Magnetoresistance of nanosized magnetic configurations in single nanowires

    Science.gov (United States)

    Wegrowe, J.-E.; Gilbert, S.; Doudin, B.; Ansermet, J.-Ph.

    1998-03-01

    The problem of studying spin configurations at nanoscopic level is that magnetic measurements at this scale cannot be performed using usual magnetometers. We have shown that anisotropic magnetoresistance (AMR) measured with micro-contacts allows spin configurations of a single nanowire to be studied in details. The nanowires are diameter 50 nm and length 6000 nm and are produced by a combination of electrodeposition in track-etched membrane templates and sputtering technics. Magnetoresistance of well-defined spin configurations in single nanowires, like Curling magnetization reversal modes or domain wall, are measured.

  12. Comment on “Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure” [J. Appl. Phys. 113, 063903 (2013)

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Henriksen, Anders Dahl; Rizzi, Giovanni;

    2013-01-01

    In a recent paper, Sinha et al. compared sensitivities of planar Hall effect sensors with different geometries that are all based on the anisotropic magnetoresistance of permalloy. They write that the sensitivity of a planar Hall effect sensor with a ring geometry is a factor of √2 larger than...... the sensitivity of the so-called planar Hall effect bridge (PHEB) sensor of equal size. Osterberg et al do not agree on the signal calculation for a ring sensor derived by Sinha et al. and claim that this adversely affects the results....

  13. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications

    Directory of Open Access Journals (Sweden)

    Inga Ennen

    2016-06-01

    Full Text Available The giant magnetoresistance (GMR effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

  14. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    Science.gov (United States)

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-01-01

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors. PMID:27322277

  15. Anomalous electronic structure and magnetoresistance in TaAs2.

    Science.gov (United States)

    Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-01-01

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions. PMID:27271852

  16. Magnetization reversal in permalloy ferromagnetic nanowires investigated with magnetoresistance measurements

    Science.gov (United States)

    Oliveira, A. B.; Rezende, S. M.; Azevedo, A.

    2008-07-01

    The magnetization reversal process in single Permalloy (Ni81Fe19) nanowires has been investigated by magnetoresistance measurements as a function of the angle between the applied field and the wire direction. The Permalloy nanostructures fabricated on an ultrathin film by atomic force microscopy consist of two large rectangular pads connected by a nanowire with the shape of a long thin narrow tape. For each field direction in the plane of the film the dependence of the magnetoresistance on the field value exhibits two main contributions: one from the pads and one from the nanowire. The contribution from the pads is due to a usual anisotropic magnetoresistance characteristic of coherent magnetization rotation, whereas the contribution from the nanowire is an abrupt transition at the switching field. The dependence of the switching field on the in-plane field angle is quantitatively described by a model of nucleation field with the buckling magnetization rotation mode.

  17. Systematic Angular Study of Magnetoresistance in Permalloy Connected Kagome Artificial Spin Ice

    Science.gov (United States)

    Park, Jungsik; Le, Brian; Watts, Justin; Leighton, Chris; Samarth, Nitin; Schiffer, Peter

    Artificial spin ices are nanostructured two-dimensional arrays of ferromagnetic elements, where frustrated interactions lead to unusual collective magnetic behavior. Here we report a room-temperature magnetoresistance study of connected permalloy (Ni81Fe19) kagome artificial spin ice networks, wherein the direction of the applied in-plane magnetic field is systematically varied. We measure both the longitudinal and transverse magnetoresistance in these structures, and we find certain transport geometries of the network show strong angular sensitivity - even small variations in the applied field angle lead to dramatic changes of the magnetoresistance response. We also investigate the magnetization reversal of the networks using magnetic force microscopy (MFM), demonstrating avalanche behavior in the magnetization reversal. The magnetoresistance features are analyzed using an anisotropic magnetoresistance (AMR) model. Supported by the US Department of Energy. Work at the University of Minnesota was supported by Seagate Technology, NSF MRSEC, and a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme.

  18. Negative magnetoresistivity in holography

    CERN Document Server

    Sun, Ya-Wen

    2016-01-01

    Negative magnetoresistivity is a special magnetotransport property associated with chiral anomaly in four dimensional chiral anomalous systems, which refers to the transport behavior that the DC longitudinal magnetoresistivity decreases with increasing magnetic field. We calculate the longitudinal magnetoconductivity in the presence of backreactions of the magnetic field to gravity in holographic zero charge and axial charge density systems with and without axial charge dissipation. In the absence of axial charge dissipation, we find that the quantum critical conductivity grows with increasing magnetic field when the backreaction strength is larger than a critical value, in contrast to the monotonically decreasing behavior of quantum critical conductivity in the probe limit. With axial charge dissipation, we find the negative magnetoresistivity behavior. The DC longitudinal magnetoconductivity scales as $B$ in the large magnetic field limit, which deviates from the exact $B^2$ scaling of the probe limit resul...

  19. Giant positive magnetoresistance in metallic VOx thin films

    OpenAIRE

    Rata, A. D.; Kataev, V.; Khomskii, D.; Hibma, T.

    2003-01-01

    We report on giant positive magnetoresistance effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.

  20. Giant positive magnetoresistance in metallic VOx thin films

    Science.gov (United States)

    Rata, A. D.; Kataev, V.; Khomskii, D.; Hibma, T.

    2003-12-01

    We report on giant positive magnetoresistance (MR) effect observed in VOx thin films, epitaxially grown on SrTiO3 substrate. The MR effect depends strongly on temperature and oxygen content and is anisotropic. At low temperatures its magnitude reaches 70% in a magnetic field of 5 T. Strong electron-electron interactions in the presence of strong disorder may qualitatively explain the results. An alternative explanation, related to a possible magnetic instability, is also discussed.

  1. Electronic structure basis for the titanic magnetoresistance in WTe$_2$

    OpenAIRE

    Pletikosić, I.; Ali, Mazhar N.; Fedorov, A; Cava, R. J.; Valla, T.

    2014-01-01

    The electronic structure basis of the extremely large magnetoresistance in layered non-magnetic tungsten ditelluride has been investigated by angle-resolved photoelectron spectroscopy. Hole and electron pockets of approximately the same size were found at the Fermi level, suggesting that carrier compensation should be considered the primary source of the effect. The material exhibits a highly anisotropic, quasi one-dimensional Fermi surface from which the pronounced anisotropy of the magnetor...

  2. Real-time Direction Servo System Based on Magnetoresistive Sensor%一种基于磁阻传感器的实时方向随动系统

    Institute of Scientific and Technical Information of China (English)

    赖于树; 郭鑫; 向利平; 余波

    2012-01-01

    为解决方向识别与目标实时跟踪问题,提出了一种基于磁阻传感器和加速度传感器的实时方向随动系统.首先介绍了基于磁阻传感器的实时方向随动原理,然后分别从硬件结构和软件流程两方面对系统设计进行了相应的描述,最后通过在智能轮椅上的应用实践,验证了系统的可行性和实用性.测量分析表明,该系统具有抗干扰能力强、响应速度快以及能耗低等优势.%In order to solve the issues of direction identification and real-time object tracking, the real-time direction servo system based on magnetoresistive sensor and acceleration sensor is proposed. The principle of such direction servo action is introduced first, then the system design is described in hardware structure and software flowchart, finally the feasibility and practicability of the system is verified through practice on controlling intelligent wheelchair. The measuring analysis indicates that the system features powerful anti-interference capability, fast response speed, and low energy consumption.

  3. Large, non-saturating magnetoresistance in WTe2

    Science.gov (United States)

    Ali, Mazhar N.; Xiong, Jun; Flynn, Steven; Tao, Jing; Gibson, Quinn D.; Schoop, Leslie M.; Liang, Tian; Haldolaarachchige, Neel; Hirschberger, Max; Ong, N. P.; Cava, R. J.

    2014-10-01

    Magnetoresistance is the change in a material's electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors, in magnetic memory, and in hard drives at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

  4. Quantitative current measurements using scanning magnetoresistance microscopy.

    Science.gov (United States)

    Takezaki, Taiichi; Sueoka, Kazuhisa

    2008-08-01

    We have demonstrated the capability of scanning magnetoresistance microscope (SMRM) to be used for quantitative current measurements. The SMRM is a magnetic microscope that is based on an atomic force microscope (AFM) and simultaneously measures the localized surface magnetic field distribution and surface topography. The proposed SMRM employs an in-house built AFM cantilever equipped with a miniaturized magnetoresistive (MR) sensor as a magnetic field sensor. In this study, a spin-valve type MR sensor with a width of 1 microm was used to measure the magnetic field distribution induced by a current carrying wire with a width of 5 microm and a spacing of 1.6 microm at room temperature and under ambient conditions. Simultaneous imaging of the magnetic field distribution and the topography was successfully performed in the DC current ranging from 500 microA to 8 mA. The characterized SV sensor, which has a linear response to magnetic fields, offers the quantitative analysis of a magnetic field and current. The measured magnetic field strength was in good agreement with the result simulated using Biot-Savart's law. PMID:18599218

  5. Crystalline Structure, Electrophysical and Magnetoresistive Properties of High Entropy Film Alloys

    Directory of Open Access Journals (Sweden)

    S.I. Vorobiov

    2016-10-01

    Full Text Available The results of research the phase composition and electrophysical (resistivity, thermal coefficient of resistance, strain coefficient and magnetoresistive properties (anisotropic magnetoresistance of thin films (to 40 nm high entropy alloys (HEA based on Al, Cu, Ni, Cr, Fe, Co and Ti. It is established that after forming the layered samples by electron condensation on diffraction pattern fixed lines from the two phases of the fcc lattice and actually tracks the bcc phase. After homogenization by annealing the samples is one of the fcc phase s.s. HEA and traces bcc phase (likely s.s. (-Fe, Cr, that samples are single phase. The study electrical properties allowed watching the first double-stage plastic deformation of a large value of the coefficient gauge (300 units, watch probably, is typical for НЕА. The character dependences MR from induction indicates to realization of anisotropic magnetoresistance.

  6. Electronic structure origins of the extremely large magnetoresistance in tungsten ditelluride

    Science.gov (United States)

    Pletikosic, Ivo; Ali, Mazhar; Cava, Robert; Valla, Tonica

    2015-03-01

    WTe2 is a layered transition metal dichalcogenide showing a structural reduction to one-dimensional tellurium-surrounded tungsten chains. The material exhibits an extremely large positive anisotropic magnetoresistance of a few million percent that increases as the square of the field and shows no saturation up to 60 T. We explored the possible electronic structure origins of the magnetoresistance by means of angle-resolved photoelectron spectroscopy (ARPES) and found electron and hole pockets of equal size along the direction of tungsten chains, forming a highly anisotropic quasi-twodimensional Fermi surface. The perfect carrier compensation at low temperatures has been identified as the primary source of the magnetoresistive effect, and the change of the Fermi surface shape as well as a high-density-of-states band slightly below the Fermi level recognized as the cause of its diminishing at rising temperatures.

  7. Magnetoresistance effect in (La, Sr)MnO{sub 3} bicrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, G; Pastoriza, H; Granada, M; Rojas Sanchez, J C; Sirena, M; Alascio, B [Centro Atomico Bariloche (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Pcia. de Rio Negro (Argentina); Steren, L B; Vega, D, E-mail: galejand@cab.cnea.gov.a [Centro Atomico Constituyentes (CNEA), 1650 San MartIn, Pcia. de Buenos Aires (Argentina)

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La{sub 0.75}Sr{sub 0.25}MnO{sub 3} films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  8. Magnetoresistance effect in (La, Sr)MnO3 bicrystalline films.

    Science.gov (United States)

    Alejandro, G; Steren, L B; Pastoriza, H; Vega, D; Granada, M; Sánchez, J C Rojas; Sirena, M; Alascio, B

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La(0.75)Sr(0.25)MnO(3) films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  9. Monte Carlo simulation of multilayer magnetic structures and calculation of the magnetoresistance coefficient

    Science.gov (United States)

    Prudnikov, V. V.; Prudnikov, P. V.; Romanovskii, D. E.

    2015-11-01

    The Monte Carlo study of three-layer and spin-valve magnetic structures with giant magnetoresistance effects has been performed with the application of the Heisenberg anisotropic model to the description of the magnetic properties of thin ferromagnetic films. The dependences of the magnetic characteristics on the temperature and external magnetic field have been obtained for the ferromagnetic and antiferromagnetic configurations of these structures. A Monte Carlo method for determining the magnetoresistance coefficient has been developed. The magnetoresistance coefficient has been calculated for three-layer and spin-valve magnetic structures at various thicknesses of ferromagnetic films. It has been shown that the calculated temperature dependence of the magnetoresistance coefficient is in good agreement with experimental data obtained for the Fe(001)/Cr(001) multilayer structure and the CFAS/Ag/CFAS/IrMn spin valve based on the Co2FeAl0.5Si0.5 (CFAS) Heusler alloy.

  10. Theory of magnetoresistance due to lattice dislocations in face-centred cubic metals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2016-06-01

    A theoretical model to describe the low temperature magneto-resistivity of high purity copper single and polycrystals containing different density and distribution of dislocations has been developed. In the model, magnetoresistivity tensor is evaluated numerically using the effective medium approximation. The anisotropy of dislocation-induced relaxation time is considered by incorporating two independent energy bands with different relaxation times and the spherical and cylindrical Fermi surfaces representing open, extended and closed electron orbits. The effect of dislocation microstructure is introduced by means of two adjustable parameters corresponding to the length and direction of electron orbits in the momentum space, which permits prediction of magnetoresistance of FCC metals containing different density and distribution of dislocations. The results reveal that dislocation microstructure influences the character of the field-dependent magnetoresistivity. In the orientation of the open orbits, the quadratic variation in magnetoresistivity changes to quasi-linear as the density of dislocations increases. In the closed orbit orientation, dislocations delay the onset of magnetoresistivity saturation. The results indicate that in the open orbit orientations of the crystals, the anisotropic relaxation time due to small-angle dislocation scattering induces the upward deviation from Kohler's rule. In the closed orbit orientations Kohler's rule holds, independent of the density of dislocations. The results obtained with the model show good agreement with the experimental measurements of transverse magnetoresistivity in deformed single and polycrystal samples of copper at 2 K.

  11. Maximum non-saturating magnetoresistance in MoTe2

    Science.gov (United States)

    Abdel-Hafiez, Mahmoud; Gu, Zhehao; Chen, Xiao-Jia; Center for High Pressure Science; Technology Advanced Research, Shanghai, 201203, China Team

    The search for exotic materials with a linear magnetoresistance (MR) is one of the most challenging tasks of the condensed matter community and materials science. Here, we investigated the magnetoresistance behavior of high-quality single crystals MoTe2. A large linear non-staturated MR in a magnetic field of 60 T, was observed with a maximum at a temperature of T = 45 K. The detailed field and temperature dependencies will be presented. Our results not only provide a general scaling approach for the anisotropic MR but also are crucial for correctly understanding the mechanism of the linear MR, including the origin of the remarkable ``turn-on'' behavior in the resistance versus temperature curve.

  12. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  13. Anomalous magnetoresistance in Fibonacci multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  14. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer

    International Nuclear Information System (INIS)

    A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40–350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe3O4@Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe3O4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects. (paper)

  15. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer

    Science.gov (United States)

    Mietta, José L.; Jorge, Guillermo; Martín Negri, R.

    2014-08-01

    A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40-350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe3O4@Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe3O4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects.

  16. Nonlocal ordinary magnetoresistance in indium arsenide

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Pan [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China); Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Yuan, Zhonghui; Wu, Hao; Ali, S.S. [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Wan, Caihua, E-mail: wancaihua@iphy.ac.cn [Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Ban, Shiliang, E-mail: slban@imu.edu.cn [School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021 (China)

    2015-07-01

    Deflection of carriers by Lorentz force results in an ordinary magnetoresistance (OMR) of (μB){sup 2} at low field. Here we demonstrate that the OMR in high mobility semiconductor InAs could be enhanced by measurement geometry where two probes of voltmeter were both placed on one outer side of two probes of current source. The nonlocal OMR was 3.6 times as large as the local one, reaching 1.8×10{sup 4}% at 5 T. The slope of the linear field dependence of the nonlocal OMR was improved from 12.6 T{sup −1} to 45.3 T{sup −1}. The improvement was ascribed to polarity-conserved charges accumulating on boundaries in nonlocal region due to Hall effect. This InAs device with nonlocal geometry could be competitive in B-sensors due to its high OMR ratio, linear field dependence and simple structure. - Highlights: • Ordinary magnetoresistance could be enhanced by nonlocal geometry by 3.6 times. • Linear field dependence at high field could be realized in nonlocal geometry. • Nonlocal MR was realized by polarity-conserved accumulating charges on boundaries • Nonlocal MR in InAs reached 1.8×10{sup 4}% at 5 T. • Nonlocal MR devices could be used in high-field sensing applications.

  17. Nonlocal ordinary magnetoresistance in indium arsenide

    International Nuclear Information System (INIS)

    Deflection of carriers by Lorentz force results in an ordinary magnetoresistance (OMR) of (μB)2 at low field. Here we demonstrate that the OMR in high mobility semiconductor InAs could be enhanced by measurement geometry where two probes of voltmeter were both placed on one outer side of two probes of current source. The nonlocal OMR was 3.6 times as large as the local one, reaching 1.8×104% at 5 T. The slope of the linear field dependence of the nonlocal OMR was improved from 12.6 T−1 to 45.3 T−1. The improvement was ascribed to polarity-conserved charges accumulating on boundaries in nonlocal region due to Hall effect. This InAs device with nonlocal geometry could be competitive in B-sensors due to its high OMR ratio, linear field dependence and simple structure. - Highlights: • Ordinary magnetoresistance could be enhanced by nonlocal geometry by 3.6 times. • Linear field dependence at high field could be realized in nonlocal geometry. • Nonlocal MR was realized by polarity-conserved accumulating charges on boundaries • Nonlocal MR in InAs reached 1.8×104% at 5 T. • Nonlocal MR devices could be used in high-field sensing applications

  18. Deposition temperature influence on sputtered nanogranular magnetoresistive composites

    Energy Technology Data Exchange (ETDEWEB)

    Mujika, M. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain)]. E-mail: mmujika@ceit.es; Arana, S. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain); Castano, E. [CEIT and Tecnun (University of Navarra), Manuel de Lardizabal 15, 20018 San Sebastian (Spain)

    2007-09-15

    Among different physical principles magnetic sensors for low magnetic field detection can be based on, granular giant magnetoresistances have been studied due to their high sensitivity to small field changes and gradual magnetoresistance change at low fields. Following this aim, nanogranular Ag-Co thin films, deposited by DC co-sputtering from Ag and Co targets at different deposition temperatures have been tested. Samples have been grown at room temperature, 100 and 200 deg. C and annealed in a mixture of N{sub 2} and H{sub 2} at 200 and 300 deg. C for 45 min. The samples that have shown the best performance have been subjected to two sets of measurements where an external field has been applied in-plane and perpendicular to the film plane. The best performance has been shown by the samples deposited at room temperature and annealed at 300 deg. C, reporting a maximum value of magnetoresistance of 16.7% at 1.4 T and a linear sensitivity of 63%/T between 0.04 and 0.07 T within a magnetoresistance range varying from 1.5% to 3% when subjected to an in-plane external field.

  19. Using granular C0-AI2O3 spacer for optimization of functional parameters of the FeMn/Fe20Ni80 magnetoresistive films

    Science.gov (United States)

    Gorkovenko, A. N.; Lepalovskij, V. N.; Adanakova, O. A.; Vas'kovskiy, V. O.

    2016-03-01

    In this paper we studied the possibility of tailoring the functional properties of the multilayer magnetoresistive medium with unidirectional anisotropy and the anisotropic magnetoresistance effect (AMR). Objects of the research were composite Co-Al2O3 films and Ta/Fe20Ni80/Fe50Mn50/Fe20Ni80/Co-Al2O3/Fe20Ni80/Ta multilayers structures obtained by magnetron sputtering and selectively subjected vacuum annealing. Structure, magnetic and magnetoresistive properties of the films in the temperature range 77÷440 K were investigated.

  20. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.;

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  1. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    Abhishek Nag; Sugata Ray

    2015-06-01

    Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain magnetic antiphase boundaries (APB) as well as magnetically frustrated grain surfaces have also been proposed to act as tunnel barriers in Sr2FeMoO6. In this review, the present state of the debate has been discussed briefly and how the physical state of the material can affect the magnetoresistance signal of double perovskites in many different ways has been pointed out.

  2. Pure spin-Hall magnetoresistance in Rh/Y3Fe5O12 hybrid

    Science.gov (United States)

    Shang, T.; Zhan, Q. F.; Ma, L.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Li, H. H.; Liu, L. P.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2015-12-01

    We report an investigation of anisotropic magnetoresistance (AMR) and anomalous Hall resistance (AHR) of Rh and Pt thin films sputtered on epitaxial Y3Fe5O12 (YIG) ferromagnetic insulator films. For the Pt/YIG hybrid, large spin-Hall magne toresistance (SMR) along with a sizable conventional anisotropic magnetoresistance (CAMR) and a nontrivial temperature dependence of AHR were observed in the temperature range of 5-300 K. In contrast, a reduced SMR with negligible CAMR and AHR was found in Rh/YIG hybrid. Since CAMR and AHR are characteristics for all ferromagnetic metals, our results suggest that the Pt is likely magnetized by YIG due to the magnetic proximity effect (MPE) while Rh remains free of MPE. Thus the Rh/YIG hybrid could be an ideal model system to explore physics and devices associated with pure spin current.

  3. Mobility controlled linear magnetoresistance with 3D anisotropy in a layered graphene pallet

    Science.gov (United States)

    Zhang, Qiang; Li, Peng; He, Xin; Li, Jun; Wen, Yan; Ren, Wencai; Cheng, Hui-ming; Yang, Yang; Al-Hadeethi, Yas F.; Zhang, Xixiang

    2016-10-01

    A bulk sample of pressed graphene sheets was prepared under hydraulic pressure (~150 MPa). The cross-section of the sample demonstrates a layered structure, which leads to 3D electrical transport properties with anisotropic mobility. The electrical transport properties of the sample were measured over a wide temperature (2-400 K) and magnetic field (-140 ~\\text{kOe}≤slant H≤slant 140 ~\\text{kOe} ) range. The magnetoresistance measured at a fixed temperature can be described by R≤ft(H,θ \\right)=R≤ft({{\\varepsilon}θ}H,0\\right) with {{\\varepsilon}θ}={≤ft({{\\cos}2}θ +{{γ-2}{{\\sin}2}θ \\right)}1/2} , where γ is the mobility anisotropy constant and θ is the angle between the normal of the sample plane and the magnetic field. The large linear magnetoresistance (up to 36.9% at 400 K and 140 kOe) observed at high fields is ascribed to a classical magnetoresistance caused by mobility fluctuation ( Δ μ ). The magnetoresistance value at 140 kOe was related to the average mobility ≤ft( \\right) because of the condition Δ μ . The carrier concentration remained constant and the temperature-dependent resistivity was proportional to the average mobility, as verified by Kohler’s rule. Anisotropic dephasing length was deduced from weak localization observed at low temperatures.

  4. Magnetic giant magnetoresistance commercial off the shelf for space applications

    DEFF Research Database (Denmark)

    Michelena, M.D.; Oelschlägel, Wulf; Arruego, I.;

    2008-01-01

    The increase of complexity and miniaturizing level of Aerospace platforms make use of commercial off the shelf (COTS) components constitute a plausible alternative to the use of military or rad-tolerant components. In this work, giant magnetoresistance commercial sensors are studied to be used...... as COTS, the next missions to be launched in the framework of the Spanish National Space Program: OPTOS and SEOSAT. This technology of magnetic sensors is interesting due to their high operating range up to 2 mT and the high temperature dynamic range from -50 up to 150 degrees C. However, in contrast...

  5. Anisotropic universe with anisotropic sources

    Energy Technology Data Exchange (ETDEWEB)

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha, E-mail: aluri@iucaa.ernet.in, E-mail: sukanta@iiserb.ac.in, E-mail: manabendra@iiserb.ac.in, E-mail: snigdha@iiserb.ac.in [Department of Physics, IISER Bhopal, Bhopal - 462023 (India)

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  6. CPP magnetoresistance of magnetic multilayers: A critical review

    Science.gov (United States)

    Bass, Jack

    2016-06-01

    review is designed to provide a history of how knowledge of CPP-MR parameters grew, to give credit for discoveries, to explain how combining theory and experiment has enabled extraction of quantitative information about these parameters, but also to make clear that progress was not always direct and to point out where disagreements still exist. To limit its length, the review considers only collinear orientations of the moments of adjacent F-layers. To aid readers looking for specific information, we have provided an extensive table of contents and a detailed summary. Together, these should help locate over 100 figures plus 17 tables that collect values of individual parameters. In 1997, CIP-MR replaced anisotropic MR (AMR) as the sensor in read heads of computer hard drives. In principle, the usually larger CPP-MR was a contender for the next generation read head sensor. But in 2003, CIP-MR was replaced by the even larger Tunneling MR (TMR), which has remained the read-head sensor ever since. However, as memory bits shrink to where the relatively large specific resistance AR of TMR gives too much noise and too large an R to impedance match as a read-head sensor, the door is again opened for CPP-MR. We will review progress in finding techniques and F-alloys and F/N pairs to enhance the CPP-MR, and will describe its present capabilities.

  7. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, M.S.; Wisselink, H.H.; Meinders, V.T.; Boogaard, van den A.H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  8. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus

    OpenAIRE

    Krishna, Venkatramana D.; Wu, Kai; Perez, Andres M.; WANG, JIAN-PING

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a re...

  9. Low coercivity giant magnetoresistance with perpendicular magnetic anisotropy

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jeong-Seop; Yoon, Jungbum; Kang, Mool-Bit; You, Chun-Yeol, E-mail: cyyou@inha.ac.kr

    2014-05-01

    We find the perpendicular magnetic anisotropy giant magnetoresistance structure, whose coercivity is less than 10 Oe. We reveal that the coercivity of free layer can be smaller than 5 Oe in Co/Pd/Cu/[Co/Pd]{sub 4} multilayer structure with a TiO{sub 2} seed layer. The TiO{sub 2} seed layer plays a critical role in the small coercivity of free layer. The GMR ratio is around 1–1.8% for the out-of-plane magnetic fields, and the maximum MR sensitivity of 0.12%/Oe is achieved. - Highlights: • We find an extremely small coercivity giant magnetoresistance (GMR) structure for the out-of-plane magnetic field. • The key ingredient of small coercivity is a TiO{sub 2} seed layer. • Such a small coercivity GMR structure will be useful for automotive applications such as wheel speed, rotation, and position sensors.

  10. Giant tunneling magnetoresistance in silicene

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yu, E-mail: ywang@semi.ac.cn [Department of Physics, Faculty of Science, Kunming University of Science and Technology, Kunming, 650500 Yunnan (China); Lou, Yiyi [Yiyuan Student Community, Center of Student Community Education and Management, Kunming University of Science and Technology, Kunming, 650500 Yunnan (China)

    2013-11-14

    We have theoretically studied ballistic electron transport in silicene under the manipulation of a pair of ferromagnetic gate. Transport properties like transmission and conductance have been calculated by the standard transfer matrix method for parallel and antiparallel magnetization configurations. It is demonstrated here that, due to the stray field-induced wave-vector filtering effect, remarkable difference in configuration-dependent transport gives rise to a giant tunneling magnetoresistance. In combination with the peculiar buckled structure of silicene and its electric tunable energy gap, the receiving magnetoresistance can be efficiently modulated by the externally-tunable stray field, electrostatic potential, and staggered sublattice potential, providing some flexible strategies to construct silicene-based nanoelectronic device.

  11. A spin-valve-like magnetoresistance of an antiferromagnet-based tunnel junction.

    Science.gov (United States)

    Park, B G; Wunderlich, J; Martí, X; Holý, V; Kurosaki, Y; Yamada, M; Yamamoto, H; Nishide, A; Hayakawa, J; Takahashi, H; Shick, A B; Jungwirth, T

    2011-05-01

    A spin valve is a microelectronic device in which high- and low-resistance states are realized by using both the charge and spin of carriers. Spin-valve structures used in modern hard-drive read heads and magnetic random access memoriescomprise two ferromagnetic electrodes whose relative magnetization orientations can be switched between parallel and antiparallel configurations, yielding the desired giant or tunnelling magnetoresistance effect. Here we demonstrate more than 100% spin-valve-like signal in a NiFe/IrMn/MgO/Pt stack with an antiferromagnet on one side and a non-magnetic metal on the other side of the tunnel barrier. Ferromagneticmoments in NiFe are reversed by external fields of approximately 50  mT or less, and the exchange-spring effect of NiFe on IrMn induces rotation of antiferromagnetic moments in IrMn, which is detected by the measured tunnelling anisotropic magnetoresistance. Our work demonstrates a spintronic element whose transport characteristics are governed by an antiferromagnet. It demonstrates that sensitivity to low magnetic fields can be combined with large, spin-orbit-coupling-induced magnetotransport anisotropy using a single magnetic electrode. The antiferromagnetic tunnelling anisotropic magnetoresistance provides a means to study magnetic characteristics of antiferromagnetic films by an electronic-transport measurement. PMID:21399629

  12. Quantum Criticality and DBI Magneto-resistance

    CERN Document Server

    Kiritsis, Elias

    2016-01-01

    We use the DBI action from string theory and holography to study the magneto-resistance at quantum criticality with hyperscaling violation. We find and analyze a rich class of scaling behaviors for the magneto-resistance. A special case describes the scaling results found in pnictides by Hayers et al. in~\\cite{analytis}.

  13. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures

    Science.gov (United States)

    Nakayama, Hiroyasu; Kanno, Yusuke; An, Hongyu; Tashiro, Takaharu; Haku, Satoshi; Nomura, Akiyo; Ando, Kazuya

    2016-09-01

    We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi /Ag /CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.

  14. Hybrid Molecular and Spin Dynamics Simulations for Ensembles of Magnetic Nanoparticles for Magnetoresistive Systems

    Directory of Open Access Journals (Sweden)

    Lisa Teich

    2015-11-01

    Full Text Available The development of magnetoresistive sensors based on magnetic nanoparticles which are immersed in conductive gel matrices requires detailed information about the corresponding magnetoresistive properties in order to obtain optimal sensor sensitivities. Here, crucial parameters are the particle concentration, the viscosity of the gel matrix and the particle structure. Experimentally, it is not possible to obtain detailed information about the magnetic microstructure, i.e., orientations of the magnetic moments of the particles that define the magnetoresistive properties, however, by using numerical simulations one can study the magnetic microstructure theoretically, although this requires performing classical spin dynamics and molecular dynamics simulations simultaneously. Here, we present such an approach which allows us to calculate the orientation and the trajectory of every single magnetic nanoparticle. This enables us to study not only the static magnetic microstructure, but also the dynamics of the structuring process in the gel matrix itself. With our hybrid approach, arbitrary sensor configurations can be investigated and their magnetoresistive properties can be optimized.

  15. Room Temperature Giant and Linear Magnetoresistance in Topological Insulator Bi2Te3 Nanosheets

    Science.gov (United States)

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-01

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi2Te3 topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  16. Magnetoresistance of Multiwalled Carbon Nanotube Yarns

    Institute of Scientific and Technical Information of China (English)

    SHENG Lei-Mei; GAO Wei; CAO Shi-Xun; ZHANG Jin-Cang

    2008-01-01

    We measure zero-field resistivity and magnetoresistance of multiwalled carbon nanotube yarns (CNTYs). The CNTYs are drawn from superaligned multiwalled carbon nanotube arrays synthesized by the low-pressure chemical vapour deposition method. The zero-field resistivity shows a logarithmic decrease from 2 K to 300 K. In the presence of a magnetic field applied perpendicular to the yarn axis, a pronounced negative magnetoresistance is observed. A magnetoresistance ratio of 22% is obtained. These behaviours can be explained by the weak localization effect.

  17. Magnetoresistive multilayers deposited on the AAO membranes

    Energy Technology Data Exchange (ETDEWEB)

    Malkinski, Leszek M. [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States)]. E-mail: lmalkins@uno.edu; Chalastaras, Athanasios [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States); Vovk, Andriy [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States); Jung, Jin-Seung [Department of Chemistry, Kangnung National University, Kangnung 210702 (Korea, Republic of) ; Kim, Eun-Mee [Department of Chemistry, Kangnung National University, Kangnung 210702 (Korea, Republic of) ; Jun, Jong-Ho [Department of Applied Chemistry, Kunkuk University, Chungju 151747 (Korea, Republic of) ; Ventrice, Carl A. [Advanced Materials Research Institute, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148 (United States)

    2005-02-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si.

  18. Magnetoresistance Anisotropy in WTe2

    Science.gov (United States)

    Thoutam, Laxman Raju; Wang, Yonglei; Xiao, Zhili; Das, Saptarshi; Luican Mayer, Adina; Divan, Ralu; Crabtree, George W.; Kwok, Wai Kwong

    We report the angle dependence of the magnetoresistance in WTe2. Being a layered material, WTe2 is considered to be electronically two-dimensional (2D). Our results demonstrate that it is in fact 3D with an anisotropy of effective mass as small as 2. We measured the magnetic field dependence of the sample resistance R(H) at various angles between the applied magnetic field with respect to the c-axis of the crystal and found that they can be scaled based on the mass anisotropy, which changes from ~2 to ~5 with decreasing temperature in the Fermi liquid state. We will also discuss the origin of the turn-on temperature behavior in this material.

  19. Interface of magnetoresistive converter of active power

    Directory of Open Access Journals (Sweden)

    A. I. Vytiaganets

    2009-10-01

    Full Text Available The vehicle and programmatic interfaces of magnetoresistive converter of active power are considered, the results of statistical treatment of the multiple measuring of active-power are analysed.

  20. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  1. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  2. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  3. Giant Magnetoresistance in Multilayers with Noncollinear Magnetizations

    OpenAIRE

    Urazhdin, S.; Loloee, R.; Pratt Jr, W. P.

    2004-01-01

    We study the dependence of perpendicular-current magnetoresistance in magnetic multilayers on the angle between the magnetizations of the layers. This dependence varies with the thickness of one of the layers, and is different for multilayers with two and three magnetic layers. We derive a system of equations representing an extension of the two-current series resistor model, and show that the angular dependence of magnetoresistance gives information about the noncollinear spin-transport in f...

  4. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, M. N.

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  5. Tunable magnetoresistance in an asymmetrically coupled single-molecule junction

    Science.gov (United States)

    Warner, Ben; El Hallak, Fadi; Prüser, Henning; Sharp, John; Persson, Mats; Fisher, Andrew J.; Hirjibehedin, Cyrus F.

    2015-03-01

    Phenomena that are highly sensitive to magnetic fields can be exploited in sensors and non-volatile memories. The scaling of such phenomena down to the single-molecule level may enable novel spintronic devices. Here, we report magnetoresistance in a single-molecule junction arising from negative differential resistance that shifts in a magnetic field at a rate two orders of magnitude larger than Zeeman shifts. This sensitivity to the magnetic field produces two voltage-tunable forms of magnetoresistance, which can be selected via the applied bias. The negative differential resistance is caused by transient charging of an iron phthalocyanine (FePc) molecule on a single layer of copper nitride (Cu2N) on a Cu(001) surface, and occurs at voltages corresponding to the alignment of sharp resonances in the filled and empty molecular states with the Cu(001) Fermi energy. An asymmetric voltage-divider effect enhances the apparent voltage shift of the negative differential resistance with magnetic field, which inherently is on the scale of the Zeeman energy. These results illustrate the impact that asymmetric coupling to metallic electrodes can have on transport through molecules, and highlight how this coupling can be used to develop molecular spintronic applications.

  6. Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    KAUST Repository

    Sun, Jian

    2013-06-27

    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices

  7. Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe2

    Science.gov (United States)

    Thoutam, L. R.; Wang, Y. L.; Xiao, Z. L.; Das, S.; Luican-Mayer, A.; Divan, R.; Crabtree, G. W.; Kwok, W. K.

    2015-07-01

    Extremely large magnetoresistance (XMR) was recently discovered in WTe2 , triggering extensive research on this material regarding the XMR origin. Since WTe2 is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe2 : (1) WTe2 is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R (H ,θ )=R (ɛθH ) with ɛθ=(cos2θ +γ-2sin2θ )1 /2 , θ being the magnetic field angle with respect to the c axis of the crystal and γ being the mass anisotropy and (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe2 , including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.

  8. Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}.

    Science.gov (United States)

    Thoutam, L R; Wang, Y L; Xiao, Z L; Das, S; Luican-Mayer, A; Divan, R; Crabtree, G W; Kwok, W K

    2015-07-24

    Extremely large magnetoresistance (XMR) was recently discovered in WTe_{2}, triggering extensive research on this material regarding the XMR origin. Since WTe_{2} is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe_{2}: (1) WTe_{2} is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R(H,θ)=R(ϵ_{θ}H) with ϵ_{θ}=(cos^{2}θ+γ^{-2}sin^{2}θ)^{1/2}, θ being the magnetic field angle with respect to the c axis of the crystal and γ being the mass anisotropy and (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe_{2}, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition. PMID:26252701

  9. Tunneling magnetoresistive heads for magnetic data storage.

    Science.gov (United States)

    Mao, Sining

    2007-01-01

    Spintronics is emerging to be a new form of nanotechnologies, which utilizes not only the charge but also spin degree of freedom of electrons. Spin-dependent tunneling transport is one of the many kinds of physical phenomena involving spintronics, which has already found industrial applications. In this paper, we first provide a brief review on the basic physics and materials for magnetic tunnel junctions, followed more importantly by a detailed coverage on the application of magnetic tunneling devices in magnetic data storage. The use of tunneling magnetoresistive reading heads has helped to maintain a fast growth of areal density, which is one of the key advantages of hard disk drives as compared to solid-state memories. This review is focused on the first commercial tunneling magnetoresistive heads in the industry at an areal density of 80 approximately 100 Gbit/in2 for both laptop and desktop Seagate hard disk drive products using longitudinal media. The first generation tunneling magnetoresistive products utilized a bottom stack of tunnel junctions and an abutted hard bias design. The output signal amplitude of these heads was 3 times larger than that of comparable giant magnetoresistive devices, resulting in a 0.6 decade bit error rate gain over the latter. This has enabled high component and drive yields. Due to the improved thermal dissipation of vertical geometry, the tunneling magnetoresistive head runs cooler with a better lifetime performance, and has demonstrated similar electrical-static-discharge robustness as the giant magnetoresistive devices. It has also demonstrated equivalent or better process and wafer yields compared to the latter. The tunneling magnetoresistive heads are proven to be a mature and capable reader technology. Using the same head design in conjunction with perpendicular recording media, an areal density of 274 Gbit/in2 has been demonstrated, and advanced tunneling magnetoresistive heads can reach 311 Gbit/in2. Today, the

  10. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals

    OpenAIRE

    Yang-Yang Lv; Bin-Bin Zhang; Xiao Li; Bin Pang; Fan Zhang; Da-Jun Lin; Jian Zhou; Shu-Hua Yao; Chen, Y. B.; Shan-Tao Zhang; Minghui Lu; Zhongkai Liu; Yulin Chen; Yan-Feng Chen

    2016-01-01

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~105%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance a...

  11. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  12. Spin Hall magnetoresistance at high temperatures

    Energy Technology Data Exchange (ETDEWEB)

    Uchida, Ken-ichi, E-mail: kuchida@imr.tohoku.ac.jp [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); PRESTO, Japan Science and Technology Agency, Saitama 332-0012 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Qiu, Zhiyong [Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Kikkawa, Takashi; Iguchi, Ryo [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); Saitoh, Eiji [Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Spin Quantum Rectification Project, ERATO, Japan Science and Technology Agency, Sendai 980-8577 (Japan); WPI Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); CREST, Japan Science and Technology Agency, Tokyo 102-0076 (Japan); Advanced Science Research Center, Japan Atomic Energy Agency, Tokai 319-1195 (Japan)

    2015-02-02

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y{sub 3}Fe{sub 5}O{sub 12} (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface.

  13. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors.

    Science.gov (United States)

    Markevicius, Vytautas; Navikas, Dangirutis; Zilys, Mindaugas; Andriukaitis, Darius; Valinevicius, Algimantas; Cepenas, Mindaugas

    2016-01-19

    The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth's magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR) sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series) from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  14. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors

    Directory of Open Access Journals (Sweden)

    Vytautas Markevicius

    2016-01-01

    Full Text Available The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  15. Crossed Andreev reflection-induced magnetoresistance.

    Science.gov (United States)

    Giazotto, Francesco; Taddei, Fabio; Beltram, Fabio; Fazio, Rosario

    2006-08-25

    We show that very large negative magnetoresistance can be obtained in magnetic trilayers in a current-in-plane geometry owing to the existence of crossed Andreev reflection. This spin valve consists of a thin superconducting film sandwiched between two ferromagnetic layers whose magnetization is allowed to be either parallelly or antiparallelly aligned. For a suitable choice of structure parameters and nearly fully spin-polarized ferromagnets, the magnetoresistance can exceed -80%. Our results are relevant for the design and implementation of spintronic devices exploiting ferromagnet-superconductor structures. PMID:17026324

  16. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick;

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  17. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    Energy Technology Data Exchange (ETDEWEB)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R. [San Jose Research Center, HGST, a Western Digital Company, San Jose, California 95135 (United States)

    2015-07-28

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  18. Current-perpendicular-to-the-plane giant magnetoresistance in spin-valves with AgSn alloy spacers

    Science.gov (United States)

    Read, J. C.; Nakatani, T. M.; Smith, Neil; Choi, Y.-S.; York, B. R.; Brinkman, E.; Childress, J. R.

    2015-07-01

    We investigate the use of AgSn alloys as the spacer layer in current-perpendicular-to-the-plane magnetoresistance devices. Alloying with Sn increases resistivity but results in a reasonably long (>10 nm) spin-diffusion length, so large magnetoresistance can be achieved with thin AgSn spacers. Compared to Ag thin films, AgSn forms smaller grain sizes, reduced roughness, and exhibits less interdiffusion upon annealing, resulting in decreased interlayer magnetic coupling in exchange biased spin-valves. AgSn also shows improved corrosion resistance compared to Ag, which is advantageous for nanofabrication, including magnetic recording head sensors. Combining a AgSn spacer with Co-based Heusler alloy ferromagnet in an exchange biased, polycrystalline trilayer thinner than 12 nm results in magnetoresistance values up to 15% at room temperature.

  19. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    Science.gov (United States)

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  20. Giant Magnetoresistance Based Biosensor for Detection of Influenza A Virus

    Directory of Open Access Journals (Sweden)

    Venkatramana D Krishna

    2016-03-01

    Full Text Available We have developed a simple and sensitive method for the detection of influenza A virus (IAV based on giant magnetoresistance (GMR biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP in combination with magnetic nanoparticles (MNPs. Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 102 TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 105 TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 103 to 105 TCID50/mL.

  1. Optical studies of colossal magnetoresistance

    International Nuclear Information System (INIS)

    Full text: Colossal-magnetoresistance (CMR) materials are so named because they exhibit a large change in their electrical resistance in a magnetic field. This immediately suggests their application in magnetic memory, recording, sensing and switching devices. This intrinsic technological interest has also generated much fundamental research in CMR materials, with the goal of accounting for their fascinating behaviour. CMR occurs in perovskite manganese oxides, such as the lanthanum manganites (LaMnO3) doped with divalent ions substituting for La. The CMR mechanism is known to be related to the double exchange mechanism and to lattice distortion, but the details still generate intense debate. Millis (1998) summarised: 'Although a suggestive qualitative agreement between theory and experiment exists, much more needs to be done'. The main line of research has centred on the metalinsulator (Ml) transition during the phase change from paramagnetic-insulator (PMI) to ferromagnetic metal (FMM) that occurs at the Curie temperature, Tc, typically 200-250 K, but the phase diagram, usually represented as a function of doping fraction and temperature, is extremely rich. In this respect the CMR materials are similar, on the one hand, to organic conductors, and to a lesser extent, to high-temperature superconductors (HTS). Relatively little optical work on CMR materials has been reported in the literature. This is in spite of the recognition that an additional mechanism, proposed to be an electron-phonon interaction, is necessary as well as the earlier established double-exchange to account for the CMR effect, and that optical methods are sensitive to phonon modes, as well as to charge carrier dynamics. In particular, experimental evidence (De Teresa et al. 1997) indicates the existence of magnetic polarons above Tc, consistent with a 'small polaron' model. Jahn-Teller coupling is also important in explaining CMR (Popovic and Satpathy 2000). Our reflectivity measurements (Lewis

  2. Anisotropic Stars II Stability

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2003-01-01

    We investigate the stability of self-gravitating spherically symmetric anisotropic spheres under radial perturbations. We consider both the Newtonian and the full general-relativistic perturbation treatment. In the general-relativistic case, we extend the variational formalism for spheres with isotropic pressure developed by Chandrasekhar. We find that, in general, when the tangential pressure is greater than the radial pressure, the stability of the anisotropic sphere is enhanced when compared to isotropic configurations. In particular, anisotropic spheres are found to be stable for smaller values of the adiabatic index $\\gamma$.

  3. Magnetization and magnetoresistance of common alloy wires used in cryogenic instrumentation

    Science.gov (United States)

    Abrecht, M.; Adare, A.; Ekin, J. W.

    2007-04-01

    We present magnetization and magnetoresistance data at liquid-helium and liquid-nitrogen temperatures for wire materials commonly used for instrumentation wiring of specimens, sensors, and heaters in cryogenic probes. The magnetic susceptibilities in Systeme International units at 4.2 K were found to be: Manganin 1.25×10-2, Nichrome 5.6×10-3, and phosphor bronze -3.3×10-5, indicating that phosphor bronze is the most suitable for high-field applications. We also show the ferromagnetic hysteresis loop of Constantan wire at liquid-helium temperature. The magnetoresistance of these four wires was relatively small: the changes in resistance at 4 K due to a 10 T transverse magnetic field are -2.56% for Constantan, -2.83% for Manganin, +0.69% for Nichrome, and +4.5% for phosphor bronze, compared to about +188% for a typical copper wire under the same conditions.

  4. Anisotropic Contrast Optical Microscope

    CERN Document Server

    Peev, D; Kananizadeh, N; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-01-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. We demonstrate the anisotropic contrast optical microscope by mea...

  5. 自旋阀巨磁电阻传感单元线性处理研究%Research of the linearization processing of spin-valve giant magnetoresistance sensor

    Institute of Scientific and Technical Information of China (English)

    邱恒功; 唐晓莉; 张怀武; 陶龙旭

    2012-01-01

    为研究自旋阀传感器单元自由层易轴取向对其线性度的影响,通过改变诱导磁场取向,制备了自由层易轴沿传感单元电阻条长轴与短轴的两组样品.基于传感单元巨磁电阻效应的测试,发现自由层易轴沿传感单元电阻条短轴的样品,其性能稳定,矫顽力和线性范围基本不受电阻条宽度的影响;而对于自由层易轴沿传感器电阻条长轴的样品,随电阻条宽度的减小,传感器单元的线性范围增大,矫顽力降低.基于能量最小原理,发现自由层形状各向异性能是决定传感单元的线性度的关键参数,通过对其调制,可有效控制巨磁电阻传感器的线性度.%For researching the effect of free layer easy axis orientation on linearity of spin valve sensor element, we made two groups of samples by changing the direction of induced magnetic field, with free layer along the long axis and short axis of the element. It was found that the samples with free layer easy axis along the short axis has stable performance, and their coercivity and linear range are independent of samples' width; for the samples with free layer easy axis along the long axis, their performance are dependent of samples' width. With decreasing the width, the sensor element's linear range increases, and the coercivity decreases, which is consistent with the effect of the shape anisotropy energy of free layer.

  6. Magnetoresistive system with concentric ferromagnetic asymmetric nanorings

    Energy Technology Data Exchange (ETDEWEB)

    Avila, J. I., E-mail: javila@ulg.ac.be; Tumelero, M. A.; Pasa, A. A.; Viegas, A. D. C. [Laboratório de Filmes Finos e Superfícies (LFFS), Departamento de Física, Universidade Federal de Santa Catarina, CP 476 Florianópolis (Brazil)

    2015-03-14

    A structure consisting of two concentric asymmetric nanorings, each displaying vortex remanent states, is studied with micromagnetic calculations. By orienting in suitable directions, both the asymmetry of the rings and a uniform magnetic field, the vortices chiralities can be switched from parallel to antiparallel, obtaining in this way the analogue of the ferromagnetic and antiferromagnetic configurations found in bar magnets pairs. Conditions on the thickness of single rings to obtain vortex states, as well as formulas for their remanent magnetization are given. The concentric ring structure enables the creation of magnetoresistive systems comprising the qualities of magnetic nanorings, such as low stray fields and high stability. A possible application is as contacts in spin injection in semiconductors, and estimations obtained here of magnetoresistance change for a cylindrical spin injection based device show significant variations comparable to linear geometries.

  7. Magnetoresistance of Rippled Graphene in a Parallel Magnetic Field

    Science.gov (United States)

    Wakabayashi, Junichi; Sano, Tomoya

    2011-12-01

    The magnetoresistance of a monolayer graphene in a random magnetic field(RMF) with zero mean has been investigated. The RMF was produced by applying a magnetic field parallel to the graphene plane utilizing ripples. The magnetoresistance has shown the same magnetic field dependence and, unexpectedly, the same carrier density dependence as the conventional two-dimensional electron systems in random magnetic fields. The relation between the characteristic length of ripples and the magnitude of the magnetoresistance is discussed.

  8. Superconductivity emerging from suppressed large magnetoresistant state in WTe2

    OpenAIRE

    Kang, Defen; Zhou, Yazhou; Yi, Wei; Yang, Chongli; Guo, Jing; Shi, Youguo; Zhang, Shan; Wang, Zhe; Zhang, Chao; Jiang, Sheng; Li, Aiguo; Yang, Ke; Wu, Qi; Zhang, Guangming; Sun, Liling

    2015-01-01

    The recent discovery of large and non-saturating magnetoresistance (LMR) in WTe2 provides a unique playground to find new phenomena and significant perspective for potential applications. Here we report the first observation of superconductivity near the proximity of suppressed LMR state in pressurized WTe2 through high-pressure synchrotron X-ray diffraction, electrical resistance, magnetoresistance, and ac magnetic susceptibility measurements. It is found that the positive magnetoresistance ...

  9. The Effect of Dopants on the Magnetoresistance of WTe2

    OpenAIRE

    Flynn, Steven; Ali, Mazhar; Cava, R. J.

    2015-01-01

    Elucidating the nature of the large, non-saturating magnetoresistance in WTe2 is a significant step in functionalizing this phenomenon for applications. Here, Mo, Re, and Ta doped WTe2 are compared to determine whether isovalent and aliovalent substitutions have different effects on the large magnetoresistance. By 1% substitution, isoelectronic doping reduces the magnetoresistance by a factor of 1.2 with an apparent linear trend, whereas aliovalent doping reduces the effect by over an order o...

  10. Robust linear magnetoresistance in WTe2

    OpenAIRE

    Pan, Xing-Chen; Pan, Yiming; Jiang, Juan; Zuo, Huakun; Liu, Huimei; Chen, Xuliang; Wei, Zhongxia; Zhang, Shuai; Wang, Zhihe; Wan, Xiangang; Yang, Zhaorong; Feng, Donglai; Xia, Zhengcai; Li, Liang; Song, Fengqi

    2015-01-01

    Unsaturated magnetoresistance (MR) has been reported in WTe2, and remains irrepressible up to very high field. Intense optimization of the crystalline quality causes a squarely-increasing MR, as interpreted by perfect compensation of opposite carriers. Herein we report our observation of linear MR (LMR) in WTe2 crystals, the onset of which is first identified by constructing the mobility spectra of the MR at low fields. The LMR further intensifies and predominates at fields higher than 20 Tes...

  11. Giant magnetoresistance in organic spin-valves.

    Science.gov (United States)

    Xiong, Z H; Wu, Di; Vardeny, Z Valy; Shi, Jing

    2004-02-26

    A spin valve is a layered structure of magnetic and non-magnetic (spacer) materials whose electrical resistance depends on the spin state of electrons passing through the device and so can be controlled by an external magnetic field. The discoveries of giant magnetoresistance and tunnelling magnetoresistance in metallic spin valves have revolutionized applications such as magnetic recording and memory, and launched the new field of spin electronics--'spintronics'. Intense research efforts are now devoted to extending these spin-dependent effects to semiconductor materials. But while there have been noteworthy advances in spin injection and detection using inorganic semiconductors, spin-valve devices with semiconducting spacers have not yet been demonstrated. pi-conjugated organic semiconductors may offer a promising alternative approach to semiconductor spintronics, by virtue of their relatively strong electron-phonon coupling and large spin coherence. Here we report the injection, transport and detection of spin-polarized carriers using an organic semiconductor as the spacer layer in a spin-valve structure, yielding low-temperature giant magnetoresistance effects as large as 40 per cent. PMID:14985756

  12. Quasiparticle anisotropic hydrodynamics

    CERN Document Server

    Alqahtani, Mubarak

    2016-01-01

    We study an azimuthally-symmetric boost-invariant quark-gluon plasma using quasiparticle anisotropic hydrodynamics including the effects of both shear and bulk viscosities. We compare results obtained using the quasiparticle method with the standard anisotropic hydrodynamics and viscous hydrodynamics. We consider the predictions of the three methods for the differential particle spectra and mean transverse momentum. We find that the three methods agree for small shear viscosity to entropy density ratio, $\\eta/s$, but show differences at large $\\eta/s$. Additionally, we find that the standard anisotropic hydrodynamics method shows suppressed production at low transverse-momentum compared to the other two methods, and the bulk-viscous correction can drive the primordial particle spectra negative at large $p_T$ in viscous hydrodynamics.

  13. Averaging anisotropic cosmologies

    International Nuclear Information System (INIS)

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity

  14. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  15. Mixture of Anisotropic Fluids

    Science.gov (United States)

    Florkowski, W.; Maj, R.

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  16. Mixture of anisotropic fluids

    CERN Document Server

    Florkowski, Wojciech

    2013-01-01

    The recently introduced approach describing coupled quark and gluon anisotropic fluids is generalized to include explicitly the transitions between quarks and gluons. We study the effects of such processes on the thermalization rate of anisotropic systems. We find that the quark-gluon transitions may enhance the overall thermalization rate in the cases where the initial momentum anisotropies correspond to mixed oblate-prolate or prolate configurations. On the other hand, no effect on the thermalization rate is found in the case of oblate configurations. The observed regularities are connected with the late-time behavior of the analyzed systems which is described either by the exponential decay or the power law.

  17. Anisotropic Weyl invariance

    CERN Document Server

    Pérez-Nadal, Guillem

    2016-01-01

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.

  18. Influence of Si buffer layer on the giant magnetoresistance effect in Co/Cu/Co sandwiches

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The Co/Cu/Co sandwiches with a semiconductor Si buffer layer were prepared by high vacuum electron-beam evaporation. The influence of the Si buffer layer with different thickness on the giant magnetoresistance (GMR) effect in the Co/Cu/Co sandwiches was investigated. It was found that the GMR showed an obvious anisotropy when the thickness of Si buffer layer was larger than or equal to 0.9 nm, and that the GMR was basically isotropic with an Si buffer layer thinner than 0.9 nm. The anisotropic behavior of GMR can be ascribed to the in-plane magnetic anisotropy in the sandwiches. Due to the interdiffusion at the Si buffer/Co interface, a Co2Si interface layer with a good (301) texture formed and induced the in-plane magnetic anisotropy in the sandwiches. The dependence of the crystalline texture of the sandwiches on the thickness of Si buffer layer was also studied.

  19. Anisotropic models for compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Dayanandan, Baiju

    2015-01-01

    In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\

  20. Magnetoresistance anisotropy in a hexagonal lattice of Co antidots obtained by thermal evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Chiolerio, Alessandro, E-mail: alessandro.chiolerio@polito.i [Physics Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Allia, Paolo; Celasco, Edvige [Materials Science and Chemical Engineering Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Martino, Paola [Physics Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, IT-10129 Torino (Italy); Spizzo, Federico [Physics Department and CNISM, Universita di Ferrara, Building C, Via Saragat 1, IT-44100 Ferrara (Italy); Celegato, Federica [Electromagnetism Division, INRIM, Strada delle Caccie 91, IT-10135 Torino (Italy)

    2010-05-15

    Patterned soft magnetic materials are eligible for use in magnetic random access memories. A hexagonal-lattice pattern of circular antidots was produced by optical lithography in a Co film. In order to test the effect of geometry on the local magnetisation configuration of such a structure, we performed room-temperature angle-resolved magnetisation measurements aimed to check the pinning of domain walls by the pattern's lattice. Magnetoresistance (MR) room-temperature measurements were performed at various angles between the magnetic field direction and the macroscopic electrical current vector, to clarify whether and how the local current density configuration affects the MR response. We found that the magnetoresistance is of anisotropic type (AMR) and has a local origin. Furthermore, the largely unsaturating behaviour of MR at high fields may be explained only by considering that tiny portions of the pattern constitute highly frustrated regions and align their magnetisation at rather high fields. A simplified model based on a local anisotropy term is shown to account for the experimental results for both M and MR.

  1. Rectification of radio-frequency current in a giant-magnetoresistance spin valve

    Science.gov (United States)

    Zietek, Sławomir; Ogrodnik, Piotr; Frankowski, Marek; Checiński, Jakub; Wiśniowski, Piotr; Skowroński, Witold; Wrona, Jerzy; Stobiecki, Tomasz; Żywczak, Antoni; Barnaś, Józef

    2015-01-01

    We report on a highly efficient spin diode effect in exchange-biased spin-valve giant-magnetoresistance (GMR) strips. In such multilayer structures, the symmetry of the current distribution along the vertical direction is broken and, as a result, a noncompensated Oersted field acting on the magnetic free layer appears. This field in turn is a driving force of magnetization precessions. Due to the GMR effect, the resistance of the strip oscillates following the magnetization dynamics. This leads to rectification of the applied radio-frequency current and induces a direct-current voltage Vdc. We present a theoretical description of this phenomenon and calculate the spin diode signal Vdc as a function of frequency, external magnetic field, and angle at which the external field is applied. Satisfactory quantitative agreement between theoretical predictions and experimental data has been achieved. Finally, we show that the spin diode signal in GMR devices is significantly stronger than in the anisotropic magnetoresistance permalloy-based devices.

  2. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    Energy Technology Data Exchange (ETDEWEB)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich [Institute of Micro and Nanomaterials, Ulm University, 89081 Ulm (Germany)

    2014-02-14

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO{sub 2}) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures.

  3. On the Newtonian anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)

    2015-06-15

    In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)

  4. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  5. Dynamics of Anisotropic Universes

    CERN Document Server

    Pérez, J

    2006-01-01

    We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.

  6. Sign control of magnetoresistance through chemically engineered interfaces.

    Science.gov (United States)

    Ciudad, David; Gobbi, Marco; Kinane, Christy J; Eich, Marius; Moodera, Jagadeesh S; Hueso, Luis E

    2014-12-01

    Chemically engineered interfaces are shown to produce inversions of the magnetoresistance in spintronic devices including lithium fluoride interlayers. This behavior is explained by the formation of anti-ferromagnetic difluoride layers. By changing the order of deposition of the different materials, the sign of the magnetoresistance can be deterministically controlled both in organic spin valves and in inorganic magnetic tunnel junctions.

  7. Magnetoresistance in molybdenite (MoS2) crystals

    International Nuclear Information System (INIS)

    The principal magnetoresistance ratios of molybdenite (MoS2), the naturally occurring semiconducting crystal, have been investigated at magnetic fields ranging from 4.5 KOe and within the temperature range 3000K to 7000K. Unlike some previous observations, magnetoresistance has been found to be negative. (author)

  8. A phenomenological Landauer-type theory on colossal magnetoresistance

    Science.gov (United States)

    Ding, M.; Tian, G.-S.; Lin, T.-H.

    1996-12-01

    A two-dimensional interacting magnetic domains model is examined to explain the colossal magnetoresistance (CMR) recently observed in manganese-oxides. Electrons transport properties were studied by using Landauer's multichannel transport theory and recursive Green's function technique. Colossal magnetoresistance shows up in this system. The temperature dependence of system's MR is also studied.

  9. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y. B.; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-01

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~105%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  10. Anomalous magnetoresistance on the topological surface

    International Nuclear Information System (INIS)

    We report theoretical study of charge transport in two-dimensional ferromag-net/ferromagnet junction on a topological insulator. The conductance across the interface shows anomalous dependence on the directions of the magnetizations of the two ferromagnets. This stems from the way how the wavefunctions connect between both sides. It is found that the conductance depends strongly on the in-plane direction of the magnetization. Moreover, in stark contrast to the conventional magnetoresistance effect, the conductance at the parallel configuration can be much smaller than that at the antiparallel configuration.

  11. Magnetization and magnetoresistance of a spin valve

    Science.gov (United States)

    Bebenin, N. G.; Ustinov, V. V.

    2015-02-01

    Hysteresis of magnetization and magnetoresistance caused by a change in the orientation of the free layer of a spin valve has been investigated theoretically. It has been shown that the width of the hysteresis loop determined from the data on the dependence of the magnetic moment of the valve on the magnetic field can be less than the width of the loop determined from the resistive data. Formulas have been obtained that describe the dependence of the width of the hysteresis loop on the magnetic field at various values of the exchange field acting on the free layer.

  12. Giant magnetoresistance in bilayer graphene nanoflakes

    Science.gov (United States)

    Farghadan, Rouhollah; Farekiyan, Marzieh

    2016-09-01

    Coherent spin transport through bilayer graphene (BLG) nanoflakes sandwiched between two electrodes made of single-layer zigzag graphene nanoribbon was investigated by means of Landauer-Buttiker formalism. Application of a magnetic field only on BLG structure as a channel produces a perfect spin polarization in a large energy region. Moreover, the conductance could be strongly modulated by magnetization of the zigzag edge of AB-stacked BLG, and the junction, entirely made of carbon, produces a giant magnetoresistance (GMR) up to 100%. Intestinally, GMR and spin polarization could be tuned by varying BLG width and length. Generally, MR in a AB-stacked BLG strongly increases (decreases) with length (width).

  13. Direct visualization of lead corona and its nanomolar colorimetric detection using anisotropic gold nanoparticles.

    Science.gov (United States)

    Dwivedi, Charu; Chaudhary, Abhishek; Gupta, Abhishek; Nandi, Chayan K

    2015-03-11

    The study presents dithiothreitol (DTT) functionalized anisotropic gold nanoparticles (GNP) based colorimetric sensor for detection of toxic lead ions in water. Our results demonstrate the selectivity and sensitivity of the developed sensor over various heavy metal ions with detection limit of ∼9 nM. The mechanism of sensing is explained on the basis of unique corona formation around the DTT functionalized anisotropic GNP. PMID:25719820

  14. TOPICAL REVIEW: Tunneling magnetoresistance from a symmetry filtering effect

    Directory of Open Access Journals (Sweden)

    William H Butler

    2008-01-01

    Full Text Available This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe–MgO–Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory.

  15. Shield-related signal instability in magnetoresistive heads

    Science.gov (United States)

    Nakamoto, K.; Narumi, S.; Kawabe, T.; Kobayashi, T.; Fukui, H.

    1999-04-01

    Magnetoresistive (MR) heads with various upper shield materials were fabricated and their read-write performance was tested to clarify the shield-related effect on the signal instability in MR heads. Comparison of a head with an upper shield layer of higher magnetostriction and one with lower magnetostriction showed that the latter had better stability in the output signal of a repeated read-write test. The output amplitude of a head with an upper shield layer of Co52Ni27Fe21 film, which had a high magnetostriction of about +3×10-6, was varied by applying a low external longitudinal field, which affected just the shield layers. This change in the output corresponded well to the output variation in the repeated read-write test. The spin scanning electron micrograph image of this head revealed a distinct domain wall in the air bearing surface near the MR sensor. These results indicated that instability of the domain structure in a shield layer was one of the causes of the signal instability in MR heads; an unusual bias field from a domain wall of the shield layer, which could be moved easily by a repeated writing operation, caused a variation in the biased state of the MR layer which resulted in the signal variation, and that low magnetostriction was required for a shield material to achieve a stable head.

  16. Three-dimensional Anisotropy and Kohler's Rule Scaling of the Magnetoresistance in WTe2

    Science.gov (United States)

    Wang, Yong-Lei

    Tungsten ditelluride (WTe2) was recently discovered to have extremely large magnetoresistance (XMR) at low temperatures and exhibits a transformative 'turn-on' temperature behavior: when the applied magnetic field H is above a certain value, the resistivity versus temperature ρ (T) curve shows a minimum at a field dependent temperature T* (H) . Since WTe2 is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, it is typically considered to be a two dimensional (2D) material, whereby the anisotropic magnetoresistance is attributed only to the perpendicular component of the magnetic field. Moreover, the 'turn-on' temperature behavior has been interpreted as a magnetic-field-driven metal-insulator transition or attributed to an electronic structure change. In this talk I will report on two scaling behaviors of the magnetoresistance in WTe2. The first shows that the angle dependence of the magnetoresistance follows a conventional 3D anisotropy scaling and hence reveals the electrical 3D nature of WTe2. The second demonstrates that the ρ (T , H) curves, including those with 'turn-on' temperature behavior, can be scaled with Kohler's rule. The observed Kohler's rule scaling excludes the possible existence of a magnetic-field-driven metal-insulator transition or significant contribution of an electronic structure change to the low-temperature XMR in WTe2. It indicates that both the XMR and the 'turn-on' behavior originate from the high mobilities of the charge carriers, which are strongly temperature dependent in WTe2. We also derived quantitative expressions for the magnetic field dependence of the 'turn-on' temperature T* (H) and for the temperature dependence of the resistivity ρ (T* , H) at the onset of the XMR behavior. In collaboration with L. R. Thoutam, Z. L. Xiao, J. Hu, S. Das, Z. Q. Mao, J. Wei, R. Divan, A. Luican-Mayer, G. W. Crabtree, and W. K. Kwok This work was supported by the U.S. DOE, Office of Science, BES

  17. Inhomogeneous Anisotropic Cosmology

    CERN Document Server

    Kleban, Matthew

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that ${\\it arbitrarily}$ inhomogeneous and anisotropic cosmologies with "flat" (including toroidal) and "open" (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potenti...

  18. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F. [Instituto de Física, Universidade de São Paulo, São Paulo, PB 66318, São Paulo CEP 05315-970 (Brazil); Peres, M. L., E-mail: marcelos@unifei.edu.br; Castro, S. de; Soares, D. A. W. [Departamento de Física e Química, Universidade Federal de Itajubá, Itajubá, PB 50, Minas Gerais CEP 37500-903 (Brazil); Wiedmann, S.; Zeitler, U. [Radboud University Nijmegen, Institute for Molecules and Materials, High Field Magnet Laboratory, Toernooiveld 7, 6525 ED Nijmegen (Netherlands); Abramof, E.; Rappl, P. H. O.; Mengui, U. A. [Laboratório Associado de Sensores e Materiais, Instituto Nacional de Pesquisas Espaciais, São José dos Campos, PB 515, São Paulo CEP 12201-970 (Brazil)

    2014-10-20

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF{sub 2} exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linear magnetoresistance response has a maximum for small BaF{sub 2} doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.

  19. Non-local magnetoresistance in YIG/Pt nanostructures

    International Nuclear Information System (INIS)

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails

  20. Single-crystal study of highly anisotropic CeNiGe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Pikul, A P; Kaczorowski, D; Bukowski, Z; Plackowski, T; Gofryk, K [Institute of Low Temperature and Structure Research, Polish Academy of Sciences, PO Box 1410, 50-950 Wroclaw (Poland)

    2004-09-01

    High quality single crystals of CeNiGe{sub 2} have been investigated by means of magnetic susceptibility, magnetization, electrical resistivity, magnetoresistivity and thermoelectric power measurements, carried out along all three principal crystallographic directions. The compound is an antiferromagnetic Kondo system that orders magnetically at T{sub N} = 3.9 K and undergoes a spin structure rearrangement at T{sub 1} = 3.2 K. The magnetic behaviour is strongly anisotropic with the easy magnetic direction parallel to the crystallographic a-axis. The Kondo temperature and the total crystal field splitting are of the order of 20 and 100 K, respectively.

  1. Planar Hall Effect Sensors for Biodetection

    DEFF Research Database (Denmark)

    Rizzi, Giovanni

    as labels and planar Hall effect bridge (PHEB) magnetic field sensor as readout for the beads. The choice of magnetic beads as label is motivated by the lack of virtually any magnetic background from biological samples. Moreover, magnetic beads can be manipulated via an external magnetic field......-of-care devices can effectively reduce the time for the analysis and the costs that are related to a delay in the diagnosis. Many technologies are available for biosensing devices. In this work, we study and employ magnetic biosensing on magnetoresistive sensors. For magnetic biodetection magnetic beads are used...... and be employed for sample preparation in a lab-on-a-chip device. The PHEB sensors are formed by four magnetoresistive arms in a Wheatstone bridge geometry. In this thesis two different sensor geometries are used. In the first geometry (PHEB), the magnetic bead signals from the sensor arms are additive...

  2. Magnetoresistance of Electrons Channelled by Microscopic Magnetic Field Modulation

    Institute of Scientific and Technical Information of China (English)

    DAI Bo; LIU Xiao-Xia; LEI Yong; Alain Nogaret

    2009-01-01

    We report the magnetoresistance of two-dimensional electron gas,which is made of GaAs based epitaxial multilayers and laterally subjected to a periodic magnetic field.The modulation field is produced by an array of submicrometre ferromagnets fabricated at the surface of the heterostructure.The magnetoresistance of about 20% is found at low temperature 80K.The measurement is in quantitative agreement with semiclassical simulations,which reveal that the magnetoresistance is due to electrons trapped in snake orbits along lines of zero magnetic field.

  3. Large Magnetoresistance Based on Double Spin Filter Tunnel Barriers

    Institute of Scientific and Technical Information of China (English)

    TANG Xiao-Li; ZHANG Huai-Wu; SU Hua; JING Yu-Lan

    2008-01-01

    We propose and theoretically analyse a double magnetic tunnel device that takes advantages of the spin filter effect. Two magnetic tunnel barriers are formed by different spin filters which have different barrier heights. The magnetoresistance of the device is low (high) when the magnetic moments of the two spin filters are parallel(antiparallel). We present a theoretical calculation of the magnetoresistance based on electric tunnel effect.In addition, the effect of the difference barrier heights and exchange splitting energies between the two spin filters are also analysed in detail. The numerical results show that the spin filter in this configuration gives a magnetoresistance larger than that with standard magnetic tunnel junctions.

  4. Model anisotropic quantum Hall states

    OpenAIRE

    Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su

    2012-01-01

    Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...

  5. Material Induced Anisotropic Damage in DP600

    NARCIS (Netherlands)

    Niazi, M.S.; Wisselink, H.H.; Meinders, V.T.; Boogaard, van den A.H.

    2013-01-01

    Plasticity induced damage development in metals is anisotropic by nature. The anisotropy in damage is driven by two different phenomena; anisotropic deformation state i.e. Load Induced Anisotropic Damage (LIAD) and anisotropic microstructure i.e. Material Induced Anisotropic Damage (MIAD). The contr

  6. Experimental and theoretical investigation of the precise transduction mechanism in giant magnetoresistive biosensors

    Science.gov (United States)

    Lee, Jung-Rok; Sato, Noriyuki; Bechstein, Daniel J. B.; Osterfeld, Sebastian J.; Wang, Junyi; Gani, Adi Wijaya; Hall, Drew A.; Wang, Shan X.

    2016-01-01

    Giant magnetoresistive (GMR) biosensors consisting of many rectangular stripes are being developed for high sensitivity medical diagnostics of diseases at early stages, but many aspects of the sensing mechanism remain to be clarified. Using e-beam patterned masks on the sensors, we showed that the magnetic nanoparticles with a diameter of 50 nm located between the stripes predominantly determine the sensor signals over those located on the sensor stripes. Based on computational analysis, it was confirmed that the particles in the trench, particularly those near the edges of the stripes, mainly affect the sensor signals due to additional field from the stripe under an applied field. We also demonstrated that the direction of the average magnetic field from the particles that contributes to the signal is indeed the same as that of the applied field, indicating that the particles in the trench are pivotal to produce sensor signal. Importantly, the same detection principle was validated with a duplex protein assay. Also, 8 different types of sensor stripes were fabricated and design parameters were explored. According to the detection principle uncovered, GMR biosensors can be further optimized to improve their sensitivity, which is highly desirable for early diagnosis of diseases.

  7. On the Relativistic anisotropic configurations

    CERN Document Server

    Shojai, F; Stepanian, A

    2016-01-01

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.

  8. On the relativistic anisotropic configurations

    Energy Technology Data Exchange (ETDEWEB)

    Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Physics and Chemistry, Tehran (Iran, Islamic Republic of); Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of)

    2016-06-15

    In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behavior of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed. (orig.)

  9. Anisotropically Inflating Universes

    CERN Document Server

    Barrow, J D; Barrow, John D.; Hervik, Sigbjorn

    2008-01-01

    We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.

  10. Anisotropic Stars Exact Solutions

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2000-01-01

    We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general relativistic treatment of this problem and obtain exact solutions for various form of equations of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.

  11. Anomalous magnetoresistance in magnetized topological insulator cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Siu, Zhuo Bin, E-mail: a0018876@nus.edu.sg [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore); Data Storage Institute, Agency for Science, Technology and Research, Singapore 117608 (Singapore); Jalil, Mansoor B. A. [NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456 (Singapore)

    2015-05-07

    The close coupling between the spin and momentum degrees of freedom in topological insulators (TIs) presents the opportunity for the control of one to manipulate the other. The momentum can, for example, be confined on a curved surface and the spin influenced by applying a magnetic field. In this work, we study the surface states of a cylindrical TI magnetized in the x direction perpendicular to the cylindrical axis lying along the z direction. We show that a large magnetization leads to an upwards bending of the energy bands at small |k{sub z}|. The bending leads to an anomalous magnetoresistance where the transmission between two cylinders magnetized in opposite directions is higher than when the cylinders are magnetized at intermediate angles with respect to each other.

  12. Evaluation of Magnetoresistive RAM for Space Applications

    Science.gov (United States)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  13. Magnetoresistive properties of nanostructured magnetic metals, manganites, and magnetic semiconductors

    Science.gov (United States)

    Solin, N. I.; Romashev, L. N.; Naumov, S. V.; Saranin, A. A.; Zotov, A. V.; Olyanich, D. A.; Kotlyar, V. G.; Utas, O. A.

    2016-02-01

    We consider methods for controlling magnetoresistive parameters of magnetic metal superlattices, manganites, and magnetic semiconductors. By reducing the thickness of ferromagnetic layers in superlattices (e.g., Fe layers in Fe/Cr superlattices), it is possible to form superparamagnetic clustered-layered nanostructures with a magnetoresistance weakly depending on the direction of the external magnetic field, which is very important for applications of such type of materials. Producing Mn vacancies and additionally annealing lanthanum manganites in the oxygen atmosphere, it is possible to increase their magnetoresistance by more than four orders of magnitude. By changing the thickness of p- n junction in the structure of ferromagnetic semiconductors, their magnetoresistance can be increased by 2-3 orders of magnitude.

  14. The suppression of the large magnetoresistance in thin WTe2

    Science.gov (United States)

    Shen, Jie; Woods, John; Cha, Judy

    The layered nature of WTe2 suggests the possibility of making a single layer WTe2 memory device that exploits the recently observed large magnetoresistance. Presently, the origin of the magnetoresistance is attributed to the charge balance between the electron and hole carriers, yet the exact underlying physical mechanism is unclear. Here we show a systematic suppression of the large magnetoresistance, as well as turn-on temperature, with decreasing thickness of WTe2. We attribute the thickness-dependent transport properties to undesirable parasitic effects that become dominant in thin films of WTe2. Our results highlight the increasing importance of characterizing the parasitic effects for 2D layered materials in a single- to a few-layer thick limit. Finally, our observations support the hypothesis that the origin of the large magnetoresistance may be due to the charge balance between the electron and the hole carriers.

  15. Facilities of management magnetoresistive transformer of active power

    Directory of Open Access Journals (Sweden)

    Val. S. Vuntesmeri

    2009-03-01

    Full Text Available Management facilities are considered, spectral composition is certain and the form of коммутируемого signal of magnetoresistive transformer of active power is rotined.

  16. Quantum conductance in electrodeposited nanocontacts and magnetoresistance measurements

    DEFF Research Database (Denmark)

    Elhoussine, F.; Encinas, A.; Mátéfi-Tempfli, Stefan;

    2003-01-01

    The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus...... of conductance during their dissolution in units of e/h, as expected for ferromagnetic ballistic nanocontacts. The measurement of the positive and negative magnetoresistance in Co-Ni nanocontacts was also elaborated....

  17. Anomalous magnetoresistance in NiMnGa thin films

    Science.gov (United States)

    Golub, Vladimir O.; Vovk, Andriy Ya.; Malkinski, Leszek; O'Connor, Charles J.; Wang, Zhenjun; Tang, Jinke

    2004-10-01

    The origin of anomalous negative magnetoresistance and its temperature dependence in polycrystalline Ni -Mn-Ga films prepared by pulse laser deposition was studied. The investigation of structural, transports, magnetic, and ferromagnetic resonance properties of the films suggests contributions of different mechanisms in magnetotransport. At low magnetic fields the main contribution to magnetoresistance is due to the transport between the areas with different orientation of magnetic moments, while at high fields it is an electron scattering of in spin-disordered areas.

  18. Anisotropic Thermal Diffusion

    Science.gov (United States)

    Gardiner, Thomas

    2013-10-01

    Anisotropic thermal diffusion in magnetized plasmas is an important physical phenomena for a diverse set of physical conditions ranging from astrophysical plasmas to MFE and ICF. Yet numerically simulating this phenomenon accurately poses significant challenges when the computational mesh is misaligned with respect to the magnetic field. Particularly when the temperature gradients are unresolved, one frequently finds entropy violating solutions with heat flowing from cold to hot zones for χ∥ /χ⊥ >=102 which is substantially smaller than the range of interest which can reach 1010 or higher. In this talk we present a new implicit algorithm for solving the anisotropic thermal diffusion equations and demonstrate its characteristics on what has become a fairly standard set of test problems in the literature. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000. SAND2013-5687A.

  19. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  20. Thermodynamics of anisotropic branes

    CERN Document Server

    Ávila, Daniel; Patiño, Leonardo; Trancanelli, Diego

    2016-01-01

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on two independent dimensionless ratios, which are formed out of the black hole temperature, its anisotropy parameter, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  1. Averaging anisotropic cosmologies

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2006-01-01

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...

  2. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  3. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    Science.gov (United States)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    We have studied the microstructure and the magnetoresistivity of polycrystalline YBa2Cu3Oy (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y2O3, Ba2CO3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, Tco, is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  4. Positive magnetoresistance and large magnetostriction at first-order antiferro ferromagnetic phase transitions in RMn2Si2 compounds

    Science.gov (United States)

    Gerasimov, E. G.; Mushnikov, N. V.; Koyama, K.; Kanomata, T.; Watanabe, K.

    2008-11-01

    The magnetostriction and magnetoresistance associated with the field-induced and spontaneous first-order antiferro-ferromagnetic (AF-F) phase transitions have been studied for quasi-single-crystalline samples of La0.25Sm0.75Mn2Si2, La0.25Y0.75Mn2Si2 and La0.27Y0.73Mn2Si2 compounds with natural layered ThCr2Si2-type structure. It was found that both the spontaneous and field-induced AF-F transitions are accompanied by a large volume magnetostriction ΔV/V≈2 × 10-3 and anisotropic linear changes of the lattice parameters Δa/a≈1.6 × 10-3, Δc/c≈-0.75 × 10-3. The field-induced AF-F magnetic phase transition has been observed in magnetic fields applied both along the c-axis and in the basal plane, and the magnetostriction value is virtually independent of the direction of applied field. It has been found also that the magnetoresistance is positive in these compounds (the value of the electrical resistance in the ferromagnetic state is higher than that in the antiferromagnetic state) for the fields applied both along the c-axis and in the basal plane. The value of the magnetoresistance observed along the c-axis is 30 times as high as that in the basal plane. The obtained results indicate that the electronic band structure changes are likely responsible for the AF-F magnetic phase transitions observed in the RMn2X2 compounds.

  5. Anisotropic Inflation with General Potentials

    CERN Document Server

    Shi, Jiaming; Qiu, Taotao

    2015-01-01

    Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.

  6. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    Science.gov (United States)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Wu, Y. H.; Zhang, S.; Li, Run-Wei

    2016-07-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y3Fe5O12 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  7. Transport properties of colossal magnetoresistive materials

    CERN Document Server

    Yates, K A

    2002-01-01

    A microwave technique was developed in order to test the validity of the hypothesis that the microwave transport of polycrystalline, optimally doped, colossal magnetoresistive materials was dominated by intragranular material. The microwave surface resistance at 9GHz was compared with dc resistivity and magnetisation to study the influence of yttrium doping on the grain boundary regions of bulk polycrystalline samples of La sub 0 sub . sub 7 sub - sub x Y sub x Ca sub 0 sub . sub 3 MnO sub 3. It was found that, within the grains, the addition of yttrium causes the activation energy above T sub p to increase. A phenomenological model was introduced to explain the data in terms of the difference in structure between the grain and grain boundary regions. The technique was also used to study the influence of deoxygenation on the grain boundary regions of bulk, polycrystalline, La sub 0 sub . sub 6 sub 7 Ca sub 0 sub . sub 3 sub 3 MnO sub 3. For samples interconnected porosity, low temperature (600 deg C), short a...

  8. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    International Nuclear Information System (INIS)

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO2/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO2/FGNPA junction also drastically enhances TMR ratios up to ∼100%

  9. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Soriano, D. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Pedersen, J. G. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Roche, S. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  10. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers

    Science.gov (United States)

    Stamopoulos, D.; Aristomenopoulou, E.

    2015-08-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent ‘on’ and ‘off’, thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  11. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-01-01

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  12. Polarization sensitive anisotropic structuring of silicon by ultrashort light pulses

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Jingyu; Drevinskas, Rokas, E-mail: rd1c12@orc.soton.ac.uk; Beresna, Martynas; Kazansky, Peter G. [Optoelectronics Research Centre, University of Southampton, Southampton SO17 1BJ (United Kingdom)

    2015-07-27

    Imprinting of anisotropic structures on the silicon surface by double pulse femtosecond laser irradiation is demonstrated. The origin of the polarization-induced anisotropy is explained in terms of interaction of linearly polarized second pulse with the wavelength-sized symmetric crater-shaped structure generated by the linearly polarized first pulse. A wavefront sensor is fabricated by imprinting an array of micro-craters. Polarization controlled anisotropy of the structures can be also explored for data storage applications.

  13. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Deepak Kumar

    2002-08-01

    Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  14. Gradient expansion for anisotropic hydrodynamics

    CERN Document Server

    Florkowski, Wojciech; Spaliński, Michał

    2016-01-01

    We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.

  15. Active control of magnetoresistance of organic spin valves using ferroelectricity

    Science.gov (United States)

    Shen, Jian

    Organic spintronic devices have been appealing because of the long spin lifetime of the charge carriers in the organic materials and their low cost, flexibility and chemical diversity. In previous studies, the control of resistance of organic spin valves is generally achieved by the alignment of the magnetization directions of the two ferromagnetic electrodes, generating magnetoresistance. Here we employ a new knob to tune the resistance of organic spin valves by adding a thin ferroelectric interfacial layer between the ferromagnetic electrode and the organic spacer: the magnetoresistance of the spin valve depends strongly on the history of the bias voltage, which is correlated with the polarization of the ferroelectric layer; the magnetoresistance even changes sign when the electric polarization of the ferroelectric layer is reversed. These findings enable active control of resistance using both electric and magnetic fields, opening up possibility for multi-state organic spin valves.

  16. Magnetoresistance of Mn-decorated topological line defects in graphene

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2015-01-13

    We study the spin polarized transport through Mn-decorated 8-5-5-8 topological line defects in graphene using the nonequilibrium Green\\'s function formalism. Strong preferential bonding overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism, in particular for full coverage of all octagonal hollow sites by Mn atoms. In contrast to the magnetoresistance of graphene nanoribbon edges, the proposed system is well controlled and therefore suitable for applications.

  17. Negative and nonlinear magnetoresistance effect in silicon strip

    CERN Document Server

    Wang, Fangcong; Guo, Hui; Fan, Xiaolong; Li, Zhankui

    2016-01-01

    Both negative magnetoresistance and nonlinear magnetoresisitance were observed in silicon strip nuclear radiation detector in room temperature if we applied high magnetic field intensity in different direction. This result is different with former report. We believe this is the result of coaction of high electric field (Gunn effect) and high magnetic field, or because of the variation of number of carriers and the carriers mobility. The weak localization and Landau energy levels also affect the magnetoresistance. Different crystal orientations have different energy band structures. Complex band structures lead complex carriers mobility plus Landau energy levels. So the magnetoresisitance effect is anisotropy.

  18. Anisotropic artificial substrates for microwave applications

    Science.gov (United States)

    Shahvarpour, Attieh

    The perfect electromagnetic conductor (PEMC) boundary is a novel fundamental electromagnetic concept. It is a generalized description of the electromagnetic boundary conditions including the perfect electric conductor (PEC) and the perfect magnetic conductor (PMC) and due to its fundamental properties, it has the potential of enabling several electromagnetic applications. However, the PEMC boundaries concept had remained at the theoretical level and has not been practically realized. Therefore, motivated by the importance of this electromagnetic fundamental concept and its potential applications, the first contribution of this thesis is focused on the practical implementation of the PEMC boundaries by exploiting Faraday rotation principle and ground reflection in the ferrite materials which are intrinsically anisotropic. As a result, this thesis reports the first practical approach for the realization of PEMC boundaries. A generalized scattering matrix (GSM) is used for the analysis of the grounded-ferrite PEMC boundaries structure. As an application of the PEMC boundaries, a transverse electromagnetic (TEM) waveguide is experimentally demonstrated using grounded ferrite PMC (as particular case of the PEMC boundaries) side walls. Perfect electromagnetic conductor boundaries may find applications in various types of sensors, reflectors, polarization convertors and polarization-based radio frequency identifiers. Leaky-wave antennas perform as high directivity and frequency beam scanning antennas and as a result they enable applications in radar, point-to-point communications and MIMO systems. The second contribution of this thesis is introducing and analysing a novel broadband and highly directive two-dimensional leaky-wave antenna. This antenna operates differently in the lower and higher frequency ranges. Toward its lower frequencies, it allows full-space conical-beam scanning while at higher frequencies, it provides fixed-beam radiation (at a designable angle

  19. Local magnetoresistance in Fe/MgO/Si lateral spin valve at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Sasaki, Tomoyuki, E-mail: tomosasa@jp.tdk.com; Koike, Hayato; Oikawa, Tohru [Advanced Technology Development Center, TDK Corporation, Chiba (Japan); Suzuki, Toshio [AIT, Akita Industrial Technology Center, Akita (Japan); Ando, Yuichiro; Suzuki, Yoshishige [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Shiraishi, Masashi [Graduate School of Engineering Science, Osaka University, Toyonaka (Japan); Department of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University, Kyoto-Daigaku-Katsura, Nishikyo-ku, Kyoto 615-8530 (Japan)

    2014-02-03

    Room temperature local magnetoresistance in two-terminal scheme is reported. By employing 1.6 nm-thick MgO tunnel barrier, spin injection efficiency is increased, resulting in large non-local magnetoresistance. The magnitude of the non-local magnetoresistance is estimated to be 0.0057 Ω at room temperature. As a result, a clear rectangle signal is observed in local magnetoresistance measurement even at room temperature. We also investigate the origin of local magnetoresistance by measuring the spin accumulation voltage of each contact separately.

  20. Magnetoresistance effect and magnetoanisotropy of Co/Cu multilayered films prepared by electron beam evaporation

    Energy Technology Data Exchange (ETDEWEB)

    Ueda, Y.; Adachi, H.; Takakura, W.; Rizal, C.L.S.; Chikazawa, S. [Muroran Institute of Technology, 27-1 Mizumoto-cho, Muroran 050-8585 (Japan)

    2004-05-01

    We attempted to prepare Co/Cu ferromagnetic layer films with uniaxial magnetic anisotropy by oblique incidence angle electron beam method. The purpose of the present note is to show the effect of the magnetic orientation in the ferromagnetic layer on the magnetoresistance of both GMR and AMR. The induced uniaxial magnetic anisotropy was observed in the all multilayer films formed by varying the oblique incidence angle of evaporation direction and the easy axis of the anisotropy is along the perpendicular direction (x-direction) of the incidence of evaporation. The sample produced near the oblique incidence angle of 45 shows the remarkable uniaxial magnetic anisotropy. The MR ratio of anisotropic sample is less than that of isotropic sample. In the weak magnetic field, the difference for the magnetic field dependence of MR is clearly observed with depending on the orientation of magnetization, that is, it is corresponding to the shape of the magnetization curves. (copyright 2004 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  1. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes

    Science.gov (United States)

    Luping, Liu; Qingfeng, Zhan; Xin, Rong; Huali, Yang; Yali, Xie; Xiaohua, Tan; Run-wei, Li

    2016-07-01

    We fabricated flexible spin valves on polyvinylidene fluoride (PVDF) membranes and investigated the influence of thermal deformation of substrates on the giant magnetoresistance (GMR) behaviors. The large magnetostrictive Fe81Ga19 (FeGa) alloy and the low magnetostrictive Fe19Ni81 (FeNi) alloy were selected as the free and pinned ferromagnetic layers. In addition, the exchange bias (EB) of the pinned layer was set along the different thermal deformation axes α 31 or α 32 of PVDF. The GMR ratio of the reference spin valves grown on Si intrinsically increases with lowering temperature due to an enhancement of spontaneous magnetization. For flexible spin valves, when decreasing temperature, the anisotropic thermal deformation of PVDF produces a uniaxial anisotropy along the α 32 direction, which changes the distribution of magnetic domains. As a result, the GMR ratio at low temperature for spin valves with EB∥ α 32 becomes close to that on Si, but for spin valves with EB∥ α 31 is far away from that on Si. This thermal effect on GMR behaviors is more significant when using magnetostrictive FeGa as the free layer. Project supported by the National Natural Science Foundation of China (Grant Nos. 11374312, 51401230, 51522105, and 51471101) and the Ningbo Science and Technology Innovation Team, China (Grant No. 2015B11001).

  2. Effect of thermal deformation on giant magnetoresistance of flexible spin valves grown on polyvinylidene fluoride membranes

    Institute of Scientific and Technical Information of China (English)

    刘鲁萍; 詹清峰; 荣欣; 杨华礼; 谢亚丽; 谭晓华; 李润伟

    2016-01-01

    We fabricated flexible spin valves on polyvinylidene fluoride (PVDF) membranes and investigated the influence of thermal deformation of substrates on the giant magnetoresistance (GMR) behaviors. The large magnetostrictive Fe81Ga19 (FeGa) alloy and the low magnetostrictive Fe19Ni81 (FeNi) alloy were selected as the free and pinned ferromagnetic layers. In addition, the exchange bias (EB) of the pinned layer was set along the different thermal deformation axesα31 orα32 of PVDF. The GMR ratio of the reference spin valves grown on Si intrinsically increases with lowering temperature due to an enhancement of spontaneous magnetization. For flexible spin valves, when decreasing temperature, the anisotropic thermal deformation of PVDF produces a uniaxial anisotropy along theα32 direction, which changes the distribution of magnetic domains. As a result, the GMR ratio at low temperature for spin valves with EBkα32 becomes close to that on Si, but for spin valves with EBkα31 is far away from that on Si. This thermal effect on GMR behaviors is more significant when using magnetostrictive FeGa as the free layer.

  3. An Explicit Function Expression for dc Bias and Temperature Dependence of Magnetoresistances in Magnetic Tunnel Junctions

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    An explicit function expression for the bias voltage or/and temperature dependences of tunnel magnetoresistance ratio and resistances were obtained with a unique set of intrinsic parameters. Two of these intrinsic parameters are the Curie temperature TC and the density of state (DOS) for itinerant majority and minority electrons ξ(ρM/ρm),which are the eigen parameters of ferromagnetic electrodes. Others are the spin-dependent matrix-element ratio (i.e.,|Td|2/|TJ|2 ) and the anisotropic-wavelength-cutoff energy EγC of spin-wave spectrum in magnetic tunnel junction (MT J), which are the structure parameters of an MTJ. These intrinsic parameters can be predetermined using the experimental measurement or, in principle, using the first-principle calculation method for an MTJ with the three key layers of FM/I/FM. Furthermore, a series of experimental data for an MTJ, for example, a spin-valve-type MTJ of Ta (5 nm)/Ni79Fe21(25 nm)/Ir22Mn78(12 nm)/Co75Fe25(4 nm)/Al(0.8 nm)-oxide/Co75Fe25(4 nm)/Ni79Fe21(20 nm)/Ta (5 nm) in this work, can be self-consistently evaluated and explained using such concise explicit function formulations.

  4. Hybrid magnetoresistance in Pt-based multilayers: Effect originated from strong interfacial spin-orbit coupling

    Science.gov (United States)

    Meng, Kangkang; Xiao, Jiaxing; Wu, Yong; Miao, Jun; Xu, Xiaoguang; Zhao, Jianhua; Jiang, Yong

    2016-01-01

    The hybrid magnetoresistance (MR) behaviors in Pt/Co90Fe10/Pt, Mn1.5Ga/Pt and Mn1.5Ga/Pt/Co90Fe10/Pt multilayers have been investigated. Both planer Hall effect (PHE) and angle-dependent MR in Pt/Co90Fe10/Pt revealed the combination of spin Hall MR (SMR) and normal anisotropic MR (AMR), indicating the large contribution of strong spin-orbit coupling (SOC) at the interfaces. When Pt contacted with perpendicular magnetic anisotropy (PMA) metal Mn1.5Ga, the strong interfacial SOC modified the effective anomalous Hall effect. The MR in Mn1.5Ga/Pt/Co90Fe10/Pt is not a simple combination of SMR and AMR, but ascribed to the complicated domain wall scattering and strong interfacial SOC when Pt is sandwiched by the in-plane magnetized Co90Fe10 and the PMA Mn1.5Ga. PMID:26843035

  5. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL. PMID:27065967

  6. Theory of Angular Magnetoresistance in CPP spin valves

    OpenAIRE

    Huertas-Hernando, Daniel; Bauer, Gerrit E. W.; Nazarov, Yu. V.

    2001-01-01

    The resistance of CPP spin valve is a continuous function of the angle $\\theta $ between the magnetizations of both ferromagnets. We use the cicuit theory for non-collinear magnetoelectronics to compute the angular magnetoresistance of CPP spin valves taking the spin accumulation in the ferromagnetic layers into account.

  7. Large magnetoresistance and electronic anisotropy in NbAs2

    Science.gov (United States)

    Shen, Bing; Jiang, Shan; Ni, Ni

    Recently, extremely large magnetoresistance (XMR) was discovered in semimetal such as WTe2 LaSb and so on, triggering extensive reseach on these materials and the origin of XMR. In this talk, we will report the transport properties of non-magnetic layered pnictide material NbAs2. Large transverse magnetoresistance is observed. At 10 K, the magnetoresistance is around 13000 % in the field of 9 T and shows no saturation behavior. The temperature dependent resistivity at various fields exhibits metal-to-semiconductor transition behavior around 100 K, which is coincident with the sudden increase of the Hall signal in the same temperature region. The angle dependent magnetoresistance at various temperatures follows the 3D scaling behavior with the mass anisotropy around 1.3-1.4, indicative of its 3D electron structure. Quantum oscillation data reveal the existence of at least three Fermi pockets in this material. Work at UCLA was supported by the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES) under Award Number DE-SC0011978.

  8. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  9. Anisotropically structured magnetic aerogel monoliths

    Science.gov (United States)

    Heiligtag, Florian J.; Airaghi Leccardi, Marta J. I.; Erdem, Derya; Süess, Martin J.; Niederberger, Markus

    2014-10-01

    Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture.Texturing of magnetic ceramics and composites by aligning and fixing of colloidal particles in a magnetic field is a powerful strategy to induce anisotropic chemical, physical and especially mechanical properties into bulk materials. If porosity could be introduced, anisotropically structured magnetic materials would be the perfect supports for magnetic separations in biotechnology or for magnetic field-assisted chemical reactions. Aerogels, combining high porosity with nanoscale structural features, offer an exceptionally large surface area, but they are difficult to magnetically texture. Here we present the preparation of anatase-magnetite aerogel monoliths via the assembly of preformed nanocrystallites. Different approaches are proposed to produce macroscopic bodies with gradient-like magnetic segmentation or with strongly anisotropic magnetic texture. Electronic supplementary information (ESI) available: Digital photographs of dispersions and gels with different water-to-ethanol ratios; magnetic measurements of an anatase aerogel containing 0.25 mol% Fe3O4 nanoparticles; XRD patterns of the iron oxide and

  10. Latest developments in anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo

    2015-01-01

    We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.

  11. Dynamical analysis of anisotropic inflation

    Science.gov (United States)

    Karčiauskas, Mindaugas

    2016-06-01

    The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.

  12. Anisotropic hydrodynamics: Motivation and methodology

    International Nuclear Information System (INIS)

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches

  13. Characterization and Application of Large Magnetoresistance in Organic Semiconductors

    Science.gov (United States)

    Wohlgenannt, Markus

    2007-03-01

    Recent years have seen a surge in interest in magnetoresistive and spintronic properties of organic semiconductors, whereas this field was previously almost exclusively concerned with their electrooptical properties. We report on the extensive experimental characterization of a recently discovered large and intriguing magnetoresistive effect in organic light- emitting diodes that reaches up to 10% at room temperature for magnetic fields, B = 10mT. This magnetoresistive effect is therefore amongst the largest of any bulk material. The study includes a range of materials that show greatly different chemical structure, mobility, hyperfine and spin-orbit coupling strength. We show that the applied magnetic field affects the carrier transport inside the bulk semiconductor. By demonstrating that the effect is critically altered by the presence of strong spin- orbit coupling and that it does not occur in fullerene devices, we prove that the transport in organics sensitively depends on spin-dynamics induced by hyperfine interaction with the hydrogen protons. We discuss a possible relation between organic magnetoresistance and other magnetic field effects in organics that were known long before its discovery. As a possible mechanism we describe how Pauli's principle restricts carrier hopping between singly occupied sites near the Fermi level. However, spin-mixing by the hyperfine interaction may partially lift this restriction. Since the devices we describe can be manufactured cheaply they hold promise for applications where large numbers of magnetoresistive devices are needed, such as magnetic random- access-memory (MRAM); and applications related to organic light- emitting diode displays such as touch screens where the position of a magnetic stylus is detected (patent pending). We will show a video of a simple demonstrator device.

  14. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  15. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse or...

  16. Anisotropic Poisson Processes of Cylinders

    CERN Document Server

    Spiess, Malte

    2010-01-01

    Main characteristics of stationary anisotropic Poisson processes of cylinders (dilated k-dimensional flats) in d-dimensional Euclidean space are studied. Explicit formulae for the capacity functional, the covariance function, the contact distribution function, the volume fraction, and the intensity of the surface area measure are given which can be used directly in applications.

  17. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  18. Challenges and trends in the development of a magnetoresistive biochip portable platform

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Veronica C., E-mail: veronicamartins@ist.utl.p [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Germano, Jose [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Cardoso, Filipe A.; Loureiro, Joana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cardoso, Susana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Sousa, Leonel; Piedade, Moises [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Electrical and Computer Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Fonseca, Luis P. [IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-05-15

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  19. Theoretical study of disorder induced magnetoresistance in graphene

    Science.gov (United States)

    Adam, Shaffique; Ping, Jinglei; Yudhistira, Indra; Ramakrishnan, Navneeth; Cho, Sungjae; Fuhrer, Michael S.

    2014-03-01

    In this work we predict theoretically that carrier density inhomogeneity provides a new mechanism for classical magnetoresistance. For concreteness, we study the case of graphene where density inhomogeneity and carrier scattering is dominated by charged impurities, although the mechanism itself is quite general and applies to other systems in which there are large spatial fluctuations of the carrier density. Calculations using an effective medium approximation show that low-field magnetoresistance becomes a universal function of the ratio between the average carrier density and the fluctuations of the carrier density, and scales as a power-law when this ratio is large. Our finding is in excellent agreement with recent experimental results. This work is supported by the Singapore National Research Foundation NRF-NRFF2012-01.

  20. Spin rectification induced by spin Hall magnetoresistance at room temperature

    Science.gov (United States)

    Wang, P.; Jiang, S. W.; Luan, Z. Z.; Zhou, L. F.; Ding, H. F.; Zhou, Y.; Tao, X. D.; Wu, D.

    2016-09-01

    We have experimentally and theoretically investigated the dc voltage generation in the heterostructure of Pt and yttrium iron garnet under the ferromagnetic resonance. Besides a symmetric Lorenz line shape dc voltage, an antisymmetric Lorenz line shape dc voltage is observed in field scan, which can solely originate from the spin rectification effect due to the spin Hall magnetoresistance. The angular dependence of the dc voltage is theoretically analyzed by taking into account both the spin pumping and the spin rectification effects. We find that the experimental results are in excellent agreement with the theoretical model, further identifying the spin Hall magnetoresistance origin of the spin rectification effect. Moreover, the spin pumping and the spin rectification effects are quantitatively separated by their different angular dependence at particular experimental geometry.

  1. Subatomic mechanism of the oscillatory magnetoresistance in superconductors

    CERN Document Server

    Ivlev, Boris I

    2016-01-01

    In the recent experiments the unusual oscillatory magnetoresistance in superconductors was discovered with a periodicity that is essentially independent on magnetic field direction and even material parameters. The nearly universal period points to a subatomic mechanism of the phenomenon. This mechanism is related to formation inside samples of small rings of a subatomic (Compton) size. Electron states inside rings are hybridized with conduction electrons which carry the same spin imbalance in energy as rings. The imbalance occurs due to spin interaction with the orbital momentum of the ring. The conductivity near $T_c$ is determined by fluctuating Cooper pairs consisting of electrons with shifted energies. Due to different angular momenta of rings these energies periodically depend on magnetic field resulting in the observed oscillatory magnetoresistance. Calculated universal positions of peaks $(n+1/2)\\Delta H$ ($n=0,1,2...$) on the $R(H)$ curve are in a very good agreement with experiments.

  2. Enhancing magnetoresistance in tetrathiafulvalene carboxylate modified iron oxide nanoparticle assemblies

    Science.gov (United States)

    Lv, Zhong-Peng; Luan, Zhong-Zhi; Cai, Pei-Yu; Wang, Tao; Li, Cheng-Hui; Wu, Di; Zuo, Jing-Lin; Sun, Shouheng

    2016-06-01

    We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications.We report a facile approach to stabilize Fe3O4 nanoparticles (NPs) by using tetrathiafulvalene carboxylate (TTF-COO-) and to control electron transport with an enhanced magnetoresistance (MR) effect in TTF-COO-Fe3O4 NP assemblies. This TTF-COO-coating is advantageous over other conventional organic coatings, making it possible to develop stable Fe3O4 NP arrays for sensitive spintronics applications. Electronic supplementary information (ESI) available: Experimental details; supplementary figures and tables. See DOI: 10.1039/c6nr03311c

  3. Structure and magnetoresistive properties in La endash manganite thin films

    International Nuclear Information System (INIS)

    This study investigates the structure of perovskite thin films and its influence on their colossal magnetoresistance (CMR) properties. Epitaxial thin films of perovskite manganites La1-xBxMnO3-δ (B=Ca,Sr) were prepared on SrTiO3 (100) substrates using on- and off-axis pulsed laser deposition (PLD) techniques. X-ray diffraction, resistance and magnetoresistance measurements, as well as high-resolution transmission electron microscopy (HRTEM) investigations were carried out. HRTEM observations reveal epitaxial growth for the first few layers of all prepared samples. Thicker on-axis prepared films grow with a large number of defects, whereas off-axis prepared samples grow in a columnar structure. Since the magnetic properties in systems with double-exchange interaction are very sensitive to the local structure it has great influence on the electronic properties. copyright 1997 American Institute of Physics

  4. Wheatstone bridge giant-magnetoresistance based cell counter.

    Science.gov (United States)

    Lee, Chiun-Peng; Lai, Mei-Feng; Huang, Hao-Ting; Lin, Chi-Wen; Wei, Zung-Hang

    2014-07-15

    A Wheatstone bridge giant magnetoresistance (GMR) biosensor was proposed here for the detection and counting of magnetic cells. The biosensor was made of a top-pinned spin-valve layer structure, and it was integrated with a microchannel possessing the function of hydrodynamic focusing that allowed the cells to flow in series one by one and ensured the accuracy of detection. Through measuring the magnetoresistance variation caused by the stray field of the magnetic cells that flowed through the microchannel above the GMR biosensor, we can not only detect and count the cells but we can also recognize cells with different magnetic moments. In addition, a magnetic field gradient was applied for the separation of different cells into different channels. PMID:24534580

  5. Hall effect in the extremely large magnetoresistance semimetal WTe2

    Science.gov (United States)

    Luo, Yongkang; Li, H.; Dai, Y. M.; Miao, H.; Shi, Y. G.; Ding, H.; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D.

    2015-11-01

    We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe2. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase in the hole density below ˜160 K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50 K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50 K, which might be the direct driving force of the electron-hole "compensation" and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system.

  6. Hall effect in the extremely large magnetoresistance semimetal WTe2

    International Nuclear Information System (INIS)

    We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe2. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase in the hole density below ∼160 K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a more pronounced reduction in electron density occurs below 50 K, giving rise to comparable electron and hole densities at low temperature. Our observations indicate a possible electronic structure change below 50 K, which might be the direct driving force of the electron-hole “compensation” and the extremely large magnetoresistance as well. Numerical simulations imply that this material is unlikely to be a perfectly compensated system

  7. Drastic pressure effect on the extremely large magnetoresistance in WTe2: quantum oscillation study

    OpenAIRE

    Cai, P. L.; Hu, J.; He, L. P.; Pan, J.; Hong, X. C.; Zhang, Z; Zhang, J.; J. Wei; Mao, Z. Q.; Li, S. Y.

    2014-01-01

    The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe$_2$ single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically...

  8. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ulman, Kanchan [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Narasimhan, Shobhana [Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Sheikh Saqr Laboratory, ICMS, Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064 (India); Delin, Anna [Department of Materials and Nanophysics, School of Information and Communication Technology, Electrum 229, Royal Institute of Technology (KTH), SE-16440 Kista (Sweden); Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala (Sweden); SeRC (Swedish e-Science Research Center), KTH, SE-10044 Stockholm (Sweden)

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  9. Correlation of Crystal Quality and Extreme Magnetoresistance of WTe$_2$

    OpenAIRE

    Ali, Mazhar N.; Schoop, Leslie; Xiong, Jun; Flynn, Steven; Gibson, Quinn; Hirschberger, Max; Ong, N. P.; Cava, R. J.

    2015-01-01

    High quality single crystals of WTe$_2$ were grown using a Te flux followed by a cleaning step involving self-vapor transport. The method is reproducible and yields consistently higher quality single crystals than are typically obtained via halide assisted vapor transport methods. Magnetoresistance (MR)values at 9 Tesla and 2 Kelvin as high as 1.75 million \\%, nearly an order of magnitude higher than previously reported for this material, were obtained on crystals with residual resistivity ra...

  10. Raman scattering investigation of large positive magnetoresistance material WTe$_2$

    OpenAIRE

    Kong, W. -D.; Wu, S. -F.; Richard, P.; Lian, C. -S.; Wang, J. -T.; Yang, C. -L.; Shi, Y. -G.; H. Ding

    2015-01-01

    We have performed polarized Raman scattering measurements on WTe$_2$, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A$_1$ phonon modes and 2 A$_2$ phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the $C_{2v}$ point group symmetry attributed to WTe$_2$. Although the phonon spect...

  11. Ultrafast Carrier Dynamics in the Large Magnetoresistance Material WTe$_{2}$

    OpenAIRE

    Dai, Y. M.; Bowlan, J.; Li, H.; Miao, H; Wu, S. F.; Kong, W. D.; Shi, Y. G.; Trugman, S. A.; Zhu, J. -X.; H. Ding; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.

    2015-01-01

    Ultrafast optical pump-probe spectroscopy is used to track carrier dynamics in the large magnetoresistance material WTe$_{2}$. Our experiments reveal a fast relaxation process occurring on a sub-picosecond time scale that is caused by electron-phonon thermalization, allowing us to extract the electron-phonon coupling constant. An additional slower relaxation process, occurring on a time scale of $\\sim$5-15 picoseconds, is attributed to phonon-assisted electron-hole recombination. As the tempe...

  12. Hall effect in the extremely large magnetoresistance semimetal WTe$_2$

    OpenAIRE

    Luo, Yongkang; Li, H.; Dai, Y. M.; Miao, H; Shi, Y. G.; H. Ding; Taylor, A. J.; Yarotski, D. A.; Prasankumar, R. P.; Thompson, J. D.

    2015-01-01

    We systematically measured the Hall effect in the extremely large magnetoresistance semimetal WTe$_2$. By carefully fitting the Hall resistivity to a two-band model, the temperature dependencies of the carrier density and mobility for both electron- and hole-type carriers were determined. We observed a sudden increase of the hole density below $\\sim$160~K, which is likely associated with the temperature-induced Lifshitz transition reported by a previous photoemission study. In addition, a mor...

  13. Large linear magnetoresistance in topological crystalline insulator Pb0.6Sn0.4Te

    Science.gov (United States)

    Roychowdhury, Subhajit; Ghara, Somnath; Guin, Satya N.; Sundaresan, A.; Biswas, Kanishka

    2016-01-01

    Classical magnetoresistance generally follows the quadratic dependence of the magnetic field at lower field and finally saturates when field is larger. Here, we report the large positive non-saturating linear magnetoresistance in topological crystalline insulator, Pb0.6Sn0.4Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. Magnetoresistance value as high as ∼200% was achieved at 3 K at magnetic field of 9 T. Linear magnetoresistance observed in Pb0.6Sn0.4Te is mainly governed by the spatial fluctuation carrier mobility due to distortions in the current paths in inhomogeneous conductor.

  14. Magnetoresistance in organic spintronic devices: the role of nonlinear effects

    Science.gov (United States)

    Shumilin, A. V.; Kabanov, V. V.; Dediu, V. A.

    2015-02-01

    We derive kinetic equations describing injection and transport of spin-polarized carriers in organic semiconductors with hopping conductivity via an impurity level. The model predicts a strongly voltage dependent magnetoresistance, defined as resistance variation between devices with parallel and antiparallel electrode magnetizations (spin-valve effect). The voltage dependence of the magnetoresistance splits into three distinct regimes. The first regime matches well-known inorganic spintronic regimes, corresponding to barrier-controlled spin injection or the well-known conductivity mismatch case. The second regime at intermediate voltages corresponds to strongly suppressed magnetoresistance. The third regime develops at higher voltages and accounts for a novel paradigm. It is promoted by the strong nonlinearity in the charge transport whose strength is characterized by the dimensionless parameter eU/kBT. This nonlinearity, depending on device conditions, can lead to both significant enhancement or to exponential suppression of the spin-valve effect in organic devices. We believe that these predictions are valid beyond the case of organic semiconductors and should be considered for any material characterized by strongly nonlinear charge transport.

  15. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  16. Stealths on Anisotropic Holographic Backgrounds

    CERN Document Server

    Ayón-Beato, Eloy; Juárez-Aubry, María Montserrat

    2015-01-01

    In this paper, we are interested in exploring the existence of stealth configurations on anisotropic backgrounds playing a prominent role in the non-relativistic version of the gauge/gravity correspondence. By stealth configuration, we mean a nontrivial scalar field nonminimally coupled to gravity whose energy-momentum tensor evaluated on the anisotropic background vanishes identically. In the case of a Lifshitz spacetime with a nontrivial dynamical exponent z, we spotlight the role played by the anisotropy to establish the holographic character of the stealth configurations, i.e. the scalar field is shown to only depend on the radial holographic direction. This configuration which turns out to be massless and without integration constants is possible for a unique value of the nonminimal coupling parameter. Then, using a simple conformal argument, we map this configuration into a stealth solution defined on the so-called hyperscaling violation metric which is conformally related to the Lifshitz spacetime. Thi...

  17. Conductivities in an anisotropic medium

    CERN Document Server

    Khimphun, Sunly; Park, Chanyong

    2016-01-01

    In order to imitate anisotropic medium of a condensed matter system, we take into account an Einstein-Maxwell-dilaton-axion model as a dual gravity theory where the anisotropy is caused by different momentum relaxations. This gravity model allows an anisotropic charged black hole solution. On this background, we investigate how the linear responses of vector modes like electric, thermoelectric, and thermal conductivities rely on the anisotropy. We find that the electric conductivity in low frequency limit shows a Drude peak and that in the intermediate frequency regime it reveals the power law behavior. Especially, when the anisotropy increases the exponent of the power law becomes smaller. In addition, we find that there exist a critical value for the anisotropy at which the DC conductivity reaches to its maximum value.

  18. Magnetization, magnetoresistance, and x-ray diffraction measurements of discontinuous [Ni80Fe20/Ag] multilayers (abstract)

    Science.gov (United States)

    Lorenz, T.; Moske, M.; Käufler, A.; Geisler, H.; Samwer, K.

    1996-04-01

    Thin films for magnetic sensor application require a high sensitivity at low magnetic fields, for example, realized by Permalloy films. Promising candidates for a further improvement are discontinuous multilayers, first reported by Hylton et al. In our study, we report on [2.5 nm Ni80Fe20/y nm Ag] multilayers with the spacer layer thickness y ranging from 1.2 nm to 6.0 nm. The multilayers were electron beam deposited in UHV at different temperatures. The substrates used are thermally oxidized silicon wafers. The magnetization is obtained using a vibrating sample magnetometer (VSM), the magnetoresistance is measured at room temperature with the Montgomery method. Low and high angle x-ray diffraction measurements are performed in a Siemens D-5000 diffractometer. The samples are annealed ex situ between room temperature and 340 °C. The magnetoresistance is maximal after annealing the samples at a specific temperature, which decreases with increasing Ag-spacer thickness y. Moreover, the GMR decreases if the multilayers are deposited at elevated temperatures (100-200 °C). We also report on the dependence of the GMR on the interface roughness (σ≊0.5 nm rms) which we deduce from the small angle x-ray diffraction measurements. For a characterization of the reliability, we also investigated the dependence of the GMR on aging at 100 °C for several hours.

  19. Signature of enhanced spin-orbit interaction in the magnetoresistance of LaTiO3/SrTiO3 interfaces on δ doping

    Science.gov (United States)

    Das, Shubhankar; Hossain, Z.; Budhani, R. C.

    2016-09-01

    We present a study of modulation of spin-orbit interaction (SOI) at the interface of LaTiO3/SrTiO3 by δ doping with an isostructural ferromagnetic perovskite LaCoO3. The sheet carrier density at the interface decreases exponentially with δ -doping thickness. We have explored that the spin-orbit scattering time (τs o) can be decreased by nearly three orders of magnitude, whereas the inelastic scattering time (τi) remains almost constant with δ -doping thickness. We have also observed that the τi varies almost inversely proportional to temperature and τs o remains insensitive to temperature, which suggest that the spin relaxation in these interfaces follows D'yakonov-Perel mechanism. The observed in-plane anisotropic magnetoresistance is attributed to the mixing of the spin-up and spin-down states of the d band at the Fermi level due to SOI.

  20. Bilayer splitting versus Fermi-surface warping as an origin of slow oscillations of in-plane magnetoresistance in rare-earth tritellurides

    Science.gov (United States)

    Grigoriev, Pavel D.; Sinchenko, Alexander A.; Lejay, Pascal; Hadj-Azzem, Abdellali; Balay, Joël; Leynaud, Olivier; Zverev, Vladimir N.; Monceau, Pierre

    2016-06-01

    Slow oscillations (SlO) of the in-plane magnetoresistance with a frequency less than 4 T are observed in the rare-earth tritellurides and proposed as an effective tool to explore the electronic structure in various strongly anisotropic quasi-two-dimensional compounds. Contrary to the usual Shubnikov-de-Haas oscillations, SlO originate not from small Fermi-surface pockets, but from the entanglement of close frequencies due to a finite interlayer transfer integral, either between the two Te planes forming a bilayer or between two adjacent bilayers. From the observed angular dependence of the frequency and the phase of SlO we argue that they originate from the bilayer splitting rather than from the Fermi-surface warping. The SlO frequency gives the value of the interlayer transfer integral ≈1 meV for TbTe3 and GdTe3.

  1. From spin-polarized interfaces to giant magnetoresistance in organic spin valves

    NARCIS (Netherlands)

    Cakir, D.; Otalvaro Gutierrez, D.M.; Brocks, G.

    2014-01-01

    We calculate the spin-polarized electronic transport through a molecular bilayer spin valve from first principles, and establish the link between the magnetoresistance and the spin-dependent interactions at the metal-molecule interfaces. The magnetoresistance of a Fe| bilayer-C 70 | Fe spin valve at

  2. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  3. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  4. New charged anisotropic compact models

    Science.gov (United States)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  5. Remarks on inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  6. Low field anisotropic colossal magnetoresistance in $Sm_{0.53} Sr_{0.47} Mn O_3$ thin films

    OpenAIRE

    Manoj K. Srivastava; Singh, M P; Kaur, Amarjeet; Razavi, F. S.; Singh, H.K.

    2013-01-01

    SSMO5347 thin films (thicknesses ~200 nm) were deposited by on-axis dc magnetron sputtering on the single crystal LSAT (001) substrates. These films are oriented along the out of plane c-direction. The ferromagnetic and insulator-metal transition occurs at 96 K and 91 K, respectively. The magnetization easy axis is observed to lie in the plane of the film while the magnetic hard axis is found to be along the normal to this. The magnetotransport of the SSMO films, which was measured as a funct...

  7. Angular magnetoresistance in semiconducting undoped amorphous carbon thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sagar, Rizwan Ur Rehman; Saleemi, Awais Siddique; Zhang, Xiaozhong, E-mail: xzzhang@tsinghua.edu.cn [Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, People' s Republic of China and Beijing National Center for Electron Microscopy, Beijing 100084 (China)

    2015-05-07

    Thin films of undoped amorphous carbon thin film were fabricated by using Chemical Vapor Deposition and their structure was investigated by using High Resolution Transmission Electron Microscopy and Raman Spectroscopy. Angular magnetoresistance (MR) has been observed for the first time in these undoped amorphous carbon thin films in temperature range of 2 ∼ 40 K. The maximum magnitude of angular MR was in the range of 9.5% ∼ 1.5% in 2 ∼ 40 K. The origin of this angular MR was also discussed.

  8. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  9. Micromagnetic Simulation of Transfer Curve in Giant-Magnetoresistive Head

    Institute of Scientific and Technical Information of China (English)

    SHE Sheng-Xian; WEI Dan; ZHENG Yang; Qu Bing-Jun; REN Tian-Ling; LIU Xi; WEI Fu-Lin

    2009-01-01

    The transfer curve of the giant-magnetoresistive(GMR)magnetic head represents its most important property in applications,and it is calculated by the micromagnetic modeling of the free layer and the pinned layer in the heart of the GMR head.Affections of the bias hard magnetic layer and the anti-ferromagnetic pinning layer are modeled by effective magnetic Selds.The simulated transfer curve agrees with experiment quite well,therefore the values of these effective magnetic fields can be determined by the model.A synthetic antiferromagnetic spin valve structure GMR head is also analyzed for comparison.

  10. Magnetoresistance in the ferromagnet/insulator/ferromagnet tunnel junction

    Institute of Scientific and Technical Information of China (English)

    Lu Hong-Xia; Dong Zheng-Chao; Fu Hao

    2008-01-01

    Recently experiments and theories show that the tunnel magnetoresistance (TMR) does not only depend on the ferromagnetic metal electrodes but also on the insulator.Considering the rough-scattering effect and spin-flip effect in the insulator,this paper investigates the TMR ratio in a ferromagnet/insulator/ferromagnet (FM/I/FM) tunnelling junction by using Slonczewsik's model.A more general expression of TMR ratio as a function of barrier height,interface roughness and spin-flip effect is obtained.In lower barrier case,it shows that the TMR ratio depends on the roughscattering effect and spin-flip effect.

  11. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  12. Enhanced Transverse Magnetoresistive Effect in Semiconducting Diamond Films

    Institute of Scientific and Technical Information of China (English)

    WANG Wan-Lu; LIAO Ke-Jun; WANG Bi-Ben

    2000-01-01

    A very large magnetoresistive effect in both homoepitaxial and heteroepitaxial semiconducting diamond films by chemical vapor deposition has been observed. The changes in the resistance of the films strongly depend on both magnetic field intensity and geometric form of the samples. The effect of disk structure is greater than that of stripe type samples, also variation in the resistance of homoepitaxial diamond films is greater than that of eteroepitaxial diamond films. The resistance of homoepitaxial diamond films with the disk structure is increased y a factor of 2.1 at room temperature under magnetic field intensity of 5 T, but only 0.80 for heteroepitaxial diamond films.

  13. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  14. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, J.-H.; Kwak, W.-Y.; Cho, B. K., E-mail: chobk@gist.ac.kr [School of Materials Science and Engineering, Gwangju Institute of Science and Technology, Gwangju 500-712 (Korea, Republic of); Choi, H. Y. [Department of Physics, Sungkyunkwan University, Suwon 440-746 (Korea, Republic of); Kim, G. H. [Department of Physics, Sejong University, Seoul 143-747 (Korea, Republic of)

    2015-05-07

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.

  15. The magnetoresistive effect induced by stress in spin-valve structures

    Institute of Scientific and Technical Information of China (English)

    Qian Li-Jie; Xu Xiao-Yong; Hu Jing-Guo

    2009-01-01

    Using a method of free energy minimization, this paper investigates the magnetization properties of a ferromagnetic (FM) monolayer and an FM/antiferromagnetic (AFM) bilayer under a stress field, respectively. It then investigates the magnetoresistance (MR) of the spin-valve structure, which is built by an FM monolayer and an FM/AFM bilayer, and its dependence upon the applied stress field. The results show that under the stress field, the magnetization properties of the FM monolayer is obviously different from that of the FM/AFM bilayer, since the coupled AFM layer can obviously block the magnetization of the FM layer. This phenomenon makes the MR of the spin-valve structure become obvious.In detail, there are two behaviors for the MR of the spin-valve structure dependence upon the stress field distinguished by the coupling (FM coupling or AFM coupling) between the FM layer and the FM/AFM bilayer. Either behavior of the MR of the spin-valve structure depends on the stress field including its value and orientation. Based on these investigations, a perfect mechanical sensor at the nano-scale is suggested to be devised experimentally.

  16. Effects of repetitive bending on the magnetoresistance of a flexible spin-valve

    Science.gov (United States)

    Kwon, J.-H.; Kwak, W.-Y.; Choi, H. Y.; Kim, G. H.; Cho, B. K.

    2015-05-01

    A positive magnetostrictive single layer (CoFe) and top-pinned spin-valve structure with positive magnetostrictive free (NiFe) and pinned (CoFe) layers were deposited on flexible polyethylene terephthalate film to investigate the changes in the magnetic properties in flexible environments, especially with a repetitive bending process. It was found that the stress, applied by repetitive bending, changes significantly the magnetic anisotropy of both layers in a single and spin-valve structure depending on the direction of applied stress. The changes in magnetic anisotropy were understood in terms of the inverse magnetostriction effect (the Villari effect) and the elastic recovery force from the flexibility of the polymer substrate. Repetitive bending with tensile stress transverse (or parallel) to the magnetic easy axis was found to enhance (or reduce) the magnetic anisotropy and, consequently, the magnetoresistance ratio of a spin-valve. The observed effects of bending stress in this study should be considered for the practical applications of electro-magnetic devices, especially magneto-striction sensor.

  17. Giant negative magneto-resistance in non-magnetic quantum dot arrays in the nearest-neighbor hopping conduction

    CERN Document Server

    Wang, X R

    1999-01-01

    We propose a new mechanism of negative magnetoresistance in non-magnetic quantum dot arrays or granular materials in which electron transport in dominated by hopping between two nearest-neighbor clusters. We study the dependence of magnetoresistance on temperature and separation between neighboring clusters. At a small separation we find a negative magnetoresistance at low temperatures and it changes over to a positive value as temperature increases. For a fixed temperature, magnetoresistance changes from negative to positive when the cluster separation increases. The change of magnetoresistance DELTA R/R can be more than 80 % at low temperatures.

  18. ANISOTROPIC POLARIZATION TENSORS FOR ELLIPSES AND ELLIPSOIDS

    Institute of Scientific and Technical Information of China (English)

    Hyeonbae Kang; Kyoungsun Kim

    2007-01-01

    In this paper we present a systematic way of computing the polarization tensors,anisotropic as well as isotropic, based on the boundary integral method. We then use this method to compute the anisotropic polarization tensor for ellipses and ellipsoids. The computation reveals the pair of anisotropy and ellipses which produce the same polarization tensors.

  19. Anisotropic weak Hardy spaces and interpolation theorems

    Institute of Scientific and Technical Information of China (English)

    2008-01-01

    In this paper, the authors establish the anisotropic weak Hardy spaces associated with very general discrete groups of dilations. Moreover, the atomic decomposition theorem of the anisotropic weak Hardy spaces is also given. As some applications of the above results, the authors prove some interpolation theorems and obtain the boundedness of the singular integral operators on these Hardy spaces.

  20. ANISOTROPIC BIQUADRATIC ELEMENT WITH SUPERCLOSE RESULT

    Institute of Scientific and Technical Information of China (English)

    Dongyang SHI; Shipeng MAO; Hui LIANG

    2006-01-01

    The main aim of this paper is to study the convergence of biquadratic finite element for the second order problem on anisotropic meshes. By using some novel approaches and techniques, the optimal error estimates are obtained. At the same time, the anisotropic superclose results are also achieved. Furthermore, the numerical results are given to demonstrate our theoretical analysis.

  1. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  2. Multidisciplinary approach to cylindrical anisotropic metamaterials

    International Nuclear Information System (INIS)

    Anisotropic characteristics of cylindrically corrugated microstructures are analyzed in terms of their acoustic and electromagnetic (EM) behavior paying special attention to their differences and similarities. A simple analytical model has been developed using effective medium theory to understand the anisotropic features of both types of waves in terms of radial and angular components of the wave propagation velocity. The anisotropic constituent parameters have been obtained by measuring the resonances of cylindrical cavities, as well as from numerical simulations. This permits one to characterize propagation of acoustic and EM waves and to compare the fundamental anisotropic features generated by the corrugated effective medium. Anisotropic coefficients match closely in both physics fields but other relevant parameters show significant differences in the behavior of both types of waves. (paper)

  3. Designing Anisotropic Inflation with Form Fields

    CERN Document Server

    Ito, Asuka

    2015-01-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  4. Designing anisotropic inflation with form fields

    Science.gov (United States)

    Ito, Asuka; Soda, Jiro

    2015-12-01

    We study inflation with anisotropic hair induced by form fields. In four dimensions, the relevant form fields are gauge (one-form) fields and two-form fields. Assuming the exponential form of potential and gauge kinetic functions, we find new exact power-law solutions endowed with anisotropic hair. We also explore the phase space of anisotropic inflation and find fixed points corresponding to the exact power-law solutions. Moreover, we perform the stability analysis around the fixed points to reveal the structure of the phase space. It turns out that one of the fixed points becomes an attractor and others (if any) are saddle points. In particular, the one corresponding to anisotropic inflation becomes an attractor when it exists. We also argue that various anisotropic inflation models can be designed by choosing coupling constants.

  5. Unidirectional spin Hall magnetoresistance in ferromagnet/normal metal bilayers

    Science.gov (United States)

    Avci, Can Onur; Garello, Kevin; Ghosh, Abhijit; Gabureac, Mihai; Alvarado, Santos F.; Gambardella, Pietro

    2015-07-01

    Magnetoresistive effects are usually invariant on inversion of the magnetization direction. In non-centrosymmetric conductors, however, nonlinear resistive terms can give rise to a current dependence that is quadratic in the applied voltage and linear in the magnetization. Here we demonstrate that such conditions are realized in simple bilayer metal films where the spin-orbit interaction and spin-dependent scattering couple the current-induced spin accumulation to the electrical conductivity. We show that the longitudinal resistance of Ta|Co and Pt|Co bilayers changes when reversing the polarity of the current or the sign of the magnetization. This unidirectional magnetoresistance scales linearly with current density and has opposite sign in Ta and Pt, which we associate with the modification of the interface scattering potential induced by the spin Hall effect in these materials. Our results suggest a route to control the resistance and detect magnetization switching in spintronic devices using a two-terminal geometry, which applies also to heterostructures including topological insulators.

  6. Theory of the negative magnetoresistance in magnetic metallic multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Hood, R.Q.; Falicov, L.M. [California Univ., Berkeley, CA (United States). Dept. of Physics]|[Lawrence Berkeley Lab., CA (United States)

    1993-04-01

    The Boltzman equation is solved for a system consisting of alternating ferromagnetic normal metallic layers. The in-plane conductance of the film is calculated for two configurations: successive ferromagnetic layers aligned parallel and antiparallel to each other. Results explain the giant negative magnetoresistance encountered in these systems when an initial antiparallel arrangement is changed into a parallel configuration by application of an extemal magnetic field. The calculation depends on geometric parameters (the thicknesses of the layers); intrinsic metal parameters (number of conduction electrons, magnetization and effective masses in the layers); bulk sample properties (conductivity relaxation times); and interface scattering properties (diffuse scattering versus potential scattering at the interfaces). It is found that a large negative magnetoresistance requires, in general, considerable asymmetry in the interface scattering for the two spin orienmtions. All qualitative features of the experiments are reproduced. Quantitative agreement can be achieved with sensible values of the parameters. The effect can be conceptually explained based on considerations of phase-space availability for an electron of a given spin orientation as it travels through the multilayer sample in the various configurations and traverses the interfaces.

  7. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  8. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  9. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  10. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  11. Anisotropic scaling of magnetohydrodynamic turbulence

    CERN Document Server

    Horbury, T S; Oughton, S

    2008-01-01

    We present a quantitative estimate of the anisotropic power and scaling of magnetic field fluctuations in inertial range magnetohydrodynamic turbulence, using a novel wavelet technique applied to spacecraft measurements in the solar wind. We show for the first time that, when the local magnetic field direction is parallel to the flow, the spacecraft-frame spectrum has a spectral index near 2. This can be interpreted as the signature of a population of fluctuations in field-parallel wavenumbers with a $k_{\\parallel}^{-2}$ spectrum but is also consistent with the presence of a "critical balance" style turbulent cascade. We also find, in common with previous studies, that most of the power is contained in wavevectors at large angles to the local magnetic field and that this component of the turbulence has a spectral index of 5/3.

  12. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  13. I-Love-Q Anisotropically

    CERN Document Server

    Yagi, Kent

    2015-01-01

    Certain physical quantities that characterize neutron stars and quark stars (e.g. their mass, spin angular momentum and quadrupole moment) are interrelated in a way that is approximately insensitive to their internal structure. Such approximately universal relations are useful to break degeneracies in data analysis for future radio, X-ray and gravitational wave observations. Although the pressure inside compact stars is most likely nearly isotropic, certain scenarios have been put forth that suggest otherwise, for example due to phase transitions. We here investigate whether pressure anisotropy affects the approximate universal relations and whether it prevents their use in future observations. We achieve this by numerically constructing slowly-rotating and tidally-deformed, anisotropic, compact stars in General Relativity to third order in spin. We find that anisotropy affects the universal relations only weakly; the relations become less universal by a factor of 1.5-3 relative to the isotropic case, but rem...

  14. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  15. The Anisotropic Geometrodynamics For Cosmology

    Science.gov (United States)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  16. Anisotropic microstructure near the sun

    International Nuclear Information System (INIS)

    Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 R· [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ''background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 R· which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a 'Maltese Cross' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 R·, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 R· contributes to

  17. Effect of thermal-annealing on the magnetoresistance of manganite-based junctions

    Institute of Scientific and Technical Information of China (English)

    Xie Yan-Wu; Shen Bao-Gen; Sun Ji-Rong

    2008-01-01

    Thermal-annealing has been widely used in modulating the oxygen content of manganites. In this work, we have studied the effect of annealing on the transport properties and magnetoresistance of junctions composed of a La0.9Ca0.1MnO3+δ film and a Nb-doped SrTiO3 substrate. We have demonstrated that the magnetoresistance of junctions is strongly dependent on the annealing conditions: From the junction annealed-in-air to the junction annealed-in-vacuum, the magnetoresistance near 0-V bias can vary from ~-60% to~0. A possible mechanism accounting for this phenomenon is discussed.

  18. Magnetoresistive Properties of the Array of Iron Oxide Nanoparticles in Conducting Matrix

    Directory of Open Access Journals (Sweden)

    D.M. Kostyuk

    2015-12-01

    Full Text Available The results of the study of giant magnetoresistance in film systems Ag / array of ferrite nanoparticles / Ag and graphene / array of ferrite nanoparticles / graphene, which were formed by means of spin-coating or Langmuir-Blodgett technique, are represented. In systems of the first type during annealing the magnetoresistance value is changed within 3-20 %, and in the systems of the second type – 3 %. It is established that the optimum Ag film thickness, where magnetoresistance MR = 2 %, has a value of 5 nm.

  19. A new algorithm for anisotropic solutions

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-02-01

    We establish a new algorithm that generates a new solution to the Einstein field equations, with an anisotropic matter distribution, from a seed isotropic solution. The new solution is expressed in terms of integrals of an isotropic gravitational potential; and the integration can be completed exactly for particular isotropic seed metrics. A good feature of our approach is that the anisotropic solutions necessarily have an isotropic limit. We find two examples of anisotropic solutions which generalise the isothermal sphere and the Schwarzschild interior sphere. Both examples are expressed in closed form involving elementary functions only.

  20. Impurity-Assisted Tunneling Magnetoresistance under a Weak Magnetic Field

    Science.gov (United States)

    Txoperena, Oihana; Song, Yang; Qing, Lan; Gobbi, Marco; Hueso, Luis E.; Dery, Hanan; Casanova, Fèlix

    2014-10-01

    Injection of spins into semiconductors is essential for the integration of the spin functionality into conventional electronics. Insulating layers are often inserted between ferromagnetic metals and semiconductors for obtaining an efficient spin injection, and it is therefore crucial to distinguish between signatures of electrical spin injection and impurity-driven effects in the tunnel barrier. Here we demonstrate an impurity-assisted tunneling magnetoresistance effect in nonmagnetic-insulator-nonmagnetic and ferromagnetic-insulator-nonmagnetic tunnel barriers. In both cases, the effect reflects on-off switching of the tunneling current through impurity channels by the external magnetic field. The reported effect is universal for any impurity-assisted tunneling process and provides an alternative interpretation to a widely used technique that employs the same ferromagnetic electrode to inject and detect spin accumulation.

  1. Giant magnetoresistance of electrodeposited Cu–Co–Ni alloy films

    Indian Academy of Sciences (India)

    İ H Karahan; Ö F Bakkaloğlu; M Bedir

    2007-01-01

    Electrodeposition of CuCoNi alloys was performed in an acid–citrate medium. Nickel density parameter was varied in order to analyse its influence on the magnetoresistance. The structure and giant magneto- resistance (GMR) effect of CuCoNi alloys have been investigated. The maximum value for GMR ratio, at room temperature is 1% at a field of 12 kOe, and at 20 K is 2.1% at a field of 8.5 kOe for 3.1 Ni. The MR ratio of Cu100−−CoNi alloys first increases and then decreases monotonically with increasing Ni content. The GMR and its dependence on magnetic field and temperature were discussed.

  2. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  3. Tunneling magnetoresistance in ferromagnetic planar hetero-nanojunctions

    KAUST Repository

    Useinov, Arthur

    2010-05-03

    We present a theoretical study of the tunneling magnetoresistance (TMR) in nanojunctions between non-identical ferromagnetic metals in the framework of the quasiclassical approach. The lateral size of a dielectric oxide layer, which is considered as a tunneling barrier between the metallic electrodes, is comparable with the mean-free path of electrons. The dependence of the TMR on the bias voltage, physical parameters of the dielectric barrier, and spin polarization of the electrodes is studied. It is demonstrated that a simple enough theory can give high TMR magnitudes of several hundred percent at bias voltages below 0.5 V. A qualitative comparison with the available experimental data is given. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Theory of spin Hall magnetoresistance (SMR) and related phenomena

    International Nuclear Information System (INIS)

    We review the so-called spin Hall magnetoresistance (SMR) in bilayers of a magnetic insulator and a metal, in which spin currents are generated in the normal metal by the spin Hall effect. The associated angular momentum transfer to the ferromagnetic layer and thereby the electrical resistance is modulated by the angle between the applied current and the magnetization direction. The SMR provides a convenient tool to non-invasively measure the magnetization direction and spin-transfer torque to an insulator. We introduce the minimal theoretical instruments to calculate the SMR, i.e. spin diffusion theory and quantum mechanical boundary conditions. This leads to a small set of parameters that can be fitted to experiments. We discuss the limitations of the theory as well as alternative mechanisms such as the ferromagnetic proximity effect and Rashba spin–orbit torques, and point out new developments. (topical review)

  5. Magnetoresistance in permalloy/GaMnAs circular microstructures

    Science.gov (United States)

    Guenther, Justin Michael

    When two ferromagnetic materials are deposited directly on top of one another, their magnetic moments lock together and will no longer switch independently. This effect is known as exchange spring coupling. Reports in literature indicate that a bilayer composed of GaMnAs and permalloy may be a rare exception. Such a bilayer would allow for independent switching and, as a result, giant magnetoresistance. For this thesis, we verified the independent switching of continuous films of GaMnAs and expanded on existing literature. We also investigated GMR in bilayers. Samples were fabricated and measured using novel techniques and software developed specifically for this project. Transport measurements of GaMnAs/Py bilayers revealed a minimal to non-existent GMR effect; instead, the main discernible effect was due to AMR of the bulk substrate of the samples. This thesis also details the construction process of an inexpensive, temporary cleanroom environment.

  6. Correlation of crystal quality and extreme magnetoresistance of WTe2

    Science.gov (United States)

    Ali, Mazhar N.; Schoop, Leslie; Xiong, Jun; Flynn, Steven; Gibson, Quinn; Hirschberger, Max; Ong, N. P.; Cava, R. J.

    2015-06-01

    High-quality single crystals of WTe2 were grown using a Te flux followed by a cleaning step involving self-vapor transport. The method is reproducible and yields consistently higher-quality single crystals than are typically obtained via halide-assisted vapor transport methods. Magnetoresistance (MR) values at 9 tesla and 2 kelvin as high as 1.75 million %, nearly an order of magnitude higher than previously reported for this material, were obtained on crystals with residual resistivity ratio (RRR) of approximately 1250. The MR follows a near B 2 law (B = 1.95(1)) and, assuming a semiclassical model, the average carrier mobility for the highest-quality crystal was found to be 167,000 \\text{cm}^2/\\text{Vs} at 2 K. A correlation of RRR, MR ratio and average carrier mobility (μ\\textit{avg}) is found with the cooling rate during the flux growth.

  7. Raman scattering investigation of large positive magnetoresistance material WTe2

    Science.gov (United States)

    Kong, W.-D.; Wu, S.-F.; Richard, P.; Lian, C.-S.; Wang, J.-T.; Yang, C.-L.; Shi, Y.-G.; Ding, H.

    2015-02-01

    We have performed polarized Raman scattering measurements on WTe2, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A1 phonon modes and 2 A2 phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the C2v point group symmetry attributed to WTe2. Although the phonon spectra suggest neither strong electron-phonon nor spin-phonon coupling, the intensity of the A1 phonon mode at 160.6 cm-1 shows an unconventional decrease with temperature decreasing, for which the origin remains unclear.

  8. Raman scattering investigation of large positive magnetoresistance material WTe2

    International Nuclear Information System (INIS)

    We have performed polarized Raman scattering measurements on WTe2, for which an extremely large positive magnetoresistance has been reported recently. We observe 5 A1 phonon modes and 2 A2 phonon modes out of 33 Raman active modes, with frequencies in good accordance with first-principles calculations. The angular dependence of the intensity of the peaks observed is consistent with the Raman tensors of the C2v point group symmetry attributed to WTe2. Although the phonon spectra suggest neither strong electron-phonon nor spin-phonon coupling, the intensity of the A1 phonon mode at 160.6 cm−1 shows an unconventional decrease with temperature decreasing, for which the origin remains unclear

  9. Longitudinal Magnetoresistance and "Chiral" Coupling in Silver Chalcogenides

    Institute of Scientific and Technical Information of China (English)

    XU Jie; ZHANG Duan-Ming

    2011-01-01

    A complex longitudinal magnetoresistance (MR∥) effect in the non-stoichiometric silver chalcogenides (include the silver selenide and telluride) has been found, however the mechanism for the MR∥ effect is not clear now.In this work, a new random resistor network for MR∥ effect is proposed based on the experimental observation. The network is constructed from six-terminal resistor units and the mobility of carries within the network has a Gaussian distribution. Considering the non-zero transverse-longitudinal coupling in materials, the resistance matrix of the sixterminal resistor unit is modified. It is found that the material has the "chiral" transverse-longitudinal couplings, which is suggested a main reason for the complex MR∥ effect. The model predictions are compared with the experimental results.A three dimension (3D) visualization of current flow within the network demonstrates the "current jets" phenomenon in the thickness of materials clearly.

  10. Theory of spin Hall magnetoresistance (SMR) and related phenomena.

    Science.gov (United States)

    Chen, Yan-Ting; Takahashi, Saburo; Nakayama, Hiroyasu; Althammer, Matthias; Goennenwein, Sebastian T B; Saitoh, Eiji; Bauer, Gerrit E W

    2016-03-16

    We review the so-called spin Hall magnetoresistance (SMR) in bilayers of a magnetic insulator and a metal, in which spin currents are generated in the normal metal by the spin Hall effect. The associated angular momentum transfer to the ferromagnetic layer and thereby the electrical resistance is modulated by the angle between the applied current and the magnetization direction. The SMR provides a convenient tool to non-invasively measure the magnetization direction and spin-transfer torque to an insulator. We introduce the minimal theoretical instruments to calculate the SMR, i.e. spin diffusion theory and quantum mechanical boundary conditions. This leads to a small set of parameters that can be fitted to experiments. We discuss the limitations of the theory as well as alternative mechanisms such as the ferromagnetic proximity effect and Rashba spin-orbit torques, and point out new developments.

  11. Studies of Colossal Magnetoresistive Oxides with Radioactive Isotopes

    CERN Multimedia

    2002-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magneto- resistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+\\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non- stoichiometry: - learning the role of defects in the optimisation of magnetoresestive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic p...

  12. Resistance transition assisted geometry enhanced magnetoresistance in semiconductors

    International Nuclear Information System (INIS)

    Magnetoresistance (MR) reported in some non-magnetic semiconductors (particularly silicon) has triggered considerable interest owing to the large magnitude of the effect. Here, we showed that MR in lightly doped n-Si can be significantly enhanced by introducing two diodes and proper design of the carrier path [Wan, Nature 477, 304 (2011)]. We designed a geometrical enhanced magnetoresistance (GEMR) device whose room-temperature MR ratio reaching 30% at 0.065 T and 20 000% at 1.2 T, respectively, approaching the performance of commercial MR devices. The mechanism of this GEMR is: the diodes help to define a high resistive state (HRS) and a low resistive state (LRS) in device by their openness and closeness, respectively. The ratio of apparent resistance between HRS and LRS is determined by geometry of silicon wafer and electrodes. Magnetic field could induce a transition from LRS to HRS by reshaping potential and current distribution among silicon wafer, resulting in a giant enhancement of intrinsic MR. We expect that this GEMR could be also realized in other semiconductors. The combination of high sensitivity to low magnetic fields and large high-field response should make this device concept attractive to the magnetic field sensing industry. Moreover, because this MR device is based on a conventional silicon/semiconductor platform, it should be possible to integrate this MR device with existing silicon/semiconductor devices and so aid the development of silicon/semiconductor-based magnetoelectronics. Also combining MR devices and semiconducting devices in a single Si/semiconductor chip may lead to some novel devices with hybrid function, such as electric-magnetic-photonic properties. Our work demonstrates that the charge property of semiconductor can be used in the magnetic sensing industry, where the spin properties of magnetic materials play a role traditionally

  13. Magnetoresistance in Parent Pnictide AFe2As2(A = Sr, Ba)

    International Nuclear Information System (INIS)

    Magnetoresistances of SrFe2As2 and BaFe2As2 in the magnetic ordered state are studied. Positive magnetoresistance is observed in the magnetic fields H applied in the azimuthes of θ = 0° and 30° with respect to the c-axis. The magnetoresistance can reach 20% for SrFe2As2 and 12% for BaFe2As2 at H = 9 T with θ = 0° (H || c). Above the magnetic transition temperature, the magnetoresistance becomes negligible. The data in the magnetic ordered state could be described by a modified two-band galvanomagnetic model including the enhancement effect of the applied magnetic field on the spin-density-wave gap. The field enhanced spin-density-wave gaps for different types of carriers are different. Temperature dependencies of the fitting parameters are discussed

  14. Electric field control of magnetoresistance in InP nanowires with ferromagnetic contacts.

    Science.gov (United States)

    Zwanenburg, F A; van der Mast, D W; Heersche, H B; Kouwenhoven, L P; Bakkers, E P A M

    2009-07-01

    We demonstrate electric field control of sign and magnitude of the magnetoresistance in InP nanowires with ferromagnetic contacts. The sign change in the magnetoresistance is directly correlated with a sign change in the transconductance. Additionally, the magnetoresistance is shown to persist at such a high bias that Coulomb blockade has been lifted. We also observe the magnetoresistance when one of the ferromagnets is replaced by a nonmagnetic metal. We conclude that it must be induced by a single ferromagnetic contact, and that spin transport can be ruled out as the origin. Our results emphasize the importance of a systematic investigation of spin-valve devices in order to discriminate between ambiguous interpretations. PMID:19537736

  15. Magnetoresistance in Parent Pnictide AFe_2As_2(A=Sr, Ba)

    Institute of Scientific and Technical Information of China (English)

    ZHENG Ping; CHEN Gen-Fu; LI Zheng; HU Wan-Zheng; DONG Jing; LI Gang; WANG Nan-Lin; LUO Jian-Lin

    2009-01-01

    Magnetoresistances of SrFe_2 As_2 and BaFe_2 As_2 in the magnetic ordered state are studied.Positive magnetoresis-tance is observed in the magnetic fields H applied in the azimuthes foθ = 0°and 30°with respect to the c-axis.The magnetoresistance can reach 20% for SrFe_2 As_2 and 12% for BaFe_2As_2 at H = 9 T with θ= 0°(H||c).Above the magnetic transition temperature, the magnetoresistance becomes negligible.The data in the magnetic ordered state could be described by a modified two-band galvanomagnetic model including the enhancement effect of the applied magnetic field on the spin-density-wave gap.The field enhanced spin-density-wave gaps for different types of carriers are different.Temperature dependencies of the fitting parameters are discussed.

  16. Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2 : Quantum Oscillation Study

    Science.gov (United States)

    Cai, P. L.; Hu, J.; He, L. P.; Pan, J.; Hong, X. C.; Zhang, Z.; Zhang, J.; Wei, J.; Mao, Z. Q.; Li, S. Y.

    2015-07-01

    The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe2 single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically from 1.25 ×105% under ambient pressure to 7.47 ×103% under 23.6 kbar, which is likely caused by the relative change of Fermi surfaces. These results support the scenario that the perfect balance between the electron and hole populations is the origin of the extremely large magnetoresistance in WTe2 .

  17. Quantitative study of the spin Hall magnetoresistance in ferromagnetic insulator/normal metal hybrids

    NARCIS (Netherlands)

    Althammer, M.; Meyer, S.; Nakayama, H.; Schreier, M.; Altmannshofer, S.; Weiler, M.; Huebl, H.; Gesprägs, S.; Opel, M.; Gross, R.; Meier, D.; Klewe, C.; Kuschel, T.; Schmalhorst, J.M.; Reiss, G.; Shen, L.; Gupta, A.; Chen, Y.T.; Bauer, G.E.W.; Saitoh, E.; Goennenwein, S.T.B.

    2013-01-01

    We experimentally investigate and quantitatively analyze the spin Hall magnetoresistance effect in ferromagnetic insulator/platinum and ferromagnetic insulator/nonferromagnetic metal/platinum hybrid structures. For the ferromagnetic insulator, we use either yttrium iron garnet, nickel ferrite, or ma

  18. Anisotropic surface tension of buckled fluid membrane

    OpenAIRE

    Noguchi, Hiroshi

    2011-01-01

    Solid sheets and fluid membranes exhibit buckling under lateral compression. Here, it is revealed that fluid membranes have anisotropic buckling surface tension contrary to solid sheets. Surprisingly, the surface tension perpendicular to the buckling direction shows stronger dependence than that parallel to it. Our theoretical predictions are supported by numerical simulations of a meshless membrane model. This anisotropic tension can be used to measure the membrane bending rigidity. It is al...

  19. Theory of Compton scattering by anisotropic electrons

    OpenAIRE

    Poutanen, Juri; Vurm, Indrek

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed so...

  20. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  1. Rainbow metric from quantum gravity: anisotropic cosmology

    OpenAIRE

    Assanioussi, Mehdi; Dapor, Andrea

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformatio...

  2. Anisotropic cosmological solutions in massive vector theories

    OpenAIRE

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between...

  3. Anisotropic Transport Properties of Complex Metallic Alloys

    OpenAIRE

    Smontara, Ana; Dolinšek, Janez

    2010-01-01

    Anisotropic transport properties (electrical resistivity, ρ, and thermal conductivity, κ) of the Y-phase Al-Ni-Co, o-Al13Co4 and Al4(Cr,Fe) complex metallic alloys were investigated. They belong to the class of decagonal approximant phases with stacked-layer crystallographic structure and allowed us to study the evolution of anisotropic transport properties with increasing structural complexity and the unit cell size.

  4. Anisotropic Stars: Exact Solutions and Stability

    OpenAIRE

    Dev, Krsna; Gleiser, Marcelo

    2004-01-01

    I report on recent work concerning the existence and stability of self-gravitating spheres with anisotropic pressure. After presenting new exact solutions, Chandrasekhar's variational formalism for radial perturbations is generalized to anisotropic objects and applied to investigate their stability. It is shown that anisotropy can not only support stars of mass M and radius R with 2M/R > 8/9 and arbitrarily large surface redshifts, but that stable configurations exist for values of the adiaba...

  5. Anisotropic diffusion-limited aggregation.

    Science.gov (United States)

    Popescu, M N; Hentschel, H G E; Family, F

    2004-06-01

    Using stochastic conformal mappings, we study the effects of anisotropic perturbations on diffusion-limited aggregation (DLA) in two dimensions. The harmonic measure of the growth probability for DLA can be conformally mapped onto a constant measure on a unit circle. Here we map m preferred directions for growth to a distribution on the unit circle, which is a periodic function with m peaks in [-pi,pi) such that the angular width sigma of the peak defines the "strength" of anisotropy kappa= sigma(-1) along any of the m chosen directions. The two parameters (m,kappa) map out a parameter space of perturbations that allows a continuous transition from DLA (for small enough kappa ) to m needlelike fingers as kappa--> infinity. We show that at fixed m the effective fractal dimension of the clusters D(m,kappa) obtained from mass-radius scaling decreases with increasing kappa from D(DLA) approximately 1.71 to a value bounded from below by D(min) = 3 / 2. Scaling arguments suggest a specific form for the dependence of the fractal dimension D(m,kappa) on kappa for large kappa which compares favorably with numerical results. PMID:15244564

  6. The Hall effect and magnetoresistance of the high-temperature cuprate superconductors

    International Nuclear Information System (INIS)

    We show that underlying the unusual temperature dependence of RH is a Hall angle damping rate which varies as T2, in contrast with the linear-T dependence in the transport scattering rate. The effect of impurities on this rate is discussed. The dephasing rate for carriers in Bi 2201 is measured by low temperature magnetoresistance, and found to vary as the cube root of T from 0.4 to 20 K. Spin dependent effects in the magnetoresistance are discussed. (orig.)

  7. Anisotropic pressure and hyperons in neutron stars

    CERN Document Server

    Sulaksono, A

    2014-01-01

    We study the effects of anisotropic pressure on properties of the neutron stars with hyperons inside its core within the framework of extended relativistic mean field. It is found that the main effects of anisotropic pressure on neutron star matter is to increase the stiffness of the equation of state, which compensates for the softening of the EOS due to the hyperons. The maximum mass and redshift predictions of anisotropic neutron star with hyperonic core are quite compatible with the result of recent observational constraints if we use the parameter of anisotropic pressure model $h \\le 0.8$[1] and $\\Lambda \\le -1.15$ [2]. The radius of the corresponding neutron star at $M$=1.4 $M_\\odot$ is more than 13 km, while the effect of anisotropic pressure on the minimum mass of neutron star is insignificant. Furthermore, due to the anisotropic pressure in the neutron star, the maximum mass limit of higher than 2.1 $M_\\odot$ cannot rule out the presence of hyperons in the neutron star core.

  8. Photothermal method for absorption measurements in anisotropic crystals

    Science.gov (United States)

    Stubenvoll, M.; Schäfer, B.; Mann, K.; Novak, O.

    2016-02-01

    A measurement system for quantitative determination of both surface and bulk contributions to the photo-thermal absorption has been extended to anisotropic optical media. It bases upon a highly sensitive Hartmann-Shack wavefront sensor, accomplishing precise on-line monitoring of wavefront deformations of a collimated test beam transmitted perpendicularly through the laser-irradiated side of a cuboid sample. Caused by the temperature dependence of the refractive index as well as thermal expansion, the initially plane wavefront of the test beam is distorted. Sign and magnitude depend on index change and expansion. By comparison with thermal theory, a calibration of the measurement is possible, yielding a quantitative absolute measure of bulk and surface absorption losses from the transient wavefront distortion. Results for KTP and BBO single crystals are presented.

  9. A scanning probe microscope for magnetoresistive cantilevers utilizing a nested scanner design for large-area scans

    Directory of Open Access Journals (Sweden)

    Tobias Meier

    2015-02-01

    Full Text Available We describe an atomic force microscope (AFM for the characterization of self-sensing tunneling magnetoresistive (TMR cantilevers. Furthermore, we achieve a large scan-range with a nested scanner design of two independent piezo scanners: a small high resolution scanner with a scan range of 5 × 5 × 5 μm3 is mounted on a large-area scanner with a scan range of 800 × 800 × 35 μm3. In order to characterize TMR sensors on AFM cantilevers as deflection sensors, the AFM is equipped with a laser beam deflection setup to measure the deflection of the cantilevers independently. The instrument is based on a commercial AFM controller and capable to perform large-area scanning directly without stitching of images. Images obtained on different samples such as calibration standard, optical grating, EPROM chip, self-assembled monolayers and atomic step-edges of gold demonstrate the high stability of the nested scanner design and the performance of self-sensing TMR cantilevers.

  10. Thermal stability of Py/Cu and Co/Cu giant magnetoresistance (GMR) multilayer systems

    Energy Technology Data Exchange (ETDEWEB)

    Vovk, Vitaliy

    2007-07-01

    NiFe/Cu and Co/Cu multilayer systems have been studied regarding the mechanisms of thermal degradation of the giant magnetoresistance effect (GMR). The different thermodynamics of the studied systems results in different mechanisms of the GMR degradation as shown by highest resolution nanoanalysis using the three dimensional wide angle tomographic atom probe. According to the TAP analysis, GMR deterioration in Py/Cu system occurs due to the broadening of the layer interfaces observed at 250 C. In contrast, due to the strong demixing tendency, Co/Cu multilayers remain stable up to 450 C. At higher temperatures ferromagnetic bridging of the neighboring Co layers takes place leading to the GMR breakdown. In both Py/Cu and Co/Cu systems recrystallization is induced at 350-450 C, which is accompanied by a change in the crystallographic orientation from <111> to <100> wire texture. The reaction may be utilized to produce GMR sensor layers of remarkable thermal stability. Although the systems of interest are equivalent in respect of the observed phenomenon, the Ni{sub x}Fe{sub 1-x}/Cu system is chosen for a detailed analysis because it allows a precise control of the lattice constant by varying the Fe content in the Ni{sub x}Fe{sub 1-x} layer. It is shown that the crystallographic reorientation is triggered by the minimization of lattice mismatch elastic energy. Moreover, the counteraction between the elastic and interfacial energy minimizations exerts a critical influence on the recrystallization probability. (orig.)

  11. Spin valve sensors for ultrasensitive detection of superparamagnetic nanoparticles for biological applications.

    Science.gov (United States)

    Li, Guanxiong; Sun, Shouheng; Wilson, Robert J; White, Robert L; Pourmand, Nader; Wang, Shan X

    2006-01-01

    We present giant magnetoresistance (GMR) spin valve sensors designed for detection of superparamagnetic nanoparticles as potential biomolecular labels in magnetic biodetection technology. We discuss the sensor design and experimentally demonstrate that as few as approximately 23 monodisperse 16-nm superparamagnetic Fe(3)O(4) nanoparticles can be detected by submicron spin valve sensors at room temperature without resorting to lock-in detection. A patterned self-assembly method of nanoparticles, based on a polymer-mediated process and fine lithography, is developed for the detection. It is found that sensor signal increases linearly with the number of nanoparticles. PMID:18414592

  12. Perpendicular Hot Electron Spin-Valve Effect in a New Magnetic Field Sensor: The Spin-Valve Transistor

    NARCIS (Netherlands)

    Monsma, D.J.; Lodder, J.C.; Popma, Th.J.A.; Dieny, B.

    1995-01-01

    A new magnetic field sensor is presented, based on perpendicular hot electron transport in a giant magnetoresistance (Co/Cu)4 multilayer, which serves as a base region of an n-silicon metal-base transistor structure. A 215% change in collector current is found in 500 Oe (77 K), with typical characte

  13. Low-field magnetic sensors based on the planar Hall effect

    Science.gov (United States)

    Schuhl, A.; Van Dau, F. Nguyen; Childress, J. R.

    1995-05-01

    Sensitive magnetic field detection devices have been fabricated based on the planar Hall effect. The active material consists of permalloy ultrathin films (6 nm thick) epitaxially grown by molecular beam epitaxy. Uniaxial magnetic anisotropy is induced in the film through ferromagnetic coupling with a Fe/Pd bilayer epitaxially grown on MgO(001). The active layer shows a magnetoresistive ratio ΔR/R=2%. The device gives a sensitivity of 100 V/TA and a minimum detectable field below 10 nT. The detector response is linear over at least four decades. The transverse resistivity is sensitive only to the anisotropic resistivity, and not to the isotropic resistivity term which is highly temperature sensitive. Consequently, the thermal noise at 1 Hz is reduced by four orders of magnitude compared to a similar longitudinal magnetoresistive detector.

  14. Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE)

    CERN Document Server

    Placidi, Luca; Seddik, Hakime; Faria, Sergio H

    2009-01-01

    A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...

  15. Anisotropic thermal conductivity of magnetic fluids

    Institute of Scientific and Technical Information of China (English)

    Xiaopeng Fang; Yimin Xuan; Qiang Li

    2009-01-01

    Considering the forces acting on the particles and the motion of the particles, this study uses a numerical simulation to investigate the three-dimensional microstructure of the magnetic fluids in the presence of an external magnetic field. A method is proposed for predicting the anisotropic thermal conductivity of magnetic fluids. By introducing an anisotropic structure parameter which characterizes the non-uniform distribution of particles suspended in the magnetic fluids, the traditional Maxwell formula is modified and extended to calculate anisotropic thermal conductivity of the magnetic fluids. The results show that in the presence of an external magnetic field the magnetic nanoparticles form chainlike clusters along the direction of the external magnetic field, which leads to the fact that the thermal conduc-tivity of the magnetic fluid along the chain direction is bigger than that along other directions. The thermal conductivity of the magnetic fluids presents an anisotropic feature. With the increase of the magnetic field strength the chainlike clusters in the magnetic fluid appear to be more obvious, so that the anisotropic feature of heat conduction in the fluids becomes more evident.

  16. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  17. Anisotropic matching principle for the hydrodynamic expansion

    Science.gov (United States)

    Tinti, Leonardo

    2016-10-01

    Following the recent success of anisotropic hydrodynamics, I propose here a new, general prescription for the hydrodynamic expansion around an anisotropic background. The anisotropic distribution fixes exactly the complete energy-momentum tensor, just like the effective temperature fixes the proper energy density in the ordinary expansion around local equilibrium. This means that momentum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next-to-leading-order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four-velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. As known in the literature, the exact evolution of the pressure corrections involves higher moments of the Boltzmann distribution, which cannot be fixed by the anisotropic distribution alone. Neglecting the next-to-leading-order contributions corresponds to an approximation, which depends on the chosen form of the anisotropic distribution. I check the the effectiveness of the leading-order expansion around the generalized Romatschke-Stricklad distribution, comparing with the exact solution of the Boltzmann equation in the Bjorken limit with the collisional kernel treated in the relaxation-time approximation, finding an unprecedented agreement.

  18. General Expression of Elastic Tensor for Anisotropic Materials

    Institute of Scientific and Technical Information of China (English)

    HUANG Bo

    2005-01-01

    In order to formulate a general expression of elastic tensor for anisotropic materials, a method of tensor derivative is used for determining relationship between fourth-order elastic tensor and second-order structure tensor that has satisfied material symmetrical conditions. From this general expression of elastic tensor, specific expressions of elastic tensor for different anisotropic materials, such as isotropic materials, transverse isotropic materials and orthogonal-anisotropic materials, can be deduced. This expression underlies the scalar description of anisotropic factors, which are used for classifying and analyzing anisotropic materials. Cubic crystals are analyzed macroscopically by means of the general expression and anisotropic factor.

  19. The sidewall torsion sensor system

    Energy Technology Data Exchange (ETDEWEB)

    Becherer, T. [Continental AG, Hannover (Germany)

    1998-12-31

    Modern automotive control systems require more and more sensors to accurately determine the vehicle dynamics. However, the forces between the tire and the road, that ultimately control the driving behavior, were not accessible easily. The Sidewall Torsion (SWT) Sensor System, which has been developed by Continental since 1994, is an attempt to overcome this deficit by integrating the tire in the measurement system. The tire is the softest spring in the line of force transmission from the brakes and the engine to the road. Its deformations are large enough to be measured from a non-rotating position. Magnetic markings are attached to the tire. The generated magnetic field is picked up by magnetoresistive sensors that are mounted to the wheel suspension. The feasibility of the idea was proved in laboratory tests. It was shown that the inflation pressure has a large influence on the sidewall stiffness, the velocity only a minor one. Road tests demonstrate that the deformation can be measured with the same precision at a car as on a test stand. At present, the longitudinal and the lateral force can be predicted for selected tests with a resolution sufficient for vehicle dynamics control. To generalize these results and to ensure the system robustness in all situations is the objective of an ongoing project. This article describes the principle of the so-called Sidewall Torsion (SWT) Sensor System and gives a brief summary of laboratory and road tests. It concludes with an outlook on the further development. (orig./AKF)

  20. Theory of Compton scattering by anisotropic electrons

    CERN Document Server

    Poutanen, Juri

    2010-01-01

    Compton scattering plays an important role in various astrophysical objects such as accreting black holes and neutron stars, pulsars, and relativistic jets, clusters of galaxies as well as the early Universe. In most of the calculations it is assumed that the electrons have isotropic angular distribution in some frame. However, there are situations where the anisotropy may be significant due to the bulk motions, or anisotropic cooling by synchrotron radiation, or anisotropic source of seed soft photons. We develop here an analytical theory of Compton scattering by anisotropic distribution of electrons that can simplify significantly the calculations. Assuming that the electron angular distribution can be represented by a second order polynomial over cosine of some angle (dipole and quadrupole anisotropy), we integrate the exact Klein-Nishina cross-section over the angles. Exact analytical and approximate formulae valid for any photon and electron energies are derived for the redistribution functions describin...

  1. Micromechanics and dislocation theory in anisotropic elasticity

    CERN Document Server

    Lazar, Markus

    2016-01-01

    In this work, dislocation master-equations valid for anisotropic materials are derived in terms of kernel functions using the framework of micromechanics. The second derivative of the anisotropic Green tensor is calculated in the sense of generalized functions and decomposed into a sum of a $1/R^3$-term plus a Dirac $\\delta$-term. The first term is the so-called "Barnett-term" and the latter is important for the definition of the Green tensor as fundamental solution of the Navier equation. In addition, all dislocation master-equations are specified for Somigliana dislocations with application to 3D crack modeling. Also the interior Eshelby tensor for a spherical inclusion in an anisotropic material is derived as line integral over the unit circle.

  2. Anisotropic matching principle for the hydrodynamics expansion

    CERN Document Server

    Tinti, Leonardo

    2015-01-01

    Following the recent success of anisotropic hydrodynamics we propose a new, general prescription for the hydrodynamics expansion around an anisotropic background. The anisotropic distribution is fixing exactly the complete energy-momentum tensor, just like the effective temperature is fixing the proper energy density in the ordinary expansion around local equilibrium. This means that momen- tum anisotropies are already included at the leading order, allowing for large pressure anisotropies without the need of a next to leading order treatment. The first moment of the Boltzmann equation (local four-momentum conservation) provides the time evolution of the proper energy density and the four velocity. Differently from previous prescriptions, the dynamic equations for the pressure corrections are not derived from the zeroth or second moment of the Boltzmann equation, but they are taken directly from the exact evolution given by the Boltzmann equation. We check the effec- tiveness of this new approach by matching ...

  3. Anisotropic pseudopotential for polarized dilute quantum gases

    International Nuclear Information System (INIS)

    An anisotropic pseudopotential arising in the context of collisions of two particles polarized by an external field is rigorously derived and its properties are investigated. Such a low-energy pseudopotential may be useful in describing collective properties of dilute quantum gases, such as molecules polarized by an electric field or metastable 3P2 atoms polarized by a magnetic field. The pseudopotential is expressed in terms of the reactance (K) matrix and derivatives of the Dirac δ function. In most applications, it may be represented as a sum of a traditional spherically symmetric contact term and an anisotropic part. The former contribution may be parametrized by a generalized scattering length. The anisotropic part of the pseudopotential may be characterized by the off-diagonal scattering length for dipolar interactions and off-diagonal scattering volume for quadrupolar interactions. The two-body matrix element of the pseudopotential in a basis of plane waves is also derived

  4. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  5. Quasiparticle anisotropic hydrodynamics for central collisions

    CERN Document Server

    Alqahtani, Mubarak; Strickland, Michael

    2016-01-01

    We use quasiparticle anisotropic hydrodynamics to study an azimuthally-symmetric boost-invariant quark-gluon plasma including the effects of both shear and bulk viscosities. In quasiparticle anisotropic hydrodynamics, a single finite-temperature quasiparticle mass is introduced and fit to the lattice data in order to implement a realistic equation of state. We compare results obtained using the quasiparticle method with the standard method of imposing the equation of state in anisotropic hydrodynamics and viscous hydrodynamics. Using these three methods, we extract the primordial particle spectra, total number of charged particles, and average transverse momentum for various values of the shear viscosity to entropy density ratio eta/s. We find that the three methods agree well for small shear viscosity to entropy density ratio, eta/s, but differ at large eta/s. We find, in particular, that when using standard viscous hydrodynamics, the bulk-viscous correction can drive the primordial particle spectra negative...

  6. Gravitational stresses in anisotropic rock masses

    Science.gov (United States)

    Amadei, B.; Savage, W.Z.; Swolfs, H.S.

    1987-01-01

    This paper presents closed-form solutions for the stress field induced by gravity in anisotropic rock masses. These rocks are assumed to be laterally restrained and are modelled as a homogeneous, orthotropic or transversely isotropic, linearly elastic material. The analysis, constrained by the thermodynamic requirement that strain energy be positive definite, gives the following important result: inclusion of anisotropy broadens the range of permissible values of gravity-induced horizontal stresses. In fact, for some ranges of anisotropic rock properties, it is thermodynamically admissible for gravity-induced horizontal stresses to exceed the vertical stress component; this is not possible for the classical isotropic solution. Specific examples are presented to explore the nature of the gravity-induced stress field in anisotropic rocks and its dependence on the type, degree and orientation of anisotropy with respect to the horizontal ground surface. ?? 1987.

  7. Viable chemical approach for patterning nanoscale magnetoresistive random access memory

    International Nuclear Information System (INIS)

    A reactive ion etching process with alternating Cl2 and H2 exposures has been shown to chemically etch CoFe film that is an integral component in magnetoresistive random access memory (MRAM). Starting with systematic thermodynamic calculations assessing various chemistries and reaction pathways leading to the highest possible vapor pressure of the etch products reactions, the potential chemical combinations were verified by etch rate investigation and surface chemistry analysis in plasma treated CoFe films. An ∼20% enhancement in etch rate was observed with the alternating use of Cl2 and H2 plasmas, in comparison with the use of only Cl2 plasma. This chemical combination was effective in removing metal chloride layers, thus maintaining the desired magnetic properties of the CoFe films. Scanning electron microscopy equipped with energy-dispersive x-ray spectroscopy showed visually and spectroscopically that the metal chloride layers generated by Cl2 plasma were eliminated with H2 plasma to yield a clean etch profile. This work suggests that the selected chemistries can be used to etch magnetic metal alloys with a smooth etch profile and this general strategy can be applied to design chemically based etch processes to enable the fabrication of highly integrated nanoscale MRAM devices

  8. A new theory of doped manganites exhibiting colossal magnetoresistance

    Indian Academy of Sciences (India)

    H R Krishnamurthy

    2005-06-01

    Rare earth manganites doped with alkaline earths, namely Re1-AMnO3, exhibit colossal magnetoresistance, metal insulator transitions, competing magnetic, orbital and charge ordering, and many other interesting but poorly understood phenomena. In this article I outline our recent theory based on the idea that in the presence of strong Jahn–Teller, Coulomb and Hund’s couplings present in these materials, the low-energy electronic states dynamically reorganize themselves into two sets: one set (ℓ) which are polaronic, i.e., localized and accompanied by large local lattice distortion, and another (b) which are non-polaronic and band-like. The coexistence of the radically different ℓ and states, and the sensitive dependence of their relative energies and occupation upon doping , temperature , magnetic field , etc., underlies the unique effects seen in manganites. I present results from strong correlation calculations using dynamical mean-field theory and simulations on a new 2-fluid model which accord with a variety of observations.

  9. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.

    2013-02-13

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device\\'s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed. 2013 by the authors.

  10. Large Magnetoresistance in Single-Radical Molecular Junctions.

    Science.gov (United States)

    Hayakawa, Ryoma; Karimi, Mohammad Amin; Wolf, Jannic; Huhn, Thomas; Zöllner, Martin Sebastian; Herrmann, Carmen; Scheer, Elke

    2016-08-10

    Organic radicals are promising building blocks for molecular spintronics. Little is known about the role of unpaired electrons for electron transport at the single-molecule level. Here, we examine the impact of magnetic fields on electron transport in single oligo(p-phenyleneethynylene) (OPE)-based radical molecular junctions, which are formed with a mechanically controllable break-junction technique at a low temperature of 4.2 K. Surprisingly huge positive magnetoresistances (MRs) of 16 to 287% are visible for a magnetic field of 4 T, and the values are at least 1 order of magnitude larger than those of the analogous pristine OPE (2-4%). Rigorous analysis of the MR and of current-voltage and inelastic electron-tunneling spectroscopy measurements reveal an effective reduction of the electronic coupling between the current-carrying molecular orbital and the electrodes with increasing magnetic field. We suggest that the large MR for the single-radical molecular junctions might be ascribed to a loss of phase coherence of the charge carriers induced by the magnetic field. Although further investigations are required to reveal the mechanism underlying the strong MR, our findings provide a potential approach for tuning charge transport in metal-molecule junctions with organic radicals. PMID:27458666

  11. Extraordinary Magnetoresistance in Semiconductor/Metal Hybrids: A Review

    Directory of Open Access Journals (Sweden)

    Jürgen Kosel

    2013-02-01

    Full Text Available The Extraordinary Magnetoresistance (EMR effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a change of the current path in the hybrid structure upon application of a magnetic field, due to the Lorentz force. Specifically, the ratio of current, flowing through the highly conducting metal and the poorly conducting semiconductor, changes. The main factors for the device’s performance are: the device geometry, the conductivity of the metal and semiconductor, and the mobility of carriers in the semiconductor. Since the discovery of the EMR effect, much effort has been devoted to utilize its promising potential. In this review, a comprehensive overview of the research on the EMR effect and EMR devices is provided. Different geometries of EMR devices are compared with respect to MR ratio and output sensitivity, and the criteria of material selection for high-performance devices are discussed.

  12. Tunnel magnetoresistance in Self-Assembled Monolayers Based Tunnel Junctions

    Science.gov (United States)

    Mattana, Richard; Barraud, Clément; Tatay, Sergio; Galbiati, Marta; Seneor, Pierre; Bouzehouane, Karim; Jacquet, Eric; Deranlot, Cyrile; Fert, Albert; Petroff, Frédéric

    2012-02-01

    Organic/molecular spintronics is a rising research field at the frontier between spintronics and organic chemistry. Organic molecule and semiconductors were first seen as promising for spintronics devices due to their expected long spin lifetime. But an exciting challenge has also been to find opportunities arising from chemistry to develop new spintronics functionalities. It was shown that the molecular structure and the ferromagnetic metal/molecule hybridization can strongly influence interfacial spin properties going from spin polarization enhancement to its sign control in spintronics devices. In this scenario, while scarcely studied, self-assembled monolayers (SAMs) are expected to become perfect toy barriers to further test these tailoring properties in molecular magnetic tunnel junctions (MTJs). Due to its very high spin polarization and air stability LSMO has positioned itself as the electrode of choice in most of the organic spintronics devices. We will present a missing building block for molecular spintronics tailoring: the grafting and film characterization of organic monofunctionalized long alkane chains over LSMO. We have obtained 35% of magnetoresistance in LSMO/SAMs/Co MTJs. We will discuss the unusual behaviour of the bias voltage dependence of the TMR.

  13. Temperature-field phase diagram of extreme magnetoresistance.

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-21

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature-field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron-hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field. PMID:27274081

  14. Temperature‑field phase diagram of extreme magnetoresistance

    Science.gov (United States)

    Fallah Tafti, Fazel; Gibson, Quinn; Kushwaha, Satya; Krizan, Jason W.; Haldolaarachchige, Neel; Cava, Robert Joseph

    2016-06-01

    The recent discovery of extreme magnetoresistance (XMR) in LaSb introduced lanthanum monopnictides as a new platform to study this effect in the absence of broken inversion symmetry or protected linear band crossing. In this work, we report XMR in LaBi. Through a comparative study of magnetotransport effects in LaBi and LaSb, we construct a temperature‑field phase diagram with triangular shape that illustrates how a magnetic field tunes the electronic behavior in these materials. We show that the triangular phase diagram can be generalized to other topological semimetals with different crystal structures and different chemical compositions. By comparing our experimental results to band structure calculations, we suggest that XMR in LaBi and LaSb originates from a combination of compensated electron‑hole pockets and a particular orbital texture on the electron pocket. Such orbital texture is likely to be a generic feature of various topological semimetals, giving rise to their small residual resistivity at zero field and subject to strong scattering induced by a magnetic field.

  15. Relativistic Solutions of Anisotropic Compact Objects

    CERN Document Server

    Paul, Bikash Chandra

    2016-01-01

    We present a class of new relativistic solutions with anisotropic fluid for compact stars in hydrostatic equilibrium. The interior space-time geometry considered here for compact objects are described by parameters namely, $\\lambda$, $k$, $A$, $R$ and $n$. The values of the geometrical parameters are determined here for obtaining a class of physically viable stellar models. The energy-density, radial pressure and tangential pressure are finite and positive inside the anisotropic stars. Considering some stars of known mass we present stellar models which describe compact astrophysical objects with nuclear density.

  16. Bouncing Anisotropic Universes with Varying Constants

    CERN Document Server

    Barrow, John D

    2013-01-01

    We examine the evolution of a closed, homogeneous and anisotropic cosmology subject to a variation of the fine structure 'constant', \\alpha, within the context of the theory introduced by Bekenstein, Sandvik, Barrow and Magueijo, which generalises Maxwell's equations and general relativity. The variation of \\alpha permits an effective ghost scalar field, whose negative energy density becomes dominant at small length scales, leading to a bouncing cosmology. A thermodynamically motivated coupling which describes energy exchange between the effective ghost field and the radiation field leads to an expanding, isotropizing sequence of bounces. In the absence of entropy production we also find solutions with stable anisotropic oscillations around a static universe.

  17. One-Dimensional Anisotropic Band Gap Structure

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The band gap structure of one-dimensional anisotropic photonic crystal has been studied by means of the transfer matrix formalism. From the analytic expressions and numeric calculations we see some general characteristics of the band gap structure of anisotropic photonic crystals, each band separates into two branches and the two branches react to polarization sensitively. In the practical case of oblique incidence, gaps move towards high frequency when the angle of incidence increases. Under some special conditions, the two branches become degenerate again.

  18. Anisotropic Gold Nanocrystals:. Synthesis and Characterization

    Science.gov (United States)

    Stiufiuc, R.; Toderas, F.; Iosin, M.; Stiufiuc, G.

    In this letter we report on successful preparation and characterization of anisotropic gold nanocrystals bio-synthesized by reduction of aqueous chloroaurate ions in pelargonium plant extract. The nanocrystals have been characterized by means of Transmission Electron Microscopy (TEM), UV-VIS absorption spectroscopy and tapping mode atomic force microscopy (TM-AFM). Using these investigation techniques, the successful formation of anisotropic single nanocrystals with the preferential growth direction along the gold (111) plane has been confirmed. The high detail phase images could give us an explanation concerning the growth mechanism of the nanocrystals.

  19. CAVITATION BIFURCATION FOR COMPRESSIBLE ANISOTROPIC HYPERELASTIC MATERIALS

    Institute of Scientific and Technical Information of China (English)

    ChengChangjun; RenJiusheng

    2004-01-01

    The effect of material anisotropy on the bifurcation for void tormation in anisotropic compressible hyperelastic materials is examined. Numerical solutions are obtained in an anisotropic sphere, whose material is transversely isotropic in the radial direction. It is shown that the bifurcation may occur either to the right or to the left, depending on the degree of material anisotropy. The deformation and stress contribution in the sphere before cavitation are different from those after cavitation. The stability of solutions is discussed through a comparison of energy.

  20. Anisotropic Stars: Exact Solutions and Stability

    CERN Document Server

    Dev, K; Dev, Krsna; Gleiser, Marcelo

    2004-01-01

    I report on recent work concerning the existence and stability of self-gravitating spheres with anisotropic pressure. After presenting new exact solutions, Chandrasekhar's variational formalism for radial perturbations is generalized to anisotropic objects and applied to investigate their stability. It is shown that anisotropy can not only support stars of mass M and radius R with 2M/R > 8/9 and arbitrarily large surface redshifts, but that stable configurations exist for values of the adiabatic index smaller than the corresponding isotropic value.

  1. Controllable underwater anisotropic oil-wetting

    Energy Technology Data Exchange (ETDEWEB)

    Yong, Jiale; Chen, Feng, E-mail: chenfeng@mail.xjtu.edu.cn; Yang, Qing; Farooq, Umar; Bian, Hao; Du, Guangqing; Hou, Xun [State Key Laboratory for Manufacturing System Engineering and Key Laboratory of Photonics Technology for Information of Shaanxi Province, School of Electronics and Information Engineering, Xi' an Jiaotong University, Xi' an 710049 (China)

    2014-08-18

    This Letter demonstrates a simple method to achieve underwater anisotropic oil-wetting using silicon surfaces with a microgroove array produced by femtosecond laser ablation. The oil contact angles along the direction perpendicular to the grooves are consistently larger than those parallel to the microgroove arrays in water because the oil droplet is restricted by the energy barrier that exists between the non-irradiated domain and the trapped water in the laser-ablated microgrooves. This underwater anisotropic oil-wetting is able to be controlled, and the anisotropy can be tuned from 0° to ∼20° by adjusting the period of the microgroove arrays.

  2. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  3. Strongly anisotropic and complex magnetic behavior in EuRhGe{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Bednarchuk, Oleksandr; Kaczorowski, Dariusz, E-mail: D.Kaczorowski@int.pan.wroc.pl

    2015-10-15

    Single crystals of EuRhGe{sub 3} were studied by means of magnetic susceptibility, magnetization, heat capacity, resistivity and magnetoresistance measurements, performed in wide ranges of temperature and magnetic field strength. The compound was characterized as a Curie–Weiss paramagnet, due to divalent Eu ions, that orders antiferromagnetically at T{sub N} = 11.3 K. In the ordered state, EuRhGe{sub 3} exhibits strong magnetic anisotropy. The magnetic moments are probably nearly confined within the ab plane of the tetragonal crystallographic unit cell, and the magnetic propagation vector is likely perpendicular to this plane. The bulk thermodynamic and transport data concordantly suggest that in zero magnetic field the magnetic structure of EuRhGe{sub 3} is incommensurate with the chemical one and bears an amplitude-modulated character. In external magnetic field applied within the easy magnetization plane, two other magnetic structures were detected, each of them having an antiferromagnetic nature. - Highlights: • High-quality single crystals of EuRhGe{sub 3} were prepared. • Low-temperature physical behavior was studied along the main crystallographic directions. • Magnetic phase diagrams for B || ab and B || c were derived • EuRhGe{sub 3} was found highly anisotropic despite L = 0 electronic ground state. • As many as three distinct AFM phases were evidenced for B || ab.

  4. Coexistence of magneto-resistance and -capacitance tunability in Sm2Ga2Fe2O9

    OpenAIRE

    Wu, Ye

    2016-01-01

    We propose that charge gradient resulting in the coexisting magneto-resistance and-capacitance tunability in material systems. We have experimentally observed coexisting of tunable magneto-resistance and -capacitance in Sm2Ga2Fe2O9. Our model fits well with the experimental result.

  5. Taste sensor; Mikaku sensor

    Energy Technology Data Exchange (ETDEWEB)

    Toko, K. [Kyushu University, Fukuoka (Japan)

    1998-03-05

    This paper introduces a taste sensor having a lipid/polymer membrane to work as a receptor of taste substances. The paper describes the following matters: this sensor uses a hollow polyvinyl chloride rod filled with KCl aqueous solution, and placed with silver and silver chloride wires, whose cross section is affixed with a lipid/polymer membrane as a lipid membrane electrode to identify taste from seven or eight kinds of response patterns of electric potential output from the lipid/polymer membrane; measurements of different substances presenting acidic taste, salty taste, bitter taste, sweet taste and flavor by using this sensor identified clearly each taste (similar response is shown to a similar taste even if the substances are different); different responses are indicated on different brands of beers; from the result of measuring a great variety of mineral waters, a possibility was suggested that this taste sensor could be used for water quality monitoring sensors; and application of this taste sensor may be expected as a maturation control sensor for Japanese sake (wine) and miso (bean paste) manufacturing. 2 figs., 1 tab.

  6. Albedo and constant source problems for extremely anisotropic scattering

    International Nuclear Information System (INIS)

    The half-space albedo problem and the constant source problem have been solved for a combination of the linearly anisotropic scattering and Inoenue's scattering functions. The linear transport equation for extremely anisotropic scattering kernel can be converted into an equivalent equation with a linearly anisotropic scattering kernel and the modified FN method can be used for albedo calculations. (orig.)

  7. Efficient Fruit Defect Detection and Glare removal Algorithm by anisotropic diffusion and 2D Gabor filter

    CERN Document Server

    Katyal, Vini

    2012-01-01

    This paper focuses on fruit defect detection and glare removal using morphological operations, Glare removal can be considered as an important preprocessing step as uneven lighting may introduce it in images, which hamper the results produced through segmentation by Gabor filters .The problem of glare in images is very pronounced sometimes due to the unusual reflectance from the camera sensor or stray light entering, this method counteracts this problem and makes the defect detection much more pronounced. Anisotropic diffusion is used for further smoothening of the images and removing the high energy regions in an image for better defect detection and makes the defects more retrievable. Our algorithm is robust and scalable the employability of a particular mask for glare removal has been checked and proved useful for counteracting.this problem, anisotropic diffusion further enhances the defects with its use further Optimal Gabor filter at various orientations is used for defect detection.

  8. Anisotropic Diffusion for Medical Image Enhancement

    Directory of Open Access Journals (Sweden)

    Nezamoddin N. Kachouie

    2010-10-01

    Full Text Available Advances in digital imaging techniques have made possible the acquisition of large volumes of Transrectal Ultrasound (TRUS prostate images so that there is considerable demand for automated segmentation. Prostate cancer diagnosis and treatment rely on segmentation of these Transrectal Ultrasound (TRUS prostate images, a challenging and difficult task due to weak prostate boundaries, speckle noise and the narrow range of gray levels, leading most image segmentation methods to perform poorly. The enhancement of ultrasound images is challenging, however prostate segmentation can be effectively improved in contrast enhanced images. Anisotropic diffusion has been used for image analysis based on selective smoothness or enhancement of local features such as region boundaries. In its formal form, anisotropic diffusion tends to encourage within-region smoothness and avoid diffusion across different regions. In this paper we extend the anisotropic diffusion to multiple directions such that segmentation methods can effectively be applied based on rich extracted features. A preliminary segmentation method based on extended diffusion is proposed. Finally an adaptive anisotropic diffusion is introduced based on image statistics.

  9. Orphan-Free Anisotropic Voronoi Diagrams

    CERN Document Server

    Canas, Guillermo D

    2011-01-01

    We describe conditions under which an appropriately-defined anisotropic Voronoi diagram of a set of sites in Euclidean space is guaranteed to be composed of connected cells in any number of dimensions. These conditions are natural for problems in optimization and approximation, and algorithms already exist to produce sets of sites that satisfy them.

  10. Anisotropic Power Law Inflation from Rolling Tachyons

    CERN Document Server

    Bhowmick, Samrat

    2011-01-01

    We provide an explicit solution representing an anisotropic power law inflation within the framework of rolling tachyon model. This is generated by allowing a non-minimal coupling between the tachyon and the world-volume gauge field on non-BPS D3 brane.

  11. Nucleation in suspensions of anisotropic colloids

    NARCIS (Netherlands)

    Schilling, T.; Frenkel, D.

    2005-01-01

    We report Monte Carlo studies of liquid crystal nucleation in two types of anisotropic colloidal systems: hard rods and hard ellipsoids. In both cases we find that nucleation pathways differ strongly from the pathways in systems of spherical particles. Short hard rods show an effect of self-poisonin

  12. Surface instabilities during straining of anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang; Richelsen, Ann Bettina

    2006-01-01

    The development of instabilities in traction-free surfaces is investigated numerically using a unit cell model. Full finite strain analyses are conducted using isotropic as well as anisotropic yield criteria and both plane strain tension and compression are considered. In the load range of tension...

  13. ANISOTROPIC PARABOLIC EQUATIONS WITH MEASURE DATA

    Institute of Scientific and Technical Information of China (English)

    Li Fengquan; Zhao Huixiu

    2001-01-01

    In this paper, we prove the existence of solutions to anisotropic parabolic equations with right hand side term in the bounded Radon measure M(Q) and the initial condition in M(Ω) or in Lm space (with m "small").

  14. A generalized anisotropic deformation formulation for geomaterials

    Science.gov (United States)

    Lei, Z.; Rougier, Esteban; Knight, E. E.; Munjiza, A.; Viswanathan, H.

    2016-04-01

    In this paper, the combined finite-discrete element method (FDEM) has been applied to analyze the deformation of anisotropic geomaterials. In the most general case geomaterials are both non-homogeneous and non-isotropic. With the aim of addressing anisotropic material problems, improved 2D FDEM formulations have been developed. These formulations feature the unified hypo-hyper elastic approach combined with a multiplicative decomposition-based selective integration for volumetric and shear deformation modes. This approach is significantly different from the co-rotational formulations typically encountered in finite element codes. Unlike the co-rotational formulation, the multiplicative decomposition-based formulation naturally decomposes deformation into translation, rotation, plastic stretches, elastic stretches, volumetric stretches, shear stretches, etc. This approach can be implemented for a whole family of finite elements from solids to shells and membranes. This novel 2D FDEM based material formulation was designed in such a way that the anisotropic properties of the solid can be specified in a cell by cell basis, therefore enabling the user to seed these anisotropic properties following any type of spatial variation, for example, following a curvilinear path. In addition, due to the selective integration, there are no problems with volumetric or shear locking with any type of finite element employed.

  15. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments a...... are given on the interpretation of the spin wave data in Tb and Er....

  16. A discrete anisotropic model for Scheibe aggregates

    Directory of Open Access Journals (Sweden)

    O. Bang

    1991-05-01

    Full Text Available A discrete anisotropic nonlinear model for the dynamics of Scheibe aggregates is investigated. The collapse of the collective excitations found by Möbius and Kuhn is described as a shrinking ring wave, which is eventually absorbed by an acceptor molecule. An optimal acceptor loss is found.

  17. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb

    2014-07-02

    We demonstrate giant magnetoresistance in Fe/MoS2/Fe junctions by means of ab initio transport calculations. We show that junctions incorporating either a monolayer or a bilayer of MoS2 are metallic and that Fe acts as an efficient spin injector into MoS2 with an efficiency of about 45%. This is the result of the strong coupling between the Fe and S atoms at the interface. For junctions of greater thickness, a maximum magnetoresistance of ∼300% is obtained, which remains robust with the applied bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  18. Hydrodynamic theory of thermoelectric transport and negative magnetoresistance in Weyl semimetals

    CERN Document Server

    Lucas, Andrew; Sachdev, Subir

    2016-01-01

    We present a minimal hydrodynamic formalism for thermoelectric transport in Weyl semimetals where the electron-electron scattering time is faster than the electron-impurity scattering time. Our model consists of relativistic fluids at each Weyl node, coupled together by perturbatively small inter-valley scattering, and long-range Coulomb interactions. We analytically compute all thermoelectric transport coefficients in the limit of perturbatively weak disorder and magnetic field, and confirm Onsager reciprocity and positive-definiteness of the conductivity matrix. Three distinct anomalous relaxation times govern negative magnetoresistance in the thermoelectric transport coefficients: while negative electrical magnetoresistance is governed by the standard chiral anomaly, negative thermal magnetoresistance is governed by a distinct gauge-gravitational anomaly. All of the hydrodynamic coefficients in our formalism may be computed for a given microscopic model of a Weyl semimetal via memory matrix techniques.

  19. Transition from positive to negative magnetoresistance induced by a constriction in semiconductor nanowire

    Science.gov (United States)

    Wołoszyn, M.; Spisak, B. J.; Wójcik, P.; Adamowski, J.

    2016-09-01

    We have studied the magnetotransport through an indium antimonide (InSb) nanowire grown in [111] direction, with a geometric constriction and in an external magnetic field applied along the nanowire axis. We have found that the magnetoresistance is negative for the narrow constriction, nearly zero for the constriction of some intermediate radius, and takes on positive values for the constriction with the radius approaching that of the nanowire. For all magnitudes of the magnetic field, the radius of constriction at which the change of the magnetoresistance sign takes place has been found to be almost the same as long as other geometric parameters of the nanowire are fixed. The sign reversing of the magnetoresistance is explained as a combined effect of two factors: the influence of the constriction on the transverse states and the spin Zeeman effect.

  20. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP.

    Science.gov (United States)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O; Schmidt, Marcus; Grushin, Adolfo G; Bardarson, Jens H; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-01-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample. PMID:27186980

  1. MAGNETORESISTANCE EFFECT OBSERVED IN Fe/Mo MULTILAYERS PREPARED BY ELECTRON BEAM EVAPORATION

    Institute of Scientific and Technical Information of China (English)

    T. He; B. Zhao; Y. Gao; F. Zeng; F. Pan

    2003-01-01

    The Fe/Mo multilayers were prepared by electron beam evaporation, the microstructure and magnetic properties of the multilayers were studied by X-ray diffraction, vibratingsample magnetometer (VSM) et al. The experimental results revealed that the Fe/Mo multilayers in our experimental conditions behaved magnetoresistance effect with a sharp peak on magnetoresistance (MR) ratio curve, and magnetoresistance is easily saturated at low applied magnetic fields. For [Fe(1.5nm)/Mo(1.0nm)]42 multilayers,MR ratio could arrive to 0.1%. The antiferromagnetic interlayer coupling could be observed in some films at room temperature. The strength of the antiferromagnetic interlayer coupling J in the films is low because of the low saturation field Hs. The relationship between magnetic properties and microstructure was also discussed in this paper.

  2. Electric field dependence of junction magnetoresistance in magnetite/semiconductor heterostructure at room temperature

    Energy Technology Data Exchange (ETDEWEB)

    Aireddy, H.; Bhaumik, S.; Das, A. K., E-mail: amal@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology, Kharagpur 721 302 (India)

    2015-12-07

    We have fabricated Fe{sub 3}O{sub 4}/p-Si heterojunction using pulsed laser deposition technique and explored its electro-magnetic transport properties. The heterojunction exhibits backward rectifying property at all temperatures, and appraisal of giant junction magnetoresistance (JMR) is observed at room temperature (RT). Conspicuously, the variation and sign change of JMR as a function of electric field is observed at RT. The backward rectifying behavior of the device is ascribed to the highly doped p-type (p{sup ++}) semiconducting nature of Fe{sub 3}O{sub 4}, and the origin of electric field (voltage) dependence of magnetoresistance is explained proposing electronic band diagram of Fe{sub 3}O{sub 4}/SiO{sub 2}/p-Si heterojunction. This interesting result may have importance to integrate Si-based magnetoresistance sources in multifunctional spintronic devices.

  3. Termination layer compensated tunnelling magnetoresistance in ferrimagnetic Heusler compounds with high perpendicular magnetic anisotropy

    Science.gov (United States)

    Jeong, Jaewoo; Ferrante, Yari; Faleev, Sergey V.; Samant, Mahesh G.; Felser, Claudia; Parkin, Stuart S. P.

    2016-01-01

    Although high-tunnelling spin polarization has been observed in soft, ferromagnetic, and predicted for hard, ferrimagnetic Heusler materials, there has been no experimental observation to date of high-tunnelling magnetoresistance in the latter. Here we report the preparation of highly textured, polycrystalline Mn3Ge films on amorphous substrates, with very high magnetic anisotropy fields exceeding 7 T, making them technologically relevant. However, the small and negative tunnelling magnetoresistance that we find is attributed to predominant tunnelling from the lower moment Mn-Ge termination layers that are oppositely magnetized to the higher moment Mn-Mn layers. The net spin polarization of the current reflects the different proportions of the two distinct termination layers and their associated tunnelling matrix elements that result from inevitable atomic scale roughness. We show that by engineering the spin polarization of the two termination layers to be of the same sign, even though these layers are oppositely magnetized, high-tunnelling magnetoresistance is possible.

  4. Anomalous Hall effect and magnetoresistance behavior in Co/Pd1−xAgx multilayers

    KAUST Repository

    Guo, Z. B.

    2013-02-13

    In this paper, we report anomalous Hall effect (AHE) correlated with the magnetoresistance behavior in [Co/Pd1-xAg x]n multilayers. For the multilayers with n = 6, the increase in Ag content from x = 0 to 0.52 induces the change in AHE sign from negative surface scattering-dominated AHE to positive interface scattering-dominated AHE, which is accompanied with the transition from anisotropy magnetoresistance (AMR) dominated transport to giant magnetoresistance (GMR) dominated transport. For n = 80, scaling analysis with Rs ∝ρ xx γ yields γ ∼ 3.44 for x = 0.52 which presents GMR-type transport, in contrast to γ ∼ 5.7 for x = 0 which presents AMR-type transport. © 2013 American Institute of Physics.

  5. Negative magnetoresistance in a vertical single-layer graphene spin valve at room temperature.

    Science.gov (United States)

    Singh, Arun Kumar; Eom, Jonghwa

    2014-02-26

    Single-layer graphene (SLG) is an ideal material for spintronics because of its high charge-carrier mobility, long spin lifetime resulting from the small spin-orbit coupling, and hyperfine interactions of carbon atoms. Here, we report a vertical spin valve with SLG with device configuration Co/SLG/Al2O3/Ni. We observed negative magnetoresistance (-0.4%) for the Co/SLG/Al2O3/Ni junction at room temperature. However, the Co/Al2O3/Ni junction, which is without graphene, shows positive magnetoresistance. The current-voltage (I-V) characteristics of both Co/SLG/Al2O3/Ni and Co/Al2O3/Ni junctions are nonlinear, and this reveals that charge transport occurs by a tunneling mechanism. We have also explained the reason for negative magnetoresistance for the Co/SLG/Al2O3/Ni junction. PMID:24495123

  6. Impact of Tunnel-Barrier Strength on Magnetoresistance in Carbon Nanotubes

    Science.gov (United States)

    Morgan, Caitlin; Misiorny, Maciej; Metten, Dominik; Heedt, Sebastian; Schäpers, Thomas; Schneider, Claus M.; Meyer, Carola

    2016-05-01

    We investigate magnetoresistance in spin valves involving CoPd-contacted carbon nanotubes. Both the temperature and bias-voltage dependence clearly indicate tunneling magnetoresistance as the origin. We show that this effect is significantly affected by the tunnel-barrier strength, which appears to be one reason for the variation between devices previously detected in similar structures. Modeling the data by means of the scattering matrix approach, we find a nontrivial dependence of the magnetoresistance on the barrier strength. Furthermore, an analysis of the spin precession observed in a nonlocal Hanle measurement yields a spin lifetime of τs=1.1 ns , a value comparable with those found in silicon- or graphene-based spin-valve devices.

  7. Giant amplification of tunnel magnetoresistance in a molecular junction: Molecular spin-valve transistor

    Energy Technology Data Exchange (ETDEWEB)

    Dhungana, Kamal B.; Pati, Ranjit, E-mail: patir@mtu.edu [Department of Physics, Michigan Technological University, Houghton, Michigan 49931 (United States)

    2014-04-21

    Amplification of tunnel magnetoresistance by gate field in a molecular junction is the most important requirement for the development of a molecular spin valve transistor. Herein, we predict a giant amplification of tunnel magnetoresistance in a single molecular spin valve junction, which consists of Ru-bis-terpyridine molecule as a spacer between two ferromagnetic nickel contacts. Based on the first-principles quantum transport approach, we show that a modest change in the gate field that is experimentally accessible can lead to a substantial amplification (320%) of tunnel magnetoresistance. The origin of such large amplification is attributed to the spin dependent modification of orbitals at the molecule-lead interface and the resultant Stark effect induced shift in channel position with respect to the Fermi energy.

  8. Negative magnetoresistance without well-defined chirality in the Weyl semimetal TaP

    Science.gov (United States)

    Arnold, Frank; Shekhar, Chandra; Wu, Shu-Chun; Sun, Yan; Dos Reis, Ricardo Donizeth; Kumar, Nitesh; Naumann, Marcel; Ajeesh, Mukkattu O.; Schmidt, Marcus; Grushin, Adolfo G.; Bardarson, Jens H.; Baenitz, Michael; Sokolov, Dmitry; Borrmann, Horst; Nicklas, Michael; Felser, Claudia; Hassinger, Elena; Yan, Binghai

    2016-05-01

    Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands disperse linearly around pairs of nodes with fixed chirality, the Weyl points. In WSMs, nonorthogonal electric and magnetic fields induce an exotic phenomenon known as the chiral anomaly, resulting in an unconventional negative longitudinal magnetoresistance, the chiral-magnetic effect. However, it remains an open question to which extent this effect survives when chirality is not well-defined. Here, we establish the detailed Fermi-surface topology of the recently identified WSM TaP via combined angle-resolved quantum-oscillation spectra and band-structure calculations. The Fermi surface forms banana-shaped electron and hole pockets surrounding pairs of Weyl points. Although this means that chirality is ill-defined in TaP, we observe a large negative longitudinal magnetoresistance. We show that the magnetoresistance can be affected by a magnetic field-induced inhomogeneous current distribution inside the sample.

  9. Electrical control of memristance and magnetoresistance in oxide magnetic tunnel junctions

    KAUST Repository

    Zhang, Kun

    2015-01-01

    Electric-field control of magnetic and transport properties of magnetic tunnel junctions has promising applications in spintronics. Here, we experimentally demonstrate a reversible electrical manipulation of memristance, magnetoresistance, and exchange bias in Co/CoO–ZnO/Co magnetic tunnel junctions, which enables the realization of four nonvolatile resistance states. Moreover, greatly enhanced tunneling magnetoresistance of 68% was observed due to the enhanced spin polarization of the bottom Co/CoO interface. The ab initio calculations further indicate that the spin polarization of the Co/CoO interface is as high as 73% near the Fermi level and plenty of oxygen vacancies can induce metal–insulator transition of the CoO1−v layer. Thus, the electrical manipulation mechanism on the memristance, magnetoresistance and exchange bias can be attributed to the electric-field-driven migration of oxygen ions/vacancies between very thin CoO and ZnO layers.

  10. Boundedness of the Anisotropic Maximal and Anisotropic Singular Integral Operators in Generalized Morrey Spaces

    Institute of Scientific and Technical Information of China (English)

    Vagif S. GULIYEV; Rza Ch. MUSTAFAYEV

    2011-01-01

    In this paper we give the conditions on the pair (ω1,ω2) which ensures the boundedness of the anisotropic maximal operator and anisotropic singular integral operators from one generalized Morrey space Mp,ω1 to another Mp,ω2,1 < p < oo,and from the space M1,ω1 to the weak space W M1,ω2.

  11. Resistivity plateau and extreme magnetoresistance in LaSb

    Science.gov (United States)

    Tafti, F. F.; Gibson, Q. D.; Kushwaha, S. K.; Haldolaarachchige, N.; Cava, R. J.

    2016-03-01

    Time reversal symmetry (TRS) protects the metallic surface modes of topological insulators (TIs). The transport signature of such surface states is a plateau that arrests the exponential divergence of the insulating bulk with decreasing temperature. This universal behaviour is observed in all TI candidates ranging from Bi2Te2Se to SmB6. Recently, extreme magnetoresistance (XMR) has been reported in several topological semimetals which exhibit TI universal resistivity behaviour only when breaking time reversal symmetry, a regime where TIs theoretically cease to exist. Among these materials, TaAs and NbP are nominated as Weyl semimetals owing to their lack of inversion symmetry, Cd3As2 is known as a Dirac semimetal owing to its linear band crossing at the Fermi level, and WTe2 is termed a resonant compensated semimetal owing to its perfect electron-hole symmetry. Here we introduce LaSb, a simple rock-salt structure material that lacks broken inversion symmetry, perfect linear band crossing, and perfect electron-hole symmetry yet exhibits all the exotic field-induced behaviours of these more complex semimetals. It shows a field-induced universal TI resistivity with a plateau at roughly 15 K, ultrahigh mobility of carriers in the plateau region, quantum oscillations with the angle dependence of a two-dimensional Fermi surface, and XMR of about one million percent at 9 T. Owing to its structural simplicity, LaSb represents an ideal model system to formulate a theoretical understanding of the exotic consequences of breaking time reversal symmetry in topological semimetals.

  12. Electrical and magnetoresistivity studies in chemical solution deposited La

    Energy Technology Data Exchange (ETDEWEB)

    Angappane, S.; Murugaraj, P.; Sethupathi, K.; Rangarajan, G.; Sastry, V. S.; Chakkaravarthi, A. Arul; Ramasamy, P.

    2001-06-01

    High quality magnetoresistive La{sub (1{minus}x)}Ca{sub x}MnO{sub 3} thin films have been prepared by the chemical solution deposition technique. A solution of propionate precursors of lanthanum, calcium, and manganese in propionic acid was used for this purpose. Films of varying compositions (x varying from 0.1 to 0.4) were spin coated on to LaAlO{sub 3}(100) and SrTiO{sub 3}(100) substrates at room temperature and pyrolyzed in the temperature range 600{endash}850{degree}C. For fixed compositions, annealing at higher temperatures shifts the insulator{endash}metal transition temperature (T{sub I{endash}M}) to higher values accompanied by a reduction in the resistivity values. The T{sub I{endash}M} variation for different x values was found to be less pronounced in the compositions x=0.2, 0.3, and 0.4. Typical T{sub I{endash}M} values of 283 K and 290 K were obtained for La{sub 0.7}Ca{sub 0.3}MnO{sub 3} coated on LaAlO{sub 3} and SrTiO{sub 3} substrates, respectively, when annealed at 850{degree}C. The substrate effect was found to be more pronounced for the x value 0.1 which showed two peaks (one at 271 K and another at 122 K) in the {rho}-T curve. The roles of substrate mismatch, composition variation, and annealing temperatures are discussed. {copyright} 2001 American Institute of Physics.

  13. Correlation Between Magnetovolume and Colossal Magnetoresistance Effects in Terbium Doped La-Sr-Mn-O Perovskite

    Institute of Scientific and Technical Information of China (English)

    WU Jian; ZHANG Shi-Yuan; YIN Shi-Long; CAO Qing-Qi; GU Kun-Ming; DU You-Wei

    2000-01-01

    (La0.67 Tb0.33 )2/3Sr1/3MnO3 has been studied in order to probe mechanisms responsible for the giant magnetoresistance ratios and the lattice effect in this kind of compound. The experiment has shown a strong connection between the magnetotransport and magnetovolume properties. An applied magnetic field not only gives rise to a large negative magnetoresistance (-900%) but also produces two different magnetovolume effects which reflect two different magnetostriction mechanisms in the compound.

  14. Magnetoresistance and upper critical magnetic field of UBe13 under pressure

    International Nuclear Information System (INIS)

    We have investigated the effects of pressure on the magnetoresistance and the upper critical magnetic field of the heavy electron compound UBe13. Both the superconducting transition temperature and the upper critical field decrease under hydrostatic pressure. The low-temperature magnetoresistance remains large and negative under pressure. The temperature region over which the resistivity has a T2 temperature dependence increases with both magnetic field and with pressure. At a fixed magnetic field, the coefficient of the T2 term in the resistivity decreases strongly with pressure. UBe13 is found to have a pressure independent intrinsic residual resistivity of 18 μΩ-cm

  15. Magnetoresistance in an Asymmetric GaMnAs Resonant Tunneling Diode

    OpenAIRE

    Likovich, Edward Michael; Russell, Kasey Joe; Yi, Wei; Narayanamurti, Venkatesh; Ku, Keh-Chiang; Zhu, Meng; Samarth, Nitin

    2009-01-01

    In a GaMnAs/AlGaAs resonant tunneling diode (RTD) structure, we observe that both the magnitude and polarity of magnetoresistance are bias dependent when tunneling from a three-dimensional GaMnAs layer through a two-dimensional GaMnAs quantum well. This magnetoresistance behavior results from a shift of negative differential resistance features to higher bias as the relative alignment of the GaMnAs layer magnetizations is changed from parallel to antiparallel. Our observations agree with rece...

  16. Tunneling magnetoresistance dependence on the temperature in a ferromagnetic Zener diode

    Energy Technology Data Exchange (ETDEWEB)

    Comesana, E; Aldegunde, M; GarcIa-Loureiro, A, E-mail: enrique.comesana@usc.e [Departamento de Electronica e Computacion, Universidade de Santiago de Compostela, 15782 Santiago de Compostela (Spain)

    2009-11-15

    In the present work we focus on the study of the temperature dependence of the tunnelling current in a ferromagnetic Zener diode. We predict the tunneling magnetoresistance dependence on the temperature. Large doping concentrations lead to magnetic semiconductors with Curie temperature T{sub C} near or over room temperature and this will facilitate the introduction of new devices that make use of the ferromagnetism effects. According to our calculations the tunneling magnetoresistance has the form TMR {proportional_to} (T{sup n}{sub C}-T{sup n}).

  17. Comparison of magnetoresistances of triangular and rectangular ballistic graphene npn junctions

    Science.gov (United States)

    Morikawa, Sei; Masubuchi, Satroru; Watanabe, Kenji; Taniguchi, Takashi; Machida, Tomoki

    2016-10-01

    We compared the magnetotransport properties of ballistic graphene npn junctions with two different geometries. We found that a rectangular npn junction shows a positive magnetoresistance around zero magnetic field; this finding can be explained by the suppression of Klein tunneling in a finite magnetic field. In contrast, a triangular npn junction shows a negative magnetoresistance because the transmission is enhanced in a commensurability magnetic field where the ballistic carriers in a cyclotron motion are injected perpendicularly to both the np and pn interfaces. These results suggest possibilities for manipulating ballistic carrier trajectories through the designs of local-gate geometries.

  18. Anisotropic Ginzburg-Landau scaling of H c2 and transport properties of 112-type Ca0.8La0.2Fe0.98Co0.02As2 single crystal

    Science.gov (United States)

    Xing, Xiangzhuo; Zhou, Wei; Zhou, Nan; Yuan, Feifei; Pan, Yongqiang; Zhao, Haijun; Xu, Xiaofeng; Shi, Zhixiang

    2016-05-01

    High-quality single crystal Ca0.8La0.2Fe0.98Co0.02As2 has been successfully synthesized using a self-flux method. The magnetization measurement reveals a second peak effect and high critical current density {J}c exceeding 2 × 106 A cm-2 at 5 K (self-field). The upper critical field anisotropy was systematically studied by measuring the electrical resistivity under various magnetic fields and angles. The angle-dependent magnetoresistance, by choosing an appropriate anisotropy parameter within the framework of the anisotropic Ginzburg-Landau (AGL) theory, can be scaled onto one single curve. In the normal state, the negative Hall coefficient shows strong but nonmonotonic T-dependence through a minimum at ˜175 K. Moreover, it is shown that the magnetoresistance apparently violates the semiclassical Kohler’s rule below ˜175 K but can be well scaled by the Hall angle instead. This suggests either a change of carriers with T or exotic anisotropic scattering in the system.

  19. SEMICONDUCTOR DEVICES: A micron-sized GMR sensor with a CoCrPt hard bias

    Science.gov (United States)

    Yang, Zheng; Bingjun, Qu; Xi, Liu; Dan, Wei; Fulin, Wei; Tianling, Ren; Litian, Liu

    2010-02-01

    A GMR (giant magneto-resistive) spin valve sensor for magnetic recording has been designed in an attempt to solve the Barkhausen noise problem in small-sized GMR sensors. In this study, the GMR ratio of the top-pinned spin valve is optimized to a value of 13.2%. The free layer is magnetized perpendicular to the pinned layer by a CoCrPt permanent magnetic bias so that a linear magnetic field response can be obtained. An obvious improvement on performance is observed when the permanent magnetic bias is magnetized, while the GMR sensor has a steadier MR-H loop and a smaller coercive field.

  20. Giant anisotropy of the magnetoresistance and the 'spin valve' effect in antiferromagnetic Nd(2-x)Ce(x)CuO(4).

    Science.gov (United States)

    Wu, T; Wang, C H; Wu, G; Fang, D F; Luo, J L; Liu, G T; Chen, X H

    2008-07-01

    We have studied anisotropic magnetoresistance (MR) and magnetization with a rotating magnetic field (B) within the CuO(2) plane in lightly doped AF Nd(2-x)Ce(x)CuO(4). A giant anisotropy in the MR is observed at low temperature, below 5 K. The c-axis resistivity can be tuned over about one order of magnitude just by changing the B direction within the CuO(2) plane, and a scaling behavior for the out-of-plane and in-plane MR is found. A 'spin valve' effect is proposed for explaining the giant anisotropy of the out-of-plane MR and the evolution of the scaling parameters with the external field. It is found that the field-induced spin-flop transition of the Nd(3+) layer under high magnetic field is the key to understanding the giant anisotropy. These results suggest that a novel entanglement of charge and spin dominates the underlying physics. PMID:21694387

  1. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  2. Search for anisotropic light propagation as a function of laser beam alignment relative to the Earth's velocity vector

    OpenAIRE

    Navia C. E.; Augusto C. R. A.; Franceschini D. F.; Robba M. B.; Tsui K. H.,

    2006-01-01

    A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes) are used for measuring the position of diffracted light spots with a precision better than 0.1 μ m. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth’s motion (solar barycenter motion) obtain...

  3. SPICE compatible behavioural modelling of resistive sensors

    International Nuclear Information System (INIS)

    In this paper, a modelling technique for anisotropic magneto-resistors (AMRs) and piezo-resistors has been developed. These models are then used to model sensors using such elements. The motivation is to develop a platform which will help in the analysis of different performance parameters of such sensors and optimally design electronic systems for such sensor applications. Non-idealistic behaviour such as temperature and nonlinearity, hysteresis, mismatch, noise, etc have been considered while developing the model. The proposed technique helps us to study each of these non-idealities individually as well as understand the holistic sensor response. Root-cause analysis can, thus, be performed. Model parameters are derived from different product specifications and various characterization reports. The sensor's response predicted from the model is compared with the performance of these products. Response of the model is seen to closely follow the response of the actual product. (paper)

  4. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik;

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin...... both exact analytical expressions and approximate expressions calculated by the Galerkin method. The results are applied to plates made on silicon (0 0 1), (0 1 1) and (1 1 1) substrates, respectively, and analytical equations for the deflection, strain energy and resonance frequency of such plates...... are presented. These expressions are in excellent agreement with anisotropic finite element calculations. The calculated deflection differs less than 0.1%, for both circular and rectangular plates, compared to finite element calculations. The results are presented as ready-to-use facilitating accurate...

  5. Anisotropic Long-Range Spin Systems

    CERN Document Server

    Defenu, Nicolò; Ruffo, Stefano

    2016-01-01

    We consider anisotropic long-range interacting spin systems in $d$ dimensions. The interaction between the spins decays with the distance as a power law with different exponents in different directions: we consider an exponent $d_{1}+\\sigma_1$ in $d_1$ directions and another exponent $d_{2}+\\sigma_2$ in the remaining $d_2\\equiv d-d_1$ ones. We introduce a low energy effective action with non analytic power of the momenta. As a function of the two exponents $\\sigma_1$ and $\\sigma_2$ we show the system to have three different regimes, two where it is actually anisotropic and one where the isotropy is finally restored. We determine the phase diagram and provide estimates of the critical exponents as a function of the parameters of the system, in particular considering the case of one of the two $\\sigma$'s fixed and the other varying. A discussion of the physical relevance of our results is also presented.

  6. Rainbow metric from quantum gravity: anisotropic cosmology

    CERN Document Server

    Assanioussi, Mehdi

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  7. New formulation of leading order anisotropic hydrodynamics

    CERN Document Server

    Tinti, Leonardo

    2014-01-01

    Anisotropic hydrodynamics is a reorganization of the relativistic hydrodynamics expansion, with the leading order already containing substantial momentum-space anisotropies. The latter are a cause of concern in the traditional viscous hydrodynamics, since large momentum anisotropies generated in ultrarelativistic heavy-ion collisions are not consistent with the hypothesis of small deviations from an isotropic background, i.e., from the local equilibrium distribution. We discuss the leading order of the expansion, presenting a new formulation for the (1+1)--dimensional case, namely, for the longitudinally boost invariant and cylindrically symmetric flow. This new approach is consistent with the well established framework of Israel and Stewart in the close to equilibrium limit (where we expect viscous hydrodynamics to work well). If we consider the (0+1)--dimensional case, that is, transversally homogeneous and longitudinally boost invariant flow, {the new form of anisotropic hydrodynamics leads to better agree...

  8. Anisotropic hydrodynamics for conformal Gubser flow

    CERN Document Server

    Strickland, Michael; Ryblewski, Radoslaw

    2015-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equa...

  9. Anisotropic brane gravity with a confining potential

    CERN Document Server

    Heydari-Fard, M

    2007-01-01

    We consider an anisotropic brane world with Bianchi type I and V geometries where the mechanism of confining the matter on the brane is through the use of a confining potential. The resulting equations on the anisotropic brane are modified by an extra term that may be interpreted as the x-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. We obtain the general solution of the field equations in an exact parametric form for both Bianchi type I and V space-times. In the special case of a Bianchi type I the solutions of the field equations are obtained in an exact analytic form. Finally, we study the behavior of the observationally important parameters.

  10. Anisotropic brane gravity with a confining potential

    Energy Technology Data Exchange (ETDEWEB)

    Heydari-Fard, M. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: m-heydarifard@sbu.ac.ir; Sepangi, H.R. [Department of Physics, Shahid Beheshti University, Evin, Tehran 19839 (Iran, Islamic Republic of)]. E-mail: hr-sepangi@sbu.ac.ir

    2007-05-24

    We consider an anisotropic brane world with Bianchi type I and V geometries where the mechanism of confining the matter on the brane is through the use of a confining potential. The resulting equations on the anisotropic brane are modified by an extra term that may be interpreted as the x-matter, providing a possible phenomenological explanation for the accelerated expansion of the universe. We obtain the general solution of the field equations in an exact parametric form for both Bianchi type I and V space-times. In the special case of a Bianchi type I the solutions of the field equations are obtained in an exact analytic form. Finally, we study the behavior of the observationally important parameters.

  11. Comparing anisotropic displacement parameters in protein structures.

    Science.gov (United States)

    Merritt, E A

    1999-12-01

    The increasingly widespread use of synchrotron-radiation sources and cryo-preparation of samples in macromolecular crystallography has led to a dramatic increase in the number of macromolecular structures determined at atomic or near-atomic resolution. This permits expansion of the structural model to include anisotropic displacement parameters U(ij) for individual atoms. In order to explore the physical significance of these parameters in protein structures, it is useful to be able to compare quantitatively the electron-density distribution described by the refined U(ij) values associated with corresponding crystallographically independent atoms. This paper presents the derivation of an easily calculated correlation coefficient in real space between two atoms modeled with anisotropic displacement parameters. This measure is used to investigate the degree of similarity between chemically equivalent but crystallographically independent atoms in the set of protein structural models currently available from the Protein Data Bank.

  12. Anisotropic permeability in deterministic lateral displacement arrays

    CERN Document Server

    Vernekar, Rohan; Loutherback, Kevin; Morton, Keith; Inglis, David

    2016-01-01

    We investigate anisotropic permeability of microfluidic deterministic lateral displacement (DLD) arrays. A DLD array can achieve high-resolution bimodal size-based separation of micro-particles, including bioparticles such as cells. Correct operation requires that the fluid flow remains at a fixed angle with respect to the periodic obstacle array. We show via experiments and lattice-Boltzmann simulations that subtle array design features cause anisotropic permeability. The anisotropy, which indicates the array's intrinsic tendency to induce an undesired lateral pressure gradient, can lead to off-axis flows and therefore local changes in the critical separation size. Thus, particle trajectories can become unpredictable and the device useless for the desired separation duty. We show that for circular posts the rotated-square layout, unlike the parallelogram layout, does not suffer from anisotropy and is the preferred geometry. Furthermore, anisotropy becomes severe for arrays with unequal axial and lateral gaps...

  13. Anisotropic fluid from nonlocal tidal effects

    CERN Document Server

    Culetu, Hristu

    2014-01-01

    The Shiromizu et al. \\cite{SMS} covariant decomposition formalism is used to find out the brane properties rooted from the 5-dimensional Witten bubble spacetime. The non-local tensor $E_{ab}$ generated by the 5-dimensional Weyl tensor gives rise at an anisotropic energy-momentum tensor on the brane with negative energy density and $p = \\rho/3$ as equation of state. The tidal acceleration is towards the brane and that is in accordance with the negative energy density on the brane. The anisotropic fluid has vanishing "bulk" viscosity but the shear viscosity coefficient is $r$- and $t$- dependent. The brane is endowed with an apparent horizon which is exactly the radial null geodesic.

  14. Polarimetric characterization of optically anisotropic flexible substrates

    Energy Technology Data Exchange (ETDEWEB)

    Stchakovsky, M. [HORIBA Jobin-Yvon SAS, Z.A. de la Vigne aux Loups, 5 Avenue Arago, 91380 Chilly-Mazarin (France)], E-mail: michel.stchakovsky@jobinyvon.fr; Caillaud, C. [HORIBA Jobin-Yvon SAS, Z.A. de la Vigne aux Loups, 5 Avenue Arago, 91380 Chilly-Mazarin (France); Foldyna, M.; Ossikovski, R.; Garcia-Caurel, E. [Laboratoire de Physique des Interfaces et des Couches Minces, Ecole Polytechnique, 91128 Palaiseau (France)

    2008-02-15

    Phase Modulated Spectroscopic Ellipsometry as well as Liquid Crystal Mueller Matrix Polarimetry in reflection and in transmission configurations were used to systematically study five types of anisotropic polymer sheets: polyethylene-terephtalate (PET), polyethylene-naphtalate (PEN), polycarbonate (PC), polypropylene (PP) and triacetylcellulose (TAC). The measurements were performed at different sample azimuths in two ellipsometric configurations giving access to both standard ellipsometric data as well as to the entire Mueller matrix. Biaxial anisotropy, a common characteristic to all polymer types, as well as the in-depth optical properties, inhomogeneity present in the sheets were clearly evidenced. The data were interpreted in terms of a model consisting of a thick substrate (several microns) coated with a simple layer. Both, substrate and layer were anisotropic and characterized by a triplet of principal refractive indexes. The orientation of the principal indexes of the bulk and the layer were different revealing the in-depth inhomogeniety of the samples.

  15. Observation of an Anisotropic Wigner Crystal

    Science.gov (United States)

    Liu, Yang; Hasdemir, S.; Pfeiffer, L. N.; West, K. W.; Baldwin, K. W.; Shayegan, M.

    2016-09-01

    We report a new correlated phase of two-dimensional charged carriers in high magnetic fields, manifested by an anisotropic insulating behavior at low temperatures. It appears in a large range of low Landau level fillings 1 /3 ≲ν ≲2 /3 in hole systems confined to wide GaAs quantum wells when the sample is tilted in magnetic field to an intermediate angle. The parallel field component (B∥) leads to a crossing of the lowest two Landau levels, and an elongated hole wave function in the direction of B∥. Under these conditions, the in-plane resistance exhibits an insulating behavior, with the resistance along B∥ about 10 times smaller than the resistance perpendicular to B∥. We interpret this anisotropic insulating phase as a two-component, striped Wigner crystal.

  16. Anisotropic silica mesostructures for DNA encapsulation

    Indian Academy of Sciences (India)

    Aparna Ganguly; Ashok K Ganguli

    2013-04-01

    The encapsulation of biomolecules in inert meso or nanostructures is an important step towards controlling drug delivery agents. Mesoporous silica nanoparticles (MSN) are of immense importance owing to their high surface area, large pore size, uniform particle size and chemical inertness. Reverse micellar method with CTAB as the surfactant has been used to synthesize anisotropic mesoporous silica materials. We have used the anisotropic silica nanostructures for DNA encapsulation studies and observed a loading capacity of ∼8 g mg-1 of the sample. On functionalizing the pores of silica with amine group, the amount of DNA loaded on the rods decreases which is due to a reduction in the pore size upon grafting of amine groups.

  17. The dependency of tunnel magnetoresistance ratio on nanoscale thicknesses of Co2Fe6B2 free and pinned layers for Co2Fe6B2/MgO-based perpendicular-magnetic-tunnel-junctions

    Science.gov (United States)

    Jeon, Min-Su; Chae, Kyo-Suk; Lee, Du-Yeong; Takemura, Yasutaka; Lee, Seung-Eun; Shim, Tae-Hun; Park, Jea-Gun

    2015-04-01

    The tunnel magnetoresistance (TMR) ratio of a cobalt-iron-boron (CoFeB)-based perpendicular-magnetic-tunnel-junction (p-MTJ) spin valve is extremely sensitive to both nanoscale Co2Fe6B2 free- and pinned-layer thicknesses. The TMR ratio peaks at a Co2Fe6B2 free-layer thickness of 1.05 nm, while it peaks at a Co2Fe6B2 pinned-layer thickness of 1.59 nm, achieving 104%. The amount of tantalum diffused into the MgO tunneling barrier (originated from a tantalum seed) decreases with increasing Co2Fe6B2 free-layer thickness, while the amount of palladium diffused from a [Co/Pd]n SyAF layer decreases with increasing Co2Fe6B2 pinned-layer thickness, determining the crystallinity of the MgO tunneling barrier and the TMR ratio. In addition, the TMR ratio tended to decrease when the Co2Fe6B2 free layer and the Co2Fe6B2 pinned layer switched characteristics from interface-perpendicular anisotropic to in-plane anisotropic.

  18. Domain wall magnetoresistance in nanowires: Dependence on geometrical factors and material parameters

    Energy Technology Data Exchange (ETDEWEB)

    Allende, S.; Retamal, J.C. [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); Altbir, D., E-mail: dora.altbir@usach.cl [Departamento de Física, CEDENNA, Universidad de Santiago de Chile, USACH, Avenida Ecuador 3493, 917-0124 Santiago (Chile); D' Albuquerque e Castro, J. [Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972 (Brazil)

    2014-04-15

    The magnetoresistance associated with the presence of domain walls in metallic nanowires is investigated as a function of geometrical parameters, corresponding to the wall thickness and the nanowire width, as well as of material parameters, such as the band filling and the exchange interaction. Transport across the structure is described within Landauer formalism. Both cases of saturated and non-saturated ferromagnets are considered, and in all of them the contributions from spin-flip and non-spin-flip are separately analyzed. It has been found that for certain range of parameters deviations in the normalized magnetoresistance as high as 20% may be achieved. In addition, it has been shown that the spin-flip process is dependent on the wall thickness. - Highlights: • We identify thickness regions within which transport across the wall is dominated by either spin-flip or non-spin-flip process. • We analyze the dependence of the magnetoresistance on both the material's band filling and strength of the exchange interaction. • We identify parameter ranges within which magnetoresistance ratios as high as 20% or even more might be achieved.

  19. Exchange magnetic field torques in YIG/Pt bilayers observed by the spin-Hall magnetoresistance

    NARCIS (Netherlands)

    Vlietstra, N.; Shan, J.; Castel, V.; Youssef, J.B.; Bauer, G.E.W.; Van Wees, B.J.

    2013-01-01

    The effective field torque of an yttrium-iron-garnet (YIG) film on the spin accumulation in an attached platinum (Pt) film is measured by the spin-Hall magnetoresistance (SMR). As a result, the magnetization direction of a ferromagnetic insulating layer can be measured electrically. Experimental tra

  20. The large magnetoresistance of La1-xSrxCoO3 at low temperatures

    International Nuclear Information System (INIS)

    We report here the resistivity (ρ) and the magnetoresistance (MR) of the ferromagnetic perovskite oxide system La1-xSrxCoO3 (0.10.2) the magnitude of the MR is typically small (1-xSrxMnO3 system. (authors). Letter-to-the-editor

  1. Annealing effect on current perpendicular to plane systems modeled by giant magnetoresistance simulation

    NARCIS (Netherlands)

    Jonkers, PAE

    2001-01-01

    A simulation single-electron model is presented to describe the effect of annealing current perpendicular to plane-giant magnetoresistance (CPP-GMR) systems. Progressive annealing is represented by a progressively increasing number of impurities occurring at the interfaces of adjacent layers constit

  2. Effect of MR Element Slant Angle on Output Voltage of Magnetoresistive Device

    Institute of Scientific and Technical Information of China (English)

    Y L Jing; Yu Shi; H W Zhang; X D Jiang; H J Zheng

    2006-01-01

    Correlation between optimum of MR element slant angle and the ratio of magnetic pole length to magnetoresistance element length on linear magnetic encoder is explored in this paper. Optimum slant angle of MR element is different and increases in proportion to the ratio of magnetic pole length to MR element length by slant multi-phase filtering model.

  3. Giant magnetoresistance in melt spun Cu85Co10Ni5

    DEFF Research Database (Denmark)

    Curiotto, Stefano; Johnson, Erik; Celegato, Federica;

    2009-01-01

    structure with annealing has been studied by X-ray diffraction. The. ne microstructure has been observed by TEM and related to the magnetic properties, investigated in a vibrating sample magnetometer. In the studied composition the magnetoresistance was found to be lower than in binary CuCo alloys without...

  4. Magnetoresistance of a two-dimensional electron gas in a random magnetic field

    DEFF Research Database (Denmark)

    Smith, Anders; Taboryski, Rafael Jozef; Hansen, Luise Theil;

    1994-01-01

    We report magnetoresistance measurements on a two-dimensional electron gas made from a high-mobility GaAs/AlxGa1-xAs heterostructure, where the externally applied magnetic field was expelled from regions of the semiconductor by means of superconducting lead grains randomly distributed on the surf...

  5. Magnetoresistance in multilayer fullerene spin valves: A first-principles study

    Science.gov (United States)

    ćakır, Deniz; Otálvaro, Diana M.; Brocks, Geert

    2014-12-01

    Carbon-based molecular semiconductors are explored for application in spintronics because their small spin-orbit coupling promises long spin lifetimes. We calculate the electronic transport from first principles through spin valves comprising bi- and tri-layers of the fullerene molecules C60 and C70, sandwiched between two Fe electrodes. The spin polarization of the current, and the magnetoresistance depend sensitively on the interactions at the interfaces between the molecules and the metal surfaces. They are much less affected by the thickness of the molecular layers. A high current polarization (CP >90 %) and magnetoresistance (MR >100 %) at small bias can be attained using C70 layers. In contrast, the current polarization and the magnetoresistance at small bias are vanishingly small for C60 layers. Exploiting a generalized Jullière model we can trace the differences in spin-dependent transport between C60 and C70 layers to differences between the molecule-metal interface states. These states also allow one to interpret the current polarization and the magnetoresistance as a function of the applied bias voltage.

  6. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  7. Crossing Statistics of Anisotropic Stochastic Surface

    CERN Document Server

    Nezhadhaghighi, M Ghasemi; Yasseri, T; Allaei, S M Vaez

    2015-01-01

    We use crossing statistics and its generalization to determine the anisotropic direction imposed on a stochastic fields in $(2+1)$Dimension. This approach enables us to examine not only the rotational invariance of morphology but also we can determine the Gaussianity of underlying stochastic field in various dimensions. Theoretical prediction of up-crossing statistics (crossing with positive slope at a given threshold $\\alpha$ of height fluctuation), $\

  8. Mesoscopic Phase Separation in Anisotropic Superconductors

    OpenAIRE

    V. I. Yukalov; Yukalova, E. P.

    2005-01-01

    General properties of anisotropic superconductors with mesoscopic phase separation are analysed. The main conclusions are as follows: Mesoscopic phase separation can be thermodynamically stable only in the presence of repulsive Coulomb interactions. Phase separation enables the appearance of superconductivity in a heterophase sample even if it were impossible in pure-phase matter. Phase separation is crucial for the occurrence of superconductivity in bad conductors. Critical temperature for a...

  9. Anisotropic magnetocapacitance in ferromagnetic-plate capacitors

    Science.gov (United States)

    Haigh, J. A.; Ciccarelli, C.; Betz, A. C.; Irvine, A.; Novák, V.; Jungwirth, T.; Wunderlich, J.

    2015-04-01

    The capacitance of a parallel-plate capacitor can depend on the applied magnetic field. Previous studies have identified capacitance changes induced via classical Lorentz force or spin-dependent Zeeman effects. Here we measure a magnetization direction-dependent capacitance in parallel-plate capacitors where one plate is a ferromagnetic semiconductor, gallium manganese arsenide. This anisotropic magnetocapacitance is due to the anisotropy in the density of states dependent on the magnetization through the strong spin-orbit interaction.

  10. Anisotropic solutions in f(R) Gravity

    CERN Document Server

    Tripathy, S K

    2016-01-01

    Anisotropic cosmological models are investigated in the frame work of $f(R)$ gravity in the metric formalism. Plane symmetric models are considered to incorporate anisotropy in the expansion rates along different spatial directions. The anisotropy in expansion rates are assumed to be maintained throughout the cosmic evolution. Two accelerating models are constructed by considering different functional forms for f(R). The viability of these models are tested through a stability analysis.

  11. Experimental compaction of anisotropic granular media

    OpenAIRE

    Ribière, Philippe; RICHARD, Patrick; Bideau, Daniel; Delannay, Renaud

    2005-01-01

    We report on experiments to measure the temporal and spatial evolution of packin g arrangements of anisotropic and weakly confined granular material, using high-resolution $\\gamma$-ray adsorption. In these experiments, the particle configurations start from an initially disordered, low-packing-fraction state and under vertical solicitation s evolve to a dense state. We find that the packing fraction evolution is slowed by the grain anisotropy but, as for spherically shaped grains, can be well...

  12. Highly-anisotropic hydrodynamics for central collisions

    CERN Document Server

    Ryblewski, Radoslaw

    2016-01-01

    The framework of leading-order anisotropic hydrodynamics is supplemented with realistic equation of state and self-consistent freeze-out prescription. The model is applied to central proton-nucleus collisions. The results are compared to those obtained within standard Israel-Stewart second-order viscous hydrodynamics. It is shown that the resulting hadron spectra are highly-sensitive to the hydrodynamic approach that has been used.

  13. Electromagnetic Effects on Cracking of Anisotropic Polytropes

    CERN Document Server

    Sharif, M

    2016-01-01

    In this paper, we study the electromagnetic effects on stability of spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman Oppenheimer Volkoff equations. We apply perturbations on matter variables via polytropic constant as well as polytropic index and formulate the force distribution function. It is found that the compact object is stable for feasible choice of perturbed polytropic index in the presence of charge.

  14. Relativistic Bottomonium Spectrum from Anisotropic Lattices

    OpenAIRE

    Liao, X.; Manke, T.

    2001-01-01

    We report on a first relativistic calculation of the quenched bottomonium spectrum from anisotropic lattices. Using a very fine discretisation in the temporal direction we were able to go beyond the non-relativistic approximation and perform a continuum extrapolation of our results from five different lattice spacings (0.04-0.17 fm) and two anisotropies (4 and 5). We investigate several systematic errors within the quenched approximation and compare our results with those from non-relativisti...

  15. Anisotropic power-law k-inflation

    CERN Document Server

    Ohashi, Junko; Tsujikawa, Shinji

    2013-01-01

    It is known that power-law k-inflation can be realized for the Lagrangian $P=Xg(Y)$, where $X=-(\\partial \\phi)^2/2$ is the kinetic energy of a scalar field $\\phi$ and $g$ is an arbitrary function in terms of $Y=Xe^{\\lambda \\phi/M_{pl}}$ ($\\lambda$ is a constant and $M_{pl}$ is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling $f(\\phi) \\propto e^{\\mu \\phi/M_{pl}}$, we show that the models with the Lagrangian $P=Xg(Y)$ generally give rise to anisotropic inflationary solutions with $\\Sigma/H=constant$, where $\\Sigma$ is an anisotropic shear and $H$ is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio $\\Sigma/H$ is much smaller than 1, they are stable attractors irrespective of the forms of $g(Y)$. We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate/the DBI model and we numerically show that the solutions with different initial conditions converge...

  16. ARTc: Anisotropic reflectivity and transmissivity calculator

    Science.gov (United States)

    Malehmir, Reza; Schmitt, Douglas R.

    2016-08-01

    While seismic anisotropy is known to exist within the Earth's crust and even deeper, isotropic or even highly symmetric elastic anisotropic assumptions for seismic imaging is an over-simplification which may create artifacts in the image, target mis-positioning and hence flawed interpretation. In this paper, we have developed the ARTc algorithm to solve reflectivity, transmissivity as well as velocity and particle polarization in the most general case of elastic anisotropy. This algorithm is able to provide reflectivity solution from the boundary between two anisotropic slabs with arbitrary symmetry and orientation up to triclinic. To achieve this, the algorithm solves full elastic wave equation to find polarization, slowness and amplitude of all six wave-modes generated from the incident plane-wave and welded interface. In the first step to calculate the reflectivity, the algorithm solves properties of the incident wave such as particle polarization and slowness. After calculation of the direction of generated waves, the algorithm solves their respective slowness and particle polarization. With this information, the algorithm then solves a system of equations incorporating the imposed boundary conditions to arrive at the scattered wave amplitudes, and thus reflectivity and transmissivity. Reflectivity results as well as slowness and polarization are then tested in complex computational anisotropic models to ensure their accuracy and reliability. ARTc is coded in MATLAB ® and bundled with an interactive GUI and bash script to run on single or multi-processor computers.

  17. Anisotropic Optical Properties of Layered Germanium Sulfide

    CERN Document Server

    Tan, Dezhi; Wang, Feijiu; Mohamed, Nur Baizura; Mouri, Shinichiro; Sandhaya, Koirala; Zhang, Wenjing; Miyauchi, Yuhei; Ohfuchi, Mari; Matsuda, Kazunari

    2016-01-01

    Two-dimensional (2D) layered materials, transition metal dichalcogenides and black phosphorus, have attracted much interest from the viewpoints of fundamental physics and device applications. The establishment of new functionalities in anisotropic layered 2D materials is a challenging but rewarding frontier, owing to their remarkable optical properties and prospects for new devices. Here, we report the anisotropic optical properties of layered 2D monochalcogenide of germanium sulfide (GeS). Three Raman scattering peaks corresponding to the B3g, A1g, and A2g modes with strong polarization dependence are demonstrated in the GeS flakes, which validates polarized Raman spectroscopy as an effective method for identifying the crystal orientation of anisotropic layered GeS. Photoluminescence (PL) is observed with a peak at around 1.66 eV that originates from the direct optical transition in GeS at room temperature. Moreover, determination of the polarization dependent characteristics of the PL and absorption reveals...

  18. Anisotropic cosmological solutions in massive vector theories

    CERN Document Server

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...

  19. Ambient Sensors

    NARCIS (Netherlands)

    Börner, Dirk; Specht, Marcus

    2014-01-01

    This software sketches comprise two custom-built ambient sensors, i.e. a noise and a movement sensor. Both sensors measure an ambient value and process the values to a color gradient (green > yellow > red). The sensors were built using the Processing 1.5.1 development environment. Available under th

  20. An anisotropic mesh adaptation method for the finite element solution of heterogeneous anisotropic diffusion problems

    CERN Document Server

    Li, Xianping

    2010-01-01

    Heterogeneous anisotropic diffusion problems arise in the various areas of science and engineering including plasma physics, petroleum engineering, and image processing. Standard numerical methods can produce spurious oscillations when they are used to solve those problems. A common approach to avoid this difficulty is to design a proper numerical scheme and/or a proper mesh so that the numerical solution validates the discrete counterpart (DMP) of the maximum principle satisfied by the continuous solution. A well known mesh condition for the DMP satisfaction by the linear finite element solution of isotropic diffusion problems is the non-obtuse angle condition that requires the dihedral angles of mesh elements to be non-obtuse. In this paper, a generalization of the condition, the so-called anisotropic non-obtuse angle condition, is developed for the finite element solution of heterogeneous anisotropic diffusion problems. The new condition is essentially the same as the existing one except that the dihedral ...