ANISOTROPIC INTERMITTENCY OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Osman, K. T.; Kiyani, K. H.; Chapman, S. C.; Hnat, B.
2014-01-01
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Elsässer field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multiexponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas
On spectral scaling laws for incompressible anisotropic magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Galtier, Sebastien; Pouquet, Annick; Mangeney, Andre
2005-01-01
A heuristic model is given for anisotropic magnetohydrodynamics turbulence in the presence of a uniform external magnetic field B 0 e parallel . The model is valid for both moderate and strong B 0 and is able to describe both the strong and weak wave turbulence regimes as well as the transition between them. The main ingredient of the model is the assumption of constant ratio at all scales between the linear wave period and the nonlinear turnover time scale. Contrary to the model of critical balance introduced by Goldreich and Sridhar [Astrophys. J. 438, 763 (1995)], it is not assumed, in addition, that this ratio be equal to unity at all scales. This allows us to make use of the Iroshnikov-Kraichnan phenomenology; it is then possible to recover the widely observed anisotropic scaling law k parallel ∝k perpendicular 2/3 between parallel and perpendicular wave numbers (with reference to B 0 e parallel and to obtain for the total-energy spectrum E(k perpendicular ,k parallel )∼k perpendicular -α k parallel -β the universal prediction, 3α+2β=7. In particular, with such a prediction, the weak Alfven wave turbulence constant-flux solution is recovered and, for the first time, a possible explanation to its precursor found numerically by Galtier et al. [J. Plasma Phys. 63, 447 (2000)] is given.
Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence
International Nuclear Information System (INIS)
Bigot, Barbara; Galtier, Sebastien; Politano, Helene
2008-01-01
We investigate the influence of a uniform magnetic field B 0 =B 0 e parallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B 0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B 0 , with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Magnetohydrodynamics turbulence
Indian Academy of Sciences (India)
Theoretical horizons correspondingly expanded in the 1980s, to accommodate ... too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. ... This very active area of research continues to be driven by astronomy.
MULTIFLUID MAGNETOHYDRODYNAMIC TURBULENT DECAY
International Nuclear Information System (INIS)
Downes, T. P.; O'Sullivan, S.
2011-01-01
It is generally believed that turbulence has a significant impact on the dynamics and evolution of molecular clouds and the star formation that occurs within them. Non-ideal magnetohydrodynamic (MHD) effects are known to influence the nature of this turbulence. We present the results of a suite of 512 3 resolution simulations of the decay of initially super-Alfvenic and supersonic fully multifluid MHD turbulence. We find that ambipolar diffusion increases the rate of decay of the turbulence while the Hall effect has virtually no impact. The decay of the kinetic energy can be fitted as a power law in time and the exponent is found to be -1.34 for fully multifluid MHD turbulence. The power spectra of density, velocity, and magnetic field are all steepened significantly by the inclusion of non-ideal terms. The dominant reason for this steepening is ambipolar diffusion with the Hall effect again playing a minimal role except at short length scales where it creates extra structure in the magnetic field. Interestingly we find that, at least at these resolutions, the majority of the physics of multifluid turbulence can be captured by simply introducing fixed (in time and space) resistive terms into the induction equation without the need for a full multifluid MHD treatment. The velocity dispersion is also examined and, in common with previously published results, it is found not to be power law in nature.
Magnetohydrodynamic turbulence revisited
International Nuclear Information System (INIS)
Goldreich, P.; Sridhar, S.
1997-01-01
In 1965, Kraichnan proposed that MHD turbulence occurs as a result of collisions between oppositely directed Alfvacute en wave packets. Recent work has generated some controversy over the nature of nonlinear couplings between colliding Alfvacute en waves. We find that the resolution to much of the confusion lies in the existence of a new type of turbulence, intermediate turbulence, in which the cascade of energy in the inertial range exhibits properties intermediate between those of weak and strong turbulent cascades. Some properties of intermediate MHD turbulence are the following: (1) in common with weak turbulent cascades, wave packets belonging to the inertial range are long-lived; (2) however, components of the strain tensor are so large that, similar to the situation in strong turbulence, perturbation theory is not applicable; (3) the breakdown of perturbation theory results from the divergence of neighboring field lines due to wave packets whose perturbations in velocity and magnetic fields are localized, but whose perturbations in displacement are not; (4) three-wave interactions dominate individual collisions between wave packets, but interactions of all orders n≥3 make comparable contributions to the intermediate turbulent energy cascade; (5) successive collisions are correlated since wave packets are distorted as they follow diverging field lines; (6) in common with the weak MHD cascade, there is no parallel cascade of energy, and the cascade to small perpendicular scales strengthens as it reaches higher wavenumbers; (7) for an appropriate weak excitation, there is a natural progression from a weak, through an intermediate, to a strong cascade. copyright 1997 The American Astronomical Society
Turbulent magnetohydrodynamics in liquid metals
International Nuclear Information System (INIS)
Berhanu, Michael
2008-01-01
In electrically conducting fluids, the electromagnetic field is coupled with the fluid motion by induction effects. We studied different magnetohydrodynamic phenomena, using two experiments involving turbulent flows of liquid metal. The first mid-sized uses gallium. The second, using sodium, is conducted within the VKS (Von Karman Sodium) collaboration. It has led to the observation of the dynamo effect, namely converting a part of the kinetic energy of the fluid into magnetic energy. We have shown that, depending on forcing conditions, a statistically stationary dynamo, or dynamical regimes of magnetic field can be generated. In particular, polarity reversals similar to those of Earth's magnetic field were observed. Meanwhile, experiment with Gallium has been developed to study the effects of electromagnetic induction by turbulent flows in a more homogeneous and isotropic configuration than in the VKS experiment. Using data from these two experiments, we studied the advection of magnetic field by a turbulent flow and the induced fluctuations. The development of probes measuring electrical potential difference allowed us to further highlight the magnetic braking of a turbulent flow of Gallium by Lorentz force. This mechanism is involved in the saturation of the dynamo instability. (author) [fr
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
MHD turbulence in the solar wind are described in §6, and a theory of ..... on plasmas are very difficult to perform, and so experimental verification was not forth- .... checks of self-consistency regarding the assumed weakness of the cascade.
Electromotive force in strongly compressible magnetohydrodynamic turbulence
Yokoi, N.
2017-12-01
Variable density fluid turbulence is ubiquitous in geo-fluids, not to mention in astrophysics. Depending on the source of density variation, variable density fluid turbulence may be divided into two categories: the weak compressible (entropy mode) turbulence for slow flow and the strong compressible (acoustic mode) turbulence for fast flow. In the strong compressible turbulence, the pressure fluctuation induces a strong density fluctuation ρ ', which is represented by the density variance ( denotes the ensemble average). The turbulent effect on the large-scale magnetic-field B induction is represented by the turbulent electromotive force (EMF) (u': velocity fluctuation, b': magnetic-field fluctuation). In the usual treatment in the dynamo theory, the expression for the EMF has been obtained in the framework of incompressible or weak compressible turbulence, where only the variation of the mean density , if any, is taken into account. We see from the equation of the density fluctuation ρ', the density variance is generated by the large mean density variation ∂ coupled with the turbulent mass flux . This means that in the region where the mean density steeply changes, the density variance effect becomes relevant for the magnetic field evolution. This situation is typically the case for phenomena associated with shocks and compositional discontinuities. With the aid of the analytical theory of inhomogeneous compressible magnetohydrodynamic (MHD) turbulence, the expression for the turbulent electromotive force is investigated. It is shown that, among others, an obliqueness (misalignment) between the mean density gradient ∂ and the mean magnetic field B may contribute to the EMF as ≈χ B×∂ with the turbulent transport coefficient χ proportional to the density variance (χ ). This density variance effect is expected to strongly affect the EMF near the interface, and changes the transport properties of turbulence. In the case of an interface under the MHD slow
Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics
International Nuclear Information System (INIS)
Cissoko, Mahdy
1975-01-01
This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr
Collisionless Reconnection in Magnetohydrodynamic and Kinetic Turbulence
Loureiro, Nuno F.; Boldyrev, Stanislav
2017-12-01
It has recently been proposed that the inertial interval in magnetohydrodynamic (MHD) turbulence is terminated at small scales not by a Kolmogorov-like dissipation region, but rather by a new sub-inertial interval mediated by tearing instability. However, many astrophysical plasmas are nearly collisionless so the MHD approximation is not applicable to turbulence at small scales. In this paper, we propose an extension of the theory of reconnection-mediated turbulence to plasmas which are so weakly collisional that the reconnection occurring in the turbulent eddies is caused by electron inertia rather than by resistivity. We find that the transition scale to reconnection-mediated turbulence depends on the plasma beta and on the assumptions of the plasma turbulence model. However, in all of the cases analyzed, the energy spectra in the reconnection-mediated interval range from E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -8/3{{dk}}\\perp to E({k}\\perp ){{dk}}\\perp \\propto {k}\\perp -3{{dk}}\\perp .
INHOMOGENEOUS NEARLY INCOMPRESSIBLE DESCRIPTION OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Hunana, P.; Zank, G. P.
2010-01-01
The nearly incompressible theory of magnetohydrodynamics (MHD) is formulated in the presence of a static large-scale inhomogeneous background. The theory is an inhomogeneous generalization of the homogeneous nearly incompressible MHD description of Zank and Matthaeus and a polytropic equation of state is assumed. The theory is primarily developed to describe solar wind turbulence where the assumption of a composition of two-dimensional (2D) and slab turbulence with the dominance of the 2D component has been used for some time. It was however unclear, if in the presence of a large-scale inhomogeneous background, the dominant component will also be mainly 2D and we consider three distinct MHD regimes for the plasma beta β > 1. For regimes appropriate to the solar wind (β 2 s δp is not valid for the leading-order O(M) density fluctuations, and therefore in observational studies, the density fluctuations should not be analyzed through the pressure fluctuations. The pseudosound relation is valid only for higher order O(M 2 ) density fluctuations, and then only for short-length scales and fast timescales. The spectrum of the leading-order density fluctuations should be modeled as k -5/3 in the inertial range, followed by a Bessel function solution K ν (k), where for stationary turbulence ν = 1, in the viscous-convective and diffusion range. Other implications for solar wind turbulence with an emphasis on the evolution of density fluctuations are also discussed.
Large eddy simulations of compressible magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Grete, Philipp
2016-01-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Grete, Philipp
2017-02-01
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Large eddy simulations of compressible magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Grete, Philipp
2016-09-09
Supersonic, magnetohydrodynamic (MHD) turbulence is thought to play an important role in many processes - especially in astrophysics, where detailed three-dimensional observations are scarce. Simulations can partially fill this gap and help to understand these processes. However, direct simulations with realistic parameters are often not feasible. Consequently, large eddy simulations (LES) have emerged as a viable alternative. In LES the overall complexity is reduced by simulating only large and intermediate scales directly. The smallest scales, usually referred to as subgrid-scales (SGS), are introduced to the simulation by means of an SGS model. Thus, the overall quality of an LES with respect to properly accounting for small-scale physics crucially depends on the quality of the SGS model. While there has been a lot of successful research on SGS models in the hydrodynamic regime for decades, SGS modeling in MHD is a rather recent topic, in particular, in the compressible regime. In this thesis, we derive and validate a new nonlinear MHD SGS model that explicitly takes compressibility effects into account. A filter is used to separate the large and intermediate scales, and it is thought to mimic finite resolution effects. In the derivation, we use a deconvolution approach on the filter kernel. With this approach, we are able to derive nonlinear closures for all SGS terms in MHD: the turbulent Reynolds and Maxwell stresses, and the turbulent electromotive force (EMF). We validate the new closures both a priori and a posteriori. In the a priori tests, we use high-resolution reference data of stationary, homogeneous, isotropic MHD turbulence to compare exact SGS quantities against predictions by the closures. The comparison includes, for example, correlations of turbulent fluxes, the average dissipative behavior, and alignment of SGS vectors such as the EMF. In order to quantify the performance of the new nonlinear closure, this comparison is conducted from the
Theoretical and numerical study of highly anisotropic turbulent flows
Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.
2004-01-01
We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical
Compressibility and rotation effects on transport suppression in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Yoshizawa, A.
1996-01-01
Compressibility and rotation effects on turbulent transports in magnetohydrodynamic (MHD) flows under arbitrary mean field are investigated using a Markovianized two-scale statistical approach. Some new aspects of MHD turbulence are pointed out in close relation to plasma compressibility. Special attention is paid to the turbulent electromotive force, which plays a central role in the generation of magnetic and velocity fluctuations. In addition to plasma rotation, the interaction between compressibility and magnetic fields is shown to bring a few factors suppressing MHD fluctuations and, eventually, density and temperature transports, even in the presence of steep mean density and temperature gradients. This finding is discussed in the context of the turbulence-suppression mechanism in the tokamak close-quote s high-confinement modes. copyright 1996 American Institute of Physics
SPECTRA OF STRONG MAGNETOHYDRODYNAMIC TURBULENCE FROM HIGH-RESOLUTION SIMULATIONS
International Nuclear Information System (INIS)
Beresnyak, Andrey
2014-01-01
Magnetohydrodynamic (MHD) turbulence is present in a variety of solar and astrophysical environments. Solar wind fluctuations with frequencies lower than 0.1 Hz are believed to be mostly governed by Alfvénic turbulence with particle transport depending on the power spectrum and the anisotropy of such turbulence. Recently, conflicting spectral slopes for the inertial range of MHD turbulence have been reported by different groups. Spectral shapes from earlier simulations showed that MHD turbulence is less scale-local compared with hydrodynamic turbulence. This is why higher-resolution simulations, and careful and rigorous numerical analysis is especially needed for the MHD case. In this Letter, we present two groups of simulations with resolution up to 4096 3 , which are numerically well-resolved and have been analyzed with an exact and well-tested method of scaling study. Our results from both simulation groups indicate that the asymptotic power spectral slope for all energy-related quantities, such as total energy and residual energy, is around –1.7, close to Kolmogorov's –5/3. This suggests that residual energy is a constant fraction of the total energy and that in the asymptotic regime of Alfvénic turbulence magnetic and kinetic spectra have the same scaling. The –1.5 slope for energy and the –2 slope for residual energy, which have been suggested earlier, are incompatible with our numerics
Large-Eddy-Simulation of turbulent magnetohydrodynamic flows
Directory of Open Access Journals (Sweden)
Woelck Johannes
2017-01-01
Full Text Available A magnetohydrodynamic turbulent channel flow under the influence of a wallnormal magnetic field is investigated using the Large-Eddy-Simulation technique and k-equation subgrid-scale-model. Therefore, the new solver MHDpisoFoam is implemented in the OpenFOAM CFD-Code. The temporal decay of an initial turbulent field for different magnetic parameters is investigated. The rms values of the averaged velocity fluctuations show a similar, trend for each coordinate direction. 80% of the fluctuations are damped out in the range between 0 < Ha < < 75 at Re = 6675. The trend can be approximated via an exponential of the form exp(−a·Ha, where a is a scaling parameter. At higher Hartmann numbers the fluctuations decrease in an almost linear way. Therefore, the results of this study show that it may be possible to construct a general law for the turbulence damping due to action of magnetic fields.
Theory and Transport of Nearly Incompressible Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Zank, G. P.; Adhikari, L.; Hunana, P. [Center for Space Plasma and Aeronomic Research (CSPAR), University of Alabama in Huntsville, Huntsville, AL 35805 (United States); Shiota, D. [Institute for Space-Earth Environmental Research, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Bruno, R. [INAF-IAPS Istituto di Astrofisica e Planetologia Spaziali, Via del Fosso del Cavaliere 100, I-00133 Roma (Italy); Telloni, D. [INAF—Astrophysical Observatory of Torino, Via Osservatorio 20, I-10025 Pino Torinese (Italy)
2017-02-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed largely in the early 1990s, together with an important extension to inhomogeneous flows in 2010. Much of the focus in the earlier work was to understand the apparent incompressibility of the solar wind and other plasma environments, and the relationship of density fluctuations to apparently incompressible manifestations of turbulence in the solar wind and interstellar medium. Further important predictions about the “dimensionality” of solar wind turbulence and its relationship to the plasma beta were made and subsequently confirmed observationally. However, despite the initial success of NI MHD in describing fluctuations in the solar wind, a detailed application to solar wind turbulence has not been undertaken. Here, we use the equations of NI MHD to describe solar wind turbulence, rewriting the NI MHD system in terms of Elsässer variables. Distinct descriptions of 2D and slab turbulence emerge naturally from the Elsässer formulation, as do the nonlinear couplings between 2D and slab components. For plasma beta order 1 or less regions, predictions for 2D and slab spectra result from the NI MHD description, and predictions for the spectral characteristics of density fluctuations can be made. We conclude by presenting a NI MHD formulation describing the transport of majority 2D and minority slab turbulence throughout the solar wind. A preliminary comparison of theory and observations is presented.
Broken ergodicity in two-dimensional homogeneous magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Shebalin, John V.
2010-01-01
Two-dimensional (2D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3D) homogeneous MHD turbulence. These features include several ideal (i.e., nondissipative) invariants along with the phenomenon of broken ergodicity (defined as nonergodic behavior over a very long time). Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo. Recently, the origin of broken ergodicity in 3D MHD turbulence that is manifest in the lowest wavenumbers was found. Here, we study the origin of broken ergodicity in 2D MHD turbulence. It will be seen that broken ergodicity in ideal 2D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions. The origins of broken ergodicity in an ideal 2D homogeneous MHD turbulence are found through an eigenanalysis of the covariance matrices of the probability density function and by an examination of the associated entropy functional. When the values of ideal invariants are kept fixed and grid size increases, it will be shown that the energy in a few large modes remains constant, while the energy in any other mode is inversely proportional to grid size. Also, as grid size increases, we find that broken ergodicity becomes manifest at more and more wavenumbers.
On the Energy Spectrum of Strong Magnetohydrodynamic Turbulence
Directory of Open Access Journals (Sweden)
Jean Carlos Perez
2012-10-01
Full Text Available The energy spectrum of magnetohydrodynamic turbulence attracts interest due to its fundamental importance and its relevance for interpreting astrophysical data. Here we present measurements of the energy spectra from a series of high-resolution direct numerical simulations of magnetohydrodynamics turbulence with a strong guide field and for increasing Reynolds number. The presented simulations, with numerical resolutions up to 2048^{3} mesh points and statistics accumulated over 30 to 150 eddy turnover times, constitute, to the best of our knowledge, the largest statistical sample of steady state magnetohydrodynamics turbulence to date. We study both the balanced case, where the energies associated with Alfvén modes propagating in opposite directions along the guide field, E^{+}(k_{⊥} and E^{-}(k_{⊥}, are equal, and the imbalanced case where the energies are different. In the balanced case, we find that the energy spectrum converges to a power law with exponent -3/2 as the Reynolds number is increased, which is consistent with phenomenological models that include scale-dependent dynamic alignment. For the imbalanced case, with E^{+}>E^{-}, the simulations show that E^{-}∝k_{⊥}^{-3/2} for all Reynolds numbers considered, while E^{+} has a slightly steeper spectrum at small Re. As the Reynolds number increases, E^{+} flattens. Since E^{±} are pinned at the dissipation scale and anchored at the driving scales, we postulate that at sufficiently high Re the spectra will become parallel in the inertial range and scale as E^{+}∝E^{-}∝k_{⊥}^{-3/2}. Questions regarding the universality of the spectrum and the value of the “Kolmogorov constant” are discussed.
Turbulent Output-Based Anisotropic Adaptation
Park, Michael A.; Carlson, Jan-Renee
2010-01-01
Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.
Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid
International Nuclear Information System (INIS)
Ignat, M.
1980-01-01
Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)
Jurčišinová, E; Jurčišin, M
2017-05-01
The influence of the uniaxial small-scale anisotropy on the kinematic magnetohydrodynamic turbulence is investigated by using the field theoretic renormalization group technique in the one-loop approximation of a perturbation theory. The infrared stable fixed point of the renormalization group equations, which drives the scaling properties of the model in the inertial range, is investigated as the function of the anisotropy parameters and it is shown that, at least at the one-loop level of approximation, the diffusion processes of the weak passive magnetic field in the anisotropically driven kinematic magnetohydrodynamic turbulence are completely equivalent to the corresponding diffusion processes of passively advected scalar fields in the anisotropic Navier-Stokes turbulent environments.
Conditions for sustainment of magnetohydrodynamic turbulence driven by Alfven waves
International Nuclear Information System (INIS)
Dmitruk, P.; Matthaeus, W.H.; Milano, L.J.; Oughton, S.
2001-01-01
In a number of space and astrophysical plasmas, turbulence is driven by the supply of wave energy. In the context of incompressible magnetohydrodynamics (MHD) there are basic physical reasons, associated with conservation of cross helicity, why this kind of driving may be ineffective in sustaining turbulence. Here an investigation is made into some basic requirements for sustaining steady turbulence and dissipation in the context of incompressible MHD in a weakly inhomogeneous open field line region, driven by the supply of unidirectionally propagating waves at a boundary. While such wave driving cannot alone sustain turbulence, the addition of reflection permits sustainment. Another sustainment issue is the action of the nonpropagating or quasi-two dimensional part of the spectrum; this is particularly important in setting up a steady cascade. Thus, details of the wave boundary conditions also affect the ease of sustaining a cascade. Supply of a broadband spectrum of waves can overcome the latter difficulty but not the former, that is, the need for reflections. Implications for coronal heating and other astrophysical applications, as well as simulations, are suggested
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. II. Simulations
Schober, Jennifer; Rogachevskii, Igor; Brandenburg, Axel; Boyarsky, Alexey; Fröhlich, Jürg; Ruchayskiy, Oleg; Kleeorin, Nathan
2018-05-01
Using direct numerical simulations (DNS), we study laminar and turbulent dynamos in chiral magnetohydrodynamics with an extended set of equations that accounts for an additional contribution to the electric current due to the chiral magnetic effect (CME). This quantum phenomenon originates from an asymmetry between left- and right-handed relativistic fermions in the presence of a magnetic field and gives rise to a chiral dynamo. We show that the magnetic field evolution proceeds in three stages: (1) a small-scale chiral dynamo instability, (2) production of chiral magnetically driven turbulence and excitation of a large-scale dynamo instability due to a new chiral effect (α μ effect), and (3) saturation of magnetic helicity and magnetic field growth controlled by a conservation law for the total chirality. The α μ effect becomes dominant at large fluid and magnetic Reynolds numbers and is not related to kinetic helicity. The growth rate of the large-scale magnetic field and its characteristic scale measured in the numerical simulations agree well with theoretical predictions based on mean-field theory. The previously discussed two-stage chiral magnetic scenario did not include stage (2), during which the characteristic scale of magnetic field variations can increase by many orders of magnitude. Based on the findings from numerical simulations, the relevance of the CME and the chiral effects revealed in the relativistic plasma of the early universe and of proto-neutron stars are discussed.
An empirical investigation of compressibility in magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Spangler, Steven R.; Spitler, Laura G.
2004-01-01
The density fluctuations which occur in magnetohydrodynamic (MHD) turbulence are an important diagnostic of the turbulent dynamics, and serve as the basis of astrophysical remote sensing measurements. This paper is concerned with the relation between density fluctuations and fluctuations of the magnetic field and velocity. The approach is empirical, utilizing spacecraft observations of slow solar wind turbulence. Sixty-six data intervals of 1 h duration were chosen, in which the solar wind speed was less than 450 km/s, and in which the fluctuations in density and vector magnetic field appeared to be approximately stationary. The parameters of interest were the root-mean-square fluctuations of density and magnetic field, normalized by the respective mean values, ε N ≡ 2 > 0.5 /n 0 and ε B ≡ 2 > 0.5 /B 0 , respectively, where n 0 and B 0 are the mean plasma number density and magnetic field strength. The conclusions of this study are as follows: (1) Consistent with previous investigations, the dependence of the normalized density fluctuation on the normalized magnetic field fluctuation is found to be between linear (ε N =ε B ) and quadratic (ε N =ε B 2 ). (2) The value of R≡ε N /ε B shows a wide range from 4; the median value is 0.46 and the mean is 0.72. (3) Typical normalized fluctuation amplitudes (ε N and ε B ) for records of one hour length (maximum scale size of ≅1.6x10 6 km) are 0.03-0.08 for the density, and 0.04-0.21 for the magnetic field. (4) For most intervals, the magnitude of the perpendicular (to the large scale magnetic field) magnetic field fluctuations exceeds that of the parallel fluctuations by a factor of 3-4. This indicates that the turbulent magnetic field fluctuations are primarily transverse fluctuations. The implications of these results for theories of MHD turbulence, and for the remote sensing of turbulent plasmas such as the corona, the near-Sun solar wind, and the interstellar medium, are discussed
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
Energy Technology Data Exchange (ETDEWEB)
Rogachevskii, Igor; Kleeorin, Nathan [Department of Mechanical Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 84105 (Israel); Ruchayskiy, Oleg [Discovery Center, Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen (Denmark); Boyarsky, Alexey [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Fröhlich, Jürg [Institute of Theoretical Physics, ETH Hönggerberg, CH-8093 Zurich (Switzerland); Brandenburg, Axel; Schober, Jennifer, E-mail: gary@bgu.ac.il [Nordita, KTH Royal Institute of Technology and Stockholm University, Roslagstullsbacken 23, SE-10691 Stockholm (Sweden)
2017-09-10
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
Laminar and Turbulent Dynamos in Chiral Magnetohydrodynamics. I. Theory
International Nuclear Information System (INIS)
Rogachevskii, Igor; Kleeorin, Nathan; Ruchayskiy, Oleg; Boyarsky, Alexey; Fröhlich, Jürg; Brandenburg, Axel; Schober, Jennifer
2017-01-01
The magnetohydrodynamic (MHD) description of plasmas with relativistic particles necessarily includes an additional new field, the chiral chemical potential associated with the axial charge (i.e., the number difference between right- and left-handed relativistic fermions). This chiral chemical potential gives rise to a contribution to the electric current density of the plasma ( chiral magnetic effect ). We present a self-consistent treatment of the chiral MHD equations , which include the back-reaction of the magnetic field on a chiral chemical potential and its interaction with the plasma velocity field. A number of novel phenomena are exhibited. First, we show that the chiral magnetic effect decreases the frequency of the Alfvén wave for incompressible flows, increases the frequencies of the Alfvén wave and of the fast magnetosonic wave for compressible flows, and decreases the frequency of the slow magnetosonic wave. Second, we show that, in addition to the well-known laminar chiral dynamo effect, which is not related to fluid motions, there is a dynamo caused by the joint action of velocity shear and chiral magnetic effect. In the presence of turbulence with vanishing mean kinetic helicity, the derived mean-field chiral MHD equations describe turbulent large-scale dynamos caused by the chiral alpha effect, which is dominant for large fluid and magnetic Reynolds numbers. The chiral alpha effect is due to an interaction of the chiral magnetic effect and fluctuations of the small-scale current produced by tangling magnetic fluctuations (which are generated by tangling of the large-scale magnetic field by sheared velocity fluctuations). These dynamo effects may have interesting consequences in the dynamics of the early universe, neutron stars, and the quark–gluon plasma.
The Theory of Nearly Incompressible Magnetohydrodynamic Turbulence: Homogeneous Description
Zank, G. P.; Adhikari, L.; Hunana, P.; Shiota, D.; Bruno, R.; Telloni, D.; Avinash, K.
2017-09-01
The theory of nearly incompressible magnetohydrodynamics (NI MHD) was developed to understand the apparent incompressibility of the solar wind and other plasma environments, particularly the relationship of density fluctuations to incompressible manifestations of turbulence in the solar wind and interstellar medium. Of interest was the identification of distinct leading-order incompressible descriptions for plasma beta β ≫ 1 and β ∼ 1 or ≪ 1 environments. In the first case, the “dimensionality” of the MHD description is 3D whereas for the latter two, there is a collapse of dimensionality in that the leading-order incompressible MHD description is 2D in a plane orthogonal to the large-scale or mean magnetic field. Despite the success of NI MHD in describing fluctuations in a low-frequency plasma environment such as the solar wind, a basic turbulence description has not been developed. Here, we rewrite the NI MHD system in terms of Elsässer variables. We discuss the distinction that emerges between the three cases. However, we focus on the β ∼ 1 or ≪ 1 regimes since these are appropriate to the solar wind and solar corona. In both cases, the leading-order turbulence model describes 2D turbulence and the higher-order description corresponds to slab turbulence, which forms a minority component. The Elsäasser β ∼ 1 or ≪ 1 formulation exhibits the nonlinear couplings between 2D and slab components very clearly, and shows that slab fluctuations respond in a passive scalar sense to the turbulently evolving majority 2D component fluctuations. The coupling of 2D and slab fluctuations through the β ∼ 1 or ≪ 1 NI MHD description leads to a very natural emergence of the “Goldreich-Sridhar” critical balance scaling parameter, although now with a different interpretation. Specifically, the critical balance parameter shows that the energy flux in wave number space is a consequence of the intensity of Alfvén wave sweeping versus passive scalar
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2010-01-01
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.
Bambic, Christopher J.; Morsony, Brian J.; Reynolds, Christopher S.
2018-04-01
We investigate the role of active galactic nucleus (AGN) feedback in turbulent heating of galaxy clusters. Specifically, we analyze the production of turbulence by g-modes generated by the supersonic expansion and buoyant rise of AGN-driven bubbles. Previous work that neglects magnetic fields has shown that this process is inefficient, with less than 1% of the injected energy ending up in turbulence. This inefficiency primarily arises because the bubbles are shredded apart by hydrodynamic instabilities before they can excite sufficiently strong g-modes. Using a plane-parallel model of the intracluster medium (ICM) and 3D ideal magnetohydrodynamics (MHD) simulations, we examine the role of a large-scale magnetic field that is able to drape around these rising bubbles, preserving them from hydrodynamic instabilities. We find that while magnetic draping appears better able to preserve AGN-driven bubbles, the driving of g-modes and the resulting production of turbulence is still inefficient. The magnetic tension force prevents g-modes from transitioning into the nonlinear regime, suppressing turbulence in our model ICM. Our work highlights the ways in which ideal MHD is an insufficient description for the cluster feedback process, and we discuss future work such as the inclusion of anisotropic viscosity as a means of simulating high β plasma kinetic effects. These results suggest the hypothesis that other mechanisms of heating the ICM plasma such as sound waves or cosmic rays may be responsible for the observed feedback in galaxy clusters.
Astrophysical gyrokinetics: turbulence in pressure-anisotropic plasmas at ion scales and beyond
Kunz, M. W.; Abel, I. G.; Klein, K. G.
2018-04-01
We present a theoretical framework for describing electromagnetic kinetic turbulence in a multi-species, magnetized, pressure-anisotropic plasma. The turbulent fluctuations are assumed to be small compared to the mean field, to be spatially anisotropic with respect to it and to have frequencies small compared to the ion cyclotron frequency. At scales above the ion-Larmor radius, the theory reduces to the pressure-anisotropic generalization of kinetic reduced magnetohydrodynamics (KRMHD) formulated by Kunz et al. (J. Plasma Phys., vol. 81, 2015, 325810501). At scales at and below the ion-Larmor radius, three main objectives are achieved. First, we analyse the linear response of the pressure-anisotropic gyrokinetic system, and show it to be a generalization of previously explored limits. The effects of pressure anisotropy on the stability and collisionless damping of Alfvénic and compressive fluctuations are highlighted, with attention paid to the spectral location and width of the frequency jump that occurs as Alfvén waves transition into kinetic Alfvén waves. Secondly, we derive and discuss a very general gyrokinetic free-energy conservation law, which captures both the KRMHD free-energy conservation at long wavelengths and dual cascades of kinetic Alfvén waves and ion entropy at sub-ion-Larmor scales. We show that non-Maxwellian features in the distribution function change the amount of phase mixing and the efficiency of magnetic stresses, and thus influence the partitioning of free energy amongst the cascade channels. Thirdly, a simple model is used to show that pressure anisotropy, even within the bounds imposed on it by firehose and mirror instabilities, can cause order-of-magnitude variations in the ion-to-electron heating ratio due to the dissipation of Alfvénic turbulence. Our theory provides a foundation for determining how pressure anisotropy affects turbulent fluctuation spectra, the differential heating of particle species and the ratio of parallel
Field theory modelling of vortex tube entanglement in turbulent magnetohydrodynamics
International Nuclear Information System (INIS)
Moriconi, L.; Nobre, F.A. S.
2000-01-01
Full text follows: We study the dynamics of interacting closed vortex tubes in magnetohydrodynamics, in terms of a (1+1)-dimensional field theory derived within the context of the Martin-Siggia-Rose formalism. The fluid is stirred by large scale stochastic forces which affect smaller scales through foldings of the velocity and magnetic vortex tubes. Numerical computations are done by means of a length-preserving scheme, motivated by the usual self-induction approximation. In order to understand the origin of intermittency effects, we investigate the multifractal exponents for the equilibrium vortex tube configurations, as well as correlations developed between different tubes. (author)
Energy Technology Data Exchange (ETDEWEB)
Usmanov, Arcadi V.; Matthaeus, William H. [Department of Physics and Astronomy, University of Delaware, Newark, DE 19716 (United States); Goldstein, Melvyn L., E-mail: arcadi.usmanov@nasa.gov [Code 672, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2014-06-10
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
EXTENDED SCALING LAWS IN NUMERICAL SIMULATIONS OF MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
Mason, Joanne; Cattaneo, Fausto; Perez, Jean Carlos; Boldyrev, Stanislav
2011-01-01
Magnetized turbulence is ubiquitous in astrophysical systems, where it notoriously spans a broad range of spatial scales. Phenomenological theories of MHD turbulence describe the self-similar dynamics of turbulent fluctuations in the inertial range of scales. Numerical simulations serve to guide and test these theories. However, the computational power that is currently available restricts the simulations to Reynolds numbers that are significantly smaller than those in astrophysical settings. In order to increase computational efficiency and, therefore, probe a larger range of scales, one often takes into account the fundamental anisotropy of field-guided MHD turbulence, with gradients being much slower in the field-parallel direction. The simulations are then optimized by employing the reduced MHD equations and relaxing the field-parallel numerical resolution. In this work we explore a different possibility. We propose that there exist certain quantities that are remarkably stable with respect to the Reynolds number. As an illustration, we study the alignment angle between the magnetic and velocity fluctuations in MHD turbulence, measured as the ratio of two specially constructed structure functions. We find that the scaling of this ratio can be extended surprisingly well into the regime of relatively low Reynolds number. However, the extended scaling easily becomes spoiled when the dissipation range in the simulations is underresolved. Thus, taking the numerical optimization methods too far can lead to spurious numerical effects and erroneous representation of the physics of MHD turbulence, which in turn can affect our ability to identify correctly the physical mechanisms that are operating in astrophysical systems.
Koga, D; Chian, A C-L; Hada, T; Rempel, E L
2008-02-13
Magnetohydrodynamic (MHD) turbulence is commonly observed in the solar wind. Nonlinear interactions among MHD waves are likely to produce finite correlation of the wave phases. For discussions of various transport processes of energetic particles, it is fundamentally important to determine whether the wave phases are randomly distributed (as assumed in the quasi-linear theory) or have a finite coherence. Using a method based on the surrogate data technique, we analysed the GEOTAIL magnetic field data to evaluate the phase coherence in MHD turbulence in the Earth's foreshock region. The results demonstrate the existence of finite phase correlation, indicating that nonlinear wave-wave interactions are in progress.
Magnetohydrodynamic flows and turbulence: a report on the Third Beer-Sheva Seminar
International Nuclear Information System (INIS)
Branover, H.; Mestel, A.J.; Moore, D.J.; Shercliff, J.A.
1981-01-01
This paper is a summary of the Third Beer-Sheva Seminar on magnetohydrodynamic (MHD) flows and turbulence, held in Israel in March 1981 with 67 participants from 9 countries. Reviews and research papers were presented on fundamental MHD and turbulence studies, both theoretical and experimental, including two-phase phenomena, and on applications of MHD to electrical generation (especially in two-phase systems), electromagnetic pumps, flow-couplers and flowmeters, thermonuclear fusion and a range of metallurgical problems, many involving free surfaces. (author)
Intermittent Anisotropic Turbulence Detected by THEMIS in the Magnetosheath
Macek, W. M.; Wawrzaszek, A.; Kucharuk, B.; Sibeck, D. G.
2017-12-01
Following our previous study of Time History of Events and Macroscale Interactions during Substorms (THEMIS) data, we consider intermittent turbulence in the magnetosheath depending on various conditions of the magnetized plasma behind the Earth’s bow shock and now also near the magnetopause. Namely, we look at the fluctuations of the components of the Elsässer variables in the plane perpendicular to the scale-dependent background magnetic fields and along the local average ambient magnetic fields. We have shown that Alfvén fluctuations often exhibit strong anisotropic non-gyrotropic turbulent intermittent behavior resulting in substantial deviations of the probability density functions from a normal Gaussian distribution with a large kurtosis. In particular, for very high Alfvénic Mach numbers and high plasma beta, we have clear anisotropy with non-Gaussian statistics in the transverse directions. However, along the magnetic field, the kurtosis is small and the plasma is close to equilibrium. On the other hand, intermittency becomes weaker for moderate Alfvén Mach numbers and lower values of the plasma parameter beta. It also seems that the degree of intermittency of turbulence for the outgoing fluctuations propagating relative to the ambient magnetic field is usually similar as for the ingoing fluctuations, which is in agreement with approximate equipartition of energy between these oppositely propagating Alfvén waves. We believe that the different characteristics of this intermittent anisotropic turbulent behavior in various regions of space and astrophysical plasmas can help identify nonlinear structures responsible for deviations of the plasma from equilibrium.
Ion and impurity transport in turbulent, anisotropic magnetic fields
International Nuclear Information System (INIS)
Negrea, M; Petrisor, I; Isliker, H; Vogiannou, A; Vlahos, L; Weyssow, B
2011-01-01
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
Ion and impurity transport in turbulent, anisotropic magnetic fields
Energy Technology Data Exchange (ETDEWEB)
Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)
2011-08-15
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
Ion and impurity transport in turbulent, anisotropic magnetic fields
Negrea, M.; Petrisor, I.; Isliker, H.; Vogiannou, A.; Vlahos, L.; Weyssow, B.
2011-08-01
We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.
CHARACTERIZING MAGNETOHYDRODYNAMIC TURBULENCE IN THE SMALL MAGELLANIC CLOUD
International Nuclear Information System (INIS)
Burkhart, Blakesley; Stanimirovic, Snezana; Lazarian, A.; Kowal, Grzegorz
2010-01-01
We investigate the nature and spatial variations of turbulence in the Small Magellanic Cloud (SMC) by applying several statistical methods on the neutral hydrogen (H I) column density image of the SMC and a database of isothermal numerical simulations. By using the third and fourth statistical moments we derive the spatial distribution of the sonic Mach number (M s ) across the SMC. We find that about 90% of the H I in the SMC is subsonic or transonic. However, edges of the SMC 'bar' have M s ∼4 and may be tracing shearing or turbulent flows. Using numerical simulations we also investigate how the slope of the spatial power spectrum depends on both sonic and Alfven Mach numbers. This allows us to gauge the Alfven Mach number of the SMC and conclude that its hydrodynamic pressure dominates over the magnetic pressure. The trans-Alfvenic nature of the H I gas in the SMC is also highlighted by the bispectrum, a three-point correlation function which characterizes the level of non-Gaussianity in wave modes. We find that the bispectrum of the SMC H I column density displays similar large-scale correlations as numerical simulations; however, it has localized enhancements of correlations. In addition, we find a break in correlations at a scale of ∼160 pc. This may be caused by numerous expanding shells of a similar size.
Forward and inverse cascades in decaying two-dimensional electron magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Wareing, C. J.; Hollerbach, R.
2009-01-01
Electron magnetohydrodynamic (EMHD) turbulence in two dimensions is studied via high-resolution numerical simulations with a normal diffusivity. The resulting energy spectra asymptotically approach a k -5/2 law with increasing R B , the ratio of the nonlinear to linear time scales in the governing equation. No evidence is found of a dissipative cutoff, consistent with nonlocal spectral energy transfer. Dissipative cutoffs found in previous studies are explained as artificial effects of hyperdiffusivity. Relatively stationary structures are found to develop in time, rather than the variability found in ordinary or MHD turbulence. Further, EMHD turbulence displays scale-dependent anisotropy with reduced energy transfer in the direction parallel to the uniform background field, consistent with previous studies. Finally, the governing equation is found to yield an inverse cascade, at least partially transferring magnetic energy from small to large scales.
Directory of Open Access Journals (Sweden)
Xingtuan Yang
2015-01-01
Full Text Available This study investigates the anisotropic characteristics of turbulent energy dissipation rate in a rotating jet flow via direct numerical simulation. The turbulent energy dissipation tensor, including its eigenvalues in the swirling flows with different rotating velocities, is analyzed to investigate the anisotropic characteristics of turbulence and dissipation. In addition, the probability density function of the eigenvalues of turbulence dissipation tensor is presented. The isotropic subrange of PDF always exists in swirling flows relevant to small-scale vortex structure. Thus, with remarkable large-scale vortex breakdown, the isotropic subrange of PDF is reduced in strongly swirling flows, and anisotropic energy dissipation is proven to exist in the core region of the vortex breakdown. More specifically, strong anisotropic turbulence dissipation occurs concentratively in the vortex breakdown region, whereas nearly isotropic turbulence dissipation occurs dispersively in the peripheral region of the strong swirling flows.
International Nuclear Information System (INIS)
Xu, Siyao; Yan, Huirong; Lazarian, A.
2016-01-01
We study the damping processes of both incompressible and compressible magnetohydrodynamic (MHD) turbulence in a partially ionized medium. We start from the linear analysis of MHD waves, applying both single-fluid and two-fluid treatments. The damping rates derived from the linear analysis are then used in determining the damping scales of MHD turbulence. The physical connection between the damping scale of MHD turbulence and the cutoff boundary of linear MHD waves is investigated. We find two branches of slow modes propagating in ions and neutrals, respectively, below the damping scale of slow MHD turbulence, and offer a thorough discussion of their propagation and dissipation behavior. Our analytical results are shown to be applicable in a variety of partially ionized interstellar medium (ISM) phases and the solar chromosphere. The importance of neutral viscosity in damping the Alfvenic turbulence in the interstellar warm neutral medium and the solar chromosphere is demonstrated. As a significant astrophysical utility, we introduce damping effects to the propagation of cosmic rays in partially ionized ISM. The important role of turbulence damping in both transit-time damping and gyroresonance is identified.
Effects of flow shear and Alfven waves on two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Douglas, Jamie; Kim, Eun-jin; Thyagaraja, A.
2008-01-01
The suppression of turbulent transport by large scale mean shear flows and uniform magnetic fields is investigated in two-dimensional magnetohydrodynamic turbulence driven by a small-scale forcing with finite correlation time. By numerical integration the turbulent magnetic diffusivity D T is shown to be significantly quenched, with a scaling D T ∝B -2 Ω 0 -5/4 , which is much more severe than in the case of a short or delta correlated forcing typified by white noise, studied in E. Kim and B. Dubrulle [Phys. Plasmas 8, 813 (2001)]. Here B and Ω 0 are magnetic field strength and flow shear rate, respectively. The forcing with finite correlation time also leads to much stronger suppression of momentum transport through the cancellation of the Reynolds stress by the Maxwell stress with a positive small value of turbulent viscosity, ν T >0. While fluctuating kinetic and magnetic energies are unaffected by the magnetic field just as in the case of a delta correlated forcing, they are much more severely quenched by flow shear than in that of a delta correlated forcing. Underlying physical mechanisms for the reduction of turbulent transport and turbulence level by flow shear and magnetic field are discussed
Anisotropic Behaviour of Magnetic Power Spectra in Solar Wind Turbulence.
Banerjee, S.; Saur, J.; Gerick, F.; von Papen, M.
2017-12-01
Introduction:High altitude fast solar wind turbulence (SWT) shows different spectral properties as a function of the angle between the flow direction and the scale dependent mean magnetic field (Horbury et al., PRL, 2008). The average magnetic power contained in the near perpendicular direction (80º-90º) was found to be approximately 5 times larger than the average power in the parallel direction (0º- 10º). In addition, the parallel power spectra was found to give a steeper (-2) power law than the perpendicular power spectral density (PSD) which followed a near Kolmogorov slope (-5/3). Similar anisotropic behaviour has also been observed (Chen et al., MNRAS, 2011) for slow solar wind (SSW), but using a different method exploiting multi-spacecraft data of Cluster. Purpose:In the current study, using Ulysses data, we investigate (i) the anisotropic behaviour of near ecliptic slow solar wind using the same methodology (described below) as that of Horbury et al. (2008) and (ii) the dependence of the anisotropic behaviour of SWT as a function of the heliospheric latitude.Method:We apply the wavelet method to calculate the turbulent power spectra of the magnetic field fluctuations parallel and perpendicular to the local mean magnetic field (LMF). According to Horbury et al., LMF for a given scale (or size) is obtained using an envelope of the envelope of that size. Results:(i) SSW intervals always show near -5/3 perpendicular spectra. Unlike the fast solar wind (FSW) intervals, for SSW, we often find intervals where power parallel to the mean field is not observed. For a few intervals with sufficient power in parallel direction, slow wind turbulence also exhibit -2 parallel spectra similar to FSW.(ii) The behaviours of parallel and perpendicular power spectra are found to be independent of the heliospheric latitude. Conclusion:In the current study we do not find significant influence of the heliospheric latitude on the spectral slopes of parallel and perpendicular
Inertial-Range Reconnection in Magnetohydrodynamic Turbulence and in the Solar Wind.
Lalescu, Cristian C; Shi, Yi-Kang; Eyink, Gregory L; Drivas, Theodore D; Vishniac, Ethan T; Lazarian, Alexander
2015-07-10
In situ spacecraft data on the solar wind show events identified as magnetic reconnection with wide outflows and extended "X lines," 10(3)-10(4) times ion scales. To understand the role of turbulence at these scales, we make a case study of an inertial-range reconnection event in a magnetohydrodynamic simulation. We observe stochastic wandering of field lines in space, breakdown of standard magnetic flux freezing due to Richardson dispersion, and a broadened reconnection zone containing many current sheets. The coarse-grain magnetic geometry is like large-scale reconnection in the solar wind, however, with a hyperbolic flux tube or apparent X line extending over integral length scales.
A non-local shell model of hydrodynamic and magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Plunian, F [Laboratoire de Geophysique Interne et Tectonophysique, CNRS, Universite Joseph Fourier, Maison des Geosciences, BP 53, 38041 Grenoble Cedex 9 (France); Stepanov, R [Institute of Continuous Media Mechanics, Korolyov 1, 614013 Perm (Russian Federation)
2007-08-15
We derive a new shell model of magnetohydrodynamic (MHD) turbulence in which the energy transfers are not necessarily local. Like the original MHD equations, the model conserves the total energy, magnetic helicity, cross-helicity and volume in phase space (Liouville's theorem) apart from the effects of external forcing, viscous dissipation and magnetic diffusion. The model of hydrodynamic (HD) turbulence is derived from the MHD model setting the magnetic field to zero. In that case the conserved quantities are the kinetic energy and the kinetic helicity. In addition to a statistically stationary state with a Kolmogorov spectrum, the HD model exhibits multiscaling. The anomalous scaling exponents are found to depend on a free parameter {alpha} that measures the non-locality degree of the model. In freely decaying turbulence, the infra-red spectrum also depends on {alpha}. Comparison with theory suggests using {alpha} = -5/2. In MHD turbulence, we investigate the fully developed turbulent dynamo for a wide range of magnetic Prandtl numbers in both kinematic and dynamic cases. Both local and non-local energy transfers are clearly identified.
International Nuclear Information System (INIS)
Schaffner, D. A.; Brown, M. R.; Rock, A. B.
2016-01-01
The frequency spectrum of magnetic fluctuations as measured on the Swarthmore Spheromak Experiment is broadband and exhibits a nearly Kolmogorov 5/3 scaling. It features a steepening region which is indicative of dissipation of magnetic fluctuation energy similar to that observed in fluid and magnetohydrodynamic turbulence systems. Two non-spectrum based time-series analysis techniques are implemented on this data set in order to seek other possible signatures of turbulent dissipation beyond just the steepening of fluctuation spectra. Presented here are results for the flatness, permutation entropy, and statistical complexity, each of which exhibits a particular character at spectral steepening scales which can then be compared to the behavior of the frequency spectrum.
International Nuclear Information System (INIS)
Kowal, Grzegorz; Lazarian, A.
2010-01-01
We study compressible magnetohydrodynamic turbulence, which holds the key to many astrophysical processes, including star formation and cosmic-ray propagation. To account for the variations of the magnetic field in the strongly turbulent fluid, we use wavelet decomposition of the turbulent velocity field into Alfven, slow, and fast modes, which presents an extension of the Cho and Lazarian decomposition approach based on Fourier transforms. The wavelets allow us to follow the variations of the local direction of the magnetic field and therefore improve the quality of the decomposition compared to the Fourier transforms, which are done in the mean field reference frame. For each resulting component, we calculate the spectra and two-point statistics such as longitudinal and transverse structure functions as well as higher order intermittency statistics. In addition, we perform a Helmholtz- Hodge decomposition of the velocity field into incompressible and compressible parts and analyze these components. We find that the turbulence intermittency is different for different components, and we show that the intermittency statistics depend on whether the phenomenon was studied in the global reference frame related to the mean magnetic field or in the frame defined by the local magnetic field. The dependencies of the measures we obtained are different for different components of the velocity; for instance, we show that while the Alfven mode intermittency changes marginally with the Mach number, the intermittency of the fast mode is substantially affected by the change.
Banerjee, Supratik; Kritsuk, Alexei G.
2018-02-01
Three-dimensional, compressible, magnetohydrodynamic turbulence of an isothermal, self-gravitating fluid is analyzed using two-point statistics in the asymptotic limit of large Reynolds numbers (both kinetic and magnetic). Following an alternative formulation proposed by Banerjee and Galtier [Phys. Rev. E 93, 033120 (2016), 10.1103/PhysRevE.93.033120; J. Phys. A: Math. Theor. 50, 015501 (2017), 10.1088/1751-8113/50/1/015501], an exact relation has been derived for the total energy transfer. This approach results in a simpler relation expressed entirely in terms of mixed second-order structure functions. The kinetic, thermodynamic, magnetic, and gravitational contributions to the energy transfer rate can be easily separated in the present form. By construction, the new formalism includes such additional effects as global rotation, the Hall term in the induction equation, etc. The analysis shows that solid-body rotation cannot alter the energy flux rate of compressible turbulence. However, the contribution of a uniform background magnetic field to the flux is shown to be nontrivial unlike in the incompressible case. Finally, the compressible, turbulent energy flux rate does not vanish completely due to simple alignments, which leads to a zero turbulent energy flux rate in the incompressible case.
Multiscale Pressure-Balanced Structures in Three-dimensional Magnetohydrodynamic Turbulence
Energy Technology Data Exchange (ETDEWEB)
Yang, Liping; Zhang, Lei; Feng, Xueshang [SIGMA Weather Group, State Key Laboratory for Space Weather, National Space Science Center, Chinese Academy of Sciences, 100190, Beijing (China); He, Jiansen; Tu, Chuanyi; Wang, Linghua [School of Earth and Space Sciences, Peking University, 100871 Beijing (China); Li, Shengtai [Theoretical Division, MS B284, Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Marsch, Eckart [Institute for Experimental and Applied Physics, Christian Albrechts University at Kiel, D-24118 Kiel (Germany); Wang, Xin, E-mail: jshept@gmail.com [School of Space and Environment, Beihang University, 100191 Beijing (China)
2017-02-10
Observations of solar wind turbulence indicate the existence of multiscale pressure-balanced structures (PBSs) in the solar wind. In this work, we conduct a numerical simulation to investigate multiscale PBSs and in particular their formation in compressive magnetohydrodynamic turbulence. By the use of the higher-order Godunov code Athena, a driven compressible turbulence with an imposed uniform guide field is simulated. The simulation results show that both the magnetic pressure and the thermal pressure exhibit a turbulent spectrum with a Kolmogorov-like power law, and that in many regions of the simulation domain they are anticorrelated. The computed wavelet cross-coherence spectra of the magnetic pressure and the thermal pressure, as well as their space series, indicate the existence of multiscale PBSs, with the small PBSs being embedded in the large ones. These multiscale PBSs are likely to be related to the highly oblique-propagating slow-mode waves, as the traced multiscale PBS is found to be traveling in a certain direction at a speed consistent with that predicted theoretically for a slow-mode wave propagating in the same direction.
Structure of the electromagnetic field in three-dimensional Hall magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Dmitruk, Pablo; Matthaeus, W.H.
2006-01-01
Numerical simulations of freely evolving three-dimensional compressible magnetohydrodynamics (MHD) are performed, with and without the Hall term in Ohm's law. The parameter controlling the presence of the Hall term is the ratio of the ion skin depth to the macroscopic scale of the turbulence. The ion skin depth is set to be slightly larger than the dissipation length scale (controlled by the resistivity) for the Hall MHD simulations, while it is set to zero for non-Hall MHD simulations. Small initial cross helicity, hybrid helicity, and magnetic helicity are considered. The system is left to evolve for a few turbulent characteristic times and the magnetic field and electric field are analyzed in real and wavenumber space. Distributions (histograms) of the fields are also computed. It is found that the turbulent magnetic field (as well as the velocity field) is almost unaffected by the presence of the Hall term, while the electric field is affected at scales smaller than the ion skin depth, that is, close to the dissipation range in these simulations. The importance of each term in Ohm's law for the electric field is analyzed in wavenumber space. Furthermore, reconnection-like zones are identified, where the importance of each term in Ohm's law can be seen in real space. Reconnection-like zones with magnetic field B=0 (or small) and B≠0 are found within the turbulent state of the system
Reconnection-driven Magnetohydrodynamic Turbulence in a Simulated Coronal-hole Jet
Energy Technology Data Exchange (ETDEWEB)
Uritsky, Vadim M.; Roberts, Merrill A. [Catholic University of America, 620 Michigan Avenue NE, Washington, DC 20064 (United States); DeVore, C. Richard; Karpen, Judith T., E-mail: vadim.uritsky@nasa.gov [Heliophysics Science Division, NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)
2017-03-10
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfvén waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated by an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnection-driven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the Müller–Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the spatial orientation of the current sheets are consistent with an ensemble of nonlinear Alfvén waves. These properties also reflect the overall collimated jet structure imposed by the geometry of the reconnecting magnetic field. A comparison with Ulysses observations shows that turbulence in the jet wake is in quantitative agreement with that in the fast solar wind.
Turbulence-driven anisotropic electron tail generation during magnetic reconnection
DuBois, A. M.; Scherer, A.; Almagri, A. F.; Anderson, J. K.; Pandya, M. D.; Sarff, J. S.
2018-05-01
Magnetic reconnection (MR) plays an important role in particle transport, energization, and acceleration in space, astrophysical, and laboratory plasmas. In the Madison Symmetric Torus reversed field pinch, discrete MR events release large amounts of energy from the equilibrium magnetic field, a fraction of which is transferred to electrons and ions. Previous experiments revealed an anisotropic electron tail that favors the perpendicular direction and is symmetric in the parallel. New profile measurements of x-ray emission show that the tail distribution is localized near the magnetic axis, consistent modeling of the bremsstrahlung emission. The tail appears first near the magnetic axis and then spreads radially, and the dynamics in the anisotropy and diffusion are discussed. The data presented imply that the electron tail formation likely results from a turbulent wave-particle interaction and provides evidence that high energy electrons are escaping the core-localized region through pitch angle scattering into the parallel direction, followed by stochastic parallel transport to the plasma edge. New measurements also show a strong correlation between high energy x-ray measurements and tearing mode dynamics, suggesting that the coupling between core and edge tearing modes is essential for energetic electron tail formation.
Spectral changes in stochastic anisotropic electromagnetic beams propagating through turbulent ocean
Tang, Miaomiao; Zhao, Daomu
2014-02-01
Based on the extended Huygens-Fresnel principle and the unified theory of coherence and polarization of light, the spectral changes of stochastic anisotropic electromagnetic beams propagating through oceanic turbulence are revealed. As an example, some numerical calculations are illustrated for an anisotropic electromagnetic Gaussian Schell-model beam propagating in a homogeneous and isotropic turbulent ocean. It is shown that, under the influence of oceanic turbulence, the on-axis spectrum is always blue-shifted along with the propagation distance, however, for the off-axis positions, red-blue spectral switch can be found.
Anisotropic power spectrum of refractive-index fluctuation in hypersonic turbulence.
Li, Jiangting; Yang, Shaofei; Guo, Lixin; Cheng, Mingjian
2016-11-10
An anisotropic power spectrum of the refractive-index fluctuation in hypersonic turbulence was obtained by processing the experimental image of the hypersonic plasma sheath and transforming the generalized anisotropic von Kármán spectrum. The power spectrum suggested here can provide as good a fit to measured spectrum data for hypersonic turbulence as that recorded from the nano-planar laser scattering image. Based on the newfound anisotropic hypersonic turbulence power spectrum, Rytov approximation was employed to establish the wave structure function and the spatial coherence radius model of electromagnetic beam propagation in hypersonic turbulence. Enhancing the anisotropy characteristics of the hypersonic turbulence led to a significant improvement in the propagation performance of electromagnetic beams in hypersonic plasma sheath. The influence of hypersonic turbulence on electromagnetic beams increases with the increase of variance of the refractive-index fluctuation and the decrease of turbulence outer scale and anisotropy parameters. The spatial coherence radius was much smaller than that in atmospheric turbulence. These results are fundamental to understanding electromagnetic wave propagation in hypersonic turbulence.
Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea
Cranmer, Steven R.; Woolsey, Lauren N.
2015-10-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.
DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA
International Nuclear Information System (INIS)
Cranmer, Steven R.; Woolsey, Lauren N.
2015-01-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules
DRIVING SOLAR SPICULES AND JETS WITH MAGNETOHYDRODYNAMIC TURBULENCE: TESTING A PERSISTENT IDEA
Energy Technology Data Exchange (ETDEWEB)
Cranmer, Steven R. [Department of Astrophysical and Planetary Sciences, Laboratory for Atmospheric and Space Physics, University of Colorado, Boulder, CO 80309 (United States); Woolsey, Lauren N. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States)
2015-10-10
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.
Anisotropic Formation of Quantum Turbulence Generated by a Vibrating Wire in Superfluid {}4{He}
Yano, H.; Ogawa, K.; Chiba, Y.; Obara, K.; Ishikawa, O.
2017-06-01
To investigate the formation of quantum turbulence in superfluid {}4{He}, we have studied the emission of vortex rings with a ring size of larger than 38 μm in diameter from turbulence generated by a vibrating wire. The emission rate of vortex rings from a turbulent region remains low until the beginning of high-rate emissions, suggesting that some of the vortex lines produced by the wire combine to form a vortex tangle, until an equilibrium is established between the rate of vortex line combination with the tangle and dissociation. The formation times of equilibrium turbulence are proportional to ɛ ^{-1.2} and ɛ ^{-0.6} in the directions perpendicular and parallel to the vibrating direction of the generator, respectively, indicating the anisotropic formation of turbulence. Here, ɛ is the generation power of the turbulence. This power dependence may be associated with the characteristics of quantum turbulence with a constant energy flux.
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R.; De Gouveia Dal Pino, E. M.; Kowal, G. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, R. do Matão, 1226, São Paulo, SP 05508-090 (Brazil); Falceta-Gonçalves, D. [Escola de Artes, Ciências e Humanidades, Universidade de São Paulo, Rua Arlindo Bettio, 1000, São Paulo, SP 03828-000 (Brazil); Lazarian, A. [Department of Astronomy, University of Wisconsin, Madison, WI 53706 (United States); Nakwacki, M. S. [Instituto de Astronomía y Física del Espacio (IAFE), CONICET (Argentina)
2014-02-01
The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.
International Nuclear Information System (INIS)
Yoshimatsu, Katsunori; Kawahara, Yasuhiro; Schneider, Kai; Okamoto, Naoya; Farge, Marie
2011-01-01
Scale-dependent and geometrical statistics of three-dimensional incompressible homogeneous magnetohydrodynamic turbulence without mean magnetic field are examined by means of the orthogonal wavelet decomposition. The flow is computed by direct numerical simulation with a Fourier spectral method at resolution 512 3 and a unit magnetic Prandtl number. Scale-dependent second and higher order statistics of the velocity and magnetic fields allow to quantify their intermittency in terms of spatial fluctuations of the energy spectra, the flatness, and the probability distribution functions at different scales. Different scale-dependent relative helicities, e.g., kinetic, cross, and magnetic relative helicities, yield geometrical information on alignment between the different scale-dependent fields. At each scale, the alignment between the velocity and magnetic field is found to be more pronounced than the other alignments considered here, i.e., the scale-dependent alignment between the velocity and vorticity, the scale-dependent alignment between the magnetic field and its vector potential, and the scale-dependent alignment between the magnetic field and the current density. Finally, statistical scale-dependent analyses of both Eulerian and Lagrangian accelerations and the corresponding time-derivatives of the magnetic field are performed. It is found that the Lagrangian acceleration does not exhibit substantially stronger intermittency compared to the Eulerian acceleration, in contrast to hydrodynamic turbulence where the Lagrangian acceleration shows much stronger intermittency than the Eulerian acceleration. The Eulerian time-derivative of the magnetic field is more intermittent than the Lagrangian time-derivative of the magnetic field.
Park, Kiwan
2017-12-01
In our conventional understanding, large-scale magnetic fields are thought to originate from an inverse cascade in the presence of magnetic helicity, differential rotation or a magneto-rotational instability. However, as recent simulations have given strong indications that an inverse cascade (transfer) may occur even in the absence of magnetic helicity, the physical origin of this inverse cascade is still not fully understood. We here present two simulations of freely decaying helical and non-helical magnetohydrodynamic (MHD) turbulence. We verified the inverse transfer of helical and non-helical magnetic fields in both cases, but we found the underlying physical principles to be fundamentally different. In the former case, the helical magnetic component leads to an inverse cascade of magnetic energy. We derived a semi-analytic formula for the evolution of large-scale magnetic field using α coefficient and compared it with the simulation data. But in the latter case, the α effect, including other conventional dynamo theories, is not suitable to describe the inverse transfer of non-helical magnetic energy. To obtain a better understanding of the physics at work here, we introduced a 'field structure model' based on the magnetic induction equation in the presence of inhomogeneities. This model illustrates how the curl of the electromotive force leads to the build up of a large-scale magnetic field without the requirement of magnetic helicity. And we applied a quasi-normal approximation to the inverse transfer of magnetic energy.
Maneva, Y. G.; Poedts, S.
2018-05-01
The power spectra of magnetic field fluctuations in the solar wind typically follow a power-law dependence with respect to the observed frequencies and wave-numbers. The background magnetic field often influences the plasma properties, setting a preferential direction for plasma heating and acceleration. At the same time the evolution of the solar-wind turbulence at the ion and electron scales is influenced by the plasma properties through local micro-instabilities and wave-particle interactions. The solar-wind-plasma temperature and the solar-wind turbulence at sub- and sup-ion scales simultaneously show anisotropic features, with different components and fluctuation power in parallel with and perpendicular to the orientation of the background magnetic field. The ratio between the power of the magnetic field fluctuations in parallel and perpendicular direction at the ion scales may vary with the heliospheric distance and depends on various parameters, including the local wave properties and nonthermal plasma features, such as temperature anisotropies and relative drift speeds. In this work we have performed two-and-a-half-dimensional hybrid simulations to study the generation and evolution of anisotropic turbulence in a drifting multi-ion species plasma. We investigate the evolution of the turbulent spectral slopes along and across the background magnetic field for the cases of initially isotropic and anisotropic turbulence. Finally, we show the effect of the various turbulent spectra for the local ion heating in the solar wind.
International Nuclear Information System (INIS)
Sánchez-Arriaga, G.
2013-01-01
The existence of discontinuities within the double-adiabatic Hall-magnetohydrodynamics (MHD) model is discussed. These solutions are transitional layers where some of the plasma properties change from one equilibrium state to another. Under the assumption of traveling wave solutions with velocity C and propagation angle θ with respect to the ambient magnetic field, the Hall-MHD model reduces to a dynamical system and the waves are heteroclinic orbits joining two different fixed points. The analysis of the fixed points rules out the existence of rotational discontinuities. Simple considerations about the Hamiltonian nature of the system show that, unlike dissipative models, the intermediate shock waves are organized in branches in parameter space, i.e., they occur if a given relationship between θ and C is satisfied. Electron-polarized (ion-polarized) shock waves exhibit, in addition to a reversal of the magnetic field component tangential to the shock front, a maximum (minimum) of the magnetic field amplitude. The jumps of the magnetic field and the relative specific volume between the downstream and the upstream states as a function of the plasma properties are presented. The organization in parameter space of localized structures including in the model the influence of finite Larmor radius is discussed
Flat-topped beam transmittance in anisotropic non-Kolmogorov turbulent marine atmosphere
Ata, Yalçın; Baykal, Yahya
2017-10-01
Turbulence affects optical propagation, and, as a result, the intensity is attenuated along the path of propagation. The attenuation becomes significant when the turbulence becomes stronger. Transmittance is a measure indicating how much power is collected at the receiver after the optical wave propagates in the turbulent medium. The on-axis transmittance is formulated when a flat-topped optical beam propagates in a marine atmosphere experiencing anisotropic non-Kolmogorov turbulence. Variations in the transmittance are evaluated versus the beam source size, beam number, link distance, power law exponent, anisotropy factor, and structure constant. It is found that larger beam source sizes and beam numbers yield higher transmittance values; however, as the link distance, power law exponent, anisotropy factor, or structure constant increase, transmittance values are lowered. Our results will help in the performance evaluations of optical wireless communication and optical imaging systems operating in a marine atmosphere.
Yang, Liping; Zhang, Lei; He, Jiansen; Tu, Chuanyi; Li, Shengtai; Wang, Xin; Wang, Linghua
2018-03-01
Multi-order structure functions in the solar wind are reported to display a monofractal scaling when sampled parallel to the local magnetic field and a multifractal scaling when measured perpendicularly. Whether and to what extent will the scaling anisotropy be weakened by the enhancement of turbulence amplitude relative to the background magnetic strength? In this study, based on two runs of the magnetohydrodynamic (MHD) turbulence simulation with different relative levels of turbulence amplitude, we investigate and compare the scaling of multi-order magnetic structure functions and magnetic probability distribution functions (PDFs) as well as their dependence on the direction of the local field. The numerical results show that for the case of large-amplitude MHD turbulence, the multi-order structure functions display a multifractal scaling at all angles to the local magnetic field, with PDFs deviating significantly from the Gaussian distribution and a flatness larger than 3 at all angles. In contrast, for the case of small-amplitude MHD turbulence, the multi-order structure functions and PDFs have different features in the quasi-parallel and quasi-perpendicular directions: a monofractal scaling and Gaussian-like distribution in the former, and a conversion of a monofractal scaling and Gaussian-like distribution into a multifractal scaling and non-Gaussian tail distribution in the latter. These results hint that when intermittencies are abundant and intense, the multifractal scaling in the structure functions can appear even if it is in the quasi-parallel direction; otherwise, the monofractal scaling in the structure functions remains even if it is in the quasi-perpendicular direction.
International Nuclear Information System (INIS)
Tanahashi, Takahiko; Miyoshi, Ichiro; Ara, Kuniaki; Ohira, Hiroaki
2004-08-01
Investigation of magnetohydrodynamic (MHD) turbulent model with Large Eddy Simulation (LES) method was started in FY15 to evaluate MHD turbulent behavior on the conditions of high Reynolds numbers and high magnetic Reynolds numbers. In FY15, the proposed Subgrid Scale (SGS) model for magnetic fields generated by direct current was formulated with GSMAC-FEM (Generalized Simplified Marker and Cell method for Finite Element Method) and the characteristic behavior of MHD turbulence studied theoretically. A Direct Numerical Simulation (DNS) method was also developed to verify the theoretical study and construct and advanced SGS model. The last purpose of this study is to analyze the realistic Electromagnetic Pump. In order to understand basic concept, analyses of small-scale Electromagnetic Pump was started with A-φ method. The following results were obtained from these studies: (1) Homogeneous turbulent flows in a conducting fluid which were exposed to uniform magnetic fields were examined through the Direct Numerical Simulation and the characteristics of energy distribution were shown in the MHD turbulence at low magnetic Reynolds numbers. (2) For the analysis of the realistic Electromagnetic Pump, the parallel scheme based on GSMAC-FEM was constructed. Effectiveness of the scheme for large-scale calculation was shown through the benchmark problem, three dimensional cavity flow. (3) A new Balancing Tensor Diffusivity (BTD) formulation for the magnetic fields was proposed in this study and the proposed SGS model in previous study was formulated with GSMAC-FEM. The FEM scheme for MHD turbulence at high magnetic Reynolds number was verified through homogeneous MHD turbulence. (4) An A-φ method formulated with GSMAC-FEM was applied to the analysis of small-scale Electromagnetic pump. The basic concepts for the analysis with B method were obtained through the results. (author)
Error-measure for anisotropic grid-adaptation in turbulence-resolving simulations
Toosi, Siavash; Larsson, Johan
2015-11-01
Grid-adaptation requires an error-measure that identifies where the grid should be refined. In the case of turbulence-resolving simulations (DES, LES, DNS), a simple error-measure is the small-scale resolved energy, which scales with both the modeled subgrid-stresses and the numerical truncation errors in many situations. Since this is a scalar measure, it does not carry any information on the anisotropy of the optimal grid-refinement. The purpose of this work is to introduce a new error-measure for turbulence-resolving simulations that is capable of predicting nearly-optimal anisotropic grids. Turbulent channel flow at Reτ ~ 300 is used to assess the performance of the proposed error-measure. The formulation is geometrically general, applicable to any type of unstructured grid.
Ivers, D. J.; Phillips, C. G.
2018-03-01
We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found
Nonlinear dynamics and anisotropic structure of rotating sheared turbulence.
Salhi, A; Jacobitz, F G; Schneider, K; Cambon, C
2014-01-01
Homogeneous turbulence in rotating shear flows is studied by means of pseudospectral direct numerical simulation and analytical spectral linear theory (SLT). The ratio of the Coriolis parameter to shear rate is varied over a wide range by changing the rotation strength, while a constant moderate shear rate is used to enable significant contributions to the nonlinear interscale energy transfer and to the nonlinear intercomponental redistribution terms. In the destabilized and neutral cases, in the sense of kinetic energy evolution, nonlinearity cannot saturate the growth of the largest scales. It permits the smallest scale to stabilize by a scale-by-scale quasibalance between the nonlinear energy transfer and the dissipation spectrum. In the stabilized cases, the role of rotation is mainly nonlinear, and interacting inertial waves can affect almost all scales as in purely rotating flows. In order to isolate the nonlinear effect of rotation, the two-dimensional manifold with vanishing spanwise wave number is revisited and both two-component spectra and single-point two-dimensional energy components exhibit an important effect of rotation, whereas the SLT as well as the purely two-dimensional nonlinear analysis are unaffected by rotation as stated by the Proudman theorem. The other two-dimensional manifold with vanishing streamwise wave number is analyzed with similar tools because it is essential for any shear flow. Finally, the spectral approach is used to disentangle, in an analytical way, the linear and nonlinear terms in the dynamical equations.
Energy Technology Data Exchange (ETDEWEB)
Hasegawa, A [Bell Labs., Murray Hill, NJ (USA)
1982-02-01
Theoretical treatments of turbulence in fluids and plasmas often assume that the turbulence is isotropic and homogeneous. It is also often considered that turbulence produces uniformly distributed chaos, even when starting with a coherent initial condition. Recently, however, phenomena which do not obey these classic concepts have emerged. For example, in two-dimensional Navier-Stokes turbulence, an organized flow or structure is found to appear even from a chaotic initial condition. The author attempts to review some of the recent developments of a phenomenon called self-organization in the field of hydrodynamics and plasma physics.
A new subgrid characteristic length for turbulence simulations on anisotropic grids
Trias, F. X.; Gorobets, A.; Silvis, M. H.; Verstappen, R. W. C. P.; Oliva, A.
2017-11-01
Direct numerical simulations of the incompressible Navier-Stokes equations are not feasible yet for most practical turbulent flows. Therefore, dynamically less complex mathematical formulations are necessary for coarse-grained simulations. In this regard, eddy-viscosity models for Large-Eddy Simulation (LES) are probably the most popular example thereof. This type of models requires the calculation of a subgrid characteristic length which is usually associated with the local grid size. For isotropic grids, this is equal to the mesh step. However, for anisotropic or unstructured grids, such as the pancake-like meshes that are often used to resolve near-wall turbulence or shear layers, a consensus on defining the subgrid characteristic length has not been reached yet despite the fact that it can strongly affect the performance of LES models. In this context, a new definition of the subgrid characteristic length is presented in this work. This flow-dependent length scale is based on the turbulent, or subgrid stress, tensor and its representations on different grids. The simplicity and mathematical properties suggest that it can be a robust definition that minimizes the effects of mesh anisotropies on simulation results. The performance of the proposed subgrid characteristic length is successfully tested for decaying isotropic turbulence and a turbulent channel flow using artificially refined grids. Finally, a simple extension of the method for unstructured meshes is proposed and tested for a turbulent flow around a square cylinder. Comparisons with existing subgrid characteristic length scales show that the proposed definition is much more robust with respect to mesh anisotropies and has a great potential to be used in complex geometries where highly skewed (unstructured) meshes are present.
Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow
International Nuclear Information System (INIS)
Ravelet, F.
2005-09-01
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
International Nuclear Information System (INIS)
Dey, Prasanta K.; Zikanov, Oleg
2012-01-01
Highlights: ► Turbulent passive scalar transport in an MHD flow in a channel is studied using DNS. ► Magnetic fields of wall-normal, spanwise, and streamwise orientations are considered. ► Magnetic fields suppress turbulent transport and modifies scalar distribution. ► The effect is particularly strong at wall-normal and spanwise magnetic fields. ► Decrease of Nusselt number is approximated by a linear function of magnetic interaction parameter. - Abstract: DNS of turbulent flow and passive scalar transport in a channel are conducted for the situation when the fluid is electrically conducting (for example, a liquid metal) and the flow is affected by an imposed magnetic field. The cases of wall-normal, spanwise, and streamwise orientation of the magnetic field are considered. As main results, we find that the magnetic fields, especially those in the wall-normal and spanwise directions, significantly reduce the turbulent scalar transport and modify the properties of the scalar distribution.
International Nuclear Information System (INIS)
Eilek, J.A.
1989-01-01
Recent theories of magnetohydrodynamic turbulence are used to construct microphysical turbulence models, with emphasis on models of anisotropic turbulence. These models have been applied to the determination of the emergent polarization from a resolved uniform source. It is found that depolarization alone is not a unique measure of the turbulence, and that the turblence will also affect the total-intensity distributions. Fluctuations in the intensity image can thus be employed to measure turbulence strength. In the second part, it is demonstrated that a power-spectral analysis of the total and polarized intensity images can be used to obtain the power spectra of the synchrotron emission. 81 refs
Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2017-11-01
In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.
Anisotropic turbulence and zonal jets in rotating flows with a β-effect
Directory of Open Access Journals (Sweden)
B. Galperin
2006-01-01
Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the
Directory of Open Access Journals (Sweden)
M. L. Goodman
1995-08-01
Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary
Energy Technology Data Exchange (ETDEWEB)
Zhang Shijie [Tsinghua University, Beijing (China). School of Architecture; Yuan Xin; Ye Dajun [Tsinghua University, Beijing (China). Dept. of Thermal Engineering
2001-07-01
Numerical simulations of the turbulent flow fields at stall conditions are presented for the NREL (National Renewable Energy Laboratory) S809 airfoil. The flow is modelled as compressible, viscous, steady/unsteady and turbulent. Four two-equation turbulence models (isotropic {kappa}-{epsilon} and q-{omega} models, anisotropic {kappa}-{epsilon} and -{omega} models), are applied to close the Reynolds-averaged Navier-Stokes equations, respectively. The governing equations are integrated in time by a new LU-type implicit scheme. To accurately model the convection terms in the mean-flow and turbulence model equations, a modified fourth-order high resolution MUSCL TVD scheme is incorporated. The large-scale separated flow fields and their losses at the stall and post-stall conditions are analyzed for the NREL S809 airfoil at various angles of attack ({alpha}) from 0 to 70 degrees. The numerical results show excellent to fairly good agreement with the experimental data. The feasibility of the present numerical method and the influence of the four turbulence models are also investigated. (author)
Directory of Open Access Journals (Sweden)
M. L. Goodman
Full Text Available The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM anisotropic Ohm's law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R_{1} representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential ψ the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R_{1} and the inner boundary of an MHD code which is taken to be at R_{2}>R_{1}. Given the field-aligned current density on R=R_{2}, as computed by the MHD simulation, it is mapped down to R=R_{1} where it is used to compute ψ by solving the equation that is the IM Ohm's law boundary condition. Then ψ is mapped out
Magnetohydrodynamics and Plasma Cosmology
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios; Vlahos, Loukas
2007-09-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
International Nuclear Information System (INIS)
Higdon, J.C.
1986-01-01
A model of anisotropic, plasma-fluid variations was used to investigate the unknown origin of the power spectra of interstellar electron fluctuations inferred by Armstrong, Cordes, and Rickett (1981). The modeled electron variations are interpreted as density components of an anisotropic stationary mode of nonlinear magnetogasdynamics-tangential pressure balances. It is suggested that the wavenumber spectra of electron variations are identical to the spectra of the convecting velocity fields over a wide range of wavenumbers. 55 references
On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks
DEFF Research Database (Denmark)
Murphy, Gareth; Pessah, Martin E.
2015-01-01
-periodic way on timescales comparable to ∼10 inverse angular frequencies, motivating the temporal analysis of its anisotropy. We introduce a 3D tensor invariant analysis to quantify and classify the evolution of the anisotropy of the turbulent flow. This analysis shows a continuous high level of anisotropy......, with brief sporadic transitions toward two- and three-component isotropic turbulent flow. This temporal-dependent anisotropy renders standard shell averaging especially when used simultaneously with long temporal averages, inadequate for characterizing MRI-driven turbulence. We propose an alternative way...
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Energy Technology Data Exchange (ETDEWEB)
Ravelet, F
2005-09-15
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence
Energy Technology Data Exchange (ETDEWEB)
Gerick, F.; Saur, J.; Papen, M. von, E-mail: felix.gerick@uni-koeln.de [Institute of Geophysics and Meteorology, University of Cologne, Cologne (Germany)
2017-07-01
In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.
The Uncertainty of Local Background Magnetic Field Orientation in Anisotropic Plasma Turbulence
International Nuclear Information System (INIS)
Gerick, F.; Saur, J.; Papen, M. von
2017-01-01
In order to resolve and characterize anisotropy in turbulent plasma flows, a proper estimation of the background magnetic field is crucially important. Various approaches to calculating the background magnetic field, ranging from local to globally averaged fields, are commonly used in the analysis of turbulent data. We investigate how the uncertainty in the orientation of a scale-dependent background magnetic field influences the ability to resolve anisotropy. Therefore, we introduce a quantitative measure, the angle uncertainty, that characterizes the uncertainty of the orientation of the background magnetic field that turbulent structures are exposed to. The angle uncertainty can be used as a condition to estimate the ability to resolve anisotropy with certain accuracy. We apply our description to resolve the spectral anisotropy in fast solar wind data. We show that, if the angle uncertainty grows too large, the power of the turbulent fluctuations is attributed to false local magnetic field angles, which may lead to an incorrect estimation of the spectral indices. In our results, an apparent robustness of the spectral anisotropy to false local magnetic field angles is observed, which can be explained by a stronger increase of power for lower frequencies when the scale of the local magnetic field is increased. The frequency-dependent angle uncertainty is a measure that can be applied to any turbulent system.
Hydrodynamical model of anisotropic, polarized turbulent superfluids. I: constraints for the fluxes
Mongiovì, Maria Stella; Restuccia, Liliana
2018-02-01
This work is the first of a series of papers devoted to the study of the influence of the anisotropy and polarization of the tangle of quantized vortex lines in superfluid turbulence. A thermodynamical model of inhomogeneous superfluid turbulence previously formulated is here extended, to take into consideration also these effects. The model chooses as thermodynamic state vector the density, the velocity, the energy density, the heat flux, and a complete vorticity tensor field, including its symmetric traceless part and its antisymmetric part. The relations which constrain the constitutive quantities are deduced from the second principle of thermodynamics using the Liu procedure. The results show that the presence of anisotropy and polarization in the vortex tangle affects in a substantial way the dynamics of the heat flux, and allow us to give a physical interpretation of the vorticity tensor here introduced, and to better describe the internal structure of a turbulent superfluid.
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
International Nuclear Information System (INIS)
Priest, E.R.
1982-01-01
The book serves several purposes. First set of chapters gives a concise general introduction to solar physics. In a second set the basic methods of magnetohydrodynamics are developed. A third set of chapters is an account of current theories for observed phenomena. The book is suitable for a course in solar physics and it also provides a comprehensive review of present magnetohydrodynamical models in solar physics. (SC)
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, Canberra, Australian Capital Territory 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-07-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1991-01-01
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
International Nuclear Information System (INIS)
1980-01-01
The object of the invention is the provision of a material capable of withstanding a high-temperature, corrosive and erosive environment for use as a ceramic-metal composite electrode current collector in the channel of a magnetohydrodynamic generator. (U.K.)
Solitary magnetohydrodynamic vortices
International Nuclear Information System (INIS)
Silaev, I.I.; Skvortsov, A.T.
1990-01-01
This paper reports on the analytical description of fluid flow by means of localized vortices which is traditional for hydrodynamics, oceanology, plasma physics. Recently it has been widely applied to different structure turbulence models. Considerable results involved have been presented where it was shown that in magnetohydrodynamics alongside with the well-known kinds of localized vortices (e.g. Hill's vortex), which are characterized by quite a weak decrease of disturbed velocity or magnetic field (as a power of the inverse distance from vortex center), the vortices with screening (or solitary vortices) may exist. All disturbed parameters either exponentially vanish or become identically zero in outer region in the latter case. (In a number of papers numerical simulations of such the vortices are presented). Solutions in a form of solitary vortices are of particular interest due to their uniformity and solitonlike behavior. On the basis of these properties one can believe for such structures to occur in real turbulent flows
International Nuclear Information System (INIS)
Vlahostergios, Z.; Sideridis, A.; Yakinthos, K.; Goulas, A.
2012-01-01
Highlights: ► We model the wake flow produced by a LPT blade using a non-linear turbulence model. ► We use two interpolation schemes for the convection terms with different accuracy. ► We investigate the effect of each term of the non-linear constitutive expression. ► The results are compared with available experimental measurements. ► The model predicts with a good accuracy the velocity and stress distributions. - Abstract: The wake flow produced by a low-pressure turbine blade is modeled using a non-linear eddy-viscosity turbulence model. The theoretical benefit of using a non-linear eddy-viscosity model is strongly related to the capability of resolving highly anisotropic flows in contrast to the linear turbulence models, which are unable to correctly predict anisotropy. The main aim of the present work is to practically assess the performance of the model, by examining its ability to capture the anisotropic behavior of the wake-flow, mainly focusing on the measured velocity and Reynolds-stress distributions and to provide accurate results for the turbulent kinetic energy balance terms. Additionally, the contribution of each term of its non-linear constitutive expression for the Reynolds stresses is also investigated, in order to examine their direct effect on the modeling of the wake flow. The assessment is based on the experimental measurements that have been carried-out by the same group in Thessaloniki, Sideridis et al. (2011). The computational results show that the non-linear eddy viscosity model is capable to predict, with a good accuracy, all the flow and turbulence parameters while it is easy to program it in a computer code thus meeting the expectations of its originators.
Relativistic magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Hernandez, Juan; Kovtun, Pavel [Department of Physics and Astronomy, University of Victoria,Victoria, BC, V8P 5C2 (Canada)
2017-05-02
We present the equations of relativistic hydrodynamics coupled to dynamical electromagnetic fields, including the effects of polarization, electric fields, and the derivative expansion. We enumerate the transport coefficients at leading order in derivatives, including electrical conductivities, viscosities, and thermodynamic coefficients. We find the constraints on transport coefficients due to the positivity of entropy production, and derive the corresponding Kubo formulas. For the neutral state in a magnetic field, small fluctuations include Alfvén waves, magnetosonic waves, and the dissipative modes. For the state with a non-zero dynamical charge density in a magnetic field, plasma oscillations gap out all propagating modes, except for Alfvén-like waves with a quadratic dispersion relation. We relate the transport coefficients in the “conventional” magnetohydrodynamics (formulated using Maxwell’s equations in matter) to those in the “dual” version of magnetohydrodynamics (formulated using the conserved magnetic flux).
Development and anisotropy of three-dimensional turbulence in a current sheet
International Nuclear Information System (INIS)
Onofri, M.; Veltri, P.; Malara, F.
2007-01-01
The nonlinear evolution of three-dimensional reconnection instabilities are studied in a current sheet where many resonant surfaces are simultaneously present at different locations of the simulation domain. The nonlinear evolution produces the development of anisotropic magnetohydrodynamic turbulence. The development of the energy spectrum is followed until the energy is transported to the dissipative length scale and the anisotropy of the spectrum is analyzed. The energy cascade is affected by the Alfven effect and it takes place mainly in the direction perpendicular to the local average magnetic field. Anisotropy is also affected by propagation of perturbations across the main magnetic field, due to the growth of a transverse component related to reconnection. The direction of anisotropy varies with the position in space. The spectral index is different both from what is found in homogeneous isotropic turbulence and from the values predicted for magnetohydrodynamic turbulence with a uniform large-scale magnetic field
''Reduced'' magnetohydrodynamics and minimum dissipation rates
International Nuclear Information System (INIS)
Montgomery, D.
1992-01-01
It is demonstrated that all solutions of the equations of ''reduced'' magnetohydrodynamics approach a uniform-current, zero-flow state for long times, given a constant wall electric field, uniform scalar viscosity and resistivity, and uniform mass density. This state is the state of minimum energy dissipation rate for these boundary conditions. No steady-state turbulence is possible. The result contrasts sharply with results for full three-dimensional magnetohydrodynamics before the reduction occurs
Magnetohydrodynamics of accretion disks
International Nuclear Information System (INIS)
Torkelsson, U.
1994-04-01
The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Anisotropic diffusion in a toroidal geometry
International Nuclear Information System (INIS)
Fischer, Paul F
2005-01-01
As part of the Department of Energy's applications oriented SciDAC project, three model problems have been proposed by the Center for Extended Magnetohydrodynamics Modeling to test the potential of numerical algorithms for challenging magnetohydrodynamics (MHD) problems that are required for future fusion development. The first of these, anisotropic diffusion in a toroidal geometry, is considered in this note
Magnetic reconnection under anisotropic magnetohydrodynamic approximation
International Nuclear Information System (INIS)
Hirabayashi, K.; Hoshino, M.
2013-01-01
We study the formation of slow-mode shocks in collisionless magnetic reconnection by using one- and two-dimensional collisionless MHD codes based on the double adiabatic approximation and the Landau closure model. We bridge the gap between the Petschek-type MHD reconnection model accompanied by a pair of slow shocks and the observational evidence of the rare occasion of in-situ slow shock observations. Our results showed that once magnetic reconnection takes place, a firehose-sense (p ∥ >p ⊥ ) pressure anisotropy arises in the downstream region, and the generated slow shocks are quite weak comparing with those in an isotropic MHD. In spite of the weakness of the shocks, however, the resultant reconnection rate is 10%–30% higher than that in an isotropic case. This result implies that the slow shock does not necessarily play an important role in the energy conversion in the reconnection system and is consistent with the satellite observation in the Earth's magnetosphere
DEFF Research Database (Denmark)
Cardoso, J. F.; Delabrouille, J.; Ganga, K.
2015-01-01
with the local spatial coherence of the polarization angle. These observations are compared to polarized emission maps computed in simulations of anisotropic magnetohydrodynamical turbulence in which we assume a uniform intrinsic polarization fraction of the dust grains. We find that an estimate...... of these numerical models. In summary, we find that the turbulent structure of the magnetic field is able to reproduce the main statistical properties of the dust polarization as observed in a variety of nearby clouds, dense cores excluded, and that the large-scale field orientation with respect to the line of sight...
Filamentary magnetohydrodynamic plasmas
International Nuclear Information System (INIS)
Kinney, R.; Tajima, T.; McWilliams, J.C.; Petviashvili, N.
1994-01-01
A filamentary construct of magnetohydrodynamical plasma dynamics based on the Elsaesser variables is developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to those based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected, the plasma vortex system is described by a Hamiltonian. A statistical treatment of a collection of discrete current-vorticity concentrations is given. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories, but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is presented as well, which is also Hamiltonian when the inductive force is neglected. A statistical calculation in the canonical ensemble and numerical simulations show that a nonzero large-scale magnetic field is statistically favored, and that the preferred shape of this field is a long, thin tube of flux. Possible applications to a variety of physical phenomena are suggested
Brugger, Peter; Katul, Gabriel G.; De Roo, Frederik; Kröniger, Konstantin; Rotenberg, Eyal; Rohatyn, Shani; Mauder, Matthias
2018-05-01
Anisotropy in the turbulent stress tensor, which forms the basis of invariant analysis, is conducted using velocity time series measurements collected in the canopy sublayer (CSL) and the atmospheric surface layer (ASL). The goal is to assess how thermal stratification and surface roughness conditions simultaneously distort the scalewise relaxation towards isotropic state from large to small scales when referenced to homogeneous turbulence. To achieve this goal, conventional invariant analysis is extended to allow scalewise information about relaxation to isotropy in physical (instead of Fourier) space to be incorporated. The proposed analysis shows that the CSL is more isotropic than its ASL counterpart at large, intermediate, and small (or inertial) scales irrespective of the thermal stratification. Moreover, the small (or inertial) scale anisotropy is more prevalent in the ASL when compared to the CSL, a finding that cannot be fully explained by the intensity of the mean velocity gradient acting on all scales. Implications to the validity of scalewise Rotta and Lumley models for return to isotropy as well as advantages to using barycentric instead of anisotropy invariant maps for such scalewise analysis are discussed.
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
International Nuclear Information System (INIS)
Yoshimura, H.; Wang, Z.; Wu, F.
1984-01-01
Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles inn the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, an even parity is selected. Thus the equatorial migration of wings of the butterfly iagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudibnal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhancess the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields iss larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected
Limits on the ions temperature anisotropy in turbulent intracluster medium
Energy Technology Data Exchange (ETDEWEB)
Santos-Lima, R. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Yan, H. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Potsdam Univ. (Germany). Inst. fuer Physik und Astronomie; Gouveia Dal Pino, E.M. de [Univ. de Sao Paulo (Brazil). Inst. de Astronomia, Geofisica e Ciencias Atmosfericas; Lazarian, A. [Wisconsin Univ., Madison, WI (United States). Dept. of Astronomy
2016-05-15
Turbulence in the weakly collisional intracluster medium of galaxies (ICM) is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields, in disagreement with previous cosmological MHD simulations which are successful to explain the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities which can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasilinear theory to estimate the ions scattering rate due to the parallel firehose, mirror, and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instabilities thresholds. We argue that the AMHD model which bounds the anisotropies at the marginal stability levels can describe the Alfvenic turbulence cascade in the ICM.
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Magnetohydrodynamic cellular automata
Montgomery, David; Doolen, Gary D.
1987-01-01
A generalization of the hexagonal lattice gas model of Frisch, Hasslacher and Pomeau is shown to lead to two-dimensional magnetohydrodynamics. The method relies on the ideal point-wise conservation law for vector potential.
RADIO POLARIMETRY SIGNATURES OF STRONG MAGNETIC TURBULENCE IN SUPERNOVA REMNANTS
International Nuclear Information System (INIS)
Stroman, Wendy; Pohl, Martin
2009-01-01
We discuss the emission and transport of polarized radio-band synchrotron radiation near the forward shocks of young shell-type supernova remnants, for which X-ray data indicate a strong amplification of turbulent magnetic field. Modeling the magnetic turbulence through the superposition of waves, we calculate the degree of polarization and the magnetic polarization direction which is at 90 deg. to the conventional electric polarization direction. We find that isotropic strong turbulence will produce weakly polarized radio emission even in the absence of internal Faraday rotation. If anisotropy is imposed on the magnetic-field structure, the degree of polarization can be significantly increased, provided internal Faraday rotation is inefficient. Both for shock compression and a mixture with a homogeneous field, the increase in polarization degree goes along with a fairly precise alignment of the magnetic-polarization angle with the direction of the dominant magnetic-field component, implying tangential magnetic polarization at the rims in the case of shock compression. We compare our model with high-resolution radio polarimetry data of Tycho's remnant. Using the absence of internal Faraday rotation we find a soft limit for the amplitude of magnetic turbulence, δB ∼ 0 . An alternative viable scenario involves anisotropic turbulence with stronger amplitudes in the radial direction, as was observed in recent Magnetohydrodynamics simulations of shocks propagating through a medium with significant density fluctuations.
Hamiltonian formulation of reduced magnetohydrodynamics
International Nuclear Information System (INIS)
Morrison, P.J.; Hazeltine, R.D.
1983-07-01
Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Magnetohydrodynamics in rectangular ducts
International Nuclear Information System (INIS)
Lenhart, L.
1994-04-01
Magnetohydrodynamic flow in straight ducts or bends is a key issue, which has to be investigated for developing self-cooled liquid metal blankets of fusion reactors. The code presented solves the full set of governing equations and simulates all phenomena of such flows, including inertial effects. The range of application is limited by computer storage only. (orig./WL)
Liquid metal magnetohydrodynamic convertor
International Nuclear Information System (INIS)
Aladiev, I.T.; Dzhamardzhashvili, V.A.
1981-01-01
This invention relates to the generation of electrical energy by direct conversion from thermal or electrical energy and notably to liquid metal magnetohydrodynamic convertors. The convertor described in this invention can be successfully used as a source of electrical energy for space vessels, for underwater vessels, for aeronautics and for the generation of electrical energy in thermal or atomic power plants. This liquid metal convertor consists of a heat source, a two phase nozzle, a separator, a steam diffuser and a condenser. These elements are connected together hydraulically in series. The condenser is connected hydraulically to a heat source, a liquid diffuser and a magnetohydrodynamic generator. These elements are interconnected hydraulically to the separator and heat source [fr
Magnetohydrodynamics cellular automata
International Nuclear Information System (INIS)
Hatori, Tadatsugu.
1990-02-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Magnetohydrodynamic cellular automata
Energy Technology Data Exchange (ETDEWEB)
Hatori, Tadatsugu [National Inst. for Fusion Science, Nagoya (Japan)
1990-03-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author).
Magnetohydrodynamic cellular automata
International Nuclear Information System (INIS)
Hatori, Tadatsugu
1990-01-01
There has been a renewal of interest in cellular automata, partly because they give an architecture for a special purpose computer with parallel processing optimized to solve a particular problem. The lattice gas cellular automata are briefly surveyed, which are recently developed to solve partial differential equations such as hydrodynamics or magnetohydrodynamics. A new model is given in the present paper to implement the magnetic Lorentz force in a more deterministic and local procedure than the previous one. (author)
Magnetohydrodynamical processes near compact objects
International Nuclear Information System (INIS)
Bisnovatyi Kogan, G.S.
1979-01-01
Magnetohydrodynamical processes near compact objects are reviewed in this paper. First the accretion of the magnetized matter into a single black hole and spectra of radiation are considered. Then the magnetic-field phenomena in the disk accretion, when the black hole is in a pair are discussed. Furthermore, the magnetohydrodynamics phenomena during supernova explosion are considered. Finally the magnetohydrodynamics in the accretion of a neutron star is considered in connection With x-ray sources
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Reduced magnetohydrodynamics and the Hasegawa-Mima equation
International Nuclear Information System (INIS)
Hazeltine, R.D.
1983-04-01
Reduced magnetohydrodynamics consists of a set of simplified fluid equations which has become a principal tool in the interpretation of plasma fluid motions in tokamak experiments. The Hasegawa-Mima equation is applied to the study of electrostatic fluctuations in turbulent plasmas. The relation between thee two nonlinear models is elucidated. It is shown tht both models can be obtained from appropriate limits of a third, inclusive, nonlinear system. The inclusive system is remarkably simple
Intermittency in Hall-magnetohydrodynamics with a strong guide field
Imazio, P. Rodriguez; Martin, L. N.; Dmitruk, P.; Mininni, P. D.
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure funct...
Magnetohydrodynamic flow phenomena
International Nuclear Information System (INIS)
Gerbeth, G.; Mutschke, G.; Eckert, S.
1995-01-01
The MHD group of the Institute of Safety Research performs basic studies on fluid dynamics and heat/mass transfer in fluids, particularly for electrically conducting fluids (liquid metals) exposed to external magnetic fields (Magnetohydrodynamics - MHD). Such a contactless influence on transport phenomena is of principal importance for a variety of applied problems including safety and design aspects in liquid metal cooled fusion reactors, fast reactors, and chemical systems. Any electrically conducting flow can be influenced without any contact by means of an external electromagnetic field. This, of course, can change the known hydromechanically flow patterns considerably. In the following two examples of such magnetic field influence are presented. (orig.)
Magnetohydrodynamic energy conversion
International Nuclear Information System (INIS)
Rosa, R.J.
1987-01-01
The object of this book is to present a review of the basic principles and practical aspects of magnetohydrodynamic (MHD) energy conversion. The author has tried to give qualitative semiphysical arguments where possible for the benefit of the reader who is unfamiliar with plasma physics. The aim of MHD energy conversion is to apply to a specific practical goal a part of what has become a vast area of science called plasma physics. The author has attempted to note in the text where a broader view might be fruitful and to give appropriate references
Elements of magnetohydrodynamic stability theory
International Nuclear Information System (INIS)
Spies, G.O.
1976-11-01
The nonlinear equations of ideal magnetohydrodynamics are discussed along with the following topics: (1) static equilibrium, (2) strict linear theory, (3) stability of a system with one degree of freedom, (4) spectrum and variational principles in magnetohydrodynamics, (5) elementary proof of the modified energy principle, (6) sufficient stability criteria, (7) local stability, and (8) normal modes
Magnetohydrodynamic process in solar activity
Directory of Open Access Journals (Sweden)
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Magnetohydrodynamic generation method
International Nuclear Information System (INIS)
Masai, Tadahisa; Ishibashi, Eiichi; Kojima, Akihiro.
1967-01-01
The present invention relates to a magneto-hydrodynamic generation method which increases the conductivity of active gas and the generated energy. In the conventional method of open-cycle magnetohydrodynamic generation, the working fluid does not possess a favorable electric conductivity since the collision cross section is large when the combustion is carried out in a condition of excess oxygen. Furthermore, combustion under a condition of oxygen shortage is uncapable of completely converting the generated energy. The air preheater or boiler is not sufficient to collect the waste gas resulting in damage and other economic disadvantages. In the present invention, the combustion gas caused by excess fuel in the combuster is supplied to the generator as the working gas, to which air or fully oxidized air is added to be reheated. While incomplete gas used for heat collection is not adequate, the unburned damage may be eliminated by combusting again and increasing the gas temperature and heat collection rate. Furthermore, a diffuser is mounted at the rear side of the generator to decrease the gas combustion rate. Thus, even when directly absorbing the preheated fully oxidized air or the ordinary air, the boiler is free from damage caused by combustion delay or impulsive force. (M. Ishida)
Introduction to modern magnetohydrodynamics
Galtier, Sébastien
2016-01-01
Ninety-nine percent of ordinary matter in the Universe is in the form of ionized fluids, or plasmas. The study of the magnetic properties of such electrically conducting fluids, magnetohydrodynamics (MHD), has become a central theory in astrophysics, as well as in areas such as engineering and geophysics. This textbook offers a comprehensive introduction to MHD and its recent applications, in nature and in laboratory plasmas; from the machinery of the Sun and galaxies, to the cooling of nuclear reactors and the geodynamo. It exposes advanced undergraduate and graduate students to both classical and modern concepts, making them aware of current research and the ever-widening scope of MHD. Rigorous derivations within the text, supplemented by over 100 illustrations and followed by exercises and worked solutions at the end of each chapter, provide an engaging and practical introduction to the subject and an accessible route into this wide-ranging field.
Introduction to magnetohydrodynamics
Thompson, Ian
2016-01-01
Magnetohydrodynamics (MHD) plays a crucial role in astrophysics, planetary magnetism, engineering and controlled nuclear fusion. This comprehensive textbook emphasizes physical ideas, rather than mathematical detail, making it accessible to a broad audience. Starting from elementary chapters on fluid mechanics and electromagnetism, it takes the reader all the way through to the latest ideas in more advanced topics, including planetary dynamos, stellar magnetism, fusion plasmas and engineering applications. With the new edition, readers will benefit from additional material on MHD instabilities, planetary dynamos and applications in astrophysics, as well as a whole new chapter on fusion plasma MHD. The development of the material from first principles and its pedagogical style makes this an ideal companion for both undergraduate students and postgraduate students in physics, applied mathematics and engineering. Elementary knowledge of vector calculus is the only prerequisite.
Thermoacoustic magnetohydrodynamic electrical generator
International Nuclear Information System (INIS)
Wheatley, J.C.; Swift, G.W.; Migliori, A.
1986-01-01
A thermoacoustic magnetohydrodynamic electrical generator is described comprising a magnet having a magnetic field, an elongate hollow housing containing an electrically conductive liquid and a thermoacoustic structure positioned in the liquid, heat exchange means thermally connected to the thermoacoustic structure for inducing the liquid to oscillate at an acoustic resonant frequency within the housing. The housing is positioned in the magnetic field and oriented such that the direction of the magnetic field and the direction of oscillatory motion of the liquid are substantially orthogonal to one another, first and second electrical conductor means connected to the liquid on opposite sides of the housing along an axis which is substantially orthogonal to both the direction of the magnetic field and the direction of oscillatory motion of the liquid, an alternating current output signal is generated in the conductor means at a frequency corresponding to the frequency of the oscillatory motion of the liquid
Magnetohydrodynamic calculations on pulsar magnetospheres
International Nuclear Information System (INIS)
Brinkmann, W.
1976-01-01
In this paper, the relativistic magnetohydrodynamic is presented in covariant form and applied to some problems in the field of pulsar magnetospheres. In addition, numerical methods to solve the resulting equations of motion are investigated. The theory of relativistic magnetohydrodynamic presented here is valid in the framework of the theory of general relativity, describing the interaction of electromagnetic fields with an ideal fluid. In the two-dimensional case, a Lax-Wendroff method is studied which should be optimally stable with the operator splitting of Strang. In the framework of relativistic magnetohydrodynamic also the model of a stationary aequatorial stellar pulsar wind as well as the parallel rotator is investigated. (orig.) [de
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Generalized reduced magnetohydrodynamic equations
International Nuclear Information System (INIS)
Kruger, S.E.
1999-01-01
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics
Magnetohydrodynamic power generation
International Nuclear Information System (INIS)
Sheindlin, A.E.; Jackson, W.D.; Brzozowski, W.S.; Rietjens, L.H.Th.
1979-01-01
The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m 3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)
Adventures in magnetohydrodynamics
International Nuclear Information System (INIS)
Johnson, J.L.
1988-03-01
This material was presented in a set of three lectures on October 29 and 30, 1987 at Nagoya University. It was attempted to give an elementary survey of magnetohydrodynamic theory as it applies to toroidal confinement, emphasizing the concept and avoiding the detailed derivation, in hopes that the ideas will be useful for students and researchers just entering the field. In some places, the actual development should be described, so it was decided that it would be worthwhile to give some exact results. Thus the notes are uneven. The author hopes that everyone who looks at this will find something of interest. By a proper breakdown, this lecture consists of four sections: the section on the derivation and justification of the MHD equations, that on the equilibrium problem, that on linearized stability and some comments on nonlinear evolution, magnetic islands and transport. There is still the work to be done with these simple models. The move into some branch of plasma simulation or drift orbit formulation may be done, but this area is worth to spend a professional life, as the tasks are challenging, and the results are satisfying. (Kako, I.) 61 refs
Intermittency in Hall-magnetohydrodynamics with a strong guide field
International Nuclear Information System (INIS)
Rodriguez Imazio, P.; Martin, L. N.; Dmitruk, P.; Mininni, P. D.
2013-01-01
We present a detailed study of intermittency in the velocity and magnetic field fluctuations of compressible Hall-magnetohydrodynamic turbulence with an external guide field. To solve the equations numerically, a reduced model valid when a strong guide field is present is used. Different values for the ion skin depth are considered in the simulations. The resulting data are analyzed computing field increments in several directions perpendicular to the guide field, and building structure functions and probability density functions. In the magnetohydrodynamic limit, we recover the usual results with the magnetic field being more intermittent than the velocity field. In the presence of the Hall effect, field fluctuations at scales smaller than the ion skin depth show a substantial decrease in the level of intermittency, with close to monofractal scaling
Solar Flares: Magnetohydrodynamic Processes
Directory of Open Access Journals (Sweden)
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
MAGNETOHYDRODYNAMIC EQUATIONS (MHD GENERATION CODE
Directory of Open Access Journals (Sweden)
Francisco Frutos Alfaro
2017-04-01
Full Text Available A program to generate codes in Fortran and C of the full magnetohydrodynamic equations is shown. The program uses the free computer algebra system software REDUCE. This software has a package called EXCALC, which is an exterior calculus program. The advantage of this program is that it can be modified to include another complex metric or spacetime. The output of this program is modified by means of a LINUX script which creates a new REDUCE program to manipulate the magnetohydrodynamic equations to obtain a code that can be used as a seed for a magnetohydrodynamic code for numerical applications. As an example, we present part of the output of our programs for Cartesian coordinates and how to do the discretization.
Kinetic effects on magnetohydrodynamic phenomena
International Nuclear Information System (INIS)
Naito, Hiroshi; Matsumoto, Taro
2001-01-01
Resistive and ideal magnetohydrodynamic (MHD) theories are insufficient to adequately explain MHD phenomena in the high-temperature plasma. Recent progress in numerical simulations concerning kinetic effects on magnetohydrodynamic phenomena is summarized. The following three topics are studied using various models treating extended-MHD phenomena. (1) Kinetic modifications of internal kink modes in tokamaks with normal and reversed magnetic shear configurations. (2) Temporal evolution of the toroidal Alfven eigenmode and fishbone mode in tokamaks with energetic ions. (3) Kinetic stabilization of a title mode in field-reversed configurations by means of anchoring ions and beam ions. (author)
Magnetohydrodynamics of neutron star interiors
International Nuclear Information System (INIS)
Easson, I.; Pethick, C.J.
1979-01-01
Magnetohydrodynamic equations for the charged particles in the fluid interior of a neutron star are derived from the Landau-Boltzmann kinetic equations. It is assumed that the protons are normal and the neutrons are superfluid. The dissipative processes associated with the weak interactions are shown to be negligible except in very hot neutron stars; we neglect them here. Among the topics discussed are: the influence of the neutron-proton nuclear force (Fermi liquid corrections) on the magnetohydrodynamics; the effects of the magnetic field on the pressure, viscosity, and heat conductivity tensors; the plasma equation of state; and the form of the generalized Ohm's law
Final report. [Nonlinear magnetohydrodynamics
International Nuclear Information System (INIS)
Montgomery, D.C.
1998-01-01
This is a final report on the research activities carried out under the above grant at Dartmouth. During the period considered, the grant was identified as being for nonlinear magnetohydrodynamics, considered as the most tractable theoretical framework in which the plasma problems associated with magnetic confinement of fusion plasmas could be studied. During the first part of the grant's lifetime, the author was associated with Los Alamos National Laboratory as a consultant and the work was motivated by the reversed-field pinch. Later, when that program was killed at Los Alamos, the problems became ones that could be motivated by their relation to tokamaks. Throughout the work, the interest was always on questions that were as fundamental as possible, compatible with those motivations. The intent was always to contribute to plasma physics as a science, as well as to the understanding of mission-oriented confined fusion plasmas. Twelve Ph.D. theses were supervised during this period and a comparable number of postdoctoral research associates were temporarily supported. Many of these have gone on to distinguished careers, though few have done so in the context of the controlled fusion program. Their work was a combination of theory and numerical computation, in gradually less and less idealized settings, moving from rectangular periodic boundary conditions in two dimensions, through periodic straight cylinders and eventually, before the grant was withdrawn, to toroids, with a gradually more prominent role for electrical and mechanical boundary conditions. The author never had access to a situation where he could initiate experiments and relate directly to the laboratory data he wanted. Computers were the laboratory. Most of the work was reported in referred publications in the open literature, copies of which were transmitted one by one to DOE at the time they appeared. The Appendix to this report is a bibliography of published work which was carried out under the
Pulsar Magnetohydrodynamic Winds
Okamoto, Isao; Sigalo, Friday B.
2006-12-01
The acceleration and collimation/decollimation of relativistic magnetocentrifugal winds are discussed concerning a cold plasma from a strongly magnetized, rapidly rotating neutron star in a steady axisymmetric state based on ideal magnetohydrodynamics. There exist unipolar inductors associated with the field line angular frequency, α, at the magnetospheric base surface, SB, with a huge potential difference between the poles and the equator, which drive electric current through the pulsar magnetosphere. Any ``current line'' must emanate from one terminal of the unipolar inductor and return to the other, converting the Poynting flux to the kinetic flux of the wind at finite distances. In a plausible field structure satisfying the transfield force-balance equation, the fast surface, SF, must exist somewhere between the subasymptotic and asymptotic domains, i.e., at the innermost point along each field line of the asymptotic domain of \\varpaA2/\\varpi2 ≪ 1, where \\varpiA is the Alfvénic axial distance. The criticality condition at SF yields the Lorentz factor, γF = μ\\varepsilon1/3, and the angular momentum flux, β, as the eigenvalues in terms of the field line angular velocity, α, the mass flux per unit flux tube, η, and one of the Bernoulli integrals, μδ, which are assumed to be specifiable as the boundary conditions at SB. The other Bernoulli integral, μɛ, is related to μδ as μɛ = μδ[1-(α2\\varpiA2/c2)]-1, and both μɛ and \\varpiA2 are eigenvalues to be determined by the criticality condition at SF. Ongoing MHD acceleration is possible in the superfast domain. This fact may be helpful in resolving a discrepancy between the wind theory and the Crab-nebula model. It is argued that the ``anti-collimation theorem'' holds for relativistic winds, based on the curvature of field streamlines determined by the transfield force balance. The ``theorem'' combines with the ``current-closure condition'' as a global condition in the wind zone to produce a
International Nuclear Information System (INIS)
Martin, L. N.; Dmitruk, P.; Gomez, D. O.
2010-01-01
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
Nearly incompressible MHD turbulence in the solar wind
International Nuclear Information System (INIS)
Matthaeus, W.H.; Zhou, Y.
1989-01-01
Observational studies indicate that solar wind plasma and magnetic field fluctuations may be meaningfully viewed as an example of magnetohydrodynamic turbulence. This paper presents a brief summary of some relevant results of turbulence theory and reviews a turbulence style description of 'typical' solar wind conditions. Recent results, particularly those regarding the radial evolution of inertial range cross helicity, support the viewpoint that interplanetary turbulence is active and evolving with heliocentric distance. A number of observed properties can be understood by appeal to incompressible turbulence mechanisms. This connection may be understood by appeal to incompressible turbulence mechanisms. This connection may be understood in terms of theories of pseudosound density fluctuations and nearly incompressible magnetohydrodynamics, which are also reviewed here. Finally, we summarize a recent two-scale dynamical theory of the radial and temporal evolution of the turbulence, which may provide an additional framework for understanding the observations. (author). 49 refs
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
Ilgisonis, V.I.
1996-01-01
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
Inertial range spectrum of field-aligned whistler turbulence
DEFF Research Database (Denmark)
Dwivedi, Navin Kumar; Singh, Shobhana
2017-01-01
the background magnetic field is exploited to derive the inertial range scaling laws corresponding to the electric field and magnetic field fluctuations. The model is based on the concept of Iroshnikov-Kraichnan inertial range magnetohydrodynamic turbulence. The present phenomenological turbulence scaling model...
Energy spectrum, dissipation, and spatial structures in reduced Hall magnetohydrodynamic
Energy Technology Data Exchange (ETDEWEB)
Martin, L. N.; Dmitruk, P. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Gomez, D. O. [Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and IFIBA, CONICET, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Instituto de Astronomia y Fisica del Espacio, CONICET, Buenos Aires (Argentina)
2012-05-15
We analyze the effect of the Hall term in the magnetohydrodynamic turbulence under a strong externally supported magnetic field, seeing how this changes the energy cascade, the characteristic scales of the flow, and the dynamics of global magnitudes, with particular interest in the dissipation. Numerical simulations of freely evolving three-dimensional reduced magnetohydrodynamics are performed, for different values of the Hall parameter (the ratio of the ion skin depth to the macroscopic scale of the turbulence) controlling the impact of the Hall term. The Hall effect modifies the transfer of energy across scales, slowing down the transfer of energy from the large scales up to the Hall scale (ion skin depth) and carrying faster the energy from the Hall scale to smaller scales. The final outcome is an effective shift of the dissipation scale to larger scales but also a development of smaller scales. Current sheets (fundamental structures for energy dissipation) are affected in two ways by increasing the Hall effect, with a widening but at the same time generating an internal structure within them. In the case where the Hall term is sufficiently intense, the current sheet is fully delocalized. The effect appears to reduce impulsive effects in the flow, making it less intermittent.
Magnetohydrodynamics and the thermonuclear problem
Energy Technology Data Exchange (ETDEWEB)
Alfven, H [Department of Electronics, Royal Institute of Technology, Stockholm (Sweden)
1958-07-01
The importance of magnetohydrodynamics and plasma physics for the solution of thermonuclear problem is presented in the paper. Methods for capture of a plasma by a magnetic field are discussed. From the study it is concluded that in principle it is possible to shoot heated plasma into a magnetic field and capture it there. A possible method of capturing plasma which is shot into a magnetic field is illustrated. Magnetohydrodynamic research performed during the last decade in Stockholm is presented. Following a long series of investigations of relatively cool plasmas, it has been started a series of experimental investigations on hot plasmas, concentrating on the fundamental properties of the plasma. New ways of the approach to the thermonuclear problem are analysed. Experiments have been with discharges of a few hundred kiloamps to produce fast-moving magnetized plasmas, in order to investigate whether they could be captured by magnetic fields in the discussed way.
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
presentations were published in the Book of Abstracts, International Conference `Turbulent Mixing and Beyond', August 18-26, 2007, Copyright 2007 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, ISBN 92-95003-36-5. This Topical Issue consists of nearly 60 articles accepted for publication in the Conference Proceedings and reflects a substantial part of the Conference contributions. The articles cover a broad variety of TMB-2007 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical Turbulence and Turbulent Mixing (invariant, scaling, spectral properties, scalar transports) Wall-bounded Flows (structure and fundamentals, unsteady boundary layers, super-sonic flows, shock - boundary layer interaction) Interfacial Dynamics (Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities) Unsteady Turbulent Processes (turbulence and turbulent mixing in unsteady, multiphase and anisotropic flows) High Energy Density Physics (laser-material interaction, Z-pinches, laser-driven, heavy-ion and magnetic fusion) Astrophysics (supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic micro-wave background) Magneto-hydrodynamics (magneto-convection, magneto-rotational instability, accretion disks, dynamo) Plasmas in Ionosphere (coupled plasmas, anomalous resistance, ionosphere) Physics of Atmosphere (environmental fluid dynamics, forecasting, data analysis, error estimate) Geophysics (turbulent convection in stratified, rotating and active flows) Combustion (dynamics of flames, fires, blast waves and explosions) Mathematical Aspects of Multi-Scale Dynamics (vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness) Statistical Approaches, Stochastic Processes and Probabilistic Description (uncertainty quantification, anomalous diffusion, long-tail distributions, wavelets) Advanced Numerical Simulations
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Energy Technology Data Exchange (ETDEWEB)
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
International Nuclear Information System (INIS)
Jardin, S.C.
2010-01-01
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
International Nuclear Information System (INIS)
Schekochihin, A.A.; Cowley, S.C.; Dorland, W.; Hammett, G.W.; Howes, G.G.; Quataert, E.; Tatsuno, T.
2009-01-01
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
International Nuclear Information System (INIS)
Cho, Jungyeon
2011-01-01
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
The Magnetohydrodynamic Generator A Physics Olympiad Problem
Indian Academy of Sciences (India)
The Magnetohydrodynamic Generator A Physics Olympiad Problem (2001). Vijay A Singh ... Magnetohydrodynamics; generator; power; efficiency; Faraday's law; Physics Olympiad . Author Affiliations. Vijay A Singh1 Manish Kapoor2. Physics Department Indian Institute of Technology Kanpur 208016, India. MPE College ...
Effects of anisotropies in turbulent magnetic diffusion in mean-field solar dynamo models
Energy Technology Data Exchange (ETDEWEB)
Pipin, V. V. [Institute of Solar-Terrestrial Physics, Russian Academy of Sciences, Irkutsk 664033 (Russian Federation); Kosovichev, A. G. [Hansen Experimental Physics Laboratory, Stanford University, Stanford, CA 94305 (United States)
2014-04-10
We study how anisotropies of turbulent diffusion affect the evolution of large-scale magnetic fields and the dynamo process on the Sun. The effect of anisotropy is calculated in a mean-field magnetohydrodynamics framework assuming that triple correlations provide relaxation to the turbulent electromotive force (so-called the 'minimal τ-approximation'). We examine two types of mean-field dynamo models: the well-known benchmark flux-transport model and a distributed-dynamo model with a subsurface rotational shear layer. For both models, we investigate effects of the double- and triple-cell meridional circulation, recently suggested by helioseismology and numerical simulations. To characterize the anisotropy effects, we introduce a parameter of anisotropy as a ratio of the radial and horizontal intensities of turbulent mixing. It is found that the anisotropy affects the distribution of magnetic fields inside the convection zone. The concentration of the magnetic flux near the bottom and top boundaries of the convection zone is greater when the anisotropy is stronger. It is shown that the critical dynamo number and the dynamo period approach to constant values for large values of the anisotropy parameter. The anisotropy reduces the overlap of toroidal magnetic fields generated in subsequent dynamo cycles, in the time-latitude 'butterfly' diagram. If we assume that sunspots are formed in the vicinity of the subsurface shear layer, then the distributed dynamo model with the anisotropic diffusivity satisfies the observational constraints from helioseismology and is consistent with the value of effective turbulent diffusion estimated from the dynamics of surface magnetic fields.
Variational integrators for reduced magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Kraus, Michael, E-mail: michael.kraus@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Boltzmannstraße 2, 85748 Garching (Germany); Technische Universität München, Zentrum Mathematik, Boltzmannstraße 3, 85748 Garching (Germany); Tassi, Emanuele, E-mail: tassi@cpt.univ-mrs.fr [Aix-Marseille Université, Université de Toulon, CNRS, CPT, UMR 7332, 163 avenue de Luminy, case 907, 13288 cedex 9 Marseille (France); Grasso, Daniela, E-mail: daniela.grasso@infm.polito.it [ISC-CNR and Politecnico di Torino, Dipartimento Energia, C.so Duca degli Abruzzi 24, 10129 Torino (Italy)
2016-09-15
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws is described both at the continuous and discrete level. We verify the favourable properties of the variational integrator in particular with respect to the preservation of the invariants of the models under consideration and compare with results from the literature and those of a pseudo-spectral code.
Stirring turbulence with turbulence
Cekli, H.E.; Joosten, R.; van de Water, W.
2015-01-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the
Nonlinear magnetohydrodynamics simulation using high-order finite elements
International Nuclear Information System (INIS)
Plimpton, Steven James; Schnack, D.D.; Tarditi, A.; Chu, M.S.; Gianakon, T.A.; Kruger, S.E.; Nebel, R.A.; Barnes, D.C.; Sovinec, C.R.; Glasser, A.H.
2005-01-01
A conforming representation composed of 2D finite elements and finite Fourier series is applied to 3D nonlinear non-ideal magnetohydrodynamics using a semi-implicit time-advance. The self-adjoint semi-implicit operator and variational approach to spatial discretization are synergistic and enable simulation in the extremely stiff conditions found in high temperature plasmas without sacrificing the geometric flexibility needed for modeling laboratory experiments. Growth rates for resistive tearing modes with experimentally relevant Lundquist number are computed accurately with time-steps that are large with respect to the global Alfven time and moderate spatial resolution when the finite elements have basis functions of polynomial degree (p) two or larger. An error diffusion method controls the generation of magnetic divergence error. Convergence studies show that this approach is effective for continuous basis functions with p (ge) 2, where the number of test functions for the divergence control terms is less than the number of degrees of freedom in the expansion for vector fields. Anisotropic thermal conduction at realistic ratios of parallel to perpendicular conductivity (x(parallel)/x(perpendicular)) is computed accurately with p (ge) 3 without mesh alignment. A simulation of tearing-mode evolution for a shaped toroidal tokamak equilibrium demonstrates the effectiveness of the algorithm in nonlinear conditions, and its results are used to verify the accuracy of the numerical anisotropic thermal conduction in 3D magnetic topologies.
Turbulent breakage of ductile aggregates.
Marchioli, Cristian; Soldati, Alfredo
2015-05-01
In this paper we study breakage rate statistics of small colloidal aggregates in nonhomogeneous anisotropic turbulence. We use pseudospectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modeled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, σ>σ(cr), and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e., breakage occurs as soon as σ>σ(cr)). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.
Magnetohydrodynamic dynamos in the presence of fossil magnetic fields
International Nuclear Information System (INIS)
Boyer, D.W.
1982-01-01
A fossil magnetic field embedded in the radiative core of the Sun has been thought possible for some time now. However, such a fossil magnetic field has, a priori, not been considered a visible phenomenon due to the effects of turbulence in the solar convection zone. Since a well developed theory (referred to herein as magnetohydrodynamic dynamo theory) exists for describing the regeneration of magnetic fields in astrophysical objects like the Sun, it is possible to quantitatively evaluate the interaction of a fossil magnetic field with the magnetohydrodynamic dynamo operating in the solar convection zone. In this work, after a brief description of the basic dynamo equations, a spherical model calculation of the solar dynamo is introduced. First, the interaction of a fossil magnetic field with a dynamo in which the regeneration mechanisms of cyclonic convection and large-scale, nonuniform rotation are confined to spherical shells is calculated. It is argued that the amount of amplification or suppression of a fossil magnetic field will be smallest for a uniform distribution of cyclonic convection and nonuniform rotation, as expected in the Sun. Secondly, the interaction of a fossil magnetic field with a dynamo having a uniform distribution of cyclonic convection and large-scale, nonuniform rotation is calculated. It is found that the dipole or quadrupole moments of a fossil magnetic field are suppressed by factors of -0.35 and -0.37, respectively
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Self-organizing magnetohydrodynamic plasma
International Nuclear Information System (INIS)
Sato, T.; Horiuchi, R.; Watanabe, K.; Hayashi, T.; Kusano, K.
1990-09-01
In a resistive magnetohydrodynamic (MHD) plasma, both the magnetic energy and the magnetic helicity dissipate with the resistive time scale. When sufficiently large free magnetic energy does exist, however, an ideal current driven instability is excited whereby magnetic reconnection is driven at a converging point of induced plasma flows which does exist in a bounded compressible plasma. At a reconnection point excess free energy (entropy) is rapidly dissipated by ohmic heating and lost by radiation, while magnetic helicity is completely conserved. The magnetic topology is largely changed by reconnection and a new ordered structure with the same helicity is created. It is discussed that magnetic reconnection plays a key role in the MHD self-organization process. (author)
Center for Extended Magnetohydrodynamics Modeling
Energy Technology Data Exchange (ETDEWEB)
Ramos, Jesus [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2017-02-14
This researcher participated in the DOE-funded Center for Extended Magnetohydrodynamics Modeling (CEMM), a multi-institutional collaboration led by the Princeton Plasma Physics Laboratory with Dr. Stephen Jardin as the overall Principal Investigator. This project developed advanced simulation tools to study the non-linear macroscopic dynamics of magnetically confined plasmas. The collaborative effort focused on the development of two large numerical simulation codes, M3D-C1 and NIMROD, and their application to a wide variety of problems. Dr. Ramos was responsible for theoretical aspects of the project, deriving consistent sets of model equations applicable to weakly collisional plasmas and devising test problems for verification of the numerical codes. This activity was funded for twelve years.
Relativistic conformal magneto-hydrodynamics from holography
International Nuclear Information System (INIS)
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1)-dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in external magnetic field to show that the new magneto-hydrodynamics leads to self-consistent results in the shear and sound wave channels.
National Research Council Canada - National Science Library
Auvermann, Harry
2001-01-01
The objective of one portion of the Army Research Laboratory program on acoustic propagation on the battlefield is to develop an advanced method of accounting for the effects of anisotropic inhomogeneous turbulence...
Axisymmetric magnetohydrodynamic equilibria in local polar coordinates
International Nuclear Information System (INIS)
Clemente, R.A.
1982-01-01
The Grad--Shafranov equation for an ideal magnetohydrodynamic axisymmetric toroidal configuration is solved analytically in a local polar coordinate system using a novel method which produces solutions valid up to the second order in the inverse aspect ratio expansion
Long-wavelength instability of periodic flows and whistler waves in electron magnetohydrodynamics
International Nuclear Information System (INIS)
Lakhin, V.P.; Levchenko, V.D.
2003-01-01
Stability analysis of periodic flows and whistlers with respect to long-wavelength perturbations within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown hat the destabilizing effect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow anisotropy or α-like effect to its micro helicity. The criteria of the corresponding instabilities are obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two types of periodic flows are presented. (author)
Sustained turbulence and magnetic energy in non-rotating shear flows
DEFF Research Database (Denmark)
Nauman, Farrukh; Blackman, Eric G.
2017-01-01
From numerical simulations, we show that non-rotating magnetohydrodynamic shear flows are unstable to finite amplitude velocity perturbations and become turbulent, leading to the growth and sustenance of magnetic energy, including large scale fields. This supports the concept that sustained...... magnetic energy from turbulence is independent of the driving mechanism for large enough magnetic Reynolds numbers....
Particle acceleration by Alfven wave turbulence in radio galaxies
International Nuclear Information System (INIS)
Eilek, J.A.
1986-01-01
Radio galaxies show evidence for acceleration of relativistic electrons locally within the diffuse radio luminous plasma. One likely candidate for the reacceleration mechanism is acceleration by magnetohydrodynamic turbulence which exists within the plasma. If Alfven waves are generated by a fluid turbulent cascade described by a power law energy-wavenumber spectrum, the particle spectrum in the presence of synchrotron losses will evolve towards an asymptotic power law which agrees with the particle spectra observed in these sources
Magnetohydrodynamic Models of Molecular Tornadoes
Au, Kelvin; Fiege, Jason D.
2017-07-01
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Review of magnetohydrodynamic pump applications
Directory of Open Access Journals (Sweden)
O.M. Al-Habahbeh
2016-06-01
Full Text Available Magneto-hydrodynamic (MHD principle is an important interdisciplinary field. One of the most important applications of this effect is pumping of materials that are hard to pump using conventional pumps. In this work, the progress achieved in this field is surveyed and organized according to the type of application. The literature of the past 27 years is searched for the major developments of MHD applications. MHD seawater thrusters are promising for a variety of applications requiring high flow rates and velocity. MHD molten metal pump is important replacement to conventional pumps because their moving parts cannot stand the molten metal temperature. MHD molten salt pump is used for nuclear reactor coolants due to its no-moving-parts feature. Nanofluid MHD pumping is a promising technology especially for bioapplications. Advantages of MHD include silence due to no-moving-parts propulsion. Much progress has been made, but with MHD pump still not suitable for wider applications, this remains a fertile area for future research.
Magnetohydrodynamic Models of Molecular Tornadoes
Energy Technology Data Exchange (ETDEWEB)
Au, Kelvin; Fiege, Jason D., E-mail: fiege@physics.umanitoba.ca [Department of Physics and Astronomy, University of Manitoba Winnipeg, MB R3T 2N2 (Canada)
2017-07-10
Recent observations near the Galactic Center (GC) have found several molecular filaments displaying striking helically wound morphology that are collectively known as molecular tornadoes. We investigate the equilibrium structure of these molecular tornadoes by formulating a magnetohydrodynamic model of a rotating, helically magnetized filament. A special analytical solution is derived where centrifugal forces balance exactly with toroidal magnetic stress. From the physics of torsional Alfvén waves we derive a constraint that links the toroidal flux-to-mass ratio and the pitch angle of the helical field to the rotation laws, which we find to be an important component in describing the molecular tornado structure. The models are compared to the Ostriker solution for isothermal, nonmagnetic, nonrotating filaments. We find that neither the analytic model nor the Alfvén wave model suffer from the unphysical density inversions noted by other authors. A Monte Carlo exploration of our parameter space is constrained by observational measurements of the Pigtail Molecular Cloud, the Double Helix Nebula, and the GC Molecular Tornado. Observable properties such as the velocity dispersion, filament radius, linear mass, and surface pressure can be used to derive three dimensionless constraints for our dimensionless models of these three objects. A virial analysis of these constrained models is studied for these three molecular tornadoes. We find that self-gravity is relatively unimportant, whereas magnetic fields and external pressure play a dominant role in the confinement and equilibrium radial structure of these objects.
Self-consistent dynamo-like activity in turbulent plasmas
International Nuclear Information System (INIS)
Bhattacharjee, A.; Hameiri, E.
1986-05-01
The evolution of turbulent plasmas is investigated within the framework of resistive magnetohydrodynamics. The functional form of the mean electric field is derived for fluctuations generated by tearing and resistive interchange modes. It is shown that a bath of such local and global modes in pinches causes toroidal field-reversal with finite pressure gradients in the plasma
Transition to turbulence in the Hartmann boundary layer
Energy Technology Data Exchange (ETDEWEB)
Thess, A.; Krasnov, D.; Boeck, T.; Zienicke, E. [Dept. of Mechanical Engineering, Ilmenau Univ. of Tech. (Germany); Zikanov, O. [Dept. of Mechanical Engineering, Univ. of Michigan, Dearborn, MI (United States); Moresco, P. [School of Physics and Astronomy, The Univ. of Manchester (United Kingdom); Alboussiere, T. [Lab. de Geophysique Interne et Tectonophysique, Observatoire des Science de l' Univers de Grenoble, Univ. Joseph Fourier, Grenoble (France)
2007-07-01
The Hartmann boundary layer is a paradigm of magnetohydrodynamic (MHD) flows. Hartmann boundary layers develop when a liquid metal flows under the influence of a steady magnetic field. The present paper is an overview of recent successful attempts to understand the mechanisms by which the Hartmann layer undergoes a transition from laminar to turbulent flow. (orig.)
Gravitomagnetic Instabilities in Anisotropically Expanding Fluids
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas
Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.
Anisotropic gravitational instability
International Nuclear Information System (INIS)
Polyachenko, V.L.; Fridman, A.M.
1988-01-01
Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common
Comments on the dispersion equation of a turbulent plasma - an inhomogeneous, magnetoactive case
International Nuclear Information System (INIS)
Ag, A.
1978-03-01
A weakly turbulent, magnetoactive plasma is considered in an inhomogeneous case with anisotropic temperature distribution. The dispersion relation is established following a method developed by Tsytovich and Nekrasov. The correction coefficients are calculated in the three principal scaling modes: (1) the turbulent frequencies predominate, (2) the cyclotronic velocities of the macroinstabilities predominate, (3) the turbulent frequencies are lower. (D.P.)
Energy Technology Data Exchange (ETDEWEB)
Zentgraf, Florian; Baum, Elias; Dreizler, Andreas [Fachgebiet Reaktive Strömungen und Messtechnik (RSM), Center of Smart Interfaces (CSI), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Böhm, Benjamin [Fachgebiet Energie und Kraftwerkstechnik (EKT), Technische Universität Darmstadt, Jovanka-Bontschits-Straße 2, 64287 Darmstadt (Germany); Peterson, Brian, E-mail: brian.peterson@ed.ac.uk [Department of Mechanical Engineering, School of Engineering, Institute for Energy Systems, University of Edinburgh, The King’s Buildings, Mayfield Road, Edinburgh EH9 3JL, Scotland (United Kingdom)
2016-04-15
Planar particle image velocimetry (PIV) and tomographic PIV (TPIV) measurements are utilized to analyze turbulent statistical theory quantities and the instantaneous turbulence within a single-cylinder optical engine. Measurements are performed during the intake and mid-compression stroke at 800 and 1500 RPM. TPIV facilitates the evaluation of spatially resolved Reynolds stress tensor (RST) distributions, anisotropic Reynolds stress invariants, and instantaneous turbulent vortical structures. The RST analysis describes distributions of individual velocity fluctuation components that arise from unsteady turbulent flow behavior as well as cycle-to-cycle variability (CCV). A conditional analysis, for which instantaneous PIV images are sampled by their tumble center location, reveals that CCV and turbulence have similar contributions to RST distributions at the mean tumble center, but turbulence is dominant in regions peripheral to the tumble center. Analysis of the anisotropic Reynolds stress invariants reveals the spatial distribution of axisymmetric expansion, axisymmetric contraction, and 3D isotropy within the cylinder. Findings indicate that the mid-compression flow exhibits a higher tendency toward 3D isotropy than the intake flow. A novel post-processing algorithm is utilized to classify the geometry of instantaneous turbulent vortical structures and evaluate their frequency of occurrence within the cylinder. Findings are coupled with statistical theory quantities to provide a comprehensive understanding of the distribution of turbulent velocity components, the distribution of anisotropic states of turbulence, and compare the turbulent vortical flow distribution that is theoretically expected to what is experimentally observed. The analyses reveal requisites of important turbulent flow quantities and discern their sensitivity to the local flow topography and engine operation.
International Nuclear Information System (INIS)
Montgomery, D.C.
1986-01-01
We have explored numerical solutions of the three-dimensional magnetohydrodynamic equations and of the Strauss equations. In the former case, the emphasis has been on relaxation to force-free, field-reversed states in magnetofluids bounded by rigid conductors; in the latter case, the emphasis has been on disruptions. The competition between dynamic alignment of the velocity fields and magnetic fields and selective decay toward minimum energy states has been explored. Analytical expressions for density fluctuation spectra in MHD turbulence have been derived. Analytical expressions for turbulent MHD resistivities and viscosities have been derived
Lam, Wai Sze Tiffany
Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for
International Nuclear Information System (INIS)
Donnelly, R.J.
1988-01-01
Most flows of fluids, in nature and in technology, are turbulent. Since much of the energy expended by machines and devices that involve fluid flows is spent in overcoming drag caused by turbulence, there is a strong motivation to understand the phenomena. Surprisingly, the peculiar, quantum-mechanical form of turbulence that can form in superfluid helium may turn out to be much simpler to understand that the classical turbulence that forms in normal fluids. It now seems that the study of superfluid turbulence may provide simplified model systems for studying some forms of classical turbulence. There are also practical motivations for studying superfluid turbulence. For example, superfuid helium is often used as a coolant in superconducting machinery. Superfluid turbulence is the primary impediment to the transfer of heat by superfluid helium; an understanding of the phenomena may make it possible to design more efficient methods of refrigeration for superconducting devices. 8 figs
Magnetohydrodynamic duct and channel flows at finite magnetic Reynolds numbers
Energy Technology Data Exchange (ETDEWEB)
Bandaru, Vinodh Kumar
2015-11-27
Magnetohydrodynamic duct flows have so far been studied only in the limit of negligible magnetic Reynolds numbers (R{sub m}). When R{sub m} is finite, the secondary magnetic field becomes significant, leading to a fully coupled evolution of the magnetic field and the conducting flow. Characterization of such flows is essential in understanding wall-bounded magnetohydrodynamic turbulence at finite R{sub m} as well as in industrial applications like the design of electromagnetic pumps and measurement of transient flows using techniques such as Lorentz force velocimetry. This thesis presents the development of a numerical framework for direct numerical simulations (DNS) of magnetohydrodynamic flows in straight rectangular ducts at finite R{sub m}, which is subsequently used to study three specific problems. The thesis opens with a brief overview of MHD and a review of the existing state of art in duct and channel MHD flows. This is followed by a description of the physical model governing the problem of MHD duct flow with insulating walls and streamwise periodicity. In the main part of the thesis, a hybrid finite difference-boundary element computational procedure is developed that is used to solve the magnetic induction equation with boundary conditions that satisfy interior-exterior matching of the magnetic field at the domain wall boundaries. The numerical procedure is implemented into a code and a detailed verification of the same is performed in the limit of low R{sub m} by comparing with the results obtained using a quasistatic approach that has no coupling with the exterior. Following this, the effect of R{sub m} on the transient response of Lorentz force is studied using the problem of a strongly accelerated solid conducting bar in the presence of an imposed localized magnetic field. The response time of Lorentz force depends linearly on R{sub m} and shows a good agreement with the existing experiments. For sufficiently large values of R{sub m}, the peak
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Clairet, F.; Vermare, L.; Heuraux, S.; Leclert, G.
2004-01-01
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal
Statistical analysis of anomalous transport in resistive interchange turbulence
International Nuclear Information System (INIS)
Sugama, Hideo; Wakatani, Masahiro.
1992-01-01
A new anomalous transport model for resistive interchange turbulence is derived from statistical analysis applying two-scale direct-interaction approximation to resistive magnetohydrodynamic equations with a gravity term. Our model is similar to the K-ε model for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are expressed in terms of by the turbulent kinetic energy K and its dissipation rate ε while K and ε are determined by transport equations. This anomalous transport model can describe some nonlocal effects such as those from boundary conditions which cannot be treated by conventional models based on the transport coefficients represented by locally determined plasma parameters. (author)
Magnetohydrodynamic studies of the strong Focus device
International Nuclear Information System (INIS)
Vezin, Robert
1971-01-01
The POTTER magnetohydrodynamic code is used. It consists of a two-dimensional fluid model with two temperatures Te, Ti and transverse transport coefficients for a fully ionized plasma. Applied to the FOCUS geometry used at Limeil, it gives temperatures consistent with the BENNETT law but much lower than those evaluated experimentally by the X-ray absorbing foils technique. (author) [fr
Magneto-hydrodynamical model for plasma
Liu, Ruikuan; Yang, Jiayan
2017-10-01
Based on the Newton's second law and the Maxwell equations for the electromagnetic field, we establish a new 3-D incompressible magneto-hydrodynamics model for the motion of plasma under the standard Coulomb gauge. By using the Galerkin method, we prove the existence of a global weak solution for this new 3-D model.
PHANTOM: Smoothed particle hydrodynamics and magnetohydrodynamics code
Price, Daniel J.; Wurster, James; Nixon, Chris; Tricco, Terrence S.; Toupin, Stéven; Pettitt, Alex; Chan, Conrad; Laibe, Guillaume; Glover, Simon; Dobbs, Clare; Nealon, Rebecca; Liptai, David; Worpel, Hauke; Bonnerot, Clément; Dipierro, Giovanni; Ragusa, Enrico; Federrath, Christoph; Iaconi, Roberto; Reichardt, Thomas; Forgan, Duncan; Hutchison, Mark; Constantino, Thomas; Ayliffe, Ben; Mentiplay, Daniel; Hirsh, Kieran; Lodato, Giuseppe
2017-09-01
Phantom is a smoothed particle hydrodynamics and magnetohydrodynamics code focused on stellar, galactic, planetary, and high energy astrophysics. It is modular, and handles sink particles, self-gravity, two fluid and one fluid dust, ISM chemistry and cooling, physical viscosity, non-ideal MHD, and more. Its modular structure makes it easy to add new physics to the code.
Relativistic magnetohydrodynamics as a Hamiltonian system
International Nuclear Information System (INIS)
Holm, D.D.; Kupershmidt, A.
1985-01-01
The equations of ideal relativistic magnetohydrodynamics in the laboratory frame form a noncanonical Hamiltonian system with the same Poisson bracket as for the nonrelativistic system, but with dynamical variables and Hamiltonian obtained via a regular deformation of their nonrelativistic counterparts [fr
On energy conservation in extended magnetohydrodynamics
International Nuclear Information System (INIS)
Kimura, Keiji; Morrison, P. J.
2014-01-01
A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Energy Technology Data Exchange (ETDEWEB)
Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)
2017-07-15
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)
Anisotropic contrast optical microscope.
Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M
2016-11-01
An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
, maintaining the scope and the interdisciplinary character of the meeting while keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the Conference objectives. The abstracts of the 194 accepted presentations of more than 400 authors were published in the Book of Abstracts of the Second International Conference and Advanced School 'Turbulent Mixing and Beyond', 27 July-7 August 2009 , Copyright © 2009, the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy (ISBN 92095003-41-1). This Topical Issue consists of 70 articles accepted for publication in the Conference Proceedings and represents a substantial part of the Conference contributions. The articles are in a broad variety of TMB-2009 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical turbulence and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection; Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions; Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales; Interfacial dynamics: instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffman-Taylor High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-matter and laser-plasma interactions, non-equilibrium heat transfer; Material science: material transformation under high strain rates, equation of state, impact dynamics, mixing at nano- and micro-scales; Astrophysics: supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic-microwave background, accretion disks; Magneto-hydrodynamics: magnetic fusion and magnetically
Cascade of circulations in fluid turbulence.
Eyink, Gregory L
2006-12-01
Kelvin's theorem on conservation of circulations is an essential ingredient of Taylor's theory of turbulent energy dissipation by the process of vortex-line stretching. In previous work, we have proposed a nonlinear mechanism for the breakdown of Kelvin's theorem in ideal turbulence at infinite Reynolds number. We develop here a detailed physical theory of this cascade of circulations. Our analysis is based upon an effective equation for large-scale coarse-grained velocity, which contains a turbulent-induced vortex force that can violate Kelvin's theorem. We show that singularities of sufficient strength, which are observed to exist in turbulent flow, can lead to nonvanishing dissipation of circulation for an arbitrarily small coarse-graining length in the effective equations. This result is an analog for circulation of Onsager's theorem on energy dissipation for singular Euler solutions. The physical mechanism of the breakdown of Kelvin's theorem is diffusion of lines of large-scale vorticity out of the advected loop. This phenomenon can be viewed as a classical analog of the Josephson-Anderson phase-slip phenomenon in superfluids due to quantized vortex lines. We show that the circulation cascade is local in scale and use this locality to develop concrete expressions for the turbulent vortex force by a multiscale gradient expansion. We discuss implications for Taylor's theory of turbulent dissipation and we point out some related cascade phenomena, in particular for magnetic flux in magnetohydrodynamic turbulence.
Generation of compressible modes in MHD turbulence
Energy Technology Data Exchange (ETDEWEB)
Cho, Jungyeon [Chungnam National Univ., Daejeon (Korea); Lazarian, A. [Univ. of Wisconsin, Madison, WI (United States)
2005-05-01
Astrophysical turbulence is magnetohydrodynamic (MHD) in nature. We discuss fundamental properties of MHD turbulence and in particular the generation of compressible MHD waves by Alfvenic turbulence and show that this process is inefficient. This allows us to study the evolution of different types of MHD perturbations separately. We describe how to separate MHD fluctuations into three distinct families: Alfven, slow, and fast modes. We find that the degree of suppression of slow and fast modes production by Alfvenic turbulence depends on the strength of the mean field. We review the scaling relations of the modes in strong MHD turbulence. We show that Alfven modes in compressible regime exhibit scalings and anisotropy similar to those in incompressible regime. Slow modes passively mimic Alfven modes. However, fast modes exhibit isotropy and a scaling similar to that of acoustic turbulence both in high and low {beta} plasmas. We show that our findings entail important consequences for star formation theories, cosmic ray propagation, dust dynamics, and gamma ray bursts. We anticipate many more applications of the new insight to MHD turbulence and expect more revisions of the existing paradigms of astrophysical processes as the field matures. (orig.)
Anisotropic constant-roll inflation
Energy Technology Data Exchange (ETDEWEB)
Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)
2018-01-15
We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)
Interactions between two magnetohydrodynamic Kelvin-Helmholtz instabilities
International Nuclear Information System (INIS)
Lai, S. H.; Ip, W.-H.
2011-01-01
Kelvin-Helmholtz instability (KHI) driven by velocity shear is a generator of waves found away from the vicinity of the velocity-shear layers since the fast-mode waves radiated from the surface perturbation can propagate away from the transition layer. Thus the nonlinear evolution associated with KHI is not confined near the velocity-shear layer. To understand the physical processes in multiple velocity-shear layers, the interactions between two KHIs at a pair of tangential discontinuities are studied by two-dimensional magnetohydrodynamic simulations. It is shown that the interactions between two neighboring velocity-shear layers are dominated by the propagation of the fast-mode waves radiated from KHIs in a nonuniform medium. That is, the fast-mode Mach number of the surface waves M Fy , a key factor of the nonlinear evolution of KHI, will vary with the nonuniform background plasma velocity due to the existence of two neighboring velocity-shear layers. As long as the M Fy observed in the plasma rest frame across the neighboring velocity-shear layer is larger than one, newly formed fast-mode Mach-cone-like (MCL) plane waves generated by the fast-mode waves can be found in this region. As results of the interactions of two KHIs, reflection and distortion of the MCL plane waves generate the turbulence and increase the plasma temperature, which provide possible mechanisms of heating and accelerating local plasma between two neighboring velocity-shear layers.
Anisotropic Concrete Compressive Strength
DEFF Research Database (Denmark)
Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao
2017-01-01
When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...
Gyrokinetic magnetohydrodynamics and the associated equilibria
Lee, W. W.; Hudson, S. R.; Ma, C. H.
2017-12-01
The gyrokinetic magnetohydrodynamic (MHD) equations, related to the recent paper by W. W. Lee ["Magnetohydrodynamics for collisionless plasmas from the gyrokinetic perspective," Phys. Plasmas 23, 070705 (2016)], and their associated equilibria properties are discussed. This set of equations consists of the time-dependent gyrokinetic vorticity equation, the gyrokinetic parallel Ohm's law, and the gyrokinetic Ampere's law as well as the equations of state, which are expressed in terms of the electrostatic potential, ϕ, and the vector potential, A , and support both spatially varying perpendicular and parallel pressure gradients and the associated currents. The corresponding gyrokinetic MHD equilibria can be reached when ϕ→0 and A becomes constant in time, which, in turn, gives ∇.(J∥+J⊥)=0 and the associated magnetic islands, if they exist. Examples of simple cylindrical geometry are given. These gyrokinetic MHD equations look quite different from the conventional MHD equations, and their comparisons will be an interesting topic in the future.
Multi-region relaxed magnetohydrodynamics with flow
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R., E-mail: graham.dennis@anu.edu.au; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2014-04-15
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes plasma flow. This new model is a generalization of Woltjer's model of relaxed magnetohydrodynamics equilibria with flow. We prove that as the number of plasma regions becomes infinite, our extension of MRxMHD reduces to ideal MHD with flow. We also prove that some solutions to MRxMHD with flow are not time-independent in the laboratory frame, and instead have 3D structure which rotates in the toroidal direction with fixed angular velocity. This capability gives MRxMHD potential application to describing rotating 3D MHD structures such as 'snakes' and long-lived modes.
Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
International Nuclear Information System (INIS)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel's theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism
Nambu brackets in fluid mechanics and magnetohydrodynamics
International Nuclear Information System (INIS)
Salazar, Roberto; Kurgansky, Michael V
2010-01-01
Concrete examples of the construction of Nambu brackets for equations of motion (both 3D and 2D) of Boussinesq stratified fluids and also for magnetohydrodynamical equations are given. It serves a generalization of Hamiltonian formulation for the considered equations of motion. Two alternative Nambu formulations are proposed, first by using fluid dynamical (kinetic) helicity and/or enstrophy as constitutive elements and second, by using the existing conservation laws of the governing equation.
Linear and nonlinear stability in resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Tasso, H.
1994-01-01
A sufficient stability condition with respect to purely growing modes is derived for resistive magnetohydrodynamics. Its open-quotes nearnessclose quotes to necessity is analysed. It is found that for physically reasonable approximations the condition is in some sense necessary and sufficient for stability against all modes. This, together with hermiticity makes its analytical and numerical evaluation worthwhile for the optimization of magnetic configurations. Physically motivated test functions are introduced. This leads to simplified versions of the stability functional, which makes its evaluation and minimization more tractable. In the case of special force-free fields the simplified functional reduces to a good approximation of the exact stability functional derived by other means. It turns out that in this case the condition is also sufficient for nonlinear stability. Nonlinear stability in hydrodynamics and magnetohydrodynamics is discussed especially in connection with open-quotes unconditionalclose quotes stability and with severe limitations on the Reynolds number. Two examples in magnetohydrodynamics show that the limitations on the Reynolds numbers can be removed but unconditional stability is preserved. Practical stability needs to be treated for limited levels of perturbations or for conditional stability. This implies some knowledge of the basin of attraction of the unperturbed solution, which is a very difficult problem. Finally, a special inertia-caused Hopf bifurcation is identified and the nature of the resulting attractors is discussed. 23 refs
Turbulence, Magnetic Reconnection in Turbulent Fluids and Energetic Particle Acceleration
Lazarian, A.; Vlahos, L.; Kowal, G.; Yan, H.; Beresnyak, A.; de Gouveia Dal Pino, E. M.
2012-11-01
Turbulence is ubiquitous in astrophysics. It radically changes many astrophysical phenomena, in particular, the propagation and acceleration of cosmic rays. We present the modern understanding of compressible magnetohydrodynamic (MHD) turbulence, in particular its decomposition into Alfvén, slow and fast modes, discuss the density structure of turbulent subsonic and supersonic media, as well as other relevant regimes of astrophysical turbulence. All this information is essential for understanding the energetic particle acceleration that we discuss further in the review. For instance, we show how fast and slow modes accelerate energetic particles through the second order Fermi acceleration, while density fluctuations generate magnetic fields in pre-shock regions enabling the first order Fermi acceleration of high energy cosmic rays. Very importantly, however, the first order Fermi cosmic ray acceleration is also possible in sites of magnetic reconnection. In the presence of turbulence this reconnection gets fast and we present numerical evidence supporting the predictions of the Lazarian and Vishniac (Astrophys. J. 517:700-718, 1999) model of fast reconnection. The efficiency of this process suggests that magnetic reconnection can release substantial amounts of energy in short periods of time. As the particle tracing numerical simulations show that the particles can be efficiently accelerated during the reconnection, we argue that the process of magnetic reconnection may be much more important for particle acceleration than it is currently accepted. In particular, we discuss the acceleration arising from reconnection as a possible origin of the anomalous cosmic rays measured by Voyagers as well as the origin cosmic ray excess in the direction of Heliotail.
A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks
McNally, Colin P.
2012-08-01
study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of Smoothed Particle Hydrodynamics. We then comment on the connection between this behavior and the underlying lack of zeroth-order consistency in Smoothed Particle Hydrodynamics interpolation. In astrophysical magnetohydrodynamics (MHD) and electrodynamics simulations, numerically enforcing the divergence free constraint on the magnetic field has been difficult. We observe that for point-based discretization, as used in finite-difference type and pseudo-spectral methods, the divergence free constraint can be satisfied entirely by a choice of interpolation used to define the derivatives of the magnetic field. As an example we demonstrate a new class of finite-difference type derivative operators on a regular grid which has the divergence free property. This principle clarifies the nature of magnetic monopole errors. The principles and techniques demonstrated in this chapter are particularly useful for the magnetic field, but can be applied to any vector field. Finally, we examine global zoom-in simulations of turbulent magnetorotationally unstable flow. We extract and analyze the high-current regions produced in the turbulent flow. Basic parameters of these regions are abstracted, and we build one dimensional models including non-ideal MHD, and radiative transfer. For sufficiently high temperatures, an instability resulting from the temperature dependence of the Ohmic resistivity is found. This instability concentrates current sheets, resulting in the possibility of rapid heating from temperatures on the order of 600 Kelvin to 2000 Kelvin in magnetorotationally turbulent regions of protoplanetary disks. This is a possible local mechanism for the melting of chondrules and the formation of other high-temperature materials in protoplanetary disks.
Possibility to explain the temperature distribution in sunspots by an anisotropic heat transfer
Energy Technology Data Exchange (ETDEWEB)
Eschrich, K O; Krause, F [Akademie der Wissenschaften der DDR, Potsdam. Zentralinstitut fuer Astrophysik
1977-01-01
Numerical solutions of a heat conduction problem in an anisotropic medium are used for a discussion of the possibility to explain the temperature distribution in sunspots and their environment. The anisotropy is assumed being due to the strong magnetic field in sunspots and the region below. This magnetic field forces the convection to take an anisotropic structure (two-dimensional turbulence) and thus the region gets anisotropic conduction properties, on the average. The discussion shows that the observed temperature profiles can be explained in the case the depth of the region of anisotropy is about as large as the diameter of the spot or larger.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
International Nuclear Information System (INIS)
Horton, W.
1998-07-01
The origin of plasma turbulence from currents and spatial gradients in plasmas is described and shown to lead to the dominant transport mechanism in many plasma regimes. A wide variety of turbulent transport mechanism exists in plasmas. In this survey the authors summarize some of the universally observed plasma transport rates
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
Large-scale vortices in compressible turbulent medium with the magnetic field
Gvaramadze, V. V.; Dimitrov, B. G.
1990-08-01
An averaged equation which describes the large scale vortices and Alfven waves generation in a compressible helical turbulent medium with a constant magnetic field is presented. The presence of the magnetic field leads to anisotropization of the vortex generation. Possible applications of the anisotropic vortex dynamo effect are accretion disks of compact objects.
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-01-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...
Turbulent Liquid Metal Dynamo Experiments
International Nuclear Information System (INIS)
Forest, Cary
2007-01-01
The self-generation of magnetic fields in planets and stars--the dynamo effect--is a long-standing problem of magnetohydrodynamics and plasma physics. Until recently, research on the self-excitation process has been primarily theoretical. In this talk, I will begin with a tutorial on how magnetic fields are generated in planets and stars, describing the 'Standard Model' of self-excitation known as the alpha-omega dynamo. In this model, axisymmetric differential rotation can produce the majority of the magnetic field, but some non-axisymmetric, turbulence driven currents are also necessary. Understanding the conversion of turbulent kinetic energy in the fluid motion into electrical currents and thus magnetic fields, is a major challenge for both experiments and theory at this time. I will then report on recent results from a 1 meter diameter, spherical, liquid sodium dynamo experiment at the University of Wisconsin, in which the first clear evidence for these turbulence driven currents has been observed.
The acceleration and propagation of energetic particles in turbulent cosmic plasmas
International Nuclear Information System (INIS)
Achterberg, A.
1981-01-01
This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>10 2 ) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)
Anisotropic elliptic optical fibers
Kang, Soon Ahm
1991-05-01
The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.
Pebble Accretion in Turbulent Protoplanetary Disks
Xu, Ziyan; Bai, Xue-Ning; Murray-Clay, Ruth A.
2017-09-01
It has been realized in recent years that the accretion of pebble-sized dust particles onto planetary cores is an important mode of core growth, which enables the formation of giant planets at large distances and assists planet formation in general. The pebble accretion theory is built upon the orbit theory of dust particles in a laminar protoplanetary disk (PPD). For sufficiently large core mass (in the “Hill regime”), essentially all particles of appropriate sizes entering the Hill sphere can be captured. However, the outer regions of PPDs are expected to be weakly turbulent due to the magnetorotational instability (MRI), where turbulent stirring of particle orbits may affect the efficiency of pebble accretion. We conduct shearing-box simulations of pebble accretion with different levels of MRI turbulence (strongly turbulent assuming ideal magnetohydrodynamics, weakly turbulent in the presence of ambipolar diffusion, and laminar) and different core masses to test the efficiency of pebble accretion at a microphysical level. We find that accretion remains efficient for marginally coupled particles (dimensionless stopping time {τ }s˜ 0.1{--}1) even in the presence of strong MRI turbulence. Though more dust particles are brought toward the core by the turbulence, this effect is largely canceled by a reduction in accretion probability. As a result, the overall effect of turbulence on the accretion rate is mainly reflected in the changes in the thickness of the dust layer. On the other hand, we find that the efficiency of pebble accretion for strongly coupled particles (down to {τ }s˜ 0.01) can be modestly reduced by strong turbulence for low-mass cores.
A dynamics investigation into edge plasma turbulence
International Nuclear Information System (INIS)
Thomsen, H.
2002-08-01
The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)
Depression of Nonlinearity in Decaying Isotropic MHD Turbulence
International Nuclear Information System (INIS)
Servidio, S.; Matthaeus, W. H.; Dmitruk, P.
2008-01-01
Spectral method simulations show that undriven magnetohydrodynamic turbulence spontaneously generates coherent spatial correlations of several types, associated with local Beltrami fields, directional alignment of velocity and magnetic fields, and antialignment of magnetic and fluid acceleration components. These correlations suppress nonlinearity to levels lower than what is obtained from Gaussian fields, and occur in spatial patches. We suggest that this rapid relaxation leads to non-Gaussian statistics and spatial intermittency
Numerical simulations of the decay of primordial magnetic turbulence
International Nuclear Information System (INIS)
Kahniashvili, Tina; Brandenburg, Axel; Tevzadze, Alexander G.; Ratra, Bharat
2010-01-01
We perform direct numerical simulations of forced and freely decaying 3D magnetohydrodynamic turbulence in order to model magnetic field evolution during cosmological phase transitions in the early Universe. Our approach assumes the existence of a magnetic field generated either by a process during inflation or shortly thereafter, or by bubble collisions during a phase transition. We show that the final configuration of the magnetic field depends on the initial conditions, while the velocity field is nearly independent of initial conditions.
Nonideal, helical, vortical magnetohydrodynamic steady states
International Nuclear Information System (INIS)
Agim, Y.Z.; Montgomery, D.
1991-01-01
The helically-deformed profiles of driven, dissipative magnetohydrodynamic equilibria are constructed through second order in helical amplitude. The resultant plasma configurations are presented in terms of contour plots of magnetic flux function, pressure, current flux function and the mass flux function, along with the stability boundary at which they are expected to appear. For the Wisconsin Phaedrus-T Tokamak, plasma profiles with significant m = 3, n = 1 perturbation seem feasible; for these, the plasma pressure peaks off-axis. For the smaller aspect ratio case, the configuration with m 1,n =1 is thought to be relevant to the density perturbation observed in JET after a pellet injection. (author)
Notes on the eigensystem of magnetohydrodynamics
International Nuclear Information System (INIS)
Roe, P.L.; Balsara, D.S.
1996-01-01
The eigenstructure of the equations governing one-dimensional ideal magnetohydrodynamics is examined, motivated by the wish to exploit it for construction of high-resolution computational algorithms. The results are given in simple forms that avoid indeterminacy or degeneracy whenever possible. The unavoidable indeterminacy near the magnetosonic (or triple umbilic) state is analyzed and shown to cause no difficulty in evaluating a numerical flux function. The structure of wave paths close to this singularity is obtained, and simple expressions are presented for the structure coefficients that govern wave steepening
Landau fluid models of collisionless magnetohydrodynamics
International Nuclear Information System (INIS)
Snyder, P.B.; Hammett, G.W.; Dorland, W.
1997-01-01
A closed set of fluid moment equations including models of kinetic Landau damping is developed which describes the evolution of collisionless plasmas in the magnetohydrodynamic parameter regime. The model is fully electromagnetic and describes the dynamics of both compressional and shear Alfven waves, as well as ion acoustic waves. The model allows for separate parallel and perpendicular pressures p parallel and p perpendicular , and, unlike previous models such as Chew-Goldberger-Low theory, correctly predicts the instability threshold for the mirror instability. Both a simple 3 + 1 moment model and a more accurate 4 + 2 moment model are developed, and both could be useful for numerical simulations of astrophysical and fusion plasmas
Ideal magnetohydrodynamic stability of axisymmetric mirrors
International Nuclear Information System (INIS)
D'Ippolito, D.A.; Hafizi, B.; Myra, J.R.
1982-01-01
The governing partial differential equation for general mode-number pressure-driven ballooning modes in a long-thin, axisymmetric plasma is derived within the context of ideal magnetohydrodynamics. It is shown that the equation reduces in special limits to the Hain--Luest equation, the high-m diffuse p(psi) ballooning equation, and the low-m sharp-boundary equation. A low-β analytic solution of the full partial differential equation is presented for quasiflute modes in an idealized tandem mirror model to elucidate the relationship of the various limiting cases
Ideal Magnetohydrodynamic Stability of the NCSX
International Nuclear Information System (INIS)
Fu, Guo Yong; Isaev, Maxim Yu; Ku, Long-Poe; Mikhailov, M.; Redi, M.H; Sanchez, Raul; Subbotin, A; Hirshman, Steven Paul; Cooper, W. Anthony; Monticello, D.; Reiman, A.H.; Zarnstorff, M.C.
2007-01-01
The ideal magnetohydrodynamic (MHD) stability of the National Compact Stellarator Experiment (NCSX) is extensively analyzed using the most advanced three-dimensional MHD codes. It is shown that the NCSX is stable to finite-n MHD modes, including the vertical mode, external kink modes and ballooning modes. However, high-n external kink modes that peak near the plasma edge are found to be weakly unstable. A global calculation shows that finite-n ballooning modes are significantly more stable than the local infinite-n modes
Hanratty, Thomas J.
1980-01-01
This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)
The infinite interface limit of multiple-region relaxed magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Dennis, G. R.; Dewar, R. L.; Hole, M. J. [Research School of Physics and Engineering, Australian National University, ACT 0200 (Australia); Hudson, S. R. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States)
2013-03-15
We show the stepped-pressure equilibria that are obtained from a generalization of Taylor relaxation known as multi-region, relaxed magnetohydrodynamics (MRXMHD) are also generalizations of ideal magnetohydrodynamics (ideal MHD). We show this by proving that as the number of plasma regions becomes infinite, MRXMHD reduces to ideal MHD. Numerical convergence studies illustrating this limit are presented.
Turbulence modulation induced by bubble swarm in oscillating-grid turbulence
International Nuclear Information System (INIS)
Morikawa, Koichi; Urano, Shigeyuki; Saito, Takayuki
2007-01-01
In the present study, liquid-phase turbulence modulation induced by a bubble swarm ascending in arbitrary turbulence was experimentally investigated. Liquid-phase homogeneous isotropic turbulence was formed using an oscillating grid in a cylindrical acrylic vessel of 149 mm in inner diameter. A bubble swarm consisting of 19 bubbles of 2.8 mm in equivalent diameter was examined; the bubble size and launching time were completely controlled using a bubble launching device through audio speakers. This bubble launching device was able to repeatedly control the bubble swarm arbitrarily and precisely. The bubble swarm was launched at a frequency of 4 Hz. The liquid phase motion was measured via two LDA (Laser Doppler Anemometer) probes. The turbulence intensity, spatial correlation and integral scale were calculated from LDA data obtained by the two spatially-separate-point measurement. When the bubble swarm was added, the turbulence intensity dramatically changed. The original isotropic turbulence was modulated to the anisotropic turbulence by the mutual interference between the bubble swarm and ambient isotropic turbulence. The integral scales were calculated from the spatial correlation function. The effects of the bubble swarm on the integral scales showed the tendencies similar to those on turbulence intensity. (author)
CERN. Geneva. Audiovisual Unit
2005-01-01
Understanding turbulence is vital in astrophysics, geophysics and many engineering applications, with thermal convection playing a central role. I shall describe progress that has recently been made in understanding this ubiquitous phenomenon by making controlled experiments using low-temperature helium, and a brief account of the frontier topic of superfluid turbulence will also be given. CERN might be able to play a unique role in experiments to probe these two problems.
Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories
Filippi, Enrico
2016-01-01
The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...
Instability, Turbulence, and Enhanced Transport in Collisionless Black-Hole Accretion Flows
Kunz, Matthew
Many astrophysical plasmas are so hot and diffuse that the collisional mean free path is larger than the system size. Perhaps the best examples of such systems are lowluminosity accretion flows onto black holes such as Sgr A* at the center of our own Galaxy, or M87 in the Virgo cluster. To date, theoretical models of these accretion flows are based on magnetohydrodynamics (MHD), a collisional fluid theory, sometimes (but rarely) extended with non-MHD features such as anisotropic (i.e. magnetic-field-aligned) viscosity and thermal conduction. While these extensions have been recognized as crucial, they require ad hoc assumptions about the role of microscopic kinetic instabilities (namely, firehose and mirror) in regulating the transport properties. These assumptions strongly affect the outcome of the calculations, and yet they have never been tested using more fundamental (i.e. kinetic) models. This proposal outlines a comprehensive first-principles study of the plasma physics of collisionless accretion flows using both analytic and state-of-the-art numerical models. The latter will utilize a new hybrid-kinetic particle-in-cell code, Pegasus, developed by the PI and Co-I specifically to study this problem. A comprehensive kinetic study of the 3D saturation of the magnetorotational instability in a collisionless plasma will be performed, in order to understand the interplay between turbulence, transport, and Larmor-scale kinetic instabilities such as firehose and mirror. Whether such instabilities alter the macroscopic saturated state, for example by limiting the transport of angular momentum by anisotropic pressure, will be addressed. Using these results, an appropriate "fluid" closure will be developed that can capture the multi-scale effects of plasma kinetics on magnetorotational turbulence, for use by the astrophysics community in building evolutionary models of accretion disks. The PI has already successfully performed the first three-dimensional kinetic
Spacecraft observations of solar wind turbulence: an overview
International Nuclear Information System (INIS)
Horbury, T S; Forman, M A; Oughton, S
2005-01-01
Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic (MHD) turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and the presence of intermittency similar to that in neutral fluids. We also discuss the presence of anisotropy in wavevector space relative to the local magnetic field direction. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wavevectors either parallel to the magnetic field ('slab' fluctuations) or approximately perpendicular to it ('2D'). We review the existing evidence for such anisotropy, which has important consequences for the transport of energetic particles. Finally, we present the first results of a new analysis which provides the most accurate measurements to date of the wave-vector anisotropy of wavevector power in solar wind MHD turbulence
Intermittent heating of the solar corona by MHD turbulence
Directory of Open Access Journals (Sweden)
É. Buchlin
2007-10-01
Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.
Inhomogeneous anisotropic cosmology
International Nuclear Information System (INIS)
Kleban, Matthew; Senatore, Leonardo
2016-01-01
In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.
Wavenumber spectrum of whistler turbulence: Particle-in-cell simulation
International Nuclear Information System (INIS)
Saito, S.; Gary, S. Peter; Narita, Y.
2010-01-01
The forward cascade of decaying whistler turbulence is studied in low beta plasma to understand essential properties of the energy spectrum at electron scales, by using a two-dimensional electromagnetic particle-in-cell (PIC) simulation. This simulation demonstrates turbulence in which the energy cascade rate is greater than the dissipation rate at the electron inertial length. The PIC simulation shows that the magnetic energy spectrum of forward-cascaded whistler turbulence at electron inertial scales is anisotropic and develops a very steep power-law spectrum which is consistent with recent solar wind observations. A comparison of the simulated spectrum with that predicted by a phenomenological turbulence scaling model suggests that the energy cascade at the electron inertial scale depends on both magnetic fluctuations and electron velocity fluctuations, as well as on the whistler dispersion relation. Thus, not only kinetic Alfven turbulence but also whistler turbulence may explain recent solar wind observations of very steep magnetic spectra at short scales.
Anisotropic diffusion of volatile pollutants at air-water interface
Directory of Open Access Journals (Sweden)
Li-ping Chen
2013-04-01
Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Zhdankin, Vladimir; Uzdensky, Dmitri A.; Werner, Gregory R.; Begelman, Mitchell C.
2018-02-01
We describe results from particle-in-cell simulations of driven turbulence in collisionless, magnetized, relativistic pair plasma. This physical regime provides a simple setting for investigating the basic properties of kinetic turbulence and is relevant for high-energy astrophysical systems such as pulsar wind nebulae and astrophysical jets. In this paper, we investigate the statistics of turbulent fluctuations in simulations on lattices of up to 10243 cells and containing up to 2 × 1011 particles. Due to the absence of a cooling mechanism in our simulations, turbulent energy dissipation reduces the magnetization parameter to order unity within a few dynamical times, causing turbulent motions to become sub-relativistic. In the developed stage, our results agree with predictions from magnetohydrodynamic turbulence phenomenology at inertial-range scales, including a power-law magnetic energy spectrum with index near -5/3, scale-dependent anisotropy of fluctuations described by critical balance, lognormal distributions for particle density and internal energy density (related by a 4/3 adiabatic index, as predicted for an ultra-relativistic ideal gas), and the presence of intermittency. We also present possible signatures of a kinetic cascade by measuring power-law spectra for the magnetic, electric and density fluctuations at sub-Larmor scales.
Transient anisotropic magnetic field calculation
International Nuclear Information System (INIS)
Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan
2006-01-01
For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement
Inertial-range spectrum of whistler turbulence
Directory of Open Access Journals (Sweden)
Y. Narita
2010-02-01
Full Text Available We develop a theoretical model of an inertial-range energy spectrum for homogeneous whistler turbulence. The theory is a generalization of the Iroshnikov-Kraichnan concept of the inertial-range magnetohydrodynamic turbulence. In the model the dispersion relation is used to derive scaling laws for whistler waves at highly oblique propagation with respect to the mean magnetic field. The model predicts an energy spectrum for such whistler waves with a spectral index −2.5 in the perpendicular component of the wave vector and thus provides an interpretation about recent discoveries of the second inertial-range of magnetic energy spectra at high frequencies in the solar wind.
Simple types of anisotropic inflation
International Nuclear Information System (INIS)
Barrow, John D.; Hervik, Sigbjoern
2010-01-01
We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
International Nuclear Information System (INIS)
Chandran, Benjamin D. G.
2000-01-01
Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it
International Nuclear Information System (INIS)
Drury, L.O.; Stewart, J.M.
1976-01-01
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
A study of shock-associated magnetohydrodynamic waves in the solar wind
Spangler, Steven R.
1992-01-01
Three major topics were addressed, one theoretical and two observational. The topics were: (1) an attempt to understand the evolution of the large-amplitude magnetohydrodynamic (MHD) waves in the foreshock, using a nonlinear wave equation called the Derivative Nonlinear Schrodinger equation (henceforth DNLS) as a model, (2) using the extensive set of ISE data to test for the presence of various nonlinear wave processes which might be present, and (3) a study of plasma turbulence in the interstellar medium which might be physically similar to that in the solar wind. For these investigations we used radioastronomical techniques. Good progress was made in each of these areas and a separate discussion of each is given.
Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng
2014-04-01
We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Directory of Open Access Journals (Sweden)
Qiong-Tao Xie
2014-06-01
Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.
Anomalous magnetohydrodynamics in the extreme relativistic domain
Giovannini, Massimo
2016-01-01
The evolution equations of anomalous magnetohydrodynamics are derived in the extreme relativistic regime and contrasted with the treatment of hydromagnetic nonlinearities pioneered by Lichnerowicz in the absence of anomalous currents. In particular we explore the situation where the conventional vector currents are complemented by the axial-vector currents arising either from the pseudo Nambu-Goldstone bosons of a spontaneously broken symmetry or because of finite fermionic density effects. After expanding the generally covariant equations in inverse powers of the conductivity, the relativistic analog of the magnetic diffusivity equation is derived in the presence of vortical and magnetic currents. While the anomalous contributions are generally suppressed by the diffusivity, they are shown to disappear in the perfectly conducting limit. When the flow is irrotational, boost-invariant and with vanishing four-acceleration the corresponding evolution equations are explicitly integrated so that the various physic...
Nonideal magnetohydrodynamic instabilities and toroidal magnetic confinement
International Nuclear Information System (INIS)
Furth, H.P.
1985-05-01
The marked divergence of experimentally observed plasma instability phenomena from the predictions of ideal magnetohydrodynamics led in the early 1960s to the formulations of finite-resistivity stability theory. Beginning in the 1970s, advanced plasma diagnostics have served to establish a detailed correspondence between the predictions of the finite-resistivity theory and experimental plasma behavior - particularly in the case of the resistive kink mode and the tokamak plasma. Nonlinear resistive-kink phenomena have been found to govern the transport of magnetic flux and plasma energy in the reversed-field pinch. The other predicted finite-resistivity instability modes have been more difficult to identify directly and their implications for toroidal magnetic confinement are still unresolved
Magnetohydrodynamic stability of tokamak edge plasmas
International Nuclear Information System (INIS)
Connor, J.W.; Hastie, R.J.; Wilson, H.R.; Miller, R.L.
1998-01-01
A new formalism for analyzing the magnetohydrodynamic stability of a limiter tokamak edge plasma is developed. Two radially localized, high toroidal mode number n instabilities are studied in detail: a peeling mode and an edge ballooning mode. The peeling mode, driven by edge current density and stabilized by edge pressure gradient, has features which are consistent with several properties of tokamak behavior in the high confinement open-quotes Hclose quotes-mode of operation, and edge localized modes (or ELMs) in particular. The edge ballooning mode, driven by the pressure gradient, is identified; this penetrates ∼n 1/3 rational surfaces into the plasma (rather than ∼n 1/2 , expected from conventional ballooning mode theory). Furthermore, there exists a coupling between these two modes and this coupling provides a picture of the ELM cycle
Numerical models for high beta magnetohydrodynamic flow
International Nuclear Information System (INIS)
Brackbill, J.U.
1987-01-01
The fundamentals of numerical magnetohydrodynamics for highly conducting, high-beta plasmas are outlined. The discussions emphasize the physical properties of the flow, and how elementary concepts in numerical analysis can be applied to the construction of finite difference approximations that capture these features. The linear and nonlinear stability of explicit and implicit differencing in time is examined, the origin and effect of numerical diffusion in the calculation of convective transport is described, and a technique for maintaining solenoidality in the magnetic field is developed. Many of the points are illustrated by numerical examples. The techniques described are applicable to the time-dependent, high-beta flows normally encountered in magnetically confined plasmas, plasma switches, and space and astrophysical plasmas. 40 refs
Magnetohydrodynamic Stability of a Toroidal Plasma's Separatrix
International Nuclear Information System (INIS)
Webster, A. J.; Gimblett, C. G.
2009-01-01
Large tokamaks capable of fusion power production such as ITER, should avoid large edge localized modes (ELMs), thought to be triggered by an ideal magnetohydrodynamic instability due to current at the plasma's separatrix boundary. Unlike analytical work in a cylindrical approximation, numerical work finds the modes are stable. The plasma's separatrix might stabilize modes, but makes analytical and numerical work difficult. We generalize a cylindrical model to toroidal separatrix geometry, finding one parameter Δ ' determines stability. The conformal transformation method is generalized to allow nonzero derivatives of a function on a boundary, and calculation of the equilibrium vacuum field allows Δ ' to be found analytically. As a boundary more closely approximates a separatrix, we find the energy principle indicates instability, but the growth rate asymptotes to zero
Nuclear magnetohydrodynamic EMP, solar storms, and substorms
International Nuclear Information System (INIS)
Rabinowitz, M.; Meliopoulous, A.P.S.; Glytsis, E.N.
1992-01-01
In addition to a fast electromagnetic pulse (EMP), a high altitude nuclear burst produces a relatively slow magnetohydrodynamic EMP (MHD EMP), whose effects are like those from solar storm geomagnetically induced currents (SS-GIC). The MHD EMP electric field E approx-lt 10 - 1 V/m and lasts approx-lt 10 2 sec, whereas for solar storms E approx-gt 10 - 2 V/m and lasts approx-gt 10 3 sec. Although the solar storm electric field is lower than MHD EMP, the solar storm effects are generally greater due to their much longer duration. Substorms produce much smaller effects than SS-GIC, but occur much more frequently. This paper describes the physics of such geomagnetic disturbances and analyzes their effects
COSMOLOGICAL ADAPTIVE MESH REFINEMENT MAGNETOHYDRODYNAMICS WITH ENZO
International Nuclear Information System (INIS)
Collins, David C.; Xu Hao; Norman, Michael L.; Li Hui; Li Shengtai
2010-01-01
In this work, we present EnzoMHD, the extension of the cosmological code Enzo to include the effects of magnetic fields through the ideal magnetohydrodynamics approximation. We use a higher order Godunov method for the computation of interface fluxes. We use two constrained transport methods to compute the electric field from those interface fluxes, which simultaneously advances the induction equation and maintains the divergence of the magnetic field. A second-order divergence-free reconstruction technique is used to interpolate the magnetic fields in the block-structured adaptive mesh refinement framework already extant in Enzo. This reconstruction also preserves the divergence of the magnetic field to machine precision. We use operator splitting to include gravity and cosmological expansion. We then present a series of cosmological and non-cosmological test problems to demonstrate the quality of solution resulting from this combination of solvers.
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
Energy Technology Data Exchange (ETDEWEB)
Klein, R I; Stone, J M
2007-11-20
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments.
Hall magnetohydrodynamics: Conservation laws and Lyapunov stability
International Nuclear Information System (INIS)
Holm, D.D.
1987-01-01
Hall electric fields produce circulating mass flow in confined ideal-fluid plasmas. The conservation laws, Hamiltonian structure, equilibrium state relations, and Lyapunov stability conditions are presented here for ideal Hall magnetohydrodynamics (HMHD) in two and three dimensions. The approach here is to use the remarkable array of nonlinear conservation laws for HMHD that follow from its Hamiltonian structure in order to construct explicit Lyapunov functionals for the HMHD equilibrium states. In this way, the Lyapunov stability analysis provides classes of HMHD equilibria that are stable and whose linearized initial-value problems are well posed (in the sense of possessing continuous dependence on initial conditions). Several examples are discussed in both two and three dimensions
Computer simulation of a magnetohydrodynamic dynamo II
International Nuclear Information System (INIS)
Kageyama, Akira; Sato, Tetsuya.
1994-11-01
We performed a computer simulation of a magnetohydrodynamic dynamo in a rapidly rotating spherical shell. Extensive parameter runs are carried out changing the electrical resistivity. It is found that the total magnetic energy can grow more than ten times larger than the total kinetic energy of the convection motion when the resistivity is sufficiently small. When the resistivity is relatively large and the magnetic energy is comparable or smaller than the kinetic energy, the convection motion maintains its well-organized structure. However, when the resistivity is small and the magnetic energy becomes larger than the kinetic energy, the well-organized convection motion is highly disturbed. The generated magnetic field is organized as a set of flux tubes which can be divided into two categories. The magnetic field component parallel to the rotation axis tends to be confined inside the anticyclonic columnar convection cells. On the other hand, the component perpendicular to the rotation axis is confined outside the convection cells. (author)
Magnetohydrodynamic waves, electrohydrodynamic waves and photons
International Nuclear Information System (INIS)
Carstoin, J.
1984-01-01
Two new subjects have lately attracted increased attention: the magnetohydrodynamics (m.h.d.) and the theory of lasers. Equally important is the subject of electrohydrodynamics (e.h.d.). Now, clearly, all electromagnetic waves carry photons; it is the merit of Louis de Broglie to have had reconciled the validity of the Maxwell equations with existence of the latter. I have, recently, derived L. de Broglie's equations from the equations C. It seems natural to assume that the m.h.d. waves carry also photons, but how to reconcile the m.h.d axioms with the existence of photons ... a problem which has, so far, escaped the notice of physicists. In the lines which follows, an attempt is made to incorporate the photons in the m.h.d. waves, re e.h.d. waves in a rather simple fashion
Rarefaction wave in relativistic steady magnetohydrodynamic flows
Energy Technology Data Exchange (ETDEWEB)
Sapountzis, Konstantinos, E-mail: ksapountzis@phys.uoa.gr; Vlahakis, Nektarios, E-mail: vlahakis@phys.uoa.gr [Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece)
2014-07-15
We construct and analyze a model of the relativistic steady-state magnetohydrodynamic rarefaction that is induced when a planar symmetric flow (with one ignorable Cartesian coordinate) propagates under a steep drop of the external pressure profile. Using the method of self-similarity, we derive a system of ordinary differential equations that describe the flow dynamics. In the specific limit of an initially homogeneous flow, we also provide analytical results and accurate scaling laws. We consider that limit as a generalization of the previous Newtonian and hydrodynamic solutions already present in the literature. The model includes magnetic field and bulk flow speed having all components, whose role is explored with a parametric study.
Exploring Astrophysical Magnetohydrodynamics in the Laboratory
Manuel, Mario
2014-10-01
Plasma evolution in many astrophysical systems is dominated by magnetohydrodynamics. Specifically of interest to this talk are collimated outflows from accretion systems. Away from the central object, the Euler equations can represent the plasma dynamics well and may be scaled to a laboratory system. We have performed experiments to investigate the effects of a background magnetic field on an otherwise hydrodynamically collimated plasma. Laser-irradiated, cone targets produce hydrodynamically collimated plasma jets and a pulse-powered solenoid provides a constant background magnetic field. The application of this field is shown to completely disrupt the original flow and a new magnetically-collimated, hollow envelope is produced. Results from these experiments and potential implications for their astrophysical analogs will be discussed.
Generation of electricity using liquid metal magnetohydrodynamics
International Nuclear Information System (INIS)
Goodwin, F.E.
1992-01-01
With liquid metal magnetohydrodynamics, a column of molten lead is passed through a magnetic field, thereby generating a voltage potential according to Faraday's law. The molten lead is propelled through a closed loop by steam from water injected just above where the lead is heated at the bottom of the loop. This water in turn boils explosively, propelling the lead upward through the loop and past the point where the steam escapes through a separator. Electricity can be generated more efficiently from steam with LMMHD than with conventional turbines. With the DC current generated by LMMHD, industriell cogeneration is seen as the most likely application, where the byproduct steam still has enough pressure to also power other steam-driven machinery. Furthermore, the byproduct steam is essentially lead-free since the operating temperature of the LMMHD generator is well below the temperature where lead could dissolve into the steam. (orig.) [de
Numerical Methods for Radiation Magnetohydrodynamics in Astrophysics
International Nuclear Information System (INIS)
Klein, R I; Stone, J M
2007-01-01
We describe numerical methods for solving the equations of radiation magnetohydrodynamics (MHD) for astrophysical fluid flow. Such methods are essential for the investigation of the time-dependent and multidimensional dynamics of a variety of astrophysical systems, although our particular interest is motivated by problems in star formation. Over the past few years, the authors have been members of two parallel code development efforts, and this review reflects that organization. In particular, we discuss numerical methods for MHD as implemented in the Athena code, and numerical methods for radiation hydrodynamics as implemented in the Orion code. We discuss the challenges introduced by the use of adaptive mesh refinement in both codes, as well as the most promising directions for future developments
Geometrical influences on neoclassical magnetohydrodynamic tearing modes
International Nuclear Information System (INIS)
Kruger, S.E.; Hegna, C.C.; Callen, J.D.
1997-07-01
The influence of geometry on the pressure drives of nonideal magnetohydrodynamic tearing modes is presented. In order to study the effects of elongation, triangularity, and aspect ratio, three different machines are considered to provide a range of tokamak configurations: TFTR (circular), DIII-D (D-shaped), and Pegasus (extremely low aspect ratio). For large aspect ratio tokamaks, shaping does very little to influence the pressure gradient drives, while at low aspect ratios, a very strong sensitivity to the profiles is found. In particular, this sensitivity is connected to the strong dependence on the magnetic shear. This suggests that at low aspect ratio it may be possible to stabilize neoclassical tearing modes by flattening the q profile near low order rational surfaces (e.g., q = 2/1) using a combination of shaping and localized current drive, whereas at large aspect ratio it is more difficult
Magnetohydrodynamic Simulations of Black Hole Accretion
Avara, Mark J.
Black holes embody one of the few, simple, solutions to the Einstein field equations that describe our modern understanding of gravitation. In isolation they are small, dark, and elusive. However, when a gas cloud or star wanders too close, they light up our universe in a way no other cosmic object can. The processes of magnetohydrodynamics which describe the accretion inflow and outflows of plasma around black holes are highly coupled and nonlinear and so require numerical experiments for elucidation. These processes are at the heart of astrophysics since black holes, once they somehow reach super-massive status, influence the evolution of the largest structures in the universe. It has been my goal, with the body of work comprising this thesis, to explore the ways in which the influence of black holes on their surroundings differs from the predictions of standard accretion models. I have especially focused on how magnetization of the greater black hole environment can impact accretion systems.
Role of anisotropic thermal conductivity in the reversed-field pinch dynamics
International Nuclear Information System (INIS)
Onofri, M.; Malara, F.; Veltri, P.
2011-01-01
Two compressible magnetohydrodynamics simulations of the reversed-field pinch are performed, with isotropic and anisotropic thermal conductivity. We describe in detail the numerical method we use to reproduce the effect of a large parallel thermal conductivity, which makes magnetic field lines almost isothermal. We compare the results of the two simulations, showing that the anisotropic thermal conductivity causes the formation of a hot island when closed magnetic surfaces exist, while temperature becomes almost uniform when the magnetic field is chaotic. After a transient single-helicity state that is formed in the initial phase, a stationary state is reached where the RFP configuration exists in a multiple helicity state, even though the Hartmann number is below the threshold found in previous simulations for the formation of multiple helicity states.
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence...
On Equilibria of the Two-fluid Model in Magnetohydrodynamics
International Nuclear Information System (INIS)
Frantzeskakis, Dimitri J.; Stratis, Ioannis G.; Yannacopoulos, Athanasios N.
2004-01-01
We show how the equilibria of the two-fluid model in magnetohydrodynamics can be described by the double curl equation and through the study of this equation we study some properties of these equilibria
In Situ Magnetohydrodynamic Energy Generation for Planetary Entry Vehicles
Ali, H. K.; Braun, R. D.
2014-06-01
This work aims to study the suitability of multi-pass entry trajectories for harnessing of vehicle kinetic energy through magnetohydrodynamic power generation from the high temperature entry plasma. Potential mission configurations are analyzed.
Viscosity and Vorticity in Reduced Magneto-Hydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Joseph, Ilon [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-08-12
Magneto-hydrodynamics (MHD) critically relies on viscous forces in order for an accurate determination of the electric eld. For each charged particle species, the Braginskii viscous tensor for a magnetized plasma has the decomposition into matrices with special symmetries.
Single-particle dispersion in compressible turbulence
Zhang, Qingqing; Xiao, Zuoli
2018-04-01
Single-particle dispersion statistics in compressible box turbulence are studied using direct numerical simulation. Focus is placed on the detailed discussion of effects of the particle Stokes number and turbulent Mach number, as well as the forcing type. When solenoidal forcing is adopted, it is found that the single-particle dispersion undergoes a transition from the ballistic regime at short times to the diffusive regime at long times, in agreement with Taylor's particle dispersion argument. The strongest dispersion of heavy particles is announced when the Stokes number is of order 1, which is similar to the scenario in incompressible turbulence. The dispersion tends to be suppressed as the Mach number increases. When hybrid solenoidal and compressive forcing at a ratio of 1/2 is employed, the flow field shows apparent anisotropic property, characterized by the appearance of large shock wave structures. Accordingly, the single-particle dispersion shows extremely different behavior from the solenoidal forcing case.
Electron and ion magnetohydrodynamic effects in plasma opening switches
International Nuclear Information System (INIS)
Grossmann, J.M.; DeVore, C.R.; Ottinger, P.F.
1993-01-01
Preliminary results are presented of a numerical code designed to investigate electron and ion magnetohydrodynamic effects in plasma erosion opening switches. The present model is one-dimensional and resolves effects such as the JxB deformation of the plasma, and the penetration of magnetic field either by anomalous resistivity or electron magnetohydrodynamics (Hall effect). Comparisons with exact analytic results and experiment are made
Disadvantage factor for anisotropic scattering
International Nuclear Information System (INIS)
Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.
1990-01-01
The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters
Cracking on anisotropic neutron stars
Setiawan, A. M.; Sulaksono, A.
2017-07-01
We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Bruno Roberto
2005-09-01
Full Text Available In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Vincenzo Carbone
2013-05-01
Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
International Nuclear Information System (INIS)
Zhu, Jian-Zhou; Hammett, Gregory W.
2011-01-01
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Scaling, Intermittency and Decay of MHD Turbulence
International Nuclear Information System (INIS)
Lazarian, A.; Cho, Jungyeon
2005-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. Fifth, the intermittency of magnetic field and velocity are different. Both depend on whether the measurements are done in a local system of reference oriented along the local magnetic field or in the global system of reference related to the mean magnetic field
Magnetostatics of anisotropic superconducting ellipsoid
International Nuclear Information System (INIS)
Saif, A.G.
1987-09-01
The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs
Center for Extended Magnetohydrodynamic Modeling Cooperative Agreement
International Nuclear Information System (INIS)
Sovinec, Carl R.
2008-01-01
The Center for Extended Magnetohydrodynamic Modeling (CEMM) is developing computer simulation models for predicting the behavior of magnetically confined plasmas. Over the first phase of support from the Department of Energy's Scientific Discovery through Advanced Computing (SciDAC) initiative, the focus has been on macroscopic dynamics that alter the confinement properties of magnetic field configurations. The ultimate objective is to provide computational capabilities to predict plasma behavior - not unlike computational weather prediction - to optimize performance and to increase the reliability of magnetic confinement for fusion energy. Numerical modeling aids theoretical research by solving complicated mathematical models of plasma behavior including strong nonlinear effects and the influences of geometrical shaping of actual experiments. The numerical modeling itself remains an area of active research, due to challenges associated with simulating multiple temporal and spatial scales. The research summarized in this report spans computational and physical topics associated with state of the art simulation of magnetized plasmas. The tasks performed for this grant are categorized according to whether they are primarily computational, algorithmic, or application-oriented in nature. All involve the development and use of the Non-Ideal Magnetohydrodynamics with Rotation, Open Discussion (NIMROD) code, which is described at http://nimrodteam.org. With respect to computation, we have tested and refined methods for solving the large algebraic systems of equations that result from our numerical approximations of the physical model. Collaboration with the Terascale Optimal PDE Solvers (TOPS) SciDAC center led us to the SuperLU-DIST software library for solving large sparse matrices using direct methods on parallel computers. Switching to this solver library boosted NIMROD's performance by a factor of five in typical large nonlinear simulations, which has been publicized
Anisotropic nonequilibrium hydrodynamic attractor
Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.
2018-02-01
We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.
Converging cylindrical shocks in ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, R.
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ 0 /p 0 ) I/(2 π) where I is the current, μ 0 is the permeability, and p 0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.
2014-09-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Pullin, D. I.; Mostert, W.; Wheatley, V.; Samtaney, Ravi
2014-01-01
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R = √μ0/p0 I/(2π) where I is the current, μ0 is the permeability, and p0 is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The diverging magnetic field then
Converging cylindrical shocks in ideal magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Pullin, D. I. [Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, California 91125 (United States); Mostert, W.; Wheatley, V. [School of Mechanical and Mining Engineering, University of Queensland, Queensland 4072 (Australia); Samtaney, R. [Mechanical Engineering, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)
2014-09-15
We consider a cylindrically symmetrical shock converging onto an axis within the framework of ideal, compressible-gas non-dissipative magnetohydrodynamics (MHD). In cylindrical polar co-ordinates we restrict attention to either constant axial magnetic field or to the azimuthal but singular magnetic field produced by a line current on the axis. Under the constraint of zero normal magnetic field and zero tangential fluid speed at the shock, a set of restricted shock-jump conditions are obtained as functions of the shock Mach number, defined as the ratio of the local shock speed to the unique magnetohydrodynamic wave speed ahead of the shock, and also of a parameter measuring the local strength of the magnetic field. For the line current case, two approaches are explored and the results compared in detail. The first is geometrical shock-dynamics where the restricted shock-jump conditions are applied directly to the equation on the characteristic entering the shock from behind. This gives an ordinary-differential equation for the shock Mach number as a function of radius which is integrated numerically to provide profiles of the shock implosion. Also, analytic, asymptotic results are obtained for the shock trajectory at small radius. The second approach is direct numerical solution of the radially symmetric MHD equations using a shock-capturing method. For the axial magnetic field case the shock implosion is of the Guderley power-law type with exponent that is not affected by the presence of a finite magnetic field. For the axial current case, however, the presence of a tangential magnetic field ahead of the shock with strength inversely proportional to radius introduces a length scale R=√(μ{sub 0}/p{sub 0}) I/(2 π) where I is the current, μ{sub 0} is the permeability, and p{sub 0} is the pressure ahead of the shock. For shocks initiated at r ≫ R, shock convergence is first accompanied by shock strengthening as for the strictly gas-dynamic implosion. The
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
Orbital Advection with Magnetohydrodynamics and Vector Potential
International Nuclear Information System (INIS)
Lyra, Wladimir; McNally, Colin P.; Heinemann, Tobias; Masset, Frédéric
2017-01-01
Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.
Linear waves and stability in ideal magnetohydrodynamics
International Nuclear Information System (INIS)
Eckhoff, K.S.
1987-05-01
Linear waves superimposed on an arbitrary basic state in ideal magnetohydrodynamics are studied by an asymptotic expansion valid for short wavelenghts. The theory allows for a gravitational potential, and it may therefore be applied both in astrophysics and in problems related to thermonuclear fusion. The linearized equations for the perturbations of the basic state are found in the form of a symmetric hyperbolic system. This symmetric hyperbolic system is shown to possess characteristics of nonuniform multiplicity, which implies that waves of different types may interact. In particular it is shown that the mass waves, the Alf-n waves, and the slow magnetoacoustic waves will persistently interact in the exceptional case where the local wave number vector is perpendicular to the magnetic field. The equations describing this interaction are found in the form of a weakly coupled hyperbolic system. This weakly coupled hyperbloc system is studied in a number of special cases, and detailed analytic results are obtained for some such cases. The results show that the interaction of the waves may be one of the major causes of instability of the basic state. It seems beyond doubt that the interacting waves contain the physically relevant parts of the waves, which often are referred to as ballooning modes, including Suydam modes and Mercier modes
Magnetohydrodynamic instability in annular linear induction pump
International Nuclear Information System (INIS)
Araseki, Hideo; Kirillov, Igor R.; Preslitsky, Gennady V.; Ogorodnikov, Anatoly P.
2006-01-01
In the previous work, the authors showed some detailed aspects of the magnetohydrodynamic instability arising in an annular linear induction pump: the instability is accompanied with a low frequency pressure pulsation in the range of 0-10 Hz when the magnetic Reynolds number is larger than unity; the low frequency pressure pulsation is produced by the sodium vortices that come from some azimuthal non-uniformity of the applied magnetic field or of the sodium inlet velocity. In the present work, an experiment and a numerical analysis are carried out to verify the pump winding phase shift that is expected as an effective way to suppress the instability. The experimental data shows that the phase shift suppresses the instability unless the slip value is so high, but brings about a decrease of the developed pressure. The numerical results indicate that the phase shift causes a local decrease of the electromagnetic force, which results in the suppression of the instability and the decrease of the developed pressure. In addition, it is exhibited that the intensity of the double-supply-frequency pressure pulsation is in nearly the same level in the case with and without the phase shift
Orbital Advection with Magnetohydrodynamics and Vector Potential
Energy Technology Data Exchange (ETDEWEB)
Lyra, Wladimir [Department of Physics and Astronomy, California State University Northrige, 18111 Nordhoff Street, Northridge CA 91130 (United States); McNally, Colin P. [Astronomy Unit, School of Physics and Astronomy, Queen Mary University of London, Mile End Road, London E1 4NS (United Kingdom); Heinemann, Tobias [Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø (Denmark); Masset, Frédéric, E-mail: wlyra@csun.edu [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, 62210 Cuernavaca, Mor. (Mexico)
2017-10-01
Orbital advection is a significant bottleneck in disk simulations, and a particularly tricky one when used in connection with magnetohydrodynamics. We have developed an orbital advection algorithm suitable for the induction equation with magnetic potential. The electromotive force is split into advection and shear terms, and we find that we do not need an advective gauge since solving the orbital advection implicitly precludes the shear term from canceling the advection term. We prove and demonstrate the third order in time accuracy of the scheme. The algorithm is also suited to non-magnetic problems. Benchmarked results of (hydrodynamical) planet–disk interaction and of the magnetorotational instability are reproduced. We include detailed descriptions of the construction and selection of stabilizing dissipations (or high-frequency filters) needed to generate practical results. The scheme is self-consistent, accurate, and elegant in its simplicity, making it particularly efficient for straightforward finite-difference methods. As a result of the work, the algorithm is incorporated in the public version of the Pencil Code, where it can be used by the community.
Magneto-hydrodynamically stable axisymmetric mirrorsa)
Ryutov, D. D.; Berk, H. L.; Cohen, B. I.; Molvik, A. W.; Simonen, T. C.
2011-09-01
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Magneto-hydrodynamically stable axisymmetric mirrors
Energy Technology Data Exchange (ETDEWEB)
Ryutov, D. D.; Cohen, B. I.; Molvik, A. W. [Lawrence Livermore National Laboratory, Livermore, California 94551 (United States); Berk, H. L. [University of Texas, Austin, Texas 78712 (United States); Simonen, T. C. [University of California, Berkeley, California 94720 (United States)
2011-09-15
Making axisymmetric mirrors magnetohydrodynamically (MHD) stable opens up exciting opportunities for using mirror devices as neutron sources, fusion-fission hybrids, and pure-fusion reactors. This is also of interest from a general physics standpoint (as it seemingly contradicts well-established criteria of curvature-driven instabilities). The axial symmetry allows for much simpler and more reliable designs of mirror-based fusion facilities than the well-known quadrupole mirror configurations. In this tutorial, after a summary of classical results, several techniques for achieving MHD stabilization of the axisymmetric mirrors are considered, in particular: (1) employing the favorable field-line curvature in the end tanks; (2) using the line-tying effect; (3) controlling the radial potential distribution; (4) imposing a divertor configuration on the solenoidal magnetic field; and (5) affecting the plasma dynamics by the ponderomotive force. Some illuminative theoretical approaches for understanding axisymmetric mirror stability are described. The applicability of the various stabilization techniques to axisymmetric mirrors as neutron sources, hybrids, and pure-fusion reactors are discussed; and the constraints on the plasma parameters are formulated.
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.; Pullin, D. I.; Samtaney, Ravi; Wheatley, V.
2016-01-01
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
COUNTER-ROTATION IN RELATIVISTIC MAGNETOHYDRODYNAMIC JETS
Energy Technology Data Exchange (ETDEWEB)
Cayatte, V.; Sauty, C. [Laboratoire Univers et Théories, Observatoire de Paris, UMR 8102 du CNRS, Université Paris Diderot, F-92190 Meudon (France); Vlahakis, N.; Tsinganos, K. [Department of Astrophysics, Astronomy and Mechanics, Faculty of Physics, University of Athens, 15784 Zografos, Athens (Greece); Matsakos, T. [Department of Astronomy and Astrophysics, The University of Chicago, Chicago, IL 60637 (United States); Lima, J. J. G., E-mail: veronique.cayatte@obspm.fr [Centro de Astrofísica, Universidade do Porto, Rua das Estrelas, 4150-762 Porto (Portugal)
2014-06-10
Young stellar object observations suggest that some jets rotate in the opposite direction with respect to their disk. In a recent study, Sauty et al. showed that this does not contradict the magnetocentrifugal mechanism that is believed to launch such outflows. Motion signatures that are transverse to the jet axis, in two opposite directions, have recently been measured in M87. One possible interpretation of this motion is that of counter-rotating knots. Here, we extend our previous analytical derivation of counter-rotation to relativistic jets, demonstrating that counter-rotation can indeed take place under rather general conditions. We show that both the magnetic field and a non-negligible enthalpy are necessary at the origin of counter-rotating outflows, and that the effect is associated with a transfer of energy flux from the matter to the electromagnetic field. This can be realized in three cases: if a decreasing enthalpy causes an increase of the Poynting flux, if the flow decelerates, or if strong gradients of the magnetic field are present. An illustration of the involved mechanism is given by an example of a relativistic magnetohydrodynamic jet simulation.
Analysis of magnetohydrodynamic flow in annular duct
International Nuclear Information System (INIS)
Yoo, G.J.; Choi, H.K.; Eun, J.J.
2004-01-01
In various types of reactors, fluid is required to be circulated inside the vessel to be an efficient coolant. For flowing metal coolant the electromagnetic pump can be an efficient device for providing the driving force. Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in an electromagnetic pump. A finite volume method is applied to solve governing equations of magnetic field and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be affected by the phase of applied electric current and the magnitude of the Reynolds number. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The axial velocity distributions are represented with S-type profiles for the case of the r-direction of Lorentz force dominated flows. (authors)
Non-Taylor magnetohydrodynamic self-organization
International Nuclear Information System (INIS)
Zhu, Shao-ping; Horiuchi, Ritoku; Sato, Tetsuya.
1994-10-01
A self-organization process in a plasma with a finite pressure is investigated by means of a three-dimensional magnetohydrodynamic simulation. It is demonstrated that a non-Taylor finite β self-organized state is realized in which a perpendicular component of the electric current is generated and the force-free(parallel) current decreases until they reach to almost the same level. The self-organized state is described by an MHD force-balance relation, namely, j perpendicular = B x ∇p/B·B and j parallel = μB where μ is not a constant, and the pressure structure resembles the structure of the toroidal magnetic field intensity. Unless an anomalous perpendicular thermal conduction arises, the plasma cannot relax to a Taylor state but to a non-Taylor (non-force-free) self-organized state. This state becomes more prominent for a weaker resistivity condition. The non-Taylor state has a rather universal property, for example, independence of the initial β value. Another remarkable finding is that the Taylor's conjecture of helicity conservation is, in a strict sense, not valid. The helicity dissipation occurs and its rate slows down critically in accordance with the stepwise relaxation of the magnetic energy. It is confirmed that the driven magnetic reconnection caused by the nonlinearly excited plasma kink flows plays the leading role in all of these key features of the non-Taylor self-organization. (author)
Magnetohydrodynamic (MHD) simulation of solar prominence formation
International Nuclear Information System (INIS)
Bao, J.
1987-01-01
Formation of Kippenhahn-Schluter type solar prominences by chromospheric mass injection is studied via numerical simulation. The numerical model is based on a two-dimensional, time-dependent magnetohydrodynamic (MHD) theory. In addition, an analysis of gravitational thermal MHD instabilities related to condensation is performed by using the small-perturbation method. The conclusions are: (1) Both quiescent and active-region prominences can be formed by chromospheric mass injection, provided certain optimum conditions are satisfied. (2) Quiescent prominences cannot be formed without condensation, though enough mass is supplied from chromosphere. The mass of a quiescent prominence is composed of both the mass injected from the chromosphere and the mass condensed from the corona. On the other hand, condensation is not important to active region prominence formation. (3) In addition to channeling and supporting effects, the magnetic field plays another important role, i.e. containing the prominence material. (4) In the model cases, prominences are supported by the Lorentz force, the gas-pressure gradient and the mass-injection momentum. (5) Due to gravity, more MHD condensation instability modes appear in addition to the basic condensation mode
Geometrical shock dynamics for magnetohydrodynamic fast shocks
Mostert, W.
2016-12-12
We describe a formulation of two-dimensional geometrical shock dynamics (GSD) suitable for ideal magnetohydrodynamic (MHD) fast shocks under magnetic fields of general strength and orientation. The resulting area–Mach-number–shock-angle relation is then incorporated into a numerical method using pseudospectral differentiation. The MHD-GSD model is verified by comparison with results from nonlinear finite-volume solution of the complete ideal MHD equations applied to a shock implosion flow in the presence of an oblique and spatially varying magnetic field ahead of the shock. Results from application of the MHD-GSD equations to the stability of fast MHD shocks in two dimensions are presented. It is shown that the time to formation of triple points for both perturbed MHD and gas-dynamic shocks increases as (Formula presented.), where (Formula presented.) is a measure of the initial Mach-number perturbation. Symmetry breaking in the MHD case is demonstrated. In cylindrical converging geometry, in the presence of an azimuthal field produced by a line current, the MHD shock behaves in the mean as in Pullin et al. (Phys. Fluids, vol. 26, 2014, 097103), but suffers a greater relative pressure fluctuation along the shock than the gas-dynamic shock. © 2016 Cambridge University Press
Multiple time scale methods in tokamak magnetohydrodynamics
International Nuclear Information System (INIS)
Jardin, S.C.
1984-01-01
Several methods are discussed for integrating the magnetohydrodynamic (MHD) equations in tokamak systems on other than the fastest time scale. The dynamical grid method for simulating ideal MHD instabilities utilizes a natural nonorthogonal time-dependent coordinate transformation based on the magnetic field lines. The coordinate transformation is chosen to be free of the fast time scale motion itself, and to yield a relatively simple scalar equation for the total pressure, P = p + B 2 /2μ 0 , which can be integrated implicitly to average over the fast time scale oscillations. Two methods are described for the resistive time scale. The zero-mass method uses a reduced set of two-fluid transport equations obtained by expanding in the inverse magnetic Reynolds number, and in the small ratio of perpendicular to parallel mobilities and thermal conductivities. The momentum equation becomes a constraint equation that forces the pressure and magnetic fields and currents to remain in force balance equilibrium as they evolve. The large mass method artificially scales up the ion mass and viscosity, thereby reducing the severe time scale disparity between wavelike and diffusionlike phenomena, but not changing the resistive time scale behavior. Other methods addressing the intermediate time scales are discussed
Multicomponent diffusion in two-temperature magnetohydrodynamics
International Nuclear Information System (INIS)
Ramshaw, J.D.; Chang, C.H.
1996-01-01
A recent hydrodynamic theory of multicomponent diffusion in multitemperature gas mixtures [J. D. Ramshaw, J. Non-Equilib. Thermodyn. 18, 121 (1993)] is generalized to include the velocity-dependent Lorentz force on charged species in a magnetic field B. This generalization is used to extend a previous treatment of ambipolar diffusion in two-temperature multicomponent plasmas [J. D. Ramshaw and C. H. Chang, Plasma Chem. Plasma Process. 13, 489 (1993)] to situations in which B and the electrical current density are nonzero. General expressions are thereby derived for the species diffusion fluxes, including thermal diffusion, in both single- and two-temperature multicomponent magnetohydrodynamics (MHD). It is shown that the usual zero-field form of the Stefan-Maxwell equations can be preserved in the presence of B by introducing generalized binary diffusion tensors dependent on B. A self-consistent effective binary diffusion approximation is presented that provides explicit approximate expressions for the diffusion fluxes. Simplifications due to the small electron mass are exploited to obtain an ideal MHD description in which the electron diffusion coefficients drop out, resistive effects vanish, and the electric field reduces to a particularly simple form. This description should be well suited for numerical calculations. copyright 1996 The American Physical Society
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
Energy Technology Data Exchange (ETDEWEB)
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Redistribution of energetic particles by background turbulence
International Nuclear Information System (INIS)
Hauff, T.; Jenko, F.
2007-01-01
The quest to understand the turbulent transport of particles, momentum and energy in magnetized plasmas remains a key challenge in fusion research. A basic issue being .still relatively poorly understood is the turbulent ExB advection of charged test particles with large gyroradii. Especially the interaction of alpha particles or impurities with the background turbulence is of great interest. In order to understand the dependence of the particle diffusivity on the interaction mechanisms between FLR effects and the special structure of a certain type of turbulence, direct numerical simulations are done in artificially created two dimensional turbulent electrostatic fields, assuming a constant magnetic field. Finite gyroradius effects are introduced using the gyrokinetic approximation which means that the gyrating particle is simply replaced by a charged ring. Starting from an idealized isotropic potential with Gaussian autocorrelation function, numerous test particle simulations are done varying both the gyroradius and the Kubo number of the potential. It is found that for Kubo numbers larger than about unity, the particle diffusivity is almost independent of the gyroradius as long as the latter does not exceed the correlation length of the electrostatic potential, whereas for small Kubo numbers the diffusivity is monotonically reduced. The underlying physical mechanisms of this behavior are identified and an analytic approach is developed which favorably agrees with the simulation results. The investigations are extended by introducing anisotropic structures like streamers and zonal flows into the artificial potential, leading to quantitative modulations of the gyroradius dependence of the diffusion coefficient. Analytic models are used to explain these various effects. After having developed a general overview on the behavior in simplified artificial potentials, test particle simulations in realistic turbulence created by the gyrokinetic turbulence code GENE are
Toward the Theory of Turbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
Boldyrev, Stanislav
2013-01-01
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Graphical Turbulence Guidance - Composite
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Giant molecular cloud collisions as triggers of star formation. VI. Collision-induced turbulence
Wu, Benjamin; Tan, Jonathan C.; Nakamura, Fumitaka; Christie, Duncan; Li, Qi
2018-05-01
We investigate collisions between giant molecular clouds (GMCs) as potential generators of their internal turbulence. Using magnetohydrodynamic (MHD) simulations of self-gravitating, magnetized, turbulent GMCs, we compare kinematic and dynamic properties of dense gas structures formed when such clouds collide compared to those that form in non-colliding clouds as self-gravity overwhelms decaying turbulence. We explore the nature of turbulence in these structures via distribution functions of density, velocity dispersions, virial parameters, and momentum injection. We find that the dense clumps formed from GMC collisions have higher effective Mach number, greater overall velocity dispersions, sustain near-virial equilibrium states for longer times, and are the conduit for the injection of turbulent momentum into high density gas at high rates.
THE DECAY OF A WEAK LARGE-SCALE MAGNETIC FIELD IN TWO-DIMENSIONAL TURBULENCE
Energy Technology Data Exchange (ETDEWEB)
Kondić, Todor; Hughes, David W.; Tobias, Steven M., E-mail: t.kondic@leeds.ac.uk [Department of Applied Mathematics, University of Leeds, Leeds LS2 9JT (United Kingdom)
2016-06-01
We investigate the decay of a large-scale magnetic field in the context of incompressible, two-dimensional magnetohydrodynamic turbulence. It is well established that a very weak mean field, of strength significantly below equipartition value, induces a small-scale field strong enough to inhibit the process of turbulent magnetic diffusion. In light of ever-increasing computer power, we revisit this problem to investigate fluids and magnetic Reynolds numbers that were previously inaccessible. Furthermore, by exploiting the relation between the turbulent diffusion of the magnetic potential and that of the magnetic field, we are able to calculate the turbulent magnetic diffusivity extremely accurately through the imposition of a uniform mean magnetic field. We confirm the strong dependence of the turbulent diffusivity on the product of the magnetic Reynolds number and the energy of the large-scale magnetic field. We compare our findings with various theoretical descriptions of this process.
Environmental Development Plan (EDP): magnetohydrodynamics program, FY 1977
International Nuclear Information System (INIS)
1978-03-01
This magnetohydrodynamics (MHD) EDP identifies and examines the environmental, health, and safety issues concerning the development of the ERDA Magnetohydrodynamics Program, the environmental activities needed to resolve these issues, applicable ongoing and completed research, and a time-phased action plan for the evaluation and mitigation of environmental impacts. A schedule for environmental research, assessment, and other activities is laid out. The purpose of the EDP is to identify environmental issues and to specify actions to ensure the environmental acceptability of commercial energy technologies being developed by ERDA. The EDP also will assist in coordinating ERDA's environmental activities with those of other government agencies. This document addresses the following technologies associated with ERDA's MHD program: (1) open-cycle magnetohydrodynamics; (2) closed-cycle plasma magnetohydrodynamics; and (3) closed-cycle liquid metal magnetohydrodynamics. The proposed environmental action plan is designed to meet the following objectives: (1) develop methods for monitoring and measuring emissions; (2) characterize air emissions, water effluents, and solid wastes from MHD; (3) determine potential environmental impacts and health hazards associated with MHD; (4) model pollutant transport and transformation; (5) ensure adequate control of pollutant emissions; (6) identify and minimize occupational health and safety hazards; (7) prepare NEPA compliance documents; and (8) assess the environmental, health, and safety impacts of the commercialized industry. This EDP will be updated and revised annually to take into account the progress of technologies toward commercialization, the environmental work accomplished, and the resolution of outstanding environmental issues concerning the technologies
Dynamics of anisotropic tissue growth
Energy Technology Data Exchange (ETDEWEB)
Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de
2008-06-15
We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Numerical Hydrodynamics and Magnetohydrodynamics in General Relativity
Directory of Open Access Journals (Sweden)
Font José A.
2008-09-01
Full Text Available This article presents a comprehensive overview of numerical hydrodynamics and magnetohydrodynamics (MHD in general relativity. Some significant additions have been incorporated with respect to the previous two versions of this review (2000, 2003, most notably the coverage of general-relativistic MHD, a field in which remarkable activity and progress has occurred in the last few years. Correspondingly, the discussion of astrophysical simulations in general-relativistic hydrodynamics is enlarged to account for recent relevant advances, while those dealing with general-relativistic MHD are amply covered in this review for the first time. The basic outline of this article is nevertheless similar to its earlier versions, save for the addition of MHD-related issues throughout. Hence, different formulations of both the hydrodynamics and MHD equations are presented, with special mention of conservative and hyperbolic formulations well adapted to advanced numerical methods. A large sample of numerical approaches for solving such hyperbolic systems of equations is discussed, paying particular attention to solution procedures based on schemes exploiting the characteristic structure of the equations through linearized Riemann solvers. As previously stated, a comprehensive summary of astrophysical simulations in strong gravitational fields is also presented. These are detailed in three basic sections, namely gravitational collapse, black-hole accretion, and neutron-star evolutions; despite the boundaries, these sections may (and in fact do overlap throughout the discussion. The material contained in these sections highlights the numerical challenges of various representative simulations. It also follows, to some extent, the chronological development of the field, concerning advances in the formulation of the gravitational field, hydrodynamics and MHD equations and the numerical methodology designed to solve them. To keep the length of this article reasonable
Energy Technology Data Exchange (ETDEWEB)
Haverkort, J.W. [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090 GB Amsterdam (Netherlands); Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Blank, H.J. de [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Huysmans, G.T.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Pratt, J. [Dutch Institute for Fundamental Energy Research, P.O. Box 6336, 5600 HH Eindhoven (Netherlands); Koren, B., E-mail: b.koren@tue.nl [Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven (Netherlands)
2016-07-01
Numerical simulations form an indispensable tool to understand the behavior of a hot plasma that is created inside a tokamak for providing nuclear fusion energy. Various aspects of tokamak plasmas have been successfully studied through the reduced magnetohydrodynamic (MHD) model. The need for more complete modeling through the full MHD equations is addressed here. Our computational method is presented along with measures against possible problems regarding pollution, stability, and regularity. The problem of ensuring continuity of solutions in the center of a polar grid is addressed in the context of a finite element discretization of the full MHD equations. A rigorous and generally applicable solution is proposed here. Useful analytical test cases are devised to verify the correct implementation of the momentum and induction equation, the hyperdiffusive terms, and the accuracy with which highly anisotropic diffusion can be simulated. A striking observation is that highly anisotropic diffusion can be treated with the same order of accuracy as isotropic diffusion, even on non-aligned grids, as long as these grids are generated with sufficient care. This property is shown to be associated with our use of a magnetic vector potential to describe the magnetic field. Several well-known instabilities are simulated to demonstrate the capabilities of the new method. The linear growth rate of an internal kink mode and a tearing mode are benchmarked against the results of a linear MHD code. The evolution of a tearing mode and the resulting magnetic islands are simulated well into the nonlinear regime. The results are compared with predictions from the reduced MHD model. Finally, a simulation of a ballooning mode illustrates the possibility to use our method as an ideal MHD method without the need to add any physical dissipation.
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Energy Technology Data Exchange (ETDEWEB)
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Anisotropic hydrodynamics: Motivation and methodology
Energy Technology Data Exchange (ETDEWEB)
Strickland, Michael
2014-06-15
In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.
Anisotropic solutions by gravitational decoupling
Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.
2018-02-01
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.
Anisotropic solutions by gravitational decoupling
Energy Technology Data Exchange (ETDEWEB)
Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)
2018-02-15
We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)
Wang, Chi R.; Yeh, Frederick C.
1987-01-01
A theoretical analysis and numerical calculations for the turbulent flow field and for the effect of free-stream turbulence on the surface heat transfer rate of a stagnation flow are presented. The emphasis is on the modeling of turbulence and its augmentation of surface heat transfer rate. The flow field considered is the region near the forward stagnation point of a circular cylinder in a uniform turbulent mean flow. The free stream is steady and incompressible with a Reynolds number of the order of 10 to the 5th power and turbulence intensity of less than 5 percent. For this analysis, the flow field is divided into three regions: (1) a uniform free-stream region where the turbulence is homogeneous and isotropic; (2) an external viscid flow region where the turbulence is distorted by the variation of the mean flow velocity; and, (3) an anisotropic turbulent boundary layer region over the cylinder surface. The turbulence modeling techniques used are the kappa-epsilon two-equation model in the external flow region and the time-averaged turbulence transport equation in the boundary layer region. The turbulence double correlations, the mean velocity, and the mean temperature within the boundary layer are solved numerically from the transport equations. The surface heat transfer rate is calculated as functions of the free-stream turbulence longitudinal microlength scale, the turbulence intensity, and the Reynolds number.
Variational formulation of relaxed and multi-region relaxed magnetohydrodynamics
Dewar, R. L.; Yoshida, Z.; Bhattacharjee, A.; Hudson, S. R.
2015-12-01
> Ideal magnetohydrodynamics (IMHD) is strongly constrained by an infinite number of microscopic constraints expressing mass, entropy and magnetic flux conservation in each infinitesimal fluid element, the latter preventing magnetic reconnection. By contrast, in the Taylor relaxation model for formation of macroscopically self-organized plasma equilibrium states, all these constraints are relaxed save for the global magnetic fluxes and helicity. A Lagrangian variational principle is presented that leads to a new, fully dynamical, relaxed magnetohydrodynamics (RxMHD), such that all static solutions are Taylor states but also allows state with flow. By postulating that some long-lived macroscopic current sheets can act as barriers to relaxation, separating the plasma into multiple relaxation regions, a further generalization, multi-region relaxed magnetohydrodynamics (MRxMHD) is developed.
Radiation-magnetohydrodynamics of fusion plasmas on parallel supercomputers
International Nuclear Information System (INIS)
Yasar, O.; Moses, G.A.; Tautges, T.J.
1993-01-01
A parallel computational model to simulate fusion plasmas in the radiation-magnetohydrodynamics (R-MHD) framework is presented. Plasmas are often treated in a fluid dynamics context (magnetohydrodynamics, MHD), but when the flow field is coupled with the radiation field it falls into a more complex category, radiation magnetohydrodynamics (R-MHD), where the interaction between the flow field and the radiation field is nonlinear. The solution for the radiation field usually dominates the R-MHD computation. To solve for the radiation field, one usually chooses the S N discrete ordinates method (a deterministic method) rather than the Monte Carlo method if the geometry is not complex. The discrete ordinates method on a massively parallel processor (Intel iPSC/860) is implemented. The speedup is 14 for a run on 16 processors and the performance is 3.7 times better than a single CRAY YMP processor implementation. (orig./DG)
International Nuclear Information System (INIS)
Le Roux, J. A.
2011-01-01
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Energy Technology Data Exchange (ETDEWEB)
Le Roux, J. A. [Department of Physics, University of Alabama in Huntsville, Huntsville, AL 35899 (United States)
2011-12-10
Earlier work based on nonlinear guiding center (NLGC) theory suggested that perpendicular cosmic-ray transport is diffusive when cosmic rays encounter random three-dimensional magnetohydrodynamic turbulence dominated by uniform two-dimensional (2D) turbulence with a minor uniform slab turbulence component. In this approach large-scale perpendicular cosmic-ray transport is due to cosmic rays microscopically diffusing along the meandering magnetic field dominated by 2D turbulence because of gyroresonant interactions with slab turbulence. However, turbulence in the solar wind is intermittent and it has been suggested that intermittent turbulence might be responsible for the observation of 'dropout' events in solar energetic particle fluxes on small scales. In a previous paper le Roux et al. suggested, using NLGC theory as a basis, that if gyro-scale slab turbulence is intermittent, large-scale perpendicular cosmic-ray transport in weak uniform 2D turbulence will be superdiffusive or subdiffusive depending on the statistical characteristics of the intermittent slab turbulence. In this paper we expand and refine our previous work further by investigating how both parallel and perpendicular transport are affected by intermittent slab turbulence for weak as well as strong uniform 2D turbulence. The main new finding is that both parallel and perpendicular transport are the net effect of an interplay between diffusive and nondiffusive (superdiffusive or subdiffusive) transport effects as a consequence of this intermittency.
Characterizing electrostatic turbulence in tokamak plasmas with high MHD activity
Energy Technology Data Exchange (ETDEWEB)
Guimaraes-Filho, Z O; Santos Lima, G Z dos; Caldas, I L; Nascimento, I C; Kuznetsov, Yu K [Instituto de Fisica, Universidade de Sao Paulo, Caixa Postal 66316, 05315-970, Sao Paulo, SP (Brazil); Viana, R L, E-mail: viana@fisica.ufpr.b [Departamento de Fisica, Universidade Federal do Parana, Caixa Postal 19044, 81531-990, Curitiba, PR (Brazil)
2010-09-01
One of the challenges in obtaining long lasting magnetic confinement of fusion plasmas in tokamaks is to control electrostatic turbulence near the vessel wall. A necessary step towards achieving this goal is to characterize the turbulence level and so as to quantify its effect on the transport of energy and particles of the plasma. In this paper we present experimental results on the characterization of electrostatic turbulence in Tokamak Chauffage Alfven Bresilien (TCABR), operating in the Institute of Physics of University of Sao Paulo, Brazil. In particular, we investigate the effect of certain magnetic field fluctuations, due to magnetohydrodynamical (MHD) instabilities activity, on the spectral properties of electrostatic turbulence at plasma edge. In some TCABR discharges we observe that this MHD activity may increase spontaneously, following changes in the edge safety factor, or after changes in the radial electric field achieved by electrode biasing. During the high MHD activity, the magnetic oscillations and the plasma edge electrostatic turbulence present several common linear spectral features with a noticeable dominant peak in the same frequency. In this article, dynamical analyses were applied to find other alterations on turbulence characteristics due to the MHD activity and turbulence enhancement. A recurrence quantification analysis shows that the turbulence determinism radial profile is substantially changed, becoming more radially uniform, during the high MHD activity. Moreover, the bicoherence spectra of these two kinds of fluctuations are similar and present high bicoherence levels associated with the MHD frequency. In contrast with the bicoherence spectral changes, that are radially localized at the plasma edge, the turbulence recurrence is broadly altered at the plasma edge and the scrape-off layer.
Failure in imperfect anisotropic materials
DEFF Research Database (Denmark)
Legarth, Brian Nyvang
2005-01-01
The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...
Magnetic relaxation in anisotropic magnets
DEFF Research Database (Denmark)
Lindgård, Per-Anker
1971-01-01
The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....
The structure of turbulence in a rapid tidal flow.
Milne, I A; Sharma, R N; Flay, R G J
2017-08-01
The structure of turbulence in a rapid tidal flow is characterized through new observations of fundamental statistical properties at a site in the UK which has a simple geometry and sedate surface wave action. The mean flow at the Sound of Islay exceeded 2.5 m s -1 and the turbulent boundary layer occupied the majority of the water column, with an approximately logarithmic mean velocity profile identifiable close to the seabed. The anisotropic ratios, spectral scales and higher-order statistics of the turbulence generally agree well with values reported for two-dimensional open channels in the laboratory and other tidal channels, therefore providing further support for the application of universal models. The results of the study can assist in developing numerical models of turbulence in rapid tidal flows such as those proposed for tidal energy generation.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K
2013-09-21
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Benchmarking and scaling studies of pseudospectral code Tarang for turbulence simulations
VERMA, MAHENDRA K; CHATTERJEE, ANANDO; REDDY, K SANDEEP; YADAV, RAKESH K; PAUL, SUPRIYO; CHANDRA, MANI; Samtaney, Ravi
2013-01-01
Tarang is a general-purpose pseudospectral parallel code for simulating flows involving fluids, magnetohydrodynamics, and Rayleigh–Bénard convection in turbulence and instability regimes. In this paper we present code validation and benchmarking results of Tarang. We performed our simulations on 10243, 20483, and 40963 grids using the HPC system of IIT Kanpur and Shaheen of KAUST. We observe good ‘weak’ and ‘strong’ scaling for Tarang on these systems.
Asymptotic study of a magneto-hydro-dynamic system
International Nuclear Information System (INIS)
Benameur, J.; Ibrahim, S.; Majdoub, M.
2003-01-01
In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T 3 , the proof is based on Schochet's methods, whereas in the case of the whole space R 3 , we use Strichartz's type estimates. (author)
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, Alexandra; Koster, Sander; Hogen-Koster, S.; Eijkel, Jan C.T.; van den Berg, Albert; Lucklum, F.; Verpoorte, E.; de Rooij, Nico F.
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-µm-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a micromachined
A high current density DC magnetohydrodynamic (MHD) micropump
Homsy, A; Koster, Sander; Eijkel, JCT; van den Berg, A; Lucklum, F; Verpoorte, E; de Rooij, NF
2005-01-01
This paper describes the working principle of a DC magnetohydrodynamic (MHD) micropump that can be operated at high DC current densities (J) in 75-mu m-deep microfluidic channels without introducing gas bubbles into the pumping channel. The main design feature for current generation is a
Magnetohydrodynamic free convection in a strong cross field
Kuiken, H.K.
1970-01-01
The problem of magnetohydrodynamic free convection of an electrically conducting fluid in a strong cross field is investigated. It is solved by using a singular perturbation technique. The solutions presented cover the range of Prandtl numbers from zero to order one. This includes both the important
Spectral calculations in magnetohydrodynamics using the Jacobi-Davidson method
Belien, A. J. C.; van der Holst, B.; Nool, M.; van der Ploeg, A.; Goedbloed, J. P.
2001-01-01
For the solution of the generalized complex non-Hermitian eigenvalue problems Ax = lambda Bx occurring in the spectral study of linearized resistive magnetohydrodynamics (MHD) a new parallel solver based on the recently developed Jacobi-Davidson [SIAM J. Matrix Anal. Appl. 17 (1996) 401] method has
Asymptotic study of a magneto-hydro-dynamic system
Energy Technology Data Exchange (ETDEWEB)
Benameur, J [Institut Preparatoire aux Etudes d' Ingenieurs de Monastir (Tunisia); Ibrahim, S [Faculte des Sciences de Bizerte, Departement de Mathematiques, Bizerte (TN); [Abdus Salam International Centre for Theoretical Physics, Trieste (Italy)]. E-mail: slim.ibrahim@fsb.rnu.tn; Majdoub, M [Faculte des Sciences de Tunis, Departement de Mathematiques, Tunis (Tunisia)
2003-01-01
In this paper, we study the convergence of solutions of a Magneto-Hydro-Dynamic system. On the torus T{sup 3}, the proof is based on Schochet's methods, whereas in the case of the whole space R{sup 3}, we use Strichartz's type estimates. (author)
Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities
International Nuclear Information System (INIS)
Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.
1978-01-01
Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field
Axisymmetric toroidal equilibrium with flow and anisotropic pressure
International Nuclear Information System (INIS)
Iacono, R.; Bondeson, A.; Troyon, F.; Gruber, R.
1989-10-01
Axisymmetric toroidal plasma equilibria with mass flows and anisotropic pressure are investigated. The equilibrium system is derived for a general functional form of the pressures, which includes both fluid models, such as the magnetohydrodynamic (MHD) and the double-adiabatic models, and Grad's guiding centre model. This allows for detailed comparisons between the models and clarifies how the 'first hyperbolic region', occurring in the fluid theory when the poloidal flow is of the order of the poloidal sound speed, can be eliminated in guiding centre theory. In the case of a pure toroidal rotation, macroscopic equations of state are derived from the guiding centre model, characterized by a parallel temperature that is constant on each magnetic surface and a perpendicular temperature that varies with the magnetic field. The outward centrifugal shifts of the magnetic axis and of the mass density profile, due to toroidal rotation, are increased by anisotropy. The guiding centre model shows that poloidal flow produces an inward shift of the density profile, in contrast with the MHD result. (author) 1 fig., 1 tab., 17 refs
PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS
International Nuclear Information System (INIS)
Burkhart, Blakesley; Lazarian, A.; Gaensler, B. M.
2012-01-01
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|∇P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |∇P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |∇P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |∇P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |∇P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now expected for the warm ionized medium.
PROPERTIES OF INTERSTELLAR TURBULENCE FROM GRADIENTS OF LINEAR POLARIZATION MAPS
Energy Technology Data Exchange (ETDEWEB)
Burkhart, Blakesley; Lazarian, A. [Astronomy Department, University of Wisconsin, Madison, 475 N. Charter St., WI 53711 (United States); Gaensler, B. M. [Sydney Institute for Astronomy, School of Physics, University of Sydney, NSW 2006 (Australia)
2012-04-20
Faraday rotation of linearly polarized radio signals provides a very sensitive probe of fluctuations in the interstellar magnetic field and ionized gas density resulting from magnetohydrodynamic (MHD) turbulence. We used a set of statistical tools to analyze images of the spatial gradient of linearly polarized radio emission (|{nabla}P|) for both observational data from a test image of the Southern Galactic Plane Survey (SGPS) and isothermal three-dimensional simulations of MHD turbulence. Visually, in both observations and simulations, a complex network of filamentary structures is seen. Our analysis shows that the filaments in |{nabla}P| can be produced both by interacting shocks and random fluctuations characterizing the non-differentiable field of MHD turbulence. The latter dominates for subsonic turbulence, while the former is only present in supersonic turbulence. We show that supersonic and subsonic turbulence exhibit different distributions as well as different morphologies in the maps of |{nabla}P|. Particularly, filaments produced by shocks show a characteristic 'double jump' profile at the sites of shock fronts resulting from delta function-like increases in the density and/or magnetic field, while those produced by subsonic turbulence show a single jump profile. In order to quantitatively characterize these differences, we use the topology tool known as the genus curve as well as the probability distribution function moments of the image distribution. We find that higher values for the moments correspond to cases of |{nabla}P| with larger sonic Mach numbers. The genus analysis of the supersonic simulations of |{nabla}P| reveals a 'swiss cheese' topology, while the subsonic cases have characteristics of a 'clump' topology. Based on the analysis of the genus and the higher order moments, the SGPS test region data have a distribution and morphology that match subsonic- to transonic-type turbulence, which confirms what is now
GRILLIX. A 3D turbulence code for magnetic fusion devices based on a field line map
International Nuclear Information System (INIS)
Stegmeir, Andreas Korbinian
2015-01-01
The complex geometry in the scrape-off layer of tokamaks poses problems to existing turbulence codes. The usually employed field aligned coordinates become ill defined at the separatrix. Therefore the parallel code GRILLIX was developed, which is based on a field line map. This allows simulations in additional complex geometries, especially across the separatrix. A new discretisation, based on the support operator method, for the highly anisotropic diffusion was developed and applied to a simple turbulence model (Hasegawa-Wakatani).
International Nuclear Information System (INIS)
Morley, N.B.; Gaizer, A.A.; Tillack, M.S.; Abdou, M.A.
1995-01-01
Free surface thin film flows of liquid metal were investigated experimentally in the presence of a coplanar magnetic field. This investigation was performed in a new magnetohydrodynamic (MHD) flow facility, the MeGA-loop, utilizing a low melting temperature lead-bismuth alloy as the working metal. Owing to the relatively low magnetic field produced by the present field coil system, the ordinary hydrodynamic and low MHD interaction regimes only were investigated. At the high flow speeds necessary for self cooling, the importance of a well designed and constructed channel becomes obvious. Partial MHD drag, increasing the film height, is observed as Haβ 2 becomes greater than unity. MHD laminarization of the turbulent film flows is observed when Haβ/Re>0.002, but fully laminar flow was not reached. Suggestions for facility upgrades to achieve greater MHD interaction are presented in the context of these initial results. (orig.)
Effective Ohm's law for a magnetohydrodynamic plasma
International Nuclear Information System (INIS)
Kayukawa, Naoyuki; Oikawa, Shunichi; Aoki, Yoshiyuki
1991-01-01
Considering that the electrical conductivity of a thermally equilibrium MHD plasma is a strong non-linear function of the gas temperature, the authors first pointed out that the statistically averaged conductivity should be evaluated by the mean temperature as =(1+G)σ( ), where G is given by the third order Taylor expansion with respect to the temperature fluctuation T- and is always positive. Next, in order to obtain a statistically averaged Ohm's law for a turbulent plasma, the correlation (σ'E'> between the conductivity and the electric field fluctuations has been numerically investigated for a plasma with a 1/7th-power average temperature distribution and layered one-dimensional fluctuation between parallel electrodes. It was shown that the correlation is always negative and the averaged current density as well as the plasma resistance is to be corrected appreciably from the values based on the mean temperature. Finally, it was shown that the correction factor / can be evaluated approximately by a 4th-order polynomial of the relative rms temperature fluctuation √ 2 >/ and the relationship is practically insensitive to the variation of the electrode temperature, the boundary-layer thickness and also to the spatial distribution of the fluctuation amplitudes. (author)
Holographic models with anisotropic scaling
Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.
2013-12-01
We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.
Anisotropic inflation with derivative couplings
Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne
2018-05-01
We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.
Anisotropic models for compact stars
Energy Technology Data Exchange (ETDEWEB)
Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)
2015-05-15
In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)
Anisotropic Ripple Deformation in Phosphorene.
Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng
2015-05-07
Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.
Anisotropic charged generalized polytropic models
Nasim, A.; Azam, M.
2018-06-01
In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.
Compression of turbulent magnetized gas in giant molecular clouds
Birnboim, Yuval; Federrath, Christoph; Krumholz, Mark
2018-01-01
Interstellar gas clouds are often both highly magnetized and supersonically turbulent, with velocity dispersions set by a competition between driving and dissipation. This balance has been studied extensively in the context of gases with constant mean density. However, many astrophysical systems are contracting under the influence of external pressure or gravity, and the balance between driving and dissipation in a contracting, magnetized medium has yet to be studied. In this paper, we present three-dimensional magnetohydrodynamic simulations of compression in a turbulent, magnetized medium that resembles the physical conditions inside molecular clouds. We find that in some circumstances the combination of compression and magnetic fields leads to a rate of turbulent dissipation far less than that observed in non-magnetized gas, or in non-compressing magnetized gas. As a result, a compressing, magnetized gas reaches an equilibrium velocity dispersion much greater than would be expected for either the hydrodynamic or the non-compressing case. We use the simulation results to construct an analytic model that gives an effective equation of state for a coarse-grained parcel of the gas, in the form of an ideal equation of state with a polytropic index that depends on the dissipation and energy transfer rates between the magnetic and turbulent components. We argue that the reduced dissipation rate and larger equilibrium velocity dispersion has important implications for the driving and maintenance of turbulence in molecular clouds and for the rates of chemical and radiative processes that are sensitive to shocks and dissipation.
On temperature spectra in grid turbulence
International Nuclear Information System (INIS)
Jayesh; Tong, C.; Warhaft, Z.
1994-01-01
This paper reports wind tunnel measurements of passive temperature spectra in decaying grid generated turbulence both with and without a mean transverse temperature gradient. The measurements cover a turbulence Reynolds number range 60 l 3/4 l . The remarkably low Reynolds number onset (Re l ∼70) of Kolmogorov--Obukhov--Corrsin scaling in isotropic grid turbulence is contrasted to the case of scalars in (anisotropic) shear flows where KOC scaling only appears at very high-Reynolds numbers (Re l ∼10 5 ). It is also shown that when the temperature fluctuations are inserted very close to the grid in the absence of a gradient (by means of a mandoline), the temperature spectrum behaves in a similar way to the linear gradient case, i.e., a spectrum with a scaling exponent close to -5/3 is observed, a result noted earlier in heated grid experiments. However, when the scalar is inserted farther downstream of the grid (in the fully developed turbulence), the spectrum has a scaling region of -1.3 and its dilation with Re is less well defined than for the other cases. The velocity spectrum is also shown to have a scaling region, of slope -1.3, and its onset occurs at higher Reynolds number than for the case of the scalar experiments that exhibit the KOC scaling
MHD from a Microscopic Concept and Onset of Turbulence in Hartmann Flow
International Nuclear Information System (INIS)
Jirkovsky, L.; Bo-ot, L. Ma.; Chiang, C. M.
2010-01-01
We derive higher order magneto-hydrodynamic (MHD) equations from a microscopic picture using projection and perturbation formalism. In an application to Hartmann flow we find velocity profiles flattening towards the center at the onset of turbulence in hydrodynamic limit. Comparison with the system under the effect of a uniform magnetic field yields difference in the onset of turbulence consistent with observations, showing that the presence of magnetic field inhibits onset of instability or turbulence. The laminar-turbulent transition is demonstrated in a phase transition plot of the development in time of the relative average velocities vs. Reynolds number showing a sharp increase of the relative average velocity at the transition point as determined by the critical Reynolds number. (physics of gases, plasmas, and electric discharges)
Anisotropic superfluidity of hadronic matter
International Nuclear Information System (INIS)
Chela Flores, J.
1977-10-01
From a model of strong interactions with important general features (f-g model) and from recent experiments of Rudnick and co-workers on thin films of helium II, hadronic matter is considered as a new manifestation of anisotropic superfluidity. In order to test the validity of the suggestion, some qualitative features of multiparticle production of hadrons are considered, and found to have a natural explanation. A prediction is made following a recent experiment on π + p collisions
Anisotropic characterization of magnetorheological materials
Energy Technology Data Exchange (ETDEWEB)
Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.
2017-06-01
For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and
Cracking of anisotropic cylindrical polytropes
Energy Technology Data Exchange (ETDEWEB)
Mardan, S.A. [University of the Management and Technology, Department of Mathematics, Lahore (Pakistan); Azam, M. [University of Education, Division of Science and Technology, Lahore (Pakistan)
2017-06-15
We study the appearance of cracking in charged anisotropic cylindrical polytropes with generalized polytropic equation. We investigate the existence of cracking in two different kinds of polytropes existing in the literature through two different assumptions: (a) local density perturbation with conformally flat condition, and (b) perturbing polytropic index, charge and anisotropy parameters. We conclude that cracking appears in both kinds of polytropes for a specific range of density and model parameters. (orig.)
Process reactor based on a magnetohydrodynamically-stimulated supersonic gas turbulence
International Nuclear Information System (INIS)
1975-01-01
A method is discussed for inducing a rotation in an ionized gas to obtain a high pressure gradient in a reactor vessel. A mixture of fission compounds (e.g. UF 6 ) and light gases (e.g. He, Ar) is used instead of uranium vapours which require temperatures up to 10,000 K. The method may not only be used to control a fission reaction but also for isotopic enrichment and reprocessing of fission products
International Nuclear Information System (INIS)
Seyler, C. E.; Martin, M. R.
2011-01-01
It is shown that the two-fluid model under a generalized Ohm's law formulation and the resistive magnetohydrodynamics (MHD) can both be described as relaxation systems. In the relaxation model, the under-resolved stiff source terms constrain the dynamics of a set of hyperbolic equations to give the correct asymptotic solution. When applied to the collisional two-fluid model, the relaxation of fast time scales associated with displacement current and finite electron mass allows for a natural transition from a system where Ohm's law determines the current density to a system where Ohm's law determines the electric field. This result is used to derive novel algorithms, which allow for multiscale simulation of low and high frequency extended-MHD physics. This relaxation formulation offers an efficient way to implicitly advance the Hall term and naturally simulate a plasma-vacuum interface without invoking phenomenological models. The relaxation model is implemented as an extended-MHD code, which is used to analyze pulsed power loads such as wire arrays and ablating foils. Two-dimensional simulations of pulsed power loads are compared for extended-MHD and MHD. For these simulations, it is also shown that the relaxation model properly recovers the resistive-MHD limit.
Energy Technology Data Exchange (ETDEWEB)
Shi, Mijie; Xiao, Chijie; Wang, Xiaogang [State Key Laboratory of Nuclear Physics and Technology, Fusion Simulation Center, School of Physics, Peking University, Beijing 100871 (China); Li, Hui, E-mail: cjxiao@pku.edu.cn [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States)
2017-06-10
We perform three-dimensional ideal magnetohydrodynamic (MHD) simulations to study the parametric decay instability (PDI) of Alfvén waves in turbulent plasmas and explore its possible applications in the solar wind. We find that, over a broad range of parameters in background turbulence amplitudes, the PDI of an Alfvén wave with various amplitudes can still occur, though its growth rate in turbulent plasmas tends to be lower than both the theoretical linear theory prediction and that in the non-turbulent situations. Spatial–temporal FFT analyses of density fluctuations produced by the PDI match well with the dispersion relation of the slow MHD waves. This result may provide an explanation of the generation mechanism of slow waves in the solar wind observed at 1 au. It further highlights the need to explore the effects of density variations in modifying the turbulence properties as well as in heating the solar wind plasmas.
Radiation magnetohydrodynamic simulations of the formation of hot accretion disk coronae
Energy Technology Data Exchange (ETDEWEB)
Jiang, Yan-Fei [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Stone, James M. [Department of Astrophysical Sciences, Princeton University, Princeton, NJ 08544 (United States); Davis, Shane W. [Canadian Institute for Theoretical Astrophysics. Toronto, ON M5S3H4 (Canada)
2014-04-01
A new mechanism to form a magnetic pressure supported, high temperature corona above the photosphere of an accretion disk is explored using three dimensional radiation magnetohydrodynamic (MHD) simulations. The thermal properties of the disk are calculated self-consistently by balancing radiative cooling through the surfaces of the disk with heating due to dissipation of turbulence driven by magneto-rotational instability (MRI). As has been noted in previous work, we find the dissipation rate per unit mass increases dramatically with height above the mid-plane, in stark contrast to the α-disk model which assumes this quantity is a constant. Thus, we find that in simulations with a low surface density (and therefore a shallow photosphere), the fraction of energy dissipated above the photosphere is significant (about 3.4% in our lowest surface density model), and this fraction increases as surface density decreases. When a significant fraction of the accretion energy is dissipated in the optically thin photosphere, the gas temperature increases substantially and a high temperature, magnetic pressure supported corona is formed. The volume-averaged temperature in the disk corona is more than 10 times larger than at the disk mid-plane. Moreover, gas temperature in the corona is strongly anti-correlated with gas density, which implies the corona formed by MRI turbulence is patchy. This mechanism to form an accretion disk corona may help explain the observed relation between the spectral index and luminosity from active galactic nucleus (AGNs), and the soft X-ray excess from some AGNs. It may also be relevant to spectral state changes in X-ray binaries.
A new linear plasma device for the study of plasma waves in the electron magnetohydrodynamics regime
Joshi, Garima; Ravi, G.; Mukherjee, S.
2018-06-01
A new, user-friendly, linear plasma device has been developed in our laboratory where a quiescent (Δ n/n ≈ 1%), low temperature (1-10 eV), pulsed (3-10 ms) plasma can be produced over a large uniform region of 30-40 cm diameter and 40 cm length. Salient features of the device include the flexibility of tuning the plasma density in the range of 10^{10} to 10^{12} cm^{-3} and capability of scanning the plasma and field parameters in two dimensions with a precision of electromagnetic field parameters by miniature magnetic probes and Rogowski coils. The plasma produced is uniform and essentially unbounded for performing experiments on waves and turbulence. The whole device can be operated single-handedly by undergraduate or graduate students. The device can be opened, serviced, new antennas/probes installed and ready for operation in a matter of hours. Some results on the excitation of electromagnetic structures in the context of electron magnetohydrodynamics (EMHD) are also presented to demonstrate the suitability of the device for carrying out such experiments.
Inoue, Tsuyoshi; Hennebelle, Patrick; Fukui, Yasuo; Matsumoto, Tomoaki; Iwasaki, Kazunari; Inutsuka, Shu-ichiro
2018-05-01
Recent observations suggest an that intensive molecular cloud collision can trigger massive star/cluster formation. The most important physical process caused by the collision is a shock compression. In this paper, the influence of a shock wave on the evolution of a molecular cloud is studied numerically by using isothermal magnetohydrodynamics simulations with the effect of self-gravity. Adaptive mesh refinement and sink particle techniques are used to follow the long-time evolution of the shocked cloud. We find that the shock compression of a turbulent inhomogeneous molecular cloud creates massive filaments, which lie perpendicularly to the background magnetic field, as we have pointed out in a previous paper. The massive filament shows global collapse along the filament, which feeds a sink particle located at the collapse center. We observe a high accretion rate \\dot{M}_acc> 10^{-4} M_{⊙}yr-1 that is high enough to allow the formation of even O-type stars. The most massive sink particle achieves M > 50 M_{⊙} in a few times 105 yr after the onset of the filament collapse.
High Reynolds Number Turbulence
National Research Council Canada - National Science Library
Smits, Alexander J
2007-01-01
The objectives of the grant were to provide a systematic study to fill the gap between existing research on low Reynolds number turbulent flows to the kinds of turbulent flows encountered on full-scale vehicles...
DEFF Research Database (Denmark)
Brand, Arno J.; Peinke, Joachim; Mann, Jakob
2011-01-01
The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed.......The nature of turbulent flow towards, near and behind a wind turbine, the effect of turbulence on the electricity production and the mechanical loading of individual and clustered wind turbines, and some future issues are discussed....
International Nuclear Information System (INIS)
Ohira, H.; Ara, K.
2002-11-01
Advanced electromagnetic components are investigated in Feasibility Studies on Commercialized FR Cycle System to apply to the main cooling systems of Liquid Metal Fast Reactor. Although a lot of experiments and numerical analysis were carried out on both high Reynolds numbers and high magnetic Reynolds numbers, the complex phenomena could not be evaluated in detail. As the first step of the development of the numerical methods for the liquid metal magnetohydrodynamics, we investigated numerical methods that could be applied to the electromagnetic components with both complex structures and high magnetic turbulent field. As a result, we selected GSMAC (Generalized-Simplified MArker and Cell) method for calculating the liquid metal fluid dynamics because it could be easily applied to the complex flow field. We also selected the vector-FEM for calculating the magnetic field of the large components because the method had no interaction procedure. In the high magnetic turbulent field, the dynamic-SGS models would be also a promising model for the good estimation, because it could calculate the field directly without any experimental constant. In order to verify the GSMAC and the vector-FEM, we developed the 2D numerical models and calculated the magnetohydrodynamics in the large electromagnetic pump. It was estimated from these results that the methods were basically reasonable, because the calculated pressure differences had the similar tendencies to the experimental ones. (author)
Fractional Transport in Strongly Turbulent Plasmas
Isliker, Heinz; Vlahos, Loukas; Constantinescu, Dana
2017-07-01
We analyze statistically the energization of particles in a large scale environment of strong turbulence that is fragmented into a large number of distributed current filaments. The turbulent environment is generated through strongly perturbed, 3D, resistive magnetohydrodynamics simulations, and it emerges naturally from the nonlinear evolution, without a specific reconnection geometry being set up. Based on test-particle simulations, we estimate the transport coefficients in energy space for use in the classical Fokker-Planck (FP) equation, and we show that the latter fails to reproduce the simulation results. The reason is that transport in energy space is highly anomalous (strange), the particles perform Levy flights, and the energy distributions show extended power-law tails. Newly then, we motivate the use and derive the specific form of a fractional transport equation (FTE), we determine its parameters and the order of the fractional derivatives from the simulation data, and we show that the FTE is able to reproduce the high energy part of the simulation data very well. The procedure for determining the FTE parameters also makes clear that it is the analysis of the simulation data that allows us to make the decision whether a classical FP equation or a FTE is appropriate.
International Nuclear Information System (INIS)
Goldman, M.V.
1984-01-01
After a brief discussion of beam-excited Langmuir turbulence in the solar wind, we explain the criteria for wave-particle, three-wave and strong turbulence interactions. We then present the results of a numerical integration of the Zakharov equations, which describe the strong turbulence saturation of a weak (low-density) high energy, bump-on-tail beam instability. (author)
International Nuclear Information System (INIS)
Zhu, Zhaohuan; Stone, James M.
2014-01-01
We study particle trapping at the edge of a gap opened by a planet in a protoplanetary disk. In particular, we explore the effects of turbulence driven by the magnetorotational instability on particle trapping, using global three-dimensional magnetohydrodynamic (MHD) simulations including Lagrangian dust particles. We study disks either in the ideal MHD limit or dominated by ambipolar diffusion (AD) which plays an essential role at the outer regions of a protoplanetary disk. With ideal MHD, strong turbulence (the equivalent viscosity parameter α ∼ 10 –2 ) in disks prevents vortex formation at the edge of the gap opened by a 9 M J planet, and most particles (except the particles that drift fastest) pile up at the outer gap edge almost axisymmetrically. When AD is considered, turbulence is significantly suppressed (α ≲ 10 –3 ), and a large vortex forms at the edge of the planet induced gap, which survives ∼1000 orbits. The vortex can efficiently trap dust particles that span 3 orders of magnitude in size within 100 planetary orbits. We have also carried out two-dimensional hydrodynamical (HD) simulations using viscosity as an approximation to MHD turbulence. These HD simulations can reproduce vortex generation at the gap edge as seen in MHD simulations. Finally, we use our simulation results to generate synthetic images for ALMA dust continuum observations on Oph IRS 48 and HD 142527, which show good agreement with existing observations. Predictions for future ALMA cycle 2 observations have been made. We conclude that the asymmetry in ALMA observations can be explained by dust trapping vortices and the existence of vortices could be the evidence that the outer protoplanetary disks are dominated by AD with α < 10 –3 at the disk midplane.
Numerical evaluation of high energy particle effects in magnetohydrodynamics
International Nuclear Information System (INIS)
White, R.B.; Wu, Y.
1994-03-01
The interaction of high energy ions with magnetohydrodynamic modes is analyzed. A numerical code is developed which evaluates the contribution of the high energy particles to mode stability using orbit averaging of motion in either analytic or numerically generated equilibria through Hamiltonian guiding center equations. A dispersion relation is then used to evaluate the effect of the particles on the linear mode. Generic behavior of the solutions of the dispersion relation is discussed and dominant contributions of different components of the particle distribution function are identified. Numerical convergence of Monte-Carlo simulations is analyzed. The resulting code ORBIT provides an accurate means of comparing experimental results with the predictions of kinetic magnetohydrodynamics. The method can be extended to include self consistent modification of the particle orbits by the mode, and hence the full nonlinear dynamics of the coupled system
Theory of magnetohydrodynamic waves: The WKB approximation revisited
International Nuclear Information System (INIS)
Barnes, A.
1992-01-01
Past treatments of the eikonal or WKB theory of the propagation of magnetohydrodynamics waves have assumed a strictly isentropic background. IF in fact there is a gradient in the background entropy, then in second order in the WKB ordering, adiabatic fluctuations (in the Lagrangian sense) are not strictly isentropic in the Eulerian sense. This means that in the second order of the WKB expansion, which determines the variation of wave amplitude along rays, the violation of isentropy must be accounted for. The present paper revisits the derivation of the WKB approximation for small-amplitude magnetohydrodynamic waves, allowing for possible spatial variation of the background entropy. The equation of variation of wave amplitude is rederived; it is a bilinear equation which, it turns out, can be recast in the action conservation form. It is shown that this action conservation equation is in fact equivalent to the action conservation law obtained from Lagrangian treatments
Energy Technology Data Exchange (ETDEWEB)
Takahashi, Hiroyuki R. [Center for Computational Astrophysics, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan); Ohsuga, Ken [Division of Theoretical Astronomy, National Astronomical Observatory of Japan, Mitaka, Tokyo 181-8588 (Japan)
2013-08-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 Multiplication-Sign 4 matrices (for the gas-radiation interaction) and 3 Multiplication-Sign 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag.
International Nuclear Information System (INIS)
Takahashi, Hiroyuki R.; Ohsuga, Ken
2013-01-01
We develop a numerical scheme for solving fully special relativistic, resistive radiation magnetohydrodynamics. Our code guarantees conservation of total mass, momentum, and energy. The radiation energy density and the radiation flux are consistently updated using the M-1 closure method, which can resolve an anisotropic radiation field, in contrast to the Eddington approximation, as well as the flux-limited diffusion approximation. For the resistive part, we adopt a simple form of Ohm's law. The advection terms are explicitly solved with an approximate Riemann solver, mainly the Harten-Lax-van Leer scheme; the HLLC and HLLD schemes are also solved for some tests. The source terms, which describe the gas-radiation interaction and the magnetic energy dissipation, are implicitly integrated, relaxing the Courant-Friedrichs-Lewy condition even in an optically thick regime or a large magnetic Reynolds number regime. Although we need to invert 4 × 4 matrices (for the gas-radiation interaction) and 3 × 3 matrices (for the magnetic energy dissipation) at each grid point for implicit integration, they are obtained analytically without preventing massive parallel computing. We show that our code gives reasonable outcomes in numerical tests for ideal magnetohydrodynamics, propagating radiation, and radiation hydrodynamics. We also applied our resistive code to the relativistic Petschek-type magnetic reconnection, revealing the reduction of the reconnection rate via radiation drag
International Nuclear Information System (INIS)
Burke, B. J.; Kruger, S. E.; Hegna, C. C.; Zhu, P.; Snyder, P. B.; Sovinec, C. R.; Howell, E. C.
2010-01-01
A linear benchmark between the linear ideal MHD stability codes ELITE [H. R. Wilson et al., Phys. Plasmas 9, 1277 (2002)], GATO [L. Bernard et al., Comput. Phys. Commun. 24, 377 (1981)], and the extended nonlinear magnetohydrodynamic (MHD) code, NIMROD [C. R. Sovinec et al.., J. Comput. Phys. 195, 355 (2004)] is undertaken for edge-localized (MHD) instabilities. Two ballooning-unstable, shifted-circle tokamak equilibria are compared where the stability characteristics are varied by changing the equilibrium plasma profiles. The equilibria model an H-mode plasma with a pedestal pressure profile and parallel edge currents. For both equilibria, NIMROD accurately reproduces the transition to instability (the marginally unstable mode), as well as the ideal growth spectrum for a large range of toroidal modes (n=1-20). The results use the compressible MHD model and depend on a precise representation of 'ideal-like' and 'vacuumlike' or 'halo' regions within the code. The halo region is modeled by the introduction of a Lundquist-value profile that transitions from a large to a small value at a flux surface location outside of the pedestal region. To model an ideal-like MHD response in the core and a vacuumlike response outside the transition, separate criteria on the plasma and halo Lundquist values are required. For the benchmarked equilibria the critical Lundquist values are 10 8 and 10 3 for the ideal-like and halo regions, respectively. Notably, this gives a ratio on the order of 10 5 , which is much larger than experimentally measured values using T e values associated with the top of the pedestal and separatrix. Excellent agreement with ELITE and GATO calculations are made when sharp boundary transitions in the resistivity are used and a small amount of physical dissipation is added for conditions very near and below marginal ideal stability.
Magnetohydrodynamic cosmologies with a Bertotti-Robinson limit
International Nuclear Information System (INIS)
Portugal, R.; Soares, I.D.
1986-01-01
A class of cosmological solutions of Einstein-Maxwell equations, which have the Bertotti-Robinson model as an asymptotic configuration is presented. The novel feature of the models is the presence of a conductivity current in Maxwell equations characterizing a regime of magnetohydrodynamics. Exact analytical solutions are exhibited and the solutions may be used as the interior model for the collapse of a self-gravitating bounded fluid with electric conductivity. (Author) [pt
Numerical solution of the resistive magnetohydrodynamic boundary-layer equations
International Nuclear Information System (INIS)
Glasser, A.H.; Jardin, S.C.; Tesauro, G.
1983-10-01
Three different techniques are presented for numerical solution of the equations governing the boundary layer of resistive magnetohydrodynamic tearing and interchange instabilities in toroidal geometry. Excellent agreement among these methods and with analytical results provides confidence in the correctness of the results. Solutions obtained in regimes where analytical medthods fail indicate a new scaling for the tearing mode as well as the existence of a new regime of stability
Vanishing Shear Viscosity Limit in the Magnetohydrodynamic Equations
Fan, Jishan; Jiang, Song; Nakamura, Gen
2007-03-01
We study an initial boundary value problem for the equations of plane magnetohydrodynamic compressible flows, and prove that as the shear viscosity goes to zero, global weak solutions converge to a solution of the original equations with zero shear viscosity. As a by-product, this paper improves the related results obtained by Frid and Shelukhin for the case when the magnetic effect is neglected.
Thermal shocks and magnetohydrodynamics in high power mercury jet targets
Lettry, Jacques; Gilardoni, S S; Benedikt, Michael; Farhat, M; Robert, E
2003-01-01
The response of mercury samples submitted to a pulsed proton beam and the magnetohydrodynamic (MHD) effects of a mercury jet injected into a 20 T magnetic field are reported. The experimental conditions differ from those of proposed neutrino factories and the purpose of these measurements is to provide benchmarks for simulation tools of a realistic free mercury jet target. These measurements were completed in June 2002. Analysis is ongoing and the presented results are preliminary. (12 refs).
Energy Technology Data Exchange (ETDEWEB)
Brett, Walter
2014-07-21
In the presented work the Kelvin-Helmholtz-Instability in magnetohydrodynamic flows is analyzed with the methods of Multiple Scales. The concerned fluids are incompressible or have a varying density perpendicular to the vortex sheet, which is taken into account using a Boussinesq-Approximation and constant Brunt-Vaeisaelae-Frequencies. The Multiple Scale Analysis leads to nonlinear evolution equations for the amplitude of the perturbations. Special solutions to these equations are presented and the effects of the magnetic fields are discussed.
Neutron transfer with anisotropic scattering
International Nuclear Information System (INIS)
El Wakil, S.A.; Haggag, M.H.; Saad, E.A.
1979-01-01
The finite slab problem is reduced to a semi-infinite one by adding an infinitesimally thick layer such that both the added layer and the total layer are semi-infinite. The relation between the reflection and transmission functions for a finite slab and those for an infinite one are obtained in terms of an operator which satisfies a semigroup equation. The method is applied to anisotropic scattering with azimuthal dependence. Numerical calculations are made and the results compared with those of other workers. (author)
Anisotropic densification of reference steel
International Nuclear Information System (INIS)
Garner, F.A.; Bates, J.F.; Gilbert, E.R.
1975-09-01
A correlation is presented for the densification expected during neutron irradiation of 20 percent CW 316 stainless steel cladding of FTR specification. The densification is known to be a function of time, prior heat treatment, cold work level, irradiation temperature and minor element composition. For FTR fuel pin use, the temperature and carbon composition were chosen as the only relevant variables on which to base the correlation. The densification of FTR cladding is expected to be slightly anisotropic, leading to a diameter change somewhat less than that predicted by the isotropic relationship ΔD = -D 0 /3
Anisotropic and nonlinear optical waveguides
Someda, CG
1992-01-01
Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an
Progress in turbulence research
International Nuclear Information System (INIS)
Bradshaw, P.
1990-01-01
Recent developments in experiments and eddy simulations, as an introduction to a discussion of turbulence modeling for engineers is reviewed. The most important advances in the last decade rely on computers: microcomputers to control laboratory experiments, especially for multidimensional imaging, and supercomputers to simulate turbulence. These basic studies in turbulence research are leading to genuine breakthroughs in prediction methods for engineers and earth scientists. The three main branches of turbulence research: experiments, simulations (numerically-accurate three-dimensional, time-dependent solutions of the Navier-Stokes equations, with any empiricism confined to the smallest eddies), and modeling (empirical closure of time-averaged equations for turbulent flow) are discussed. 33 refs
Homogeneous turbulence dynamics
Sagaut, Pierre
2018-01-01
This book provides state-of-the-art results and theories in homogeneous turbulence, including anisotropy and compressibility effects with extension to quantum turbulence, magneto-hydodynamic turbulence and turbulence in non-newtonian fluids. Each chapter is devoted to a given type of interaction (strain, rotation, shear, etc.), and presents and compares experimental data, numerical results, analysis of the Reynolds stress budget equations and advanced multipoint spectral theories. The role of both linear and non-linear mechanisms is emphasized. The link between the statistical properties and the dynamics of coherent structures is also addressed. Despite its restriction to homogeneous turbulence, the book is of interest to all people working in turbulence, since the basic physical mechanisms which are present in all turbulent flows are explained. The reader will find a unified presentation of the results and a clear presentation of existing controversies. Special attention is given to bridge the results obta...
DEFF Research Database (Denmark)
Gilling, Lasse
of resolved inflow turbulence on airfoil simulations in CFD. The detached-eddy simulation technique is used because it can resolve the inflow turbulence without becoming too computationally expensive due to its limited requirements for mesh resolution in the boundary layer. It cannot resolve the turbulence......Wind turbines operate in inflow turbulence whether it originates from the shear in the atmospheric boundary layer or from the wake of other wind turbines. Consequently, the airfoils of the wings experience turbulence in the inflow. The main topic of this thesis is to investigate the effect...... that is formed in attached boundary layers, but the freestream turbulence can penetrate the boundary layer. The idea is that the resolved turbulence from the freestream should mix high momentum flow into the boundary layer and thereby increase the resistance against separation and increase the maximum lift...
International Nuclear Information System (INIS)
Throumoulopoulos, G.N.; Tasso, H.
2003-01-01
The equilibrium of an axisymmetric magnetically confined plasma with anisotropic resistivity and incompressible flows parallel to the magnetic field is investigated within the framework of the magnetohydrodynamic (MHD) theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order elliptic partial differential equation for the poloidal magnetic flux function ψ along with a decoupled Bernoulli equation for the pressure identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the resistivities η (parallel) and η (perpendicular) parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic resistivity and parallel flows [G. N. Throumoulopoulos and H. Tasso, J. Plasma Phys. 64, 601 (2000)] the equilibrium is compatible with nonvanishing poloidal current densities. Also, although exactly Spitzer resistivities either η (parallel) (ψ) or η (perpendicular) (ψ) are not allowed, exact solutions with vanishing poloidal electric fields can be constructed with η (parallel) and η (perpendicular) profiles compatible with roughly collisional resistivity profiles, i.e., profiles having a minimum close to the magnetic axis, taking very large values on the boundary and such that η (perpendicular) >η (parallel) . For equilibria with vanishing flows satisfying the relation (dP/dψ)(dI 2 /dψ)>0, where P and I are the pressure and the poloidal current functions, the difference η (perpendicular) -η (parallel) for the reversed-field pinch scaling, B p ≅B t , is nearly two times larger than that for the tokamak scaling, B p ≅0.1B t (B p and B t are the poloidal and toroidal magnetic-field components). The particular resistive equilibrium solutions obtained in the present work, inherently free of - but not inconsistent with - Pfirsch-Schlueter diffusion, indicate that
Throumoulopoulos, G. N.; Tasso, H.
2003-06-01
The equilibrium of an axisymmetric magnetically confined plasma with anisotropic resistivity and incompressible flows parallel to the magnetic field is investigated within the framework of the magnetohydrodynamic (MHD) theory by keeping the convective flow term in the momentum equation. It turns out that the stationary states are determined by a second-order elliptic partial differential equation for the poloidal magnetic flux function ψ along with a decoupled Bernoulli equation for the pressure identical in form with the respective ideal MHD equations; equilibrium consistent expressions for the resistivities η∥ and η⊥ parallel and perpendicular to the magnetic field are also derived from Ohm's and Faraday's laws. Unlike in the case of stationary states with isotropic resistivity and parallel flows [G. N. Throumoulopoulos and H. Tasso, J. Plasma Phys. 64, 601 (2000)] the equilibrium is compatible with nonvanishing poloidal current densities. Also, although exactly Spitzer resistivities either η∥(ψ) or η⊥(ψ) are not allowed, exact solutions with vanishing poloidal electric fields can be constructed with η∥ and η⊥ profiles compatible with roughly collisional resistivity profiles, i.e., profiles having a minimum close to the magnetic axis, taking very large values on the boundary and such that η⊥>η∥. For equilibria with vanishing flows satisfying the relation (dP/dψ)(dI2/dψ)>0, where P and I are the pressure and the poloidal current functions, the difference η⊥-η∥ for the reversed-field pinch scaling, Bp≈Bt, is nearly two times larger than that for the tokamak scaling, Bp≈0.1Bt (Bp and Bt are the poloidal and toroidal magnetic-field components). The particular resistive equilibrium solutions obtained in the present work, inherently free of—but not inconsistent with—Pfirsch-Schlüter diffusion, indicate that parallel flows might result in a reduction of the diffusion observed in magnetically confined plasmas.
Electromagnetism on anisotropic fractal media
Ostoja-Starzewski, Martin
2013-04-01
Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.
Sur, Shouvik; Lee, Sung-Sik
2016-11-01
We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.
Hydromagnetic waves, turbulence, and collisionless processes in the interplanetary medium
International Nuclear Information System (INIS)
Barnes, A.
1983-01-01
The solar wind does not flow quietly. It seethes and undulates, fluctuating on time scales that range from the solar rotation period down to fractions of milliseconds. Most of the power in interplanetary waves and turbulence lies at hydromagnetic scales. These fluctuations are normally of large amplitude, containing enough energy to affect solar and galactic cosmic rays, and may be the remnants of a coronal turbulence field powerful enough to play a major role in accelerating the solar wind itself. The origin and evolution of interplanetary hydromagnetic waves and turbulence, and their influence on the large-scale dynamics of the solar wind are among the most fundamental questions of solar-terrestrial physics. First hydrodynamic waves and turbulences in the interplanetary medium are discussed in two sections, respectively. Because the length and time scales for hydromagnetic fluctuations are very much smaller than the corresponding Coulomb collision scales of the plasma ions and electrons, the interplanetary variations are modelled as fluctuations in a magnetohydrodynamic fluid. In the last section, collisionless phenomena are discussed. They are of qualitative significance. (Auth.)
Convection causes enhanced magnetic turbulence in accretion disks in outburst
Energy Technology Data Exchange (ETDEWEB)
Hirose, Shigenobu [Department of Mathematical Science and Advanced Technology, JAMSTEC, Yokohama, Kanagawa 236-0001 (Japan); Blaes, Omer; Coleman, Matthew S. B. [Department of Physics, University of California, Santa Barbara, CA 93106 (United States); Krolik, Julian H. [Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218 (United States); Sano, Takayoshi, E-mail: shirose@jamstec.go.jp [Institute of Laser Engineering, Osaka University, Suita, Osaka 565-0871 (Japan)
2014-05-20
We present the results of local, vertically stratified, radiation magnetohydrodynamic (MHD) shearing box simulations of magneto-rotational instability (MRI) turbulence appropriate for the hydrogen ionizing regime of dwarf nova and soft X-ray transient outbursts. We incorporate the frequency-integrated opacities and equation of state for this regime, but neglect non-ideal MHD effects and surface irradiation, and do not impose net vertical magnetic flux. We find two stable thermal equilibrium tracks in the effective temperature versus surface mass density plane, in qualitative agreement with the S-curve picture of the standard disk instability model. We find that the large opacity at temperatures near 10{sup 4} K, a corollary of the hydrogen ionization transition, triggers strong, intermittent thermal convection on the upper stable branch. This convection strengthens the magnetic turbulent dynamo and greatly enhances the time-averaged value of the stress to thermal pressure ratio α, possibly by generating vertical magnetic field that may seed the axisymmetric MRI, and by increasing cooling so that the pressure does not rise in proportion to the turbulent dissipation. These enhanced stress to pressure ratios may alleviate the order of magnitude discrepancy between the α-values observationally inferred in the outburst state and those that have been measured from previous local numerical simulations of magnetorotational turbulence that lack net vertical magnetic flux.
Kelvin-Helmholtz instability: the ``atom'' of geophysical turbulence?
Smyth, William
2017-11-01
Observations of small-scale turbulence in Earth's atmosphere and oceans have most commonly been interpreted in terms of the Kolmogorov theory of isotropic turbulence, despite the fact that the observed turbulence is significantly anisotropic due to density stratification and sheared large-scale flows. I will describe an alternative picture in which turbulence consists of distinct events that occur sporadically in space and time. The simplest model for an individual event is the ``Kelvin-Helmholtz (KH) ansatz'', in which turbulence relieves the dynamic instability of a localized shear layer. I will summarize evidence that the KH ansatz is a valid description of observed turbulence events, using microstructure measurements from the equatorial Pacific ocean as an example. While the KH ansatz has been under study for many decades and is reasonably well understood, the bigger picture is much less clear. How are the KH events distributed in space and time? How do different events interact with each other? I will describe some tentative steps toward a more thorough understanding.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain
2014-01-01
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Nonlinear constitutive relations for anisotropic elastic materials
Sokolova, Marina; Khristich, Dmitrii
2018-03-01
A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.
Efficient Wavefield Extrapolation In Anisotropic Media
Alkhalifah, Tariq
2014-07-03
Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.
Energy Technology Data Exchange (ETDEWEB)
Resende, P.R. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Dr. Roberto Frias s/n, 4200-465 Porto (Portugal)]. E-mail: resende@fe.up.pt; Escudier, M.P. [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom)]. E-mail: escudier@liv.ac.uk; Presti, F [Department of Engineering, University of Liverpool, Brownlow Street, Liverpool L69 3GH (United Kingdom); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@dem.uminho.pt; Cruz, D.O.A. [Departamento de Engenharia Mecanica, Universidade Federal do Para-UFPa Campus Universitario do Guama, 66075-900 Belem, Para (Brazil)]. E-mail: doac@ufpa.br
2006-04-15
An anisotropic low Reynolds number k-{epsilon} turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow.
International Nuclear Information System (INIS)
Resende, P.R.; Escudier, M.P.; Presti, F; Pinho, F.T.; Cruz, D.O.A.
2006-01-01
An anisotropic low Reynolds number k-ε turbulence model has been developed and its performance compared with experimental data for fully-developed turbulent pipe flow of four different polymer solutions. Although the predictions of friction factor, mean velocity and turbulent kinetic energy show only slight improvements over those of a previous isotropic model [Cruz, D.O.A., Pinho, F.T., Resende, P.R., 2004. Modeling the new stress for improved drag reduction predictions of viscoelastic pipe flow. J. Non-Newt. Fluid Mech. 121, 127-141], the new turbulence model is capable of predicting the enhanced anisotropy of the Reynolds normal stresses that accompanies polymer drag reduction in turbulent flow
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
Energy Technology Data Exchange (ETDEWEB)
Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)
2017-04-20
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
International Nuclear Information System (INIS)
Heusen, M.; Shalchi, A.
2017-01-01
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Stability of anisotropic stellar filaments
Bhatti, M. Zaeem-ul-Haq; Yousaf, Z.
2017-12-01
The study of perturbation of self-gravitating celestial cylindrical object have been carried out in this paper. We have designed a framework to construct the collapse equation by formulating the modified field equations with the background of f(R , T) theory as well as dynamical equations from the contracted form of Bianchi identities with anisotropic matter configuration. We have encapsulated the radial perturbations on metric and material variables of the geometry with some known static profile at Newtonian and post-Newtonian regimes. We examined a strong dependence of unstable regions on stiffness parameter which measures the rigidity of the fluid. Also, the static profile and matter variables with f(R , T) dark source terms control the instability of compact cylindrical system.
Warm anisotropic inflationary universe model
International Nuclear Information System (INIS)
Sharif, M.; Saleem, Rabia
2014-01-01
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Warm anisotropic inflationary universe model
Energy Technology Data Exchange (ETDEWEB)
Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)
2014-02-15
This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)
Turbulence generation by waves
Energy Technology Data Exchange (ETDEWEB)
Kaftori, D.; Nan, X.S.; Banerjee, S. [Univ. of California, Santa Barbara, CA (United States)
1995-12-31
The interaction between two-dimensional mechanically generated waves, and a turbulent stream was investigated experimentally in a horizontal channel, using a 3-D LDA synchronized with a surface position measuring device and a micro-bubble tracers flow visualization with high speed video. Results show that although the wave induced orbital motion reached all the way to the wall, the characteristics of the turbulence wall structures and the turbulence intensity close to the wall were not altered. Nor was the streaky nature of the wall layer. On the other hand, the mean velocity profile became more uniform and the mean friction velocity was increased. Close to the free surface, the turbulence intensity was substantially increased as well. Even in predominantly laminar flows, the introduction of 2-D waves causes three dimensional turbulence. The turbulence enhancement is found to be proportional to the wave strength.
Vaidya, Bhargav; Prasad, Deovrat; Mignone, Andrea; Sharma, Prateek; Rickler, Luca
2017-12-01
An important ingredient in numerical modelling of high temperature magnetized astrophysical plasmas is the anisotropic transport of heat along magnetic field lines from higher to lower temperatures. Magnetohydrodynamics typically involves solving the hyperbolic set of conservation equations along with the induction equation. Incorporating anisotropic thermal conduction requires to also treat parabolic terms arising from the diffusion operator. An explicit treatment of parabolic terms will considerably reduce the simulation time step due to its dependence on the square of the grid resolution (Δx) for stability. Although an implicit scheme relaxes the constraint on stability, it is difficult to distribute efficiently on a parallel architecture. Treating parabolic terms with accelerated super-time-stepping (STS) methods has been discussed in literature, but these methods suffer from poor accuracy (first order in time) and also have difficult-to-choose tuneable stability parameters. In this work, we highlight a second-order (in time) Runge-Kutta-Legendre (RKL) scheme (first described by Meyer, Balsara & Aslam 2012) that is robust, fast and accurate in treating parabolic terms alongside the hyperbolic conversation laws. We demonstrate its superiority over the first-order STS schemes with standard tests and astrophysical applications. We also show that explicit conduction is particularly robust in handling saturated thermal conduction. Parallel scaling of explicit conduction using RKL scheme is demonstrated up to more than 104 processors.
Increasing Black Hole Feedback-induced Quenching with Anisotropic Thermal Conduction
Energy Technology Data Exchange (ETDEWEB)
Kannan, Rahul; Vogelsberger, Mark [Department of Physics, Kavli Institute for Astrophysics and Space Research, Massachusetts Institute of Technology, Cambridge 02139, MA (United States); Pfrommer, Christoph; Weinberger, Rainer; Springel, Volker; Pakmor, Rüdiger [Heidelberg Institute for Theoretical Studies, Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg (Germany); Hernquist, Lars [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Puchwein, Ewald, E-mail: kannanr@mit.edu [Institute of Astronomy and Kavli Institute for Cosmology, University of Cambridge, Madingley Road, Cambridge, CB3 0HA (United Kingdom)
2017-03-10
Feedback from central supermassive black holes is often invoked to explain the low star formation rates (SFRs) in the massive galaxies at the centers of galaxy clusters. However, the detailed physics of the coupling of the injected feedback energy with the intracluster medium (ICM) is still unclear. Using high-resolution magnetohydrodynamic cosmological simulations of galaxy cluster formation, we investigate the role of anisotropic thermal conduction in shaping the thermodynamic structure of clusters, and in particular, in modifying the impact of black hole feedback. Stratified anisotropically conducting plasmas are formally always unstable, and thus more prone to mixing, an expectation borne out by our results. The increased mixing efficiently isotropizes the injected feedback energy, which in turn significantly improves the coupling between the feedback energy and the ICM. This facilitates an earlier disruption of the cool-core, reduces the SFR by more than an order of magnitude, and results in earlier quenching despite an overall lower amount of feedback energy injected into the cluster core. With conduction, the metallicity gradients and dispersions are lowered, aligning them better with observational constraints. These results highlight the important role of thermal conduction in establishing and maintaining the quiescence of massive galaxies.
Electron Scale Structures and Magnetic Reconnection Signatures in the Turbulent Magnetosheath
Yordanova, E.; Voros, Z.; Varsani, A.; Graham, D. B.; Norgren, C.; Khotyaintsev, Yu. V.; Vaivads, A.; Eriksson, E.; Nakamura, R.; Lindqvist, P.-A.;
2016-01-01
Collisionless space plasma turbulence can generate reconnecting thin current sheets as suggested by recent results of numerical magnetohydrodynamic simulations. The Magnetospheric Multiscale (MMS) mission provides the first serious opportunity to verify whether small ion-electron-scale reconnection, generated by turbulence, resembles the reconnection events frequently observed in the magnetotail or at the magnetopause. Here we investigate field and particle observations obtained by the MMS fleet in the turbulent terrestrial magnetosheath behind quasi-parallel bow shock geometry. We observe multiple small-scale current sheets during the event and present a detailed look of one of the detected structures. The emergence of thin current sheets can lead to electron scale structures. Within these structures, we see signatures of ion demagnetization, electron jets, electron heating, and agyrotropy suggesting that MMS spacecraft observe reconnection at these scales.
TURBULENCE-GENERATED PROTON-SCALE STRUCTURES IN THE TERRESTRIAL MAGNETOSHEATH
Energy Technology Data Exchange (ETDEWEB)
Vörös, Zoltán; Narita, Yasuhito [Space Research Institute, Austrian Academy of Sciences, Graz (Austria); Yordanova, Emiliya [Swedish Institute of Space Physics, Uppsala (Sweden); Echim, Marius M. [Belgian Institute for Space Aeronomy, Bruxelles (Belgium); Consolini, Giuseppe, E-mail: zoltan.voeroes@oeaw.ac.at [INAF-Istituto di Astrofisica e Planetologia Spaziali, Roma (Italy)
2016-03-01
Recent results of numerical magnetohydrodynamic simulations suggest that in collisionless space plasmas, turbulence can spontaneously generate thin current sheets. These coherent structures can partially explain the intermittency and the non-homogenous distribution of localized plasma heating in turbulence. In this Letter, Cluster multi-point observations are used to investigate the distribution of magnetic field discontinuities and the associated small-scale current sheets in the terrestrial magnetosheath downstream of a quasi-parallel bow shock. It is shown experimentally, for the first time, that the strongest turbulence-generated current sheets occupy the long tails of probability distribution functions associated with extremal values of magnetic field partial derivatives. During the analyzed one-hour time interval, about a hundred strong discontinuities, possibly proton-scale current sheets, were observed.
Plasma Turbulence General Topics
Energy Technology Data Exchange (ETDEWEB)
Kadomtsev, B. B. [Nuclear Energy Institute, Academy of Sciences of the USSR, Moscow, USSR (Russian Federation)
1965-06-15
It is known that under experimental conditions plasma often shows chaotic motion. Such motion, when many degrees of freedom are excited to levels considerably above the thermal level, will be called turbulent. The properties of turbulent plasma in many respects differ from the properties of laminar plasma. It can be said that the appearance of various anomalies in plasma behaviour indicates the presence of turbulence in plasma. In order to verify directly the presence of turbulent motion in plasma we must, however, measure the fluctuation of some microscopic parameters in plasma.
Computation of multi-region relaxed magnetohydrodynamic equilibria
Energy Technology Data Exchange (ETDEWEB)
Hudson, S. R.; Lazerson, S. [Princeton Plasma Physics Laboratory, P.O. Box 451, Princeton, New Jersey 08543 (United States); Dewar, R. L.; Dennis, G.; Hole, M. J.; McGann, M.; Nessi, G. von [Plasma Research Laboratory, Research School of Physics and Engineering, Australian National University, Canberra ACT 0200 (Australia)
2012-11-15
We describe the construction of stepped-pressure equilibria as extrema of a multi-region, relaxed magnetohydrodynamic (MHD) energy functional that combines elements of ideal MHD and Taylor relaxation, and which we call MRXMHD. The model is compatible with Hamiltonian chaos theory and allows the three-dimensional MHD equilibrium problem to be formulated in a well-posed manner suitable for computation. The energy-functional is discretized using a mixed finite-element, Fourier representation for the magnetic vector potential and the equilibrium geometry; and numerical solutions are constructed using the stepped-pressure equilibrium code, SPEC. Convergence studies with respect to radial and Fourier resolution are presented.
Measuring the equations of state in a relaxed magnetohydrodynamic plasma
Kaur, M.; Barbano, L. J.; Suen-Lewis, E. M.; Shrock, J. E.; Light, A. D.; Brown, M. R.; Schaffner, D. A.
2018-01-01
We report measurements of the equations of state of a fully relaxed magnetohydrodynamic (MHD) laboratory plasma. Parcels of magnetized plasma, called Taylor states, are formed in a coaxial magnetized plasma gun, and are allowed to relax and drift into a closed flux conserving volume. Density, ion temperature, and magnetic field are measured as a function of time as the Taylor states compress and heat. The theoretically predicted MHD and double adiabatic equations of state are compared to experimental measurements. We find that the MHD equation of state is inconsistent with our data.
Mode coupling trigger of neoclassical magnetohydrodynamic tearing modes in tokamaks
International Nuclear Information System (INIS)
Gianakon, T.A.; Hegna, C.C.; Callen, J.D.
1997-05-01
Numerical studies of the nonlinear evolution of coupled magnetohydrodynamic - type tearing modes in three-dimensional toroidal geometry with neoclassical effects are presented. The inclusion of neoclassical physics introduces an additional free-energy source for the nonlinear formation of magnetic islands through the effects of a bootstrap current in Ohm's law. The neoclassical tearing mode is demonstrated to be destabilized in plasmas which are otherwise Δ' stable, albeit once a threshold island width is exceeded. A possible mechanism for exceeding or eliminating this threshold condition is demonstrated based on mode coupling due to toroidicity with a pre-existing instability at the q = 1 surface
Magnetohydrodynamics and the earth's core selected works by Paul Roberts
Soward, Andrew M
2003-01-01
Paul Roberts'' research contributions are remarkable in their diversity, depth and international appeal. Papers from the Paul Roberts'' Anniversary meeting at the University of Exeter are presented in this volume. Topics include geomagnetism and dynamos, fluid mechanics and MHD, superfluidity, mixed phase regions, mean field electrodynamics and the Earth''s inner core. An incisive commentary of the papers puts the work of Paul Roberts into historical context. Magnetohydrodynamics and the Earth''s Core provides a valuable source of reference for graduates and researchers working in this area of geoscience.
Magnetohydrodynamic instability of a cylindrical liquid-metal brush
International Nuclear Information System (INIS)
Hong, S.H.; Wilhelm, H.E.
1976-01-01
The stability of a homopolar generator brush, consisting of a liquid-metal-filled cavity between rotating (rotor) and fixed (stator) cylinder electrodes, is analyzed in the presence of radial current transport and an axial homogeneous magnetic field. Within the frame of linear magnetohydrodynamics, it is shown that the liquid-metal flow in the brush is always unstable if the brush transports current. In the absence of current flow (infinite load) the axial magnetic field stabilizes the liquid-metal flow in the brush if the magnetic energy density is larger than a certain fraction of the energy density of the rotating fluid
Magnetohydrodynamic equilibrium with spheroidal plasma-vacuum interface
International Nuclear Information System (INIS)
Kaneko, Shobu; Chiyoda, Katsuji; Hirota, Isao.
1983-01-01
The Grad-Shafranov equations for an oblate and a prolate spheroidal plasmas are solved analytically under the assumptions, Bsub(phi) = 0 and dp/dpsi = constant. Here Bsub(phi) is the toroidal magnetic field, p is the kinetic pressure, and psi is the magnetic flux function. The plasmas in magnetohydrodynamic equilibrium are shown to be toroidal. The equilibrium magnetic-field configurations outside the spheroidal plasmas are considerably different from that of a spherical plasma. A line cusp or two point cusps appear outside the oblate or the prolate spheroidal plasma, respectively. (author)
Magnetohydrodynamic Ekman layers with field-aligned flow
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel, E-mail: mnjmhd@am.uva.es [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2011-05-01
The Ekman layer in a conducting fluid with constant angular velocity, provided with a magnetic field aligned with the flow, is studied here. The existence of solutions to the magnetohydrodynamic linearized equations depends on the balance between viscosity and resistivity, on the one hand, and the angular and Alfven velocities, on the other. In most cases, exponentially decreasing solutions exist, although their longitudinal oscillations do not need to be periodic. One of the instances without a solution is explained by the presence of Alfven waves traveling backwards along the streamlines.
Performance measurements in 3D ideal magnetohydrodynamic stability computations
International Nuclear Information System (INIS)
Anderson, D.V.; Cooper, W.A.; Gruber, R.; Schwenn, U.
1989-10-01
The 3D ideal magnetohydrodynamic stability code TERPSICHORE has been designed to take advantage of vector and microtasking capabilities of the latest CRAY computers. To keep the number of operations small most efficient algorithms have been applied in each computational step. The program investigates the stability properties of fusion reactor relevant plasma configurations confined by magnetic fields. For a typical 3D HELIAS configuration that has been considered we obtain an overall performance in excess of 1 Gflops on an eight processor CRAY-YMP machine. (author) 3 figs., 1 tab., 11 refs
Magnetohydrodynamic research in fusion blanket engineering and metallurgical processing
International Nuclear Information System (INIS)
Tokuhiro, A.
1991-11-01
A review of recent research activities in liquid metal magnetohydrodynamics (LM-MHDs) is presented in this article. Two major reserach areas are discussed. The first topic involves the thermomechanical design issues in a proposed tokamak fusion reactor. The primary concerns are in the magneto-thermal-hydraulic performance of a self-cooled liquid metal blanket. The second topic involves the application of MHD in material processing in the metallurgical and semiconductor industries. The two representative applications are electromagnetic stirring (EMS) of continuously cast steel and the Czochralski (CZ) method of crystal growth in the presence of a magnetic field. (author) 24 figs., 10 tabs., 136 refs
Nonneutralized charge effects on tokamak edge magnetohydrodynamic stability
International Nuclear Information System (INIS)
Zheng, Linjin; Horton, W.; Miura, H.; Shi, T.H.; Wang, H.Q.
2016-01-01
Owing to the large ion orbits, excessive electrons can accumulate at tokamak edge. We find that the nonneutralized electrons at tokamak edge can contribute an electric compressive stress in the direction parallel to magnetic field by their mutual repulsive force. By extending the Chew–Goldburger–Low theory (Chew et al., 1956 [13]), it is shown that this newly recognized compressive stress can significantly change the plasma average magnetic well, so that a stabilization of magnetohydrodynamic modes in the pedestal can result. This linear stability regime helps to explain why in certain parameter regimes the tokamak high confinement can be rather quiet as observed experimentally.
Evolution system study of a generalized scheme of relativistic magnetohydrodynamic
International Nuclear Information System (INIS)
Mahjoub, Bechir.
1977-01-01
A generalized scheme of relativistic magnetohydrodynamics is studied with a thermodynamical differential relation proposed by Fokker; this scheme takes account of interaction between the fluid and the magnetic field. Taking account of an integrability condition of this relation, the evolution system corresponding to this scheme is identical to the one corresponding to the usual scheme; it has the same characteristics; it is non-strictly hyperbolic with the same hypothesis of compressibility and it has, with respect to the Cauchy problem, an unique solution in a Gevrey class of index α=3/2 [fr
The dynamics of interacting nonlinearities governing long wavelength driftwave turbulence
International Nuclear Information System (INIS)
Newman, D.E.
1993-09-01
Because of the ubiquitous nature of turbulence and the vast array of different systems which have turbulent solutions, the study of turbulence is an area of active research. Much present day understanding of turbulence is rooted in the well established properties of homogeneous Navier-Stokes turbulence, which, due to its relative simplicity, allows for approximate analytic solutions. This work examines a group of turbulent systems with marked differences from Navier-Stokes turbulence, and attempts to quantify some of their properties. This group of systems represents a variety of drift wave fluctuations believed to be of fundamental importance in laboratory fusion devices. From extensive simulation of simple local fluid models of long wavelength drift wave turbulence in tokamaks, a reasonably complete picture of the basic properties of spectral transfer and saturation has emerged. These studies indicate that many conventional notions concerning directions of cascades, locality and isotropy of transfer, frequencies of fluctuations, and stationarity of saturation are not valid for moderate to long wavelengths. In particular, spectral energy transfer at long wavelengths is dominated by the E x B nonlinearity, which carries energy to short scale in a manner that is highly nonlocal and anisotropic. In marked contrast to the canonical self-similar cascade dynamics of Kolmogorov, energy is efficiently passed between modes separated by the entire spectrum range in a correlation time. At short wavelengths, transfer is dominated by the polarization drift nonlinearity. While the standard dual cascade applies in this subrange, it is found that finite spectrum size can produce cascades that are reverse directed and are nonconservative in enstrophy and energy similarity ranges. In regions where both nonlinearities are important, cross-coupling between the nolinearities gives rise to large no frequency shifts as well as changes in the spectral dynamics
Finite-volume scheme for anisotropic diffusion
Energy Technology Data Exchange (ETDEWEB)
Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)
2016-02-01
In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.
Progress in lattice Boltzmann methods for magnetohydrodynamic flows relevant to fusion applications
International Nuclear Information System (INIS)
Pattison, M.J.; Premnath, K.N.; Morley, N.B.; Abdou, M.A.
2008-01-01
In this paper, an approach to simulating magnetohydrodynamic (MHD) flows based on the lattice Boltzmann method (LBM) is presented. The dynamics of the flow are simulated using a so-called multiple relaxation time (MRT) lattice Boltzmann equation (LBE), in which a source term is included for the Lorentz force. The evolution of the magnetic induction is represented by introducing a vector distribution function and then solving an appropriate lattice kinetic equation for this function. The solution of both distribution functions are obtained through a simple, explicit, and computationally efficient stream-and-collide procedure. The use of the MRT collision term enhances the numerical stability over that of a single relaxation time approach. To apply the methodology to solving practical problems, a new extrapolation-based method for imposing magnetic boundary conditions is introduced and a technique for simulating steady-state flows with low magnetic Prandtl number is developed. In order to resolve thin layers near the walls arising in the presence of high magnetic fields, a non-uniform gridding strategy is introduced through an interpolated-streaming step applied to both distribution functions. These advances are particularly important for applications in fusion engineering where liquid metal flows with low magnetic Prandtl numbers and high Hartmann numbers are introduced. A number of MHD benchmark problems, under various physical and geometrical conditions are presented, including 3-D MHD lid driven cavity flow, high Hartmann number flows and turbulent MHD flows, with good agreement with prior data. Due to the local nature of the method, the LBM also demonstrated excellent performance on parallel machines, with almost linear scaling up to 128 processors for a MHD flow problem
PDF Modeling of Turbulent Combustion
National Research Council Canada - National Science Library
Pope, Stephen B
2006-01-01
.... The PDF approach to turbulent combustion has the advantages of fully representing the turbulent fluctuations of species and temperature, and of allowing realistic combustion chemistry to be implemented...
International Nuclear Information System (INIS)
Vorotyntsev, M.A.
1991-01-01
Key problems of turbulent mass transfer at a solid wall are reviewed: closure problem for the concentration field, information on wall turbulence, applications of microelectrodes to study the structure of turbulence, correlation properties of current fluctuations. (author). 26 refs
Anisotropic dynamic mass density for fluidsolid composites
Wu, Ying; Mei, Jun; Sheng, Ping
2012-01-01
By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle
Anisotropic magnetoresistance in a Fermi glass
International Nuclear Information System (INIS)
Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)
1986-01-01
Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity
Anisotropic stars obeying Chaplygin equation of state
Indian Academy of Sciences (India)
P Bhar
2017-12-14
Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...
The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
Wheatley, V.; Samtaney, Ravi; Pullin, D. I.; Gehre, R. M.
2014-01-01
The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.
Non-ideal magnetohydrodynamics on a moving mesh
Marinacci, Federico; Vogelsberger, Mark; Kannan, Rahul; Mocz, Philip; Pakmor, Rüdiger; Springel, Volker
2018-05-01
In certain astrophysical systems, the commonly employed ideal magnetohydrodynamics (MHD) approximation breaks down. Here, we introduce novel explicit and implicit numerical schemes of ohmic resistivity terms in the moving-mesh code AREPO. We include these non-ideal terms for two MHD techniques: the Powell 8-wave formalism and a constrained transport scheme, which evolves the cell-centred magnetic vector potential. We test our implementation against problems of increasing complexity, such as one- and two-dimensional diffusion problems, and the evolution of progressive and stationary Alfvén waves. On these test problems, our implementation recovers the analytic solutions to second-order accuracy. As first applications, we investigate the tearing instability in magnetized plasmas and the gravitational collapse of a rotating magnetized gas cloud. In both systems, resistivity plays a key role. In the former case, it allows for the development of the tearing instability through reconnection of the magnetic field lines. In the latter, the adopted (constant) value of ohmic resistivity has an impact on both the gas distribution around the emerging protostar and the mass loading of magnetically driven outflows. Our new non-ideal MHD implementation opens up the possibility to study magneto-hydrodynamical systems on a moving mesh beyond the ideal MHD approximation.
Eigenmode analysis of coupled magnetohydrodynamic oscillations in the magnetosphere
International Nuclear Information System (INIS)
Fujita, S.; Patel, V.L.
1992-01-01
The authors have performed an eigenmode analysis of the coupled magnetohydrodynamic oscillations in the magnetosphere with a dipole magnetic field. To understand the behavior of the spatial structure of the field perturbations with a great accuracy, they use the finite element method. The azimuthal and radial electric field perturbations are assumed to vanish at the ionosphere, and the azimuthal electric field is assumed to be zero on the outer boundary. The global structures of the electromagnetic field perturbations associated with the coupled magnetohydrodynamic oscillations are presented. In addition, the three-dimensional current system associated with the coupled oscillations is numerically calculated and the following characteristics are found: (1) A strong field-aligned current flows along a resonant field line. The current is particularly strong near the ionosphere. (2) The radial current changes its direction on the opposite sides of the resonant L shell. Unlike the field-aligned current, the radial currents exist in the entire magnetosphere. (3) Although the azimuthal and radial currents are intense on the resonant field line, these currents do not form a loop in the plane perpendicular to the ambient magnetic field. Therefore the field-aligned component of the perturbed magnetic field does not have a maximum at the resonant L shell
Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization
Pu, Shi; Roy, Victor; Rezzolla, Luciano; Rischke, Dirk H.
2016-04-01
We study the one-dimensional, longitudinally boost-invariant motion of an ideal fluid with infinite conductivity in the presence of a transverse magnetic field, i.e., in the ideal transverse magnetohydrodynamical limit. In an extension of our previous work Roy et al., [Phys. Lett. B 750, 45 (2015)], we consider the fluid to have a nonzero magnetization. First, we assume a constant magnetic susceptibility χm and consider an ultrarelativistic ideal gas equation of state. For a paramagnetic fluid (i.e., with χm>0 ), the decay of the energy density slows down since the fluid gains energy from the magnetic field. For a diamagnetic fluid (i.e., with χmlaw ˜τ-a, two distinct solutions can be found depending on the values of a and χm. Finally, we also solve the ideal magnetohydrodynamical equations for one-dimensional Bjorken flow with a temperature-dependent magnetic susceptibility and a realistic equation of state given by lattice-QCD data. We find that the temperature and energy density decay more slowly because of the nonvanishing magnetization. For values of the magnetic field typical for heavy-ion collisions, this effect is, however, rather small. It is only for magnetic fields about an order of magnitude larger than expected for heavy-ion collisions that the system is substantially reheated and the lifetime of the quark phase might be extended.
An analysis of electro-osmotic and magnetohydrodynamic heat pipes
International Nuclear Information System (INIS)
Harrison, M.A.
1988-01-01
Mechanically simple methods of improving heat transport in heat pipes are investigated. These methods are electro-osmotic and magnetohydrodynamic augmentation. For the electro-osmotic case, a detailed electrokinetic model is used. The electrokinetic model used includes the effects of pore surface curvature and multiple ion diffusivities. The electrokinetic model is extended to approximate the effects of elevated temperature. When the electro-osmotic model is combined with a suitable heat-pipe model, it is found that the electro-osmotic pump should be a thin membrane. Arguments are provided that support the use of a volatile electrolyte. For the magnetohydrodynamic case, a brief investigation is provided. A quasi-one-dimensional hydromagnetic duct flow model is used. This hydromagnetic model is extended to approximate flow effects unique to heat pipes. When combined with a suitable heat pipe model, it is found that there is no performance gain for the case considered. In fact, there are serious pressure-distribution problems that have not been previously recognized. Potential solutions to these pressure-distribution problems are suggested
Results of investigation of magnetohydrodynamic flow round the magnetosphere
International Nuclear Information System (INIS)
Erkaev, N.V.
1988-01-01
Review of the main results of the study on the Earth magnetosphere quasi-stationary magnetohydrodynamic flow-around by the solar wind is given. The principle attenuation is paid to the problem of magnetic and electric fields calculation in the transition layer and at the magnetosphere boundary. Analysis of kinematic approximation and linear diffusion model is conducted. Existence condition for the magnetic barrier region, where kinematic approximation is inapplicable, is determined. Main properties of the solution - gasokinetic pressure decrease and magnetic pressure increase up to maximum at the numerical integration results of magnetohydrodynamic equations within the magnetic barrier range. Calculation problem of reconnection field at the magnetic barrier background is considered as the next step. It is shown, that the introduction of Petchek reconnection model into the problem solution general diagram allows to obtain at the magnetosphere boundary the values of electric and magnetic fields, compatible with the experiment. Problems, linked with choice of reconnection line direction and Petchek condition generalization for the case of the crossed field reconnection, are considered
The transverse field Richtmyer-Meshkov instability in magnetohydrodynamics
Wheatley, V.
2014-01-10
The magnetohydrodynamic Richtmyer-Meshkov instability is investigated for the case where the initial magnetic field is unperturbed and aligned with the mean interface location. For this initial condition, the magnetic field lines penetrate the perturbed density interface, forbidding a tangential velocity jump and therefore the presence of a vortex sheet. Through simulation, we find that the vorticity distribution present on the interface immediately after the shock acceleration breaks up into waves traveling parallel and anti-parallel to the magnetic field, which transport the vorticity. The interference of these waves as they propagate causes the perturbation amplitude of the interface to oscillate in time. This interface behavior is accurately predicted over a broad range of parameters by an incompressible linearized model derived presently by solving the corresponding impulse driven, linearized initial value problem. Our use of an equilibrium initial condition results in interface motion produced solely by the impulsive acceleration. Nonlinear compressible simulations are used to investigate the behavior of the transverse field magnetohydrodynamic Richtmyer-Meshkov instability, and the performance of the incompressible model, over a range of shock strengths, magnetic field strengths, perturbation amplitudes and Atwood numbers.
Turbulence modelling; Modelisation de la turbulence isotherme
Energy Technology Data Exchange (ETDEWEB)
Laurence, D. [Electricite de France (EDF), Direction des Etudes et Recherches, 92 - Clamart (France)
1997-12-31
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-{epsilon} two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the `standard` (R{sub ij}-{epsilon}) Reynolds tensions transport model and introduces more recent models called `feasible`. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author). 37 refs.
Nagendra Prakash, Vivek
2013-01-01
This thesis deals with the broad topic of particles in turbulence, which has applications in a diverse number of fields. A vast majority of fluid flows found in nature and in the industry are turbulent and contain dispersed elements. In this thesis, I have focused on light particles (air bubbles in
Dynamic paradigm of turbulence
International Nuclear Information System (INIS)
Mukhamedov, Alfred M.
2006-01-01
In this paper a dynamic paradigm of turbulence is proposed. The basic idea consists in the novel definition of chaotic structure given with the help of Pfaff system of PDE associated with the turbulent dynamics. A methodological analysis of the new and the former paradigm is produced
Turbulent characteristics of shear-thinning fluids in recirculating flows
Energy Technology Data Exchange (ETDEWEB)
Pereira, A.S. [Inst. Superior de Engenharia do Porto (Portugal). Dept. de Engenharia Quimica; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, Departamento de Engenharia Mecanica e Gestao Industrial, Faculdade de Engenharia da Universidade do Porto, Rua dos Bragas, 4050-123 Porto (Portugal)
2000-03-01
A miniaturised fibre optic laser-Doppler anemometer was used to carry out a detailed hydrodynamic investigation of the flow downstream of a sudden expansion with 0.1-0.2% by weight shear-thinning aqueous solutions of xanthan gum. Upstream of the sudden expansion the pipe flow was fully-developed and the xanthan gum solutions exhibited drag reduction with corresponding lower radial and tangential normal Reynolds stresses, but higher axial Reynolds stress near the wall and a flatter axial mean velocity profile in comparison with Newtonian flow. The recirculation bubble length was reduced by more than 20% relative to the high Reynolds number Newtonian flow, and this was attributed to the occurrence further upstream of high turbulence for the non-Newtonian solutions, because of advection of turbulence and earlier high turbulence production in the shear layer. Comparisons with the measurements of Escudier and Smith (1999) with similar fluids emphasized the dominating role of inlet turbulence. The present was less anisotropic, and had lower maximum axial Reynolds stresses (by 16%) but higher radial turbulence (20%) than theirs. They reported considerably longer recirculating bubble lengths than we do for similar non-Newtonian fluids and Reynolds numbers. (orig.)
Spatial structure of ion-scale plasma turbulence
Directory of Open Access Journals (Sweden)
Yasuhito eNarita
2014-03-01
Full Text Available Spatial structure of small-scale plasma turbulence is studied under different conditions of plasma parameter beta directly in the three-dimensional wave vector domain. Two independent approaches are taken: observations of turbulent magnetic field fluctuations in the solar wind measured by four Cluster spacecraft, and direct numerical simulations of plasma turbulence using the hybrid code AIKEF, both resolving turbulence on the ion kinetic scales. The two methods provide independently evidence of wave vector anisotropy as a function of beta. Wave vector anisotropy is characterized primarily by an extension of the energy spectrum in the direction perpendicular to the large-scale magnetic field. The spectrum is strongly anisotropic at lower values of beta, and is more isotropic at higher values of beta. Cluster magnetic field data analysis also provides evidence of axial asymmetry of the spectrum in the directions around the large-scale field. Anisotropy is interpreted as filament formation as plasma evolves into turbulence. Axial asymmetry is interpreted as the effect of radial expansion of the solar wind from the corona.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand
2013-06-18
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
Anisotropic rectangular metric for polygonal surface remeshing
Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre
2013-01-01
We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.
MAGNETOHYDRODYNAMIC SIMULATION OF A DISK SUBJECTED TO LENSE-THIRRING PRECESSION
International Nuclear Information System (INIS)
Sorathia, Kareem A.; Krolik, Julian H.; Hawley, John F.
2013-01-01
When matter orbits around a central mass obliquely with respect to the mass's spin axis, the Lense-Thirring effect causes it to precess at a rate declining sharply with radius. Ever since the work of Bardeen and Petterson, it has been expected that when a fluid fills an orbiting disk, the orbital angular momentum at small radii should then align with the mass's spin. Nearly all previous work has studied this alignment under the assumption that a phenomenological 'viscosity' isotropically degrades fluid shears in accretion disks, even though it is now understood that internal stress in flat disks is due to anisotropic MHD turbulence. In this paper we report a pair of matched simulations, one in MHD and one in pure (non-viscous) HD in order to clarify the specific mechanisms of alignment. As in the previous work, we find that disk warps induce radial flows that mix angular momentum of different orientation; however, we also show that the speeds of these flows are generically transonic and are only very weakly influenced by internal stresses other than pressure. In particular, MHD turbulence does not act in a manner consistent with an isotropic viscosity. When MHD effects are present, the disk aligns, first at small radii and then at large; alignment is only partial in the HD case. We identify the specific angular momentum transport mechanisms causing alignment and show how MHD effects permit them to operate more efficiently. Last, we relate the speed at which an alignment front propagates outward (in the MHD case) to the rate at which Lense-Thirring torques deliver angular momentum at smaller radii
An anisotropic elastoplasticity model implemented in FLAG
Energy Technology Data Exchange (ETDEWEB)
Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
2017-10-12
Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.
Modeling of anisotropic wound healing
Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.
2015-06-01
Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.
Rotational discontinuities in anisotropic plasmas
International Nuclear Information System (INIS)
Omidi, N.
1992-01-01
The kinetic structure of rotational discontinuities (RDs) in anisotropic plasmas with T perpendicular /T parallel > 1 is investigated by using a one-dimensional electromagnetic hybrid code. To form the RD, a new approach is used where the plasma is injected from one boundary and reflected from the other, resulting in the generation of a traveling fast shock and an RD. Unlike the previously used methods, no a priori assumptions are made regarding the initial structure (i.e. width or sense of rotation) of the rotational discontinuity. The results show that across the RD both the magnetic field strength and direction, as well as the plasma density change. Given that such a change can also be associated with an intermediate shock, the Rankine-Hugoniot relations are used to confirm that the observed structures are indeed RDs. It is found that the thickness of RDs is a few ion inertial lengths and is independent of the rotation angle. Also, the preferred sense of rotation is in the electron sense; however, RDs with a rotation angle larger than 180 degree are found to be unstable, changing their rotation to a stable ion sense
Mechanics of anisotropic spring networks.
Zhang, T; Schwarz, J M; Das, Moumita
2014-12-01
We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.
Energy Technology Data Exchange (ETDEWEB)
Gómez, Daniel O.; DeLuca, Edward E. [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Mininni, Pablo D. [Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires and Instituto de Física de Buenos Aires, Ciudad Universitaria, 1428 Buenos Aires (Argentina)
2016-02-20
Recent high-resolution Atmospheric Imaging Assembly/Solar Dynamics Observatory images show evidence of the development of the Kelvin–Helmholtz (KH) instability, as coronal mass ejections (CMEs) expand in the ambient corona. A large-scale magnetic field mostly tangential to the interface is inferred, both on the CME and on the background sides. However, the magnetic field component along the shear flow is not strong enough to quench the instability. There is also observational evidence that the ambient corona is in a turbulent regime, and therefore the criteria for the development of the instability are a priori expected to differ from the laminar case. To study the evolution of the KH instability with a turbulent background, we perform three-dimensional simulations of the incompressible magnetohydrodynamic equations. The instability is driven by a velocity profile tangential to the CME–corona interface, which we simulate through a hyperbolic tangent profile. The turbulent background is generated by the application of a stationary stirring force. We compute the instability growth rate for different values of the turbulence intensity, and find that the role of turbulence is to attenuate the growth. The fact that KH instability is observed sets an upper limit on the correlation length of the coronal background turbulence.
The H i-to-H{sub 2} Transition in a Turbulent Medium
Energy Technology Data Exchange (ETDEWEB)
Bialy, Shmuel; Sternberg, Amiel [Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Ramat Aviv 69978 (Israel); Burkhart, Blakesley, E-mail: shmuelbi@mail.tau.ac.il [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., Cambridge, MA 02138, USA (United States)
2017-07-10
We study the effect of density fluctuations induced by turbulence on the H i/H{sub 2} structure in photodissociation regions (PDRs) both analytically and numerically. We perform magnetohydrodynamic numerical simulations for both subsonic and supersonic turbulent gas and chemical H i/H{sub 2} balance calculations. We derive atomic-to-molecular density profiles and the H i column density probability density function (PDF) assuming chemical equilibrium. We find that, while the H i/H{sub 2} density profiles are strongly perturbed in turbulent gas, the mean H i column density is well approximated by the uniform-density analytic formula of Sternberg et al. The PDF width depends on (a) the radiation intensity–to–mean density ratio, (b) the sonic Mach number, and (c) the turbulence decorrelation scale, or driving scale. We derive an analytic model for the H i PDF and demonstrate how our model, combined with 21 cm observations, can be used to constrain the Mach number and driving scale of turbulent gas. As an example, we apply our model to observations of H i in the Perseus molecular cloud. We show that a narrow observed H i PDF may imply small-scale decorrelation, pointing to the potential importance of subcloud-scale turbulence driving.
Behaviour of turbulence models near a turbulent/non-turbulent interface revisited
International Nuclear Information System (INIS)
Ferrey, P.; Aupoix, B.
2006-01-01
The behaviour of turbulence models near a turbulent/non-turbulent interface is investigated. The analysis holds as well for two-equation as for Reynolds stress turbulence models using Daly and Harlow diffusion model. The behaviour near the interface is shown not to be a power law, as usually considered, but a more complex parametric solution. Why previous works seemed to numerically confirm the power law solution is explained. Constraints for turbulence modelling, i.e., for ensuring that models have a good behaviour near a turbulent/non-turbulent interface so that the solution is not sensitive to small turbulence levels imposed in the irrotational flow, are drawn
MHD turbulent dynamo in astrophysics: Theory and numerical simulation
Chou, Hongsong
2001-10-01
This thesis treats the physics of dynamo effects through theoretical modeling of magnetohydrodynamic (MHD) systems and direct numerical simulations of MHD turbulence. After a brief introduction to astrophysical dynamo research in Chapter 1, the following issues in developing dynamic models of dynamo theory are addressed: In Chapter 2, nonlinearity that arises from the back reaction of magnetic field on velocity field is considered in a new model for the dynamo α-effect. The dependence of α-coefficient on magnetic Reynolds number, kinetic Reynolds number, magnetic Prandtl number and statistical properties of MHD turbulence is studied. In Chapter 3, the time-dependence of magnetic helicity dynamics and its influence on dynamo effects are studied with a theoretical model and 3D direct numerical simulations. The applicability of and the connection between different dynamo models are also discussed. In Chapter 4, processes of magnetic field amplification by turbulence are numerically simulated with a 3D Fourier spectral method. The initial seed magnetic field can be a large-scale field, a small-scale magnetic impulse, and a combination of these two. Other issues, such as dynamo processes due to helical Alfvénic waves and the implication and validity of the Zeldovich relation, are also addressed in Appendix B and Chapters 4 & 5, respectively. Main conclusions and future work are presented in Chapter 5. Applications of these studies are intended for astrophysical magnetic field generation through turbulent dynamo processes, especially when nonlinearity plays central role. In studying the physics of MHD turbulent dynamo processes, the following tools are developed: (1)A double Fourier transform in both space and time for the linearized MHD equations (Chapter 2 and Appendices A & B). (2)A Fourier spectral numerical method for direct simulation of 3D incompressible MHD equations (Appendix C).
MHD turbulence in the solar wind: evolution and anisotropy
International Nuclear Information System (INIS)
Horbury, T. S.; Forman, M. A.; Oughton, S.
2005-01-01
Spacecraft measurements in the solar wind offer the opportunity to study magnetohydrodynamic turbulence in a collisionless plasma in great detail. We review some of the key results of the study of this medium: the presence of large amplitude Alfven waves propagating predominantly away from the Sun; the existence of an active turbulent cascade; and intermittency similar to that in neutral fluids. The presence of a magnetic field leads to anisotropy of the fluctuations, which are predominantly perpendicular to this direction, as well as anisotropy of the spectrum. Some models suggest that MHD turbulence can evolve to a state with power predominantly in wave vectors either parallel to the magnetic field (slab fluctuations) or approximately perpendicular to it (2D). We present results of a new, wavelet-based analysis of magnetic field fluctuations in the solar wind, and demonstrate that the 2D component has a spectral index near the Kolmogorov value of 5/3, while slab fluctuations have a spectral index near 2. We also estimate the relative power levels in slab and 2D fluctuations, as well as the level of compressive fluctuations. Deviations of the data from the simple slab/2D model suggest the presence of power in intermediate directions and we compare our data with critical balance models. (Author)
THE TURBULENT DYNAMO IN HIGHLY COMPRESSIBLE SUPERSONIC PLASMAS
Energy Technology Data Exchange (ETDEWEB)
Federrath, Christoph [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Schober, Jennifer [Universität Heidelberg, Zentrum für Astronomie, Institut für Theoretische Astrophysik, Albert-Ueberle-Strasse 2, D-69120 Heidelberg (Germany); Bovino, Stefano; Schleicher, Dominik R. G., E-mail: christoph.federrath@anu.edu.au [Institut für Astrophysik, Georg-August-Universität Göttingen, Friedrich-Hund-Platz 1, D-37077 Göttingen (Germany)
2014-12-20
The turbulent dynamo may explain the origin of cosmic magnetism. While the exponential amplification of magnetic fields has been studied for incompressible gases, little is known about dynamo action in highly compressible, supersonic plasmas, such as the interstellar medium of galaxies and the early universe. Here we perform the first quantitative comparison of theoretical models of the dynamo growth rate and saturation level with three-dimensional magnetohydrodynamical simulations of supersonic turbulence with grid resolutions of up to 1024{sup 3} cells. We obtain numerical convergence and find that dynamo action occurs for both low and high magnetic Prandtl numbers Pm = ν/η = 0.1-10 (the ratio of viscous to magnetic dissipation), which had so far only been seen for Pm ≥ 1 in supersonic turbulence. We measure the critical magnetic Reynolds number, Rm{sub crit}=129{sub −31}{sup +43}, showing that the compressible dynamo is almost as efficient as in incompressible gas. Considering the physical conditions of the present and early universe, we conclude that magnetic fields need to be taken into account during structure formation from the early to the present cosmic ages, because they suppress gas fragmentation and drive powerful jets and outflows, both greatly affecting the initial mass function of stars.
SIGNATURES OF MRI-DRIVEN TURBULENCE IN PROTOPLANETARY DISKS: PREDICTIONS FOR ALMA OBSERVATIONS
Energy Technology Data Exchange (ETDEWEB)
Simon, Jacob B. [Department of Space Studies, Southwest Research Institute, Boulder, CO 80302 (United States); Hughes, A. Meredith; Flaherty, Kevin M. [Astronomy Department, Van Vleck Observatory, Wesleyan University, 96 Foss Hill Dr., Middletown, CT 06459 (United States); Bai, Xue-Ning [Harvard-Smithsonian Center for Astrophysics, 60 Garden St., MS-51, Cambridge, MA 02138 (United States); Armitage, Philip J., E-mail: jbsimon.astro@gmail.com [JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309-0440 (United States)
2015-08-01
Spatially resolved observations of molecular line emission have the potential to yield unique constraints on the nature of turbulence within protoplanetary disks. Using a combination of local non-ideal magnetohydrodynamics (MHD) simulations and radiative transfer calculations, tailored to properties of the disk around HD 163296, we assess the ability of ALMA to detect turbulence driven by the magnetorotational instability (MRI). Our local simulations show that the MRI produces small-scale turbulent velocity fluctuations that increase in strength with height above the mid-plane. For a set of simulations at different disk radii, we fit a Maxwell–Boltzmann distribution to the turbulent velocity and construct a turbulent broadening parameter as a function of radius and height. We input this broadening into radiative transfer calculations to quantify observational signatures of MRI-driven disk turbulence. We find that the ratio of the peak line flux to the flux at line center is a robust diagnostic of turbulence that is only mildly degenerate with systematic uncertainties in disk temperature. For the CO(3–2) line, which we expect to probe the most magnetically active slice of the disk column, variations in the predicted peak-to-trough ratio between our most and least turbulent models span a range of approximately 15%. Additional independent constraints can be derived from the morphology of spatially resolved line profiles, and we estimate the resolution required to detect turbulence on different spatial scales. We discuss the role of lower optical depth molecular tracers, which trace regions closer to the disk mid-plane where velocities in MRI-driven models are systematically lower.
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Energy Technology Data Exchange (ETDEWEB)
Zrake, Jonathan [Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, SLAC National Accelerator Laboratory, Menlo Park, CA 94025 (United States); Arons, Jonathan [Astronomy Department and Theoretical Astrophysics Center, University of California, Berkeley, 601 Campbell Hall, Berkeley, CA 94720 (United States)
2017-09-20
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ -problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ -ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Turbulent Magnetic Relaxation in Pulsar Wind Nebulae
Zrake, Jonathan; Arons, Jonathan
2017-09-01
We present a model for magnetic energy dissipation in a pulsar wind nebula. A better understanding of this process is required to assess the likelihood that certain astrophysical transients may be powered by the spin-down of a “millisecond magnetar.” Examples include superluminous supernovae, gamma-ray bursts, and anticipated electromagnetic counterparts to gravitational wave detections of binary neutron star coalescence. Our model leverages recent progress in the theory of turbulent magnetic relaxation to specify a dissipative closure of the stationary magnetohydrodynamic (MHD) wind equations, yielding predictions of the magnetic energy dissipation rate throughout the nebula. Synchrotron losses are self-consistently treated. To demonstrate the model’s efficacy, we show that it can reproduce many features of the Crab Nebula, including its expansion speed, radiative efficiency, peak photon energy, and mean magnetic field strength. Unlike ideal MHD models of the Crab (which lead to the so-called σ-problem), our model accounts for the transition from ultra to weakly magnetized plasma flow and for the associated heating of relativistic electrons. We discuss how the predicted heating rates may be utilized to improve upon models of particle transport and acceleration in pulsar wind nebulae. We also discuss implications for the Crab Nebula’s γ-ray flares, and point out potential modifications to models of astrophysical transients invoking the spin-down of a millisecond magnetar.
Anisotropic evaluation of synthetic surgical meshes.
Saberski, E R; Orenstein, S B; Novitsky, Y W
2011-02-01
The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.
The Solar Flare: A Strongly Turbulent Particle Accelerator
Vlahos, L.; Krucker, S.; Cargill, P.
The topics of explosive magnetic energy release on a large scale (a solar flare) and particle acceleration during such an event are rarely discussed together in the same article. Many discussions of magnetohydrodynamic (MHD) mod- eling of solar flares and/or CMEs have appeared (see [143] and references therein) and usually address large-scale destabilization of the coronal mag- netic field. Particle acceleration in solar flares has also been discussed exten- sively [74, 164, 116, 166, 87, 168, 95, 122, 35] with the main emphasis being on the actual mechanisms for acceleration (e.g., shocks, turbulence, DC electric fields) rather than the global magnetic context in which the acceleration takes place.
Correlation Scales of the Turbulent Cascade at 1 au
Smith, Charles W.; Vasquez, Bernard J.; Coburn, Jesse T.; Forman, Miriam A.; Stawarz, Julia E.
2018-05-01
We examine correlation functions of the mixed, third-order expressions that, when ensemble-averaged, describe the cascade of energy in the inertial range of magnetohydrodynamic turbulence. Unlike the correlation function of primitive variables such as the magnetic field, solar wind velocity, temperature, and density, the third-order expressions decorrelate at a scale that is approximately 20% of the lag. This suggests the nonlinear dynamics decorrelate in less than one wavelength. Therefore, each scale can behave differently from one wavelength to the next. In the same manner, different scales within the inertial range can behave independently at any given time or location. With such a cascade that can be strongly patchy and highly variable, it is often possible to obtain negative cascade rates for short periods of time, as reported earlier for individual samples of data.
Turbulent current drive mechanisms
McDevitt, Christopher J.; Tang, Xian-Zhu; Guo, Zehua
2017-08-01
Mechanisms through which plasma microturbulence can drive a mean electron plasma current are derived. The efficiency through which these turbulent contributions can drive deviations from neoclassical predictions of the electron current profile is computed by employing a linearized Coulomb collision operator. It is found that a non-diffusive contribution to the electron momentum flux as well as an anomalous electron-ion momentum exchange term provide the most efficient means through which turbulence can modify the mean electron current for the cases considered. Such turbulent contributions appear as an effective EMF within Ohm's law and hence provide an ideal means for driving deviations from neoclassical predictions.
Belotserkovskii, OM; Chechetkin, VM
2005-01-01
The authors present the results of numerical experiments carried out to examine the problem of development of turbulence and convection. On the basis of the results, they propose a physical model of the development of turbulence. Numerical algorithms and difference schema for carrying out numerical experiments in hydrodynamics, are proposed. Original algorithms, suitable for calculation of the development of the processes of turbulence and convection in different conditions, even on astrophysical objects, are presented. The results of numerical modelling of several important phenomena having both fundamental and applied importance are described.
Energy Technology Data Exchange (ETDEWEB)
Hoejstrup, J [NEG Micon Project Development A/S, Randers (Denmark); Hansen, K S [Denmarks Technical Univ., Dept. of Energy Engineering, Lyngby (Denmark); Pedersen, B J [VESTAS Wind Systems A/S, Lem (Denmark); Nielsen, M [Risoe National Lab., Wind Energy and Atmospheric Physics, Roskilde (Denmark)
1999-03-01
The pdf`s of atmospheric turbulence have somewhat wider tails than a Gaussian, especially regarding accelerations, whereas velocities are close to Gaussian. This behaviour is being investigated using data from a large WEB-database in order to quantify the amount of non-Gaussianity. Models for non-Gaussian turbulence have been developed, by which artificial turbulence can be generated with specified distributions, spectra and cross-correlations. The artificial time series will then be used in load models and the resulting loads in the Gaussian and the non-Gaussian cases will be compared. (au)
Nonlinear magnetohydrodynamics. Progress report, December 15, 1977--December 14, 1978
International Nuclear Information System (INIS)
Vahala, G.
1978-01-01
Incompressible MHD turbulence is considered for both 2D and 3D plasmas in cylindrical geometry. It is found that for virtually all initial conditions (including quiescent ones) the plasma is nonlinearly unstable in that mean square turbulent velocity fields develop. However, there is a unique stable state of extremal magnetic helicity/energy ratio for which no turbulent fields develop [in 2D with B/sub z/ = const., it is the state of extremal mean square vector potential/energy]. It is force free and is just the Taylor state. A conjecture can be put forward (based on a dual cascade argument for resistive MHD) to explain Taylor's hypothesis. In spherical geometry, the stable axisymmetric state is the spheromak
Characterization of zonal flow generation in weak electrostatic turbulence
International Nuclear Information System (INIS)
Negrea, M; Petrisor, I; Weyssow, B
2008-01-01
The influence of the diamagnetic Kubo number, which is proportional to the diamagnetic drift velocity, on the zonal flow generation by an anisotropic stochastic electrostatic potential is considered from a semi-analytic point of view. The analysis is performed in the weak turbulence limit and as an analytical tool the decorrelation trajectory method is used. It is shown that the fragmentation of the drift wave structures (a signature of the zonal flow generation) is influenced not only by the anisotropy parameter and the electrostatic Kubo number as expected, but also by the diamagnetic Kubo number. Global Lagrangian averages of characteristic quantities are calculated and interpreted
Modeling of turbulent chemical reaction
Chen, J.-Y.
1995-01-01
Viewgraphs are presented on modeling turbulent reacting flows, regimes of turbulent combustion, regimes of premixed and regimes of non-premixed turbulent combustion, chemical closure models, flamelet model, conditional moment closure (CMC), NO(x) emissions from turbulent H2 jet flames, probability density function (PDF), departures from chemical equilibrium, mixing models for PDF methods, comparison of predicted and measured H2O mass fractions in turbulent nonpremixed jet flames, experimental evidence of preferential diffusion in turbulent jet flames, and computation of turbulent reacting flows.
Aviation turbulence processes, detection, prediction
Lane, Todd
2016-01-01
Anyone who has experienced turbulence in flight knows that it is usually not pleasant, and may wonder why this is so difficult to avoid. The book includes papers by various aviation turbulence researchers and provides background into the nature and causes of atmospheric turbulence that affect aircraft motion, and contains surveys of the latest techniques for remote and in situ sensing and forecasting of the turbulence phenomenon. It provides updates on the state-of-the-art research since earlier studies in the 1960s on clear-air turbulence, explains recent new understanding into turbulence generation by thunderstorms, and summarizes future challenges in turbulence prediction and avoidance.
Zerkle, Ronald D.; Prakash, Chander
1995-01-01
This viewgraph presentation summarizes some CFD experience at GE Aircraft Engines for flows in the primary gaspath of a gas turbine engine and in turbine blade cooling passages. It is concluded that application of the standard k-epsilon turbulence model with wall functions is not adequate for accurate CFD simulation of aerodynamic performance and heat transfer in the primary gas path of a gas turbine engine. New models are required in the near-wall region which include more physics than wall functions. The two-layer modeling approach appears attractive because of its computational complexity. In addition, improved CFD simulation of film cooling and turbine blade internal cooling passages will require anisotropic turbulence models. New turbulence models must be practical in order to have a significant impact on the engine design process. A coordinated turbulence modeling effort between NASA centers would be beneficial to the gas turbine industry.
Multi-region relaxed Hall magnetohydrodynamics with flow
Energy Technology Data Exchange (ETDEWEB)
Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States); Abdelhamid, Hamdi M., E-mail: hamdi@ppl.k.u-tokyo.ac.jp [Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Physics Department, Faculty of Science, Mansoura University, Mansoura 35516 (Egypt); Hudson, Stuart R., E-mail: shudson@pppl.gov [Princeton Plasma Physics Laboratory, PO Box 451, Princeton, New Jersey 08543 (United States)
2016-08-15
The recent formulations of multi-region relaxed magnetohydrodynamics (MRxMHD) have generalized the famous Woltjer-Taylor states by incorporating a collection of “ideal barriers” that prevent global relaxation and flow. In this paper, we generalize MRxMHD with flow to include Hall effects, and thereby obtain the partially relaxed counterparts of the famous double Beltrami states as a special subset. The physical and mathematical consequences arising from the introduction of the Hall term are also presented. We demonstrate that our results (in the ideal MHD limit) constitute an important subset of ideal MHD equilibria, and we compare our approach against other variational principles proposed for deriving the partially relaxed states.
Disk Emission from Magnetohydrodynamic Simulations of Spinning Black Holes
Schnittman, Jeremy D.; Krolik, Julian H.; Noble, Scott C.
2016-01-01
We present the results of a new series of global, three-dimensional, relativistic magnetohydrodynamic (MHD) simulations of thin accretion disks around spinning black holes. The disks have aspect ratios of H/R approx. 0.05 and spin parameters of a/M = 0, 0.5, 0.9, and 0.99. Using the ray-tracing code Pandurata, we generate broadband thermal spectra and polarization signatures from the MHD simulations. We find that the simulated spectra can be well fit with a simple, universal emissivity profile that better reproduces the behavior of the emission from the inner disk, compared to traditional analyses carried out using a Novikov-Thorne thin disk model. Finally, we show how spectropolarization observations can be used to convincingly break the spin-inclination degeneracy well known to the continuum-fitting method of measuring black hole spin.
Directory of Open Access Journals (Sweden)
Domingues M. O.
2013-12-01
Full Text Available We present a new adaptive multiresoltion method for the numerical simulation of ideal magnetohydrodynamics. The governing equations, i.e., the compressible Euler equations coupled with the Maxwell equations are discretized using a finite volume scheme on a two-dimensional Cartesian mesh. Adaptivity in space is obtained via Harten’s cell average multiresolution analysis, which allows the reliable introduction of a locally refined mesh while controlling the error. The explicit time discretization uses a compact Runge–Kutta method for local time stepping and an embedded Runge-Kutta scheme for automatic time step control. An extended generalized Lagrangian multiplier approach with the mixed hyperbolic-parabolic correction type is used to control the incompressibility of the magnetic field. Applications to a two-dimensional problem illustrate the properties of the method. Memory savings and numerical divergences of magnetic field are reported and the accuracy of the adaptive computations is assessed by comparing with the available exact solution.
Magnetohydrodynamic simulations of Gamble I POS with Hall effect
International Nuclear Information System (INIS)
Roderick, N.F.; Frese, M.H.; Peterkin, R.E.; Payne, S.S.
1989-01-01
Two dimensional single fluid magnetohydrodynamic simulations have been conducted to investigate the effects of the Hall electric field on magnetic field transport in plasma opening switches of the type used on Gamble I. The Hall terms were included in the magnetic field transport equation in the two dimensional simulation code MACH2 through the use of a generalized Ohm's law. Calculations show the Hall terms augment the field transport previously observed to occur through ion fluid motion and diffusion. For modest values of microturbulent collision frequency, board current channels were observed . Results also show the magnetic field transport to be affected by the cathode boundary conditions with the Hall terms included. In all cases center of mass motion was slight
Forced underwater laminar flows with active magnetohydrodynamic metamaterials
Culver, Dean; Urzhumov, Yaroslav
2017-12-01
Theory and practical implementations for wake-free propulsion systems are proposed and proven with computational fluid dynamic modeling. Introduced earlier, the concept of active hydrodynamic metamaterials is advanced by introducing magnetohydrodynamic metamaterials, structures with custom-designed volumetric distribution of Lorentz forces acting on a conducting fluid. Distributions of volume forces leading to wake-free, laminar flows are designed using multivariate optimization. Theoretical indications are presented that such flows can be sustained at arbitrarily high Reynolds numbers. Moreover, it is shown that in the limit Re ≫102 , a fixed volume force distribution may lead to a forced laminar flow across a wide range of Re numbers, without the need to reconfigure the force-generating metamaterial. Power requirements for such a device are studied as a function of the fluid conductivity. Implications to the design of distributed propulsion systems underwater and in space are discussed.
WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code
Energy Technology Data Exchange (ETDEWEB)
Mendygral, P. J.; Radcliffe, N.; Kandalla, K. [Cray Inc., St. Paul, MN 55101 (United States); Porter, D. [Minnesota Supercomputing Institute for Advanced Computational Research, Minneapolis, MN USA (United States); O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W. [School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455 (United States); Edmon, P., E-mail: pjm@cray.com, E-mail: nradclif@cray.com, E-mail: kkandalla@cray.com, E-mail: oneill@astro.umn.edu, E-mail: nolt0040@umn.edu, E-mail: donnert@ira.inaf.it, E-mail: twj@umn.edu, E-mail: dhp@umn.edu, E-mail: pedmon@cfa.harvard.edu [Institute for Theory and Computation, Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)
2017-02-01
We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.
Linearized analysis of one-dimensional magnetohydrodynamic flows
Gundersen, Roy M
1964-01-01
Magnetohydrodynamics is concerned with the motion of electrically conducting fluids in the presence of electric or magnetic fields. Un fortunately, the subject has a rather poorly developed experimental basis and because of the difficulties inherent in carrying out controlled laboratory experiments, the theoretical developments, in large measure, have been concerned with finding solutions to rather idealized problems. This lack of experimental basis need not become, however, a multi megohm impedance in the line of progress in the development of a satisfactory scientific theory. While it is true that ultimately a scientific theory must agree with and, in actuality, predict physical phenomena with a reasonable degree of accuracy, such a theory must be sanctioned by its mathematical validity and consistency. Physical phenomena may be expressed precisely and quite comprehensively through the use of differential equations, and the equations formulated by LUNDQUIST and discussed by FRIEDRICHS belong to a class ...
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2013-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called textbook multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code
International Nuclear Information System (INIS)
Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O’Neill, B. J.; Nolting, C.; Donnert, J. M. F.; Jones, T. W.; Edmon, P.
2017-01-01
We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.
bhlight: GENERAL RELATIVISTIC RADIATION MAGNETOHYDRODYNAMICS WITH MONTE CARLO TRANSPORT
International Nuclear Information System (INIS)
Ryan, B. R.; Gammie, C. F.; Dolence, J. C.
2015-01-01
We present bhlight, a numerical scheme for solving the equations of general relativistic radiation magnetohydrodynamics using a direct Monte Carlo solution of the frequency-dependent radiative transport equation. bhlight is designed to evolve black hole accretion flows at intermediate accretion rate, in the regime between the classical radiatively efficient disk and the radiatively inefficient accretion flow (RIAF), in which global radiative effects play a sub-dominant but non-negligible role in disk dynamics. We describe the governing equations, numerical method, idiosyncrasies of our implementation, and a suite of test and convergence results. We also describe example applications to radiative Bondi accretion and to a slowly accreting Kerr black hole in axisymmetry
Magnetohydrodynamics and fluid dynamics action principles and conservation laws
Webb, Gary
2018-01-01
This text focuses on conservation laws in magnetohydrodynamics, gasdynamics and hydrodynamics. A grasp of new conservation laws is essential in fusion and space plasmas, as well as in geophysical fluid dynamics; they can be used to test numerical codes, or to reveal new aspects of the underlying physics, e.g., by identifying the time history of the fluid elements as an important key to understanding fluid vorticity or in investigating the stability of steady flows. The ten Galilean Lie point symmetries of the fundamental action discussed in this book give rise to the conservation of energy, momentum, angular momentum and center of mass conservation laws via Noether’s first theorem. The advected invariants are related to fluid relabeling symmetries – so-called diffeomorphisms associated with the Lagrangian map – and are obtained by applying the Euler-Poincare approach to Noether’s second theorem. The book discusses several variants of helicity including kinetic helicity, cross helicity, magnetic helici...
Analysis of magnetohydrodynamic flow in linear induction EM pump
International Nuclear Information System (INIS)
Geun Jong Yoo; Choi, H.K.; Eun, J.J.; Bae, Y.S.
2005-01-01
Numerical analysis is performed for magnetic and magnetohydrodynamic (MHD) flow fields in linear induction type electromagnetic (EM) pump. A finite volume method is applied to solve magnetic field governing equations and the Navier-Stokes equations. Vector and scalar potential methods are adopted to obtain the electric and magnetic fields and the resulting Lorentz force in solving Maxwell equations. The magnetic field and velocity distributions are found to be influenced by the phase of applied electric current. Computational results indicate that the magnetic flux distribution with changing phase of input electric current is characterized by pairs of counter-rotating closed loops. The velocity distributions are affected by the intensity of Lorentz force. The governing equations for the magnetic and flow fields are only semi-coupled in this study, therefore, further study with fully-coupled governing equations are required. (authors)
Active control of magneto-hydrodynamic instabilities in hot plasmas
2015-01-01
During the past century, world-wide energy consumption has risen dramatically, which leads to a quest for new energy sources. Fusion of hydrogen atoms in hot plasmas is an attractive approach to solve the energy problem, with abundant fuel, inherent safety and no long-lived radioactivity. However, one of the limits on plasma performance is due to the various classes of magneto-hydrodynamic instabilities that may occur. The physics and control of these instabilities in modern magnetic confinement fusion devices is the subject of this book. Written by foremost experts, the contributions will provide valuable reference and up-to-date research reviews for "old hands" and newcomers alike.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
Application of magnetohydrodynamic actuation to continuous flow chemistry.
West, Jonathan; Karamata, Boris; Lillis, Brian; Gleeson, James P; Alderman, John; Collins, John K; Lane, William; Mathewson, Alan; Berney, Helen
2002-11-01
Continuous flow microreactors with an annular microchannel for cyclical chemical reactions were fabricated by either bulk micromachining in silicon or by rapid prototyping using EPON SU-8. Fluid propulsion in these unusual microchannels was achieved using AC magnetohydrodynamic (MHD) actuation. This integrated micropumping mechanism obviates the use of moving parts by acting locally on the electrolyte, exploiting its inherent conductive nature. Both silicon and SU-8 microreactors were capable of MHD actuation, attaining fluid velocities of the order of 300 microm s(-1) when using a 500 mM KCl electrolyte. The polymerase chain reaction (PCR), a thermocycling process, was chosen as an illustrative example of a cyclical chemistry. Accordingly, temperature zones were provided to enable a thermal cycle during each revolution. With this approach, fluid velocity determines cycle duration. Here, we report device fabrication and performance, a model to accurately describe fluid circulation by MHD actuation, and compatibility issues relating to this approach to chemistry.
Magnetohydrodynamic equilibrium of axisymmetric systems with toroidal rotation
International Nuclear Information System (INIS)
Mansur, N.L.P.
1986-01-01
A model for studying magnetohydrodynamic equilibrium of axisymetrically confined plasma with toroidal rotation, extended to the Grad. Shafranov equation is presented. The expression used for the scalar pressure is modifiec, and the influence of toroidal magnetic field is included, The equation for general motion of axisymetrically confined plasma, particularizing for rotation movements is described. Two cases are compared: one supposes the entropy as a function of poloidal magnetic flux and other supposes the temperature as a function of flux. The equations for these two cases obtaining a simplified expression by others approximations are established. The proposed model is compared with Shibata model, which uses density as function of flux, and with the ideal spheromak model. A set of cases taking in account experimental data is studied. (M.C.K.) [pt
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
Adams, Mark F.
2010-09-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations so-called "textbook" multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations. (C) 2010 Elsevier Inc. All rights reserved.
MAGNETOHYDRODYNAMIC MODELING OF SOLAR SYSTEM PROCESSES ON GEODESIC GRIDS
International Nuclear Information System (INIS)
Florinski, V.; Guo, X.; Balsara, D. S.; Meyer, C.
2013-01-01
This report describes a new magnetohydrodynamic numerical model based on a hexagonal spherical geodesic grid. The model is designed to simulate astrophysical flows of partially ionized plasmas around a central compact object, such as a star or a planet with a magnetic field. The geodesic grid, produced by a recursive subdivision of a base platonic solid (an icosahedron), is free from control volume singularities inherent in spherical polar grids. Multiple populations of plasma and neutral particles, coupled via charge-exchange interactions, can be simulated simultaneously with this model. Our numerical scheme uses piecewise linear reconstruction on a surface of a sphere in a local two-dimensional 'Cartesian' frame. The code employs Haarten-Lax-van-Leer-type approximate Riemann solvers and includes facilities to control the divergence of the magnetic field and maintain pressure positivity. Several test solutions are discussed, including a problem of an interaction between the solar wind and the local interstellar medium, and a simulation of Earth's magnetosphere.
Growth of the magnetic field in Hall magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)
2004-10-01
While the Hall magnetohydrodynamics (MHD) model has been explored in depth in connection with the dispersive waves relevant in magnetic reconnection, a theoretical study of the mathematical features of this system is lacking. We consider here the boundedness of the solutions of the Hall MHD equations. With Dirichlet boundary conditions the total energy of the system is maintained, and dissipated by diffusion, but the behaviour of the higher moments of the magnetic field is more complicated. It is found that certain unusual geometries of the initial condition may lead to a blow-up of the L{sup 3}-norm of the field. Nevertheless, reasonable assumptions upon the correlation between the size of the magnetic field and the curvature of field lines imply that the magnetic field remains uniformly bounded.
Schlieren Technique Applied to Magnetohydrodynamic Generator Plasma Torch
Chopra, Nirbhav; Pearcy, Jacob; Jaworski, Michael
2017-10-01
Magnetohydrodynamic (MHD) generators are a promising augmentation to current hydrocarbon based combustion schemes for creating electrical power. In recent years, interest in MHD generators has been revitalized due to advances in a number of technologies such as superconducting magnets, solid-state power electronics and materials science as well as changing economics associated with carbon capture, utilization, and sequestration. We use a multi-wavelength schlieren imaging system to evaluate electron density independently of gas density in a plasma torch under conditions relevant to MHD generators. The sensitivity and resolution of the optical system are evaluated alongside the development of an automated analysis and calibration program in Python. Preliminary analysis shows spatial resolutions less than 1mm and measures an electron density of ne = 1 ×1016 cm-3 in an atmospheric microwave torch. Work supported by DOE contract DE-AC02-09CH11466.
Compression of magnetohydrodynamic simulation data using singular value decomposition
International Nuclear Information System (INIS)
Castillo Negrete, D. del; Hirshman, S.P.; Spong, D.A.; D'Azevedo, E.F.
2007-01-01
Numerical calculations of magnetic and flow fields in magnetohydrodynamic (MHD) simulations can result in extensive data sets. Particle-based calculations in these MHD fields, needed to provide closure relations for the MHD equations, will require communication of this data to multiple processors and rapid interpolation at numerous particle orbit positions. To facilitate this analysis it is advantageous to compress the data using singular value decomposition (SVD, or principal orthogonal decomposition, POD) methods. As an example of the compression technique, SVD is applied to magnetic field data arising from a dynamic nonlinear MHD code. The performance of the SVD compression algorithm is analyzed by calculating Poincare plots for electron orbits in a three-dimensional magnetic field and comparing the results with uncompressed data
A Liquid Metal Flume for Free Surface Magnetohydrodynamic Experiments
International Nuclear Information System (INIS)
Nornberg, M.D.; Ji, H.; Peterson, J.L.; Rhoads, J.R.
2008-01-01
We present an experiment designed to study magnetohydrodynamic effects in free-surface channel flow. The wide aspect ratio channel (the width to height ratio is about 15) is completely enclosed in an inert atmosphere to prevent oxidization of the liquid metal. A custom-designed pump reduces entrainment of oxygen, which was found to be a problem with standard centrifugal and gear pumps. Laser Doppler Velocimetry experiments characterize velocity profiles of the flow. Various flow constraints mitigate secondary circulation and end effects on the flow. Measurements of the wave propagation characteristics in the liquid metal demonstrate the surfactant effect of surface oxides and the damping of fluctuations by a cross-channel magnetic field
Derivation of the Hall and extended magnetohydrodynamics brackets
Energy Technology Data Exchange (ETDEWEB)
D' Avignon, Eric C., E-mail: cavell@physics.utexas.edu; Morrison, Philip J., E-mail: morrison@physics.utexas.edu [Department of Physics and Institute for Fusion Studies, The University of Texas at Austin, Austin, Texas 78712 (United States); Lingam, Manasvi, E-mail: mlingam@princeton.edu [Department of Astrophysical Sciences, Princeton University, Princeton, New Jersey 08544 (United States)
2016-06-15
There are several plasma models intermediate in complexity between ideal magnetohydrodynamics (MHD) and two-fluid theory, with Hall and Extended MHD being two important examples. In this paper, we investigate several aspects of these theories, with the ultimate goal of deriving the noncanonical Poisson brackets used in their Hamiltonian formulations. We present fully Lagrangian actions for each, as opposed to the fully Eulerian, or mixed Eulerian-Lagrangian, actions that have appeared previously. As an important step in this process, we exhibit each theory's two advected fluxes (in analogy to ideal MHD's advected magnetic flux), discovering also that with the correct choice of gauge they have corresponding Lie-dragged potentials resembling the electromagnetic vector potential, and associated conserved helicities. Finally, using the Euler-Lagrange map, we show how to derive the noncanonical Eulerian brackets from canonical Lagrangian ones.
Diagnostic development and support of MHD (magnetohydrodynamics) test facilities
Energy Technology Data Exchange (ETDEWEB)
1989-07-01
Mississippi State University (MSU) is developing diagnostic instruments for Magnetohydrodynamics (MHD) power train data acquisition and for support of MHD component development test facilities. Microprocessor-controlled optical instruments, initially developed for HRSR support, are being refined, and new systems to measure temperatures and gas-seed-slag stream characteristics are being developed. To further data acquisition and analysis capabilities, the diagnostic systems are being interfaced with MHD Energy Center computers. Technical support for the diagnostic needs of the national MHD research effort is being provided. MSU personnel will also cooperate with government agencies and private industries to improve the transformation of research and development results into processes, products and services applicable to their needs.
Numerical simulation of magnetohydrodynamic processes in a tokamak
International Nuclear Information System (INIS)
Danilov, A.F.; Kostomarov, D.P.; Popov, A.M.
The nonlinear motion of plasma in a Tokamak is studied by means of numerically solving two-dimensional [2D] and three-dimensional [3D] systems of magnetohydrodynamic (MHD) equations. The 2D model is a simplified system of Kadomtsev equations which describes helical movements in incompressible plasma with finite conductivity and a large longitudinal magnetic field. For the helical mode m = 1, the dynamics of internal stripping are studied, and for mode m = 2 the formation and evolution of magnetic islands are studied. The 3D model is a more complete system of MHD equations with allowance for compressibility. The motion of the individual modes in cylindrical and toroidal plasma is studied. Preliminary results have been obtained on the mutual effects of helical modes
Amplification of large-scale magnetic field in nonhelical magnetohydrodynamics
Kumar, Rohit
2017-08-11
It is typically assumed that the kinetic and magnetic helicities play a crucial role in the growth of large-scale dynamo. In this paper, we demonstrate that helicity is not essential for the amplification of large-scale magnetic field. For this purpose, we perform nonhelical magnetohydrodynamic (MHD) simulation, and show that the large-scale magnetic field can grow in nonhelical MHD when random external forcing is employed at scale 1/10 the box size. The energy fluxes and shell-to-shell transfer rates computed using the numerical data show that the large-scale magnetic energy grows due to the energy transfers from the velocity field at the forcing scales.
Magnetic flux pumping in 3D nonlinear magnetohydrodynamic simulations
Krebs, I.; Jardin, S. C.; Günter, S.; Lackner, K.; Hoelzl, M.; Strumberger, E.; Ferraro, N.
2017-10-01
A self-regulating magnetic flux pumping mechanism in tokamaks that maintains the core safety factor at q ≈1 , thus preventing sawteeth, is analyzed in nonlinear 3D magnetohydrodynamic simulations using the M3D-C1 code. In these simulations, the most important mechanism responsible for the flux pumping is that a saturated (m =1 ,n =1 ) quasi-interchange instability generates an effective negative loop voltage in the plasma center via a dynamo effect. It is shown that sawtoothing is prevented in the simulations if β is sufficiently high to provide the necessary drive for the (m =1 ,n =1 ) instability that generates the dynamo loop voltage. The necessary amount of dynamo loop voltage is determined by the tendency of the current density profile to centrally peak which, in our simulations, is controlled by the peakedness of the applied heat source profile.
Magnetohydrodynamic spin waves in degenerate electron-positron-ion plasmas
Energy Technology Data Exchange (ETDEWEB)
Mushtaq, A. [TPPD, PINSTECH Nilore, 44000 Islamabad (Pakistan); National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Maroof, R.; Ahmad, Zulfiaqr [Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan); Qamar, A. [National Center for Physics, Shahdrah Valley Road, 44000 Islamabad (Pakistan); Institute of Physics and Electronics, University of Peshawar, 25000 Peshawar (Pakistan)
2012-05-15
Low frequency magnetosonic waves are studied in magnetized degenerate electron-positron-ion plasmas with spin effects. Using the fluid equations of magnetoplasma with quantum corrections due to the Bohm potential, temperature degeneracy, and spin magnetization energy, a generalized dispersion relation for oblique magnetosonic waves is derived. Spin effects are incorporated via spin force and macroscopic spin magnetization current. For three different values of angle {theta}, the generalized dispersion relation is reduced to three different relations under the low frequency magnetohydrodynamic assumptions. It is found that the effect of quantum corrections in the presence of positron concentration significantly modifies the dispersive properties of these modes. The importance of the work relevant to compact astrophysical bodies is pointed out.
Toward textbook multigrid efficiency for fully implicit resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Adams, Mark F.; Samtaney, Ravi; Brandt, Achi
2010-01-01
Multigrid methods can solve some classes of elliptic and parabolic equations to accuracy below the truncation error with a work-cost equivalent to a few residual calculations - so-called 'textbook' multigrid efficiency. We investigate methods to solve the system of equations that arise in time dependent magnetohydrodynamics (MHD) simulations with textbook multigrid efficiency. We apply multigrid techniques such as geometric interpolation, full approximate storage, Gauss-Seidel smoothers, and defect correction for fully implicit, nonlinear, second-order finite volume discretizations of MHD. We apply these methods to a standard resistive MHD benchmark problem, the GEM reconnection problem, and add a strong magnetic guide field, which is a critical characteristic of magnetically confined fusion plasmas. We show that our multigrid methods can achieve near textbook efficiency on fully implicit resistive MHD simulations.
Magnetohydrodynamic pressure drop in a quickly changing magnetic field
International Nuclear Information System (INIS)
Xu, Z.Y.; Chen, J.M.; Qian, J.P.; Jiang, W.H.; Pan, C.J.; Li, W.Z.
1995-01-01
The magnetohydrodynamic (MHD) pressure drop of 22 Na 78 K flow in a circular duct was measured under a quickly changing magnetic field. The MHD pressure drop reduced with time as the magnetic field strength decreased. However, the dimensionless pressure drop gradient varied with the interaction parameter and had a higher value in the middle of the range of values of the interaction parameter. Therefore, a quickly changing magnetic field is harmful to the structural material in a liquid metal self-cooled blanket of a fusion reactor, since the greater pressure drop gradient may cause a larger stress in the blanket. This is even more harmful if the magnetic field strength decreases very quickly or its distribution in space is greatly non-uniform. (orig.)
Ideal, steady-state, axisymmetric magnetohydrodynamic equations with flow
International Nuclear Information System (INIS)
Baransky, Y.A.
1987-01-01
The motivation of this study is to gain additional understanding of the effect of rotation on the equilibrium of a plasma. The axisymmetric equilibria of ideal magnetohydrodynamics (MHD) with flow have been studied numerically and analytically. A general discussion is provided of previous work on plasmas with flow and comparisons are made to the static model. A variational principle has been derived for the two dimensional problem with comments as to appropriate boundary conditions. An inverse aspect ratio expansion has been used for a study of the toroidal flow equation for both low- and high-β. The inverse aspect ratio expansion has also been used for a study of equations with both poloidal and toroidal flow. An overview is provided of the adaptive finite-difference code which was developed to solve the full equations. (FI)