WorldWideScience

Sample records for anisotropic magnetoresistive sensor

  1. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Anisotropic magnetoresistance in a Fermi glass

    International Nuclear Information System (INIS)

    Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)

    1986-01-01

    Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity

  3. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  4. Single nucleotide polymorphism (SNP) detection on a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2013-01-01

    We present a magnetoresistive sensor platform for hybridization assays and demonstrate its applicability on single nucleotide polymorphism (SNP) genotyping. The sensor relies on anisotropic magnetoresistance in a new geometry with a local negative reference and uses the magnetic field from...... the sensor bias current to magnetize magnetic beads in the vicinity of the sensor. The method allows for real-time measurements of the specific bead binding to the sensor surface during DNA hybridization and washing. Compared to other magnetic biosensing platforms, our approach eliminates the need...... for external electromagnets and thus allows for miniaturization of the sensor platform....

  5. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  6. Tunneling anisotropic magnetoresistance: A spin-valve-like tunnel magnetoresistance using a single magnetic layer

    Czech Academy of Sciences Publication Activity Database

    Gould, C.; Rüster, C.; Jungwirth, Tomáš; Girgis, E.; Schott, G. M.; Giraud, R.; Brunner, K.; Schmidt, G.; Molenkamp, L. W.

    2004-01-01

    Roč. 93, č. 11 (2004), 117203/1-117203/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/02/0912 Institutional research plan: CEZ:AV0Z1010914 Keywords : semiconductor spintronics * tunneling anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.218, year: 2004

  7. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  8. Anisotropic magnetoresistance of GaMnAs ferromagnetic semiconductors

    Czech Academy of Sciences Publication Activity Database

    Vašek, Petr; Svoboda, Pavel; Novák, Vít; Cukr, Miroslav; Výborný, Karel; Jurka, Vlastimil; Stuchlík, Jiří; Orlita, Milan; Maude, D. K.

    2010-01-01

    Roč. 23, č. 6 (2010), 1161-1163 ISSN 1557-1939 R&D Projects: GA AV ČR KAN400100652; GA MŠk MEB020928 Grant - others:EU EuroMagNET II(XE) Egide 19535NF Institutional research plan: CEZ:AV0Z10100521 Keywords : GaMnAs * anisotropic magnetoresistance * hydrogenation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.014, year: 2010

  9. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  10. Anisotropic magnetoresistance and thermodynamic fluctuations in high-temperature superconductors

    International Nuclear Information System (INIS)

    Heine, G.

    1999-05-01

    Measurements of the in-plane and out-of-plane resistivity and the transverse and longitudinal in-plane and out-of-plane magnetoresistance above T, are reported in the high-temperature superconductors Bi2Sr2CaCu208+' and YBa2CU307 b . The carrier concentration of the Bi2Sr2CaCu208+' single crystals covers a broad range of the phase diagram from the slightly under doped to the moderately over doped region. The doping concentration of the thin films ranges from strongly under doped to optimally doped. The in-plane resistivities obey a metallic-like temperature dependence with a positive magnetoresistance in the transverse and the longitudinal orientation of the magnetic field. The out-of-plane resistivities show an activated behavior above T, with a metallic region at higher temperatures and negative magnetoresistance. The data were analyzed in the framework of a model for superconducting order parameter fluctuations. The positive in-plane magnetoresistance of the highly anisotropic Bi2Sr2CaCu208+x single crystals is interpreted as the suppression of the fluctuation-conductivity enhancement including orbital and spin contributions, whereas the negative magnetoresistance arises from the reduction of the fluctuation-induced pseudogap in the single-electron density-of-states by the magnetic field. For higher temperatures a transition to the normal-state magnetoresistance occurs for the in-plane transport. In the less anisotropic YBa2CU307 b thin films the positive out-of-plane magnetoresistance near T, changes sign to a negative magnetoresistance at higher temperatures. This behavior is also consistent with predictions from the theory of thermodynamic order-parameter fluctuations. The agreement of the fluctuation theory with the experimental findings is excellent for samples from the over doped side of the phase diagram, but deteriorate with decreasing carrier concentration. This behavior is interpreted by the dominating d-wave symmetry of the superconducting order

  11. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  12. Tunneling anisotropic magnetoresistance via molecular π orbitals of Pb dimers

    Science.gov (United States)

    Schöneberg, Johannes; Ferriani, Paolo; Heinze, Stefan; Weismann, Alexander; Berndt, Richard

    2018-01-01

    Pb dimers on a ferromagnetic surface are shown to exhibit large tunneling anisotropic magnetoresistance (TAMR) due to molecular π orbitals. Dimers oriented differently with respect to the magnetization directions of a ferromagnetic Fe double layer on W(110) were made with a scanning tunneling microscope. Depending on the dimer orientations, TAMR is absent or as large as 20% at the Fermi level. General arguments and first-principles calculations show that mixing of molecular orbitals due to spin-orbit coupling, which leads to TAMR, is maximal when the magnetization is oriented parallel to the dimer axis.

  13. Tunneling anisotropic magnetoresistance in single-molecule magnet junctions

    Science.gov (United States)

    Xie, Haiqing; Wang, Qiang; Jiao, Hujun; Liang, J.-Q.

    2012-08-01

    We theoretically investigate quantum transport through single-molecule magnet (SMM) junctions with ferromagnetic and normal-metal leads in the sequential regime. The current obtained by means of the rate-equation gives rise to the tunneling anisotropic magnetoresistance (TAMR), which varies with the angle between the magnetization direction of ferromagnetic lead and the easy axis of SMM. The angular dependence of TAMR can serve as a probe to determine experimentally the easy axis of SMM. Moreover, it is demonstrated that both the magnitude and the sign of TAMR are tunable by the bias voltage, suggesting a new spin-valve device with only one magnetic electrode in molecular spintronics.

  14. Anisotropic magnetoresistance components in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Rushforth, A.W.; Výborný, Karel; King, C.S.; Edmonds, K. W.; Campion, R. P.; Foxon, C. T.; Wunderlich, J.; Irvine, A.C.; Vašek, Petr; Novák, Vít; Olejník, Kamil; Sinova, J.; Jungwirth, Tomáš; Gallagher, B. L.

    2007-01-01

    Roč. 99, č. 14 (2007), 147207/1-147207/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 Grant - others:UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 6.944, year: 2007

  15. Huge tunnelling anisotropic magnetoresistance in (Ga,Mn)As nanoconstrictions

    Czech Academy of Sciences Publication Activity Database

    Giddings, A.D.; Makarovsky, O. N.; Khalid, M.N.; Yasin, S.; Edmonds, K. W.; Campion, R. P.; Wunderlich, J.; Jungwirth, Tomáš; Williams, D.A.; Gallagher, B. L.; Foxon, C. T.

    2008-01-01

    Roč. 10, č. 8 (2008), 085004/1-085004/9 ISSN 1367-2630 R&D Projects: GA ČR GEFON/06/E002; GA MŠk LC510; GA ČR GA202/05/0575; GA ČR GA202/04/1519 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic semiconductor * nanoconstriction * tunneling anisotropic magnetoresistance , Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.440, year: 2008

  16. Anisotropic Magnetoresistance in Antiferromagnetic Sr_{2}IrO_{4}

    Directory of Open Access Journals (Sweden)

    C. Wang

    2014-11-01

    Full Text Available We report point-contact measurements of anisotropic magnetoresistance (AMR in a single crystal of antiferromagnetic Mott insulator Sr_{2}IrO_{4}. The point-contact technique is used here as a local probe of magnetotransport properties on the nanoscale. The measurements at liquid nitrogen temperature reveal negative magnetoresistances (up to 28% for modest magnetic fields (250 mT applied within the IrO_{2} a-b plane and electric currents flowing perpendicular to the plane. The angular dependence of magnetoresistance shows a crossover from fourfold to twofold symmetry in response to an increasing magnetic field with angular variations in resistance from 1% to 14%. We tentatively attribute the fourfold symmetry to the crystalline component of AMR and the field-induced transition to the effects of applied field on the canting of antiferromagnetic-coupled moments in Sr_{2}IrO_{4}. The observed AMR is very large compared to the crystalline AMRs in 3d transition metal alloys or oxides (0.1%–0.5% and can be associated with the large spin-orbit interactions in this 5d oxide while the transition provides evidence of correlations between electronic transport, magnetic order, and orbital states. The finding of this work opens an entirely new avenue to not only gain a new insight into physics associated with spin-orbit coupling but also to better harness the power of spintronics in a more technically favorable fashion.

  17. Robust giant magnetoresistive effect type multilayer sensor

    NARCIS (Netherlands)

    Lenssen, K.M.H.; Kuiper, A.E.T.; Roozeboom, F.

    2002-01-01

    A robust Giant Magneto Resistive effect type multilayer sensor comprising a free and a pinned ferromagnetic layer, which can withstand high temperatures and strong magnetic fields as required in automotive applications. The GMR multi-layer has an asymmetric magneto-resistive curve and enables

  18. Anisotropic Magnetoresistance and Anisotropic Tunneling Magnetoresistance due to Quantum Interference in Ferromagnetic Metal Break Junctions

    DEFF Research Database (Denmark)

    Bolotin, Kirill; Kuemmeth, Ferdinand; Ralph, D

    2006-01-01

    We measure the low-temperature resistance of permalloy break junctions as a function of contact size and the magnetic field angle in applied fields large enough to saturate the magnetization. For both nanometer-scale metallic contacts and tunneling devices we observe large changes in resistance w...... with the angle, as large as 25% in the tunneling regime. The pattern of magnetoresistance is sensitive to changes in bias on a scale of a few mV. We interpret the effect as a consequence of conductance fluctuations due to quantum interference....

  19. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh

    2015-03-12

    © 2015 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft. We demonstrate single atom anisotropic magnetoresistance on the surface of a topological insulator, arising from the interplay between the helical spin-momentum-locked surface electronic structure and the hybridization of the magnetic adatom states. Our first-principles quantum transport calculations based on density functional theory for Mn on Bi2Se3 elucidate the underlying mechanism. We complement our findings with a two dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological insulator surfaces, and reveal the real space spin texture around the magnetic impurity.

  20. Anisotropic magnetoresistance components in (Ga,Mn)As.

    Science.gov (United States)

    Rushforth, A W; Výborný, K; King, C S; Edmonds, K W; Campion, R P; Foxon, C T; Wunderlich, J; Irvine, A C; Vasek, P; Novák, V; Olejník, K; Sinova, Jairo; Jungwirth, T; Gallagher, B L

    2007-10-05

    We explore the basic physical origins of the noncrystalline and crystalline components of the anisotropic magnetoresistance (AMR) in (Ga,Mn)As. The sign of the noncrystalline AMR is found to be determined by the form of spin-orbit coupling in the host band and by the relative strengths of the nonmagnetic and magnetic contributions to the Mn impurity potential. We develop experimental methods yielding directly the noncrystalline and crystalline AMR components which are then analyzed independently. We report the observation of an AMR dominated by a large uniaxial crystalline component and show that AMR can be modified by local strain relaxation. Generic implications of our findings for other dilute moment systems are discussed.

  1. Tunneling anisotropic magnetoresistance in Co/AIOx/Al tunnel junctions with fcc Co (111) electrodes

    NARCIS (Netherlands)

    Wang, Kai; Tran, T. Lan Ahn; Brinks, Peter; Brinks, P.; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2013-01-01

    Tunneling anisotropic magnetoresistance (TAMR) has been characterized in junctions comprised of face-centered cubic (fcc) Co (111) ferromagnetic electrodes grown epitaxially on sapphire substrates, amorphous AlOx tunnel barriers, and nonmagnetic Al counterelectrodes. Large TAMR ratios have been

  2. Anisotropic magnetoresistance and tunneling magnetoresistance of conducting filaments in NiO with different resistance states

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, F.-K.; Wu, Jian; Luo, Jianlin; Li, Jianqi; Wang, Yayu; Zhao, Yonggang; Tsinghua University Team; Chinese Academy of Sciences Collaboration

    Resistive switching (RS) effect in conductor/insulator/conductor thin-film stacks has attracted much attention due to its interesting physics and potentials for applications. NiO is one of the most representative systems and its RS effect has been generally explained by the formation and rupture of Ni related conducting filaments, which are very unique since they are formed by electric forming process. We study the MR behaviors in NiO RS films with different resistance states. Rich and interesting MR behaviors were observed, including the normal and anomalous anisotropic magnetoresistance (AMR) and tunneling magnetoresistance (TMR), etc., which provide new insights into the nature of the filaments and their evolution in the resistive switching process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for the exploration of the conducting filaments in RS materials, and is significant for understanding the RS mechanism as well as multifunctional device design.

  3. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2

    Science.gov (United States)

    Li, Hui; Wang, Huan-Wen; He, Hongtao; Wang, Jiannong; Shen, Shun-Qing

    2018-05-01

    Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.

  4. Giant anisotropic magnetoresistance in a quantum anomalous Hall insulator

    Science.gov (United States)

    Kandala, Abhinav; Richardella, Anthony; Kempinger, Susan; Liu, Chao-Xing; Samarth, Nitin

    2015-01-01

    When a three-dimensional ferromagnetic topological insulator thin film is magnetized out-of-plane, conduction ideally occurs through dissipationless, one-dimensional (1D) chiral states that are characterized by a quantized, zero-field Hall conductance. The recent realization of this phenomenon, the quantum anomalous Hall effect, provides a conceptually new platform for studies of 1D transport, distinct from the traditionally studied quantum Hall effects that arise from Landau level formation. An important question arises in this context: how do these 1D edge states evolve as the magnetization is changed from out-of-plane to in-plane? We examine this question by studying the field-tilt-driven crossover from predominantly edge-state transport to diffusive transport in Crx(Bi,Sb)2−xTe3 thin films. This crossover manifests itself in a giant, electrically tunable anisotropic magnetoresistance that we explain by employing a Landauer–Büttiker formalism. Our methodology provides a powerful means of quantifying dissipative effects in temperature and chemical potential regimes far from perfect quantization. PMID:26151318

  5. Simultaneous polarized neutron reflectometry and anisotropic magnetoresistance measurements.

    Science.gov (United States)

    Demeter, J; Teichert, A; Kiefer, K; Wallacher, D; Ryll, H; Menéndez, E; Paramanik, D; Steitz, R; Van Haesendonck, C; Vantomme, A; Temst, K

    2011-03-01

    A novel experimental facility to carry out simultaneous polarized neutron reflectometry (PNR) and anisotropic magnetoresistance (AMR) measurements is presented. Performing both techniques at the same time increases their strength considerably. The proof of concept of this method is demonstrated on a CoO/Co bilayer exchange bias system. Although information on the same phenomena, such as the coercivity or the reversal mechanism, can be separately obtained from either of these techniques, the simultaneous application optimizes the consistency between both. In this way, possible differences in experimental conditions, such as applied magnetic field amplitude and orientation, sample temperature, magnetic history, etc., can be ruled out. Consequently, only differences in the fundamental sensitivities of the techniques can cause discrepancies in the interpretation between the two. The almost instantaneous information obtained from AMR can be used to reveal time-dependent effects during the PNR acquisition. Moreover, the information inferred from the AMR measurements can be used for optimizing the experimental conditions for the PNR measurements in a more efficient way than with the PNR measurements alone.

  6. Temperature-Dependent Asymmetry of Anisotropic Magnetoresistance in Silicon p-n Junctions.

    Science.gov (United States)

    Yang, D Z; Wang, T; Sui, W B; Si, M S; Guo, D W; Shi, Z; Wang, F C; Xue, D S

    2015-09-01

    We report a large but asymmetric magnetoresistance in silicon p-n junctions, which contrasts with the fact of magnetoresistance being symmetric in magnetic metals and semiconductors. With temperature decreasing from 293 K to 100 K, the magnetoresistance sharply increases from 50% to 150% under a magnetic field of 2 T. At the same time, an asymmetric magnetoresistance, which manifests itself as a magnetoresistance voltage offset with respect to the sign of magnetic field, occurs and linearly increases with magnetoresistance. More interestingly, in contrast with other materials, the lineshape of anisotropic magnetoresistance in silicon p-n junctions significantly depends on temperature. As temperature decreases from 293 K to 100 K, the width of peak shrinks from 90° to 70°. We ascribe these novel magnetoresistance to the asymmetric geometry of the space charge region in p-n junction induced by the magnetic field. In the vicinity of the space charge region the current paths are deflected, contributing the Hall field to the asymmetric magnetoresistance. Therefore, the observed temperature-dependent asymmetry of magnetoresistance is proved to be a direct consequence of the spatial configuration evolution of space charge region with temperature.

  7. Tunneling magnetoresistance sensor with pT level 1/f magnetic noise

    Science.gov (United States)

    Deak, James G.; Zhou, Zhimin; Shen, Weifeng

    2017-05-01

    Magnetoresistive devices are important components in a large number of commercial electronic products in a wide range of applications including industrial position sensors, automotive sensors, hard disk read heads, cell phone compasses, and solid state memories. These devices are commonly based on anisotropic magnetoresistance (AMR) and giant magnetoresistance (GMR), but over the past few years tunneling magnetoresistance (TMR) has been emerging in more applications. Here we focus on recent work that has enabled the development of TMR magnetic field sensors with 1/f noise of less than 100 pT/rtHz at 1 Hz. Of the commercially available sensors, the lowest noise devices have typically been AMR, but they generally have the largest die size. Based on this observation and modeling of experimental data size and geometry dependence, we find that there is an optimal design rule that produces minimum 1/f noise. This design rule requires maximizing the areal coverage of an on-chip flux concentrator, providing it with a minimum possible total gap width, and tightly packing the gaps with MTJ elements, which increases the effective volume and decreases the saturation field of the MTJ freelayers. When properly optimized using this rule, these sensors have noise below 60 pT/rtHz, and could possibly replace fluxgate magnetometers in some applications.

  8. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Directory of Open Access Journals (Sweden)

    M. O. Archer

    2015-06-01

    Full Text Available We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College, aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF, which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20–60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program and POES (Polar-orbiting Operational Environmental Satellites spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  9. The MAGIC of CINEMA: first in-flight science results from a miniaturised anisotropic magnetoresistive magnetometer

    Science.gov (United States)

    Archer, M. O.; Horbury, T. S.; Brown, P.; Eastwood, J. P.; Oddy, T. M.; Whiteside, B. J.; Sample, J. G.

    2015-06-01

    We present the first in-flight results from a novel miniaturised anisotropic magnetoresistive space magnetometer, MAGIC (MAGnetometer from Imperial College), aboard the first CINEMA (CubeSat for Ions, Neutrals, Electrons and MAgnetic fields) spacecraft in low Earth orbit. An attitude-independent calibration technique is detailed using the International Geomagnetic Reference Field (IGRF), which is temperature dependent in the case of the outboard sensor. We show that the sensors accurately measure the expected absolute field to within 2% in attitude mode and 1% in science mode. Using a simple method we are able to estimate the spacecraft's attitude using the magnetometer only, thus characterising CINEMA's spin, precession and nutation. Finally, we show that the outboard sensor is capable of detecting transient physical signals with amplitudes of ~ 20-60 nT. These include field-aligned currents at the auroral oval, qualitatively similar to previous observations, which agree in location with measurements from the DMSP (Defense Meteorological Satellite Program) and POES (Polar-orbiting Operational Environmental Satellites) spacecraft. Thus, we demonstrate and discuss the potential science capabilities of the MAGIC instrument onboard a CubeSat platform.

  10. Fractional Modeling of the AC Large-Signal Frequency Response in Magnetoresistive Current Sensors

    Directory of Open Access Journals (Sweden)

    Sergio Iván Ravelo Arias

    2013-12-01

    Full Text Available Fractional calculus is considered when derivatives and integrals of non-integer order are applied over a specific function. In the electrical and electronic domain, the transfer function dependence of a fractional filter not only by the filter order n, but additionally, of the fractional order α is an example of a great number of systems where its input-output behavior could be more exactly modeled by a fractional behavior. Following this aim, the present work shows the experimental ac large-signal frequency response of a family of electrical current sensors based in different spintronic conduction mechanisms. Using an ac characterization set-up the sensor transimpedance function  is obtained considering it as the relationship between sensor output voltage and input sensing current,[PLEASE CHECK FORMULA IN THE PDF]. The study has been extended to various magnetoresistance sensors based in different technologies like anisotropic magnetoresistance (AMR, giant magnetoresistance (GMR, spin-valve (GMR-SV and tunnel magnetoresistance (TMR. The resulting modeling shows two predominant behaviors, the low-pass and the inverse low-pass with fractional index different from the classical integer response. The TMR technology with internal magnetization offers the best dynamic and sensitivity properties opening the way to develop actual industrial applications.

  11. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the

  12. Extremely large and significantly anisotropic magnetoresistance in ZrSiS single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Yang-Yang; Zhang, Bin-Bin; Yao, Shu-Hua, E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn; Zhou, Jian, E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn; Zhang, Shan-Tao; Lu, Ming-Hui [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Li, Xiao; Chen, Y. B., E-mail: shyao@nju.edu.cn, E-mail: ybchen@nju.edu.cn, E-mail: zhoujian@nju.edu.cn [National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University, Nanjing 210093 (China); Chen, Yan-Feng [National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing 210093 (China); Collaborative Innovation Center of Advanced Microstructure, Nanjing University, Nanjing 210093 (China)

    2016-06-13

    Recently, the extremely large magnetoresistance (MR) observed in transition metal telluride, like WTe{sub 2}, attracted much attention because of the potential applications in magnetic sensor. Here, we report the observation of extremely large magnetoresistance as 3.0 × 10{sup 4}% measured at 2 K and 9 T magnetic field aligned along [001]-ZrSiS. The significant magnetoresistance change (∼1.4 × 10{sup 4}%) can be obtained when the magnetic field is titled from [001] to [011]-ZrSiS. These abnormal magnetoresistance behaviors in ZrSiS can be understood by electron-hole compensation and the open orbital of Fermi surface. Because of these superior MR properties, ZrSiS may be used in the magnetic sensors.

  13. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn

    Czech Academy of Sciences Publication Activity Database

    Galceran, R.; Fina, I.; Cisneros-Fernandez, J.; Bozzo, B.; Frontera, C.; Lopez-Mir, L.; Deniz, H.; Park, K.W.; Park, B.G.; Balcells, J.; Martí, Xavier; Jungwirth, Tomáš; Martínez, B.

    2016-01-01

    Roč. 6, Oct (2016), 1-6, č. článku 35471. ISSN 2045-2322 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.259, year: 2016

  14. Strain driven anisotropic magnetoresistance in antiferromagnetic La$_{0.4}$Sr$_{0.6}$MnO$_{3}$

    OpenAIRE

    Wong, A. T.; Beekman, C.; Guo, H.; Siemons, W.; Gai, Z.; Arenholz, E.; Takamura, Y.; Ward, T. Z.

    2014-01-01

    We investigate the effects of strain on antiferromagnetic (AFM) single crystal thin films of La 1-x Sr x MnO 3 (x = 0.6). Nominally unstrained samples have strong magnetoresistance with anisotropic magnetoresistances (AMR) of up to 8%. Compressive strain suppresses magnetoresistance but generates AMR values of up to 63%. Tensile strain presents the only case of a metal-insulator transition and demonstrates a previously unreported AMR behavior. In all three cases, we find evidence of magnetic...

  15. Anisotropic giant magnetoresistance in NbSb2

    Science.gov (United States)

    Wang, Kefeng; Graf, D.; Li, Lijun; Wang, Limin; Petrovic, C.

    2014-01-01

    The magnetic field response of the transport properties of novel materials and then the large magnetoresistance effects are of broad importance in both science and application. We report large transverse magnetoreistance (the magnetoresistant ratio ~ 1.3 × 105% in 2 K and 9 T field, and 4.3 × 106% in 0.4 K and 32 T field, without saturation) and field-induced metal-semiconductor-like transition, in NbSb2 single crystal. Magnetoresistance is significantly suppressed but the metal-semiconductor-like transition persists when the current is along the ac-plane. The sign reversal of the Hall resistivity and Seebeck coefficient in the field, plus the electronic structure reveal the coexistence of a small number of holes with very high mobility and a large number of electrons with low mobility. The large MR is attributed to the change of the Fermi surface induced by the magnetic field which is related to the Dirac-like point, in addition to orbital MR expected for high mobility metals. PMID:25476239

  16. Tailoring anisotropic magnetoresistance and giant magnetoresistance hysteresis loops with spin-polarized current injection

    International Nuclear Information System (INIS)

    Wegrowe, J.-E.; Kelly, D.; Hoffer, X.; Guittienne, Ph.; Ansermet, J.-Ph.

    2001-01-01

    Current pulses were injected into magnetic nanowires. Their effect on the magnetoresistance hysteresis loops was studied for three morphologies: homogeneous Ni wires, copper wires containing five cobalt/copper bilayers, and hybrid structures composed of a homogeneous Ni half wire and a multilayered Co/Cu half wire. The characteristic features of the action of the current on the magnetization are shown and discussed. [copyright] 2001 American Institute of Physics

  17. Detection of magnetic resonance signals using a magnetoresistive sensor

    Science.gov (United States)

    Budker, Dmitry; Pines, Alexander; Xu, Shoujun; Hilty, Christian; Ledbetter, Micah P; Bouchard, Louis S

    2013-10-01

    A method and apparatus are described wherein a micro sample of a fluidic material may be assayed without sample contamination using NMR techniques, in combination with magnetoresistive sensors. The fluidic material to be assayed is first subject to pre-polarization, in one embodiment, by passage through a magnetic field. The magnetization of the fluidic material is then subject to an encoding process, in one embodiment an rf-induced inversion by passage through an adiabatic fast-passage module. Thereafter, the changes in magnetization are detected by a pair of solid-state magnetoresistive sensors arranged in gradiometer mode. Miniaturization is afforded by the close spacing of the various modules.

  18. Multiple-stable anisotropic magnetoresistance memory in antiferromagnetic MnTe

    Czech Academy of Sciences Publication Activity Database

    Kriegner, D.; Výborný, Karel; Olejník, Kamil; Reichlová, Helena; Novák, Vít; Martí, Xavier; Gazquez, J.; Saidl, V.; Němec, P.; Volobuev, V.V.; Springholz, G.; Holý, V.; Jungwirth, Tomáš

    2016-01-01

    Roč. 7, Jun (2016), 1-7, č. článku 11623. ISSN 2041-1723 R&D Projects: GA ČR GA15-13436S; GA MŠk(CZ) LM2011026; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN Institutional support: RVO:68378271 Keywords : antiferromagnets * spintronics * anisotropic magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 12.124, year: 2016

  19. Boltzmann theory of engineered anisotropic magnetoresistance in (Ga, Mn)As

    Czech Academy of Sciences Publication Activity Database

    Jungwirth, Tomáš; Abolfath, M.; Sinova, J.; Kučera, Jan; MacDonald, A. H.

    2002-01-01

    Roč. 81, č. 21 (2002), s. 4029-4031 ISSN 0003-6951 R&D Projects: GA ČR GA202/02/0912; GA MŠk OC P5.10 Institutional research plan: CEZ:AV0Z1010914 Keywords : ferromagnetic semiconductors * anisotropic magnetoresistence Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002

  20. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2006-01-01

    Roč. 97, č. 7 (2006), 077201/1-077201/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant - others:EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006

  1. Measurement and simulation of anisotropic magnetoresistance in single GaAs/MnAs core/shell nanowires

    International Nuclear Information System (INIS)

    Liang, J.; Wang, J.; Cooley, B. J.; Rench, D. W.; Samarth, N.; Paul, A.; Dellas, N. S.; Mohney, S. E.; Engel-Herbert, R.

    2012-01-01

    We report four probe measurements of the low field magnetoresistance (MR) in single core/shell GaAs/MnAs nanowires (NWs) synthesized by molecular beam epitaxy, demonstrating clear signatures of anisotropic magnetoresistance that track the field-dependent magnetization. A comparison with micromagnetic simulations reveals that the principal characteristics of the magnetoresistance data can be unambiguously attributed to the nanowire segments with a zinc blende GaAs core. The direct correlation between magnetoresistance, magnetization, and crystal structure provides a powerful means of characterizing individual hybrid ferromagnet/semiconductor nanostructures.

  2. Magnetoresistive sensor for real-time single nucleotide polymorphism genotyping

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Dufva, Martin

    2014-01-01

    We demonstrate a magnetoresistive sensor platform that allows for the real-time detection of point mutations in DNA targets. Specifically, we detect point mutations at two sites in the human beta globin gene. For DNA detection, the present sensor technology has a detection limit of about 160p...... of magnetic beads, which enables real-time quantification of the specific binding of magnetic beads to the sensor surface under varying experimental conditions....

  3. Theoretical Prediction of a Giant Anisotropic Magnetoresistance in Carbon Nanoscrolls.

    Science.gov (United States)

    Chang, Ching-Hao; Ortix, Carmine

    2017-05-10

    Snake orbits are trajectories of charge carriers curving back and forth that form at an interface where either the magnetic field direction or the charge carrier type are inverted. In ballistic samples, their presence is manifested in the appearance of magnetoconductance oscillations at small magnetic fields. Here we show that signatures of snake orbits can also be found in the opposite diffusive transport regime. We illustrate this by studying the classical magnetotransport properties of carbon tubular structures subject to relatively weak transversal magnetic fields where snake trajectories appear in close proximity to the zero radial field projections. In carbon nanoscrolls, the formation of snake orbits leads to a strongly directional dependent positive magnetoresistance with an anisotropy up to 80%.

  4. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors.

    Science.gov (United States)

    Tavassolizadeh, Ali; Rott, Karsten; Meier, Tobias; Quandt, Eckhard; Hölscher, Hendrik; Reiss, Günter; Meyners, Dirk

    2016-11-11

    Magnetostrictive tunnel magnetoresistance (TMR) sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJ)s with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner-Wohlfarth (SW) model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of -3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and -311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and -260 for tensile and compressive stresses, respectively, under a -3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  5. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    KAUST Repository

    Alfadhel, Ahmed; Khan, Mohammed Zahed Mustafa; Cardoso, Susana; Leitao, Diana; Kosel, Jü rgen

    2016-01-01

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  6. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    KAUST Repository

    Alfadhel, Ahmed

    2016-05-07

    A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR) sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS), is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  7. A Magnetoresistive Tactile Sensor for Harsh Environment Applications

    Directory of Open Access Journals (Sweden)

    Ahmed Alfadhel

    2016-05-01

    Full Text Available A magnetoresistive tactile sensor is reported, which is capable of working in high temperatures up to 140 °C. Hair-like bioinspired structures, known as cilia, made out of permanent magnetic nanocomposite material on top of spin-valve giant magnetoresistive (GMR sensors are used for tactile sensing at high temperatures. The magnetic nanocomposite, consisting of iron nanowires incorporated into the polymer polydimethylsiloxane (PDMS, is very flexible, biocompatible, has high remanence, and is also resilient to antagonistic sensing ambient. When the cilia come in contact with a surface, they deflect in compliance with the surface topology. This yields a change of the GMR sensor signal, enabling the detection of extremely fine features. The spin-valve is covered with a passivation layer, which enables adequate performance in spite of harsh environmental conditions, as demonstrated in this paper for high temperature.

  8. Tunnel Magnetoresistance Sensors with Magnetostrictive Electrodes: Strain Sensors

    Directory of Open Access Journals (Sweden)

    Ali Tavassolizadeh

    2016-11-01

    Full Text Available Magnetostrictive tunnel magnetoresistance (TMR sensors pose a bright perspective in micro- and nano-scale strain sensing technology. The behavior of TMR sensors under mechanical stress as well as their sensitivity to the applied stress depends on the magnetization configuration of magnetic tunnel junctions (MTJs with respect to the stress axis. Here, we propose a configuration resulting in an inverse effect on the tunnel resistance by tensile and compressive stresses. Numerical simulations, based on a modified Stoner–Wohlfarth (SW model, are performed in order to understand the magnetization reversal of the sense layer and to find out the optimum bias magnetic field required for high strain sensitivity. At a bias field of −3.2 kA/m under a 0.2 × 10 - 3 strain, gauge factors of 2294 and −311 are calculated under tensile and compressive stresses, respectively. Modeling results are investigated experimentally on a round junction with a diameter of 30 ± 0.2 μ m using a four-point bending apparatus. The measured field and strain loops exhibit nearly the same trends as the calculated ones. Also, the gauge factors are in the same range. The junction exhibits gauge factors of 2150 ± 30 and −260 for tensile and compressive stresses, respectively, under a −3.2 kA/m bias magnetic field. The agreement of the experimental and modeling results approves the proposed configuration for high sensitivity and ability to detect both tensile and compressive stresses by a single TMR sensor.

  9. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  10. Theoretical study on the perpendicular anisotropic magnetoresistance using Rashba-type ferromagnetic model

    Science.gov (United States)

    Yahagi, Y.; Miura, D.; Sakuma, A.

    2018-05-01

    We investigated the anisotropic magnetoresistance (AMR) effects in ferromagnetic-metal multi-layers stacked on non-magnetic insulators in the context of microscopic theory. We represented this situation with tight-binding models that included the exchange and Rashba fields, where the Rashba field was assumed to originate from spin-orbit interactions as junction effects with the insulator. To describe the AMR ratios, the DC conductivity was calculated based on the Kubo formula. As a result, we showed that the Rashba field induced both perpendicular and in-plane AMR effects and that the perpendicular AMR effect rapidly decayed with increasing film thickness.

  11. Tunnelling anisotropic magnetoresistance at La_0_._6_7Sr_0_._3_3MnO_3-graphene interfaces

    International Nuclear Information System (INIS)

    Phillips, L. C.; Yan, W.; Kar-Narayan, S.; Mathur, N. D.; Lombardo, A.; Barbone, M.; Milana, S.; Ferrari, A. C.; Ghidini, M.; Hämäläinen, S. J.; Dijken, S. van

    2016-01-01

    Using ferromagnetic La_0_._6_7Sr_0_._3_3MnO_3 electrodes bridged by single-layer graphene, we observe magnetoresistive changes of ∼32–35 MΩ at 5 K. Magneto-optical Kerr effect microscopy at the same temperature reveals that the magnetoresistance arises from in-plane reorientations of electrode magnetization, evidencing tunnelling anisotropic magnetoresistance at the La_0_._6_7Sr_0_._3_3MnO_3-graphene interfaces. Large resistance switching without spin transport through the non-magnetic channel could be attractive for graphene-based magnetic-sensing applications.

  12. On the importance of sensor height variation for detection of magnetic labels by magnetoresistive sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Wang, Shan Xiang; Hansen, Mikkel Fougt

    2015-01-01

    Magnetoresistive sensors are widely used for biosensing by detecting the signal from magnetic labels bound to a functionalized area that usually covers the entire sensor structure. Magnetic labels magnetized by a homogeneous applied magnetic field weaken and strengthen the applied field when...

  13. Tunnelling anisotropic magnetoresistance due to antiferromagnetic CoO tunnel barriers

    Science.gov (United States)

    Wang, K.; Sanderink, J. G. M.; Bolhuis, T.; van der Wiel, W. G.; de Jong, M. P.

    2015-01-01

    A new approach in spintronics is based on spin-polarized charge transport phenomena governed by antiferromagnetic (AFM) materials. Recent studies have demonstrated the feasibility of this approach for AFM metals and semiconductors. We report tunneling anisotropic magnetoresistance (TAMR) due to the rotation of antiferromagnetic moments of an insulating CoO layer, incorporated into a tunnel junction consisting of sapphire(substrate)/fcc-Co/CoO/AlOx/Al. The ferromagnetic Co layer is exchange coupled to the AFM CoO layer and drives rotation of the AFM moments in an external magnetic field. The results may help pave the way towards the development of spintronic devices based on AFM insulators. PMID:26486931

  14. Microscopic mechanism of the noncrystalline anisotropic magnetoresistance in (Ga,Mn)As

    Czech Academy of Sciences Publication Activity Database

    Výborný, Karel; Kučera, Jan; Sinova, J.; Rushforth, A.W.; Gallagher, B. L.; Jungwirth, Tomáš

    2009-01-01

    Roč. 80, č. 16 (2009), 165204/1-165204/8 ISSN 1098-0121 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * diluted magnetic semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://arxiv.org/abs/0906.3151

  15. Anisotropic magnetoresistance across Verwey transition in charge ordered Fe3O4 epitaxial films

    KAUST Repository

    Liu, Xiang

    2017-12-26

    The anisotropic magnetoresistance (AMR) near the Verwey temperature (T-V) is investigated in charge ordered Fe3O4 epitaxial films. When the temperature continuously decreases below T-V, the symmetry of AMR in Fe3O4(100) film evolves from twofold to fourfold at a magnetic field of 50 kOe, where the magnetic field is parallel to the film surface, whereas AMR in Fe3O4(111) film maintains twofold symmetry. By analyzing AMR below T-V, it is found that the Verwey transition contains two steps, including a fast charge ordering process and a continuous formation process of trimeron, which is comfirmed by the temperature-dependent Raman spectra. Just below T-V, the twofold AMR in Fe3O4(100) film originates from uniaxial magnetic anisotropy. The fourfold AMR at a lower temperature can be ascribed to the in-plane trimerons. By comparing the AMR in the films with two orientations, it is found that the trimeron shows a smaller resistivity in a parallel magnetic field. The field-dependent AMR results show that the trimeron-sensitive field has a minimum threshold of about 2 kOe.

  16. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang

    2017-12-26

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  17. Electrical detection of ferromagnetic resonance in ferromagnet/n-GaAs heterostructures by tunneling anisotropic magnetoresistance

    Energy Technology Data Exchange (ETDEWEB)

    Liu, C.; Boyko, Y.; Geppert, C. C.; Christie, K. D.; Stecklein, G.; Crowell, P. A., E-mail: crowell@physics.umn.edu [School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455 (United States); Patel, S. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Palmstrøm, C. J. [Department of Materials, University of California, Santa Barbara, California 93106 (United States); Department of Electrical and Computer Engineering, University of California, Santa Barbara, California 93106 (United States)

    2014-11-24

    We observe a dc voltage peak at ferromagnetic resonance (FMR) in samples consisting of a single ferromagnetic (FM) layer grown epitaxially on the n-GaAs (001) surface. The FMR peak is detected as an interfacial voltage with a symmetric line shape and is present in samples based on various FM/n-GaAs heterostructures, including Co{sub 2}MnSi/n-GaAs, Co{sub 2}FeSi/n-GaAs, and Fe/n-GaAs. We show that the interface bias voltage dependence of the FMR signal is identical to that of the tunneling anisotropic magnetoresistance (TAMR) over most of the bias range. Furthermore, we show how the precessing magnetization yields a dc FMR signal through the TAMR effect and how the TAMR phenomenon can be used to predict the angular dependence of the FMR signal. This TAMR-induced FMR peak can be observed under conditions where no spin accumulation is present and no spin-polarized current flows in the semiconductor.

  18. Large room-temperature tunneling anisotropic magnetoresistance and electroresistance in single ferromagnet/Nb:SrTiO3 Schottky devices.

    Science.gov (United States)

    Kamerbeek, Alexander M; Ruiter, Roald; Banerjee, Tamalika

    2018-01-22

    There is a large effort in research and development to realize electronic devices capable of storing information in new ways - for instance devices which simultaneously exhibit electro and magnetoresistance. However it remains a challenge to create devices in which both effects coexist. In this work we show that the well-known electroresistance in noble metal-Nb:SrTiO 3 Schottky junctions can be augmented by a magnetoresistance effect in the same junction. This is realized by replacing the noble metal electrode with ferromagnetic Co. This magnetoresistance manifests as a room temperature tunneling anisotropic magnetoresistance (TAMR). The maximum room temperature TAMR (1.6%) is significantly larger and robuster with bias than observed earlier, not using Nb:SrTiO 3 . In a different set of devices, a thin amorphous AlO x interlayer inserted between Co and Nb:SrTiO 3 , reduces the TAMR by more than 2 orders of magnitude. This points to the importance of intimate contact between the Co and Nb:SrTiO 3 for the TAMR effect. This is explained by electric field enhanced spin-orbit coupling of the interfacial Co layer in contact with Nb:SrTiO 3 . We propose that the large TAMR likely has its origin in the 3d orbital derived conduction band and large relative permittivity of Nb:SrTiO 3 and discuss ways to further enhance the TAMR.

  19. High Field Linear Magnetoresistance Sensors with Perpendicular Anisotropy L10-FePt Reference Layer

    Directory of Open Access Journals (Sweden)

    X. Liu

    2016-01-01

    Full Text Available High field linear magnetoresistance is an important feature for magnetic sensors applied in magnetic levitating train and high field positioning measurements. Here, we investigate linear magnetoresistance in Pt/FePt/ZnO/Fe/Pt multilayer magnetic sensor, where FePt and Fe ferromagnetic layers exhibit out-of-plane and in-plane magnetic anisotropy, respectively. Perpendicular anisotropy L10-FePt reference layer with large coercivity and high squareness ratio was obtained by in situ substrate heating. Linear magnetoresistance is observed in this sensor in a large range between +5 kOe and −5 kOe with the current parallel to the film plane. This L10-FePt based sensor is significant for the expansion of linear range and the simplification of preparation for future high field magnetic sensors.

  20. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun; Mi, Wenbo; Wang, Xiaocha; Zhang, Xixiang

    2015-01-01

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  1. Interfacial Exchange Coupling Induced Anomalous Anisotropic Magnetoresistance in Epitaxial γ′-Fe 4 N/CoN Bilayers

    KAUST Repository

    Li, Zirun

    2015-02-02

    Anisotropic magnetoresistance (AMR) of the facing-target reactively sputtered epitaxial γ′-Fe4N/CoN bilayers is investigated. The phase shift and rectangular-like AMR appears at low temperatures, which can be ascribed to the interfacial exchange coupling. The phase shift comes from the exchange bias (EB) that makes the magnetization lag behind a small field. When the γ′-Fe4N thickness increases, the rectangular-like AMR appears. The rectangular-like AMR should be from the combined contributions including the EB-induced unidirectional anisotropy, intrinsic AMR of γ′-Fe4N layer and interfacial spin scattering.

  2. Optimization of magnetoresistive sensor current for on-chip magnetic bead detection using the sensor self-field

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Rizzi, Giovanni; Østerberg, Frederik Westergaard

    2015-01-01

    We investigate the self-heating of magnetoresistive sensors used for measurements on magnetic beads in magnetic biosensors. The signal from magnetic beads magnetized by the field due to the sensor bias current is proportional to the bias current squared. Therefore, we aim to maximize the bias...... current while limiting the sensor self-heating. We systematically characterize and model the Joule heating of magnetoresistive sensors with different sensor geometries and stack compositions. The sensor heating is determined using the increase of the sensor resistance as function of the bias current......, thus the heat conductance is proportional to the sensor area and inversely proportional to the oxide thickness. This simple heat conductance determines the relationship between bias current and sensor temperature, and we show that View the MathML source25μm wide sensor on a View the MathML source1μm...

  3. Anisotropic magnetoresistance and anomalous Nernst effect in exchange biased permalloy/(1 0 0) NiO single-crystal

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J., E-mail: joseholanda@df.ufpe.br; Maior, D.S.; Azevedo, A.; Rezende, S.M.

    2017-06-15

    Highlights: • We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer Py/(100) NiO single-Crystal. • The shift of the hysteresis loop, measured with the different techniques, yield approximately the same value of H{sub EB}. • In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. • The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films. - Abstract: We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer consisting of a thin film of permalloy deposited on a single crystal antiferromagnetic NiO (1 0 0). The exchange bias field (H{sub EB}) value was obtained by means of AMR, ANE and magnetization hysteresis measurements. The shift of the hysteresis loop, measured with the three different techniques, yield approximately the same value of H{sub EB.} In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films.

  4. The relationship between anisotropic magnetoresistance and topology of Fermi surface in Td-MoTe2 crystal

    Science.gov (United States)

    Lv, Yang-Yang; Li, Xiao; Pang, Bin; Cao, Lin; Lin, Dajun; Zhang, Bin-Bin; Yao, Shu-Hua; Chen, Y. B.; Zhou, Jian; Dong, Song-Tao; Zhang, Shan-Tao; Lu, Ming-Hui; Chen, Yan-Feng

    2017-07-01

    Layered transition-metal dichalcogenides have been recently attracted a lot of attention because of their unique physical properties, such as extremely large and anisotropic magnetoresistance (MR) in WTe2. In this work, we observed the abnormally anisotropic MR on Td-MoTe2 crystal that is strongly dependent on the temperature, as well as the orientations of both magnetic field B and electric field E with respect to crystallographic axes of Td-MoTe2. When E//a-axis and B//c-axis, MR is parabolically dependent on B and is as high as 520% under 9 T and 2 K conditions; the MR is quasi-linearly dependent on B when E//a-axis and B//b-axis (E//b-axis and B//c-axis), and the corresponding MR is only 130% (220%); MR is initially parabolically dependent on B, then linearly on B, and finally shows a saturate trend under E//B//a-axis (or E//B//b-axis) conditions, and the MR is about 16% (30%). These anisotropic MR behaviors can be qualitatively explained by the features of the Fermi surface of Td-MoTe2. This work may demonstrate the rich anisotropic physical behavior in layered transition-metal dichalcognides.

  5. Roll Attitude Determination of Spin Projectile Based on GPS and Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Dandan Yuan

    2017-01-01

    Full Text Available Improvement in attack accuracy of the spin projectiles is a very significant objective, which increases the overall combat efficiency of projectiles. The accurate determination of the projectile roll attitude is the recent objective of the efficient guidance and control. The roll measurement system for the spin projectile is commonly based on the magnetoresistive sensor. It is well known that the magnetoresistive sensor produces a sinusoidally oscillating signal whose frequency slowly decays with time, besides the possibility of blind spot. On the other hand, absolute sensors such as GPS have fixed errors even though the update rates are generally low. To earn the benefit while eliminating weaknesses from both types of sensors, a mathematical model using filtering technique can be designed to integrate the magnetoresistive sensor and GPS measurements. In this paper, a mathematical model is developed to integrate the magnetoresistive sensor and GPS measurements in order to get an accurate prediction of projectile roll attitude in a real flight time. The proposed model is verified using numerical simulations, which illustrated that the accuracy of the roll attitude measurement is improved.

  6. A device model framework for magnetoresistive sensors based on the Stoner–Wohlfarth model

    International Nuclear Information System (INIS)

    Bruckner, Florian; Bergmair, Bernhard; Brueckl, Hubert; Palmesi, Pietro; Buder, Anton; Satz, Armin; Suess, Dieter

    2015-01-01

    The Stoner–Wohlfarth (SW) model provides an efficient analytical model to describe the behavior of magnetic layers within magnetoresistive sensors. Combined with a proper description of magneto-resistivity an efficient device model can be derived, which is necessary for an optimal electric circuit design. Parameters of the model are determined by global optimization of an application specific cost function which contains measured resistances for different applied fields. Several application cases are examined and used for validation of the device model. - Highlights: • An efficient device model framework for various types of magnetoresistive sensors is presented. • The model is based on the analytical solution of the Stoner–Wohlfarth model. • Numerical optimization methods provide optimal model parameters for a different application cases. • The model is applied to several application cases and is able to reproduce measured hysteresis and swiching behavior

  7. Two-dimensional salt and temperature DNA denaturation analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present a microfluidic system and its use to measure DNA denaturation curves by varying the temperature or salt (Na+) concentration. The readout is based on real-time measurements of DNA hybridization using magnetoresistive sensors and magnetic nanoparticles (MNPs) as labels. We report the first...... melting curves of DNA hybrids measured as a function of continuously decreasing salt concentration at fixed temperature and compare them to the corresponding curves obtained vs. temperature at fixed salt concentration. The magnetoresistive sensor platform provided reliable results under varying....... The results demonstrate that concentration melting provides an attractive alternative to temperature melting in on-chip DNA denaturation experiments and further show that the magnetoresistive platform is attractive due to its low cross-sensitivity to temperature and liquid composition....

  8. On-line irradiation testing of a Giant Magneto-Resistive (GMR) sensor

    Energy Technology Data Exchange (ETDEWEB)

    Olfert, J.; Luloff, B.; MacDonald, D.; Lumsden, R., E-mail: jeff.olfert@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada)

    2016-06-15

    Magneto-resistive sensors are rapidly gaining favour for magnetic field sensing applications owing to their high sensitivity, small size, and low cost. Their metallic, nonsemiconductor construction makes them excellent candidates for use in the harsh environments present in nuclear and space applications. In this work, a commercially available magneto-resistive sensor was irradiated up to a total gamma dose of 2 MGy (200 Mrad), and online testing was performed to monitor the sensor throughout the irradiation to detect any degradation. No significant evidence of degradation of the sensor characteristics was observed. A very small (< 1%) change in the bridge balance of the sensor as a function of accumulated dose was detected. (author)

  9. A Wideband Magnetoresistive Sensor for Monitoring Dynamic Fault Slip in Laboratory Fault Friction Experiments.

    Science.gov (United States)

    Kilgore, Brian D

    2017-12-02

    A non-contact, wideband method of sensing dynamic fault slip in laboratory geophysical experiments employs an inexpensive magnetoresistive sensor, a small neodymium rare earth magnet, and user built application-specific wideband signal conditioning. The magnetoresistive sensor generates a voltage proportional to the changing angles of magnetic flux lines, generated by differential motion or rotation of the near-by magnet, through the sensor. The performance of an array of these sensors compares favorably to other conventional position sensing methods employed at multiple locations along a 2 m long × 0.4 m deep laboratory strike-slip fault. For these magnetoresistive sensors, the lack of resonance signals commonly encountered with cantilever-type position sensor mounting, the wide band response (DC to ≈ 100 kHz) that exceeds the capabilities of many traditional position sensors, and the small space required on the sample, make them attractive options for capturing high speed fault slip measurements in these laboratory experiments. An unanticipated observation of this study is the apparent sensitivity of this sensor to high frequency electomagnetic signals associated with fault rupture and (or) rupture propagation, which may offer new insights into the physics of earthquake faulting.

  10. Prospect for room temperature tunneling anisotropic magnetoresistance effect: Density of statesanisotropies in CoPt systems

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Mašek, Jan; Jungwirth, Tomáš

    2006-01-01

    Roč. 73, č. 2 (2006), 024418/1-024418/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA100100530 Institutional research plan: CEZ:AV0Z10100521 Keywords : tunneling magnetoresistance * metallic ferromagnets * magnetocrystalline anisotropies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  11. Temperature-dependent anisotropic magnetoresistance inversion behaviors in Fe{sub 3}O{sub 4} films

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kap Soo [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2017-02-01

    We address the abnormal anisotropic magnetoresistance (AMR) reversal feature of half-metallic polycrystalline Fe{sub 3}O{sub 4} films occurring at a specific temperature. Experimental results revealed a positive to negative MR transition in the Fe{sub 3}O{sub 4} films at 264 K, which reflect the influence of additional domain wall scattering. These features was described by a correlation between domain wall resistance and inversion behavior of AMR with additional domain wall scattering factors. We further describe a possible model based on systematic structural and electrical measurements that employs a temperature-dependent domain wall width and spin diffusion length of the conducting electrons. This model allows for spin-flipping scattering of spin polarized electrons inside a proper domain width.

  12. Anisotropic Magnetoresistance of Nano-conductive Filament in Co/HfO2/Pt Resistive Switching Memory.

    Science.gov (United States)

    Li, Leilei; Liu, Yang; Teng, Jiao; Long, Shibing; Guo, Qixun; Zhang, Meiyun; Wu, Yu; Yu, Guanghua; Liu, Qi; Lv, Hangbing; Liu, Ming

    2017-12-01

    Conductive bridge random access memory (CBRAM) has been extensively studied as a next-generation non-volatile memory. The conductive filament (CF) shows rich physical effects such as conductance quantization and magnetic effect. But so far, the study of filaments is not very sufficient. In this work, Co/HfO 2 /Pt CBRAM device with magnetic CF was designed and fabricated. By electrical manipulation with a partial-RESET method, we controlled the size of ferromagnetic metal filament. The resistance-temperature characteristics of the ON-state after various partial-RESET behaviors have been studied. Using two kinds of magnetic measurement methods, we measured the anisotropic magnetoresistance (AMR) of the CF at different temperatures to reflect the magnetic structure characteristics. By rotating the direction of the magnetic field and by sweeping the magnitude, we obtained the spatial direction as well as the easy-axis of the CF. The results indicate that the easy-axis of the CF is along the direction perpendicular to the top electrode plane. The maximum magnetoresistance was found to appear when the angle between the direction of magnetic field and that of the electric current in the CF is about 30°, and this angle varies slightly with temperature, indicating that the current is tilted.

  13. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor

    Directory of Open Access Journals (Sweden)

    Ernesto Sifuentes

    2017-05-01

    Full Text Available This paper evaluates the performance of direct interface circuits (DIC, where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  14. Measuring Dynamic Signals with Direct Sensor-to-Microcontroller Interfaces Applied to a Magnetoresistive Sensor.

    Science.gov (United States)

    Sifuentes, Ernesto; Gonzalez-Landaeta, Rafael; Cota-Ruiz, Juan; Reverter, Ferran

    2017-05-18

    This paper evaluates the performance of direct interface circuits (DIC), where the sensor is directly connected to a microcontroller, when a resistive sensor subjected to dynamic changes is measured. The theoretical analysis provides guidelines for the selection of the components taking into account both the desired resolution and the bandwidth of the input signal. Such an analysis reveals that there is a trade-off between the sampling frequency and the resolution of the measurement, and this depends on the selected value of the capacitor that forms the RC circuit together with the sensor resistance. This performance is then experimentally proved with a DIC measuring a magnetoresistive sensor exposed to a magnetic field of different frequencies, amplitudes, and waveforms. A sinusoidal magnetic field up to 1 kHz can be monitored with a resolution of eight bits and a sampling frequency of around 10 kSa/s. If a higher resolution is desired, the sampling frequency has to be lower, thus limiting the bandwidth of the dynamic signal under measurement. The DIC is also applied to measure an electrocardiogram-type signal and its QRS complex is well identified, which enables the estimation, for instance, of the heart rate.

  15. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    International Nuclear Information System (INIS)

    Rizzi, Giovanni; Østerberg, Frederik W.; Henriksen, Anders D.; Dufva, Martin; Hansen, Mikkel F.

    2015-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches of the differential sensor geometry. The sensor surfaces are functionalized with wild type (WT) and mutant type (MT) capture probes, differing by a single base insertion (a single nucleotide polymorphism, SNP). Complementary biotinylated targets in suspension couple streptavidin magnetic beads to the sensor surface. The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover, we demonstrate that a single sensor bridge can be used to genotype a SNP. - Highlights: • We apply magnetoresistive sensors to study solid-surface hybridization kinetics of DNA. • We measure DNA melting profiles for perfectly matching DNA duplexes and for a single base mismatch. • We present a procedure to correct for temperature dependencies of the sensor output. • We reliably extract melting temperatures for the DNA hybrids. • We demonstrate direct measurement of differential binding signal for two probes on a single sensor

  16. On-chip magnetic bead-based DNA melting curve analysis using a magnetoresistive sensor

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Østerberg, Frederik Westergaard; Henriksen, Anders Dahl

    2014-01-01

    We present real-time measurements of DNA melting curves in a chip-based system that detects the amount of surface-bound magnetic beads using magnetoresistive magnetic field sensors. The sensors detect the difference between the amount of beads bound to the top and bottom sensor branches....... The beads are magnetized by the field arising from the bias current passed through the sensors. We demonstrate the first on-chip measurements of the melting of DNA hybrids upon a ramping of the temperature. This overcomes the limitation of using a single washing condition at constant temperature. Moreover...

  17. Anisotropic sensor and memory device with a ferromagnetic tunnel barrier as the only magnetic element.

    Science.gov (United States)

    Lόpez-Mir, L; Frontera, C; Aramberri, H; Bouzehouane, K; Cisneros-Fernández, J; Bozzo, B; Balcells, L; Martínez, B

    2018-01-16

    Multiple spin functionalities are probed on Pt/La 2 Co 0.8 Mn 1.2 O 6 /Nb:SrTiO 3 , a device composed by a ferromagnetic insulating barrier sandwiched between non-magnetic electrodes. Uniquely, La 2 Co 0.8 Mn 1.2 O 6 thin films present strong perpendicular magnetic anisotropy of magnetocrystalline origin, property of major interest for spintronics. The junction has an estimated spin-filtering efficiency of 99.7% and tunneling anisotropic magnetoresistance (TAMR) values up to 30% at low temperatures. This remarkable angular dependence of the magnetoresistance is associated with the magnetic anisotropy whose origin lies in the large spin-orbit interaction of Co 2+ which is additionally tuned by the strain of the crystal lattice. Furthermore, we found that the junction can operate as an electrically readable magnetic memory device. The findings of this work demonstrate that a single ferromagnetic insulating barrier with strong magnetocrystalline anisotropy is sufficient for realizing sensor and memory functionalities in a tunneling device based on TAMR.

  18. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2

    Science.gov (United States)

    Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.

    2018-04-01

    We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.

  19. Transport theory for disordered multiple-band systems: Anomalous Hall effect and anisotropic magnetoresistance

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Tserkovnyak, Y.; Výborný, Karel; Sinova, J.

    2009-01-01

    Roč. 79, č. 19 (2009), 19529/1-19529/19 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic materials * Hall effect * magnetoresistance * quasiparticles * spin-orbit interactions * two-dimensional electro n gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.79.195129

  20. Tunneling anisotropic magnetoresistance in multilayer-(Co/Pt)/AlO.sub.x./sub./Pt structures

    Czech Academy of Sciences Publication Activity Database

    Park, B.G.; Wunderlich, J.; Williams, D.A.; Joo, S.J.; Jung, K.Y.; Shin, K. H.; Olejník, Kamil; Shick, Alexander; Jungwirth, Tomáš

    2008-01-01

    Roč. 100, č. 8 (2008), 087204/1-087204/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA ČR GA202/04/1519; GA ČR GEFON/06/E002; GA MŠk LC510 EU Projects: European Commission(XE) 015728 - NANOSPIN Grant - others:UK(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : tunneling magnetoresistance * metallic ferromagnets * magnetocrystalline anisotropies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.180, year: 2008

  1. Anisotropic magnetoresistance of spin-orbit coupledcarriers scattered from polarized magnetic impurities

    Czech Academy of Sciences Publication Activity Database

    Trushin, M.; Výborný, Karel; Moraczewski, P.; Kovalev, A.A.; Schliemann, J.; Jungwirth, Tomáš

    2009-01-01

    Roč. 80, č. 13 (2009), 134405/1-134405/14 ISSN 1098-0121 R&D Projects: GA AV ČR KJB100100802; GA AV ČR KAN400100652; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 215368 - SemiSpinNet; European Commission(XE) 214499 - NAMASTE Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional research plan: CEZ:AV0Z10100521 Keywords : Boltzmann equation * conduction bands * enhanced magnetoresistance * Fermi surface * ferromagnetic materials * gallium compounds * III-V semiconductors Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.80.134405

  2. Strain driven anisotropic magnetoresistance in antiferromagnetic La0.4Sr0.6MnO3 thin films

    Science.gov (United States)

    Ward, T. Zac; Wong, A. T.; Takamura, Yayoi; Herklotz, Andreas

    2015-03-01

    Antiferromagnets (AFM) are a promising alternative to ferromagnets (FM) in spintronic applications. The reason stems from the fact that at high data storage densities stray fields could destroy FM set states while AFMs would be relatively insensitive to this data corruption. This work presents the first ever example of antiferromagnetic La0.4Sr0.6MnO3 thin films stabilized in different strain states. Strain is found to drive different types of AFM ordering, and these variations in ordering type are shown to have a profound impact on both the magnitude and character of the materials' resistive response to magnetic field direction, or anisotropic magnetoresistance (AMR) behavior (one standard of spintronic suitability). The compressively strained film shows the highest recorded AMR response in an ohmic AFM device of 63%, while the tensile strained film shows a typical AFM AMR of 0.6%. These findings demonstrate the necessity of understanding electron ordering in AFM spintronic applications and provide a new benchmark for AMR response. This work was supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division.

  3. Magnetic anisotropy and anisotropic magnetoresistance of (Ga,Mn)As Layers on (113)A GaAs

    Energy Technology Data Exchange (ETDEWEB)

    Donhauser, Daniela; Dreher, Lukas; Daeubler, Joachim; Glunk, Michael; Rapp, Christoph; Schoch, Wladimir; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    We study the magnetic anisotropy and the anisotropic magnetoresistance of compressively strained (Ga,Mn)As films with various Mn concentrations, grown on (113)A-oriented GaAs substrates. High-resolution x-ray diffraction (HRXRD) studies reveal a monoclinic symmetry of the distorted (113)A layers in agreement with an explicit calculation of the strain tensor. Based on this result, general expressions for the resistivity tensor and the free energy of single-crystalline ferromagnets are derived from a series expansion with respect to the magnetization orientation, including terms up to the fourth order. With these expressions we are able to model the measured angular dependences of our magnetotransport data with the assumption of a single ferromagnetic domain model. In order to quantitatively derive the resistivity and anisotropy parameters the longitudinal and transverse resistivities are experimentally studied for magnetic fields rotated within the (113), (33 anti 2), and (anti 110) plane at various field strengths. It turned out that some of the resistivity parameters significantly depend on the strength of the external magnetic field. Furthermore we found that the layers exhibit a uniaxial anisotropy along the [001] crystallographic axis, which can be theoretically explained based on the explicit form of the strain tensor.

  4. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′-Fe4N thin films

    Directory of Open Access Journals (Sweden)

    Kazuki Kabara

    2016-05-01

    Full Text Available Transverse anisotropic magnetoresistance (AMR effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C 2 tr exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C 2 tr shows a positive small value (0.12% from 300 K to 50 K. However, the C 2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C 2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C 2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002.

  5. In-plane electric field controlled ferromagnetism and anisotropic magnetoresistance in an LSMO/PMN-PT heterostructure

    Science.gov (United States)

    Guo, Qi; Xu, Xiaoguang; Wang, Fang; Lu, Yunhao; Chen, Jikun; Wu, Yanjun; Meng, Kangkang; Wu, Yong; Miao, Jun; Jiang, Yong

    2018-06-01

    We report the in-plane electric field controlled ferromagnetism of La2/3Sr1/3MnO3 (LSMO) films epitaxially deposited on [Pb(Mg1/3Nb2/3)O3]0.7-(PbTiO3)0.3 (PMN-PT) (001), (011) and (111) single crystal substrates. The in-plane coercivities (H c∥) and remanences of the LSMO films greatly depend on the in-plane electric field applied on the PMN-PT (001) and (011) substrates. The experimental change of H c∥ is consistent with the Stoner–Wohlfarth model and first principle calculation with the electric field varying from ‑10 to 10 kV cm‑1. Moreover, the Curie temperature and anisotropic magnetoresistance of the LSMO films can also be manipulated by an in-plane electric field. Finally, the LSMO/PMN-PT (001) heterostructure is designed to be a new kind of magnetic signal generator with the source of electric field.

  6. Configurational Statistics of Magnetic Bead Detection with Magnetoresistive Sensors

    DEFF Research Database (Denmark)

    Henriksen, Anders Dahl; Ley, Mikkel Wennemoes Hvitfeld; Flyvbjerg, Henrik

    2015-01-01

    Magnetic biosensors detect magnetic beads that, mediated by a target, have bound to a functionalized area. This area is often larger than the area of the sensor. Both the sign and magnitude of the average magnetic field experienced by the sensor from a magnetic bead depends on the location...... of the bead relative to the sensor. Consequently, the signal from multiple beads also depends on their locations. Thus, a given coverage of the functionalized area with magnetic beads does not result in a given detector response, except on the average, over many realizations of the same coverage. We present...... a systematic theoretical analysis of how this location-dependence affects the sensor response. The analysis is done for beads magnetized by a homogeneous in-plane magnetic field. We determine the expected value and standard deviation of the sensor response for a given coverage, as well as the accuracy...

  7. Magnetoresistive sensors for measurements of DNA hybridization kinetics - effect of TINA modifications

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Dufva, Martin; Hansen, Mikkel Fougt

    2017-01-01

    We present the use of magnetoresistive sensors integrated in a microfluidic system for real-time studies of the hybridization kinetics of DNA labeled with magnetic nanoparticles to an array of surface-tethered probes. The nanoparticles were magnetized by the magnetic field from the sensor current....... A local negative reference ensured that only the specific binding signal was measured. Analysis of the real-time hybridization using a two-compartment model yielded both the association and dissociation constants kon, and koff. The effect of probe modifications with ortho-Twisted Intercalating Nucleic...

  8. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.

    2011-03-28

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  9. A giant magnetoresistance ring-sensor based microsystem for magnetic bead manipulation and detection

    KAUST Repository

    Gooneratne, Chinthaka P.; Giouroudi, Ioanna; Liang, Cai; Kosel, Jü rgen

    2011-01-01

    In this paper a novel spin valvegiant magnetoresistance(GMR) ring-sensor integrated with a microstructure is proposed for concentrating, trapping, and detecting superparamagnetic beads (SPBs). Taking advantage of the fact that SPBs can be manipulated by an external magnetic field, a unique arrangement of conducting microrings is utilized to manipulate the SPBs toward the GMR sensing area in order to increase the reliability of detection. The microrings are arranged and activated in such a manner so as to enable the detection of minute concentrations of SPBs in a sample. Precise manipulation is achieved by applying current sequentially to the microrings. The fabricated ring-shaped GMR element is located underneath the innermost ring and has a magnetoresistance of approximately 5.9%. By the performed experiments it was shown that SPBs could be successfully manipulated toward the GMR sensing zone.

  10. Bead magnetorelaxometry with an on-chip magnetoresistive sensor

    DEFF Research Database (Denmark)

    Dalslet, Bjarke Thomas; Damsgaard, Christian Danvad; Donolato, Marco

    2011-01-01

    Magnetorelaxometry measurements on suspensions of magnetic beads are demonstrated using a planar Hall effect sensor chip embedded in a microfluidic system. The alternating magnetic field used for magnetizing the beads is provided by the sensor bias current and the complex magnetic susceptibility...... spectra are recorded as the 2nd harmonic of the sensor response. The complex magnetic susceptibility signal appears when a magnetic bead suspension is injected, it scales with the bead concentration, and it follows the Cole-Cole expression for Brownian relaxation. The complex magnetic susceptibility...... signal resembles that from conventional magnetorelaxometry done on the same samples apart from an offset in Brownian relaxation frequency. The time dependence of the signal can be rationalized as originating from sedimented beads....

  11. Magnetic Field Sensors Based on Giant Magnetoresistance (GMR Technology: Applications in Electrical Current Sensing

    Directory of Open Access Journals (Sweden)

    Càndid Reig

    2009-10-01

    Full Text Available The 2007 Nobel Prize in Physics can be understood as a global recognition to the rapid development of the Giant Magnetoresistance (GMR, from both the physics and engineering points of view. Behind the utilization of GMR structures as read heads for massive storage magnetic hard disks, important applications as solid state magnetic sensors have emerged. Low cost, compatibility with standard CMOS technologies and high sensitivity are common advantages of these sensors. This way, they have been successfully applied in a lot different environments. In this work, we are trying to collect the Spanish contributions to the progress of the research related to the GMR based sensors covering, among other subjects, the applications, the sensor design, the modelling and the electronic interfaces, focusing on electrical current sensing applications.

  12. Ternary NiFeX as soft biasing film in a magnetoresistive sensor

    Science.gov (United States)

    Chen, Mao-Min; Gharsallah, Neila; Gorman, Grace L.; Latimer, Jacquie

    1991-04-01

    The properties of NiFeX ternary films (X being Al, Au, Nb, Pd, Pt, Si, and Zr) have been studied for soft-film biasing of the magnetoresistive (MR) trilayer sensor. In general, the addition of the element X into the NiFe alloy film decreases the saturation magnetization Bs and magnetoresistance coefficient of the film, while increasing the film's electrical resistivity ρ. One of the desirable properties of a soft film for biasing is high sheet resistance for minimum current flow. A figure of merit Bsρ that takes into account both the rate of increase in Bs and the rate of decrease in ρ when adding X element was derived to compare the effectiveness of various X elements in reducing the current shunting through the soft-film layer. Using this criterion, NiFeNb and NiFeZr emerge as good soft-film materials having a maximum sheet resistance relative to the MR layer. Other critical properties such as magnetoresistance coefficient, magnetostriction, coercivity, and anisotropy field were also examined and are discussed in this paper.

  13. Open-loop magneto-resistance sensor-based DC current transformer for FAIR

    Energy Technology Data Exchange (ETDEWEB)

    Soliman, Eman; Hofmann, Klaus [Technical University Darmstadt (Germany); Reeg, Hansjoerg; Schwickert, Marcus [GSI Helmholtzzentrum fuer Schwerionenforschung, Darmstadt (Germany)

    2016-07-01

    A Novel DC Current Transformer (N-DCCT) is currently under development for FAIR. The N-DCCT is going to be installed inside the SIS100 synchrotron. The proposed system is no longer based on magnetic modulation principle of the conventional DCCT. Instead, a Magneto-resistance sensor is utilized to detect the magnetic field of the ion-beam. For a first prototype the N-DCCT is realized as an open-loop system. It consists of a high permeability slotted ring core and up to two MR sensors. The maximum ion-beam current magnetic field is concentrated inside the ring core air gaps. MR sensors are placed inside the core air gaps. The sensor output voltage is directly proportional to the ion-beam current. The system is implemented using commercial Tunneling MR sensors. Measurements using one single sensor, as well as the application of two sensors are presented in this work. The sensitivity of the proposed N-DCCT is 0.566 [V/A] for one single MR sensor and 1.56 [V/A] when two sensors are implemented.

  14. Development of Magneto-Resistive Angular Position Sensors for Space Applications

    Science.gov (United States)

    Hahn, Robert; Langendorf, Sven; Seifart, Klaus; Slatter, Rolf; Olberts, Bastian; Romera, Fernando

    2015-09-01

    Magnetic microsystems in the form of magneto- resistive (MR) sensors are firmly established in automobiles and industrial applications. They measure path, angle, electrical current, or magnetic fields. MR technology opens up new sensor possibilities in space applications and can be an enabling technology for optimal performance, high robustness and long lifetime at reasonable costs. In a recent assessment study performed by HTS GmbH and Sensitec GmbH under ESA Contract a market survey has confirmed that space industry has a very high interest in novel, contactless position sensors based on MR technology. Now, a detailed development stage is pursued, to advance the sensor design up to Engineering Qualification Model (EQM) level and to perform qualification testing for a representative pilot space application.The paper briefly reviews the basics of magneto- resistive effects and possible sensor applications and describes the key benefits of MR angular sensors with reference to currently operational industrial and space applications. The results of the assessment study are presented and potential applications and uses of contactless magneto-resistive angular sensors for spacecraft are identified. The baseline mechanical and electrical sensor design will be discussed. An outlook on the EQM development and qualification tests is provided.

  15. A method to design high SNR nanoscale magnetic sensors using an array of tunnelling magneto-resistance (TMR) devices

    International Nuclear Information System (INIS)

    Gomez, P; Litvinov, D; Khizroev, S

    2007-01-01

    This paper presents a systematic method to design and calculate tunnelling magneto-resistance (TMR) sensors with high signal-to-noise ratio (SNR). The sensing module consists of four TMR devices arranged in a Wheatstone-bridge configuration. Closed-form equations were obtained to calculate TMR sensor current, array output voltage, magneto-resistance ratio, overall noise (thermal and shot) and SNR for a given bandwidth. Using this technique we were able to maximize the SNR by tuning the many parameters of the TMR devices. Typical SNR values are in excess of 45 dB

  16. Hall effect enhanced low-field sensitivity in a three-contact extraordinary magnetoresistance sensor

    KAUST Repository

    Sun, Jian

    2012-06-06

    An extraordinary magnetoresistance (EMR) device with a 3-contact geometry has been fabricated and characterized. A large enhancement of the output sensitivity at low magnetic fields compared to the conventional EMR device has been found, which can be attributed to an additional influence coming from the Hall effect. Output sensitivities of 0.19 mV/T at zero-field and 0.2 mV/T at 0.01 T have been measured in the device, which is equivalent to the ones of the conventional EMR sensors with a bias of ∼0.04 T. The exceptional performance of EMR sensors in the high field region is maintained in the 3-contact device.

  17. Strain, magnetic anisotropy, and anisotropic magnetoresistance in (Ga,Mn)As on high-index substrates: Application to (113)A -oriented layers

    Science.gov (United States)

    Dreher, L.; Donhauser, D.; Daeubler, J.; Glunk, M.; Rapp, C.; Schoch, W.; Sauer, R.; Limmer, W.

    2010-06-01

    Based on a detailed theoretical examination of the lattice distortion in high-index epilayers in terms of continuum mechanics, expressions are deduced that allow the calculation and experimental determination of the strain tensor for (hhl) -oriented (Ga,Mn)As layers. Analytical expressions are derived for the strain-dependent free-energy density and for the resistivity tensor for monoclinic and orthorhombic crystal symmetries, phenomenologically describing the magnetic anisotropy and anisotropic magnetoresistance by appropriate anisotropy and resistivity parameters, respectively. Applying the results to (113)A orientation with monoclinic crystal symmetry, the expressions are used to determine the strain tensor and the shear angle of a series of (113)A -oriented (Ga,Mn)As layers by high-resolution x-ray diffraction and to probe the magnetic anisotropy and anisotropic magnetoresistance at 4.2 K by means of angle-dependent magnetotransport. Whereas the transverse-resistivity parameters are nearly unaffected by the magnetic field, the parameters describing the longitudinal resistivity are strongly field dependent.

  18. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Directory of Open Access Journals (Sweden)

    Damhuji Rifai

    2016-02-01

    Full Text Available Non-destructive eddy current testing (ECT is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper.

  19. Giant Magnetoresistance Sensors: A Review on Structures and Non-Destructive Eddy Current Testing Applications

    Science.gov (United States)

    Rifai, Damhuji; Abdalla, Ahmed N.; Ali, Kharudin; Razali, Ramdan

    2016-01-01

    Non-destructive eddy current testing (ECT) is widely used to examine structural defects in ferromagnetic pipe in the oil and gas industry. Implementation of giant magnetoresistance (GMR) sensors as magnetic field sensors to detect the changes of magnetic field continuity have increased the sensitivity of eddy current techniques in detecting the material defect profile. However, not many researchers have described in detail the structure and issues of GMR sensors and their application in eddy current techniques for nondestructive testing. This paper will describe the implementation of GMR sensors in non-destructive testing eddy current testing. The first part of this paper will describe the structure and principles of GMR sensors. The second part outlines the principles and types of eddy current testing probe that have been studied and developed by previous researchers. The influence of various parameters on the GMR measurement and a factor affecting in eddy current testing will be described in detail in the third part of this paper. Finally, this paper will discuss the limitations of coil probe and compensation techniques that researchers have applied in eddy current testing probes. A comprehensive review of previous studies on the application of GMR sensors in non-destructive eddy current testing also be given at the end of this paper. PMID:26927123

  20. An efficient biosensor made of an electromagnetic trap and a magneto-resistive sensor

    KAUST Repository

    Li, Fuquan

    2014-09-01

    Magneto-resistive biosensors have been found to be useful because of their high sensitivity, low cost, small size, and direct electrical output. They use super-paramagnetic beads to label a biological target and detect it via sensing the stray field. In this paper, we report a new setup for magnetic biosensors, replacing the conventional "sandwich" concept with an electromagnetic trap. We demonstrate the capability of the biosensor in the detection of E. coli. The trap is formed by a current-carrying microwire that attracts the magnetic beads into a sensing space on top of a tunnel magneto-resistive sensor. The sensor signal depends on the number of beads in the sensing space, which depends on the size of the beads. This enables the detection of biological targets, because such targets increase the volume of the beads. Experiments were carried out with a 6. μm wide microwire, which attracted the magnetic beads from a distance of 60. μm, when a current of 30. mA was applied. A sensing space of 30. μm in length and 6. μm in width was defined by the magnetic sensor. The results showed that individual E. coli bacterium inside the sensing space could be detected using super-paramagnetic beads that are 2.8. μm in diameter. The electromagnetic trap setup greatly simplifies the device and reduces the detection process to two steps: (i) mixing the bacteria with magnetic beads and (ii) applying the sample solution to the sensor for measurement, which can be accomplished within about 30. min with a sample volume in the μl range. This setup also ensures that the biosensor can be cleaned easily and re-used immediately. The presented setup is readily integrated on chips via standard microfabrication techniques. © 2014 Elsevier B.V.

  1. A current sensor based on the giant magnetoresistance effect: design and potential smart grid applications.

    Science.gov (United States)

    Ouyang, Yong; He, Jinliang; Hu, Jun; Wang, Shan X

    2012-11-09

    Advanced sensing and measurement techniques are key technologies to realize a smart grid. The giant magnetoresistance (GMR) effect has revolutionized the fields of data storage and magnetic measurement. In this work, a design of a GMR current sensor based on a commercial analog GMR chip for applications in a smart grid is presented and discussed. Static, dynamic and thermal properties of the sensor were characterized. The characterizations showed that in the operation range from 0 to ±5 A, the sensor had a sensitivity of 28 mV·A(-1), linearity of 99.97%, maximum deviation of 2.717%, frequency response of −1.5 dB at 10 kHz current measurement, and maximum change of the amplitude response of 0.0335%·°C(-1) with thermal compensation. In the distributed real-time measurement and monitoring of a smart grid system, the GMR current sensor shows excellent performance and is cost effective, making it suitable for applications such as steady-state and transient-state monitoring. With the advantages of having a high sensitivity, high linearity, small volume, low cost, and simple structure, the GMR current sensor is promising for the measurement and monitoring of smart grids.

  2. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro

    2017-06-13

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  3. A Miniaturized Force Sensor Based on Hair-Like Flexible Magnetized Cylinders Deposited Over a Giant Magnetoresistive Sensor

    KAUST Repository

    Ribeiro, Pedro; Khan, Mohammed Asadullah; Alfadhel, Ahmed; Kosel, Jü rgen; Franco, Fernando; Cardoso, Susana; Bernardino, Alexandre; Santos-Victor, Jose; Jamone, Lorenzo

    2017-01-01

    The detection of force with higher resolution than observed in humans (similar to 1 mN) is of great interest for emerging technologies, especially surgical robots, since this level of resolution could allow these devices to operate in extremely sensitive environments without harming these. In this paper, we present a force sensor fabricated with a miniaturized footprint (9 mm(2)), based on the detection of the magnetic field generated by magnetized flexible pillars over a giant magnetoresistive sensor. When these flexible pillars deflect due to external loads, the stray field emitted by these will change, thus varying the GMR sensor resistance. A sensor with an array of five pillars with 200 mu m diameter and 1 mm height was fabricated, achieving a 0 to 26 mN measurement range and capable of detecting a minimum force feature of 630 mu N. A simulation model to predict the distribution of magnetic field generated by the flexible pillars on the sensitive area of the GMR sensor in function of the applied force was developed and validated against the experimental results reported in this paper. The sensor was finally tested as a texture classification system, with the ability of differentiating between four distinct surfaces varying between 0 and 162 mu m root mean square surface roughness.

  4. Investigation of contactless detection using a giant magnetoresistance sensor for detecting prostate specific antigen.

    Science.gov (United States)

    Sun, Xuecheng; Zhi, Shaotao; Lei, Chong; Zhou, Yong

    2016-08-01

    This paper presents a contactless detection method for detecting prostate specific antigen with a giant magnetoresistance sensor. In contactless detection case, the prostate specific antigen sample preparation was separated from the sensor that prevented the sensor from being immersed in chemical solvents, and made the sensor implementing in immediately reuse without wash. Experimental results showed that applied an external magnetic field in a range of 50 Oe to 90 Oe, Dynabeads with a concentration as low as 0.1 μg/mL can be detected by this system and could give an approximate quantitation to the logarithmic of Dynabeads concentration. Sandwich immunoassay was employed for preparing PSA samples. The PSA capture was implemented on a gold film modified with a self-assembled monolayer and using biotinylated secondary antibody against PSA and streptavidinylated Dynabeads. With DC magnetic field in the range of 50 to 90 Oe, PSA can be detected with a detection limit as low as 0.1 ng/mL. Samples spiked with different concentrations of PSA can be distinguished clearly. Due to the contactless detection method, the detection system exhibited advantages such as convenient manipulation, reusable, inexpensive, small weight. So, this detection method was a promising candidate in biomarker detection, especially in point of care detection.

  5. Giant magnetoresistance (GMR) sensors from basis to state-of-the-art applications

    CERN Document Server

    Reig, Candid; Mukhopadhyay, Subhas Chandra

    2013-01-01

    Since the discovery of the giant magnetoresistance (GMR) effect in 1988, spintronics has been presented as a new technology paradigm, awarded by the Nobel Prize in Physics in 2007. Initially used in read heads of hard disk drives, and while disputing a piece of the market to the flash memories, GMR devices have broadened their range of usage by growing towards magnetic field sensing applications in a huge range of scenarios. Potential applications at the time of the discovery have become real in the last two decades. Definitively, GMR was born to stand. In this sense, selected successful approaches of GMR based sensors in different applications: space, automotive, microelectronics, biotechnology … are collected in the present book. While keeping a practical orientation, the fundamentals as well as the current trends and challenges of this technology are also analyzed. In this sense, state of the art contributions from academy and industry can be found through the contents. This book can be used by starting ...

  6. Tunnelling anisotropic magnetoresistance of Fe/GaAs/Ag(001) junctions from first principles: effect of hybridized interface resonances

    Czech Academy of Sciences Publication Activity Database

    Sýkora, R.; Turek, Ilja

    2012-01-01

    Roč. 24, č. 36 (2012), 365801/1-365801/10 ISSN 0953-8984 R&D Projects: GA ČR(CZ) GAP204/11/1228 Institutional support: RVO:68081723 Keywords : tunnel junctions * magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.355, year: 2012

  7. Anisotropic magnetoresistance and spin polarization of La0.7Sr0.3MnO3/SrTiO3 superlattices

    International Nuclear Information System (INIS)

    Wang, L.M.; Guo, C.-C.

    2005-01-01

    The crystalline structure, anisotropic magnetoresistance (AMR), and magnetization of La 0.7 Sr 0.3 MnO 3 /SrTiO 3 (LSMO/STO) superlattices grown by a rf sputtering system are systematically analyzed to study the spin polarization of manganite at interfaces. The presence of positive low-temperature AMR in LSMO/STO superlattices implies that two bands of majority and minority character contribute to the transport properties, leading to a reduced spin polarization. Furthermore, the magnetization of superlattices follows the T 3/2 law and decays more quickly as the thickness ratio d STO /d LSMO increases, corresponding to a reduced exchange coupling. The results clearly show that the spin polarization is strongly correlated with the influence of interface-induced strain on the structure

  8. Writing and reading antiferromagnetic Mn2Au by Néel spin-orbit torques and large anisotropic magnetoresistance.

    Science.gov (United States)

    Bodnar, S Yu; Šmejkal, L; Turek, I; Jungwirth, T; Gomonay, O; Sinova, J; Sapozhnik, A A; Elmers, H-J; Kläui, M; Jourdan, M

    2018-01-24

    Using antiferromagnets as active elements in spintronics requires the ability to manipulate and read-out the Néel vector orientation. Here we demonstrate for Mn 2 Au, a good conductor with a high ordering temperature suitable for applications, reproducible switching using current pulse generated bulk spin-orbit torques and read-out by magnetoresistance measurements. Reversible and consistent changes of the longitudinal resistance and planar Hall voltage of star-patterned epitaxial Mn 2 Au(001) thin films were generated by pulse current densities of ≃10 7  A/cm 2 . The symmetry of the torques agrees with theoretical predictions and a large read-out magnetoresistance effect of more than ≃6% is reproduced by ab initio transport calculations.

  9. Magnetoresistance sensitivity mapping of the localized response of contiguous and lead-overlaid sensors

    International Nuclear Information System (INIS)

    Sankar, Sandra

    2003-01-01

    Magnetoresistance sensitivity mapping (MSM) was used to investigate the local response of magnetic recording sensors without convolution of the writer, magnetic media and data channel. From a 2D map of the local sensor response, the intrinsic pulse shape and magnetic track profile are readily obtained. Pulse-width is a concern for high data rate since if pulse-width is too broad, individual transitions become difficult to distinguish. Track profiles are important because due to the small difference between magnetic write-width and magnetic read-width, side reading will lead to an increase in noise. Three experiments are discussed: the dependence of the pulse-width (PW50) of the standard contiguous junction (CJ) design on shield-to-shield spacing; a comparison of the pulse shape of lead-overlaid (LOL) and CJ designs; and a comparison of the magnetic track profile (including track-width and skirt ratio) of LOL and CJ designs. The LOL design offers an increased sensitivity; however, as seen from MSM, the penalties are broadening of the track and pulse profiles. These are a direct result of the finite current in the lead overlay region and an increased shield-to-shield spacing in that region. The MSM image shows a curvature, which is associated with the topography of the top shield due to the lead overlay

  10. Anisotropic mobility and carrier dynamics in the β-type BEDT-TTF salts as studied by inter-layer transverse magnetoresistance

    Directory of Open Access Journals (Sweden)

    Shigeharu Sugawara and Masafumi Tamura

    2013-01-01

    Full Text Available A new method to estimate an in-plane conduction anisotropy in a quasi-two-dimensional (q2D layered conductor by measuring the inter-layer transverse magnetoresistance is proposed. We applied this method to layered organic conductors β-(BEDT-TTF2X (BEDT-TTF = bis(ethylenedithiotetrathiafulvalene, C10H8S8; X = IBr2, I2Br by applying magnetic field rotating within the basal plane at 4.2 K. We found the anisotropic behaviour of carrier mobility μ. From this, anomalous distribution of carrier lifetime τ on the Fermi surface is derived, by the use of Fermi surface data reported for the materials. Calculations of the non-uniform susceptibility χ0(q suggest that carrier scattering is enhanced at specific k-points related to partial nesting of the Fermi surface. The present method is thus demonstrated to be an efficient experimental tool to elucidate anisotropic carrier dynamics in q2D conductors.

  11. Cold-Rolled Strip Steel Stress Detection Technology Based on a Magnetoresistance Sensor and the Magnetoelastic Effect.

    Science.gov (United States)

    Guan, Ben; Zang, Yong; Han, Xiaohui; Zheng, Kailun

    2018-05-21

    Driven by the demands for contactless stress detection, technologies are being used for shape control when producing cold-rolled strips. This paper presents a novel contactless stress detection technology based on a magnetoresistance sensor and the magnetoelastic effect, enabling the detection of internal stress in manufactured cold-rolled strips. An experimental device was designed and produced. Characteristics of this detection technology were investigated through experiments assisted by theoretical analysis. Theoretically, a linear correlation exists between the internal stress of strip steel and the voltage output of a magneto-resistive sensor. Therefore, for this stress detection system, the sensitivity of the stress detection was adjusted by adjusting the supply voltage of the magnetoresistance sensor, detection distance, and other relevant parameters. The stress detection experimental results showed that this detection system has good repeatability and linearity. The detection error was controlled within 1.5%. Moreover, the intrinsic factors of the detected strip steel, including thickness, carbon percentage, and crystal orientation, also affected the sensitivity of the detection system. The detection technology proposed in this research enables online contactless detection and meets the requirements for cold-rolled steel strips.

  12. Coulomb blockade anisotropic magnetoresistance and voltage controlled magnetic switching in a ferromagnetic GaMnAs single electron transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Irvine, A.C.; Kaestner, B.; Shick, Alexander; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2007-01-01

    Roč. 310, - (2007), s. 1883-1888 ISSN 0304-8853 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510; GA ČR GEFON/06/E002 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100521; CEZ:AV0Z10100520 Keywords : ferromagnetic semiconductors * magnetoresistance * single-electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  13. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  14. Magnetic anisotropies and rotational hysteresis in Ni81Fe19/Fe50Mn50 films: A study by torque magnetometry and anisotropic magnetoresistance

    Science.gov (United States)

    da Silva, O. E.; de Siqueira, J. V.; Kern, P. R.; Garcia, W. J. S.; Beck, F.; Rigue, J. N.; Carara, M.

    2018-04-01

    Exchange bias properties of NiFe/FeMn thin films have been investigated through X-ray diffraction, hysteresis loops, angular measurements of anisotropic magnetoresistance (AMR) and magnetic torque. As first predicted by Meiklejohn and Bean we found a decrease on the bias field as the NiFe layer thickness increases. However such reduction is not as strong as expected and it was attributed to the increase on the number of uncompensed antiferromagnetic spins resulting from the increase on the number of FeMn grains at the interface as the thickness of the NiFe layer is increased. The angular evolution of AMR and the magnetic torque were calculated and compared to the experimental ones using the minimization of the free magnetic energy and finding the magnetization equilibrium angle. The free energy, for each grain of the polycrystalline sample, is composed by the following terms: Zeeman, uniaxial, unidirectional and the rotatable energies. While from the AMR curves we obtain stable anisotropy fields independently on the measuring fields, from the torque curves we obtain increasing values of the uniaxial and rotatable fields, as the measuring field is increased. These results were attributed to the physical origin and sensitivity of the two different techniques. Magnetoresistance is mainly sensitive to the inner portion of the ferromagnetic layer, and the torque brings out information of the whole ferromagnetic layer including the interface of the layers. In this way, we believe that the increase in the uniaxial and rotatable values were due to an increase on the volume of the ferromagnetic layer, near the interfaces, which is made to rotate with the measuring field. Studying the rotational hysteresis by both techniques allows to separately obtain the contributions coming from the inner portion of ferromagnetic layer and from the interface.

  15. Anisotropic strains and magnetoresistance of La0.7Ca0.3MnO3

    International Nuclear Information System (INIS)

    Koo, T.Y.; Park, S.H.; Lee, K.; Jeong, Y.H.

    1997-01-01

    Thin films of perovskite manganite La 0.7 Ca 0.3 MnO 3 were grown epitaxially on SrTiO 3 (100), MgO(100) and LaAlO 3 (100) substrates by the pulsed laser deposition method. Microscopic structures of these thin film samples as well as a bulk sample were fully determined by x-ray diffraction measurements. The unit cells of the three films have different shapes, i.e., contracted tetragonal, cubic, and elongated tetragonal for SrTiO 3 , MgO, and LaAlO 3 , respectively, while the unit cell of the bulk is cubic. It is found that the samples with a cubic unit cell show smaller peak magnetoresistance at low fields (approx-lt 1T) than the noncubic ones do. The present result demonstrates that the magnetoresistance of La 0.7 Ca 0.3 MnO 3 at low fields can be controlled by lattice distortion via externally imposed strains. copyright 1997 American Institute of Physics

  16. The Front-End Readout as an Encoder IC for Magneto-Resistive Linear Scale Sensors

    Directory of Open Access Journals (Sweden)

    Trong-Hieu Tran

    2016-09-01

    Full Text Available This study proposes a front-end readout circuit as an encoder chip for magneto-resistance (MR linear scales. A typical MR sensor consists of two major parts: one is its base structure, also called the magnetic scale, which is embedded with multiple grid MR electrodes, while another is an “MR reader” stage with magnets inside and moving on the rails of the base. As the stage is in motion, the magnetic interaction between the moving stage and the base causes the variation of the magneto-resistances of the grid electrodes. In this study, a front-end readout IC chip is successfully designed and realized to acquire temporally-varying resistances in electrical signals as the stage is in motions. The acquired signals are in fact sinusoids and co-sinusoids, which are further deciphered by the front-end readout circuit via newly-designed programmable gain amplifiers (PGAs and analog-to-digital converters (ADCs. The PGA is particularly designed to amplify the signals up to full dynamic ranges and up to 1 MHz. A 12-bit successive approximation register (SAR ADC for analog-to-digital conversion is designed with linearity performance of ±1 in the least significant bit (LSB over the input range of 0.5–2.5 V from peak to peak. The chip was fabricated by the Taiwan Semiconductor Manufacturing Company (TSMC 0.35-micron complementary metal oxide semiconductor (CMOS technology for verification with a chip size of 6.61 mm2, while the power consumption is 56 mW from a 5-V power supply. The measured integral non-linearity (INL is −0.79–0.95 LSB while the differential non-linearity (DNL is −0.68–0.72 LSB. The effective number of bits (ENOB of the designed ADC is validated as 10.86 for converting the input analog signal to digital counterparts. Experimental validation was conducted. A digital decoder is orchestrated to decipher the harmonic outputs from the ADC via interpolation to the position of the moving stage. It was found that the displacement

  17. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2013-01-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment

  18. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen; Gooneratne, Chinthaka Pasan; Soh, Yeongah

    2010-01-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show

  19. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Energy Technology Data Exchange (ETDEWEB)

    Melilli, G.; Madon, B.; Wegrowe, J.-E., E-mail: jean-eric.wegrowe@polytechnique.edu; Clochard, M.-C., E-mail: clochard@cea.fr

    2015-12-15

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α{sub irrad}) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  20. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    Science.gov (United States)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-12-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress-strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (αirrad) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  1. Angle dependence on the anisotropic magnetoresistance amplitude of a single-contacted Ni nanowire subjected to a thermo-mechanical strain

    International Nuclear Information System (INIS)

    Melilli, G.; Madon, B.; Wegrowe, J.-E.; Clochard, M.-C.

    2015-01-01

    The effects of thermoelastic and piezoelectric strain of an active track-etched β-PVDF polymer matrix on an electrodeposited single-contacted Ni nanowire (NW) are investigated at the nanoscale by measuring the change of magnetization (i.e. using the inverse magnetostriction effect). The magnetization state is measured locally by anisotropic magnetoresistance (AMR). The ferromagnetic NW plays thus the role of a mechanical probe that allows the effects of mechanical strain to be characterized and described qualitatively and quantitatively. The inverse magnetostriction was found to be responsible for a quasi-disappearance of the AMR signal for a variation of the order of ΔT ≈ 10 K. In other terms, the variation of the magnetization due to the stress compensates the effect of external magnetic field applied on the NW resistance. The induced stress field in a single Ni NW was found 1000 time higher than the bulk stress field (due to thermal expansion measured on the PVDF). This amplification could be attributed to three nanoscopic effects: (1) a stress mismatch between the Ni NW and the membrane, (2) a non-negligible role of the surface tension on Ni NW Young modulus, and (3) the possibility of non-linear stress–strain law. We investigate here the role of these different contributions using track-etched polymer membranes irradiated at various angles (α irrad ) leading to, after electrodeposition, embedded Ni NWs of different orientations.

  2. On the development of a magnetoresistive sensor for blade tip timing and blade tip clearance measurement systems

    Science.gov (United States)

    Tomassini, R.; Rossi, G.; Brouckaert, J.-F.

    2016-10-01

    A simultaneous blade tip timing (BTT) and blade tip clearance (BTC) measurement system enables the determination of turbomachinery blade vibrations and ensures the monitoring of the existing running gaps between the blade tip and the casing. This contactless instrumentation presents several advantages compared to the well-known telemetry system with strain gauges, at the cost of a more complex data processing procedure. The probes used can be optical, capacitive, eddy current as well as microwaves, everyone with its dedicated electronics and many existing different signal processing algorithms. Every company working in this field has developed its own processing method and sensor technology. Hence, repeating the same test with different instrumentations, the answer is often different. Moreover, rarely it is possible to achieve reliability for in-service measurements. Developments are focused on innovative instrumentations and a common standard. This paper focuses on the results achieved using a novel magnetoresistive sensor for simultaneous tip timing and tip clearance measurements. The sensor measurement principle is described. The sensitivity to gap variation is investigated. In terms of measurement of vibrations, experimental investigations were performed at the Air Force Institute of Technology (ITWL, Warsaw, Poland) in a real aeroengine and in the von Karman Institute (VKI) R2 compressor rig. The advantages and limitations of the magnetoresistive probe for turbomachinery testing are highlighted.

  3. Anomalous Anisotropic Magnetoresistance And Magnetization In Mn3.69Bi95.69Fe0.62

    Directory of Open Access Journals (Sweden)

    A. V. Terekhov

    2017-12-01

    Full Text Available It was found that the Mn3.69Bi95.69Fe0.62 consists of two phases, namely of a bismuth matrix and BiMn inclusions. It is shown that the samples have a crystalline texture. Independently on the applied field orientation, maximum on the temperature dependence of magnetization is detected at Tmax ≈ 85 K, which is associated with the reorientation transition of the magnetic moments of Mn for αBiMn phase. In turn, the electrical resistivity ρ(T also demonstrates maximum at Tmax ≈58 K in a magnetic field of 800 kA/m when H⊥I. It is established that the maximum of ρ(T increases and is shifted toward higher temperature Tmax≈94 K when field increasing up to 2400 kA/m. At the same time no clear maximum on ρ(T is observed for H||I. It is shown that the relative magnetoresistance, Δρ/ρ0, is increased both with decreasing temperature and with increase of the magnetic field. The measured enhancement reaches Δρ/ρ0≈250% for H||I and Δρ/ρ0≈2400% for H⊥I in magnetic field of 2400 kA/m. Thus, the strong anisotropy of ρ(T and Δρ/ρ0(T is established both for H⊥I and H||I. Possible explanation of observed anomalous behavior of the temperature dependences of the electrical resistivity in magnetic fields has been proposed.

  4. A top-contacted extraordinary magnetoresistance sensor fabricated with an unpatterned semiconductor epilayer

    KAUST Repository

    Sun, Jian

    2013-04-01

    An extraordinary magnetoresistance device is developed from an unpatterned semiconductor epilayer onto which the metal contacts are fabricated. Compared with conventionally fabricated devices, for which semiconductor patterning and precise alignment are required, this design is not only easier from a technological point of view, but it also has the potential to reduce damage introduced to the semiconductor during fabrication. The device shows a similar magnetoresistance ratio as a conventional one but it has a lower sensitivity. Because of the reduced resistance, and hence less noise, high magnetic field resolution is maintained. © 1980-2012 IEEE.

  5. Design of Tunnel Magnetoresistive-Based Circular MFL Sensor Array for the Detection of Flaws in Steel Wire Rope

    Directory of Open Access Journals (Sweden)

    Liu Xiucheng

    2016-01-01

    Full Text Available Tunnel magnetoresistive (TMR devices have superior performances in weak magnetic field detection. In this study, TMR devices were first employed to form a circular magnetic flux leakage (MFL sensor for slight wire rope flaw detection. Two versions of this tailor-made circular TMR-based sensor array were presented for the inspection of wire ropes with the diameters of 14 mm and 40 mm, respectively. Helmholtz-like coils or a ferrite magnet-based magnetizer was selected to provide the proper magnetic field, in order to meet the technical requirements of the TMR devices. The coefficient of variance in the flaw detection performance of the sensor array elements was experimentally estimated at 4.05%. Both versions of the MFL sensor array were able to detect multiple single-broken wire flaws in the wire ropes. The accurate axial and circumferential positions of these broken wire flaws were estimated from the MFL scanning image results. In addition, the proposed TMR-based sensor array was applied to detect the MFL signal induced by slight surface wear defects. A mutual correlation analysis method was used to distinguish the signals caused by the lift-off fluctuation from the MFL scanning image results. The MFL sensor arrays presented in this study provide inspiration for the designing of tailor-made TMR-based circular sensor arrays for cylindrical ferromagnetic structural inspections.

  6. Wheatstone bridge-giant magnetoresistance (GMR) sensors based on Co/Cu multilayers for bio-detection applications

    Science.gov (United States)

    Antarnusa, G.; Elda Swastika, P.; Suharyadi, E.

    2018-04-01

    A Wheatstone bridge-giant magnetoresistance (GMR) sensor was successfully developed for a potential biomaterial detection. In order to achieve this, a giant magnetoresistive [Co(1.5nm/Cu(1.0nm)]20 multilayer structures have been fabricated by DC magnetron sputtering method, showing a magnetoresistance (MR) of 2.7%. The X-Ray diffraction (XRD) patterns showed that Co/Cu film multilayer has a high degree of crystallinity with a single peak corresponding to face-centered cubic (111) structure at 2θ = 44.1°. Co/Cu multilayers exhibit a soft magnetic behavior with the saturation magnetization (Ms) of 1489 emu/cc and the coercivity (Hc) of 11.2 Oe. The magnetite Fe3O4 nanoparticles used as a bimolecular labels (nanotags) were synthesized via co-precipitation method, exhibiting a soft magnetic behavior with Ms of 77.16 emu/g and Hc of 49 Oe. XRD patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and it grew in their inverse spinel structure with an average size of around 10 nm. The GMR sensor design was used to detect a biomolecules of streptavidin magnetic particles with concentration 10, 20, 30, and 40 μl/ml and α-amylase enzyme with consentration 10, 20, 30, and 40 μl/ml captured using polyethylene glycol (PEG)/Fe3O4 nanoparticles. Various applied magnetic fields of 0-650 Gauss have been performed using electromagnetic with the various currents of 0-5 A. Here, the final value of the output voltage signals for the streptavidin magnetic particles concentration is 1.2 mV (10 μl/ml). The output voltage changes with the increase of concentration. It was reported that the output voltage signal of the Wheatstone bridge exhibits log-linear function in real time measurement of the concentration of streptavidin magnetic particles and α-amylase enzyme respectively, making the sensor suitable for use as a biomolecule concentration detector. Thus, the combination of Co/Cu multilayer, Wheatstone bridge, magnetite and PEG polymer

  7. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    Science.gov (United States)

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  8. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  9. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Science.gov (United States)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Wang, Xianghao; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 104 J/m3 and 10 × 104 J/m3, the output performance can be significantly manipulated: The linear range alters from between -330 Oe and 330 Oe to between -650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2-20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  10. Optimization of an extraordinary magnetoresistance sensor in the semiconductor-metal hybrid structure

    KAUST Repository

    Sun, Jian

    2010-11-01

    The purpose of this paper is to show by numerical computation how geometric parameters influence the Extraordinary Magnetoresistance (EMR) effect in an InAs-Au hybrid device. Symmetric IVVI and VIIV configurations were considered. The results show that the width and the length-width ratio of InAs are important geometrical parameters for the EMR effect along with the placement of the leads. Approximately the same EMR effect was obtained for both IVVI and VIIV configurations when the applied magnetic field ranged from -1T to 1T. In an optimized geometry the EMR effect can reach 43000% at 1Tesla for IVVI and 42700% at 1 Tesla for the VIIV configuration. ©2010 IEEE.

  11. Controlled trapping and detection of magnetic particles by a magnetic microactuator and a giant magnetoresistance (GMR) sensor

    KAUST Repository

    Giouroudi, Ioanna

    2014-04-01

    This paper presents the design and testing of an integrated micro-chip for the controlled trapping and detection of magnetic particles (MPs). A unique magnetic micro-actuator consisting of square-shaped conductors is used to manipulate the MPs towards a giant magnetoresistance (GMR) sensing element which rapidly detects the majority of MPs trapped around the square-shaped conductors. The ability to precisely transport a small number of MPs in a controlled manner over long distances by magnetic forces enables the rapid concentration of a majority of MPs to the sensing zone for detection. This is especially important in low concentration samples. The conductors are designed in such a manner so as to increase the capture efficiency as well as the precision and speed of transportation. By switching current to different conductors, MPs can be manipulated and immobilized on the innermost conductor where the GMR sensor is located. This technique rapidly guides the MPs towards the sensing zone. Secondly, for optimum measurement capability with high spatial resolution the GMR sensor is fabricated directly underneath and all along the innermost conductor to detect the stray fields originating from the MPs. Finally, a microfluidic channel is fabricated on top of this micro-chip. Experiments inside the microchannel were carried out and the MPs were successfully trapped at the sensing area. © (2014) Trans Tech Publications.

  12. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR) Sensors in Differential Configuration.

    Science.gov (United States)

    Lei, Huaming; Wang, Kan; Ji, Xiaojun; Cui, Daxiang

    2016-12-14

    Magnetic nanoparticles (MNPs) are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR) sensors for quantification of MNPs present in lateral flow strips (LFSs). The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line) while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG) at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  13. Contactless Measurement of Magnetic Nanoparticles on Lateral Flow Strips Using Tunneling Magnetoresistance (TMR Sensors in Differential Configuration

    Directory of Open Access Journals (Sweden)

    Huaming Lei

    2016-12-01

    Full Text Available Magnetic nanoparticles (MNPs are commonly used in biomedical detection due to their capability to bind with some specific antibodies. Quantification of biological entities could be realized by measuring the magnetic response of MNPs after the binding process. This paper presents a contactless scanning prototype based on tunneling magnetoresistance (TMR sensors for quantification of MNPs present in lateral flow strips (LFSs. The sensing unit of the prototype composes of two active TMR elements, which are parallel and closely arranged to form a differential sensing configuration in a perpendicular magnetic field. Geometrical parameters of the configuration are optimized according to theoretical analysis of the stray magnetic field produced by the test line (T-line while strips being scanned. A brief description of our prototype and the sample preparation is presented. Experimental results show that the prototype exhibits the performance of high sensitivity and strong anti-interference ability. Meanwhile, the detection speed has been improved compared with existing similar techniques. The proposed prototype demonstrates a good sensitivity for detecting samples containing human chorionic gonadotropin (hCG at a concentration of 25 mIU/mL. The T-line produced by the sample with low concentration is almost beyond the visual limit and produces a maximum stray magnetic field some 0.247 mOe at the sensor in the x direction.

  14. The Detection and Discrimination of Small Munitions using Giant Magnetoresistive (OMR) Sensors

    Science.gov (United States)

    2010-09-01

    Suffield, Canada. McGlone, D.T., 1998, Magnetometer Comparison Smoke Creek Instruments’ GMR SCIMAG- 01 & Bartington Fluxgate MAG-03MC70, A...a magnetometer and frequency domain or time domain electromagnetic induction sensor. Both the Honeywell and NVE GlvlR sensors studied have si.m ilar...field sensor. In p0ssive mode, the GMR sensor, which has a resolution of Jess than l 0 nT, perfom1ed similarly to a cesium vapor magnetometer . When

  15. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei, E-mail: hust-yangxiaofei@163.com [School of Optical and Electronic Information, Huazhong University of Science and Technology, Wuhan 430074 (China); Wang, Xianghao [School of Information Engineering, Wuhan University of Technology, Wuhan 430070 (China)

    2016-01-28

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10{sup 4 }J/m{sup 3} and 10 × 10{sup 4 }J/m{sup 3}, the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance.

  16. Significant manipulation of output performance of a bridge-structured spin valve magnetoresistance sensor via an electric field

    International Nuclear Information System (INIS)

    Zhang, Yue; Yan, Baiqian; Ou-Yang, Jun; Zhu, Benpeng; Chen, Shi; Yang, Xiaofei; Wang, Xianghao

    2016-01-01

    Through principles of spin-valve giant magnetoresistance (SV-GMR) effect and its application in magnetic sensors, we have investigated electric-field control of the output performance of a bridge-structured Co/Cu/NiFe/IrMn SV-GMR sensor on a PZN-PT piezoelectric substrate using the micro-magnetic simulation. We centered on the influence of the variation of uniaxial magnetic anisotropy constant (K) of Co on the output of the bridge, and K was manipulated via the stress of Co, which is generated from the strain of a piezoelectric substrate under an electric field. The results indicate that when K varies between 2 × 10 4  J/m 3 and 10 × 10 4  J/m 3 , the output performance can be significantly manipulated: The linear range alters from between −330 Oe and 330 Oe to between −650 Oe and 650 Oe, and the sensitivity is tuned by almost 7 times, making it possible to measure magnetic fields with very different ranges. According to the converse piezoelectric effect, we have found that this variation of K can be realized by applying an electric field with the magnitude of about 2–20 kV/cm on a PZN-PT piezoelectric substrate, which is realistic in application. This result means that electric-control of SV-GMR effect has potential application in developing SV-GMR sensors with improved performance

  17. Large tunneling anisotropic magnetoresistance in La0.7Sr0.3MnO3/pentacene/Cu structures prepared on SrTiO3 (110) substrates

    Science.gov (United States)

    Kamiya, Takeshi; Miyahara, Chihiro; Tada, Hirokazu

    2017-01-01

    We investigated tunneling anisotropic magnetoresistance (TAMR) at the interface between pentacene and La0.7Sr0.3MnO3 (LSMO) thin films prepared on SrTiO3 (STO) (110) substrates. The dependence of the TAMR ratio on the magnetic field strength was approximately ten times larger than that of the magnetic field angle at a high magnetic field. This large difference in the TAMR ratio is explained by the interface magnetic anisotropy of strain-induced LSMO thin films on a STO (110) substrate, which has an easy axis with an out-of-plane component. We also note that the TAMR owing to out-of-plane magnetization was positive at each angle of the in-plane magnetic field. This result implies that active control of the interface magnetic anisotropy between organic materials and ferromagnetic metals should realize nonvolatile and high-efficiency TAMR devices.

  18. Colossal magnetoresistance

    International Nuclear Information System (INIS)

    Fontcuberta, J.

    1999-01-01

    In 1986 Alex Mueller and Georg Bednorz of IBM Zurich discovered high-temperature superconductivity in copper-based oxides. This finding, which was rewarded with the Nobel Prize for Physics in the following year, triggered intense research into the properties of the transition metal oxides. Since then scientists have questioned the very nature of the metallic state in these materials. A few years after the initial discovery, in 1993, more excitement greeted reports that certain manganese oxides showed a huge change in electrical resistivity when a magnetic field was applied. This effect is generally known as magnetoresistance, but the resistivity change observed in these oxides was so large that it could not be compared with any other forms of magnetoresistance. The effect observed in these materials the manganese perovskites was therefore dubbed ''colossal'' magnetoresistance to distinguish it from the giant magnetoresistance observed in magnetic multilayers. In this article the author explains why magnetoresistance is an expanding field of physics research. (UK)

  19. Finite element analysis on the influence of contact resistivity in an extraordinary magnetoresistance magnetic field micro sensor

    KAUST Repository

    Sun, Jian

    2011-08-06

    In this paper, an extraordinary magnetoresistance (EMR) device made of an InSb/Au hybrid structure was investigated. Those devices have a large potential in becoming a new generation of highly sensitive and cheap magnetic micro sensors. A crucial factor for the performance is the interface between the InSb and Au, which suffers from a certain contact resistivity. The Finite Element Method (FEM) was employed to simulate the current redistribution in the device, under an applied magnetic field. Specifically, the influence of the contact resistivity between the InSb bulk and Au shunt was studied. In a device with optimized geometry and without contact resistivity between the layers of InSb and Au, the EMR effect and the sensitivity show values of 1.89 × 104% and 0.02%/(10-4 T), respectively, at 1 Tesla. For values of contact resistivity up to 10-8cm2 the EMR effect is almost constant, while for higher values the EMR effect decreases exponentially. However, the sensitivity of the device does not decrease until 5 × 10-6 cm2 of contact resistivity. Only beyond this value the sensitivity, which in most cases is associated with the performance of the device, will deteriorate. © Springer Science+Business Media, LLC 2011.

  20. Determination of the aging offset voltage of AMR sensors based on accelerated degradation test

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Usually Anisotropic Magnetoresistance angle sensors are configured with two Wheatstone bridges, but an undesirable offset voltage included in the sensor output affects its accuracy. The total offset voltage combines a voltage due to resistance mismatches during manufacturing and a voltage from

  1. Eddy Current Testing with Giant Magnetoresistance (GMR) Sensors and a Pipe-Encircling Excitation for Evaluation of Corrosion under Insulation.

    Science.gov (United States)

    Bailey, Joseph; Long, Nicholas; Hunze, Arvid

    2017-09-28

    This work investigates an eddy current-based non-destructive testing (NDT) method to characterize corrosion of pipes under thermal insulation, one of the leading failure mechanisms for insulated pipe infrastructure. Artificial defects were machined into the pipe surface to simulate the effect of corrosion wall loss. We show that by using a giant magnetoresistance (GMR) sensor array and a high current (300 A), single sinusoidal low frequency (5-200 Hz) pipe-encircling excitation scheme it is possible to quantify wall loss defects without removing the insulation or weather shield. An analysis of the magnetic field distribution and induced currents was undertaken using the finite element method (FEM) and analytical calculations. Simple algorithms to remove spurious measured field variations not associated with defects were developed and applied. The influence of an aluminium weather shield with discontinuities and dents was ascertained and found to be small for excitation frequency values below 40 Hz. The signal dependence on the defect dimensions was analysed in detail. The excitation frequency at which the maximum field amplitude change occurred increased linearly with the depth of the defect by about 3 Hz/mm defect depth. The change in magnetic field amplitude due to defects for sensors aligned in the azimuthal and radial directions were measured and found to be linearly dependent on the defect volume between 4400-30,800 mm³ with 1.2 × 10 -3 -1.6 × 10 -3 µT/mm³. The results show that our approach is well suited for measuring wall loss defects similar to the defects from corrosion under insulation.

  2. Hall effect enhanced low-field sensitivity in a three-contact extraordinary magnetoresistance sensor

    KAUST Repository

    Sun, Jian; Kosel, Jü rgen

    2012-01-01

    be attributed to an additional influence coming from the Hall effect. Output sensitivities of 0.19 mV/T at zero-field and 0.2 mV/T at 0.01 T have been measured in the device, which is equivalent to the ones of the conventional EMR sensors with a bias of ∼0.04 T

  3. Magnetoresistive magnetometer for space science applications

    International Nuclear Information System (INIS)

    Brown, P; Beek, T; Carr, C; O’Brien, H; Cupido, E; Oddy, T; Horbury, T S

    2012-01-01

    Measurement of the in situ dc magnetic field on space science missions is most commonly achieved using instruments based on fluxgate sensors. Fluxgates are robust, reliable and have considerable space heritage; however, their mass and volume are not optimized for deployment on nano or picosats. We describe a new magnetometer design demonstrating science measurement capability featuring significantly lower mass, volume and to a lesser extent power than a typical fluxgate. The instrument employs a sensor based on anisotropic magnetoresistance (AMR) achieving a noise floor of less than 50 pT Hz −1/2 above 1 Hz on a 5 V bridge bias. The instrument range is scalable up to ±50 000 nT and the three-axis sensor mass and volume are less than 10 g and 10 cm 3 , respectively. The ability to switch the polarization of the sensor's easy axis and apply magnetic feedback is used to build a driven first harmonic closed loop system featuring improved linearity, gain stability and compensation of the sensor offset. A number of potential geospace applications based on the initial instrument results are discussed including attitude control systems and scientific measurement of waves and structures in the terrestrial magnetosphere. A flight version of the AMR magnetometer will fly on the TRIO-CINEMA mission due to be launched in 2012. (paper)

  4. Detection of leakage magnetic flux from near-side and far-side defects in carbon steel plates using a giant magneto-resistive sensor

    International Nuclear Information System (INIS)

    Singh, W Sharatchandra; Rao, B P C; Vaidyanathan, S; Jayakumar, T; Raj, Baldev

    2008-01-01

    Giant magneto-resistive (GMR) sensors are attractive for magnetic flux leakage measurements, especially for the detection of shallow near-side cracks and deeply located defects. An optimized measurement system with magnetic yoke, GMR sensor and selective amplifier has been devised to detect the tangential component of leakage flux from various near-side notches and far-side notches (widths 0.5 mm and 1.0 mm, respectively) in 12 mm thick carbon steel plates. Far-side notches located at nearly 11 mm below the measurement surface have been detected with a good signal-to-noise ratio. The performance of the GMR sensor with lift off has also been studied for possible non-contact examination of hot surfaces and a lift off of 2 mm is expected to ensure the saturation-free detection of near-side as well as far-side notches

  5. Comment on "Planar Hall resistance ring sensor based on NiFe/Cu/IrMn trilayer structure" [J. Appl. Phys. 113, 063903 (2013)

    DEFF Research Database (Denmark)

    Østerberg, Frederik Westergaard; Henriksen, Anders Dahl; Rizzi, Giovanni

    2013-01-01

    In a recent paper, Sinha et al. compared sensitivities of planar Hall effect sensors with different geometries that are all based on the anisotropic magnetoresistance of permalloy. They write that the sensitivity of a planar Hall effect sensor with a ring geometry is a factor of √2 larger than...

  6. Large, Linear, and Tunable Positive Magnetoresistance of Mechanically Stable Graphene Foam-Toward High-Performance Magnetic Field Sensors.

    Science.gov (United States)

    Sagar, Rizwan Ur Rehman; Galluzzi, Massimiliano; Wan, Caihua; Shehzad, Khurram; Navale, Sachin T; Anwar, Tauseef; Mane, Rajaram S; Piao, Hong-Guang; Ali, Abid; Stadler, Florian J

    2017-01-18

    Here, we present the first observation of magneto-transport properties of graphene foam (GF) composed of a few layers in a wide temperature range of 2-300 K. Large room-temperature linear positive magnetoresistance (PMR ≈ 171% at B ≈ 9 T) has been detected. The largest PMR (∼213%) has been achieved at 2 K under a magnetic field of 9 T, which can be tuned by the addition of poly(methyl methacrylate) to the porous structure of the foam. This remarkable magnetoresistance may be the result of quadratic magnetoresistance. The excellent magneto-transport properties of GF open a way toward three-dimensional graphene-based magnetoelectronic devices.

  7. Development of micronic GMR-magnetoresistive sensors for non-destructive sensing applications (Presentation Recording)

    Science.gov (United States)

    Jaffrès, Henri; LeMaitre, Yves; Collin, Sophie; Nguyen Vandau, Frédéric; Sergeeva-Chollet, Natalia; Decitre, Jean-Marc

    2015-09-01

    We will present our last development of GMR-based magnetic sensors devoted to sensing application for non-destructive control application. In these first realizations, we have chosen a so-called shape anisotropy - exchange biased strategy to fulfill the field-sensing criteria in the μT range in devices made of micronic single elements. Our devices realized by optical lithography, and whose typical sizes range from 150 μm x 150 μm to 500 μm x 500 μm elements, are made of trilayers GMR-based technology and consist of several circuitries of GMR elements of different lengths, widths and gaps. To obtain a full sensing linearity and reversibility requiring a perpendicular magnetic arrangement between both sensitive and hard layer, the magnetization of the latter have been hardened by pinning it with an antiferromagnetic material. The specific geometry of the design have been engineered in order to optimize the magnetic response of the soft layer via the different magnetic torques exerted on it essentially played by the dipolar fields or shape anisotropy, and the external magnetic field to detect. The smaller dimensions in width and in gap are then respectively of 2 μm and 3 μm to benefit of the full shape anisotropy formatting the magnetic response.

  8. Evolution and sign control of square-wave-like anisotropic magneto-resistance in spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3}/LaAlO{sub 3}(001) manganite thin films

    Energy Technology Data Exchange (ETDEWEB)

    Alagoz, H. S., E-mail: alagoz@ualberta.ca; Jeon, J.; Keating, S.; Chow, K. H., E-mail: khchow@ualberta.ca; Jung, J., E-mail: jjung@ualberta.ca [Department of Physics, University of Alberta, Edmonton, Alberta T6G 2E1 (Canada)

    2016-04-14

    We investigated magneto-transport properties of a compressively strained spatially confined La{sub 0.3}Pr{sub 0.4}Ca{sub 0.3}MnO{sub 3} (LPCMO) thin film micro-bridge deposited on LaAlO{sub 3}. Angular dependence of the magneto-resistance R(θ) of this bridge, where θ is the angle between the magnetic field and the current directions in the film plane, exhibits sharp positive and negative percolation jumps near T{sub MIT}. The sign and the magnitude of these jumps can be tuned using the magnetic field. Such behavior has not been observed in LPCMO micro-bridges subjected to tensile strain, indicating a correlation between the type of the lattice strain, the distribution of electronic domains, and the anisotropic magneto-resistance in spatially confined manganite systems.

  9. Evaluation of magnetic flux distribution from magnetic domains in [Co/Pd] nanowires by magnetic domain scope method using contact-scanning of tunneling magnetoresistive sensor

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Mitsunobu, E-mail: okuda.m-ky@nhk.or.jp; Miyamoto, Yasuyoshi; Miyashita, Eiichi; Hayashi, Naoto [NHK Science and Technology Research Laboratories, 1-10-11 Kinuta Setagaya, Tokyo 157-8510 (Japan)

    2014-05-07

    Current-driven magnetic domain wall motions in magnetic nanowires have attracted great interests for physical studies and engineering applications. The magnetic force microscope (MFM) is widely used for indirect verification of domain locations in nanowires, where relative magnetic force between the local domains and the MFM probe is used for detection. However, there is an occasional problem that the magnetic moments of MFM probe influenced and/or rotated the magnetic states in the low-moment nanowires. To solve this issue, the “magnetic domain scope for wide area with nano-order resolution (nano-MDS)” method has been proposed recently that could detect the magnetic flux distribution from the specimen directly by scanning of tunneling magnetoresistive field sensor. In this study, magnetic domain structure in nanowires was investigated by both MFM and nano-MDS, and the leakage magnetic flux density from the nanowires was measured quantitatively by nano-MDS. Specimen nanowires consisted from [Co (0.3)/Pd (1.2)]{sub 21}/Ru(3) films (units in nm) with perpendicular magnetic anisotropy were fabricated onto Si substrates by dual ion beam sputtering and e-beam lithography. The length and the width of the fabricated nanowires are 20 μm and 150 nm. We have succeeded to obtain not only the remanent domain images with the detection of up and down magnetizations as similar as those by MFM but also magnetic flux density distribution from nanowires directly by nano-MDS. The obtained value of maximum leakage magnetic flux by nano-MDS is in good agreement with that of coercivity by magneto-optical Kerr effect microscopy. By changing the protective diamond-like-carbon film thickness on tunneling magnetoresistive sensor, the three-dimensional spatial distribution of leakage magnetic flux could be evaluated.

  10. Experimental investigation of the nature of the magnetoresistance effects in Pd-YIG hybrid structures.

    Science.gov (United States)

    Lin, Tao; Tang, Chi; Alyahayaei, Hamad M; Shi, Jing

    2014-07-18

    In bilayers consisting of Pd and yttrium iron garnet (Y(3)Fe(5)O(12) or YIG), we observe vanishingly small room-temperature conventional anisotropic magnetoresistance but large new magnetoresistance that is similar to the spin Hall magnetoresistance previously reported in Pt-YIG bilayers. We report a temperature dependence study of the two magnetoresistance effects in Pt-YIG bilayers. As the temperature is decreased, the new magnetoresistance shows a peak, whereas the anisotropic magnetoresistance effect starts to appear and increases monotonically. We find that the magnetoresistance peak shifts to lower temperatures in thicker Pd samples, a feature characteristic of the spin current effect. The distinct temperature dependence reveals fundamentally different mechanisms responsible for the two effects in such hybrid structures.

  11. Biomolecule detection using wheatstone bridge giant magnetoresistance (GMR) sensors based on CoFeB spin-valve thin film

    Science.gov (United States)

    Elda Swastika, P.; Antarnusa, G.; Suharyadi, E.; Kato, T.; Iwata, S.

    2018-04-01

    A potential wheatstone bridge giant magnetoresistance (GMR) biosensor have been successfully developed for biomolecule detection. [IrMn(10 nm)/CoFe(3 nm)/Cu(2.2 nm)/CoFeB(10 nm)] spin-valve structure has been chosen as the magnetic sensing surface, showing a magnetoresistance (MR) of 6% fabricated by DC magnetron sputtering method. The Fe3O4 magnetic nanoparticles used as biomolecular labels (nanotags) was synthesized by co-precipitation method, exhibiting soft magnetic behavior with saturation magnetization (Ms), remanent magnetization (Mr) and coercivity (Hc) is 77.2 emu/g, 7.8 emu/g and 51 Oe, respectively. The X-ray diffraction (XRD) patterns and transmission electron microscopy (TEM) images showed that Fe3O4 was well crystallized and grew in their inverse spinel structure, highly uniform morphology with an average grain size was about 20 nm. Fe3O4 was coated with polyethylene-glycol (PEG)-4000 for surface functionalization. Detection of biomolecule such as formalin, gelatin from bovine-skin and porcine-skin were dispersed in ethanol at room temperature. Induction would cause a shift in output voltage with a minimum delta output voltage (ΔV) 4.937 mV (10%) for formalin detection, 2.268 mV (7%) for bovine-skin gelatin and 2.943 mV (7%) for porcine-skin gelatin detection. The ΔV of the wheatstone bridge in real-time measurement decrease by increase in biomolecules concentration. The change of ΔV with various concentration of biomolecule indicates that the spin-valve thin film with wheatstone-bridge circuit is potential as a biosensor.

  12. Magnetoresistive logic and biochip

    International Nuclear Information System (INIS)

    Brueckl, Hubert; Brzeska, Monika; Brinkmann, Dirk; Schotter, J.Joerg; Reiss, Guenter; Schepper, Willi; Kamp, P.-B.; Becker, Anke

    2004-01-01

    While some magnetoresistive devices based on giant magnetoresistance or spin-dependent tunneling are already commercialized, a new branch of development is evolving towards magnetoresistive logic with magnetic tunnel junctions. Furthermore, the new magnetoelectronic effects show promising properties in magnetoresistive biochips, which are capable of detecting even single molecules (e.g. DNA) by functionalized magnetic markers. The unclear limits of this approach are discussed with two model systems

  13. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan; Kodzius, Rimantas; Li, Fuquan; Foulds, Ian G.; Kosel, Jü rgen

    2016-01-01

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  14. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    KAUST Repository

    Gooneratne, Chinthaka Pasan

    2016-08-26

    The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA) for the manipulation of superparamagnetic beads (SPBs), and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device

  15. On-Chip Magnetic Bead Manipulation and Detection Using a Magnetoresistive Sensor-Based Micro-Chip: Design Considerations and Experimental Characterization

    Directory of Open Access Journals (Sweden)

    Chinthaka P. Gooneratne

    2016-08-01

    Full Text Available The remarkable advantages micro-chip platforms offer over cumbersome, time-consuming equipment currently in use for bio-analysis are well documented. In this research, a micro-chip that includes a unique magnetic actuator (MA for the manipulation of superparamagnetic beads (SPBs, and a magnetoresistive sensor for the detection of SPBs is presented. A design methodology, which takes into account the magnetic volume of SPBs, diffusion and heat transfer phenomena, is presented with the aid of numerical analysis to optimize the parameters of the MA. The MA was employed as a magnetic flux generator and experimental analysis with commercially available COMPEL™ and Dynabeads® demonstrated the ability of the MA to precisely transport a small number of SPBs over long distances and concentrate SPBs to a sensing site for detection. Moreover, the velocities of COMPEL™ and Dynabead® SPBs were correlated to their magnetic volumes and were in good agreement with numerical model predictions. We found that 2.8 μm Dynabeads® travel faster, and can be attracted to a magnetic source from a longer distance, than 6.2 μm COMPEL™ beads at magnetic flux magnitudes of less than 10 mT. The micro-chip system could easily be integrated with electronic circuitry and microfluidic functions, paving the way for an on-chip biomolecule quantification device.

  16. A Novel Ternary CoFe2O4/CuO/CoFe2O4 as a Giant Magnetoresistance Sensor

    Directory of Open Access Journals (Sweden)

    Ramli

    2016-12-01

    Full Text Available This paper reports the results of a study relating to the synthesis of a novel ternary CoFe2O4/CuO/CoFe2O4 thin film as a giant magnetoresistance (GMR sensor. The CoFe2O4/CuO/CoFe2O4 thin film was prepared onto silicon substrate via DC magnetron sputtering with the targets facing each other. X-ray diffraction was used to determine the structure of the thin film and a 4-point method was used to measure the MR ratio. The GMR ratio is highly dependent on the ferrimagnetic (CoFe2O4 and nonmagnetic (CuO layer thickness. The maximum GMR ratio at room temperature obtained in the CoFe2O4/CuO/CoFe2O4 thin film was 70% when the CoFe2O4 and the CuO layer had a thickness of 62.5 nm and 14.4 nm respectively.

  17. Anomalous magnetisation process in UFe4Al8 probed by magnetisation and magnetoresistance

    International Nuclear Information System (INIS)

    Godinho, M.; Estrela, P.; Goncalves, A.P.; Almeida, M.; Spirlet, J.C.; Bonfait, G.

    1996-01-01

    A strong anisotropic magnetoresistance has been measured in a single crystal of UFe 4 Al 8 and has been used to prove the ferromagnetic order of the U lattice. The giant anomaly detected in the magnetoresistance curves is interpreted as two 90 rotations of the magnetisation. This interpretation has been confirmed by magnetisation measurements. (orig.)

  18. Anisotropic magnetoresistance in an antiferromagnetic semiconductor

    Czech Academy of Sciences Publication Activity Database

    Fina, I.; Martí, Xavier; Yi, D.; Liu, J.; Chu, J.-H.; Rayan-Serrao, C.; Suresha, S.; Shick, Alexander; Železný, Jakub; Jungwirth, Tomáš; Fontcuberta, J.; Ramesh, R.

    2014-01-01

    Roč. 5, SEP (2014), "4671-1"-"4671-7" ISSN 2041-1723 R&D Projects: GA MŠk(CZ) LM2011026; GA ČR GB14-37427G; GA ČR(CZ) GAP204/10/0330 EU Projects: European Commission(XE) 268066 - 0MSPIN Grant - others:AV ČR(CZ) AP0801 Program:Akademická prémie - Praemium Academiae Institutional support: RVO:68378271 Keywords : antiferromagnets * semiconductors * spintronics Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 11.470, year: 2014

  19. OPTICAL FIBRES AND FIBREOPTIC SENSORS: Polarisation reflectometry of anisotropic optical fibres

    Science.gov (United States)

    Konstantinov, Yurii A.; Kryukov, Igor'I.; Pervadchuk, Vladimir P.; Toroshin, Andrei Yu

    2009-11-01

    Anisotropic, polarisation-maintaining fibres have been studied using a reflectometer and integrated optic polariser. Linearly polarised pulses were launched into the fibre under test at different angles between their plane of polarisation and the main optical axis of the fibre. A special procedure for the correlation analysis of these reflectograms is developed to enhance the reliability of the information about the longitudinal optical uniformity ofanisotropic fibres.

  20. Prospect for tunneling anisotropic magneto-resistance in ferrimagnets: spin-orbit coupling effects in Mn.sub.3./sub.Ge and Mn.sub.3./sub.Ga

    Czech Academy of Sciences Publication Activity Database

    Khmelevskyi, S.; Shick, Alexander; Mohn, P.

    2016-01-01

    Roč. 109, č. 22 (2016), s. 1-4, č. článku 222402. ISSN 0003-6951 R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : magneto-resistance * ferrimagnets Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.411, year: 2016

  1. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    Science.gov (United States)

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  2. Magnetic anisotropy and magnetoresistance in Co-based multilayers: a polarised neutron reflectivity study

    International Nuclear Information System (INIS)

    Yusuf, S.M.

    2000-01-01

    We have studied giant magnetoresistance (GMR) and anisotropic magnetoresistance (AMR) effects by carrying out magnetization, magnetoresistance and polarized neutron reflectivity measurements on epitaxial Co/Re multilayers. Polarized neutron reflectivity study with polarization analysis gives a direct way to sense the direction of sublattice magnetization and coupling between magnetic layers. The evolution of magnetic structure as a function of the strength and direction of the applied magnetic field has been studied. The AMR effect observed in magnetoresistance study has been explained in the light of observed magnetic structure. (author)

  3. Colossal magnetoresistance manganites

    Indian Academy of Sciences (India)

    Keywords. Manganites; colossal magnetoresistance; strongly correlated electron systems; metal-insulator transitions and other electronic transitions; Jahn-Teller polarons and electron-phonon interaction.

  4. Thin-film magnetoresistive absolute position detector

    NARCIS (Netherlands)

    Groenland, J.P.J.

    1990-01-01

    The subject of this thesis is the investigation of a digital absolute posi- tion-detection system, which is based on a position-information carrier (i.e. a magnetic tape) with one single code track on the one hand, and an array of magnetoresistive sensors for the detection of the information on the

  5. Magnetoresistive biosensors for quantitative proteomics

    Science.gov (United States)

    Zhou, Xiahan; Huang, Chih-Cheng; Hall, Drew A.

    2017-08-01

    Quantitative proteomics, as a developing method for study of proteins and identification of diseases, reveals more comprehensive and accurate information of an organism than traditional genomics. A variety of platforms, such as mass spectrometry, optical sensors, electrochemical sensors, magnetic sensors, etc., have been developed for detecting proteins quantitatively. The sandwich immunoassay is widely used as a labeled detection method due to its high specificity and flexibility allowing multiple different types of labels. While optical sensors use enzyme and fluorophore labels to detect proteins with high sensitivity, they often suffer from high background signal and challenges in miniaturization. Magnetic biosensors, including nuclear magnetic resonance sensors, oscillator-based sensors, Hall-effect sensors, and magnetoresistive sensors, use the specific binding events between magnetic nanoparticles (MNPs) and target proteins to measure the analyte concentration. Compared with other biosensing techniques, magnetic sensors take advantage of the intrinsic lack of magnetic signatures in biological samples to achieve high sensitivity and high specificity, and are compatible with semiconductor-based fabrication process to have low-cost and small-size for point-of-care (POC) applications. Although still in the development stage, magnetic biosensing is a promising technique for in-home testing and portable disease monitoring.

  6. Giant magneto-resistance devices

    CERN Document Server

    Hirota, Eiichi; Inomata, Koichiro

    2002-01-01

    This book deals with the application of giant magneto-resistance (GMR) effects to electronic devices. It will appeal to engineers and graduate students in the fields of electronic devices and materials. The main subjects are magnetic sensors with high resolution and magnetic read heads with high sensitivity, required for hard-disk drives with recording densities of several gigabytes. Another important subject is novel magnetic random-access memories (MRAM) with non-volatile non-destructive and radiation-resistant characteristics. Other topics include future GMR devices based on bipolar spin transistors, spin field-effect transistors (FETs) and double-tunnel junctions.

  7. Spin Hall magnetoresistance in antiferromagnet/normal metal bilayers

    KAUST Repository

    Manchon, Aurelien

    2017-01-01

    We investigate the emergence of spin Hall magnetoresistance in a magnetic bilayer composed of a normal metal adjacent to an antiferromagnet. Based on a recently derived drift diffusion equation, we show that the resistance of the bilayer depends on the relative angle between the direction transverse to the current flow and the Néel order parameter. While this effect presents striking similarities with the spin Hall magnetoresistance recently reported in ferromagnetic bilayers, its physical origin is attributed to the anisotropic spin relaxation of itinerant spins in the antiferromagnet.

  8. Big magnetoresistance: magnetic polarons

    International Nuclear Information System (INIS)

    Teresa, J.M. de; Ibarra, M.R.

    1997-01-01

    By using several macro and microscopic experimental techniques we have given evidence for magnetoresistance in manganese oxides caused by the effect of the magnetic field on the magnetic polarons. (Author) 3 refs

  9. Magnetoresistive waves in plasmas

    International Nuclear Information System (INIS)

    Felber, F.S.; Hunter, R.O. Jr.; Pereira, N.R.; Tajima, T.

    1982-01-01

    The self-generated magnetic field of a current diffusing into a plasma between conductors can magnetically insulate the plasma. Propagation of magnetoresistive waves in plasmas is analyzed. Applications to plasma opening switches are discussed

  10. Topology Control with Anisotropic and Sector Turning Antennas in Ad-hoc and Sensor Networks

    Directory of Open Access Journals (Sweden)

    V. Černý

    2011-01-01

    Full Text Available During the last several years, technological advances have allowed the development of small, cheap, embedded, independent and rather powerful radio devices that can self-organise into data networks. Such networks are usually called ad-hoc networks or, sometimes, depending on the application field, sensor networks. One of the first standards for ad-hoc networks to impose itself as a fully industrial framework for data gathering and control over such devices is IEEE 802.15.4 and, on top of it, its pair network architecture: ZigBee. In the case of multiple radio devices clamped into a small geographical area, the lack of radio bandwidth becomes a major problem, leading to multiple data losses and unnecessary power drain from the batteries of these small devices. This problem is usually perceived as interference. The deployment of appropriate topology control mechanisms (TC can solve interference. All of these algorithms calculate TC on the basis of isotropic antenna radiation patterns in the horizontal plane.

  11. Giant Magnetoresistance: Basic Concepts, Microstructure, Magnetic Interactions and Applications.

    Science.gov (United States)

    Ennen, Inga; Kappe, Daniel; Rempel, Thomas; Glenske, Claudia; Hütten, Andreas

    2016-06-17

    The giant magnetoresistance (GMR) effect is a very basic phenomenon that occurs in magnetic materials ranging from nanoparticles over multilayered thin films to permanent magnets. In this contribution, we first focus on the links between effect characteristic and underlying microstructure. Thereafter, we discuss design criteria for GMR-sensor applications covering automotive, biosensors as well as nanoparticular sensors.

  12. Anomalous electronic structure and magnetoresistance in TaAs2.

    Science.gov (United States)

    Luo, Yongkang; McDonald, R D; Rosa, P F S; Scott, B; Wakeham, N; Ghimire, N J; Bauer, E D; Thompson, J D; Ronning, F

    2016-06-07

    The change in resistance of a material in a magnetic field reflects its electronic state. In metals with weakly- or non-interacting electrons, the resistance typically increases upon the application of a magnetic field. In contrast, negative magnetoresistance may appear under some circumstances, e.g., in metals with anisotropic Fermi surfaces or with spin-disorder scattering and semimetals with Dirac or Weyl electronic structures. Here we show that the non-magnetic semimetal TaAs2 possesses a very large negative magnetoresistance, with an unknown scattering mechanism. Density functional calculations find that TaAs2 is a new topological semimetal [ℤ2 invariant (0;111)] without Dirac dispersion, demonstrating that a negative magnetoresistance in non-magnetic semimetals cannot be attributed uniquely to the Adler-Bell-Jackiw chiral anomaly of bulk Dirac/Weyl fermions.

  13. Large linear magnetoresistivity in strongly inhomogeneous planar and layered systems

    International Nuclear Information System (INIS)

    Bulgadaev, S.A.; Kusmartsev, F.V.

    2005-01-01

    Explicit expressions for magnetoresistance R of planar and layered strongly inhomogeneous two-phase systems are obtained, using exact dual transformation, connecting effective conductivities of in-plane isotropic two-phase systems with and without magnetic field. These expressions allow to describe the magnetoresistance of various inhomogeneous media at arbitrary concentrations x and magnetic fields H. All expressions show large linear magnetoresistance effect with different dependencies on the phase concentrations. The corresponding plots of the x- and H-dependencies of R(x,H) are represented for various values, respectively, of magnetic field and concentrations at some values of inhomogeneity parameter. The obtained results show a remarkable similarity with the existing experimental data on linear magnetoresistance in silver chalcogenides Ag 2+δ Se. A possible physical explanation of this similarity is proposed. It is shown that the random, stripe type, structures of inhomogeneities are the most suitable for a fabrication of magnetic sensors and a storage of information at room temperatures

  14. Magnetoresistance of magnetically doped ZnO films

    Energy Technology Data Exchange (ETDEWEB)

    Behan, A J; Mokhtari, A; Blythe, H J; Fox, A M; Gehring, G A [Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH (United Kingdom); Ziese, M, E-mail: G.A.Gehring@sheffield.ac.u [Division of Superconductivity and Magnetism, University of Leipzig, D-04103, Leipzig (Germany)

    2009-08-26

    Magnetoresistance measurements have been made at 5 K on doped ZnO thin films grown by pulsed laser deposition. ZnCoO, ZnCoAlO and ZnMnAlO samples have been investigated and compared to similar films containing no transition metal dopants. It is found that the Co-doped samples with a high carrier concentration have a small negative magnetoresistance, irrespective of their magnetic moment. On decreasing the carrier concentration, a positive contribution to the magnetoresistance appears and a further negative contribution. This second, negative contribution, which occurs at very low carrier densities, correlates with the onset of ferromagnetism due to bound magnetic polarons suggesting that the negative magnetoresistance results from the destruction of polarons by a magnetic field. An investigation of the anisotropic magnetoresistance showed that the orientation of the applied magnetic field, relative to the sample, had a large effect. The results for the ZnMnAlO samples showed less consistent trends.

  15. Anisotropy of magnetoresistance on trapping magnetic fields in granular HTSC

    CERN Document Server

    Sukhanov, A A

    2003-01-01

    The features of magnetoresistance in Bi (Pb)-HTSC ceramics with the magnetic fields trapped are investigated. It is found that on trapping magnetic flux the magnetoresistance in granular HTSC becomes anisotropic. Moreover, for magnetic fields H parallel and currents perpendicular to field H sub i which induces the trapping the magnetoresistance field dependence DELTA R(H) is nonmonotonic and the magnetoresistance is negative for small fields H < Hinv. The effect of trapped field and transport current and their orientations on the dependence DELTA R(H) is investigated. In particular, it is found that the field of magnetoresistance sign inversion Hinv almost linearly grows with increase of the effective trapped magnetic fields. Hinv decreases down to zero as the angle between fields H and H sub i increases up to pi/2 and slightly decreases with increasing transport current. The results are treated in terms of the model of magnetic flux trapping in superconducting grains or 'loops' embedded in a matrix of wea...

  16. Modeling the planar configuration of extraordinary magnetoresistance

    International Nuclear Information System (INIS)

    El-Ahmar, S; Pozniak, A A

    2015-01-01

    Recently the planar version of the extraordinary magnetoresistance (EMR) magnetic field sensor has been constructed and verified in practice. Planar configuration of the EMR device gives many technological advantages, it is simpler than the classic and allows one to build the sensor using electric materials of the new type (such as graphene or topological insulators) much easier. In this work the planar configuration of the EMR sensor is investigated by performing computational simulations using the finite element method (FEM). The computational comparison of the planar and classic configurations of EMR is presented using three-dimensional models. Various variants of the geometry of EMR sensor components are pondered and compared in the planar and classic version. Size of the metal overlap is considered for sensor optimization as well as various semiconductor-metal contact resistance dependences of the EMR signal. Based on computational simulations, a method for optimal placement of electric terminals in a planar EMR device is proposed. (paper)

  17. Misfit dislocations of anisotropic magnetoresistant Nd0.45Sr0.55MnO3 thin films grown on SrTiO3 (1 1 0) substrates

    International Nuclear Information System (INIS)

    Tang, Y.L.; Zhu, Y.L.; Meng, H.; Zhang, Y.Q.; Ma, X.L.

    2012-01-01

    Nd 0.45 Sr 0.55 MnO 3 is an A-type antiferromagnetic manganite showing obvious angular-dependent magnetoresistance, which can be tuned by misfit strain. The misfit strain relaxation of Nd 0.45 Sr 0.55 MnO 3 thin films is of both fundamental and technical importance. In this paper, microstructures of epitaxial Nd 0.45 Sr 0.55 MnO 3 thin films grown on SrTiO 3 (1 1 0) substrates by pulsed laser deposition were investigated by means of (scanning) transmission electron microscopy. The Nd 0.45 Sr 0.55 MnO 3 thin films exhibit a two-layered structure: a continuous perovskite layer epitaxial grown on the substrate followed by epitaxially grown columnar nanostructures. An approximately periodic array of misfit dislocations is found along the interface with line directions of both 〈1 1 1〉 and [0 0 1]. High-resolution (scanning) transmission electron microscopy reveals that all the misfit dislocations possess a〈1 1 0〉-type Burgers vectors. A formation mechanism based on gliding or climbing of the dislocations is proposed to elucidate this novel misfit dislocation configuration. These misfit dislocations have complex effects on the strain relaxation and microstructure of the films, and thus their influence needs further consideration for heteroepitaxial perovskite thin film systems, especially for films grown on substrates with low-symmetry surfaces such as SrTiO 3 (1 1 0) and (1 1 1), which are attracting attention for their potentially new functions.

  18. Large, non-saturating magnetoresistance in WTe2.

    Science.gov (United States)

    Ali, Mazhar N; Xiong, Jun; Flynn, Steven; Tao, Jing; Gibson, Quinn D; Schoop, Leslie M; Liang, Tian; Haldolaarachchige, Neel; Hirschberger, Max; Ong, N P; Cava, R J

    2014-10-09

    Magnetoresistance is the change in a material's electrical resistance in response to an applied magnetic field. Materials with large magnetoresistance have found use as magnetic sensors, in magnetic memory, and in hard drives at room temperature, and their rarity has motivated many fundamental studies in materials physics at low temperatures. Here we report the observation of an extremely large positive magnetoresistance at low temperatures in the non-magnetic layered transition-metal dichalcogenide WTe2: 452,700 per cent at 4.5 kelvins in a magnetic field of 14.7 teslas, and 13 million per cent at 0.53 kelvins in a magnetic field of 60 teslas. In contrast with other materials, there is no saturation of the magnetoresistance value even at very high applied fields. Determination of the origin and consequences of this effect, and the fabrication of thin films, nanostructures and devices based on the extremely large positive magnetoresistance of WTe2, will represent a significant new direction in the study of magnetoresistivity.

  19. Large, Tunable Magnetoresistance in Nonmagnetic III-V Nanowires.

    Science.gov (United States)

    Li, Sichao; Luo, Wei; Gu, Jiangjiang; Cheng, Xiang; Ye, Peide D; Wu, Yanqing

    2015-12-09

    Magnetoresistance, the modulation of resistance by magnetic fields, has been adopted and continues to evolve in many device applications including hard-disk, memory, and sensors. Magnetoresistance in nonmagnetic semiconductors has recently raised much attention and shows great potential due to its large magnitude that is comparable or even larger than magnetic materials. However, most of the previous work focus on two terminal devices with large dimensions, typically of micrometer scales, which severely limit their performance potential and more importantly, scalability in commercial applications. Here, we investigate magnetoresistance in the impact ionization region in InGaAs nanowires with 20 nm diameter and 40 nm gate length. The deeply scaled dimensions of these nanowires enable high sensibility with less power consumption. Moreover, in these three terminal devices, the magnitude of magnetoresistance can be tuned by the transverse electric field controlled by gate voltage. Large magnetoresistance between 100% at room temperature and 2000% at 4.3 K can be achieved at 2.5 T. These nanoscale devices with large magnetoresistance offer excellent opportunity for future high-density large-scale magneto-electric devices using top-down fabrication approaches, which are compatible with commercial silicon platform.

  20. Anomalous magnetoresistance in amorphous metals

    International Nuclear Information System (INIS)

    Kuz'menko, V.M.; Vladychkin, A.N.; Mel'nikov, V.I.; Sudovtsev, A.I.

    1984-01-01

    The magnetoresistance of amorphous Bi, Ca, V and Yb films is investigated in fields up to 4 T at low temperatures. For all metals the magnetoresistance is positive, sharply decreases with growth of temperature and depends anomalously on the magnetic field strength. For amorphous superconductors the results agree satisfactorily with the theory of anomalous magnetoresistance in which allowance is made for scattering of electrons by the superconducting fluctuations

  1. Magnetoresistance in La0.7Ca0.3MnO3-YBa2Cu3O7 F/S/F trilayers

    International Nuclear Information System (INIS)

    Pena, V.; Visani, C.; Bruno, F.; Garcia-Barriocanal, J.; Arias, D.; Rivera, A.; Sefrioui, Z.; Leon, C.; Te Velthuis, S.G.E.; Hoffmann, A.; Nemes, N.; Garcia-Hernandez, M.; Martinez, J.L.; Santamaria, J.

    2007-01-01

    We report large magnetoresistance in ferromagnet/superconductor/ferromagnet structures made of La 0.7 Ca 0.3 MnO 3 and YBa 2 Cu 3 O 7 at temperatures along the resistive transition. We find that the magnetoresistance phenomenon is independent on the orientation of electric current versus field. Furthermore, the effect is also independent on the sweep rate of the magnetic field. This excludes interpretations in terms of spontaneous vortices or anisotropic magnetoresistance of the ferromagnetic layers and supports the view that the magnetoresistance phenomenon originates at the spin-dependent transport of quasiparticles transmitted from the ferromagnetic electrodes into the superconductor

  2. Percolative Theory of Organic Magnetoresistance and Fringe-Field Magnetoresistance

    Science.gov (United States)

    Flatté, Michael E.

    2013-03-01

    A recently-introduced percolation theory for spin transport and magnetoresistance in organic semiconductors describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Increases in the spin-flip rate open up ``spin-blocked'' pathways to become viable conduction channels and hence, as the spin-flip rate changes with magnetic field, produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with measurements of the shape and saturation of measured magnetoresistance curves. We find that the threshold hopping distance is analogous to the branching parameter of a phenomenological two-site model, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance. Regimes of slow and fast hopping magnetoresistance are uniquely characterized by their line shapes. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory. Extensions to this theory also describe fringe-field magnetoresistance, which is the influence of fringe magnetic fields from a nearby unsaturated magnetic electrode on the conductance of an organic film. This theory agrees with several key features of the experimental fringe-field magnetoresistance, including the applied fields where the magnetoresistance reaches extrema, the applied field range of large magnetoresistance effects from the fringe fields, and the sign of the effect. All work done in collaboration with N. J. Harmon, and fringe-field magnetoresistance work in collaboration also with F. Macià, F. Wang, M. Wohlgenannt and A. D. Kent. This work was supported by an ARO MURI.

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  4. Magnetic giant magnetoresistance commercial off the shelf for space applications

    DEFF Research Database (Denmark)

    Michelena, M.D.; Oelschlägel, Wulf; Arruego, I.

    2008-01-01

    The increase of complexity and miniaturizing level of Aerospace platforms make use of commercial off the shelf (COTS) components constitute a plausible alternative to the use of military or rad-tolerant components. In this work, giant magnetoresistance commercial sensors are studied to be used as......-375 mu T biasing field. (c) 2008 American Institute of Physics....

  5. Magnetoresistance effect in (La, Sr)MnO3 bicrystalline films.

    Science.gov (United States)

    Alejandro, G; Steren, L B; Pastoriza, H; Vega, D; Granada, M; Sánchez, J C Rojas; Sirena, M; Alascio, B

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La(0.75)Sr(0.25)MnO(3) films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  6. Magnetoresistance effect in (La, Sr)MnO{sub 3} bicrystalline films

    Energy Technology Data Exchange (ETDEWEB)

    Alejandro, G; Pastoriza, H; Granada, M; Rojas Sanchez, J C; Sirena, M; Alascio, B [Centro Atomico Bariloche (CNEA), Av. Bustillo 9500, 8400 San Carlos de Bariloche, Pcia. de Rio Negro (Argentina); Steren, L B; Vega, D, E-mail: galejand@cab.cnea.gov.a [Centro Atomico Constituyentes (CNEA), 1650 San MartIn, Pcia. de Buenos Aires (Argentina)

    2010-09-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La{sub 0.75}Sr{sub 0.25}MnO{sub 3} films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  7. Magnetoresistance effect in (La, Sr)MnO3 bicrystalline films

    International Nuclear Information System (INIS)

    Alejandro, G; Pastoriza, H; Granada, M; Rojas Sanchez, J C; Sirena, M; Alascio, B; Steren, L B; Vega, D

    2010-01-01

    The angular dependence of the magnetoresistance effect has been measured on bicrystalline La 0.75 Sr 0.25 MnO 3 films. The measurements have been performed on an electronically lithographed Wheatstone bridge. The study of the angular dependence of both the magnetoresistance and the resistance of single-crystalline and grain-boundary regions of the samples allowed us to isolate two contributions of low-field magnetoresistance in manganites. One of them is associated with the spin-orbit effect, i.e. the anisotropic magnetoresistance of ferromagnetic compounds, and the other one is related to spin-disorder regions at the grain boundary. Complementary x-ray diffraction, ferromagnetic resonance and low temperature magnetization experiments contribute to the characterization of the magnetic anisotropy of the samples and the general comprehension of the problem.

  8. Current perpendicular to plane giant magnetoresistance and tunneling magnetoresistance treated with unified model

    NARCIS (Netherlands)

    Jonkers, PAE

    2002-01-01

    The conceptual similarity between current perpendicular to plane giant magnetoresistance (CPP-GMR) and tunneling magnetoresistance (TMR) is exploited by utilizing a unified single-particle model accounting for both types of magnetoresistance. By defining structures composed of ferromagnetic,

  9. Transverse thermal magnetoresistance of potassium

    International Nuclear Information System (INIS)

    Newrock, R.S.; Maxfield, B.W.

    1976-01-01

    Results are presented of extensive thermal magnetoresistance measurements on single-crystal and polycrystalline specimens of potassium having residual resistance ratios (RRR) ranging from 1100 to 5300. Measurements were made between 2 and 9 0 K for magnetic fields up to 1.8 T. The observed thermal magnetoresistance cannot be understood on the basis of either semiclassical theories or from the electrical magnetoresistance and the Wiedemann-Franz law. A number of relationships are observed between the thermal and electrical magnetoresistances, many of which are not immediately obvious when comparing direct experimental observations. The thermal magnetoresistance W(T,H) is given reasonably well by W(T,H)T = W(T,0)T + AH + BH 2 , where both A and B are temperature-dependent coefficients. Results show that A = A 0 + A 1 T 3 , while B(T) cannot be expressed as any simple power law. A 0 is dependent on the RRR, while A 1 is independent of the RRR. Two relationships are found between corresponding coefficients in the electrical and thermal magnetoresistance: (i) the Wiedmann--Franz law relates A 0 to the Kohler slope of the electrical magnetoresistance and (ii) the temperature-dependent portions of the electrical and thermal Kohler slopes are both proportional to the electron--phonon scattering contribution to the corresponding zero-field resistance. The latter provides evidence that inelastic scattering is very important in determining the temperature-dependent linear magnetoresistances. Part, but by no means all, of the quadratic thermal resistance is accounted for by lattice thermal conduction. It is concluded that at least a portion of the anomalous electrical and thermal magnetoresistances is due to intrinsic causes and not inhomogeneities or other macroscopic defects

  10. A flexible strain gauge exhibiting reversible piezoresistivity based on an anisotropic magnetorheological polymer

    International Nuclear Information System (INIS)

    Mietta, José L; Martín Negri, R; Jorge, Guillermo

    2014-01-01

    A flexible, anisotropic and portable stress sensor (logarithmic reversible response between 40–350 kPa) was fabricated, in which i) the sensing material, ii) the electrical contacts and iii) the encapsulating material, were based on polydimethylsiloxane (PDMS) composites. The sensing material is a slide of an anisotropic magnetorheological elastomer (MRE), formed by dispersing silver-covered magnetite particles (Fe 3 O 4 @Ag) in PDMS and by curing in the presence of a uniform magnetic field. Thus, the MRE is a structure of electrically conducting pseudo-chains (needles) aligned in a specific direction, in which electrical conductivity increases when stress is exclusively applied in the direction of the needles. Electrical conductivity appears only between contact points that face each other at both sides of the MRE slide. An array of electrical contacts was implemented based on PDMS-silver paint metallic composites. The array was encapsulated with PDMS. Using Fe 3 O 4 superparamagnetic nanoparticles also opens up possibilities for a magnetic field sensor, due to the magnetoresistance effects. (paper)

  11. Tunnel magnetoresistance of magnetic molecules with spin-vibron coupling

    Directory of Open Access Journals (Sweden)

    Ahmed Kenawy

    2017-05-01

    Full Text Available The effect of molecular vibrations on the tunnel magnetoresistance (TMR of a magnetic tunnel junction with a single spin-anisotropic molecule interconnecting its electrodes is investigated theoretically. We demonstrate that if these vibrations couple at the same time to the charge of tunneling electrons and to the spin of the molecule, the spin anisotropy of such a molecule becomes enhanced. This has, in turn, a profound impact on the TMR of such a device showing that molecular vibrations lead to a significant change of spin-polarized transport, differing for the parallel and antiparallel magnetic configuration of the junction.

  12. Noncontact vibration measurements using magnetoresistive sensing elements

    Science.gov (United States)

    Tomassini, R.; Rossi, G.

    2016-06-01

    Contactless instrumentations is more and more used in turbomachinery testing thanks to the non-intrusive character and the possibility to monitor all the components of the machine at the same time. Performances of blade tip timing (BTT) measurement systems, used for noncontact turbine blade vibration measurements, in terms of uncertainty and resolution are strongly affected by sensor characteristics and processing methods. The sensors used for BTT generate pulses, used for precise measurements of turbine blades time of arrival. Nowadays proximity sensors used in this application are based on optical, capacitive, eddy current and microwave measuring principle. Pressure sensors has been also tried. This paper summarizes the results achieved using a novel instrumentation based on the magnetoresistive sensing elements. The characterization of the novel probe has been already published. The measurement system was validated in test benches and in a real jet-engine comparing different sensor technologies. The whole instrumentation was improved. The work presented in this paper focuses on the current developments. In particular, attention is given to the data processing software and new sensor configurations.

  13. Anomalous magnetoresistance in Fibonacci multilayers.

    Energy Technology Data Exchange (ETDEWEB)

    Machado, L. D.; Bezerra, C. G.; Correa, M. A.; Chesman, C.; Pearson, J. E.; Hoffmann, A. (Materials Science Division); (Universidade Federal do Rio Grande do Norte)

    2012-01-01

    We theoretically investigated magnetoresistance curves in quasiperiodic magnetic multilayers for two different growth directions, namely, [110] and [100]. We considered identical ferromagnetic layers separated by nonmagnetic layers with two different thicknesses chosen based on the Fibonacci sequence. Using parameters for Fe/Cr multilayers, four terms were included in our description of the magnetic energy: Zeeman, cubic anisotropy, bilinear coupling, and biquadratic coupling. The minimum energy was determined by the gradient method and the equilibrium magnetization directions found were used to calculate magnetoresistance curves. By choosing spacers with a thickness such that biquadratic coupling is stronger than bilinear coupling, unusual behaviors for the magnetoresistance were observed: (i) for the [110] case, there is a different behavior for structures based on even and odd Fibonacci generations, and, more interesting, (ii) for the [100] case, we found magnetic field ranges for which the magnetoresistance increases with magnetic field.

  14. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)

    2011-07-01

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  15. Single atom anisotropic magnetoresistance on a topological insulator surface

    KAUST Repository

    Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2015-01-01

    dimensional model valid for both single adatoms and magnetic clusters, which leads to a proposed device setup for experimental realization. Our results provide an explanation for the conflicting scattering experiments on magnetic adatoms on topological

  16. Tunneling anisotropic magnetoresistance in C60-based organic spintronic systems

    NARCIS (Netherlands)

    Wang, Kai; Sanderink, Johannes G.M.; Bolhuis, Thijs; van der Wiel, Wilfred Gerard; de Jong, Machiel Pieter

    2014-01-01

    C 60 fullerenes are interesting molecular semiconductors for spintronics since they exhibit weak spin-orbit and hyperfine interactions, which is a prerequisite for long spin lifetimes. We report spin-polarized transport in spin-valve-like structures containing ultrathin (<10 nm) C 60 layers,

  17. Anomalous magnetoresistance in the spinel superconductor LiTi2O4.

    Science.gov (United States)

    Jin, K; He, G; Zhang, X; Maruyama, S; Yasui, S; Suchoski, R; Shin, J; Jiang, Y; Yu, H S; Yuan, J; Shan, L; Kusmartsev, F V; Greene, R L; Takeuchi, I

    2015-05-20

    LiTi2O4 is a unique compound in that it is the only known spinel oxide superconductor. The lack of high quality single crystals has thus far prevented systematic investigations of its transport properties. Here we report a careful study of transport and tunnelling spectroscopy in epitaxial LiTi2O4 thin films. An unusual magnetoresistance is observed which changes from nearly isotropic negative to prominently anisotropic positive as the temperature is decreased. We present evidence that shows that the negative magnetoresistance likely stems from the suppression of local spin fluctuations or spin-orbit scattering centres. The positive magnetoresistance suggests the presence of an orbital-related state, also supported by the fact that the superconducting energy gap decreases as a quadratic function of magnetic field. These observations indicate that the spin-orbital fluctuations play an important role in LiTi2O4 in a manner similar to high-temperature superconductors.

  18. Deposition temperature influence on sputtered nanogranular magnetoresistive composites

    International Nuclear Information System (INIS)

    Mujika, M.; Arana, S.; Castano, E.

    2007-01-01

    Among different physical principles magnetic sensors for low magnetic field detection can be based on, granular giant magnetoresistances have been studied due to their high sensitivity to small field changes and gradual magnetoresistance change at low fields. Following this aim, nanogranular Ag-Co thin films, deposited by DC co-sputtering from Ag and Co targets at different deposition temperatures have been tested. Samples have been grown at room temperature, 100 and 200 deg. C and annealed in a mixture of N 2 and H 2 at 200 and 300 deg. C for 45 min. The samples that have shown the best performance have been subjected to two sets of measurements where an external field has been applied in-plane and perpendicular to the film plane. The best performance has been shown by the samples deposited at room temperature and annealed at 300 deg. C, reporting a maximum value of magnetoresistance of 16.7% at 1.4 T and a linear sensitivity of 63%/T between 0.04 and 0.07 T within a magnetoresistance range varying from 1.5% to 3% when subjected to an in-plane external field

  19. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. V., E-mail: wwfilippow@mail.ru [Lipetsk State Pedagogical University (Russian Federation); Bormontov, E. N. [Voronezh State University (Russian Federation)

    2013-07-15

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.

  20. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    International Nuclear Information System (INIS)

    Filippov, V. V.; Bormontov, E. N.

    2013-01-01

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material’s anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors

  1. Tunneling magnetoresistance in Si nanowires

    KAUST Repository

    Montes Muñoz, Enrique

    2016-11-09

    We investigate the tunneling magnetoresistance of small diameter semiconducting Si nanowires attached to ferromagnetic Fe electrodes, using first principles density functional theory combined with the non-equilibrium Green\\'s functions method for quantum transport. Silicon nanowires represent an interesting platform for spin devices. They are compatible with mature silicon technology and their intrinsic electronic properties can be controlled by modifying the diameter and length. Here we systematically study the spin transport properties for neutral nanowires and both n and p doping conditions. We find a substantial low bias magnetoresistance for the neutral case, which halves for an applied voltage of about 0.35 V and persists up to 1 V. Doping in general decreases the magnetoresistance, as soon as the conductance is no longer dominated by tunneling.

  2. Mobility controlled linear magnetoresistance with 3D anisotropy in a layered graphene pallet

    KAUST Repository

    Zhang, Qiang

    2016-09-27

    A bulk sample of pressed graphene sheets was prepared under hydraulic pressure (similar to 150 MPa). The cross-section of the sample demonstrates a layered structure, which leads to 3D electrical transport properties with anisotropic mobility. The electrical transport properties of the sample were measured over a wide temperature (2-400 K) and magnetic field (-140 kOe <= H <= 140 kOe) range. The magnetoresistance measured at a fixed temperature can be described by R(H, theta) = R(epsilon H-theta, 0) with epsilon(theta) =(cos(2)theta + gamma(-2) sin(2)theta)(1/2), where gamma is the mobility anisotropy constant and theta is the angle between the normal of the sample plane and the magnetic field. The large linear magnetoresistance (up to 36.9% at 400 K and 140 kOe) observed at high fields is ascribed to a classical magnetoresistance caused by mobility fluctuation (Delta mu). The magnetoresistance value at 140 kOe was related to the average mobility () because of the condition Delta mu < . The carrier concentration remained constant and the temperature-dependent resistivity was proportional to the average mobility, as verified by Kohler\\'s rule. Anisotropic dephasing length was deduced from weak localization observed at low temperatures.

  3. Reversible and irreversible temperature-induced changes in exchange-biased planar Hall effect bridge (PHEB) magnetic field sensors

    DEFF Research Database (Denmark)

    Rizzi, G.; Lundtoft, N.C.; Østerberg, F.W.

    2012-01-01

    We investigate the changes of planar Hall effect bridge magnetic field sensors upon exposure to temperatures between 25° C and 90°C. From analyses of the sensor response vs. magnetic fields we extract the exchange bias field Hex, the uniaxial anisotropy field HK and the anisotropic...... magnetoresistance (AMR) of the exchange biased thin film at a given temperature and by comparing measurements carried out at elevated temperatures T with measurements carried out at 25° C after exposure to T, we can separate the reversible from the irreversible changes of the sensor. The results are not only...... relevant for sensor applications but also demonstrate the method as a useful tool for characterizing exchange-biased thin films....

  4. Magnetoresistance stories of double perovskites

    Indian Academy of Sciences (India)

    2015-05-28

    May 28, 2015 ... Tunnelling magnetoresistance (TMR) in polycrystalline double perovskites has been an important research topic for more than a decade now, where the nature of the insulating tunnel barrier is the core issue of debate. Other than the nonmagnetic grain boundaries as conventional tunnel barriers, intragrain ...

  5. Giant magnetoresistance and extraordinary magnetoresistance in inhomogeneous semiconducting DyNiBi

    OpenAIRE

    Casper, Frederick; Felser, Claudia

    2007-01-01

    The semiconducting half-Heulser compound DyNiBi shows a negative giant magnetoresistance (GMR) below 200 K. Except for a weak deviation, this magnetoresistance scales roughly with the square of the magnetization in the paramagnetic state, and is related to the metal-insulator transition. At low temperature, a positive magnetoresistance is found, which can be suppressed by high fields. The magnitude of the positive magnetoresistance changes slightly with the amount of impurity phase.

  6. Colossal Magnetoresistance Manganites and Related Prototype Devices

    OpenAIRE

    Liu, Yukuai; Yin, Yuewei; Li, Xiaoguang

    2013-01-01

    We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTiO3 pn junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions ...

  7. Fast Magnetoresistive Random-Access Memory

    Science.gov (United States)

    Wu, Jiin-Chuan; Stadler, Henry L.; Katti, Romney R.

    1991-01-01

    Magnetoresistive binary digital memories of proposed new type expected to feature high speed, nonvolatility, ability to withstand ionizing radiation, high density, and low power. In memory cell, magnetoresistive effect exploited more efficiently by use of ferromagnetic material to store datum and adjacent magnetoresistive material to sense datum for readout. Because relative change in sensed resistance between "zero" and "one" states greater, shorter sampling and readout access times achievable.

  8. Vortex dynamics in supraconductors in the presence of anisotropic pinning

    International Nuclear Information System (INIS)

    Soroka, O.K.

    2004-01-01

    Vortex dynamics in two different classes of superconductors with anisotropic unidirected pinning sites was experimentally investigated by magnetoresistivity measurements: YBCO-films with unidirected twins and Nb-films deposited on faceted Al 2 O 3 substrate surfaces. For the interpretation of the experimental results a theoretical model based on the Fokker-Planck equation was used. It was proved by X-ray measurements that YBCO films prepared on (001) NdGaO 3 substrates exhibit only one twin orientation in contrast to YBCO films grown on (100) SrTiO 3 substrates. The magnetoresistivity measurements of the YBCO films with unidirected twin boundaries revealed the existence of two new magnetoresistivity components, which is a characteristic feature of a guided vortex motion: an odd longitudinal component with respect to the magnetic field sign reversal and an even transversal component. However, due to the small coherence length in YBCO and the higher density of point-like defects comparing to high-quality YBCO single crystals, the strength of the isotropic point pinning was comparable with the strength of the pinning produced by twins. This smeared out all e ects caused by the pinning anisotropy. The behaviour of the odd longitudinal component was found to be independent of the transport current direction with respect to the twin planes. The magnetoresistivity measurements of faceted Nb films demonstrated the appearance of an odd longitudinal and even transversal component of the magnetoresistivity. The temperature and magnetic field dependences of all relevant magnetoresistivity components were measured. The angles between the average vortex velocity vector and the transport current direction calculated from the experimental data for the different transport current orientations with respect to the facet ridges showed that the vortices moved indeed along the facet ridges. An anomalous Hall effect, i.e. a sign change of the odd transversal magnetoresistivity, has been

  9. Molecular beam epitaxy of single crystal colossal magnetoresistive material

    International Nuclear Information System (INIS)

    Eckstein, J.N.; Bozovic, I.; Rzchowski, M.; O'Donnell, J.; Hinaus, B.; Onellion, M.

    1996-01-01

    The authors have grown films of (LaSr)MnO 3 (LSMO) and (LaCa)MnO 3 (LCMO) using atomic layer-by-layer molecular beam epitaxy (ALL-MBE). Depending on growth conditions, substrate lattice constant and the exact cation stoichiometry, the films are either pseudomorphic or strain relaxed. The pseudomorphic films show atomically flat surfaces, with a unit cell terrace structure that is a replica of that observed on the slightly vicinal substrates, while the strain relaxed films show bumpy surfaces correlated with a dislocation network. All films show tetragonal structure and exhibit anisotropic magnetoresistance, with a low field response, (1/R)(dR/dH) as large as 5 T -1

  10. Rapid DNA multi-analyte immunoassay on a magneto-resistance biosensor

    NARCIS (Netherlands)

    Koets, M.; Wijk, van der T.; Eemeren, van J.T.W.M.; Amerongen, van A.; Prins, M.W.J.

    2009-01-01

    We present the rapid and sensitive detection of amplified DNA on a giant magneto-resistance sensor using superparamagnetic particles as a detection label. The one-step assay is performed on an integrated and miniaturized detection platform suitable for application into point-of-care devices. A

  11. Angle Dependence of the Orbital Magnetoresistance in Bismuth

    Directory of Open Access Journals (Sweden)

    Aurélie Collaudin

    2015-06-01

    Full Text Available We present an extensive study of angle-dependent transverse magnetoresistance in bismuth, with a magnetic field perpendicular to the applied electric current and rotating in three distinct crystallographic planes. The observed angular oscillations are confronted with the expectations of semiclassic transport theory for a multivalley system with anisotropic mobility and the agreement allows us to quantify the components of the mobility tensor for both electrons and holes. A quadratic temperature dependence is resolved. As Hartman argued long ago, this indicates that inelastic resistivity in bismuth is dominated by carrier-carrier scattering. At low temperature and high magnetic field, the threefold symmetry of the lattice is suddenly lost. Specifically, a 2π/3 rotation of magnetic field around the trigonal axis modifies the amplitude of the magnetoresistance below a field-dependent temperature. By following the evolution of this anomaly as a function of temperature and magnetic field, we map the boundary in the (field, temperature plane separating two electronic states. In the less symmetric state, confined to low temperature and high magnetic field, the three Dirac valleys cease to be rotationally invariant. We discuss the possible origins of this spontaneous valley polarization, including a valley-nematic scenario.

  12. Enhanced Magnetoresistance in Molecular Junctions by Geometrical Optimization of Spin-Selective Orbital Hybridization.

    Science.gov (United States)

    Rakhmilevitch, David; Sarkar, Soumyajit; Bitton, Ora; Kronik, Leeor; Tal, Oren

    2016-03-09

    Molecular junctions based on ferromagnetic electrodes allow the study of electronic spin transport near the limit of spintronics miniaturization. However, these junctions reveal moderate magnetoresistance that is sensitive to the orbital structure at their ferromagnet-molecule interfaces. The key structural parameters that should be controlled in order to gain high magnetoresistance have not been established, despite their importance for efficient manipulation of spin transport at the nanoscale. Here, we show that single-molecule junctions based on nickel electrodes and benzene molecules can yield a significant anisotropic magnetoresistance of up to ∼200% near the conductance quantum G0. The measured magnetoresistance is mechanically tuned by changing the distance between the electrodes, revealing a nonmonotonic response to junction elongation. These findings are ascribed with the aid of first-principles calculations to variations in the metal-molecule orientation that can be adjusted to obtain highly spin-selective orbital hybridization. Our results demonstrate the important role of geometrical considerations in determining the spin transport properties of metal-molecule interfaces.

  13. Magnetoresistance of galfenol-based magnetic tunnel junction

    International Nuclear Information System (INIS)

    Gobaut, B.; Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P.; Rafaqat, H.; Roddaro, S.; Rossi, G.; Eddrief, M.; Marangolo, M.

    2015-01-01

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe 1-x Ga x ) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude

  14. Magnetoresistive nanojunctions fabricated via focused ion beam implantation

    Energy Technology Data Exchange (ETDEWEB)

    Stefanescu, E.; Hong, J.; Guduru, R. [Florida International University (United States); Lavrenov, A. [Hitachi Research (United States); Litvinov, D. [University of Houston, Center for Nanomagnetic Systems (United States); Khizroev, S., E-mail: khizroev@fiu.edu [Florida International University (United States)

    2013-01-15

    Focused ion beam (FIB) is used to implant Ga{sup +} ions into a 30-nm thick magnetoresistive element to effectively reduce the track width of the sensor from 1 Micro-Sign m to {approx}80 nm. Through magnetic recording industry-standard spinstand measurements, it is confirmed that a dose of {approx}10{sup 3} ions/cm{sup 2} at a 1-pA FIB current is sufficient to fully 'de-activate' magnetism in the exposed side regions. To record tracks required for spinstand tests, a FIB-trimmed ring type write head is used.

  15. Rashba-Edelstein Magnetoresistance in Metallic Heterostructures.

    Science.gov (United States)

    Nakayama, Hiroyasu; Kanno, Yusuke; An, Hongyu; Tashiro, Takaharu; Haku, Satoshi; Nomura, Akiyo; Ando, Kazuya

    2016-09-09

    We report the observation of magnetoresistance originating from Rashba spin-orbit coupling (SOC) in a metallic heterostructure: the Rashba-Edelstein (RE) magnetoresistance. We show that the simultaneous action of the direct and inverse RE effects in a Bi/Ag/CoFeB trilayer couples current-induced spin accumulation to the electric resistance. The electric resistance changes with the magnetic-field angle, reminiscent of the spin Hall magnetoresistance, despite the fact that bulk SOC is not responsible for the magnetoresistance. We further found that, even when the magnetization is saturated, the resistance increases with increasing the magnetic-field strength, which is attributed to the Hanle magnetoresistance in this system.

  16. Artifacts that mimic ballistic magnetoresistance

    International Nuclear Information System (INIS)

    Egelhoff, W.F. . E-mail : egelhoff@nist.gov; Gan, L.; Ettedgui, H.; Kadmon, Y.; Powell, C.J.; Chen, P.J.; Shapiro, A.J.; McMichael, R.D.; Mallett, J.J.; Moffat, T.P.; Stiles, M.D.; Svedberg, E.B.

    2005-01-01

    We have investigated the circumstances underlying recent reports of very large values of ballistic magnetoresistance (BMR) in nanocontacts between magnetic wires. We find that the geometries used are subject to artifacts due to motion of the wires that distort the nanocontact thereby changing its electrical resistance. Since these nanocontacts are often of atomic scale, reliable experiments would require stability on the atomic scale. No method for achieving such stability in macroscopic wires is apparent. We conclude that macroscopic magnetic wires cannot be used to establish the validity of the BMR effect

  17. Room temperature giant and linear magnetoresistance in topological insulator Bi2Te3 nanosheets.

    Science.gov (United States)

    Wang, Xiaolin; Du, Yi; Dou, Shixue; Zhang, Chao

    2012-06-29

    Topological insulators, a new class of condensed matter having bulk insulating states and gapless metallic surface states, have demonstrated fascinating quantum effects. However, the potential practical applications of the topological insulators are still under exploration worldwide. We demonstrate that nanosheets of a Bi(2)Te(3) topological insulator several quintuple layers thick display giant and linear magnetoresistance. The giant and linear magnetoresistance achieved is as high as over 600% at room temperature, with a trend towards further increase at higher temperatures, as well as being weakly temperature-dependent and linear with the field, without any sign of saturation at measured fields up to 13 T. Furthermore, we observed a magnetic field induced gap below 10 K. The observation of giant and linear magnetoresistance paves the way for 3D topological insulators to be useful for practical applications in magnetoelectronic sensors such as disk reading heads, mechatronics, and other multifunctional electromagnetic applications.

  18. Tunneling magnetoresistance from a symmetry filtering effect

    International Nuclear Information System (INIS)

    Butler, William H

    2008-01-01

    This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe-MgO-Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory. (topical review)

  19. Cr doping induced negative transverse magnetoresistance in C d3A s2 thin films

    Science.gov (United States)

    Liu, Yanwen; Tiwari, Rajarshi; Narayan, Awadhesh; Jin, Zhao; Yuan, Xiang; Zhang, Cheng; Chen, Feng; Li, Liang; Xia, Zhengcai; Sanvito, Stefano; Zhou, Peng; Xiu, Faxian

    2018-02-01

    The magnetoresistance of a material conveys various dynamic information about charge and spin carriers, inspiring both fundamental studies in physics and practical applications such as magnetic sensors, data storage, and spintronic devices. Magnetic impurities play a crucial role in the magnetoresistance as they induce exotic states of matter such as the quantum anomalous Hall effect in topological insulators and tunable ferromagnetic phases in dilute magnetic semiconductors. However, magnetically doped topological Dirac semimetals are hitherto lacking. Here, we report a systematic study of Cr-doped C d3A s2 thin films grown by molecular-beam epitaxy. With the Cr doping, C d3A s2 thin films exhibit unexpected negative transverse magnetoresistance and strong quantum oscillations, bearing a trivial Berry's phase and an enhanced effective mass. More importantly, with ionic gating the magnetoresistance of Cr-doped C d3A s2 thin films can be drastically tuned from negative to positive, demonstrating the strong correlation between electrons and the localized spins of the Cr impurities, which we interpret through the formation of magnetic polarons. Such a negative magnetoresistance under perpendicular magnetic field and its gate tunability have not been observed previously in the Dirac semimetal C d3A s2 . The Cr-induced topological phase transition and the formation of magnetic polarons in C d3A s2 provide insights into the magnetic interaction in Dirac semimetals as well as their potential applications in spintronics.

  20. Magnetoresistive multilayers deposited on the AAO membranes

    International Nuclear Information System (INIS)

    Malkinski, Leszek M.; Chalastaras, Athanasios; Vovk, Andriy; Jung, Jin-Seung; Kim, Eun-Mee; Jun, Jong-Ho; Ventrice, Carl A.

    2005-01-01

    Silicon and GaAs wafers are the most commonly used substrates for deposition of giant magnetoresistive (GMR) multilayers. We explored a new type of a substrate, prepared electrochemically by anodization of aluminum sheets, for deposition of GMR multilayers. The surface of this AAO substrate consists of nanosized hemispheres organized in a regular hexagonal array. The current applied along the substrate surface intersects many magnetic layers in the multilayered structure, which results in enhancement of giant magnetoresistance effect. The GMR effect in uncoupled Co/Cu multilayers was significantly larger than the magnetoresistance of similar structures deposited on Si

  1. Magnetoresistance through spin-polarized p states

    International Nuclear Information System (INIS)

    Papanikolaou, Nikos

    2003-01-01

    We present a theoretical study of the ballistic magnetoresistance in Ni contacts using first-principles, atomistic, electronic structure calculations. In particular we investigate the role of defects in the contact region with the aim of explaining the recently observed spectacular magnetoresistance ratio. Our results predict that the possible presence of spin-polarized oxygen in the contact region could explain conductance changes by an order of magnitude. Electronic transport essentially occurs through spin-polarized oxygen p states, and this mechanism gives a much higher magnetoresistance than that obtained assuming clean atomically sharp domain walls alone

  2. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions.

    Science.gov (United States)

    Zhang, Kun; Li, Huan-Huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-Tao; Tian, Yu-Feng; Yan, Shi-Shen; Lin, Zhao-Jun; Kang, Shi-Shou; Chen, Yan-Xue; Liu, Guo-Lei; Mei, Liang-Mo

    2015-09-21

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current voltage, and this rectification voltage strongly varies with the external magnetic field. We find that the rectification magnetoresistance in Al/Ge Schottky heterojunctions is as large as 250% at room temperature, which is greatly enhanced as compared with the conventional magnetoresistance of 70%. The findings of rectification magnetoresistance open the way to the new nonmagnetic Ge-based spintronics devices of large rectification magnetoresistance at ambient temperature under the alternating-current due to the simultaneous implementation of the rectification and magnetoresistance in the same devices.

  3. Giant magnetoresistance through a single molecule.

    Science.gov (United States)

    Schmaus, Stefan; Bagrets, Alexei; Nahas, Yasmine; Yamada, Toyo K; Bork, Annika; Bowen, Martin; Beaurepaire, Eric; Evers, Ferdinand; Wulfhekel, Wulf

    2011-03-01

    Magnetoresistance is a change in the resistance of a material system caused by an applied magnetic field. Giant magnetoresistance occurs in structures containing ferromagnetic contacts separated by a metallic non-magnetic spacer, and is now the basis of read heads for hard drives and for new forms of random access memory. Using an insulator (for example, a molecular thin film) rather than a metal as the spacer gives rise to tunnelling magnetoresistance, which typically produces a larger change in resistance for a given magnetic field strength, but also yields higher resistances, which are a disadvantage for real device operation. Here, we demonstrate giant magnetoresistance across a single, non-magnetic hydrogen phthalocyanine molecule contacted by the ferromagnetic tip of a scanning tunnelling microscope. We measure the magnetoresistance to be 60% and the conductance to be 0.26G(0), where G(0) is the quantum of conductance. Theoretical analysis identifies spin-dependent hybridization of molecular and electrode orbitals as the cause of the large magnetoresistance.

  4. Magnetic field sensor for isotropically sensing an incident magnetic field in a sensor plane

    Science.gov (United States)

    Pant, Bharat B. (Inventor); Wan, Hong (Inventor)

    2001-01-01

    A magnetic field sensor that isotropically senses an incident magnetic field. This is preferably accomplished by providing a magnetic field sensor device that has one or more circular shaped magnetoresistive sensor elements for sensing the incident magnetic field. The magnetoresistive material used is preferably isotropic, and may be a CMR material or some form of a GMR material. Because the sensor elements are circular in shape, shape anisotropy is eliminated. Thus, the resulting magnetic field sensor device provides an output that is relatively independent of the direction of the incident magnetic field in the sensor plane.

  5. Recent results on the giant magnetoresistance in magnetic multilayers (anisotropy, thermal variation and CCP-GMR)

    Science.gov (United States)

    Dieny, B.; Granovsky, A.; Vedyaev, A.; Ryzhanova, N.; Cowache, C.; Pereira, L. G.

    1995-12-01

    We present some recent results obtained on the electrical transport properties in magnetic multilayers. Three points are addressed. The first one is an experimental demonstration of the existence of an intrinsic anisotropy of the giant magnetoresistance (GMR). The experiments have been carried out on spin-valve samples for which there is no contribution of the usual anisotropic magnetoresistance to the observed magnetoresistance. The GMR amplitude is found to be larger (lower) in the direction perpendicular (parallel) to the sensing current. The second point concerns a quantitative analysis of the thermal variation of the CIP (current-in-plane) GMR in magnetic multilayers. This analysis is based on a semi-classical theory including the spin-intermixing due to spin-flip scattering by magnons. This approach allows quantitatively evaluation of the respective weights of the various contributions to the thermal decrease in GMR: (i) scattering by magnons in the bulk of the ferromagnetic layers; (ii) phonon scattering in the non-magnetic spacer layer; and (iii) interfacial scattering by paramagnetic interfacial layers which may form as the temperature is increased. The third point is a theoretical investigation of the CPP (current perpendicular to the plane) electrical transport through an interface between two semi-infinite metallic materials. It is shown that when a potential step U exists at such an interface, this step gives rise to an interfacial resistance proportional to U2. It also leads to the existence of large oscillations in the electric fields on both sides of the interface.

  6. Magnetoresistance Behavior of Conducting Filaments in Resistive-Switching NiO with Different Resistance States.

    Science.gov (United States)

    Zhao, Diyang; Qiao, Shuang; Luo, Yuxiang; Chen, Aitian; Zhang, Pengfei; Zheng, Ping; Sun, Zhong; Guo, Minghua; Chiang, Fu-Kuo; Wu, Jian; Luo, Jianlin; Li, Jianqi; Kokado, Satoshi; Wang, Yayu; Zhao, Yonggang

    2017-03-29

    The resistive switching (RS) effect in various materials has attracted much attention due to its interesting physics and potential for applications. NiO is an important system and its RS effect has been generally explained by the formation/rupture of Ni-related conducting filaments. These filaments are unique since they are formed by an electroforming process, so it is interesting to explore their magnetoresistance (MR) behavior, which can also shed light on unsolved issues such as the nature of the filaments and their evolution in the RS process, and this behavior is also important for multifunctional devices. Here, we focus on MR behavior in NiO RS films with different resistance states. Rich and interesting MR behaviors have been observed, including the normal and anomalous anisotropic magnetoresistance and tunneling magnetoresistance, which provide new insights into the nature of the filaments and their evolution in the RS process. First-principles calculation reveals the essential role of oxygen migration into the filaments during the RESET process and can account for the experimental results. Our work provides a new avenue for exploration of the conducting filaments in resistive switching materials and is significant for understanding the mechanism of RS effect and multifunctional devices.

  7. Temperature-Dependent Three-Dimensional Anisotropy of the Magnetoresistance in WTe_{2}.

    Science.gov (United States)

    Thoutam, L R; Wang, Y L; Xiao, Z L; Das, S; Luican-Mayer, A; Divan, R; Crabtree, G W; Kwok, W K

    2015-07-24

    Extremely large magnetoresistance (XMR) was recently discovered in WTe_{2}, triggering extensive research on this material regarding the XMR origin. Since WTe_{2} is a layered compound with metal layers sandwiched between adjacent insulating chalcogenide layers, this material has been considered to be electronically two-dimensional (2D). Here we report two new findings on WTe_{2}: (1) WTe_{2} is electronically 3D with a mass anisotropy as low as 2, as revealed by the 3D scaling behavior of the resistance R(H,θ)=R(ϵ_{θ}H) with ϵ_{θ}=(cos^{2}θ+γ^{-2}sin^{2}θ)^{1/2}, θ being the magnetic field angle with respect to the c axis of the crystal and γ being the mass anisotropy and (2) the mass anisotropy γ varies with temperature and follows the magnetoresistance behavior of the Fermi liquid state. Our results not only provide a general scaling approach for the anisotropic magnetoresistance but also are crucial for correctly understanding the electronic properties of WTe_{2}, including the origin of the remarkable "turn-on" behavior in the resistance versus temperature curve, which has been widely observed in many materials and assumed to be a metal-insulator transition.

  8. Modification of magnetoresistance and magnetic properties of Ni thin films by adding Dy interlayer

    Science.gov (United States)

    Vorobiov, S. I.; Shabelnyk, T. M.; Shutylieva, O. V.; Pazukha, I. M.; Chornous, A. M.

    2018-03-01

    The paper reports the influence of dysprosium (Dy) interlayer addition on structure, magnetoresistance and magnetic properties of nickel (Ni) thin films. Trilayer film systems Ni/Dy/Ni have been prepared by alternate electron-beam evaporation. It is demonstrated that all as-prepared and annealed Ni thin films have face-centered cubic structure. The composition of the samples after addition of the Dy interlayer corresponds to the combination of face-centered cubic (Ni) and hexagonal close-packed (Dy) structures. The structure of Ni/Dy/Ni film systems changes from amorphous to polycrystalline when Dy interlayer thickness (t Dy) is more than 15 nm. The value of magnetoresistance increases with the adding the Dy interlayer in both longitudinal and transverse geometries, meanwhile the anisotropic character of magnetoresistance field dependences retained. The saturation and reversal magnetizations are reduced with the increasing of the Dy thickness interlayer, while the coercivity takes the minimum value at t Dy = 15 nm. The following increasing of t Dy leads to increasing of coercivity near to three times. This result indicates the influence of the crystal structure on the magnetic properties of Ni thin films at adding Dy interlayer.

  9. Sensors

    CERN Document Server

    Pigorsch, Enrico

    1997-01-01

    This is the 5th edition of the Metra Martech Directory "EUROPEAN CENTRES OF EXPERTISE - SENSORS." The entries represent a survey of European sensors development. The new edition contains 425 detailed profiles of companies and research institutions in 22 countries. This is reflected in the diversity of sensors development programmes described, from sensors for physical parameters to biosensors and intelligent sensor systems. We do not claim that all European organisations developing sensors are included, but this is a good cross section from an invited list of participants. If you see gaps or omissions, or would like your organisation to be included, please send details. The data base invites the formation of effective joint ventures by identifying and providing access to specific areas in which organisations offer collaboration. This issue is recognised to be of great importance and most entrants include details of collaboration offered and sought. We hope the directory on Sensors will help you to find the ri...

  10. Sensors

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, H. [PBI-Dansensor A/S (Denmark); Toft Soerensen, O. [Risoe National Lab., Materials Research Dept. (Denmark)

    1999-10-01

    A new type of ceramic oxygen sensors based on semiconducting oxides was developed in this project. The advantage of these sensors compared to standard ZrO{sub 2} sensors is that they do not require a reference gas and that they can be produced in small sizes. The sensor design and the techniques developed for production of these sensors are judged suitable by the participating industry for a niche production of a new generation of oxygen sensors. Materials research on new oxygen ion conducting conductors both for applications in oxygen sensors and in fuel was also performed in this project and finally a new process was developed for fabrication of ceramic tubes by dip-coating. (EHS)

  11. Role of spin polarized tunneling in magnetoresistance and low

    Indian Academy of Sciences (India)

    Role of spin polarized tunneling in magnetoresistance and low temperature minimum of polycrystalline La1–KMnO3 ( = 0.05, 0.1, ... Manganites; magnetoresistance; low temperature resistivity; spin polarized tunneling. ... Current Issue

  12. Extraordinary Magnetoresistance Effect in Semiconductor/Metal Hybrid Structure

    KAUST Repository

    Sun, Jian

    2013-06-27

    In this dissertation, the extraordinary magnetoresistance (EMR) effect in semiconductor/metal hybrid structures is studied to improve the performance in sensing applications. Using two-dimensional finite element simulations, the geometric dependence of the output sensitivity, which is a more relevant parameter for EMR sensors than the magnetoresistance (MR), is studied. The results show that the optimal geometry in this case is different from the geometry reported before, where the MR ratio was optimized. A device consisting of a semiconductor bar with length/width ratio of 5~10 and having only 2 contacts is found to exhibit the highest sensitivity. A newly developed three-dimensional finite element model is employed to investigate parameters that have been neglected with the two dimensional simulations utilized so far, i.e., thickness of metal shunt and arbitrary semiconductor/metal interface. The simulations show the influence of those parameters on the sensitivity is up to 10 %. The model also enables exploring the EMR effect in planar magnetic fields. In case of a bar device, the sensitivity to planar fields is about 15 % to 20 % of the one to perpendicular fields. 5 A “top-contacted” structure is proposed to reduce the complexity of fabrication, where neither patterning of the semiconductor nor precise alignment is required. A comparison of the new structure with a conventionally fabricated device shows that a similar magnetic field resolution of 24 nT/√Hz is obtained. A new 3-contact device is developed improving the poor low-field sensitivity observed in conventional EMR devices, resulting from its parabolic magnetoresistance response. The 3-contact device provides a considerable boost of the low field response by combining the Hall effect with the EMR effect, resulting in an increase of the output sensitivity by 5 times at 0.01 T compared to a 2-contact device. The results of this dissertation provide new insights into the optimization of EMR devices

  13. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor

    Directory of Open Access Journals (Sweden)

    Chang Xu

    2018-05-01

    Full Text Available This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs. Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  14. Vehicle Classification Using an Imbalanced Dataset Based on a Single Magnetic Sensor.

    Science.gov (United States)

    Xu, Chang; Wang, Yingguan; Bao, Xinghe; Li, Fengrong

    2018-05-24

    This paper aims to improve the accuracy of automatic vehicle classifiers for imbalanced datasets. Classification is made through utilizing a single anisotropic magnetoresistive sensor, with the models of vehicles involved being classified into hatchbacks, sedans, buses, and multi-purpose vehicles (MPVs). Using time domain and frequency domain features in combination with three common classification algorithms in pattern recognition, we develop a novel feature extraction method for vehicle classification. These three common classification algorithms are the k-nearest neighbor, the support vector machine, and the back-propagation neural network. Nevertheless, a problem remains with the original vehicle magnetic dataset collected being imbalanced, and may lead to inaccurate classification results. With this in mind, we propose an approach called SMOTE, which can further boost the performance of classifiers. Experimental results show that the k-nearest neighbor (KNN) classifier with the SMOTE algorithm can reach a classification accuracy of 95.46%, thus minimizing the effect of the imbalance.

  15. Resistive and magnetoresistive properties of BiSrCaCuO granulated films

    International Nuclear Information System (INIS)

    Mal'tsev, V.A.; Kulikovskij, A.V.; Kustikov, E.V.; Morozov, D.Yu.; Sokolov, Yu.S.

    1995-01-01

    Transport properties of superconducting bridges produced by laser etching of granulated films BiSrCaCuO have been studied. Analysis of nonlinear voltammetric characteristics of the bridges permits making the conclusion on the change in the character of conductivity (two-dimensional-three dimensional system), when approaching the critical point. Measurements of magnetoresistance of the samples suggest a possibility of application of high-temperature superconducting bridges in Bi-system as sensors of weak magnetic fields. 11 refs.; 4 figs

  16. Huge magnetoresistance effect of highly oriented pyrolytic graphite

    International Nuclear Information System (INIS)

    Du Youwei; Wang Zhiming; Ni Gang; Xing Dingyu; Xu Qingyu

    2004-01-01

    Graphite is a quasi-two-dimensional semimetal. However, for usual graphite the magnetoresistance is not so high due to its small crystal size and no preferred orientation. Huge positive magnetoresistance up to 85300% at 4.2 K and 4950% at 300 K under 8.15 T magnetic field was found in highly oriented pyrolytic graphite. The mechanism of huge positive magnetoresistance is not only due to ordinary magnetoresistance but also due to magnetic-field-driven semimetal-insulator transition

  17. Large rectification magnetoresistance in nonmagnetic Al/Ge/Al heterojunctions

    OpenAIRE

    Zhang, Kun; Li, Huan-huan; Grünberg, Peter; Li, Qiang; Ye, Sheng-tao; Tian, Yu-feng; Yan, Shi-shen; Lin, Zhao-jun; Kang, Shi-shou; Chen, Yan-xue; Liu, Guo-lei; Mei, and Liang-mo

    2015-01-01

    Magnetoresistance and rectification are two fundamental physical properties of heterojunctions and respectively have wide applications in spintronics devices. Being different from the well known various magnetoresistance effects, here we report a brand new large magnetoresistance that can be regarded as rectification magnetoresistance: the application of a pure small sinusoidal alternating-current to the nonmagnetic Al/Ge Schottky heterojunctions can generate a significant direct-current volt...

  18. Anisotropic properties of single crystals of high Tc superconductors

    International Nuclear Information System (INIS)

    Tholence, J.L.; Saint-Paul, M.; Laborde, O.; Monceau, P.; Guillot, M.; Niel, H.; Levet, J.C.; Potel, M.; Padiou, J.; Gougeon, P.

    1990-01-01

    In this article the authors make a review of some of the anisotropic properties of high T c compounds, essentially RE Ba 2 Cu 3 O 7 , Bi-SR-Ca-Cu-O and Tl-Ca-Ba-Cu-O systems. In section 2 a short description of the crystal growth is reported. Section 3 deals with the anisotropic elastic properties measured by ultrasonic techniques. In section 4 the authors discuss the anisotropy in magnetization measurements and consequently on the critical currents. Section 5 concerns the magnetoresistance measurements, and the determination of the superconducting critical magnetic field H c2 . Finally in section 6, in conclusion of result described in sections 4 and 5, the authors discuss on the pinning force and on the controversial Lorentz force for explaining the broadening of the superconducting transition under magnetic field. The authors apologize for not having quoted all the works published on these different topics, which is in fact practically impossible

  19. Flexible magnetoimpidence sensor

    KAUST Repository

    Kavaldzhiev, Mincho

    2015-05-01

    Recently, flexible electronic devices have attracted increasing interest, due to the opportunities they promise for new applications such as wearable devices, where the components are required to flex during normal use[1]. In this light, different magnetic sensors, like microcoil, spin valve, giant magnetoresistance (GMR), magnetoimpedance (MI), have been studied previously on flexible substrates.

  20. Magnetoresistance in terbium and holmium single crystals

    International Nuclear Information System (INIS)

    Singh, R.L.; Jericho, M.H.; Geldart, D.J.W.

    1976-01-01

    The longitudinal magnetoresistance of single crystals of terbium and holmium metals in their low-temperature ferromagnetic phase has been investigated in magnetic fields up to 80 kOe. Typical magnetoresistance isotherms exhibit a minimum which increases in depth and moves to higher fields as the temperature increases. The magnetoresistance around 1 0 K, where inelastic scattering is negligible, has been interpreted as the sum of a negative contribution due to changes in the domain structure and a positive contribution due to normal magnetoresistance. At higher temperatures, a phenomenological approach has been developed to extract the inelastic phonon and spin-wave components from the total measured magnetoresistance. In the temperature range 4--20 0 K (approximately), the phonon resistivity varies as T 3 . 7 for all samples. Approximate upper and lower bounds have been placed on the spin-wave resistivity which is also found to be described by a simple power law in this temperature range. The implications of this result for theoretical treatments of spin-wave resistivity due to s-f exchange interactions are considered. It is concluded that the role played by the magnon energy gap is far less transparent than previously suggested

  1. Angle-dependent magnetoresistance and quantum oscillations in high-mobility semimetal LuPtBi

    KAUST Repository

    Xu, Guizhou; Hou, Zhipeng; Wang, Yue; Zhang, Xiaoming; Zhang, Hongwei; Liu, Enke; Xi, X; Xu, Feng; Wu, Guangheng; Zhang, Xixiang; Wang, Wenhong

    2017-01-01

    The recent discovery of ultrahigh mobility and large positive magnetoresistance in topologically non-trivial Half-Heusler semimetal LuPtBi provides a unique playground for studying exotic physics and significant perspective for device applications. As an fcc-structured electron-hole-compensated semimetal, LuPtBi theoretically exhibits six symmetrically arranged anisotropic electron Fermi pockets and two nearly-spherical hole pockets, offering the opportunity to explore the physics of Fermi surface with a simple angle-related magnetotransport properties. In this work, through the angle-dependent transverse magnetoresistance measurements, in combination with high-field SdH quantum oscillations, we achieved to map out a Fermi surface with six anisotropic pockets in the high-temperature and low-field regime, and furthermore, identify a possible magnetic field driven Fermi surface change at lower temperatures. Reasons account for the Fermi surface change in LuPtBi are discussed in terms of the field-induced electron evacuation due to Landau quantization.

  2. Angle-dependent magnetoresistance and quantum oscillations in high-mobility semimetal LuPtBi

    KAUST Repository

    Xu, Guizhou

    2017-03-14

    The recent discovery of ultrahigh mobility and large positive magnetoresistance in topologically non-trivial Half-Heusler semimetal LuPtBi provides a unique playground for studying exotic physics and significant perspective for device applications. As an fcc-structured electron-hole-compensated semimetal, LuPtBi theoretically exhibits six symmetrically arranged anisotropic electron Fermi pockets and two nearly-spherical hole pockets, offering the opportunity to explore the physics of Fermi surface with a simple angle-related magnetotransport properties. In this work, through the angle-dependent transverse magnetoresistance measurements, in combination with high-field SdH quantum oscillations, we achieved to map out a Fermi surface with six anisotropic pockets in the high-temperature and low-field regime, and furthermore, identify a possible magnetic field driven Fermi surface change at lower temperatures. Reasons account for the Fermi surface change in LuPtBi are discussed in terms of the field-induced electron evacuation due to Landau quantization.

  3. Magnetoresistance in Hybrid Pt/CoFe2O4 Bilayers Controlled by Competing Spin Accumulation and Interfacial Chemical Reconstruction.

    Science.gov (United States)

    Vasili, Hari Babu; Gamino, Matheus; Gàzquez, Jaume; Sánchez, Florencio; Valvidares, Manuel; Gargiani, Pierluigi; Pellegrin, Eric; Fontcuberta, Josep

    2018-04-11

    Pure spin currents have potential for use in energy-friendly spintronics. They can be generated by a flow of charge along a nonmagnetic metal with large spin-orbit coupling. This produces a spin accumulation at the surfaces, controllable by the magnetization of an adjacent ferromagnetic layer. Paramagnetic metals typically used are close to ferromagnetic instability and thus magnetic proximity effects can contribute to the observed angular-dependent magnetoresistance (ADMR). As interface phenomena govern the spin conductance across the metal/ferromagnetic-insulator heterostructures, unraveling these distinct contributions is pivotal for a full understanding of spin current conductance. Here, we report X-ray absorption and magnetic circular dichroism (XMCD) at Pt M and (Co, Fe) L absorption edges and atomically resolved energy electron loss spectroscopy (EELS) data of Pt/CoFe 2 O 4 bilayers, where CoFe 2 O 4 layers have been capped by Pt grown at different temperatures. It was found that the ADMR differs dramatically, dominated either by spin Hall magnetoresistance (SMR) associated with the spin Hall effect or by anisotropic magnetoresistance. The XMCD and EELS data indicate that the Pt layer grown at room temperature does not display any magnetic moment, whereas when grown at a higher temperature, it becomes magnetic due to interfacial Pt-(Co, Fe) alloying. These results enable differentiation of spin accumulation from interfacial chemical reconstructions and tailoring of the angular-dependent magnetoresistance.

  4. Spin Hall magnetoresistance at high temperatures

    International Nuclear Information System (INIS)

    Uchida, Ken-ichi; Qiu, Zhiyong; Kikkawa, Takashi; Iguchi, Ryo; Saitoh, Eiji

    2015-01-01

    The temperature dependence of spin Hall magnetoresistance (SMR) in Pt/Y 3 Fe 5 O 12 (YIG) bilayer films has been investigated in a high temperature range from room temperature to near the Curie temperature of YIG. The experimental results show that the magnitude of the magnetoresistance ratio induced by the SMR monotonically decreases with increasing the temperature and almost disappears near the Curie temperature. We found that, near the Curie temperature, the temperature dependence of the SMR in the Pt/YIG film is steeper than that of a magnetization curve of the YIG; the critical exponent of the magnetoresistance ratio is estimated to be 0.9. This critical behavior of the SMR is attributed mainly to the temperature dependence of the spin-mixing conductance at the Pt/YIG interface

  5. Magnetoresistance of galfenol-based magnetic tunnel junction

    Energy Technology Data Exchange (ETDEWEB)

    Gobaut, B., E-mail: benoit.gobaut@elettra.eu [Sincrotrone Trieste S.C.p.A., S.S. 14 Km 163.5, Area Science Park, 34149 Trieste (Italy); Vinai, G.; Castán-Guerrero, C.; Krizmancic, D.; Panaccione, G.; Torelli, P. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Rafaqat, H. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); ICTP, Trieste (Italy); Roddaro, S. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); NEST, Scuola Normale Superiore and Istituto Nanoscienze-CNR, Piazza S. Silvestro 12, 56127 Pisa (Italy); Rossi, G. [Laboratorio TASC, IOM-CNR, S.S. 14km 163.5, Basovizza, 34149 Trieste (Italy); Dipartimento di Fisica, Università di Milano, via Celoria 16, 20133 Milano (Italy); Eddrief, M.; Marangolo, M. [Sorbonne Universités, UPMC Paris 06, CNRS-UMR 7588, Institut des Nanosciences de Paris, 75005, Paris (France)

    2015-12-15

    The manipulation of ferromagnetic layer magnetization via electrical pulse is driving an intense research due to the important applications that this result will have on memory devices and sensors. In this study we realized a magnetotunnel junction in which one layer is made of Galfenol (Fe{sub 1-x}Ga{sub x}) which possesses one of the highest magnetostrictive coefficient known. The multilayer stack has been grown by molecular beam epitaxy and e-beam evaporation. Optical lithography and physical etching have been combined to obtain 20x20 micron sized pillars. The obtained structures show tunneling conductivity across the junction and a tunnel magnetoresistance (TMR) effect of up to 11.5% in amplitude.

  6. On the magnetoresistance of heavy fermion compounds

    International Nuclear Information System (INIS)

    Lee Chengchung; Chen Chung

    1992-09-01

    Starting from two-conduction-band Anderson lattice model, the magneto-transport properties of heavy fermion systems are studied in the slave boson mean field theory. The residual magnetoresistivity induced by different kinds of impurities is calculated, and the experimentally detected positive maximum structure in the residual magnetoresistance of heavy fermion systems is reproduced. The transition of field-dependent resistivity from nonmonotonic to monotonic behaviour with increasing temperature can be explained naturally by including the charge fluctuation effect. The influence of applied pressure is also investigated. (author). 22 refs, 5 figs

  7. Probing giant magnetoresistance with THz spectroscopy

    DEFF Research Database (Denmark)

    Jin, Zuanming; Tkach, Alexander; Casper, Frederick

    2014-01-01

    We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA.......We observe a giant magnetoresistance effect in CoFe/Cu-based multistack using THz time-domain spectroscopy. The magnetic field-dependent dc conductivity, electron scattering time, as well as spin-asymmetry parameter of the structure are successfully determined. © 2014 OSA....

  8. Effects of disorder on the out-of-plane magnetoresistance in the high-Tc BISCCO compound

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1997-01-01

    An explanation is proposed to account for the observed anisotropic out-of-plane magnetoresistivity of the single crystal high temperature superconductor BISCCO compound. The explanation is based on a dynamic scaling model for conductivity fluctuations in the superconducting matrix. In this model, it is assumed that the c-axis conduction in an applied field parallel to the c-direction occurs through defect-mediated interplanar ''weak links'' which behave as an array of parallel, independently fluctuating, superconducting channels. The model also takes into account the possibility of thermally induced dimensional crossover above which the superconducting layers are effectively decoupled and behave as a quasi two-dimensional system. The predictions of the model are consistent with the magnetoresistance measurements reported for two separate experiments on Bi 2 Sr 2 CaCu 2 O 8 single crystals. (orig.)

  9. Dynamic Vehicle Detection via the Use of Magnetic Field Sensors

    Directory of Open Access Journals (Sweden)

    Vytautas Markevicius

    2016-01-01

    Full Text Available The vehicle detection process plays the key role in determining the success of intelligent transport management system solutions. The measurement of distortions of the Earth’s magnetic field using magnetic field sensors served as the basis for designing a solution aimed at vehicle detection. In accordance with the results obtained from research into process modeling and experimentally testing all the relevant hypotheses an algorithm for vehicle detection using the state criteria was proposed. Aiming to evaluate all of the possibilities, as well as pros and cons of the use of anisotropic magnetoresistance (AMR sensors in the transport flow control process, we have performed a series of experiments with various vehicles (or different series from several car manufacturers. A comparison of 12 selected methods, based on either the process of determining the peak signal values and their concurrence in time whilst calculating the delay, or by measuring the cross-correlation of these signals, was carried out. It was established that the relative error can be minimized via the Z component cross-correlation and Kz criterion cross-correlation methods. The average relative error of vehicle speed determination in the best case did not exceed 1.5% when the distance between sensors was set to 2 m.

  10. Magnetoresistances in Ni80Fe20-ITO granular film

    International Nuclear Information System (INIS)

    Gao Chunhong; Chen Ke; Yang Yanxia; Xiong Yuanqiang; Chen Peng

    2012-01-01

    Highlights: ► Magnetoresistance (MR) in Ni 80 Fe 20 -ITO granular film are investigated. ► MR is positive at high temperature, and is negative at low temperature. ► MR results from the competition among three mechanisms. - Abstract: The magnetic properties, electrical properties and magnetoresistance are investigated in Ni 80 Fe 20 -ITO granular film with various volume fractions V NF of Ni 80 Fe 20 . The room temperature magnetization hysteresis of sample with V NF = 25% shows superparamagnetic behavior. Current-voltage curve of sample with V NF = 25% at 175 K shows typical tunneling-type behavior. The magnetoresistances of samples with low V NF are positive at high temperature, and are negative at low temperature. The temperature-dependent magnetoresistances result from the competition among ordinary magnetoresistances, the granular-typed tunneling magnetoresistance and the spin-mixing induced magnetoresistances.

  11. Large magnetoresistance in non-magnetic silver chalcogenides and new class of magnetoresistive compounds

    Science.gov (United States)

    Saboungi, Marie-Louis; Price, David C. L.; Rosenbaum, Thomas F.; Xu, Rong; Husmann, Anke

    2001-01-01

    The heavily-doped silver chalcogenides, Ag.sub.2+.delta. Se and Ag.sub.2+.delta. Te, show magnetoresistance effects on a scale comparable to the "colossal" magnetoresistance (CMR) compounds. Hall coefficient, magnetoconductivity, and hydrostatic pressure experiments establish that elements of narrow-gap semiconductor physics apply, but both the size of the effects at room temperature and the linear field dependence down to fields of a few Oersteds are surprising new features.

  12. Enhanced temperature-independent magnetoresistance below the ...

    Indian Academy of Sciences (India)

    The film exhibits a large nearly temperature-independent magnetoresistance around 99% in the temperature regime below p. The zero field-cooled (ZFC) and field-cooled (FC) magnetization data at 50 Oe shows irreversibility between the ZFC and FC close to the ferromagnetic transition temperature c = 250 K. The ZFC ...

  13. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  14. Magnetic and magnetoresistance studies of nanometric electrodeposited Co films and Co/Cu layered structures: Influence of magnetic layer thickness

    Energy Technology Data Exchange (ETDEWEB)

    Zsurzsa, S., E-mail: zsurzsa.sandor@wigner.mta.hu; Péter, L.; Kiss, L.F.; Bakonyi, I.

    2017-01-01

    The magnetic properties and the magnetoresistance behavior were investigated for electrodeposited nanoscale Co films, Co/Cu/Co sandwiches and Co/Cu multilayers with individual Co layer thicknesses ranging from 1 nm to 20 nm. The measured saturation magnetization values confirmed that the nominal and actual layer thicknesses are in fairly good agreement. All three types of layered structure exhibited anisotropic magnetoresistance for thick magnetic layers whereas the Co/Cu/Co sandwiches and Co/Cu multilayers with thinner magnetic layers exhibited giant magnetoresistance (GMR), the GMR magnitude being the largest for the thinnest Co layers. The decreasing values of the relative remanence and the coercive field when reducing the Co layer thickness down to below about 3 nm indicated the presence of superparamagnetic (SPM) regions in the magnetic layers which could be more firmly evidenced for these samples by a decomposition of the magnetoresistance vs. field curves into a ferromagnetic and an SPM contribution. For thicker magnetic layers, the dependence of the coercivity (H{sub c}) on magnetic layer thickness (d) could be described for each of the layered structure types by the usual equation H{sub c}=H{sub co}+a/d{sup n} with an exponent around n=1. The common value of n suggests a similar mechanism for the magnetization reversal by domain wall motion in all three structure types and hints also at the absence of coupling between magnetic layers in the Co/Cu/Co sandwiches and Co/Cu multilayers. - Highlights: • Electrodeposited nanoscale Co films and Co/Cu layered structures. • Co layer thickness (d) dependence of coercivity (H{sub c}) and magnetoresistance. • H{sub c} depends on Co layer thickness according to H{sub c}=H{sub co}+a/d{sup n} with n around 1. • The common n value suggests a similar mechanism of magnetization reversal. • The common n value suggests the absence of coupling between magnetic layers.

  15. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  16. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    Science.gov (United States)

    Huang, S. X.; Chen, Fei; Kang, Jian; Zang, Jiadong; Shu, G. J.; Chou, F. C.; Chien, C. L.

    2016-06-01

    The B20 chiral magnets with broken inversion symmetry and C4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii-Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe0.85Co0.15Si that directly reveals the broken C4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin-orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase.

  17. Giant magnetoresistance in CrFeMn alloys

    International Nuclear Information System (INIS)

    Xu, W.M.; Zheng, P.; Chen, Z.J.

    1997-01-01

    The electrical resistance and longitudinal magnetoresistance of Cr 75 (Fe x Mn 1-x ) 25 alloys, x=0.64, 0.72, are studied in the temperature range 1.5-270 K in applied field up to 7.5 T. The magnetoresistance is negative and strongly correlated with the spin reorientation. In the temperature range where the antiferromagnetic and ferromagnetic domains coexist, the samples display giant magnetoresistance which follows a H n -law at high field. (orig.)

  18. Semiclassical theory of magnetoresistance in positionally disordered organic semiconductors

    Science.gov (United States)

    Harmon, N. J.; Flatté, M. E.

    2012-02-01

    A recently introduced percolative theory of unipolar organic magnetoresistance is generalized by treating the hyperfine interaction semiclassically for an arbitrary hopping rate. Compact analytic results for the magnetoresistance are achievable when carrier hopping occurs much more frequently than the hyperfine field precession period. In other regimes the magnetoresistance can be straightforwardly evaluated numerically. Slow and fast hopping magnetoresistance are found to be uniquely characterized by their line shapes. We find that the threshold hopping distance is analogous a phenomenological two-site model's branching parameter, and that the distinction between slow and fast hopping is contingent on the threshold hopping distance.

  19. Magnetoresistance in RCo2 spin-fluctuation systems

    International Nuclear Information System (INIS)

    Gratz, E.; Nowotny, H.; Enser, J.; Bauer, E.; Hense, K.

    2004-01-01

    The effect of the spin fluctuations on the field and temperature dependence of the magnetoresistance in ScCo 2 and LuCo 2 was studied. The experimental data where explained assuming two competing mechanisms determining the magnetoresistance of these substances. One is the 'normal magnetoresistance' caused by the influence of the Lorentz force on conduction electron trajectories. The other is due to the suppression of the spin fluctuations caused by an external magnetic field. This interplay give rise to a pronounced drop of the magnetoresistance towards the lower temperature range

  20. Sensor

    OpenAIRE

    Gleeson, Helen; Dierking, Ingo; Grieve, Bruce; Woodyatt, Christopher; Brimicombe, Paul

    2015-01-01

    An electrical temperature sensor (10) comprises a liquid crystalline material (12). First and second electrically conductive contacts (14), (16), having a spaced relationship there between, contact the liquid crystalline material (12). An electric property measuring device is electrically connected to the first and second contacts (14), (16) and is arranged to measure an electric property of the liquid crystalline material (12). The liquid crystalline material (12) has a transition temperatur...

  1. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  2. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  3. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  4. High magnetoresistance at low magnetic fields in self-assembled ZnO-Co nanocomposite films.

    Science.gov (United States)

    Jedrecy, N; Hamieh, M; Hebert, C; Perriere, J

    2017-07-27

    The solid phase growth of self-assembled nanocrystals embedded in a crystalline host matrix opens up wide perspectives for the coupling of different physical properties, such as magnetic and semiconducting. In this work, we report the pulsed laser growth at room temperature of thin films composed of a dispersed array of ferromagnetic Co (0001) nanoclusters with an in-plane mono-size width of 1.3 nm, embedded in a ZnO (0001) crystalline matrix. The as-grown films lead to very high values of magnetoresistance, ranging at 9 T from -11% at 300 K to -19% at 50 K, with a steep decrease of the magnetoresistance at low magnetic fields. We establish the relationship between the magnetoresistance behavior and the magnetic response of the Co nanocluster assembly. A spin-dependent tunneling of the electrons between the Co nanoclusters through and by the semi-insulating ZnO host is achieved in our films, promising with regard to magnetic field sensors or Si-integrated spintronic devices. The effects of thermal annealing are also discussed.

  5. Tuning giant magnetoresistance in rolled-up Co-Cu nanomembranes by strain engineering.

    Science.gov (United States)

    Müller, Christian; Bof Bufon, Carlos Cesar; Makarov, Denys; Fernandez-Outon, Luis E; Macedo, Waldemar A A; Schmidt, Oliver G; Mosca, Dante Homero

    2012-11-21

    Compact rolled-up Co-Cu nanomembranes of high quality with different numbers of windings are realized by strain engineering. A profound analysis of magnetoresistance (MR) is performed for tubes with a single winding and a varied number of Co-Cu bilayers in the stack. Rolled-up nanomembranes with up to 12 Co-Cu bilayers are successfully fabricated by tailoring the strain state of the Cr bottom layer. By carrying out an angular dependent study, we ruled out the contribution from anisotropic MR and confirm that rolled-up Co-Cu multilayers exhibit giant magnetoresistance (GMR). No significant difference of MR is found for a single wound tube compared with planar devices. In contrast, MR in tubes with multiple windings is increased at low deposition rates of the Cr bottom layer, whereas the effect is not observable at higher rates, suggesting that interface roughness plays an important role in determining the GMR effect of the rolled-up nanomembranes. Furthermore, besides a linear increase of the MR with the number of windings, the self-rolling of nanomembranes substantially reduces the device footprint area.

  6. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  7. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  8. Towards sub-200 nm nano-structuring of linear giant magneto-resistive spin valves by a direct focused ion beam milling process

    International Nuclear Information System (INIS)

    Riedmüller, Benjamin; Huber, Felix; Herr, Ulrich

    2014-01-01

    In this work, we present a detailed investigation of a focused ion beam (FIB) assisted nano-structuring process for giant magneto-resistive (GMR) spin valve sensors. We have performed a quantitative study of the dependence of the GMR ratio as well as the sensor resistance on the ion dose, which is implanted in the active region of our sensors. These findings are correlated with the decrease of magneto-resistive properties after micro- and nano-structuring by the FIB and reveal the importance of ion damage which limits the applicability of FIB milling to GMR devices in the low μm range. Deposition of a protective layer (50 nm SiO 2 ) on top of the sensor structure before milling leads to a preservation of the magneto-resistive properties after the milling procedure down to sensor dimensions of ∼300 nm. The reduction of the sensor dimensions to the nanometer regime is accompanied by a shift of the GMR curves, and a modification of the saturation behavior. Both effects can be explained by a micromagnetic model including the magnetic interaction of free and pinned layer as well as the effect of the demagnetizing field of the free layer on the sensor behavior. The results demonstrate that the FIB technology can be successfully used to prepare spintronic nanostructures

  9. Stripe domains and magnetoresistance in thermally deposited nickel films

    International Nuclear Information System (INIS)

    Sparks, P.D.; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C.

    2004-01-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21±0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane

  10. Stripe domains and magnetoresistance in thermally deposited nickel films

    Science.gov (United States)

    Sparks, P. D.; Stern, N. P.; Snowden, D. S.; Kappus, B. A.; Checkelsky, J. G.; Harberger, S. S.; Fusello, A. M.; Eckert, J. C.

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21+/-0.02 up to 120nm thickness. There is a negative magnetoresistance for fields out of the plane.

  11. Stripe domains and magnetoresistance in thermally deposited nickel films

    Energy Technology Data Exchange (ETDEWEB)

    Sparks, P.D. E-mail: sparks@hmc.edu; Stern, N.P.; Snowden, D.S.; Kappus, B.A.; Checkelsky, J.G.; Harberger, S.S.; Fusello, A.M.; Eckert, J.C

    2004-05-01

    We report a study of the domain structure and magnetoresistance of thermally deposited nickel films. For films thicker than 17 nm, we observe striped domains with period varying with film thickness as a power law with exponent 0.21{+-}0.02 up to 120 nm thickness. There is a negative magnetoresistance for fields out of the plane.

  12. Magnetoresistance in molybdenite (MoS2) crystals

    International Nuclear Information System (INIS)

    Chakraborty, B.R.; Dutta, A.K.

    1975-01-01

    The principal magnetoresistance ratios of molybdenite (MoS 2 ), the naturally occurring semiconducting crystal, have been investigated at magnetic fields ranging from 4.5 KOe and within the temperature range 300 0 K to 700 0 K. Unlike some previous observations, magnetoresistance has been found to be negative. (author)

  13. Dramatically decreased magnetoresistance in non-stoichiometric WTe2 crystals.

    Science.gov (United States)

    Lv, Yang-Yang; Zhang, Bin-Bin; Li, Xiao; Pang, Bin; Zhang, Fan; Lin, Da-Jun; Zhou, Jian; Yao, Shu-Hua; Chen, Y B; Zhang, Shan-Tao; Lu, Minghui; Liu, Zhongkai; Chen, Yulin; Chen, Yan-Feng

    2016-05-27

    Recently, the layered semimetal WTe2 has attracted renewed interest owing to the observation of a non-saturating and giant positive magnetoresistance (~10(5)%), which can be useful for magnetic memory and spintronic devices. However, the underlying mechanisms of the giant magnetoresistance are still under hot debate. Herein, we grew the stoichiometric and non-stoichiometric WTe2 crystals to test the robustness of giant magnetoresistance. The stoichiometric WTe2 crystals have magnetoresistance as large as 3100% at 2 K and 9-Tesla magnetic field. However, only 71% and 13% magnetoresistance in the most non-stoichiometry (WTe1.80) and the highest Mo isovalent substitution samples (W0.7Mo0.3Te2) are observed, respectively. Analysis of the magnetic-field dependent magnetoresistance of non-stoichiometric WTe2 crystals substantiates that both the large electron-hole concentration asymmetry and decreased carrier mobility, induced by non-stoichiometry, synergistically lead to the decreased magnetoresistance. This work sheds more light on the origin of giant magnetoresistance observed in WTe2.

  14. Colossal Magnetoresistance in La-Y-Ca-Mn-O Films

    NARCIS (Netherlands)

    Chen, L.H.; Tiefel, T.H.; Jin, S.; Palstra, T.T.M.; Ramesh, R.; Kwon, C.

    1996-01-01

    Magnetoresistance behavior of La0.60Y0.07CaMnOx, thin films epitaxially grown on LaAlO3 has been investigated. The films exhibit colossal magnetoresistance with the MR ratio in excess of 10^8% at ~60K, H = 7T, which is the highest ever reported for thin film manganites. The partial substitution of

  15. Crossover of angular dependent magnetoresistance with the metal-insulator transition in colossal magnetoresistive manganite films

    DEFF Research Database (Denmark)

    Chen, Yunzhong; Sun, J.R.; Zhao, T.Y.

    2009-01-01

    The temperature and magnetic field dependence of angular dependent magnetoresistance (AMR) along two orthogonal directions ([100] and [01]) was investigated in a charge-orbital-ordered Sm0.5Ca0.5MnO3 (SCMO) film grown on (011)-oriented SrTiO3 substrates. A dramatic decrease of AMR magnitude in bo...

  16. Magnetoresistance effect in a both magnetically and electrically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu, Mao-Wang; Yang, Guo-Jian

    2007-01-01

    We propose a magnetoresistance device in a both magnetically and electrically modulated two-dimensional electron gas, which can be realized experimentally by the deposition, on the top and bottom of a semiconductor heterostructure, of two parallel metallic ferromagnetic strips under an applied voltage. It is shown that a considerable magnetoresistance effect can be achieved in such a device due to the significant transmission difference for electrons through parallel and antiparallel magnetization configurations. It is also shown that the magnetoresistance ratio depends strongly on the applied voltage to the stripe in the device. These interesting properties may provide an alternative scheme to realize magnetoresistance effect in hybrid ferromagnetic/semiconductor nanosystems, and this system may be used as a voltage-tunable magnetoresistance device

  17. Hopping magnetotransport via nonzero orbital momentum states and organic magnetoresistance.

    Science.gov (United States)

    Alexandrov, Alexandre S; Dediu, Valentin A; Kabanov, Victor V

    2012-05-04

    In hopping magnetoresistance of doped insulators, an applied magnetic field shrinks the electron (hole) s-wave function of a donor or an acceptor and this reduces the overlap between hopping sites resulting in the positive magnetoresistance quadratic in a weak magnetic field, B. We extend the theory of hopping magnetoresistance to states with nonzero orbital momenta. Different from s states, a weak magnetic field expands the electron (hole) wave functions with positive magnetic quantum numbers, m>0, and shrinks the states with negative m in a wide region outside the point defect. This together with a magnetic-field dependence of injection/ionization rates results in a negative weak-field magnetoresistance, which is linear in B when the orbital degeneracy is lifted. The theory provides a possible explanation of a large low-field magnetoresistance in disordered π-conjugated organic materials.

  18. Large magnetoresistance effect in nitrogen-doped silicon

    Directory of Open Access Journals (Sweden)

    Tao Wang

    2017-05-01

    Full Text Available In this work, we reported a large magnetoresistance effect in silicon by ion implantation of nitrogen atoms. At room temperature, the magnetoresistance of silicon reaches 125 % under magnetic field 1.7 T and voltage bias -80 V. By applying an alternating magnetic field with a frequency (f of 0.008 Hz, we find that the magnetoresistance of silicon is divided into f and 2f two signal components, which represent the linear and quadratic magnetoresistance effects, respectively. The analysis based on tuning the magnetic field and the voltage bias reveals that electric-field-induced space-charge effect plays an important role to enhance both the linear and quadratic magnetoresistance effects. Observation as well as a comprehensive explanation of large MR in silicon, especially based on semiconductor CMOS implantation technology, will be an important progress towards magnetoelectronic applications.

  19. Spin-flip induced magnetoresistance in positionally disordered organic solids.

    Science.gov (United States)

    Harmon, N J; Flatté, M E

    2012-05-04

    A model for magnetoresistance in positionally disordered organic materials is presented and solved using percolation theory. The model describes the effects of spin dynamics on hopping transport by considering changes in the effective density of hopping sites, a key quantity determining the properties of percolative transport. Faster spin-flip transitions open up "spin-blocked" pathways to become viable conduction channels and hence produce magnetoresistance. Features of this percolative magnetoresistance can be found analytically in several regimes, and agree with previous measurements, including the sensitive dependence of the magnetic-field dependence of the magnetoresistance on the ratio of the carrier hopping time to the hyperfine-induced carrier spin precession time. Studies of magnetoresistance in known systems with controllable positional disorder would provide an additional stringent test of this theory.

  20. Large magnetoresistance tunnelling through a magnetically modulated nanostructure

    International Nuclear Information System (INIS)

    Lu Maowang; Zhang Lide

    2003-01-01

    Based on a combination of an inhomogeneous magnetic field and a two-dimensional electron gas, we have constructed a giant magnetoresistance nanostructure, which can be realized experimentally by the deposition of two parallel ferromagnetic strips on top of a semiconductor heterostructure. We have theoretically studied the magnetoresistance for electrons tunnelling through this nanostructure. It is shown that there exists a significant transmission difference between the parallel and antiparallel magnetization configurations, which leads to a large magnetoresistance. It is also shown that the magnetoresistance ratio strongly depends not only on incident electronic energy but also on the ferromagnetic strips, and thus a much larger magnetoresistance ratio can be obtained by properly fabricating the ferromagnetic strips in the system

  1. Electrically tuned magnetic order and magnetoresistance in a topological insulator.

    Science.gov (United States)

    Zhang, Zuocheng; Feng, Xiao; Guo, Minghua; Li, Kang; Zhang, Jinsong; Ou, Yunbo; Feng, Yang; Wang, Lili; Chen, Xi; He, Ke; Ma, Xucun; Xue, Qikun; Wang, Yayu

    2014-09-15

    The interplay between topological protection and broken time reversal symmetry in topological insulators may lead to highly unconventional magnetoresistance behaviour that can find unique applications in magnetic sensing and data storage. However, the magnetoresistance of topological insulators with spontaneously broken time reversal symmetry is still poorly understood. In this work, we investigate the transport properties of a ferromagnetic topological insulator thin film fabricated into a field effect transistor device. We observe a complex evolution of gate-tuned magnetoresistance, which is positive when the Fermi level lies close to the Dirac point but becomes negative at higher energies. This trend is opposite to that expected from the Berry phase picture, but is intimately correlated with the gate-tuned magnetic order. The underlying physics is the competition between the topology-induced weak antilocalization and magnetism-induced negative magnetoresistance. The simultaneous electrical control of magnetic order and magnetoresistance facilitates future topological insulator based spintronic devices.

  2. Large magnetoresistance in intercalated Cu oxides

    OpenAIRE

    Grigoryan, L.; Furusawa, M.; Hori, H.; Tokumoto, M.

    1997-01-01

    Magnetism and electrical resistance as a function of magnetic field, temperature, and chemical composition are studied in Cu oxides intercalated with metal phthalocyanines MPc, where M is Fe or Ni, and Pc is C_H_N_. An unusually large positive magnetoresistance (MR) of ~ 1200% is observed in FePc-intercalated Bi_Sr_Ca_Cu_O_ samples with two Cu-O layers in the unit cell (n=2). The magnitude of the MR decreased to 40% and ~ 0% in the FePc-intercalated n=3 and n=4 samples, respectively, and to ~...

  3. Diluted magnetic semiconductor nanowires exhibiting magnetoresistance

    Science.gov (United States)

    Yang, Peidong [El Cerrito, CA; Choi, Heonjin [Seoul, KR; Lee, Sangkwon [Daejeon, KR; He, Rongrui [Albany, CA; Zhang, Yanfeng [El Cerrito, CA; Kuykendal, Tevye [Berkeley, CA; Pauzauskie, Peter [Berkeley, CA

    2011-08-23

    A method for is disclosed for fabricating diluted magnetic semiconductor (DMS) nanowires by providing a catalyst-coated substrate and subjecting at least a portion of the substrate to a semiconductor, and dopant via chloride-based vapor transport to synthesize the nanowires. Using this novel chloride-based chemical vapor transport process, single crystalline diluted magnetic semiconductor nanowires Ga.sub.1-xMn.sub.xN (x=0.07) were synthesized. The nanowires, which have diameters of .about.10 nm to 100 nm and lengths of up to tens of micrometers, show ferromagnetism with Curie temperature above room temperature, and magnetoresistance up to 250 Kelvin.

  4. Application of magnetic sensors in automation control

    Energy Technology Data Exchange (ETDEWEB)

    Hou Chunhong [AMETEK Inc., Paoli, PA 19301 (United States); Qian Zhenghong, E-mail: zqian@hdu.edu.cn [Center For Integrated Spintronic Devices (CISD), Hangzhou Dianzi University, Hangzhou, ZJ 310018 (China)

    2011-01-01

    Controls in automation need speed and position feedback. The feedback device is often referred to as encoder. Feedback technology includes mechanical, optical, and magnetic, etc. All advance with new inventions and discoveries. Magnetic sensing as a feedback technology offers certain advantages over other technologies like optical one. With new discoveries like GMR (Giant Magneto-Resistance), TMR (Tunneling Magneto-Resistance) becoming feasible for commercialization, more and more applications will be using advanced magnetic sensors in automation. This paper offers a general review on encoder and applications of magnetic sensors in automation control.

  5. TOPICAL REVIEW: Tunneling magnetoresistance from a symmetry filtering effect

    Directory of Open Access Journals (Sweden)

    William H Butler

    2008-01-01

    Full Text Available This paper provides a brief overview of the young, but rapidly growing field of spintronics. Its primary objective is to explain how as electrons tunnel through simple insulators such as MgO, wavefunctions of certain symmetries are preferentially transmitted. This symmetry filtering property can be converted into a spin-filtering property if the insulator is joined epitaxially to a ferromagnetic electrode with the same two-dimensional symmetry parallel to the interface. A second requirement of the ferromagnetic electrodes is that a wavefunction with the preferred symmetry exists in one of the two spin channels but not in the other. These requirements are satisfied for electrons traveling perpendicular to the interface for Fe–MgO–Fe tunnel barriers. This leads to a large change in the resistance when the magnetic moment of one of the electrodes is rotated relative to those of the other electrode. This large tunneling magnetoresistance effect is being used as the read sensor in hard drives and may form the basis for a new type of magnetic memory.

  6. Integrated Giant Magnetoresistance Technology for Approachable Weak Biomagnetic Signal Detections.

    Science.gov (United States)

    Shen, Hui-Min; Hu, Liang; Fu, Xin

    2018-01-07

    With the extensive applications of biomagnetic signals derived from active biological tissue in both clinical diagnoses and human-computer-interaction, there is an increasing need for approachable weak biomagnetic sensing technology. The inherent merits of giant magnetoresistance (GMR) and its high integration with multiple technologies makes it possible to detect weak biomagnetic signals with micron-sized, non-cooled and low-cost sensors, considering that the magnetic field intensity attenuates rapidly with distance. This paper focuses on the state-of-art in integrated GMR technology for approachable biomagnetic sensing from the perspective of discipline fusion between them. The progress in integrated GMR to overcome the challenges in weak biomagnetic signal detection towards high resolution portable applications is addressed. The various strategies for 1/ f noise reduction and sensitivity enhancement in integrated GMR technology for sub-pT biomagnetic signal recording are discussed. In this paper, we review the developments of integrated GMR technology for in vivo/vitro biomagnetic source imaging and demonstrate how integrated GMR can be utilized for biomagnetic field detection. Since the field sensitivity of integrated GMR technology is being pushed to fT/Hz 0.5 with the focused efforts, it is believed that the potential of integrated GMR technology will make it preferred choice in weak biomagnetic signal detection in the future.

  7. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  8. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  9. Systematic study of doping dependence on linear magnetoresistance in p-PbTe

    International Nuclear Information System (INIS)

    Schneider, J. M.; Chitta, V. A.; Oliveira, N. F.; Peres, M. L.; Castro, S. de; Soares, D. A. W.; Wiedmann, S.; Zeitler, U.; Abramof, E.; Rappl, P. H. O.; Mengui, U. A.

    2014-01-01

    We report on a large linear magnetoresistance effect observed in doped p-PbTe films. While undoped p-PbTe reveals a sublinear magnetoresistance, p-PbTe films doped with BaF 2 exhibit a transition to a nearly perfect linear magnetoresistance behaviour that is persistent up to 30 T. The linear magnetoresistance slope ΔR/ΔB is to a good approximation, independent of temperature. This is in agreement with the theory of Quantum Linear Magnetoresistance. We also performed magnetoresistance simulations using a classical model of linear magnetoresistance. We found that this model fails to explain the experimental data. A systematic study of the doping dependence reveals that the linear magnetoresistance response has a maximum for small BaF 2 doping levels and diminishes rapidly for increasing doping levels. Exploiting the huge impact of doping on the linear magnetoresistance signal could lead to new classes of devices with giant magnetoresistance behavior.

  10. Design and Performance of GMR Sensors for the Detection of Magnetic Microbeads in Biosensors

    National Research Council Canada - National Science Library

    Rife, J. C; Miller, M. M; Sheehan, P. E; Tamanaha, C. R; Tondra, M; Whitman, L. J

    2003-01-01

    We are developing a biosensor system, the Bead ARray Counter (BARC), based on the capture and detection of micron-sized, paramagnetic beads on a chip containing an array of giant magnetoresistive (GMR) sensors...

  11. Electrical properties and granular magnetoresistance in nanomanganite

    Directory of Open Access Journals (Sweden)

    َAli Rostamnejadi

    2017-05-01

    Full Text Available In this research single phaseLa0.7(Sr 1-xBax0.3MnO3(x =0, 0.1 , 0.2 , 0.3 nanomanganite with crystalline size of 18-28 nm have been prepared by sol gel method. The structural properties have been studied using X-ray diffraction spectra with its Rietveld analysis and scaning electron microscope images. The magnetic and elctrical properties have been investigated by measuring the ac magnetic susceptibility and resistivity in the presence of magnetic fields in the range of 0-20 kOe. The obtained results from ac magnetic susceptibility show that the Curie temperture of the samples are above room temperture. The results of resistivity show that the metal-insulator phase transition temperture of and compounds are below room temperture. The resistivity of the samples strongly decreases and their magnetoresistance almost linearly increases by incrasing the applied magnetic field at different tempertures. The value of magnetoresistance for compound is 10 % and 14 % at 275 K and 200 K, and for compound is 13 %  and 27 % at 275 K and 100 K, respectively which are suitable for magnetic field sensing applications. The magneto-transport properties of nanomanganite are described in terms of spin dependent scattering of charge carriers from grain boundaries and their spin dependent tunneling between grains. 

  12. Large linear magnetoresistance and magnetothermopower in layered SrZnSb$_2$

    OpenAIRE

    Wang, Kefeng; Petrovic, C.

    2016-01-01

    We report the large linear magnetoresistance ($\\sim 300\\%$ in 9 T field at 2 K) and magnetothermopower in layered SrZnSb$_2$ crystal with quasi-two-dimensional Sb layers. A crossover from the semiclassical parabolic field dependent magnetoresistance to linear field dependent magnetoresistance with increasing magnetic field is observed. The magnetoresistance behavior can be described very well by combining the semiclassical cyclotron contribution and the quantum limit magnetoresistance. Magnet...

  13. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang

    2017-01-01

    effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic

  14. Non-local magnetoresistance in YIG/Pt nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Goennenwein, Sebastian T. B., E-mail: goennenwein@wmi.badw.de; Pernpeintner, Matthias; Gross, Rudolf; Huebl, Hans [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Nanosystems Initiative Munich (NIM), Schellingstraße 4, 80799 München (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Schlitz, Richard; Ganzhorn, Kathrin [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany); Physik-Department, Technische Universität München, James-Franck-Str. 1, 85748 Garching (Germany); Althammer, Matthias [Walther-Meißner-Institut, Bayerische Akademie der Wissenschaften, Walther-Meißner-Str. 8, 85748 Garching (Germany)

    2015-10-26

    We study the local and non-local magnetoresistance of thin Pt strips deposited onto yttrium iron garnet. The local magnetoresistive response, inferred from the voltage drop measured along one given Pt strip upon current-biasing it, shows the characteristic magnetization orientation dependence of the spin Hall magnetoresistance. We simultaneously also record the non-local voltage appearing along a second, electrically isolated, Pt strip, separated from the current carrying one by a gap of a few 100 nm. The corresponding non-local magnetoresistance exhibits the symmetry expected for a magnon spin accumulation-driven process, confirming the results recently put forward by Cornelissen et al. [“Long-distance transport of magnon spin information in a magnetic insulator at room temperature,” Nat. Phys. (published online 14 September 2015)]. Our magnetotransport data, taken at a series of different temperatures as a function of magnetic field orientation, rotating the externally applied field in three mutually orthogonal planes, show that the mechanisms behind the spin Hall and the non-local magnetoresistance are qualitatively different. In particular, the non-local magnetoresistance vanishes at liquid Helium temperatures, while the spin Hall magnetoresistance prevails.

  15. Resistivity dependence of magnetoresistance in Co/ZnO films.

    Science.gov (United States)

    Quan, Zhi-Yong; Zhang, Li; Liu, Wei; Zeng, Hao; Xu, Xiao-Hong

    2014-01-06

    We report the dependence of magnetoresistance effect on resistivity (ρ) in Co/ZnO films deposited by magnetron sputtering at different sputtering pressures with different ZnO contents. The magnitude of the resistivity reflects different carrier transport regimes ranging from metallic to hopping behaviors. Large room-temperature magnetoresistance greater than 8% is obtained in the resistivity range from 0.08 to 0.5 Ω · cm. The magnetoresistance value decreases markedly when the resistivity of the films is less than 0.08 Ω · cm or greater than 0.5 Ω · cm. When 0.08 Ω · cm magnetoresistance effect. When ρ > 0.5 Ω · cm, the spin-independent higher-order hopping (N > 2) comes into play and decreases the tunneling magnetoresistance value. For the samples with ρ magnetoresistance is mainly ascribed to the formation of percolation paths through interconnected elongated metallic Co particles. This observation is significant for the improvement of room-temperature magnetoresistance value for future spintronic devices.

  16. New type magnetoresistance in Co/Si systems

    International Nuclear Information System (INIS)

    Honda, S.; Ishikawa, T.; Takai, K.; Mitarai, Y.; Harada, H.

    2005-01-01

    The magnetoresistance (MR) properties in both the sputter-deposited Co/Si multilayers and the system consisting of Co evaporated on the anodized Si have been examined. In the Co/Si multilayers, at room temperature both the sharp ordinary magnetoresistance (OMR) and the negative granular-type giant magnetoresistance (GMR) appear, while at low temperatures only the large OMR of about 3.5% is observed for in-plane field. In the Co/anodized-Si system, at room temperature the MR is negligibly small, while it increases steeply with decreasing temperature and very large OMR of about 22% is obtained at 110 K for perpendicular field

  17. Colossal magnetoresistance in manganites and related prototype devices

    International Nuclear Information System (INIS)

    Liu Yu-Kuai; Yin Yue-Wei; Li Xiao-Guang

    2013-01-01

    We review colossal magnetoresistance in single phase manganites, as related to the field sensitive spin-charge interactions and phase separation; the rectifying property and negative/positive magnetoresistance in manganite/Nb:SrTiO 3 p—n junctions in relation to the special interface electronic structure; magnetoelectric coupling in manganite/ferroelectric structures that takes advantage of strain, carrier density, and magnetic field sensitivity; tunneling magnetoresistance in tunnel junctions with dielectric, ferroelectric, and organic semiconductor spacers using the fully spin polarized nature of manganites; and the effect of particle size on magnetic properties in manganite nanoparticles. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  18. Large magnetoresistance in La-Ca-Mn-O films

    International Nuclear Information System (INIS)

    Chen, L.H.; Jin, S.; Tiefel, T.H.; Ramesh, R.; Schurig, D.

    1995-01-01

    A very large magnetoresistance value in excess of 10 6 % has been obtained at 110 K, H = 6 T in La-Ca-Mn-O thin films epitaxially grown on LaAlO 3 substrates by pulsed laser deposition. The as-deposited film exhibits a substantial magnetoresistance value of 39,000%, which is further improved by heat treatment. A strong dependence of the magnetoresistance on film thickness was observed, with the value reduced by orders of magnitude when the film is made thicker than ∼2,000 angstrom. This behavior is interpreted in terms of lattice strain in the La-Ca-Mn-O films

  19. Magnetoresistive properties of non-uniform state of antiferromagnetic semiconductors

    International Nuclear Information System (INIS)

    Krivoruchko, V.N.

    1996-01-01

    The phenomenological model of magnetoresistive properties of magneto-non-single-phase state of alloyed magnetic semiconductors is considered using the concept derived for a description of magnetoresistive effects in layered and granular magnetic metals. By assuming that there exists a magneto-non-single state in the manganites having the perovskite structure, it is possible to describe, in the framework of above approach, large magnetoresistive effects of manganite phases with antiferromagnetic order and semiconductor-type conductivity as well as those with antiferromagnetic properties and metallic-type conductivity

  20. Magnetoresistance and Hall resistivity of semimetal WTe2 ultrathin flakes.

    Science.gov (United States)

    Luo, Xin; Fang, Chi; Wan, Caihua; Cai, Jialin; Liu, Yong; Han, Xiufeng; Lu, Zhihong; Shi, Wenhua; Xiong, Rui; Zeng, Zhongming

    2017-04-07

    This article reports the characterization of WTe 2 thin flake magnetoresistance and Hall resistivity. We found it does not exhibit magnetoresistance saturation when subject to high fields, in a manner similar to their bulk characteristics. The linearity of Hall resistivity in our devices confirms the compensation of electrons and holes. By relating experimental results to a classic two-band model, the lower magnetoresistance values in our samples is demonstrated to be caused by decreased carrier mobility. The dependence of mobility on temperature indicates the main role of optical phonon scattering at high temperatures. Our results provide more detailed information on carrier behavior and scattering mechanisms in WTe 2 thin films.

  1. Significant enhancement of magnetoresistance with the reduction of particle size in nanometer scale

    Science.gov (United States)

    Das, Kalipada; Dasgupta, P.; Poddar, A.; Das, I.

    2016-01-01

    The Physics of materials with large magnetoresistance (MR), defined as the percentage change of electrical resistance with the application of external magnetic field, has been an active field of research for quite some times. In addition to the fundamental interest, large MR has widespread application that includes the field of magnetic field sensor technology. New materials with large MR is interesting. However it is more appealing to vast scientific community if a method describe to achieve many fold enhancement of MR of already known materials. Our study on several manganite samples [La1−xCaxMnO3 (x = 0.52, 0.54, 0.55)] illustrates the method of significant enhancement of MR with the reduction of the particle size in nanometer scale. Our experimentally observed results are explained by considering model consisted of a charge ordered antiferromagnetic core and a shell having short range ferromagnetic correlation between the uncompensated surface spins in nanoscale regime. The ferromagnetic fractions obtained theoretically in the nanoparticles has been shown to be in the good agreement with the experimental results. The method of several orders of magnitude improvement of the magnetoresistive property will have enormous potential for magnetic field sensor technology. PMID:26837285

  2. Mutual influence between current-induced giant magnetoresistance and radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2DES.

    Science.gov (United States)

    Samaraweera, R L; Liu, H-C; Wang, Z; Reichl, C; Wegscheider, W; Mani, R G

    2017-07-11

    Radiation-induced magnetoresistance oscillations are examined in the GaAs/AlGaAs 2D system in the regime where an observed concurrent giant magnetoresistance is systematically varied with a supplementary dc-current, I dc . The I dc tuned giant magnetoresistance is subsequently separated from the photo-excited oscillatory resistance using a multi-conduction model in order to examine the interplay between the two effects. The results show that the invoked multiconduction model describes the observed giant magnetoresistance effect even in the presence of radiation-induced magnetoresistance oscillations, the magnetoresistance oscillations do not modify the giant magnetoresistance, and the magnetoresistance oscillatory extrema, i.e., maxima and minima, disappear rather asymmetrically with increasing I dc . The results suggest the interpretation that the I dc serves to suppress scattering between states near the Fermi level in a strong magnetic field limit.

  3. Magnetic anisotropy and anisotropic ballistic conductance of thin magnetic wires

    International Nuclear Information System (INIS)

    Sabirianov, R.

    2006-01-01

    The magnetocrystalline anisotropy of thin magnetic wires of iron and cobalt is quite different from the bulk phases. The spin moment of monatomic Fe wire may be as high as 3.4 μ B , while the orbital moment as high as 0.5 μ B . The magnetocrystalline anisotropy energy (MAE) was calculated for wires up to 0.6 nm in diameter starting from monatomic wire and adding consecutive shells for thicker wires. I observe that Fe wires exhibit the change sign with the stress applied along the wire. It means that easy axis may change from the direction along the wire to perpendicular to the wire. We find that ballistic conductance of the wire depends on the direction of the applied magnetic field, i.e. shows anisotropic ballistic magnetoresistance. This effect occurs due to the symmetry dependence of the splitting of degenerate bands in the applied field which changes the number of bands crossing the Fermi level. We find that the ballistic conductance changes with applied stress. Even for thicker wires the ballistic conductance changes by factor 2 on moderate tensile stain in our 5x4 model wire. Thus, the ballistic conductance of magnetic wires changes in the applied field due to the magnetostriction. This effect can be observed as large anisotropic BMR in the experiment

  4. Passive wireless strain measurement based upon the Villari effect and giant magnetoresistance

    Science.gov (United States)

    Windl, Roman; Bruckner, Florian; Abert, Claas; Huber, Christian; Vogler, Christoph; Huber, Thomas; Oezelt, Harald; Suess, Dieter

    2016-12-01

    A passive wireless radio frequency-identification (RFID) stress/strain sensor is presented. Stress is transformed into a change of magnetic field by utilizing an amorphous metal ribbon. This magnetic field change is measured by a giant magnetoresistance magnetic field sensor and converted into a digital value with a RFID chip for wireless access. Standard metal foil strain gauges have a gauge factor GF from around 2 to 5 and suffer from the disadvantage of a physically connected power supply and measurement equipment. For the presented sensor, a strain range of -10 μm/m to 190 μm/m results in a linear sensor response, a gauge factor of GF ≈ 245, and a detectivity of 4.10 nm/m 1/√{Hz } . The detectivity of the presented sensor is similar to the detectivity of a reference metal foil strain gauge. Due to low power consumption and easy signal analysis, this sensor is well suited for long term strain measurement inside closed spaces. RFID adds features like multiple tag detection, wireless passive operation and a user data storage.

  5. Magnetoresistance and ion bombardment induced magnetic patterning

    International Nuclear Information System (INIS)

    Hoeink, V.

    2008-01-01

    In this thesis the combination of the magnetic patterning of the unidirectional anisotropy and the tunnel magnetoresistance effect is investigated. In my diploma thesis, it has been shown that it is in principle possible to use the magnetic patterning by ion bombardment to magnetically structure the pinned layer in magnetic tunnel junctions (MTJs) with alumina barrier. Furthermore, it has been shown that the side effects which have been observed after this treatment can be at least reduced by an additional heating step. Starting from this point, the applicability of ion bombardment induced magnetic patterning (IBMP) in general and the combination of IBMP and MTJs in particular is investigated and new applications are developed. (orig.)

  6. Large magnetoresistance in Er7Rh3

    International Nuclear Information System (INIS)

    Sengupta, Kaushik; Sampathkumaran, E.V.

    2005-01-01

    The compound Er 2 Rh 3 has been known to order antiferromagnetically below (T N =14K), and to exhibit a change in the sign of temperature coefficient of electrical resistivity (ρ) in the paramagnetic state around 120 K. Here we report the influence of external magnetic field (H) on the ρ(T) behavior of this compound (1.8-300 K). While the ρ behavior in the paramagnetic state, qualitatively speaking, is found to be robust to the application of H, the magnitude of the magnetoresistance (MR) is significant for moderate applications of H, even at temperatures for above T N untypical of metallic systems. In addition, large values are observed in the magnetically ordered state. (author)

  7. Enhanced magnetoresistance in graphene spin valve

    Energy Technology Data Exchange (ETDEWEB)

    Iqbal, Muhammad Zahir, E-mail: zahir.upc@gmail.com [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Hussain, Ghulam [Faculty of Engineering Sciences, GIK Institute of Engineering Sciences and Technology, Topi 23640, Khyber Pakhtunkhwa (Pakistan); Siddique, Salma [Department of Bioscience & Biotechnology, Sejong University, Seoul 143-747 (Korea, Republic of); Iqbal, Muhammad Waqas [Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, Lahore (Pakistan)

    2017-05-01

    Graphene has been explored as a promising candidate for spintronics due to its atomically flat structure and novel properties. Here we fabricate two spin valve junctions, one from directly grown graphene on Ni electrode (DG) and other from transferred graphene (TG). The magnetoresistance (MR) ratio for DG device is found to be higher than TG device i.e. ~0.73% and 0.14%, respectively. Also the spin polarization of Ni electrode is determined to be 6.03% at room temperature in case of DG device, however it reduces to 2.1% for TG device. From this analysis, we infer how environmental exposure of the sample degrades the spin properties of the magnetic junctions. Moreover, the transport measurements reveal linear behavior for current-voltage (I-V) characteristics, indicating ohmic behavior of the junctions. Our findings unveil the efficiency of direct growth of graphene for spin filtering mechanism in spin valve devices.

  8. Evaluation of Magnetoresistive RAM for Space Applications

    Science.gov (United States)

    Heidecker, Jason

    2014-01-01

    Magnetoresistive random-access memory (MRAM) is a non-volatile memory that exploits electronic spin, rather than charge, to store data. Instead of moving charge on and off a floating gate to alter the threshold voltage of a CMOS transistor (creating different bit states), MRAM uses magnetic fields to flip the polarization of a ferromagnetic material thus switching its resistance and bit state. These polarized states are immune to radiation-induced upset, thus making MRAM very attractive for space application. These magnetic memory elements also have infinite data retention and erase/program endurance. Presented here are results of reliability testing of two space-qualified MRAM products from Aeroflex and Honeywell.

  9. Tunnel magnetoresistance in double spin filter junctions

    International Nuclear Information System (INIS)

    Saffarzadeh, Alireza

    2003-01-01

    We consider a new type of magnetic tunnel junction, which consists of two ferromagnetic tunnel barriers acting as spin filters (SFs), separated by a nonmagnetic metal (NM) layer. Using the transfer matrix method and the free-electron approximation, the dependence of the tunnel magnetoresistance (TMR) on the thickness of the central NM layer, bias voltage and temperature in the double SF junction are studied theoretically. It is shown that the TMR and electron-spin polarization in this structure can reach very large values under suitable conditions. The highest value of the TMR can reach 99%. By an appropriate choice of the thickness of the central NM layer, the degree of spin polarization in this structure will be higher than that of the single SF junctions. These results may be useful in designing future spin-polarized tunnelling devices

  10. Longitudinal magnetoresistance and magnototermopower in Bi nanowires

    International Nuclear Information System (INIS)

    Para, G.

    2011-01-01

    Full text: The galvanomagnetic effect of single crystals Bi nanowires have been studied in longitudinal magnetic fields up to 14 T. The influence of diameters, temperature and deformation extension on the longitudinal magnetoresistance and magnetotermopower (H||I, H||ΔT) of bismuth nanowires is studied. Elastic deformation measurements were conducted at maximum relative elongation 2 %. For the first time have been investigated the magnetotermopower of Bi nanowires with d=45 nm. Essentially non monotonic dependence H max on temperature in longitudinal thermopower in wires with d=45-60 nm is found out. Such difference in behavior of maximum on R(H) and on α(H) in wires with d<100nm says that the behavior of resistance is caused by other mechanism, then thermopower. (author)

  11. Optically Tunable Magnetoresistance Effect: From Mechanism to Novel Device Application.

    Science.gov (United States)

    Liu, Pan; Lin, Xiaoyang; Xu, Yong; Zhang, Boyu; Si, Zhizhong; Cao, Kaihua; Wei, Jiaqi; Zhao, Weisheng

    2017-12-28

    The magnetoresistance effect in sandwiched structure describes the appreciable magnetoresistance effect of a device with a stacking of two ferromagnetic layers separated by a non-magnetic layer (i.e., a sandwiched structure). The development of this effect has led to the revolution of memory applications during the past decades. In this review, we revisited the magnetoresistance effect and the interlayer exchange coupling (IEC) effect in magnetic sandwiched structures with a spacer layer of non-magnetic metal, semiconductor or organic thin film. We then discussed the optical modulation of this effect via different methods. Finally, we discuss various applications of these effects and present a perspective to realize ultralow-power, high-speed data writing and inter-chip connection based on this tunable magnetoresistance effect.

  12. Extraordinary magnetoresistance in semiconductor/metal hybrids: A review

    KAUST Repository

    Sun, J.; Kosel, Jü rgen

    2013-01-01

    The Extraordinary Magnetoresistance (EMR) effect is a change in the resistance of a device upon the application of a magnetic field in hybrid structures, consisting of a semiconductor and a metal. The underlying principle of this phenomenon is a

  13. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur; Useinov, Niazbeck Kh H; Tagirov, Lenar R.; Kosel, Jü rgen

    2011-01-01

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can

  14. Effect of quantum tunneling on spin Hall magnetoresistance.

    Science.gov (United States)

    Ok, Seulgi; Chen, Wei; Sigrist, Manfred; Manske, Dirk

    2017-02-22

    We present a formalism that simultaneously incorporates the effect of quantum tunneling and spin diffusion on the spin Hall magnetoresistance observed in normal metal/ferromagnetic insulator bilayers (such as Pt/Y 3 Fe 5 O 12 ) and normal metal/ferromagnetic metal bilayers (such as Pt/Co), in which the angle of magnetization influences the magnetoresistance of the normal metal. In the normal metal side the spin diffusion is known to affect the landscape of the spin accumulation caused by spin Hall effect and subsequently the magnetoresistance, while on the ferromagnet side the quantum tunneling effect is detrimental to the interface spin current which also affects the spin accumulation. The influence of generic material properties such as spin diffusion length, layer thickness, interface coupling, and insulating gap can be quantified in a unified manner, and experiments that reveal the quantum feature of the magnetoresistance are suggested.

  15. Temperature dependence of magnetoresistance in lanthanum manganite ceramics

    International Nuclear Information System (INIS)

    Gubkin, M.K.; Zalesskii, A.V.; Perekalina, T.M.

    1996-01-01

    Magnetoresistivity in the La0.9Na0.1Mn0.9(V,Co)0.1O3 and LaMnO3+δ ceramics was studied. The temperature dependence of magnetoresistance in these specimens was found to differ qualitatively from that in the La0.9Na0.1MnO3 single crystal (the magnetoresistance value remains rather high throughout the measurement range below the Curie temperature), with the maximum values being about the same (20-40% in the field of 20 kOe). Previously published data on magnetization, high frequency magnetic susceptibility, and local fields at the 139La nuclei of the specimens with similar properties attest to their magnetic inhomogeneity. The computation of the conductivity of the nonuniformly ordered lanthanum manganite was performed according to the mean field theory. The calculation results allow one to interpret qualitatively various types of experimental temperature dependences of magnetoresistance

  16. Magnetoresistance anomaly in DyFeCo thin films

    International Nuclear Information System (INIS)

    Wu, J. C.; Wu, C. S.; Wu, Te-ho; Chen, Bing-Mau; Shieh, Han-Ping D.

    2001-01-01

    Microstructured rare-earth - transition-metal DyFeCo films have been investigated using magnetoresistance and extraordinary Hall-effect measurements. The Hall loops reveal variation of coercive fields depending on the linewidth and the composition of the films. The magnetoresistance curves, with changes up to as high as 1.3%, show positive/negative magnetoresistance peaks centered on the coercive fields depending on the linewidth of the films only. The variation of the coercivity can be attributed to the magnetic moment canting between the Dy and FeCo subcomponents and the existence of the diverged magnetization on the edges, and the anomalous magnetoresistance peaks observed are discussed with the existing theories. [copyright] 2001 American Institute of Physics

  17. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  18. Quantum conductance in electrodeposited nanocontacts and magnetoresistance measurements

    DEFF Research Database (Denmark)

    Elhoussine, F.; Encinas, A.; Mátéfi-Tempfli, Stefan

    2003-01-01

    The conductance and magnetoresistance measurements in magnetic Ni-Ni and Co-Ni nanocontacts prepared by electrodeposition within the pores of a track of track-etched polymer membrane were discussed. At room temperature, Ni-Ni constrictions were found to show broad quantization plateaus of conduct...... of conductance during their dissolution in units of e/h, as expected for ferromagnetic ballistic nanocontacts. The measurement of the positive and negative magnetoresistance in Co-Ni nanocontacts was also elaborated....

  19. Oscillations in magnetoresistance and interlayer coupling in magnetic sandwich structures

    International Nuclear Information System (INIS)

    Barnas, J.; Bulka, B.

    1997-01-01

    Kubo formalism is used to calculate the magnetoresistance due to magnetization rotation in a structure consisting two magnetic films separated by nonmagnetic layer. In the approximation of an uniform relaxation time of each layer, the oscillatory term in magnetoresistance corresponds to the oscillation period which depends on the potential barriers at the interfaces. This period is longer than the oscillation period observed in the coupling parameter. (author)

  20. Magnetoresistance and magnetic ordering in praseodymium and neodymium hexaborides

    International Nuclear Information System (INIS)

    Anisimov, M. A.; Bogach, A. V.; Glushkov, V. V.; Demishev, S. V.; Samarin, N. A.; Filipov, V. B.; Shitsevalova, N. Yu.; Kuznetsov, A. V.; Sluchanko, N. E.

    2009-01-01

    The magnetoresistance Δρ/ρ of single-crystal samples of praseodymium and neodymium hexaborides (PrB 6 and NdB 6 ) has been measured at temperatures ranging from 2 to 20 K in a magnetic field of up to 80 kOe. The results obtained have revealed a crossover of the regime from a small negative magnetoresistance in the paramagnetic state to a large positive magnetoresistive effect in magnetically ordered phases of the PrB 6 and NdB 6 compounds. An analysis of the dependences Δρ(H)/ρ has made it possible to separate three contributions to the magnetoresistance for the compounds under investigation. In addition to the main negative contribution, which is quadratic in the magnetic field (-Δρ/ρ ∝ H 2 ), a linear positive contribution (Δρ/ρ ∝ H) and a nonlinear ferromagnetic contribution have been found. Upon transition to a magnetically ordered state, the linear positive component in the magnetoresistance of the PrB 6 and NdB 6 compounds becomes dominant, whereas the quadratic contribution to the negative magnetoresistance is completely suppressed in the commensurate magnetic phase of these compounds. The presence of several components in the magnetoresistance has been explained by assuming that, in the antiferromagnetic phases of PrB 6 and NdB 6 , ferromagnetic nanoregions (ferrons) are formed in the 5d band in the vicinity of the rareearth ions. The origin of the quadratic contribution to the negative magnetoresistance is interpreted in terms of the Yosida model, which takes into account scattering of conduction electrons by localized magnetic moments of rare-earth ions. Within the approach used, the local magnetic susceptibility χ loc has been estimated. It has been demonstrated that, in the temperature range T N loc for the compounds under investigation can be described with good accuracy by the Curie-Weiss dependence χ loc ∝ (T - Θ p ) -1 .

  1. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  2. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  3. Magnetoresistivity and microstructure of YBa2Cu3Oy prepared using planetary ball milling

    International Nuclear Information System (INIS)

    Hamrita, A.; Ben Azzouz, F.; Madani, A.; Ben Salem, M.

    2012-01-01

    Superconducting properties of YBa 2 Cu 3 O y prepared using planetary ball milling were studied. Y-deficient YBa 2 Cu 3 O y nanoparticles are embedded in the superconducting matrix. Ball milled sample exhibits a large magnetoresistivity in weak magnetic fields at 77 K. We have studied the microstructure and the magnetoresistivity of polycrystalline YBa 2 Cu 3 O y (YBCO or Y-123 for brevity) embedded with nanoparticles of Y-deficient YBCO, generated by the planetary ball milling technique. Bulk samples were synthesized from a precursor YBCO powder, which was prepared from commercial high purity Y 2 O 3 , Ba 2 CO 3 and CuO via a one-step annealing process in air at 950 °C. After planetary ball milling of the precursor, the powder was uniaxially pressed and subsequently annealed at 950 °C in air. Phase analysis by X-ray diffraction (XRD), granular structure examination by scanning electron microscopy (SEM), microstructure investigation by transmission electron microscopy (TEM) coupled with energy dispersive X-ray spectroscopy (EDXS) were carried out. TEM analyses show that nanoparticles of Y-deficient YBCO, generated by ball milling, are embedded in the superconducting matrix. Electrical resistance as a function of temperature, ρ(T), revealed that the zero resistance temperature, T co , is 84.5 and 90 K for the milled and unmilled samples respectively. The milled ceramics exhibit a large magnetoresistance in weak magnetic fields at liquid nitrogen temperature. This attractive effect is of high significance as it makes these materials promising candidates for practical application in magnetic field sensor devices.

  4. Anisotropic Rabi model

    Science.gov (United States)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  5. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  6. Unusual magnetoresistance in cubic B20 Fe0.85Co0.15Si chiral magnets

    International Nuclear Information System (INIS)

    Huang, S X; Chen, Fei; Zang, Jiadong; Chien, C L; Kang, Jian; Shu, G J; Chou, F C

    2016-01-01

    The B20 chiral magnets with broken inversion symmetry and C 4 rotation symmetry have attracted much attention. The broken inversion symmetry leads to the Dzyaloshinskii–Moriya that gives rise to the helical and Skyrmion states. We report the unusual magnetoresistance (MR) of B20 chiral magnet Fe 0.85 Co 0.15 Si that directly reveals the broken C 4 rotation symmetry and shows the anisotropic scattering by Skyrmions with respect to the current directions. The intimacy between unusual MR and broken symmetry is well confirmed by theoretically studying an effective Hamiltonian with spin–orbit coupling. The unusual MR serves as a transport signature for the Skyrmion phase. (paper)

  7. Effect of NiO inserted layer on spin-Hall magnetoresistance in Pt/NiO/YIG heterostructures

    International Nuclear Information System (INIS)

    Shang, T.; Zhan, Q. F.; Yang, H. L.; Zuo, Z. H.; Xie, Y. L.; Liu, L. P.; Zhang, S. L.; Zhang, Y.; Li, H. H.; Wang, B. M.; Li, Run-Wei; Wu, Y. H.; Zhang, S.

    2016-01-01

    We investigate spin-current transport with an antiferromagnetic insulator NiO thin layer by means of the spin-Hall magnetoresistance (SMR) over a wide range of temperature in Pt/NiO/Y_3Fe_5O_1_2 (Pt/NiO/YIG) heterostructures. The SMR signal is comparable to that without the NiO layer as long as the temperature is near or above the blocking temperature of the NiO, indicating that the magnetic fluctuation of the insulating NiO is essential for transmitting the spin current from the Pt to YIG layer. On the other hand, the SMR signal becomes negligibly small at low temperature, and both conventional anisotropic magnetoresistance and the anomalous Hall resistance are extremely small at any temperature, implying that the insertion of the NiO has completely suppressed the Pt magnetization induced by the YIG magnetic proximity effect (MPE). The dual roles of the thin NiO layer are, to suppress the magnetic interaction or MPE between Pt and YIG, and to maintain efficient spin current transmission at high temperature.

  8. Extremely high magnetoresistance and conductivity in the type-II Weyl semimetals WP2 and MoP2.

    Science.gov (United States)

    Kumar, Nitesh; Sun, Yan; Xu, Nan; Manna, Kaustuv; Yao, Mengyu; Süss, Vicky; Leermakers, Inge; Young, Olga; Förster, Tobias; Schmidt, Marcus; Borrmann, Horst; Yan, Binghai; Zeitler, Uli; Shi, Ming; Felser, Claudia; Shekhar, Chandra

    2017-11-21

    The peculiar band structure of semimetals exhibiting Dirac and Weyl crossings can lead to spectacular electronic properties such as large mobilities accompanied by extremely high magnetoresistance. In particular, two closely neighboring Weyl points of the same chirality are protected from annihilation by structural distortions or defects, thereby significantly reducing the scattering probability between them. Here we present the electronic properties of the transition metal diphosphides, WP 2 and MoP 2 , which are type-II Weyl semimetals with robust Weyl points by transport, angle resolved photoemission spectroscopy and first principles calculations. Our single crystals of WP 2 display an extremely low residual low-temperature resistivity of 3 nΩ cm accompanied by an enormous and highly anisotropic magnetoresistance above 200 million % at 63 T and 2.5 K. We observe a large suppression of charge carrier backscattering in WP 2 from transport measurements. These properties are likely a consequence of the novel Weyl fermions expressed in this compound.

  9. Magnetoresistance and magnetization in submicron ferromagnetic gratings

    Science.gov (United States)

    Shearwood, C.; Blundell, S. J.; Baird, M. J.; Bland, J. A. C.; Gester, M.; Ahmed, H.; Hughes, H. P.

    1994-05-01

    A technique for engineering micron and submicron scale structures from magnetic films of transition metals has been developed using a combination of electron- and ion-beam lithography enabling high-quality arrays of submicron magnetic Fe wires to be fabricated. This process can be used to fabricate novel devices from a variety of metal combinations which would not be possible by the usual liftoff metallization method. The structure and magnetic properties are reported of an epitaxial 25 nm Fe(001)/GaAs(001) film and the wire gratings which are fabricated from it. The width of the wires in the grating is 0.5 μm for all structures studied, but the separation of each wire is varied in the range 0.5 to 16 μm. An artificially induced shape anisotropy field of around 1 kG, consistent with a magnetostatic calculation, was observed for all separations studied. The field dependence of the magneto-optic Kerr effect and magnetoresistance (MR) data is consistent with a twisted magnetization configuration across the width of the sample beneath saturation for transverse applied fields. In this case, the detailed form of the field dependence of the MR is strikingly modified from that observed in the continuous film and is consistent with coherent rotation of the magnetization.

  10. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    International Nuclear Information System (INIS)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J.; Soriano, D.; Pedersen, J. G.; Roche, S.

    2014-01-01

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO 2 /FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO 2 /FGNPA junction also drastically enhances TMR ratios up to ∼100%

  11. Tunneling magnetoresistance phenomenon utilizing graphene magnet electrode

    Energy Technology Data Exchange (ETDEWEB)

    Hashimoto, T.; Kamikawa, S.; Haruyama, J., E-mail: J-haru@ee.aoyama.ac.jp [Faculty of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Sagamihara, Kanagawa 252-5258 (Japan); Soriano, D. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Pedersen, J. G. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); Department of Micro-and Nanotechnology, DTU Nanotech, Technical University of Denmark, DK-2800 Kongens Lyngby (Denmark); Roche, S. [Institut Català de Nanociència i Nanotecnologia (ICN2), Campus de la UAB, Edifici ICN2, 08193 Bellaterra, Barcelona (Spain); ICREA - Institucio Catalana de Recerca i Estudis Avancats, 08010 Barcelona (Spain)

    2014-11-03

    Using magnetic rare-metals for spintronic devices is facing serious problems for the environmental contamination and the limited material-resource. In contrast, by fabricating ferromagnetic graphene nanopore arrays (FGNPAs) consisting of honeycomb-like array of hexagonal nanopores with hydrogen-terminated zigzag-type atomic structure edges, we reported observation of polarized electron spins spontaneously driven from the pore edge states, resulting in rare-metal-free flat-energy-band ferromagnetism. Here, we demonstrate observation of tunneling magnetoresistance (TMR) behaviors on the junction of cobalt/SiO{sub 2}/FGNPA electrode, serving as a prototype structure for future rare-metal free TMR devices using magnetic graphene electrodes. Gradual change in TMR ratios is observed across zero-magnetic field, arising from specified alignment between pore-edge- and cobalt-spins. The TMR ratios can be controlled by applying back-gate voltage and by modulating interpore distance. Annealing the SiO{sub 2}/FGNPA junction also drastically enhances TMR ratios up to ∼100%.

  12. Inverse Magnetoresistance in Polymer Spin Valves.

    Science.gov (United States)

    Ding, Shuaishuai; Tian, Yuan; Li, Yang; Mi, Wenbo; Dong, Huanli; Zhang, Xiaotao; Hu, Wenping; Zhu, Daoben

    2017-05-10

    In this work, both negative and positive magnetoresistance (MR) in solution-processed regioregular poly(3-hexylthiophene) (RR-P3HT) is observed in organic spin valves (OSVs) with vertical La 2/3 Sr 1/3 MnO 3 (LSMO)/P3HT/AlO x /Co configuration. The ferromagnetic (FM) LSMO electrode with near-atomic flatness is fabricated by a DC facing-target magnetron sputtering method. This research is focused on the origin of the MR inversion. Two types of devices are investigated in details: One with Co penetration shows a negative MR of 0.2%, while the other well-defined device with a nonlinear behavior has a positive MR of 15.6%. The MR measurements in LSMO/AlO x /Co and LSMO/Co junctions are carried to exclude the interference of insulating layer and two FM electrodes themselves. By examining the Co thicknesses and their corresponding magnetic hysteresis loops, a spin-dependent hybrid-interface-state model by Co penetration is induced to explain the MR sign inversion. These results proven by density functional theory (DFT) calculations may shed light on the controllable interfacial properties in designing novel OSV devices.

  13. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  14. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  15. Superconducting magnetoresistance in ferromagnet/superconductor/ferromagnet trilayers.

    Science.gov (United States)

    Stamopoulos, D; Aristomenopoulou, E

    2015-08-26

    Magnetoresistance is a multifaceted effect reflecting the diverse transport mechanisms exhibited by different kinds of plain materials and hybrid nanostructures; among other, giant, colossal, and extraordinary magnetoresistance versions exist, with the notation indicative of the intensity. Here we report on the superconducting magnetoresistance observed in ferromagnet/superconductor/ferromagnet trilayers, namely Co/Nb/Co trilayers, subjected to a parallel external magnetic field equal to the coercive field. By manipulating the transverse stray dipolar fields that originate from the out-of-plane magnetic domains of the outer layers that develop at coercivity, we can suppress the supercurrent of the interlayer. We experimentally demonstrate a scaling of the magnetoresistance magnitude that we reproduce with a closed-form phenomenological formula that incorporates relevant macroscopic parameters and microscopic length scales of the superconducting and ferromagnetic structural units. The generic approach introduced here can be used to design novel cryogenic devices that completely switch the supercurrent 'on' and 'off', thus exhibiting the ultimate magnetoresistance magnitude 100% on a regular basis.

  16. Fusion neutron effects on magnetoresistivity of copper stabilizer materials

    International Nuclear Information System (INIS)

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-01-01

    Eight copper wires were repeatedly irradiated at 4.2 to 4.4 K with 14.8 MV neutrons and isochronally annealed at temperatures up to 34 0 C for a total of five cycles. Their electrical resistances were monitored during irradiation under zero applied magnetic field. After each irradiation the magnetoresistances were measured in applied transverse magnetic fields of up to 12 T. Then the samples were isochronally annealed to observe the recovery of the resistivity and magnetoresistivity. After each anneal at the highest temperature (34 0 C), some of the damage remained and contributed to the damage state observed following the subsequent irradiation. In this way, we were able to observe how the changes in magnetoresistance would accumulate during the repeated irradiations and anneals expected to be characteristic of fusion reactor magnets. For each succeeding irradiation the fluence was chosen to produce approximately the same final magnetoresistance at 12 T, taking account of the accumulating residual radiation damage. The increment of magnetoresistivity added by the irradiation varied from 35 to 65% at 12 T and from 50 to 90% at 8 T for the various samples

  17. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  18. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  19. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  20. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  1. Anisotropic magnetic phase diagram of Kondo-Lattice compound Ce3Pd20Ge6 with quadrupolar ordering

    International Nuclear Information System (INIS)

    Kitagawa, Jiro; Takeda, Naoya; Ishikawa, Masayasu; Yoshida, Toshiya; Ishiguro, Akiko; Kimura, Noriaki; Komatsubara, Takemi

    1999-01-01

    We have measured the specific heat and the electrical resistivity of Ce 3 Pd 20 Ge 6 in magnetic fields up to 4T applied along three principal directions. The compound shows the large negative magnetoresistance in the quadrupolar phase. The coefficient of the electronic specific heat and T 2 -coefficient of the electrical resistivity are considerably reduced at 4T. The magnetic phase diagram constructed from these measurements suggests the existence of a highly anisotropic interaction between the electric quadrupolar moments and the magnetic dipolar moments. (author)

  2. Studies of colossal magnetoresistive oxides with radioactive isotopes

    CERN Document Server

    CERN. Geneva. ISOLDE and Neutron Time-of-Flight Experiments Committee; Amaral, V S; Araújo, J P; Butz, T; Correia, J G; Dubourdieu, C; Habermeier, H U; Lourenço, A A; Marques, J G; Da Silva, M F A; Senateur, J P; Soares, J C; Sousa, J B; Suryan, R; Tokura, Y; Tavares, P B; Tomioka, Y; Tröger, W; Vantomme, A; Vieira, J M; Wahl, U; Weiss, F P; INTC

    2000-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magnetoresistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+ \\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non-stoichiometry: -learning the role of defects in the optimisation of magnetoresistive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic phase...

  3. Linear negative magnetoresistance in two-dimensional Lorentz gases

    Science.gov (United States)

    Schluck, J.; Hund, M.; Heckenthaler, T.; Heinzel, T.; Siboni, N. H.; Horbach, J.; Pierz, K.; Schumacher, H. W.; Kazazis, D.; Gennser, U.; Mailly, D.

    2018-03-01

    Two-dimensional Lorentz gases formed by obstacles in the shape of circles, squares, and retroreflectors are reported to show a pronounced linear negative magnetoresistance at small magnetic fields. For circular obstacles at low number densities, our results agree with the predictions of a model based on classical retroreflection. In extension to the existing theoretical models, we find that the normalized magnetoresistance slope depends on the obstacle shape and increases as the number density of the obstacles is increased. The peaks are furthermore suppressed by in-plane magnetic fields as well as by elevated temperatures. These results suggest that classical retroreflection can form a significant contribution to the magnetoresistivity of two-dimensional Lorentz gases, while contributions from weak localization cannot be excluded, in particular for large obstacle densities.

  4. Magnetoresistance of films and strips with the diffuse surface scattering

    International Nuclear Information System (INIS)

    Aronov, A.G.

    1993-08-01

    Magnetoresistance of films in a parallel magnetic field and strips in a perpendicular field is considered. The temperature and magnetic field dependencies of magnetoconductance depend on the time evolution of the correlator of phases. This correlator has different behavior as the function of time: the ergodic behavior at small magnetic fields is changed on the nonergodic one at large magnetic fields in spite of the diffusion electron motion due to a diffuse scattering on boundaries. This leads to unusual temperature and magnetic field dependencies of magnetoresistance. The ergodic hypothesis is not applicable to mesoscopical fluctuations at such a large quasiclassical field. (author). 6 refs, 5 figs

  5. Magnetoresistance of Mn-decorated topological line defects in graphene

    KAUST Repository

    Obodo, Tobechukwu Joshua

    2015-01-13

    We study the spin polarized transport through Mn-decorated 8-5-5-8 topological line defects in graphene using the nonequilibrium Green\\'s function formalism. Strong preferential bonding overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism, in particular for full coverage of all octagonal hollow sites by Mn atoms. In contrast to the magnetoresistance of graphene nanoribbon edges, the proposed system is well controlled and therefore suitable for applications.

  6. Anomalous rf magnetoresistance in copper at 4/degree/K

    International Nuclear Information System (INIS)

    Halama, H.J.; Prodell, A.G.; Rogers, J.T.

    1988-03-01

    We have measured the effect of a magnetic field on the surface resistance of polycrystalline Cu at f = 1.2 GHz and at 4.4/degree/K; under these conditions the surface resistance is well into the anomalous skin effect regime but has not reached its limiting value. We find that the transverse and longitudinal magnetoresistance are an order of magnitude smaller than the DC magnetoresistance and depend quadratically on the field. At low fields we observe a decrease in surface resistance with increasing field which can be interpreted as a size effect of the TF surface current. 17 refs., 4 figs., 1 tab

  7. Magnetoresistance of Mn-decorated topological line defects in graphene

    KAUST Repository

    Obodo, Tobechukwu Joshua; Kahaly, M. Upadhyay; Schwingenschlö gl, Udo

    2015-01-01

    We study the spin polarized transport through Mn-decorated 8-5-5-8 topological line defects in graphene using the nonequilibrium Green's function formalism. Strong preferential bonding overcomes the high mobility of transition metal atoms on graphene and results in stable structures. Despite a large distance between the magnetic centers, we find a high magnetoresistance and attribute this unexpected property to very strong induced π magnetism, in particular for full coverage of all octagonal hollow sites by Mn atoms. In contrast to the magnetoresistance of graphene nanoribbon edges, the proposed system is well controlled and therefore suitable for applications.

  8. Room temperature electrically tunable rectification magnetoresistance in Ge-based Schottky devices.

    Science.gov (United States)

    Huang, Qi-Kun; Yan, Yi; Zhang, Kun; Li, Huan-Huan; Kang, Shishou; Tian, Yu-Feng

    2016-11-23

    Electrical control of magnetotransport properties is crucial for device applications in the field of spintronics. In this work, as an extension of our previous observation of rectification magnetoresistance, an innovative technique for electrical control of rectification magnetoresistance has been developed by applying direct current and alternating current simultaneously to the Ge-based Schottky devices, where the rectification magnetoresistance could be remarkably tuned in a wide range. Moreover, the interface and bulk contribution to the magnetotransport properties has been effectively separated based on the rectification magnetoresistance effect. The state-of-the-art electrical manipulation technique could be adapt to other similar heterojunctions, where fascinating rectification magnetoresistance is worthy of expectation.

  9. Giant Hall Resistivity and Magnetoresistance in Cubic Chiral Antiferromagnet EuPtSi

    Science.gov (United States)

    Kakihana, Masashi; Aoki, Dai; Nakamura, Ai; Honda, Fuminori; Nakashima, Miho; Amako, Yasushi; Nakamura, Shota; Sakakibara, Toshiro; Hedo, Masato; Nakama, Takao; Ōnuki, Yoshichika

    2018-02-01

    EuPtSi crystallizes in the cubic chiral structure (P213, No. 198), which is the same as the non-centrosymmetric space group of MnSi with the skyrmion structure, and orders antiferromagnetically below a Néel temperature TN = 4.05 K. The magnetization at 2 K for the [111] direction indicates two metamagnetic transitions at the magnetic fields HA1 = 9.2 kOe and HA2 = 13.8 kOe and saturates above Hc = 26.6 kOe. The present magnetic phase between HA1 and HA2 is most likely closed in the (H,T) phase and is observed in a wide temperature range from 3.6 to 0.5 K. In this magnetic phase known as the A-phase, we found giant additional Hall resistivity ΔρH(H) and magnetoresistance Δρ(H), reaching ΔρH(H) = 0.12 µΩ·cm and Δρ(H) = 1.4 µΩ·cm, respectively. These findings are obtained for H || [111] and [100], but not for H || [110] and [112], revealing an anisotropic behavior in the new material EuPtSi.

  10. Phase shift of oscillatory magnetoresistance in a double-cross thin film structure of La0.3Pr0.4Ca0.3MnO3 via strain-engineered elongation of electronic domains

    Science.gov (United States)

    Alagoz, H. S.; Prasad, B.; Jeon, J.; Blamire, M. G.; Chow, K. H.; Jung, J.

    2018-02-01

    The subtle balance between the competing electronic phases in manganites due to complex interplay between spin, charge, and orbital degrees of freedom could allow one to modify the properties of electronically phase separated systems. In this paper, we show that the phase shift in the oscillatory magnetoresistance ρ (θ ) can be modified by engineering strain driven elongation of electronic domains in La0.3Pr0.4Ca0.3MnO3 (LPCMO) thin films. Strain-driven elongation of magnetic domains can produce different percolation paths and hence different anisotropic magnetoresistance responses. This tunability provides a unique control that is unattainable in conventional 3 d ferromagnetic metals and alloys.

  11. Mutual influence between current-induced giant magnetoresistance and radiation-induced magnetoresistance oscillations in the GaAs/AlGaAs 2DES

    OpenAIRE

    Samaraweera, R. L.; Liu, H.-C.; Wang, Z.; Reichl, C.; Wegscheider, W.; Mani, R. G.

    2017-01-01

    Radiation-induced magnetoresistance oscillations are examined in the GaAs/AlGaAs 2D system in the regime where an observed concurrent giant magnetoresistance is systematically varied with a supplementary dc-current, I dc . The I dc tuned giant magnetoresistance is subsequently separated from the photo-excited oscillatory resistance using a multi-conduction model in order to examine the interplay between the two effects. The results show that the invoked multiconduction model describes the obs...

  12. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  13. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  14. Anisotropic magnetotransport in epitaxial La2/3Ca1/3MnO3 thin films grown by dc-sputtering

    International Nuclear Information System (INIS)

    Moran, O.; Saldarriaga, W.; Prieto, P.; Baca, E.

    2005-01-01

    We have conducted a comprehensive study of the in-plane/out-of-plane magnetic and magnetotransport properties on (001)-oriented La 2/3 Ca 1/3 MnO 3 films epitaxially grown on single crystal (001)-SrTiO 3 substrates by dc-sputtering at high oxygen pressure. The films grew under tensile strain imposed by the lattice mismatch with the substrate. SQUID magnetometry indicated the presence of magnetocrystalline anisotropy at temperatures below the ferromagnetic Curie temperature T C with the easy plane being the film plane. Resistance measurements in magnetic field strengths of up to 6 T, applied both normal and parallel to the film plane, evidenced a distinctive dependence of the resistivity below T C on the angle of the applied field with respect to the plane of the film. During these measurements, transport current and applied magnetic field was all along maintained perpendicular to each other. Neither low-field magnetoresistance (LFMR) nor large magnetoresistance hysteresis were observed on these samples, suggesting that the tensile strain in the first monolayers has been partially released. Additionally, by rotating the sample 360 around an axis parallel to film plane, in magnetic fields ≥2 T, a quadratic sinusoidal dependence of the magnetoresistance (MR) on the polar angle θ was observed. These results can be consistently interpreted in frame of a generalized version of the theory of anisotropic magnetoresistance in transition-metal ferromagnets. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  15. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    Science.gov (United States)

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-01

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its "closed" and "open" conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ˜5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ˜400%.

  16. Tuning spin transport properties and molecular magnetoresistance through contact geometry

    International Nuclear Information System (INIS)

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-01

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its “closed” and “open” conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%

  17. Spin polarization at the interface and tunnel magnetoresistance

    International Nuclear Information System (INIS)

    Itoh, H.; Inoue, J.

    2001-01-01

    We propose that interfacial states of imperfectly oxidized Al ions may exist in ferromagnetic tunnel junctions with Al-O barrier and govern both the spin polarization and tunnel conductance. It is shown that the spin polarization is positive independent of materials and correlates well with the tunnel magnetoresistance

  18. Separating positive and negative magnetoresistance in organic semiconductor devices

    NARCIS (Netherlands)

    Bloom, F.L.; Wagemans, W.; Kemerink, M.; Koopmans, B.

    2007-01-01

    We study the transition between positive and negative organic magnetoresistance (OMAR) in tris-(8 hydroxyquinoline) aluminium (Alq3), in order to identify the elementary mechanisms governing this phenomenon. We show how the sign of OMAR changes as function of the applied voltage and temperature. The

  19. Magnetoresistance in spin glass alloys: Theory and experiment

    International Nuclear Information System (INIS)

    Mookerjee, A.; Chowdhury, D.

    1984-11-01

    The magnetoresistance of spin glass alloys is examined within the percolation model of Mookerjee and Chowdhury (1983), the mode freezing model of Hertz (1983) and the constrained relaxation model of Palmer et al. (1984). All three models yield qualitatively similar results in excellent agreement with the experiments of Majumdar (1983, 1984) on AgMn. (author)

  20. Study of magnetoresistance and conductance of bicrystal grain ...

    Indian Academy of Sciences (India)

    Presence of grain boundary exhibits substantial magnetoresistance ratio (MRR) in the low field and low temperature region. Bicrystal grain boundary contribution in MRR disappears at temperature > 175 K. At low temperature, - characteristic of the microbridge across bicrystal grain boundary is nonlinear. Analysis of ...

  1. Mixed-phase description of colossal magnetoresistive manganites

    Czech Academy of Sciences Publication Activity Database

    Weiáe, A.; Loos, Jan; Fehske, H.

    2003-01-01

    Roč. 68, č. 2 (2003), s. 024402-1 - 021102-6 ISSN 0163-1829 Grant - others:DFG(DE) 436 TSE 113/33/0-2 Institutional research plan: CEZ:AV0Z1010914 Keywords : polarons * metal-insulator transitions * colossal magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.962, year: 2003

  2. High field magnetoresistance in Co-Al-O nanogranular films

    Czech Academy of Sciences Publication Activity Database

    Chayka, Oleksandr; Kraus, Luděk; Lobotka, P.; Sechovsky, V.; Kocourek, Tomáš; Jelínek, Miroslav

    2006-01-01

    Roč. 300, - (2006), s. 293-299 ISSN 0304-8853 R&D Projects: GA AV ČR(CZ) IAA1010204 Institutional research plan: CEZ:AV0Z10100520 Keywords : granular system * superparamagnetism * tunneling magnetoresistance Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.212, year: 2006

  3. Tuning spin transport properties and molecular magnetoresistance through contact geometry.

    Science.gov (United States)

    Ulman, Kanchan; Narasimhan, Shobhana; Delin, Anna

    2014-01-28

    Molecular spintronics seeks to unite the advantages of using organic molecules as nanoelectronic components, with the benefits of using spin as an additional degree of freedom. For technological applications, an important quantity is the molecular magnetoresistance. In this work, we show that this parameter is very sensitive to the contact geometry. To demonstrate this, we perform ab initio calculations, combining the non-equilibrium Green's function method with density functional theory, on a dithienylethene molecule placed between spin-polarized nickel leads of varying geometries. We find that, in general, the magnetoresistance is significantly higher when the contact is made to sharp tips than to flat surfaces. Interestingly, this holds true for both resonant and tunneling conduction regimes, i.e., when the molecule is in its "closed" and "open" conformations, respectively. We find that changing the lead geometry can increase the magnetoresistance by up to a factor of ∼5. We also introduce a simple model that, despite requiring minimal computational time, can recapture our ab initio results for the behavior of magnetoresistance as a function of bias voltage. This model requires as its input only the density of states on the anchoring atoms, at zero bias voltage. We also find that the non-resonant conductance in the open conformation of the molecule is significantly impacted by the lead geometry. As a result, the ratio of the current in the closed and open conformations can also be tuned by varying the geometry of the leads, and increased by ∼400%.

  4. Magnetoresistance at artificial interfaces in epitaxial ferromagnetic thin films

    International Nuclear Information System (INIS)

    Fontcuberta, J.; Bibes, M.; Martinez, B.; Trtik, V.; Ferrater, C.; Sanchez, F.; Varela, M.

    2000-01-01

    Epitaxial La 2/3 Sr 1/3 MnO 3 and SrRuO 3 thin films have been grown by laser ablation on single-crystalline SrTiO 3 substrates. Prior to manganite or ruthenate deposition tracks have been patterned on the SrTiO 3 substrate by using an appropriately focused laser beam. In the experiments here reported linear tracks have been formed. The magnetotransport properties of the films, particularly the magnetoresistance, along paths parallel and perpendicular to the track have been extensively investigated and compared to similar data recorded on films grown on bicrystalline STO substrates. Whereas in LSMO a significant low-field tunnel magnetoresistance develops across the artificial interface, in SRO this tunnel contribution is absent. However, a significant high-field magnetoresistance is observed for both metallic and ferromagnetic systems. The results are analysed and discussed within the framework of the current understanding of double exchange and itinerant ferromagnets. Magnetoresistance data for various configurations of the track array are presented

  5. The magnetoresistivity of some rare-earth metals

    International Nuclear Information System (INIS)

    Webber, G.D.

    1978-10-01

    The thesis describes measurements of the low temperature transverse magnetoresistivities of single crystals of rare-earth metals in magnetic fields up to 8 Tesla. A general introduction to the rare-earths, their magnetic properties and a review of the basic theory and mechanism of magnetoresistivity is given. Details of the crystal structure, growth of single crystals and sample mounting method follow. The experimental equipment and measuring techniques are then described. The low temperature transverse magnetoresistivity of polycrystalline lanthanum and single crystal praseodymium for the temperature range 4.2 - 30K is measured. The separation of the spin-disorder and Fermi-surface orbital effect contributions are described and the theoretical and experimental spin-disorder values compared. Magnetoresistivity measurements for neodymium single crystals (4.2 - 30K) are compared with the magnetic properties determined from neutron diffraction studies. Results for gadolinium single crystals (4.2 - 200K) are compared for two different impurity levels and with previous work. (UK)

  6. Giant Magnetoresistance-based Biosensor for Detection of Influenza A Virus.

    Science.gov (United States)

    Krishna, Venkatramana D; Wu, Kai; Perez, Andres M; Wang, Jian-Ping

    2016-01-01

    We have developed a simple and sensitive method for the detection of influenza A virus based on giant magnetoresistance (GMR) biosensor. This assay employs monoclonal antibodies to viral nucleoprotein (NP) in combination with magnetic nanoparticles (MNPs). Presence of influenza virus allows the binding of MNPs to the GMR sensor and the binding is proportional to the concentration of virus. Binding of MNPs onto the GMR sensor causes change in the resistance of sensor, which is measured in a real time electrical readout. GMR biosensor detected as low as 1.5 × 10(2) TCID50/mL virus and the signal intensity increased with increasing concentration of virus up to 1.0 × 10(5) TCID50/mL. This study showed that the GMR biosensor assay is relevant for diagnostic application since the virus concentration in nasal samples of influenza virus infected swine was reported to be in the range of 10(3) to 10(5) TCID50/mL.

  7. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  8. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  9. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  10. Permanent-Magnet Free Biasing of MR Sensors with Tunable Sensitivity

    Science.gov (United States)

    Halloran, Sean; Dasilva, Fabio; Pappas, David

    2007-03-01

    Exchange coupling^1 has been previously observed in a trilayer structure of ferromagnet (FM)/non-magnetic/antiferromagnet (AFM) and the exchange bias was found to be a function of the thickness of the buffer layer.^2,3,4 This unique coupling is used as a stabilizing bias for the sense layer with the additional ability to tailor the magnetic gain of the sensor for various applications. The elimination of permanent magnet bias results in the elimination of one patterning and one deposition step. Ruthenium (Ru) is used as the buffer layer and is self aligned with the FM and AFM layers and the thickness is varied to change the slope of the transfer curve in the linear region. Sensor devices are fabricated with a bipolar output, a medium sensitivity, and a wide field range. The results show that this biasing scheme is well suited for barber pole and soft adjacent layer (SAL) anisotropic magnetoresistance (AMR) stripes used in magnetic field sensors with a FM layer of Permalloy (NiFe) and an AFM layer of Iridium-Manganese (IrMn). Applications include a 256 channel read head used for magnetic forensics. 1N.J. Gokemeijer, T. Ambrose, C.L. Chien, N. Wang and K.K. Fung, J. Appl. Phys. 81 (8), 4999, 15 April 1997. 2W.H. Meiklejohn and C.P. Bean, Phys. Rev. 102, 1413 1956; 105, 904, 1957. 3L. Thomas, A.J. Kellock and S.S.P. Parkin, J. Appl. Phys. 87 (9), 5061, 1 May 2000. 4D. Wang, J. Daughton, C. Nordman, P. Eames and J. Fink, J. Appl. Phys. 99, 2006.

  11. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  12. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  13. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  14. Rancang Bangun Sistem Pengukur Kecepatan Kendaraan Menggunakan Sensor Magnetik

    Directory of Open Access Journals (Sweden)

    Aris Ramdhani

    2017-06-01

    Full Text Available Data kecepatan kendaran di jalan raya sangat berpengaruh bagi keamanan dan keselamatan pengguna jalan raya. Kemajuan tekhnologi sensor sangat membantu dalam mengukur kecepatan kendaraan dengan otomatis. Metode yang umum dipakai ialah metode dengan menggunakan dua buah rangkaian sensor yang sudah diatur pada jarak tertentu. Sensor digunakan sebagai pendeteksi keberadaan kendaraan. Data kecepatan kendaraan didapatkan dengan mencari selang waktu yang dibutuhkan kendaraan melaju dari sensor pertama menuju sensor kedua. Saat kendaraan melaju melewati sensor maka sinyal keluaran sensor menjadi acuan perhitungan waktu start dan stop. Berbagai jenis sensor yang sudah digunakan ialah sensor LDR, sensor ultrasonic, sensor laser, sensor loop induktif dan sensor kamera. Setiap sensor yang sudah dipergunakan memiliki berbagai jenis kekurangan dalam mendeteksi kendaraan pada jalan raya. Oleh karena itu penulis memunculkan ide baru dengan menggunakan sensor magnetik yang memiliki faktor gangguan eksternal yang rendah. Sensor magnetik yang digunakan ialah sensor Giant MagnetoResistance (GMR. Perancangan sistem pengukur kecepatan kendaraan yang penulis lakukan berupa sebuah prototype. Hasil pengujian sistem pengukur kecepatan kendaraan menggunakan sensor magnetik GMR menunjukan respon yang bagus saat pengujian dilakukan pada jarak 30cm dan 70cm antara dua buah sensor GMR. Data speed of vehicles on the highway are very influential to the security and safety of users of the highway. Advances in sensor technology is very helpful in measuring the speed of vehicles with automatic. A common method used is the method by using two sensor circuit which is set at a certain distance. The sensor is used as a detector for the exixtance of the vehicle. Vehicle speed data obtained by finding the time required vehicles drove from the first sensor to the second sensor. When the vehicle drove past the sensor, the sensor output signal to be a reference calculation start and stop

  15. Tunneling Negative Magnetoresistance via δ Doping in a Graphene-Based Magnetic Tunnel Junction

    International Nuclear Information System (INIS)

    Yuan Jian-Hui; Chen Ni; Mo Hua; Zhang Yan; Zhang Zhi-Hai

    2016-01-01

    We investigate the tunneling magnetoresistance via δ doping in a graphene-based magnetic tunnel junction in detail. It is found that the transmission probability and the conductance oscillates with the position and the aptitude of the δ doping. Also, both the transmission probability and the conductance at the parallel configuration are suppressed by the magnetic field more obviously than that at the antiparallel configuration, which implies a large negative magnetoresistance for this device. The results show that the negative magnetoresistance of over 300% at B = 1.0 T is observed by choosing suitable doped parameters, and the temperature plays an important role in the magnetoresistance. Thus it is possible to open a way to effectively manipulate the magnetoresistance devices, and to make a type of magnetoresistance device by controlling the structural parameter of the δ doping. (paper)

  16. Effect of crystallinity on the magnetoresistance in perovskite manganese oxide thin films

    International Nuclear Information System (INIS)

    Shreekala, R.; Rajeswari, M.; Ghosh, K.; Goyal, A.; Gu, J.Y.; Kwon, C.; Trajanovic, Z.; Boettcher, T.; Greene, R.L.; Ramesh, R.; Venkatesan, T.

    1997-01-01

    We report our study of the effect of crystallinity on the magnetoresistance in epitaxial and polycrystalline La 2/3 Ba 1/3 MnO 3 and La 2/3 Ca 1/3 MnO 3 thin films. Magnetoresistance in epitaxial films exhibits field dependence and temperature dependence similar to bulk single crystals and sintered bulk ceramics. The polycrystalline films exhibit a markedly different behavior. The magnetoresistance in this case shows either a monotonic increase or saturation with decreasing temperature in contrast to that of epitaxial films in which the magnetoresistance peaks close to the ferromagnetic transition temperature. The field dependence in the polycrystalline films is also remarkably different. At low fields, we observe a sharp drop in resistance followed by a more gradual decrease at higher fields. Our data suggest that in addition to the intrinsic magnetoresistance, grain-boundary transport contributes significantly to the magnetoresistance in polycrystalline films. copyright 1997 American Institute of Physics

  17. The effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors

    International Nuclear Information System (INIS)

    Zhao Jun-Qing; Ding Meng; Zhang Tian-You; Zhang Ning-Yu; Pang Yan-Tao; Ji Yan-Ju; Chen Ying; Wang Feng-Xiang; Fu Gang

    2012-01-01

    We investigated the effect of spin-orbit coupling on magnetoresistance in nonmagnetic organic semiconductors. A Lorentz-type magnetoresistance is obtained from spin-orbit coupling-dependent spin precession under the condition of a space-charge-limited current. The magnetoresistance depends on the initial spin orientation of the electron with respect to the hole in electron—hole pairs, and the increasing spin-orbit coupling slows down the change in magnetoresistance with magnetic field. The field dependence, the sign and the saturation value of the magnetoresistance are composite effects of recombination and dissociation rate constants of singlet and triplet electron—hole pairs. The simulated magnetoresistance shows good consistency with the experimental results. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  18. Anomalous magnetoresistance effect in sputtered TbFeCo relating to dispersed magnetic moment

    International Nuclear Information System (INIS)

    Yumoto, S.; Toki, K.; Okada, O.; Gokan, H.

    1988-01-01

    The electric resistance is sputtered TbFeCo has been measured at room temperature as a function of magnetic field perpendicular to the film plane. Two kinds of anomalous magnetoresistance have been observed. One is a magnetoresistance peak in the magnetization reversal region. The other is reversible change proportional to the applied magnetic field, appearing in the other region. The magnetoresistance peak agrees well with a curve calculated from experimental Hall loop, using a phenomenological relation between anomalous magnetoresistance and anomalous Hall voltage. The magnetoresistance peak is found to originate from magnetic domain walls. The linear magnetoresistance change for TM dominant samples appears in a direction opposite to that for RE dominant samples. The linear change can't be derived from Hall loop

  19. Quasilinear quantum magnetoresistance in pressure-induced nonsymmorphic superconductor chromium arsenide.

    Science.gov (United States)

    Niu, Q; Yu, W C; Yip, K Y; Lim, Z L; Kotegawa, H; Matsuoka, E; Sugawara, H; Tou, H; Yanase, Y; Goh, Swee K

    2017-06-05

    In conventional metals, modification of electron trajectories under magnetic field gives rise to a magnetoresistance that varies quadratically at low field, followed by a saturation at high field for closed orbits on the Fermi surface. Deviations from the conventional behaviour, for example, the observation of a linear magnetoresistance, or a non-saturating magnetoresistance, have been attributed to exotic electron scattering mechanisms. Recently, linear magnetoresistance has been observed in many Dirac materials, in which the electron-electron correlation is relatively weak. The strongly correlated helimagnet CrAs undergoes a quantum phase transition to a nonmagnetic superconductor under pressure. Here we observe, near the magnetic instability, a large and non-saturating quasilinear magnetoresistance from the upper critical field to 14 T at low temperatures. We show that the quasilinear magnetoresistance may arise from an intricate interplay between a nontrivial band crossing protected by nonsymmorphic crystal symmetry and strong magnetic fluctuations.

  20. Magnetoresistance anisotropy of ultrathin epitaxial La0.83Sr0.17MnO3 films

    Science.gov (United States)

    Balevičius, Saulius; Tornau, Evaldas E.; ŽurauskienÄ--, Nerija; Stankevič, Voitech; Šimkevičius, Česlovas; TolvaišienÄ--, Sonata; PlaušinaitienÄ--, Valentina; Abrutis, Adulfas

    2017-12-01

    We present the study of temperature dependence of resistivity (ρ), magnetoresistance (MR), and magnetoresistance anisotropy (AMR) of thin epitaxial La0.83Sr0.17MnO3 films. The films with thickness from 4 nm to 140 nm were grown on an NdGaO3 (001) substrate by a pulsed injection metal organic chemical vapor deposition technique. We demonstrate that the resistivity of these films significantly increases and the temperature Tm of the resistivity maximum in ρ(T) dependence decreases with the decrease of film thickness. The anisotropy of ρ(T) dependence with respect to the electrical current direction along the [100] or [010] crystallographic axis of the film is found for ultrathin films (4-8 nm) at temperatures close to Tm. Both MR and AMR, measured in magnetic fields up to 0.7 T applied in the film plane parallel and perpendicular to the current direction, have shown strong dependence on the film thickness. It was also found that the anisotropy of magnetoresistance could change its sign from positive (thicker films) to negative (ultrathin films) and obtain very small values at a certain intermediate thickness (20 nm) when the current is flowing perpendicular to the easy magnetization axis [010]. While the positive AMR effect was assigned to the conventional magnetic ordering of manganites, the AMR of ultrathin films was influenced by the pinning of magnetization to the easy axis. The temperature dependence and change of the AMR sign with film thickness is shown to be well described by the two-region model (more strained closer to the film substrate and more relaxed further from it) assuming that the relative concentration of both regions changes with the film thickness. The possibility to use the effect of the AMR compensation for the development of scalar in-plane magnetic field sensors is discussed.

  1. Magnetoresistance of individual ferromagnetic GaAs/(Ga,Mn)As core-shell nanowires

    OpenAIRE

    Butschkow, Christian H.; Reiger, Elisabeth; Geißler, Stefan; Rudolph, Andreas; Soda, Marcello; Schuh, Dieter; Woltersdorf, Georg; Wegscheider, Werner; Weiss, Dieter

    2011-01-01

    We investigate, angle dependent, the magnetoresistance (MR) of individual self-assembled ferromagnetic GaAs/(Ga,Mn)As core-shell nanowires at cryogenic temperatures. The shape of the MR traces and the observed strong anisotropies in transport can be ascribed to the interplay of the negative magnetoresistance effect and a strong uniaxial anisotropy with the magnetic easy direction pointing along the wire axis. The magnetoresistance can be well described by a quantitative analysis based on the ...

  2. Large linear magnetoresistance from neutral defects in Bi$_2$Se$_3$

    OpenAIRE

    Kumar, Devendra; Lakhani, Archana

    2016-01-01

    The chalcogenide Bi$_2$Se$_3$ can attain the three dimensional (3D) Dirac semimetal state under the influence of strain and microstrain. Here we report the presnece of large linear magnetoresistance in such a Bi$_2$Se$_3$ crystal. The magnetoresistance has quadratic form at low fields which crossovers to linear above 4 T. The temperature dependence of magnetoresistance scales with carrier mobility and the crossover field scales with inverse of mobility. Our analysis suggest that the linear ma...

  3. Magnetoresistance of amorphous CuZr: weak localization in a three dimensional system

    International Nuclear Information System (INIS)

    Bieri, J.B.; Fert, A.; Creuzet, G.

    1984-01-01

    Observations of anomalous magnetoresistance in amorphous CuZr at low temperature are reported. The magnetoresistance can be precisely accounted for in theoretical models of localization for 3-dimensional metallic systems in the presence of strong spin-orbit interactions (with a significant additional contribution from the quenching of superconducting fluctuations at the lowest temperatures). Magnetoresistance measurements on various other systems show that such 3-dimensional localization effects are very generally observed in amorphous alloys. (author)

  4. Magnetoresistance of microstructured permalloy ellipses having multi-domain configurations

    International Nuclear Information System (INIS)

    Kuo, C.Y.; Chung, W.S.; Wu, J.C.; Horng, Lance; Wei, Z.-H.; Lai, M.-F.; Chang, C.-R.

    2007-01-01

    Mirostructured permalloy ellipses having purposely designed multi-domain configurations were investigated. The samples were fabricated using e-beam lithography through a lift-off process. The magnetoresistance measurements were carried out with a constant dc sensing current under the external magnetic field applied along the short axis. The magnetoresistance curves manifest characteristic features in accordance with the specific domain configurations. Step-like/kink features were observed on the ellipses with cross-tie wall/two-vortex configuration and step-like plus kink magnetorsistance curve was found on the ellipse with cross-tie wall combining with two-vortex structure. A magnetic force microscopy and a micromagnetic simulation were employed to support these results

  5. Spin polarized electron tunneling and magnetoresistance in molecular junctions.

    Science.gov (United States)

    Szulczewski, Greg

    2012-01-01

    This chapter reviews tunneling of spin-polarized electrons through molecules positioned between ferromagnetic electrodes, which gives rise to tunneling magnetoresistance. Such measurements yield important insight into the factors governing spin-polarized electron injection into organic semiconductors, thereby offering the possibility to manipulate the quantum-mechanical spin degrees of freedom for charge carriers in optical/electrical devices. In the first section of the chapter a brief description of the Jullière model of spin-dependent electron tunneling is reviewed. Next, a brief description of device fabrication and characterization is presented. The bulk of the review highlights experimental studies on spin-polarized electron tunneling and magnetoresistance in molecular junctions. In addition, some experiments describing spin-polarized scanning tunneling microscopy/spectroscopy on single molecules are mentioned. Finally, some general conclusions and prospectus on the impact of spin-polarized tunneling in molecular junctions are offered.

  6. Temperature dependence of magnetoresistance in copper single crystals

    Science.gov (United States)

    Bian, Q.; Niewczas, M.

    2018-03-01

    Transverse magnetoresistance of copper single crystals has been measured in the orientation of open-orbit from 2 K to 20 K for fields up to 9 T. The experimental Kohler's plots display deviation between individual curves below 16 K and overlap in the range of 16 K-20 K. The violation of the Kohler's rule below 16 K indicates that the magnetotransport can not be described by the classical theory of electron transport on spherical Fermi surface with a single relaxation time. A theoretical model incorporating two energy bands, spherical and cylindrical, with different relaxation times has been developed to describe the magnetoresistance data. The calculations show that the electron-phonon scattering rates at belly and neck regions of the Fermi surface have different temperature dependencies, and in general, they do not follow T3 law. The ratio of the relaxation times in belly and neck regions decreases parabolically with temperature as A - CT2 , with A and C being constants.

  7. Wheatstone bridge giant-magnetoresistance based cell counter.

    Science.gov (United States)

    Lee, Chiun-Peng; Lai, Mei-Feng; Huang, Hao-Ting; Lin, Chi-Wen; Wei, Zung-Hang

    2014-07-15

    A Wheatstone bridge giant magnetoresistance (GMR) biosensor was proposed here for the detection and counting of magnetic cells. The biosensor was made of a top-pinned spin-valve layer structure, and it was integrated with a microchannel possessing the function of hydrodynamic focusing that allowed the cells to flow in series one by one and ensured the accuracy of detection. Through measuring the magnetoresistance variation caused by the stray field of the magnetic cells that flowed through the microchannel above the GMR biosensor, we can not only detect and count the cells but we can also recognize cells with different magnetic moments. In addition, a magnetic field gradient was applied for the separation of different cells into different channels. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Giant negative magnetoresistance in Ni(quinoline-8-selenoate)2.

    Science.gov (United States)

    Black, Nicholas; Daiki, Tonouchi; Matsushita, Michio M; Woollins, J Derek; Awaga, Kunio; Robertson, Neil

    2017-12-20

    The magnetic, structural, conductivity and magnetoresistance properties of [Ni(quinoline-8-selenoate) 2 ] ([Ni(qs) 2 ]) have been studied. Despite the insolubility of the material necessitating its study as a powdered sample, a remarkably high conductivity has been measured. The conductivity is an order of magnitude greater than the thin-film processable thiol analogue previously reported and has been interpreted through the same space-charge limited conduction mechanism with charges injected from the electrodes. The introduction of selenium, results in a material with conductivity approaching metallic due to the enhanced interaction between adjacent molecules. Additionally, under an applied magnetic field, the material displays a negative magnetoresistance effect above 35% at 2 K. The effect can still be observed at 200 K and is interpreted in terms of a double-exchange mechanism.

  9. Challenges and trends in the development of a magnetoresistive biochip portable platform

    International Nuclear Information System (INIS)

    Martins, Veronica C.; Germano, Jose; Cardoso, Filipe A.; Loureiro, Joana; Cardoso, Susana; Sousa, Leonel; Piedade, Moises; Fonseca, Luis P.; Freitas, P.P.

    2010-01-01

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  10. Challenges and trends in the development of a magnetoresistive biochip portable platform

    Energy Technology Data Exchange (ETDEWEB)

    Martins, Veronica C., E-mail: veronicamartins@ist.utl.p [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Germano, Jose [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Cardoso, Filipe A.; Loureiro, Joana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Cardoso, Susana [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Sousa, Leonel; Piedade, Moises [INESC-ID Instituto de Engenharia de Sistemas e Computadores-Investigacao e Desenvolvimento, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Electrical and Computer Engineering Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Fonseca, Luis P. [IBB-Institute for Biotechnology and Bioengineering, Center for Biological and Chemical Engineering (CEBQ), Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal); Freitas, P.P. [INESC-MN-Instituto de Engenharia de Sistemas e Computadores-Microsistemas e Nanotecnologias and IN-Institute of Nanoscience and Nanotechnology, Rua Alves Redol 9, 1000-029 Lisbon (Portugal); Physics Department, Instituto Superior Tecnico, Av. Rovisco Pais, 1049-001 Lisbon (Portugal)

    2010-05-15

    The magnetoresistive (MR) biochip concept has emerged a decade ago and since then considerable achievements were made in the field. At the moment there is a strong effort in building up a fully integrated, portable and accessible spintronic device for bioanalytical assays. Some of the major challenges and working solutions are addressed here. In a MR-biochip platform five main components can be identified as key points for its success: the MR sensing elements, the magnetic labels, the surface chemistry, the microfluidic system and the read-out electronic set-up. Linear spin valve sensors were fabricated with good sensitivity and proper field range. Magnetic particles were carefully characterized and selected seeking for the best biomolecular labels. The surface chemistry was extensively optimized in order to get it more efficient, specific and reproducible. A microfluidic structure was designed and fabricated in polydimethilsiloxane (PDMS) to work as sample transportation and simultaneously control the wash out steps. Finally, a portable and autonomous electronic microsystem provides the electronic circuitry to control, address and read-out up to 256 sensors. From the assembling of all these components emerges a versatile portable platform. The first results from the platform in a real-time detection of 20mer single stranded DNA sequences labeled with 130 nm magnetic labels are presented.

  11. Si, Ge and SiGe wires for sensor application

    International Nuclear Information System (INIS)

    Druzhinin, A.A.; Khoverko, Yu.M.; Ostrovskii, I.P.; Nichkalo, S.I.; Nikolaeva, A.A.; Konopko, L.A.; Stich, I.

    2011-01-01

    Resistance and magnetoresistance of Si, Ge and Si-Ge micro- and nanowires were studied in temperature range 4,2-300 K at magnetic fields up to 14 T. The wires diameters range from 200 nm to 20 μm. Ga-In gates were created to wires and ohmic I-U characteristics were observed in all temperature range. It was found high elastic strain for Ge nanowires (of about 0,7%) as well as high magnitude of magnetoresistance (of about 250% at 14 T), which was used to design multifunctional sensor of simultaneous measurements of strain and magnetic field intensity. (authors)

  12. Holographic models with anisotropic scaling

    Science.gov (United States)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  13. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  14. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  15. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  16. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  17. Extreme magnetoresistance in magnetic rare-earth monopnictides

    Science.gov (United States)

    Ye, Linda; Suzuki, Takehito; Wicker, Christina R.; Checkelsky, Joseph G.

    2018-02-01

    The acute sensitivity of the electrical resistance of certain systems to magnetic fields known as extreme magnetoresistance (XMR) has recently been explored in a new materials context with topological semimetals. Exemplified by WTe2 and rare-earth monopnictide La(Sb,Bi), these systems tend to be nonmagnetic, nearly compensated semimetals and represent a platform for large magnetoresistance driven by intrinsic electronic structure. Here we explore electronic transport in magnetic members of the latter family of semimetals and find that XMR is strongly modulated by magnetic order. In particular, CeSb exhibits XMR in excess of 1.6 ×106% at fields of 9 T whereas the magnetoresistance itself is nonmonotonic across the various magnetic phases and shows a transition from negative magnetoresistance to XMR with fields above magnetic ordering temperature TN. The magnitude of the XMR is larger than in other rare-earth monopnictides including the nonmagnetic members and follows a nonsaturating power law to fields above 30 T. We show that the overall response can be understood as the modulation of conductivity by the Ce orbital state and for intermediate temperatures can be characterized by an effective medium model. Comparison to the orbitally quenched compound GdBi supports the correlation of XMR with the onset of magnetic ordering and compensation and highlights the unique combination of orbital inversion and type-I magnetic ordering in CeSb in determining its large response. These findings suggest a paradigm for magneto-orbital control of XMR and are relevant to the understanding of rare-earth-based correlated topological materials.

  18. Resistivity and magnetoresistivity of amorphous rare-earth alloys

    Science.gov (United States)

    Borchi, E.; Poli, M.; De Gennaro, S.

    1982-05-01

    The resistivity and magnetoresistivity of amorphous rare-earth alloys are studied starting from the general approach of Van Peski-Tinbergen and Dekker. The random axial crystal-field and the magnetic correlations between the rare-earth ions are consistently taken into account. The characteristic features of the available experimental data are explained both of the case of random ferromagnetic and antiferromagnetic order.

  19. Tunneling magnetoresistance in granular cermet films with particle size distribution

    International Nuclear Information System (INIS)

    Vovk, A.Ya.; Golub, V.O.; Malkinski, L.; Kravets, A.F.; Pogorily, A.M.; Shypil', O.V.

    2004-01-01

    The correlation between tunneling magnetoresistance (TMR) and field sensitivity (dMR/dH) for granular films (Co 50 Fe 50 ) x -(Al 2 O 3 ) 1-x was studied. The position of TMR maximum is shifted towards the lower x in the higher applied magnetic fields. Such a behavior was observed for metal granular nanocomposites but is first reported for granular cermets. However the highest dMR/dH was found for the compositions just below the percolation threshold

  20. Magnetoresistance of Si(001) MOSFETs with high concentration of electrons

    Czech Academy of Sciences Publication Activity Database

    Smrčka, Ludvík; Makarovsky, O. N.; Schemenchinskii, S. G.; Vašek, Petr; Jurka, Vlastimil

    2004-01-01

    Roč. 22, - (2004), s. 320-323 ISSN 1386-9477. [International Conference on Electronic Properties of Two-Dimensional Systems /15./. Nara, 14.07.2003-18.07.2003] R&D Projects: GA ČR GA202/01/0754; GA ČR GA202/96/0036 Institutional research plan: CEZ:AV0Z1010914 Keywords : Si MOSFET * magnetoresistance * Hall effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.898, year: 2004

  1. Enhanced magnetoresistance in the binary semimetal NbAs2 due to improved crystal quality

    Science.gov (United States)

    Yokoi, K.; Murakawa, H.; Komada, M.; Kida, T.; Hagiwara, M.; Sakai, H.; Hanasaki, N.

    2018-02-01

    We have observed an extremely large magnetoresistance exceeding 1.9 million at 1.7 K at 40 T for a single crystal of the binary semimetal NbAs2. The magnetoresistive behavior for this compound is quantitatively reproduced by a semiclassical two-carrier model in which the significant enhancement of magnetoresistance is attributed to the almost full compensation of the hole and electron densities (0.994 6 ×105cm2 /V .s ). Our results indicate that binary semimetals with higher carrier densities have a great potential for exhibiting a further divergent increase in magnetoresistance merely through an improvement in crystal quality.

  2. Dependence of Fe/Cr superlattice magnetoresistance on orientation of external magnetic field

    International Nuclear Information System (INIS)

    Ustinov, V.V.; Romashev, L.N.; Minin, V.I.; Semerikov, A.V.; Del', A.R.

    1995-01-01

    The paper presents the results of investigations into giant magnetoresistance of [Fe/Cr] 30 /MgO superlattices obtained using molecular-beam epitaxy under various orientations of magnetic field relatively to the layers of superlattice and to the direction of current flow. Theory of orientation dependence of superlattice magnetoresistance enabling to describe satisfactorily behaviour of magnetoresistance at arbitrary direction of magnetic field on the ground of results of magnetoresistance measurements in magnetic field parallel and perpendicular to plane of layers, is elaborated. It is pointed out that it is possible to obtain field dependence of superlattice magnetization on the ground of measurement results. 9 refs., 6 figs

  3. Spin–orbit coupling induced magnetoresistance oscillation in a dc biased two-dimensional electron system

    International Nuclear Information System (INIS)

    Wang, C M; Lei, X L

    2014-01-01

    We study dc-current effects on the magnetoresistance oscillation in a two-dimensional electron gas with Rashba spin-orbit coupling, using the balance-equation approach to nonlinear magnetotransport. In the weak current limit the magnetoresistance exhibits periodical Shubnikov-de Haas oscillation with changing Rashba coupling strength for a fixed magnetic field. At finite dc bias, the period of the oscillation halves when the interbranch contribution to resistivity dominates. With further increasing current density, the oscillatory resistivity exhibits phase inversion, i.e., magnetoresistivity minima (maxima) invert to maxima (minima) at certain values of the dc bias, which is due to the current-induced magnetoresistance oscillation. (paper)

  4. Anisotropic superfluidity of hadronic matter

    International Nuclear Information System (INIS)

    Chela Flores, J.

    1977-10-01

    From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions

  5. Anisotropic characterization of magnetorheological materials

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and

  6. Cracking of anisotropic cylindrical polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)

    2017-06-15

    We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)

  7. Negative magnetoresistance in Dirac semimetal Cd3As2.

    Science.gov (United States)

    Li, Hui; He, Hongtao; Lu, Hai-Zhou; Zhang, Huachen; Liu, Hongchao; Ma, Rong; Fan, Zhiyong; Shen, Shun-Qing; Wang, Jiannong

    2016-01-08

    A large negative magnetoresistance (NMR) is anticipated in topological semimetals in parallel magnetic fields, demonstrating the chiral anomaly, a long-sought high-energy-physics effect, in solid-state systems. Recent experiments reveal that the Dirac semimetal Cd3As2 has the record-high mobility and positive linear magnetoresistance in perpendicular magnetic fields. However, the NMR has not yet been unveiled. Here we report the observation of NMR in Cd3As2 microribbons in parallel magnetic fields up to 66% at 50 K and visible at room temperatures. The NMR is sensitive to the angle between magnetic and electrical fields, robust against temperature and dependent on the carrier density. The large NMR results from low carrier densities in our Cd3As2 samples, ranging from 3.0 × 10(17) cm(-3) at 300 K to 2.2 × 10(16) cm(-3) below 50 K. We therefore attribute the observed NMR to the chiral anomaly. In perpendicular magnetic fields, a positive linear magnetoresistance up to 1,670% at 14 T and 2 K is also observed.

  8. Giant magnetoresistance in lateral metallic nanostructures for spintronic applications.

    Science.gov (United States)

    Zahnd, G; Vila, L; Pham, V T; Marty, A; Beigné, C; Vergnaud, C; Attané, J P

    2017-08-25

    In this letter, we discuss the shift observed in spintronics from the current-perpendicular-to-plane geometry towards lateral geometries, illustrating the new opportunities offered by this configuration. Using CoFe-based all-metallic LSVs, we show that giant magnetoresistance variations of more than 10% can be obtained, competitive with the current-perpendicular-to-plane giant magnetoresistance. We then focus on the interest of being able to tailor freely the geometries. On the one hand, by tailoring the non-magnetic parts, we show that it is possible to enhance the spin signal of giant magnetoresistance structures. On the other hand, we show that tailoring the geometry of lateral structures allows creating a multilevel memory with high spin signals, by controlling the coercivity and shape anisotropy of the magnetic parts. Furthermore, we study a new device in which the magnetization direction of a nanodisk can be detected. We thus show that the ability to control the magnetic properties can be used to take advantage of all the spin degrees of freedom, which are usually occulted in current-perpendicular-to-plane devices. This flexibility of lateral structures relatively to current-perpendicular-to-plane structures is thus found to offer a new playground for the development of spintronic applications.

  9. Magnetoresistance and magnetic breakdown phenomenon in amorphous magnetic alloys

    International Nuclear Information System (INIS)

    Chen Hui-yu; Gong Xiao-yu

    1988-01-01

    Transverse magnetoresistance in amorphous magnetic alloys (Fe/sub 1-//sub x/CO/sub x/) 82 Cu/sub 0.4/Si/sub 4.4/B/sub 13.2/ were measured at room temperature and in the magnetic field range 0--15 kOe. For large magnetic field, three different functional dependences of magnetoresistance on magnetic field strength have been found as follows: (1) Δrho/rho approaches saturation. (2) Δrho/rho increases proportionally to H 2 . (3) For x = 0.15, a sharp Δrho/rho peak appears at a certain magnetic field strength in spatial angular orientation of both magnetic field and electric currents. Case (3) is a magnetic breakdown phenomenon. Magnetic breakdown occurs at the gap between the spin-up and spin-down sheets of the Fermi surface. This gap is the spin-orbit gap and its magnitude is a sensitive function of magnetization. Hence the magnitude and width of the magnetoresistance peak and the magnetic field strength at the peak point are functions of angular orientation of both magnetic field and electric current

  10. Thickness Dependent Interlayer Magnetoresistance in Multilayer Graphene Stacks

    Directory of Open Access Journals (Sweden)

    S. C. Bodepudi

    2016-01-01

    Full Text Available Chemical Vapor Deposition grown multilayer graphene (MLG exhibits large out-of-plane magnetoresistance due to interlayer magnetoresistance (ILMR effect. It is essential to identify the factors that influence this effect in order to explore its potential in magnetic sensing and data storage applications. It has been demonstrated before that the ILMR effect is sensitive to the interlayer coupling and the orientation of the magnetic field with respect to the out-of-plane (c-axis direction. In this work, we investigate the role of MLG thickness on ILMR effect. Our results show that the magnitude of ILMR effect increases with the number of graphene layers in the MLG stack. Surprisingly, thicker devices exhibit field induced resistance switching by a factor of at least ~107. This effect persists even at room temperature and to our knowledge such large magnetoresistance values have not been reported before in the literature at comparable fields and temperatures. In addition, an oscillatory MR effect is observed at higher field values. A physical explanation of this effect is presented, which is consistent with our experimental scenario.

  11. Magnetoresistance peak in the mixed state of the organic superconductor κ-(BEDT-TTF)2Cu[N(CN)2]Br

    International Nuclear Information System (INIS)

    Zuo, F.

    1997-01-01

    In this letter, the authors report transport measurements with field and current parallel to the b axis (perpendicular to the conducting plane) in the organic superconductor κ-(BEDT-TTF) 2 Cu[N(CN) 2 ]Br. The isothermal magnetoresistance R(H) displays a peak effect as a function of field. The peak resistance is substantially larger than that in large fields. The results are in sharp contrast to the conventional dissipation mechanisms in the mixed state of anisotropic superconductors, as in the case of Bi 2 Sr 2 CaCu 2 O 8 . Comparison with H c2 (T) obtained from magnetic measurements shows that the peak effect in R(H) occurs in the mixed state. Analysis of the data suggests a much larger Josephson junction resistance in the mixed state than that in the normal state, indicative of a new charge transport scattering mechanism in the presence of vortices

  12. Low-field magnetoresistance anisotropy in strained ultrathin Pr0.67Sr0.33MnO3 films

    International Nuclear Information System (INIS)

    Wang, H.S.; Li, Q.

    1999-01-01

    The authors have studied the anisotropic low-field magnetoresistance (LFMR) in ultrathin Pr 0.67 sr 0.33 MnO 3 (PSMO) films epitaxially grown on LaAlO 3 (LAO), STiO 3 (STO), and NdGaO 3 (NGO) substrates which impose compressive, tensile, and nearly-zero strains in the films. The compressively-strained films show a very large negative LFMR in a perpendicular magnetic field and a much smaller MR in a parallel field, while the tensile-strain films show positive LFMR in a perpendicular field and negative MR in a parallel field. The results are interpreted based on the strain-induced magnetic anisotropy

  13. Detection of BCG bacteria using a magnetoresistive biosensor: A step towards a fully electronic platform for tuberculosis point-of-care detection.

    Science.gov (United States)

    Barroso, Teresa G; Martins, Rui C; Fernandes, Elisabete; Cardoso, Susana; Rivas, José; Freitas, Paulo P

    2018-02-15

    Tuberculosis is one of the major public health concerns. This highly contagious disease affects more than 10.4 million people, being a leading cause of morbidity by infection. Tuberculosis is diagnosed at the point-of-care by the Ziehl-Neelsen sputum smear microscopy test. Ziehl-Neelsen is laborious, prone to human error and infection risk, with a limit of detection of 10 4 cells/mL. In resource-poor nations, a more practical test, with lower detection limit, is paramount. This work uses a magnetoresistive biosensor to detect BCG bacteria for tuberculosis diagnosis. Herein we report: i) nanoparticle assembly method and specificity for tuberculosis detection; ii) demonstration of proportionality between BCG cell concentration and magnetoresistive voltage signal; iii) application of multiplicative signal correction for systematic effects removal; iv) investigation of calibration effectiveness using chemometrics methods; and v) comparison with state-of-the-art point-of-care tuberculosis biosensors. Results present a clear correspondence between voltage signal and cell concentration. Multiplicative signal correction removes baseline shifts within and between biochip sensors, allowing accurate and precise voltage signal between different biochips. The corrected signal was used for multivariate regression models, which significantly decreased the calibration standard error from 0.50 to 0.03log 10 (cells/mL). Results show that Ziehl-Neelsen detection limits and below are achievable with the magnetoresistive biochip, when pre-processing and chemometrics are used. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Angular-dependent magnetoresistance study in Ca0.73La0.27FeAs2: a 'parent' compound of 112-type iron pnictide superconductors.

    Science.gov (United States)

    Xing, Xiangzhuo; Xu, Chunqiang; Li, Zhanfeng; Feng, Jiajia; Zhou, Nan; Zhang, Yufeng; Sun, Yue; Zhou, Wei; Xu, Xiaofeng; Shi, Zhixiang

    2017-12-07

    We report a study of angular-dependent magnetoresistance (AMR) with the magnetic field rotated in the plane perpendicular to the current on a Ca 0.73 La 0.27 FeAs 2 single crystal, which is regarded as a 'parent' compound of 112-type iron pnictide superconductors. A pronounced AMR with twofold symmetry is observed, signifying the highly anisotropic Fermi surface. By further analyzing the AMR data, we find that the Fermi surface above the structural/antiferromagnetic (AFM) transition (T s /T N ) is quasi-two-dimensional (quasi-2D), as revealed by the 2D scaling behavior of the AMR, Δρ/ρ(0) (H, θ)  =  Δρ/ρ(0) (µ 0 Hcosθ), θ being the magnetic field angle with respect to the c axis. While such 2D scaling becomes invalid at temperatures below T s /T N , the three-dimensional (3D) scaling approach by inclusion of the anisotropy of the Fermi surface is efficient, indicating that the appearance of the 3D Fermi surface contributes to anisotropic electronic transport. Compared with other experimental observations, we suspect that the additional 3D hole pocket (generated by the Ca d orbital and As1 p z orbital) around the Γ point in CaFeAs 2 will disappear in the heavily electron doped regime, and moreover, the Fermi surface should be reconstructed across the structural/AFM transition. Besides, a quasi-linear in-plane magnetoresistance with H//ab is observed at low temperatures and its possible origins are also discussed. Our results provide more information to further understand the electronic structure of 112-type IBSs.

  15. Large linear magnetoresistance in topological crystalline insulator Pb_0_._6Sn_0_._4Te

    International Nuclear Information System (INIS)

    Roychowdhury, Subhajit; Ghara, Somnath; Guin, Satya N.; Sundaresan, A.; Biswas, Kanishka

    2016-01-01

    Classical magnetoresistance generally follows the quadratic dependence of the magnetic field at lower field and finally saturates when field is larger. Here, we report the large positive non-saturating linear magnetoresistance in topological crystalline insulator, Pb_0_._6Sn_0_._4Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. Magnetoresistance value as high as ∼200% was achieved at 3 K at magnetic field of 9 T. Linear magnetoresistance observed in Pb_0_._6Sn_0_._4Te is mainly governed by the spatial fluctuation carrier mobility due to distortions in the current paths in inhomogeneous conductor. - Graphical abstract: Large non-saturating linear magnetoresistance has been evidenced in topological crystalline insulator, Pb_0_._6Sn_0_._4Te, at different temperatures between 3 K and 300 K in magnetic field up to 9 T. - Highlights: • Large non-saturating linear magnetoresistance was achieved in the topological crystalline insulator, Pb_0_._6Sn_0_._4Te. • Highest magnetoresistance value as high as ~200% was achieved at 3 K at magnetic field of 9 T. • Linear magnetoresistance in Pb_0_._6Sn_0_._4Te is mainly governed by the spatial fluctuation of the carrier mobility.

  16. Neutron transfer with anisotropic scattering

    International Nuclear Information System (INIS)

    El Wakil, S.A.; Haggag, M.H.; Saad, E.A.

    1979-01-01

    The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)

  17. Anisotropic densification of reference steel

    International Nuclear Information System (INIS)

    Garner, F.A.; Bates, J.F.; Gilbert, E.R.

    1975-09-01

    A correlation is presented for the densification expected during neutron irradiation of 20 percent CW 316 stainless steel cladding of FTR specification. The densification is known to be a function of time, prior heat treatment, cold work level, irradiation temperature and minor element composition. For FTR fuel pin use, the temperature and carbon composition were chosen as the only relevant variables on which to base the correlation. The densification of FTR cladding is expected to be slightly anisotropic, leading to a diameter change somewhat less than that predicted by the isotropic relationship ΔD = -D 0 /3

  18. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  19. The anisotropic tunneling behavior of spin transport in graphene-based magnetic tunneling junction

    Science.gov (United States)

    Pan, Mengchun; Li, Peisen; Qiu, Weicheng; Zhao, Jianqiang; Peng, Junping; Hu, Jiafei; Hu, Jinghua; Tian, Wugang; Hu, Yueguo; Chen, Dixiang; Wu, Xuezhong; Xu, Zhongjie; Yuan, Xuefeng

    2018-05-01

    Due to the theoretical prediction of large tunneling magnetoresistance (TMR), graphene-based magnetic tunneling junction (MTJ) has become an important branch of high-performance spintronics device. In this paper, the non-collinear spin filtering and transport properties of MTJ with the Ni/tri-layer graphene/Ni structure were studied in detail by utilizing the non-equilibrium Green's formalism combined with spin polarized density functional theory. The band structure of Ni-C bonding interface shows that Ni-C atomic hybridization facilitates the electronic structure consistency of graphene and nickel, which results in a perfect spin filtering effect for tri-layer graphene-based MTJ. Furthermore, our theoretical results show that the value of tunneling resistance changes with the relative magnetization angle of two ferromagnetic layers, displaying the anisotropic tunneling behavior of graphene-based MTJ. This originates from the resonant conduction states which are strongly adjusted by the relative magnetization angles. In addition, the perfect spin filtering effect is demonstrated by fitting the anisotropic conductance with the Julliere's model. Our work may serve as guidance for researches and applications of graphene-based spintronics device.

  20. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays

    Energy Technology Data Exchange (ETDEWEB)

    Boltaev, A.P.; Pudonin, F.A. [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); Sherstnev, I.A., E-mail: sherstnev@lebedev.ru [P. N. Lebedev Physical Institute of the Russian Academy of Sciences, Leninskiy Prospekt 53, 119991 Moscow (Russian Federation); Egorov, D.A. [National Research Nuclear University MEPhI, Kashirskoe shosse 31, 115409 Moscow (Russian Federation); Kozmin, A.M. [National Research University of Electronic Technology, Shokin Square, 1, Zelenograd, 124482 Moscow (Russian Federation)

    2017-04-15

    Process of magnetization and magnetoresistance have been studied in nanoisland bilayer systems of FeNi-Co. Hysteresis loops show characteristic features (steps) most clearly observed in certain orientations of the sample in a magnetic field. To explain these features the concept of flat magnetic exchange spring has been introduced for nanoisland bilayers. It has been proposed that additional magnetoresistance can be the result of spin-dependent scattering of electrons in the area of flat magnetic exchange spring. Magnetoresistance studies of bilayer systems has shown that additional magnetoresistance occurs at the same magnetic fields as steps on hysteresis loops. - Highlights: • Metallic FeNi-Co bilayers are studied. • FeNi and Co layers magnetize independently. • Concept of flat spin spring is proposed. • Additional magnetoresistance occurs in intermediate magnetic fields.

  1. Giant current-perpendicular-to-plane magnetoresistance in multilayer graphene as grown on nickel.

    Science.gov (United States)

    Bodepudi, S C; Singh, A P; Pramanik, S

    2014-05-14

    Strong magnetoresistance effects are often observed in ferromagnet-nonmagnet multilayers, which are exploited in state-of-the-art magnetic field sensing and data storage technologies. In this work we report a novel current-perpendicular-to-plane magnetoresistance effect in multilayer graphene as grown on a catalytic nickel surface by chemical vapor deposition. A negative magnetoresistance effect of ∼10(4)% has been observed, which persists even at room temperature. This effect is correlated with the shape of the 2D peak as well as with the occurrence of D peak in the Raman spectrum of the as-grown multilayer graphene. The observed magnetoresistance is extremely high as compared to other known materials systems for similar temperature and field range and can be qualitatively explained within the framework of "interlayer magnetoresistance" (ILMR).

  2. Flat magnetic exchange springs as mechanism for additional magnetoresistance in magnetic nanoisland arrays

    International Nuclear Information System (INIS)

    Boltaev, A.P.; Pudonin, F.A.; Sherstnev, I.A.; Egorov, D.A.; Kozmin, A.M.

    2017-01-01

    Process of magnetization and magnetoresistance have been studied in nanoisland bilayer systems of FeNi-Co. Hysteresis loops show characteristic features (steps) most clearly observed in certain orientations of the sample in a magnetic field. To explain these features the concept of flat magnetic exchange spring has been introduced for nanoisland bilayers. It has been proposed that additional magnetoresistance can be the result of spin-dependent scattering of electrons in the area of flat magnetic exchange spring. Magnetoresistance studies of bilayer systems has shown that additional magnetoresistance occurs at the same magnetic fields as steps on hysteresis loops. - Highlights: • Metallic FeNi-Co bilayers are studied. • FeNi and Co layers magnetize independently. • Concept of flat spin spring is proposed. • Additional magnetoresistance occurs in intermediate magnetic fields.

  3. 3000% high-field magnetoresistance in super-lattices of CoFe nanoparticles

    International Nuclear Information System (INIS)

    Tan, Reasmey P.; Carrey, Julian; Respaud, Marc; Desvaux, Celine; Renaud, Philippe; Chaudret, Bruno

    2008-01-01

    We report on magnetotransport measurements on millimeter-large super-lattices of CoFe nanoparticles surrounded by an organic layer. Electrical properties are typical of Coulomb blockade in three-dimensional arrays of nanoparticles. A large high-field magnetoresistance, reaching up to 3000%, is measured between 1.8 and 10 K. This exceeds by two orders of magnitude magnetoresistance values generally measured in arrays of 3d transition metal ferromagnetic nanoparticles. The magnetoresistance amplitude scales with the magnetic field/temperature ratio and displays an unusual exponential dependency with the applied voltage. The magnetoresistance abruptly disappears below 1.8 K. We propose that the magnetoresistance is due to some individual paramagnetic moments localized between the metallic cores of the nanoparticles, the origin of which is discussed

  4. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  5. Temperature and thickness dependence of tunneling anisotropic magnetoresistance in exchange-biased Py/IrMn/MgO/Ta stacks

    Czech Academy of Sciences Publication Activity Database

    Reichlová, Helena; Novák, Vít; Kurosaki, Y.; Yamada, M.; Yamamoto, H.; Nishide, A.; Hayakawa, J.; Takahashi, H.; Maryško, Miroslav; Wunderlich, Joerg

    2016-01-01

    Roč. 3, č. 7 (2016), 1-5, č. článku 076406. ISSN 2053-1591 R&D Projects: GA MŠk LM2015087; GA ČR GB14-37427G EU Projects: European Commission(XE) 268066 - 0MSPIN; European Commission(XE) 610115 - SC2 Institutional support: RVO:68378271 Keywords : spintronics * antiferromagnets * tunneling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.068, year: 2016

  6. Large magnetic anisotropy and tunneling anisotropic magnetoresistance in bi-metallic layered nanostructures: Case study of Mn/W(001)

    Czech Academy of Sciences Publication Activity Database

    Shick, Alexander; Máca, František; Ondráček, Martin; Mryasov, O. N.; Jungwirth, Tomáš

    2008-01-01

    Roč. 78, č. 5 (2008), 054413/1-054413/5 ISSN 1098-0121 R&D Projects: GA ČR GA202/07/0456; GA MŠk LC510; GA ČR GEFON/06/E002; GA ČR GA202/07/0644 EU Projects: European Commission(XE) 015728 - NANOSPIN Institutional research plan: CEZ:AV0Z10100520; CEZ:AV0Z10100521 Keywords : magnetic anisotropy energy * surface * mangan * tungsten * calculations Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.322, year: 2008

  7. High frequency and magnetoelectrical properties of magnetoresistive memory element based on FeCoNi/TiN/FeCoNi film

    Directory of Open Access Journals (Sweden)

    Kurlyandskaya, G. V.

    2000-08-01

    Full Text Available A miniaturised memory device for information recording and readout processes have been designed on the basis of anisotropic magnetoresistive effect in Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å three-layered film done by rf diode sputtering. Stable recording and readout processes were available for 32 rectangular element column, where each element had μm dimensions convenient to fabricate memory chip with 106 bits capacity. Rectangles of different sizes with removed corners were used in order to define the geometry of most of all stable recording and readout processes. Magnetoresistance and magnetoimpedance effects of a magnetic memory device have been comparatively analysed. We suggest that the decrease of the absolute value of the magnetoimpedance of the memory device comes from the reduction of the real part via the magnetoresistance.

    Se ha diseñado un dispositivo de memoria para la grabación y lectura de información basado en el efecto de la anisotropía magnetorresistiva de una multicapa fabricada por sputtering mediante diodo de rf. El elemento de memoria se compone de tres películas delgadas, de composición Fe15Co20Ni65(160Å/ TiN(50Å/Fe15Co20Ni65(160Å. El dispositivo permite procesos de grabación y lectura estables, y se compone de 32 elementos de memoria rectangulares por columna, donde cada elemento tiene dimensiones de μm lo que permite la fabricación de memorias integradas con capacidades del orden de 106 bits. Se han ensayado elementos de memoria rectangulares de diferentes tamaños, con las esquinas redondeadas con objeto de conseguir procesos de lectura-escritura lo más estable posible. Se han analizado comparativamente los efectos de magnetorresistencia y magnetoimpedancia de los elementos de memoria de diferentes dimensiones. Sugerimos que la disminución del valor absoluto de la magnetoimpedancia del elemento de memoria es consecuencia de la reducción de la parte real, de origen magnetorresistivo.

  8. Topological Phase Transition-Induced Triaxial Vector Magnetoresistance in (Bi1-xInx)2Se3 Nanodevices.

    Science.gov (United States)

    Zhang, Minhao; Wang, Huaiqiang; Mu, Kejun; Wang, Pengdong; Niu, Wei; Zhang, Shuai; Xiao, Guiling; Chen, Yequan; Tong, Tong; Fu, Dongzhi; Wang, Xuefeng; Zhang, Haijun; Song, Fengqi; Miao, Feng; Sun, Zhe; Xia, Zhengcai; Wang, Xinran; Xu, Yongbing; Wang, Baigeng; Xing, Dingyu; Zhang, Rong

    2018-02-27

    We report the study of a triaxial vector magnetoresistance (MR) in nonmagnetic (Bi 1-x In x ) 2 Se 3 nanodevices at the composition of x = 0.08. We show a dumbbell-shaped in-plane negative MR up to room temperature as well as a large out-of-plane positive MR. MR at three directions is about in a -3%:-1%:225% ratio at 2 K. Through both the thickness and composition-dependent magnetotransport measurements, we show that the in-plane negative MR is due to the topological phase transition enhanced intersurface coupling near the topological critical point. Our devices suggest the great potential for room-temperature spintronic applications in, for example, vector magnetic sensors.

  9. Magnetoresistive ceramics. Recent progress: from basic understanding to applications

    Directory of Open Access Journals (Sweden)

    Fontcuberta, J.

    2004-06-01

    Full Text Available Magnetoresistive ceramics, based on half-metallic ferromagnetic oxides have received renewed attention in the last few years because of their possible applications. Here, we review some recent progress on the development of magnetoresistive ceramic materials such as La2/3Sr1/ 3MnO3 and Sr2FeMoO6 ceramic materials. We shall revisit their basic properties, the strategies that have been employed to understand and to improve their intrinsic properties, pushing the limits of their operation at temperatures well above room-temperature, and the development of some applications. This effort has required the contribution of a number of actors. Starting from research laboratories, it has progressively involved industries that nowadays are able to supply high quality raw-materials or to manufacture magnetoresistive components at large scale.

    Las cerámicas magnetorresistivas, basadas en óxidos semi-metálicos ferromagnéticos han recibido una renovada atención en los últimos años debido a sus posibles aplicaciones. Se revisan aquí algunos de los recientes progresos en el desarrollo de materiales cerámicos magnetorresistivos como La2/3Sr1/3MnO3 y Sr2FeMoO6. Se revisitan sus propiedades básicas, las estrategias empleadas para entender y mejorar sus propiedades intrínsecas, llevando sus límites de operación a temperaturas muy por encima de temperatura ambiente, y el desarrollo de algunas aplicaciones. Este esfuerzo ha requerido al contribución de un gran número de actores. Comenzando por laboratorios de investigación, se ha implicado progresivamente a industrias que hoy en día están capacitadas para suministrar materias primas de alta calidad o para fabricar componentes magnetorresistivos a gran escala.

  10. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  11. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  12. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun

    2012-01-05

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  13. Tailoring magnetoresistance at the atomic level: An ab initio study

    KAUST Repository

    Tao, Kun; Stepanyuk, V. S.; Rungger, I.; Sanvito, S.

    2012-01-01

    The possibility of manipulating the tunneling magnetoresistance (TMR) of antiferromagnetic nanostructures is predicted in the framework of ab initio calculations. By the example of a junction composed of an antiferromagnetic dimer and a spin-polarized scanning tunneling microscopy tip we show that the TMR can be tuned and even reversed in sign by lateral and vertical movements of the tip. Moreover, our finite-bias calculations demonstrate that the magnitude and the sign of the TMR can also be tuned by an external voltage. © 2012 American Physical Society.

  14. The electrical conductivity and longitudinal magnetoresistance of metallic nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Moraga, Luis, E-mail: luismoragajaramillo@gmail.com [Universidad Central de Chile, Toesca 1783, Santiago 8370178 (Chile); Henriquez, Ricardo, E-mail: rahc.78@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Bravo, Sergio, E-mail: bravo.castillo.sergio@gmail.com [Departamento de Física, Universidad Técnica Federico Santa María, Av. España 1680, Valparaíso (Chile); Solis, Basilio, E-mail: bsolis1984@gmail.com [Argelander-Institut für Astronomie, Auf dem Hügel 71, 53121 Bonn (Germany)

    2017-03-01

    Proceeding from exact solutions of the Boltzmann transport equation in the relaxation time approximation, we present formulas for the electrical conductivity and longitudinal magnetoresistance of single-crystalline cylindrical nanotubes. The effects of surface scattering are taken into account by introducing different specularity parameters at the inner and outer surfaces. For small values of the inner diameter, these formulas reduce to the respective expressions for cylindrical nanowires. It is found that the existing measurements of the resistivity of nanotubes (Venkata Kamalakar and Raychaudhuri, New J. Phys. 14, 043032 (2012)) can be accurately described by this formalism.

  15. Fusion-neutron effects on magnetoresistivity of copper stabilizer materials

    International Nuclear Information System (INIS)

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-01-01

    The objective of this work is to quantify the changes which occur in the magnetoresistivity of coppers (having various purities and pretreatments, and at magnetic fields up to 12 T during the course of sequential fusion neutron irradiations at about 4 0 K and anneals to room temperature. In conjunction with work in progress by Coltman and Klabunde of ORNL, the results should lead to engineering design data for the stabilizers of superconducting magnets in fusion reactors. These magnets are expected to be irradiated during reactor operation and warmed to room temperature periodically during maintenance

  16. Fusion-neutron effects on magnetoresistivity of copper stabilizer materials

    Energy Technology Data Exchange (ETDEWEB)

    Guinan, M.W.; Van Konynenburg, R.A.

    1983-02-24

    The objective of this work is to quantify the changes which occur in the magnetoresistivity of coppers (having various purities and pretreatments, and at magnetic fields up to 12 T during the course of sequential fusion neutron irradiations at about 4/sup 0/K and anneals to room temperature. In conjunction with work in progress by Coltman and Klabunde of ORNL, the results should lead to engineering design data for the stabilizers of superconducting magnets in fusion reactors. These magnets are expected to be irradiated during reactor operation and warmed to room temperature periodically during maintenance.

  17. Magnetoresistance of UPdSn and pressure effect

    Czech Academy of Sciences Publication Activity Database

    Honda, F.; Alsmadi, A.; Nakotte, H.; Kamarád, Jiří; Sechovský, V.; Lacerda, A. H.; Mihálik, M.

    2003-01-01

    Roč. 34, č. 2 (2003), s. 1197-1200 ISSN 0587-4254. [International Conference on Strongly Correlated Electron Systems (SCES 02). Cracow, 10.07.2002-13.07.2002] R&D Projects: GA ČR GP202/01/D045; GA ČR GA106/02/0943 Grant - others:NSF(US) DMR-0094241; NSF(US) INT-9722777 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetoresistance * UPdSn * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.752, year: 2003

  18. Superconducting spin-triplet-MRAM with infinite magnetoresistance ratio

    Energy Technology Data Exchange (ETDEWEB)

    Lenk, Daniel; Ullrich, Aladin; Obermeier, Guenter; Mueller, Claus; Krug von Nidda, Hans-Albrecht; Horn, Siegfried; Tidecks, Reinhard [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Morari, Roman [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation); Zdravkov, Vladimir I. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Institute of Applied Physics and Interdisciplinary Nanoscience Center, Universitaet Hamburg, Jungiusstrasse 9A, D-20355 Hamburg (Germany); Sidorenko, Anatoli S. [D. Ghitsu Institute of Electronic Engineering and Nanotechnologies ASM, Academiei Str. 3/3, MD2028 Kishinev (Moldova, Republic of); Tagirov, Lenar R. [Institut fuer Physik, Universitaet Augsburg, D-86159 Augsburg (Germany); Solid State Physics Department, Kazan Federal University, 420008 Kazan (Russian Federation)

    2016-07-01

    We fabricated a nanolayered hybrid superconductor-ferromagnet spin-valve structure, i.e. the superconducting transition temperature of this structure depends on its magnetic history. The observed spin-valve effect is based on the generation of the long range odd in frequency triplet component, arising from a non-collinear relative orientation of the constituent ferromagnetic layers. We investigated the effect both as a function of the sweep amplitude of the magnetic field, determining the magnetic history, and the applied transport current. Moreover, we demonstrate the possibility of switching the system from the normal o the superconducting state by applying field pulses, yielding an infinite magnetoresistance ratio.

  19. Current perpendicular to plane giant magnetoresistance in laminated nanostructures

    International Nuclear Information System (INIS)

    Vedyayev, A.; Zhukov, I.; Dieny, B.

    2005-01-01

    We theoretically studied spin-dependent electron transport perpendicular-to-plain (CPP) in magnetic laminated multilayered structures by using Kubo formalism. We took into account not only bulk scattering, but the interface resistance due to both specular and diffuse reflection and also spin conserving and spin-flip processes. It was shown that spin-flip scattering at interfaces substantially reduces the value of giant magnetoresistance (GMR). This can explain the experimental observations that the CPP GMR ratio for laminated structures only slightly increases as compared to non-laminated ones even though lamination induces a significant increase in CPP resistance

  20. Investigation of transport properties of colossal magnetoresistive materials

    International Nuclear Information System (INIS)

    Kaurav, Netram

    2006-01-01

    The transport properties, i.e. resistivity, heat capacity, thermal conductivity and optical conductivity have been theoretically analysed for colossal magnetoresistive materials within the framework of double exchange mechanism. Following an effective interaction potential, we deduce acoustic (optical) phonon modes, coupling strength for electron-phonon and phonon-impurities, the phonon (magnon) scattering rate and constants characterise the scattering of charge and heat carriers with various disorders in the crystal. The theoretical models have been developed to account the anomalies observed in the transport phenomenon. It is noticed that electron-electron, electron-phonon and electron-magnon interactions are essential in discussing the transport behaviour of doped magnetites. (author)

  1. Positive magnetoresistance in Fe3Se4 nanowires

    Science.gov (United States)

    Li, D.; Jiang, J. J.; Liu, W.; Zhang, Z. D.

    2011-04-01

    We report the magnetotransport properties of Fe3Se4 nanowire arrays in anodic aluminum oxide (AAO) porous membrane. The temperature dependence of resistance of Fe3Se4 nanowires at a zero field shows thermal activated behavior below 295 K. The exponential relationship in resistance is consistent with the model of strong localization with variable-range hopping (VRH) for a finite one-dimensional wire. Resistance versus magnetic field curves below 100 K show small positive magnetoresistance (MR). The field dependencies of log[R(H)/R(0)] explain the positive MR as the effect of magnetic field on the VRH conduction.

  2. Magnon Spin Hall Magnetoresistance of a Gapped Quantum Paramagnet

    Science.gov (United States)

    Ulloa, Camilo; Duine, R. A.

    2018-04-01

    Motivated by recent experimental work, we consider spin transport between a normal metal and a gapped quantum paramagnet. We model the latter as the magnonic Mott-insulating phase of an easy-plane ferromagnetic insulator. We evaluate the spin current mediated by the interface exchange coupling between the ferromagnet and the adjacent normal metal. For the strongly interacting magnons that we consider, this spin current gives rise to a spin Hall magnetoresistance that strongly depends on the magnitude of the magnetic field, rather than its direction. This Letter may motivate electrical detection of the phases of quantum magnets and the incorporation of such materials into spintronic devices.

  3. Magneto-resistive and spin valve heads fundamentals and applications

    CERN Document Server

    Mallinson, John C

    2002-01-01

    This book is aims to be a comprehensive source on the physics and engineering of magneto-resistive heads. Most of the material is presented in a nonmathematical manner to make it more digestible for researchers, students, developers, and engineers.In addition to revising and updating material available in the first edition, Mallinson has added nine new chapters dealing with various aspects concerning spin valves, the electron spin tunneling effect, the electrostatic discharge effects, read amplifiers, and signal-to-noise ratios, making this a completely up-to-date reference.Th

  4. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Science.gov (United States)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-03-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found.

  5. Towards a magnetoresistive platform for neural signal recording

    Science.gov (United States)

    Sharma, P. P.; Gervasoni, G.; Albisetti, E.; D'Ercoli, F.; Monticelli, M.; Moretti, D.; Forte, N.; Rocchi, A.; Ferrari, G.; Baldelli, P.; Sampietro, M.; Benfenati, F.; Bertacco, R.; Petti, D.

    2017-05-01

    A promising strategy to get deeper insight on brain functionalities relies on the investigation of neural activities at the cellular and sub-cellular level. In this framework, methods for recording neuron electrical activity have gained interest over the years. Main technological challenges are associated to finding highly sensitive detection schemes, providing considerable spatial and temporal resolution. Moreover, the possibility to perform non-invasive assays would constitute a noteworthy benefit. In this work, we present a magnetoresistive platform for the detection of the action potential propagation in neural cells. Such platform allows, in perspective, the in vitro recording of neural signals arising from single neurons, neural networks and brain slices.

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  8. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  9. The magnetoresistive effect induced by stress in spin-valve structures

    International Nuclear Information System (INIS)

    Li-Jie, Qian; Xiao-Yong, Xu; Jing-Guo, Hu

    2009-01-01

    Using a method of free energy minimization, this paper investigates the magnetization properties of a ferromagnetic (FM) monolayer and an FM/antiferromagnetic (AFM) bilayer under a stress field, respectively. It then investigates the magnetoresistance (MR) of the spin-valve structure, which is built by an FM monolayer and an FM/AFM bilayer, and its dependence upon the applied stress field. The results show that under the stress field, the magnetization properties of the FM monolayer is obviously different from that of the FM/AFM bilayer, since the coupled AFM layer can obviously block the magnetization of the FM layer. This phenomenon makes the MR of the spin-valve structure become obvious. In detail, there are two behaviors for the MR of the spin-valve structure dependence upon the stress field distinguished by the coupling (FM coupling or AFM coupling) between the FM layer and the FM/AFM bilayer. Either behavior of the MR of the spin-valve structure depends on the stress field including its value and orientation. Based on these investigations, a perfect mechanical sensor at the nano-scale is suggested to be devised experimentally

  10. Large magnetoresistance and Fermi surface study of Sb2Se2Te single crystal

    Science.gov (United States)

    Shrestha, K.; Marinova, V.; Graf, D.; Lorenz, B.; Chu, C. W.

    2017-09-01

    We have studied the magnetotransport properties of a Sb2Se2Te single crystal. Magnetoresistance (MR) is maximum when the magnetic field is perpendicular to the sample surface and reaches a value of 1100% at B = 31 T with no sign of saturation. MR shows Shubnikov de Haas (SdH) oscillations above B = 15 T. The frequency spectrum of SdH oscillations consists of three distinct peaks at α = 32 T, β = 80 T, and γ = 117 T indicating the presence of three Fermi surface pockets. Among these frequencies, β is the prominent peak in the frequency spectrum of SdH oscillations measured at different tilt angles of the sample with respect to the magnetic field. From the angle dependence β and Berry phase calculations, we have confirmed the trivial topology of the β-pocket. The cyclotron masses of charge carriers, obtained by using the Lifshitz-Kosevich formula, are found to be mβ*=0.16mo and m γ*=0.63 mo for the β and γ bands, respectively. The Large MR of Sb2Se2Te is suitable for utilization in electronic instruments such as computer hard discs, high field magnetic sensors, and memory devices.

  11. Tunnel magnetoresistance in asymmetric double-barrier magnetic tunnel junctions

    International Nuclear Information System (INIS)

    Useinov, N.Kh.; Petukhov, D.A.; Tagirov, L.R.

    2015-01-01

    The spin-polarized tunnel conductance and tunnel magnetoresistance (TMR) through a planar asymmetric double-barrier magnetic tunnel junction (DBMTJ) have been calculated using quasi-classical model. In DBMTJ nanostructure the magnetization of middle ferromagnetic metal layer can be aligned parallel or antiparallel with respect to the fixed magnetizations of the top and bottom ferromagnetic electrodes. The transmission coefficients of an electron to pass through the barriers have been calculated in terms of quantum mechanics. The dependencies of tunnel conductance and TMR on the applied voltage have been calculated in case of non-resonant transmission. Estimated in the framework of our model, the difference between the spin-channels conductances at low voltages was found relatively large. This gives rise to very high magnitude of TMR. - Highlights: • The spin-polarized conductance through the junction is calculated. • Dependencies of the tunnel conductance vs applied bias are shown. • Bias voltage dependence of tunnel magnetoresistance for the structure is shown

  12. Large tunneling magnetoresistance in octahedral Fe3O4 nanoparticles

    Directory of Open Access Journals (Sweden)

    Arijit Mitra

    2016-05-01

    Full Text Available We have observed large tunneling Magnetoresistance (TMR in amine functionalized octahedral nanoparticle assemblies. Amine monolayer on the surface of nanoparticles acts as an insulating barrier between the semimetal Fe3O4 nanoparticles and provides multiple tunnel junctions where inter-granular tunneling is plausible. The tunneling magnetoresistance recorded at room temperature is 38% which increases to 69% at 180 K. When the temperature drops below 150 K, coulomb staircase is observed in the current versus voltage characteristics as the charging energy exceeds the thermal energy. A similar study is also carried out with spherical nanoparticles. A 24% TMR is recorded at room temperature which increases to 41% at 180 K for spherical particles. Mössbauer spectra reveal better stoichiometry for octahedral particles which is attainable due to lesser surface disorder and strong amine coupling at the facets of octahedral Fe3O4 nanoparticles. Less stoichiometric defect in octahedral nanoparticles leads to a higher value of spin polarization and therefore larger TMR in octahedral nanoparticles.

  13. Stability of anisotropic stellar filaments

    Science.gov (United States)

    Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.

    2017-12-01

    The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.

  14. Warm anisotropic inflationary universe model

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  15. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  16. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng

    2015-12-10

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  17. Observation of large low-field magnetoresistance in spinel cobaltite: A new half-metal

    KAUST Repository

    Li, Peng; Xia, Chuan; Zheng, Dongxing; Wang, Ping; Jin, Chao; Bai, Haili

    2015-01-01

    Low-field magnetoresistance is an effective and energy-saving way to use half-metallic materials in magnetic reading heads and magnetic random access memory. Common spin-polarized materials with low field magnetoresistance effect are perovskite-type manganese, cobalt, and molybdenum oxides. In this study, we report a new type of spinel cobaltite materials, self-assembled nanocrystalline NiCo2O4, which shows large low field magnetoresistance as large as –19.1% at 0.5 T and –50% at 9 T (2 K). The large low field magnetoresistance is attributed to the fast magnetization rotation of the core nanocrystals. The surface spin-glass is responsible for the observed weak saturation of magnetoresistance under high fields. Our calculation demonstrates that the half-metallicity of NiCo2O4 comes from the hopping eg electrons within the tetrahedral Co-atoms and the octahedral Ni-atoms. The discovery of large low-field magnetoresistance in simple spinel oxide NiCo2O4, a non-perovskite oxide, leads to an extended family of low-field magnetoresistance materials. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

  18. Extremely large magnetoresistance in few-layer graphene/boron-nitride heterostructures.

    Science.gov (United States)

    Gopinadhan, Kalon; Shin, Young Jun; Jalil, Rashid; Venkatesan, Thirumalai; Geim, Andre K; Castro Neto, Antonio H; Yang, Hyunsoo

    2015-09-21

    Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of ∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron-nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen-Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications.

  19. Study of the temperature dependence of giant magnetoresistance in metallic granular composite

    International Nuclear Information System (INIS)

    Ju Sheng; Li, Z.-Y.

    2002-01-01

    The temperature dependence of the giant magnetoresistance of metallic granular composite is studied. It is considered that the composite contains both large magnetic grains with surface spin S' and small magnetic impurities. It is found that the decrease of surface spin S' of grain is the main cause of an almost linear decrease of giant magnetoresistance with the increase of temperature in high temperature range. The magnetic impurities, composed of several atoms, lead to an almost linear increase of the giant magnetoresistance with the decrease of temperature in low temperature range. Our calculations are in good agreement with recent experimental data for metallic nanogranular composites

  20. Negative magnetoresistance in perpendicular of the superlattices axis weak magnetic field at scattering of impurity ions

    International Nuclear Information System (INIS)

    Askerov, B. M.; Figarova, R.; Guseynov, G.I.

    2012-01-01

    Full Text : The transverse magnetoresistance in superlattices with the cosine dispersion law of conduction electrons in a case, when a weak magnetic field in plane of layer at scattering of the charge carriers of impurity ions has been studied. It has been shown that in a quasi-two-dimensional case the magnetoresistance was positive, while in a quasi-three-dimensional case can become negative depending of a degree of mini-band filling. Such behavior of magnetoresistance, apparently, has been related to presence in a mini-band of region with the negative effective mass

  1. Resistance and magnetoresistance of annealed amorphous carbon films containing Fe3C nanograins

    International Nuclear Information System (INIS)

    Lee Yuhua; Han Taichun; Wur, C.-S.

    2004-01-01

    The temperature-dependent resistance and the field-dependent magnetoresistance were measured for films annealed at temperatures from 250 deg. C to 550 deg. C for a period of 60 min. Results of temperature-dependent resistance show electrical tunneling conductance in the films annealed at T a =250 deg. C and 350 deg. C only. The largest magnetoresistance ratio (MR) of 23% at temperature T=2 K was observed for T a =350 deg. C. The variations of both the temperature dependence of resistance and the magnetoresistance with the annealing temperature are discussed

  2. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    Science.gov (United States)

    Stepina, N. P.; Koptev, E. S.; Pogosov, A. G.; Dvurechenskii, A. V.; Nikiforov, A. I.; Zhdanov, E. Yu

    2012-07-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  3. Magnetoresistance in two-dimensional array of Ge/Si quantum dots

    International Nuclear Information System (INIS)

    Stepina, N P; Koptev, E S; Pogosov, A G; Dvurechenskii, A V; Nikiforov, A I; Zhdanov, E Yu

    2012-01-01

    Magnetoresistance in two-dimensional array of Ge/Si was studied for a wide range of the conductance, where the transport regime changes from hopping to diffusive one. The behavior of magnetoresistance is similar for all samples; it is negative in weak fields and becomes positive with increasing of magnetic field. Negative magnetoresistance can be described in the frame of weak localization approach with suggestion that quantum interference contribution to the conductance is restricted not only by the phase breaking length but also by the localization length.

  4. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  5. Miniature Inertial and Augmentation Sensors for Integrated Inertial/GPS Based Navigation Applications

    Science.gov (United States)

    2010-03-01

    Magnetometer (Ref [23]) Until miniature atomic magnetometers transition from laboratory demonstration units to a mass produced product, fluxgate ...and/or magnetoresistive designs are a better suited magnetometer technology for a miniature navigation system. Figure 8 below shows the basic fluxgate ...is required to resolve magnetic field orientation. Fig 8. Fluxgate Magnetometer Schematic The PNI Sensor Corporation (Santa Rosa, CA

  6. Sensor and method for measuring the areal density of magnetic nanoparticles on a micro-array

    NARCIS (Netherlands)

    2003-01-01

    The present invention relates to a method and a device for magnetic detection of binding of biological molecules on a biochip. A magnetoresistive sensor device for measuring an areal density of magnetic nanoparticles on a micro-array, the magnetic nanoparticles (15) being directly or indirectly

  7. Eddy current probe development based on a magnetic sensor array

    International Nuclear Information System (INIS)

    Vacher, F.

    2007-06-01

    This research deals with in the study of the use of innovating magnetic sensors in eddy current non destructive inspection. The author reports an analysis survey of magnetic sensor performances. This survey enables the selection of magnetic sensor technologies used in non destructive inspection. He presents the state-of-the-art of eddy current probes exploiting the qualities of innovating magnetic sensors, and describes the methods enabling the use of these magnetic sensors in non destructive testing. Two main applications of innovating magnetic sensors are identified: the detection of very small defects by means of magneto-resistive sensors, and the detection of deep defects by means of giant magneto-impedances. Based on the use of modelling, optimization, signal processing tools, probes are manufactured for these both applications

  8. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying; Mei, Jun; Sheng, Ping

    2012-01-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle

  9. Anisotropic stars obeying Chaplygin equation of state

    Indian Academy of Sciences (India)

    P Bhar

    2017-12-14

    Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...

  10. Role of dipolar interactions on morphologies and tunnel magnetoresistance in assemblies of magnetic nanoparticles

    Science.gov (United States)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2018-05-01

    We undertake comprehensive simulations of 2d arrays (Lx ×Ly) of magnetic nanoparticles (MNPs) with dipole-dipole interactions by solving LLG equations. Our primary interest is to understand the correspondence between equilibrium spin (ES) morphologies and tunnel magnetoresistance (TMR) as a function of Θ - the ratio of the dipolar to the anisotropy strength, sample size Lx , aspect ratio Ar =Ly /Lx and the direction of the applied field H → = HêH . The parameter Θ is varied by choosing three distinct particles: (i) α -Fe2O3 (Θ ≃ 0) , (ii) Co (Θ ≃ 0.37) and (iii) Fe3O4 (Θ ≃ 1.28) . Our main observations are as follows: (a) For weakly interacting spins (Θ ≃ 0) , the morphology has randomly oriented magnetic moments for all sample sizes and aspect ratios. The TMR exhibits a peak value of 50% at the coercive field Hc . It is robust with respect to Lx and Ar , and isotropic with respect to êH . (b) For strong interactions (Θ > 1) , the moments order in the plane of the sample. The ES morphology comprises of magnetically aligned regions interspersed with flux closure loops. For fields along x or y, the maximum TMR amplitude decrease to ∼30%. For êH = z ̂ , it drops to ∼3%. The TMR is robust with respect to Lx and Ar and isotropic in the x and y directions only. (c) In strongly interacting samples (Θ > 1) with Lx comparable to the size of a flux closure loop, increasing Ar creates ferromagnetic chains in the sample oriented along y or - y . Consequently, for êH = y ̂ , the TMR magnitude for Ar = 1 is ∼33% while that for Ar = 32 drops to ∼16%. For êH = x ̂ on the other hand, it is ∼30% and independent of Ar . The TMR of long ribbons of MNPs has a strong dependence on Ar and is anisotropic in all three directions.

  11. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  12. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

    2013-01-01

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  13. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions

    International Nuclear Information System (INIS)

    Zou Jianfei; Jin Guojun; Ma Yuqiang

    2009-01-01

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  14. Negative tunnel magnetoresistance and spin transport in ferromagnetic graphene junctions.

    Science.gov (United States)

    Zou, Jianfei; Jin, Guojun; Ma, Yu-Qiang

    2009-03-25

    We study the tunnel magnetoresistance (TMR) and spin transport in ferromagnetic graphene junctions composed of ferromagnetic graphene (FG) and normal graphene (NG) layers. It is found that the TMR in the FG/NG/FG junction oscillates from positive to negative values with respect to the chemical potential adjusted by the gate voltage in the barrier region when the Fermi level is low enough. Particularly, the conventionally defined TMR in the FG/FG/FG junction oscillates periodically from a positive to negative value with increasing the barrier height at any Fermi level. The spin polarization of the current through the FG/FG/FG junction also has an oscillating behavior with increasing barrier height, whose oscillating amplitude can be modulated by the exchange splitting in the ferromagnetic graphene.

  15. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan

    2017-06-22

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  16. Resonant tunnel magnetoresistance in a double magnetic tunnel junction

    KAUST Repository

    Useinov, Arthur

    2011-08-09

    We present quasi-classical approach to calculate a spin-dependent current and tunnel magnetoresistance (TMR) in double magnetic tunnel junctions (DMTJ) FML/I/FMW/I/FMR, where the magnetization of the middle ferromagnetic metal layer FMW can be aligned parallel or antiparallel with respect to the fixed magnetizations of the left FML and right FMR ferromagnetic electrodes. The transmission coefficients for components of the spin-dependent current, and TMR are calculated as a function of the applied voltage. As a result, we found a high resonant TMR. Thus, DMTJ can serve as highly effective magnetic nanosensor for biological applications, or as magnetic memory cells by switching the magnetization of the inner ferromagnetic layer FMW.© Springer Science+Business Media, LLC 2011.

  17. High density submicron magnetoresistive random access memory (invited)

    Science.gov (United States)

    Tehrani, S.; Chen, E.; Durlam, M.; DeHerrera, M.; Slaughter, J. M.; Shi, J.; Kerszykowski, G.

    1999-04-01

    Various giant magnetoresistance material structures were patterned and studied for their potential as memory elements. The preferred memory element, based on pseudo-spin valve structures, was designed with two magnetic stacks (NiFeCo/CoFe) of different thickness with Cu as an interlayer. The difference in thickness results in dissimilar switching fields due to the shape anisotropy at deep submicron dimensions. It was found that a lower switching current can be achieved when the bits have a word line that wraps around the bit 1.5 times. Submicron memory elements integrated with complementary metal-oxide-semiconductor (CMOS) transistors maintained their characteristics and no degradation to the CMOS devices was observed. Selectivity between memory elements in high-density arrays was demonstrated.

  18. Magnetoresistance effect in permalloy nanowires with various types of notches

    Directory of Open Access Journals (Sweden)

    Y. Gao

    2018-05-01

    Full Text Available Suppressing the stochastic domain wall (DW motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller change of resistance always corresponds to larger (smaller depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  19. Tunneling magnetoresistance in ferromagnetic planar hetero-nanojunctions

    KAUST Repository

    Useinov, Arthur

    2010-05-03

    We present a theoretical study of the tunneling magnetoresistance (TMR) in nanojunctions between non-identical ferromagnetic metals in the framework of the quasiclassical approach. The lateral size of a dielectric oxide layer, which is considered as a tunneling barrier between the metallic electrodes, is comparable with the mean-free path of electrons. The dependence of the TMR on the bias voltage, physical parameters of the dielectric barrier, and spin polarization of the electrodes is studied. It is demonstrated that a simple enough theory can give high TMR magnitudes of several hundred percent at bias voltages below 0.5 V. A qualitative comparison with the available experimental data is given. © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Studies of Colossal Magnetoresistive Oxides with Radioactive Isotopes

    CERN Multimedia

    2002-01-01

    We propose to study Colossal Magnetoresistive (CMR) oxides with several nuclear techniques, which use radioactive elements at ISOLDE. Our aim is to provide local and element selective information on some of the doping mechanisms that rule electronic interactions and magneto- resistance, in a complementary way to the use of conventional characterisation techniques. Three main topics are proposed: \\\\ \\\\ a) Studies of local [charge and] structural modifications in antiferromagnetic LaMnO$_{3+\\delta}$ and La$_{1-x}$R$_{x}$MnO$_{3}$ with R=Ca and Cd, doped ferromagnetic systems with competing interactions: - research on the lattice site and electronic characterisation of the doping element. \\\\ \\\\ b) Studies of self doped La$_{x}$R$_{1-x}$MnO$_{3+\\delta}$ systems, with oxygen and cation non- stoichiometry: - learning the role of defects in the optimisation of magnetoresestive properties. \\\\ \\\\ c) Probing the disorder and quenched random field effects in the vicinity of the charge or orbital Ordered/Ferromagnetic p...

  1. Angular Magnetoresistance of Nanowires with Alternating Cobalt and Nickel Segments

    KAUST Repository

    Mohammed, Hanan; Corte-Leon, H.; Ivanov, Yurii P.; Moreno, J. A.; Kazakova, O.; Kosel, Jü rgen

    2017-01-01

    Magnetization reversal in segmented Co/Ni nanowires with varying number of segments was studied using angular Magnetoresistance (MR) measurements on isolated nanowires. The MR measurements offer an insight into the pinning of domain walls within the nanowires. Angular MR measurements were performed on nanowires with two and multiple segments by varying the angle between the applied magnetic field and nanowire (−90° ≤θ≤90°). The angular MR measurements reveal that at lower values of θ the switching fields are nearly identical for the multisegmented and two-segmented nanowires, whereas at higher values of θ, a decrease in the switching field is observed in the case of two segmented nanowires. The two segmented nanowires generally exhibit a single domain wall pinning event, whereas an increased number of pinning events are characteristic of the multisegmented nanowires at higher values of θ. In-situ magnetic force microscopy substantiates reversal by domain wall nucleation and propagation in multisegmented nanowires.

  2. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Condrea, E., E-mail: condrea@nano.asm.md [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of); International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); Gilewski, A. [International Laboratory of High Magnetic Fields and Low Temperatures, Gajowicka 95, 51-421 Wroclaw (Poland); MagNet, 50-421 Wroclaw (Poland); Nicorici, A. [Institute of Electronic Engineering and Nanotechnologies, Academy of Science of Moldova, 2028 Chisinau, Republic of Moldova (Moldova, Republic of)

    2016-03-11

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  3. Magnetoresistance peculiarities of bismuth wires in high magnetic field

    International Nuclear Information System (INIS)

    Condrea, E.; Gilewski, A.; Nicorici, A.

    2016-01-01

    Magnetoresistance measurements of Bi wires performed in the magnetic field oriented along the bisector axis revealed unexpected anomalous peaks in a high magnetic field far above the quantum limit of the electrons. By combining a magnetic field and an uniaxial strain, we obtained a modification of the electronic structure; as a result, the quantum limit for light and heavy electrons is changed in a different way. For the case where heavy electrons are in the quantum limit, a correlation between the exit of the lowest Landau level of light electrons and the Lifshitz transition was found. - Highlights: • Glass-coated single-crystalline Bi wires attain high limit of elastic strain of up to 3.0%. • Selective modification of the electronic structure of Bi wires is obtained by combining a high magnetic field and uniaxial strain. • The correlation between the exit of the lowest Landau level of electrons and Lifshitz transition was found.

  4. Magnetoresistance effect in permalloy nanowires with various types of notches

    Science.gov (United States)

    Gao, Y.; You, B.; Wang, J.; Yuan, Y.; Wei, L. J.; Tu, H. Q.; Zhang, W.; Du, J.

    2018-05-01

    Suppressing the stochastic domain wall (DW) motion in magnetic nanowires is of great importance for designing DW-related spintronic devices. In this work, we have investigated the pinning/depinning processes of DWs in permalloy nanowires with three different types of notches by using longitudinal magnetoresistance (MR) measurement. The averaged MR curves demonstrate that the stochastic DW depinning is suppressed partly or even completely by a transversely asymmetric notch. The single-shot MR curves show that how the resistance changes with the applied field also depends strongly on the notch type while the DW is pinned around the notch. In the case of two depinning fields, larger (smaller) change of resistance always corresponds to larger (smaller) depinning field, regardless of the notch type. These phenomena can be understood by that the spin structure around the notch changes differently with the notch type when the DW is traveling through the notch.

  5. Extremely large magnetoresistance and electronic structure of TmSb

    Science.gov (United States)

    Wang, Yi-Yan; Zhang, Hongyun; Lu, Xiao-Qin; Sun, Lin-Lin; Xu, Sheng; Lu, Zhong-Yi; Liu, Kai; Zhou, Shuyun; Xia, Tian-Long

    2018-02-01

    We report the magnetotransport properties and the electronic structure of TmSb. TmSb exhibits extremely large transverse magnetoresistance and Shubnikov-de Haas (SdH) oscillation at low temperature and high magnetic field. Interestingly, the split of Fermi surfaces induced by the nonsymmetric spin-orbit interaction has been observed from SdH oscillation. The analysis of the angle-dependent SdH oscillation illustrates the contribution of each Fermi surface to the conductivity. The electronic structure revealed by angle-resolved photoemission spectroscopy (ARPES) and first-principles calculations demonstrates a gap at the X point and the absence of band inversion. Combined with the trivial Berry phase extracted from SdH oscillation and the nearly equal concentrations of electron and hole from Hall measurements, it is suggested that TmSb is a topologically trivial semimetal and the observed XMR originates from the electron-hole compensation and high mobility.

  6. Tunable Positive to Negative Magnetoresistance in Atomically Thin WTe2.

    Science.gov (United States)

    Zhang, Enze; Chen, Rui; Huang, Ce; Yu, Jihai; Zhang, Kaitai; Wang, Weiyi; Liu, Shanshan; Ling, Jiwei; Wan, Xiangang; Lu, Hai-Zhou; Xiu, Faxian

    2017-02-08

    Transitional metal ditelluride WTe 2 has been extensively studied owing to its intriguing physical properties like nonsaturating positive magnetoresistance and being possibly a type-II Weyl semimetal. While surging research activities were devoted to the understanding of its bulk properties, it remains a substantial challenge to explore the pristine physics in atomically thin WTe 2 . Here, we report a successful synthesis of mono- to few-layer WTe 2 via chemical vapor deposition. Using atomically thin WTe 2 nanosheets, we discover a previously inaccessible ambipolar behavior that enables the tunability of magnetoconductance of few-layer WTe 2 from weak antilocalization to weak localization, revealing a strong electrical field modulation of the spin-orbit interaction under perpendicular magnetic field. These appealing physical properties unveiled in this study clearly identify WTe 2 as a promising platform for exotic electronic and spintronic device applications.

  7. Magnetoresistance Probe of Ultrathin Mn5Ge3 Films with Anderson Weak Localization

    International Nuclear Information System (INIS)

    Li-Jun, Chen; De-Yong, Wang; Qing-Feng, Zhan; Wei, He; Qing-An, Li

    2008-01-01

    We present the magnetoresistance measurements of ultrathin Mn 5 Ge 3 films with different thicknesses at low temperatures. Owing to the lattice mismatch between Mn 5 Ge 3 and Ge (111), the thickness of Mn 5 Ge 3 films has a significant effect on the magnetoresistance. When the thickness of Mn is more than 72 monolayers (MLs), the magnetoresistance of the Mn 5 Ge 3 films appears a peak at about 6kOe, which shows that the magnetoresistance results from the Anderson weak localization effect and the variable range hopping in the presence of a magnetic field. The magnetic and semiconducting properties indicate that the Mn 5 Ge 3 film is a potential material for spin injection. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  8. High electron mobility and large magnetoresistance in the half-Heusler semimetal LuPtBi

    KAUST Repository

    Hou, Zhipeng; Wang, Wenhong; Xu, Guizhou; Zhang, Xiaoming; Wei, Zhiyang; Shen, Shipeng; Liu, Enke; Yao, Yuan; Chai, Yisheng; Sun, Young; Xi, Xuekui; Wang, Wenquan; Liu, Zhongyuan; Wu, Guangheng; Zhang, Xixiang

    2015-01-01

    Materials with high carrier mobility showing large magnetoresistance (MR) have recently received much attention because of potential applications in future high-performance magnetoelectric devices. Here, we report on an electron-hole

  9. Efficient spin injection and giant magnetoresistance in Fe / MoS 2 / Fe junctions

    KAUST Repository

    Dolui, Kapildeb; Narayan, Awadhesh; Rungger, Ivan; Sanvito, Stefano

    2014-01-01

    bias as long as transport is in the tunneling limit. A general recipe for improving the magnetoresistance in spin valves incorporating layered transition metal dichalcogenides is proposed. © 2014 American Physical Society.

  10. The tunneling magnetoresistance current dependence on cross sectional area, angle and temperature

    Directory of Open Access Journals (Sweden)

    Z. H. Zhang

    2015-03-01

    Full Text Available The magnetoresistance of a MgO-based magnetic tunnel junction (MTJ was studied experimentally. The magnetoresistance as a function of current was measured systematically on MTJs for various MgO cross sectional areas and at various temperatures from 7.5 to 290.1 K. The resistance current dependence of the MTJ was also measured for different angles between the two ferromagnetic layers. By considering particle and angular momentum conservation of transport electrons, the current dependence of magnetoresistance can be explained by the changing of spin polarization in the free magnetic layer of the MTJ. The changing of spin polarization is related to the magnetoresistance, its angular dependence and the threshold current where TMR ratio equals zero. A phenomenological model is used which avoid the complicated barrier details and also describes the data.

  11. Study of magnetoresistance in the supercooled state of Dy-Y alloys

    Science.gov (United States)

    Jena, Rudra Prasad; Lakhani, Archana

    2018-02-01

    We report the magnetoresistance studies on Dy1-xYx (x ≤ 0.05) alloys across the first order helimagnetic to ferromagnetic phase transition. These alloys exhibit multiple magnetic phases on varying the temperature and magnetic field. The magnetoresistance studies in the hysteresis region shows irreversibility in forward and reverse field cycles. The resistivity values at zero field for these alloys after zero field cooling to the measurement temperatures, are different in both forward and reverse field cycles. The path dependence of magnetoresistance suggests the presence of helimagnetic phase as the supercooled metastable state which transforms to the stable ferromagnetic state on increasing the field. At high magnetic fields negative magnetoresistance following a linear dependence with field is observed which is attributed to the magnon scattering.

  12. The study of the sample size on the transverse magnetoresistance of bismuth nanowires

    International Nuclear Information System (INIS)

    Zare, M.; Layeghnejad, R.; Sadeghi, E.

    2012-01-01

    The effects of sample size on the galvanomagnetice properties of semimetal nanowires are theoretically investigated. Transverse magnetoresistance (TMR) ratios have been calculated within a Boltzmann Transport Equation (BTE) approach by specular reflection approximation. Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. The obtained values are in good agreement with the experimental results, reported by Heremans et al. - Highlights: ► In this study effects of sample size on the galvanomagnetic properties of Bi. ► Nanowires were explained by Parrott theorem by solving the Boltzmann Transport Equation. ► Transverse magnetoresistance (TMR) ratios have been measured by specular reflection approximation. ► Temperature and radius dependence of the transverse magnetoresistance of cylindrical Bismuth nanowires are given. ► The obtained values are in good agreement with the experimental results, reported by Heremans et al.

  13. Simultaneous Profiling of DNA Mutation and Methylation by Melting Analysis Using Magnetoresistive Biosensor Array

    DEFF Research Database (Denmark)

    Rizzi, Giovanni; Lee, Jung-Rok; Dahl, Christina

    2017-01-01

    specificity. Genomic (mutation) or bisulphite-treated (methylation) DNA is amplified using nondiscriminatory primers, and the amplicons are then hybridized to a giant magnetoresistive (GMR) biosensor array followed by melting curve measurements. The GMR biosensor platform offers scalable multiplexed detection...

  14. Magnetoresistance of tungsten thin wafer at the multichannel surface scattering of conduction electrons

    International Nuclear Information System (INIS)

    Lutsishin, P.P.; Nakhodkin, T.N.

    1982-01-01

    The magnetoresistance of tungsten thin wafer with the (110) surface was studied at the adsorption of tungsten dioxide. The method of low-energy electron diffraction was used to study the symmetry of ordered surface structures. Using the method of the magnetoresistance measurement the character of the scattering of conduction electrons was investigated. THe dependence of magnetoresistance on the surface concentration of tungsten dioxide correlated w1th the structure of the surface layer of atoms, what was explained with allowance for diffraction of conduction electrons at the metal boundary. The magnetoresistance maximum for the (2x2) structure, which characterised decrease in surface conduction under the conditions of static skin effect, was explained by multichannel mirror reflection with the recombinations of electron and ho.le sections of Fermi Surface

  15. Magnetoresistance in amorphous NdFeB/FeB compositionally modulated multilayers

    International Nuclear Information System (INIS)

    Peral, G.; Briones, F.; Vicent, J.L.

    1991-01-01

    Resistance measurements have been done in amorphous Nd 12 Fe 80 B 8 sputtered films and in amorphous sputtered Nd 26 Fe 68 B 6 /Fe 92 B 8 multilayers between 6 and 150 K with applied magnetic field parallel (LMR) and perpendicular (TMR) up to 7 T. The samples were grown by dc triode sputtering, with nominal unequal (2:1) layer thicknesses. The layered character of the samples have been tested by x-ray diffraction. Longitudinal magnetoresistance (LMR) is positive and transverse magnetoresistance (TMR) is negative. The magnetoresistance values are higher than in amorphous ferromagnets, and multilayering of these alloys produces much larger magnetoresistance values than either alloy alone and there is a strong dependence on the multilayer wavelength. The MR shows a weak temperature dependence in the temperature interval that was investigated

  16. Magnetoresistance manipulation and sign reversal in Mn-doped ZnO nanowires.

    Science.gov (United States)

    Sapkota, Keshab R; Chen, Weimin; Maloney, F Scott; Poudyal, Uma; Wang, Wenyong

    2016-10-14

    We report magnetoresistance (MR) manipulation and sign reversal induced by carrier concentration modulation in Mn-doped ZnO nanowires. At low temperatures positive magnetoresistance was initially observed. When the carrier concentration was increased through the application of a gate voltage, the magnetoresistance also increased and reached a maximum value. However, further increasing the carrier concentration caused the MR to decrease, and eventually an MR sign reversal from positive to negative was observed. An MR change from a maximum positive value of 25% to a minimum negative value of 7% was observed at 5 K and 50 KOe. The observed MR behavior was modeled by considering combined effects of quantum correction to carrier conductivity and bound magnetic polarons. This work could provide important insights into the mechanisms that govern magnetotransport in dilute magnetic oxides, and it also demonstrated an effective approach to manipulating magnetoresistance in these materials that have important spintronic applications.

  17. Drastic Pressure Effect on the Extremely Large Magnetoresistance in WTe2: Quantum Oscillation Study.

    Science.gov (United States)

    Cai, P L; Hu, J; He, L P; Pan, J; Hong, X C; Zhang, Z; Zhang, J; Wei, J; Mao, Z Q; Li, S Y

    2015-07-31

    The quantum oscillations of the magnetoresistance under ambient and high pressure have been studied for WTe2 single crystals, in which extremely large magnetoresistance was discovered recently. By analyzing the Shubnikov-de Haas oscillations, four Fermi surfaces are identified, and two of them are found to persist to high pressure. The sizes of these two pockets are comparable, but show increasing difference with pressure. At 0.3 K and in 14.5 T, the magnetoresistance decreases drastically from 1.25×10(5)% under ambient pressure to 7.47×10(3)% under 23.6 kbar, which is likely caused by the relative change of Fermi surfaces. These results support the scenario that the perfect balance between the electron and hole populations is the origin of the extremely large magnetoresistance in WTe2.

  18. Nonmonotonic magnetoresistance of a two-dimensional viscous electron-hole fluid in a confined geometry

    Science.gov (United States)

    Alekseev, P. S.; Dmitriev, A. P.; Gornyi, I. V.; Kachorovskii, V. Yu.; Narozhny, B. N.; Titov, M.

    2018-02-01

    Ultrapure conductors may exhibit hydrodynamic transport where the collective motion of charge carriers resembles the flow of a viscous fluid. In a confined geometry (e.g., in ultra-high-quality nanostructures), the electronic fluid assumes a Poiseuille-type flow. Applying an external magnetic field tends to diminish viscous effects leading to large negative magnetoresistance. In two-component systems near charge neutrality, the hydrodynamic flow of charge carriers is strongly affected by the mutual friction between the two constituents. At low fields, the magnetoresistance is negative, however, at high fields the interplay between electron-hole scattering, recombination, and viscosity results in a dramatic change of the flow profile: the magnetoresistance changes its sign and eventually becomes linear in very high fields. This nonmonotonic magnetoresistance can be used as a fingerprint to detect viscous flow in two-component conducting systems.

  19. Hanle Magnetoresistance in Thin Metal Films with Strong Spin-Orbit Coupling.

    Science.gov (United States)

    Vélez, Saül; Golovach, Vitaly N; Bedoya-Pinto, Amilcar; Isasa, Miren; Sagasta, Edurne; Abadia, Mikel; Rogero, Celia; Hueso, Luis E; Bergeret, F Sebastian; Casanova, Fèlix

    2016-01-08

    We report measurements of a new type of magnetoresistance in Pt and Ta thin films. The spin accumulation created at the surfaces of the film by the spin Hall effect decreases in a magnetic field because of the Hanle effect, resulting in an increase of the electrical resistance as predicted by Dyakonov [Phys. Rev. Lett. 99, 126601 (2007)]. The angular dependence of this magnetoresistance resembles the recently discovered spin Hall magnetoresistance in Pt/Y(3)Fe(5)O(12) bilayers, although the presence of a ferromagnetic insulator is not required. We show that this Hanle magnetoresistance is an alternative simple way to quantitatively study the coupling between charge and spin currents in metals with strong spin-orbit coupling.

  20. Frozen magnetoresistance at magnetization reversal of granular Bi(Pb)-HTSC

    International Nuclear Information System (INIS)

    Sukhanov, A.A.; Omelchenko, V.I.

    2004-01-01

    The frozen magnetoresistance dependences of granular Bi(Pb)-HTSC samples on fields initiating a magnetic flux trapping and on magnetic reversal fields Rt(Hi, Hr) are investigated. It is found that the Rt (Hr) dependences are nonmonotonous. The frozen magnetoresistance decreases substantially after the first pulse Hr applied (Hr < Hi) but remains practically unchanged at subsequent remagnetization by magnetic pulses of alternating polarity and of the same amplitude. The effect of magnetic reversal on magnetoresistance anisotropy and the negative magnetoresistance phenomenon are studied. Is shown that the results obtained are inconsistent with the model of critical state for SC grains and the model of SC loops but are well described quantitatively by the proposed Bi(Pb)-HTSC model according to which the magnetic flux trapping occurs in normal grains with HTSC shells and the sample resistance is determined by weak link chains