Anisotropic Intermittency of Magnetohydrodynamic Turbulence
Osman, K T; Chapman, S C; Hnat, B
2013-01-01
A higher-order multiscale analysis of spatial anisotropy in inertial range magnetohydrodynamic turbulence is presented using measurements from the STEREO spacecraft in fast ambient solar wind. We show for the first time that, when measuring parallel to the local magnetic field direction, the full statistical signature of the magnetic and Els\\"asser field fluctuations is that of a non-Gaussian globally scale-invariant process. This is distinct from the classic multi-exponent statistics observed when the local magnetic field is perpendicular to the flow direction. These observations are interpreted as evidence for the weakness, or absence, of a parallel magnetofluid turbulence energy cascade. As such, these results present strong observational constraints on the statistical nature of intermittency in turbulent plasmas.
Energy Decay Laws in Strongly Anisotropic Magnetohydrodynamic Turbulence
International Nuclear Information System (INIS)
We investigate the influence of a uniform magnetic field B0=B0eparallel on energy decay laws in incompressible magnetohydrodynamic (MHD) turbulence. The nonlinear transfer reduction along B0 is included in a model that distinguishes parallel and perpendicular directions, following a phenomenology of Kraichnan. We predict a slowing down of the energy decay due to anisotropy in the limit of strong B0, with distinct power laws for energy decay of shear- and pseudo-Alfven waves. Numerical results from the kinetic equations of Alfven wave turbulence recover these predictions, and MHD numerical results clearly tend to follow them in the lowest perpendicular planes
Magnetohydrodynamic turbulence
Biskamp, Dieter
2003-01-01
This book presents an introduction to, and modern account of, magnetohydrodynamic (MHD) turbulence, an active field both in general turbulence theory and in various areas of astrophysics. The book starts by introducing the MHD equations, certain useful approximations and the transition to turbulence. The second part of the book covers incompressible MHD turbulence, the macroscopic aspects connected with the different self-organization processes, the phenomenology of the turbulence spectra, two-point closure theory, and intermittency. The third considers two-dimensional turbulence and compressi
Chandran
2000-11-27
Scattering rates for a Goldreich-Sridhar (GS) spectrum of anisotropic, incompressible, magnetohydrodynamic turbulence are calculated in the quasilinear approximation. Because the small-scale fluctuations are constrained to have wave vectors nearly perpendicular to the background magnetic field, scattering is too weak to provide either the mean-free paths commonly used in Galactic cosmic-ray propagation models or the mean-free paths required for acceleration of cosmic rays at quasiparallel shocks. Where strong pitch-angle scattering occurs, it is due to fluctuations not described by the GS spectrum, such as fluctuations generated by streaming cosmic rays. PMID:11082620
Magnetohydrodynamic Turbulence
Montgomery, David C.
2004-01-01
Magnetohydrodynamic (MHD) turbulence theory is modeled on neutral fluid (Navier-Stokes) turbulence theory, but with some important differences. There have been essentially no repeatable laboratory MHD experiments wherein the boundary conditions could be controlled or varied and a full set of diagnostics implemented. The equations of MHD are convincingly derivable only in the limit of small ratio of collision mean-free-paths to macroscopic length scales, an inequality that often goes the other way for magnetofluids of interest. Finally, accurate information on the MHD transport coefficients-and thus, the Reynolds-like numbers that order magnetofluid behavior-is largely lacking; indeed, the algebraic expressions used for such ingredients as the viscous stress tensor are often little more than wishful borrowing from fluid mechanics. The one accurate thing that has been done extensively and well is to solve the (strongly nonlinear) MHD equations numerically, usually in the presence of rectangular periodic boundary conditions, and then hope for the best when drawing inferences from the computations for those astrophysical and geophysical MHD systems for which some indisputably turbulent detailed data are available, such as the solar wind or solar prominences. This has led to what is perhaps the first field of physics for which computer simulations are regarded as more central to validating conclusions than is any kind of measurement. Things have evolved in this way due to a mixture of the inevitable and the bureaucratic, but that is the way it is, and those of us who want to work on the subject have to live with it. It is the only game in town, and theories that have promised more-often on the basis of some alleged ``instability''-have turned out to be illusory.
Podesta, J. J.
It is known that Kolmogorov's four-fifths law for statistically homogeneous and isotropic turbulence can be generalized to anisotropic turbulence. This fundamental result for homogeneous anisotropic turbulence says that in the inertial range the divergence of the vector third-order moment |v(r) is constant and is equal to -4, where is the dissipation rate of the turbulence. This law can be extended to incompressible magnetohydrodyamic (MHD) turbulence where statistical isotropy is often not valid due, for example, to the presence of a large-scale magnetic field. Laws for anisotropic incompressible MHD turbulence were first derived by Politano and Pouquet. In this paper, the laws for vector third-order moments in homogeneous non-isotropic incompressible MHD turbulence are derived by a technique due to Frisch that clarifies the relationship between the energy flux in Fourier space and the vector third-order moments in physical space. This derivation is different from the original derivation of Politano and Pouquet which is based on the Kn-Howarth equation, and provides some new physical insights. Separate laws are derived for the cascades of energy, cross-helicity and magnetic-helicity, the three ideal invariants of incompressible MHD for flows in three dimensions. These laws are of fundamental importance in the theory of MHD turbulence where non-isotropic turbulence is much more prevalent than isotropic turbulence.
Magnetohydrodynamics turbulence: An astronomical perspective
Indian Academy of Sciences (India)
S Sridhar
2011-07-01
Early work on magnetohydrodynamic (MHD) turbulence in the 1960s due, independently, to Iroshnikov and Kraichnan (IK) considered isotropic inertial-range spectra. Whereas laboratory experiments were not in a position to measure the spectral index, they showed that the turbulence was strongly anisotropic. Theoretical horizons correspondingly expanded in the 1980s, to accommodate both the isotropy of the IK theory and the anisotropy suggested by the experiments. Since the discovery of pulsars in 1967, many years of work on interstellar scintillation suggested that small-scale interstellar turbulence must have a hydromagnetic origin; but the IK spectrum was too ﬂat and the ideas on anisotropic spectra too qualitative to explain the observations. In response, new theories of balanced MHD turbulence were proposed in the 1990s, which argued that the IK theory was incorrect, and made quantitative predictions of anisotropic inertial-range spectra; these theories have since found applications in many areas of astrophysics. Spacecraft measurements of solar-wind turbulence show that there is more power in Alfvén waves that travel away from the Sun than towards it. Theories of imbalanced MHD turbulence have now been proposed to address interplanetary turbulence. This very active area of research continues to be driven by astronomy.
Turbulence in magnetohydrodynamics
Beresnyak, Andrey
2016-01-01
Magnetohydrodynamics describes dynamics in electrically conductive fluids. These occur in our environment as well as in our atmosphere and magnetosphere, and play a role in the sun's interaction with our planet. This work gives the basic information on turbulence in nature, comprising the needed equations, notions and numerical simulations. The current state of our knowledge and future implications of MHD turbulence are outlined systematically. It is indispensable for all scientists engaged in research of our atmosphere and in space science.
Electron magnetohydrodynamics: dynamics and turbulence.
Lyutikov, Maxim
2013-11-01
We consider dynamics and turbulent interaction of whistler modes within the framework of inertialess electron magnetohydrodynamics (EMHD). We argue that there is no energy principle in EMHD: any stationary closed configuration is neutrally stable. On the other hand, the relaxation principle, the long term evolution of a weakly dissipative system towards Taylor-Beltrami state, remains valid in EMHD. We consider the turbulent cascade of whistler modes. We show that (i) harmonic whistlers are exact nonlinear solutions; (ii) collinear whistlers do not interact (including counterpropagating); (iii) waves with the same value of the wave vector k(1)=k(2) do not interact; (iv) whistler modes have a dispersion that allows a three-wave decay, including into a zero frequency mode; (v) the three-wave interaction effectively couples modes with highly different wave numbers and propagation angles. In addition, linear interaction of a whistler with a single zero mode can lead to spatially divergent structures via parametric instability. All these properties are drastically different from MHD, so that the qualitative properties of the Alfvén turbulence can not be transferred to the EMHD turbulence. We derive the Hamiltonian formulation of EMHD, and using Bogoliubov transformation reduce it to the canonical form; we calculate the matrix elements for the three-wave interaction of whistlers. We solve numerically the kinetic equation and show that, generally, the EMHD cascade develops within a broad range of angles, while transiently it may show anisotropic, nearly two-dimensional structures. Development of a cascade depends on the forcing (nonuniversal) and often fails to reach a steady state. Analytical estimates predict the spectrum of magnetic fluctuations for the quasi-isotropic cascade [proportionality]k(-2). The cascade remains weak (not critically balanced). The cascade is UV local, while the infrared locality is weakly (logarithmically) violated. PMID:24329368
Anisotropic Diffusion in Mesh-Free Numerical Magnetohydrodynamics
Hopkins, Philip F
2016-01-01
We extend recently-developed mesh-free Lagrangian methods for numerical magnetohydrodynamics (MHD) to arbitrary anisotropic diffusion equations, including: passive scalar diffusion, Spitzer-Braginskii conduction and viscosity, cosmic ray diffusion/streaming, anisotropic radiation transport, non-ideal MHD (Ohmic resistivity, ambipolar diffusion, the Hall effect), and turbulent 'eddy diffusion.' We study these as implemented in the code GIZMO for both new meshless finite-volume Godunov schemes (MFM/MFV) as well as smoothed-particle hydrodynamics (SPH). We show the MFM/MFV methods are accurate and stable even with noisy fields and irregular particle arrangements, and recover the correct behavior even in arbitrarily anisotropic cases. They are competitive with state-of-the-art AMR/moving-mesh methods, and can correctly treat anisotropic diffusion-driven instabilities (e.g. the MTI and HBI, Hall MRI). We also develop a new scheme for stabilizing anisotropic tensor-valued fluxes with high-order gradient estimators ...
Generalized similarity in finite range solar wind magnetohydrodynamic turbulence
Chapman, S. C.; Nicol, R. M.
2009-01-01
Extended or generalized similarity is a ubiquitous but not well understood feature of turbulence that is realized over a finite range of scales. ULYSSES spacecraft solar polar passes at solar minimum provide \\textit{in situ} observations of evolving anisotropic magnetohydrodynamic turbulence in the solar wind under ideal conditions of fast quiet flow. We find a single generalized scaling function characterises this finite range turbulence and is insensitive to plasma conditions. The recent un...
Magnetohydrodynamic turbulence: Observation and experiment
Energy Technology Data Exchange (ETDEWEB)
Brown, M. R.; Schaffner, D. A.; Weck, P. J. [Department of Physics and Astronomy, Swarthmore College, 500 College Avenue, Swarthmore, Pennsylvania 19081 (United States)
2015-05-15
We provide a tutorial on the paradigms and tools of magnetohydrodynamic (MHD) turbulence. The principal paradigm is that of a turbulent cascade from large scales to small, resulting in power law behavior for the frequency power spectrum for magnetic fluctuations E{sub B}(f). We will describe five useful statistical tools for MHD turbulence in the time domain: the temporal autocorrelation function, the frequency power spectrum, the probability distribution function of temporal increments, the temporal structure function, and the permutation entropy. Each of these tools will be illustrated with an example taken from MHD fluctuations in the solar wind. A single dataset from the Wind satellite will be used to illustrate all five temporal statistical tools.
Magnetohydrodynamic turbulent model for LMFRS
Energy Technology Data Exchange (ETDEWEB)
Ohira, H.; Ara, K. [O-arai Engineering Center, Japan Nuclear Cycle Development Institute, O-arai (Japan)
2004-07-01
In order to study magnetohydrodynamic behavior in electromagnetic pumps, electromagnetic flow meters, etc. for Liquid Metal Fast Reactors (LMFR), a large eddy simulation method using an artificial wall boundary condition was developed. In this study, Spalding's law of the wall and the eddy viscosity for uniform magnetic fields, which was proposed by Shimomura, was applied to Finite Element Method of Generalized Simplified Marker and Cell (GSMAC-FEM). We calculated MHD channel flow in various element sizes on the conditions of Hartmann numbers of 0, 52.5 and 125, whose Reynolds numbers based on the average velocity were all about 29000. These results showed the average velocity profiles were in good agreement with both the experimental results by Brouillette-Lykoudis and the detail calculation results by Shimomura, although farther calculations were needed to verify the turbulence intensities. (authors)
Magnetohydrodynamic turbulent model for LMFRS
International Nuclear Information System (INIS)
In order to study magnetohydrodynamic behavior in electromagnetic pumps, electromagnetic flow meters, etc. for Liquid Metal Fast Reactors (LMFR), a large eddy simulation method using an artificial wall boundary condition was developed. In this study, Spalding's law of the wall and the eddy viscosity for uniform magnetic fields, which was proposed by Shimomura, was applied to Finite Element Method of Generalized Simplified Marker and Cell (GSMAC-FEM). We calculated MHD channel flow in various element sizes on the conditions of Hartmann numbers of 0, 52.5 and 125, whose Reynolds numbers based on the average velocity were all about 29000. These results showed the average velocity profiles were in good agreement with both the experimental results by Brouillette-Lykoudis and the detail calculation results by Shimomura, although farther calculations were needed to verify the turbulence intensities. (authors)
Magnetohydrodynamic Turbulence and the Geodynamo
Shebalin, John V.
2014-01-01
The ARES Directorate at JSC has researched the physical processes that create planetary magnetic fields through dynamo action since 2007. The "dynamo problem" has existed since 1600, when William Gilbert, physician to Queen Elizabeth I, recognized that the Earth was a giant magnet. In 1919, Joseph Larmor proposed that solar (and by implication, planetary) magnetism was due to magnetohydrodynamics (MHD), but full acceptance did not occur until Glatzmaier and Roberts solved the MHD equations numerically and simulated a geomagnetic reversal in 1995. JSC research produced a unique theoretical model in 2012 that provided a novel explanation of these physical observations and computational results as an essential manifestation of broken ergodicity in MHD turbulence. Research is ongoing, and future work is aimed at understanding quantitative details of magnetic dipole alignment in the Earth as well as in Mercury, Jupiter and its moon Ganymede, Saturn, Uranus, Neptune, and the Sun and other stars.
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model
Graham, J. Pietarila; P. D. Mininni; Pouquet, A.
2011-01-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000^3 grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic m...
Structure of homogeneous nonhelical magnetohydrodynamic turbulence
Energy Technology Data Exchange (ETDEWEB)
Miller, R.S.; Mashayek, F.; Adumitroaie, V.; Givi, P. [Department of Mechanical and Aerospace Engineering, State University of New York at Buffalo, Buffalo, New York 14260-4400 (United States)
1996-09-01
Results are presented for three-dimensional direct numerical simulations of nonhelical magnetohydrodynamic (MHD) turbulence for both stationary isotropic and homogeneous shear flow configurations with zero mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value of Re{sub {lambda}}{approx_equal}30. The presence of the magnetic field has the effect of decreasing the kinetic energy of the flow, while simultaneously increasing the Taylor microscale Reynolds number due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity and the magnetic fields become increasingly anisotropic with increasing initial magnetic field strength. The kinetic energy spectra show a relative increase in high wave-number energy in the presence of a magnetic field. The magnetic field is found to portray an intermittent behavior, with peak values of the flatness near the critical Reynolds number. The magnetic field of both flows is organized in the form of {open_quote}{open_quote}flux tubes{close_quote}{close_quote} and magnetic {open_quote}{open_quote}sheets.{close_quote}{close_quote} These regions of large magnetic field strength show a small correlation with moderate vorticity regions, while the electric current structures are correlated with large amplitude strain regions of the turbulence. Some of the characteristics of small scale MHD turbulence are explained via the {open_quote}{open_quote}structural{close_quote}{close_quote} description of turbulence. {copyright} {ital 1996 American Institute of Physics.}
Structure of homogeneous nonhelical magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Results are presented for three-dimensional direct numerical simulations of nonhelical magnetohydrodynamic (MHD) turbulence for both stationary isotropic and homogeneous shear flow configurations with zero mean induction and unity magnetic Prandtl number. Small scale dynamo action is observed in both flows, and stationary values for the ratio of magnetic to kinetic energy are shown to scale nearly linearly with the Taylor microscale Reynolds numbers above a critical value of Reλ≅30. The presence of the magnetic field has the effect of decreasing the kinetic energy of the flow, while simultaneously increasing the Taylor microscale Reynolds number due to enlargement of the hydrodynamic length scales. For shear flows, both the velocity and the magnetic fields become increasingly anisotropic with increasing initial magnetic field strength. The kinetic energy spectra show a relative increase in high wave-number energy in the presence of a magnetic field. The magnetic field is found to portray an intermittent behavior, with peak values of the flatness near the critical Reynolds number. The magnetic field of both flows is organized in the form of open-quote open-quote flux tubes close-quote close-quote and magnetic open-quote open-quote sheets.close-quote close-quote These regions of large magnetic field strength show a small correlation with moderate vorticity regions, while the electric current structures are correlated with large amplitude strain regions of the turbulence. Some of the characteristics of small scale MHD turbulence are explained via the open-quote open-quote structural close-quote close-quote description of turbulence. copyright 1996 American Institute of Physics
Anisotropic spectra of acoustic turbulence
International Nuclear Information System (INIS)
We found universal anizopropic spectra of acoustic turbulence with the linear dispersion law ω(k)=ck within the framework of generalized kinetic equation which takes into account the finite time of three-wave interactions. This anisotropic spectra can assume both scale-invariant and non-scale-invariant form. The implications for the evolution of the acoustic turbulence with nonisotropic pumping are discussed. The main result of the article is that the spectra of acoustic turbulence tend to become more isotropic. (c) 2000 The American Physical Society
Turbulent Magnetohydrodynamic Jet Collimation and Thermal Driving
Williams, Peter T.
2003-01-01
We have argued that magnetohydrodynamic (MHD) turbulence in an accretion disk naturally produces hoop-stresses, and that in a geometrically-thick flow these stresses could both drive and collimate an outflow. We based this argument on an analogy of turbulent MHD fluids to viscoelastic fluids, in which azimuthal shear flow creates hoop-stresses that cause a variety of flow phenomena, including the Weissenberg effect in which a fluid climbs a spinning rod. One of the more important differences ...
Two-dimensional electron magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
A novel type of turbulence, which arises in 2D electron magnetohydrodynamics, is studied by numerical simulation. Energy dissipation rates are found to be independent of the dissipation coefficients. The energy spectrum Ek follows the basic Kolmogorov-type predictions, k-5/3 for kde > 1 and k-7/3 for kde e = electron inertial length) and is hence independent of the linear wave properties. Results are compared with other 2D turbulent systems. (author)
Magnetohydrodynamic turbulence in the solar wind
Goldstein, Melvyn L.
1995-01-01
The fluctuations in magnetic field and plasma velocity in solar wind, which possess many features of fully developed magnetohydrodynamic (MHD) turbulence, are discussed. Direct spacecraft observations from 0.3 to over 20 AU, remote sensing radio scintillation observations, numerical simulations, and various models provide complementary methods that show that the fluctuations in the wind parameters undergo significant dynamical evolution independent of whatever turbulence might exist in the solar photosphere and corona. The Cluster mission, with high time resolution particle and field measurements and its variable separation strategies, should be able to provide data for answering many questions on MHD turbulence.
Scalings of intermittent structures in magnetohydrodynamic turbulence
Zhdankin, Vladimir; Uzdensky, Dmitri A
2016-01-01
Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strong guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulat...
Magnetohydrodynamic turbulence in warped accretion discs
Torkelsson, U; Brandenburg, A; Pringle, J E; Nordlund, A A; Stein, R F; Nordlund, AA.
2001-01-01
Warped, precessing accretion discs appear in a range of astrophysical systems, for instance the X-ray binary Her X-1 and in the active nucleus of NGC4258. In a warped accretion disc there are horizontal pressure gradients that drive an epicyclic motion. We have studied the interaction of this epicyclic motion with the magnetohydrodynamic turbulence in numerical simulations. We find that the turbulent stress acting on the epicyclic motion is comparable in size to the stress that drives the accretion, however an important ingredient in the damping of the epicyclic motion is its parametric decay into inertial waves.
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lazarian, Alex; Lee, Hyeseung; Cho, Jungyeon
2016-07-01
We test a new technique for studying magnetohydrodynamic turbulence suggested by Lazarian & Pogosyan, using synthetic observations of synchrotron polarization. This paper focuses on a one-point statistics, which is termed polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of the wavelength along a single line of sight. We adopt the ratio η of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is large (η \\gg 1), which characterizes a region dominated by turbulent field, or small (η ≲ 0.2), which characterizes a region dominated by the mean field, we obtain the polarization variance \\propto {λ }-2 or \\propto {λ }-2-2m, respectively. At small η, i.e., in the region dominated by the mean field, we successfully recover the turbulent spectral index from the polarization variance. We find that our simulations agree well with the theoretical prediction of Lazarian & Pogosyan. With existing and upcoming data cubes from the Low-Frequency Array for Radio Astronomy (LOFAR) and the Square Kilometer Array (SKA), this new technique can be applied to study the magnetic turbulence in the Milky Way and other galaxies.
Weak turbulence in two-dimensional magnetohydrodynamics
Tronko, Natalia; Nazarenko, Sergey; Galtier, Sebastien
2012-01-01
A weak wave turbulence theory is developed for two-dimensional (2D) magnetohydrodynamics (MHD). We derive and analyze the kinetic equation describing the three-wave interactions of pseudo-Alfv\\'en waves. Our analysis is greatly helped by the fortunate fact that in 2D the wave-kinetic equation is integrable. In contrast with the 3D case, in 2D the wave interactions are nonlocal. Another distinct feature is that strong derivatives of spectra tend to appear in the region of small parallel (i.e. ...
Studying Magnetohydrodynamic Turbulence with Synchrotron Polarization Dispersion
Zhang, Jian-Fu; Lee, Hyeseung; Cho, Jungyeon
2016-01-01
We test a new technique of studying magnetohydrodynamic (MHD) turbulence suggested by Lazarian \\& Pogosyan, using synthetic synchrotron polarization observations. This paper focuses on a one-point statistics, which is termed the polarization frequency analysis, that is characterized by the variance of polarized emission as a function of the square of wavelengths along a single line of sight. We adopt a ratio $\\eta$ of the standard deviation of the line-of-sight turbulent magnetic field to the line-of-sight mean magnetic field to depict the level of turbulence. When this ratio is either large ($\\eta\\gg1$), which characterizes a turbulent field dominated region, or small ($\\eta\\lesssim0.2$), which characterizes a mean field dominated region, we obtain the polarization variance $\\left\\propto\\lambda^{-2}$ and $\\left\\propto\\lambda^{-2-2m}$, respectively. At small $\\eta$, i.e., the mean field dominated region, we successfully recover the turbulent spectral index by the polarization variance. We find that our si...
Scalings of intermittent structures in magnetohydrodynamic turbulence
Zhdankin, Vladimir; Boldyrev, Stanislav; Uzdensky, Dmitri A.
2016-05-01
Turbulence is ubiquitous in plasmas, leading to rich dynamics characterized by irregularity, irreversibility, energy fluctuations across many scales, and energy transfer across many scales. Another fundamental and generic feature of turbulence, although sometimes overlooked, is the inhomogeneous dissipation of energy in space and in time. This is a consequence of intermittency, the scale-dependent inhomogeneity of dynamics caused by fluctuations in the turbulent cascade. Intermittency causes turbulent plasmas to self-organize into coherent dissipative structures, which may govern heating, diffusion, particle acceleration, and radiation emissions. In this paper, we present recent progress on understanding intermittency in incompressible magnetohydrodynamic turbulence with a strong guide field. We focus on the statistical analysis of intermittent dissipative structures, which occupy a small fraction of the volume but arguably account for the majority of energy dissipation. We show that, in our numerical simulations, intermittent structures in the current density, vorticity, and Elsässer vorticities all have nearly identical statistical properties. We propose phenomenological explanations for the scalings based on general considerations of Elsässer vorticity structures. Finally, we examine the broader implications of intermittency for astrophysical systems.
Imbalanced relativistic force-free magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
When magnetic energy density is much larger than that of matter, as in pulsar/black hole magnetospheres, the medium becomes force-free and we need relativity to describe it. As in non-relativistic magnetohydrodynamics (MHD), Alfvénic MHD turbulence in the relativistic limit can be described by interactions of counter-traveling wave packets. In this paper, we numerically study strong imbalanced MHD turbulence in such environments. Here, imbalanced turbulence means the waves traveling in one direction (dominant waves) have higher amplitudes than the opposite-traveling waves (sub-dominant waves). We find that (1) spectrum of the dominant waves is steeper than that of sub-dominant waves, (2) the anisotropy of the dominant waves is weaker than that of sub-dominant waves, and (3) the dependence of the ratio of magnetic energy densities of dominant and sub-dominant waves on the ratio of energy injection rates is steeper than quadratic (i.e., b+2/b−2∝(ϵ+/ϵ−)n with n > 2). These results are consistent with those obtained for imbalanced non-relativistic Alfvénic turbulence. This corresponds well to the earlier reported similarity of the relativistic and non-relativistic balanced magnetic turbulence.
Global invariants in ideal magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Magnetohydrodynamic (MHD) turbulence is an important though incompletely understood factor affecting the dynamics of many astrophysical, geophysical, and technological plasmas. As an approximation, viscosity and resistivity may be ignored, and ideal MHD turbulence may be investigated by statistical methods. Incompressibility is also assumed and finite Fourier series are used to represent the turbulent velocity and magnetic field. The resulting model dynamical system consists of a set of independent Fourier coefficients that form a canonical ensemble described by a Gaussian probability density function (PDF). This PDF is similar in form to that of Boltzmann, except that its argument may contain not just the energy multiplied by an inverse temperature, but also two other invariant integrals, the cross helicity and magnetic helicity, each multiplied by its own inverse temperature. However, the cross and magnetic helicities, as usually defined, are not invariant in the presence of overall rotation or a mean magnetic field, respectively. Although the generalized form of the magnetic helicity is known, a generalized cross helicity may also be found, by adding terms that are linear in the mean magnetic field and angular rotation vectors, respectively. These general forms are invariant even in the presence of overall rotation and a mean magnetic field. We derive these general forms, explore their properties, examine how they extend the statistical theory of ideal MHD turbulence, and discuss how our results may be affected by dissipation and forcing
Structures in magnetohydrodynamic turbulence: detection and scaling.
Uritsky, V M; Pouquet, A; Rosenberg, D; Mininni, P D; Donovan, E F
2010-11-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stem from numerical simulations of decaying three-dimensional magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536³ points and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X -point configuration embedded in three dimensions, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two flows under study in terms of scaling laws for the cluster characteristics, with the structures in the vorticity and in the current behaving in the same way. We also study the effect of Reynolds number on cluster statistics, and we finally analyze the properties of these clusters in terms of their velocity-magnetic-field correlation. Self-organized criticality features have been identified in the dissipative range of scales. A different scaling arises in the inertial range, which cannot be identified for the moment with a known self-organized criticality class consistent with magnetohydrodynamics. We suggest that this range can be governed by turbulence dynamics as opposed to criticality and propose an interpretation of intermittency in terms of propagation of local instabilities. PMID:21230595
Extended inertial range phenomenology of magnetohydrodynamic turbulence
Matthaeus, William H.; Zhou, YE
1989-01-01
A phenomenological treatment of the inertial range of isotropic statistically steady magnetohydrodynamic turbulence is presented, extending the theory of Kraichnan (1965). The role of Alfven wave propagation is treated on equal footing with nonlinear convection, leading to a simple generalization of the relations between the times characteristic of wave propagation, convection, energy transfer, and decay of triple correlations. The theory leads to a closed-form steady inertial range spectral law that reduces to the Kraichnan and Kolmogorov laws in appropriate limits. The Kraichnan constant is found to be related in a simple way to the Kolmogorov constant; for typical values of the latter constant, the former has values in the range 1.22-1.87. Estimates of the time scale associated with spectral transfer of energy also emerge from the new approach, generalizing previously presented 'golden rules' for relating the spectral transfer time scale to the Alfven and eddy-turnover time scales.
Classes of hydrodynamic and magnetohydrodynamic turbulent decay
Brandenburg, Axel
2016-01-01
We perform numerical simulations of decaying hydrodynamic and magnetohydrodynamic turbulence. We classify our time-dependent solutions by their evolutionary tracks in parametric plots between instantaneous scaling exponents. We find distinct classes of solutions evolving along specific trajectories toward points on a line of self-similar solutions. These trajectories are determined by the underlying physics governing individual cases, and not by the initial conditions, as is widely assumed. In the helical case, even for a scale-invariant initial spectrum (inversely proportional to wavenumber k), the solution evolves along the same trajectory as for a Batchelor spectrum (proportional to k^4). All of our self-similar solutions have an intrinsic subinertial range close to k^4$.
Structures in magnetohydrodynamic turbulence: detection and scaling
Uritsky, Vadim M; Rosenberg, Duane; Mininni, Pablo D; Donovan, Eric
2010-01-01
We present a systematic analysis of statistical properties of turbulent current and vorticity structures at a given time using cluster analysis. The data stems from numerical simulations of decaying three-dimensional (3D) magnetohydrodynamic turbulence in the absence of an imposed uniform magnetic field; the magnetic Prandtl number is taken equal to unity, and we use a periodic box with grids of up to 1536^3 points, and with Taylor Reynolds numbers up to 1100. The initial conditions are either an X-point configuration embedded in 3D, the so-called Orszag-Tang vortex, or an Arn'old-Beltrami-Childress configuration with a fully helical velocity and magnetic field. In each case two snapshots are analyzed, separated by one turn-over time, starting just after the peak of dissipation. We show that the algorithm is able to select a large number of structures (in excess of 8,000) for each snapshot and that the statistical properties of these clusters are remarkably similar for the two snapshots as well as for the two...
High Reynolds number magnetohydrodynamic turbulence using a Lagrangian model.
Graham, J Pietarila; Mininni, P D; Pouquet, A
2011-07-01
With the help of a model of magnetohydrodynamic (MHD) turbulence tested previously, we explore high Reynolds number regimes up to equivalent resolutions of 6000(3) grid points in the absence of forcing and with no imposed uniform magnetic field. For the given initial condition chosen here, with equal kinetic and magnetic energy, the flow ends up being dominated by the magnetic field, and the dynamics leads to an isotropic Iroshnikov-Kraichnan energy spectrum. However, the locally anisotropic magnetic field fluctuations perpendicular to the local mean field follow a Kolmogorov law. We find that the ratio of the eddy turnover time to the Alfvén time increases with wave number, contrary to the so-called critical balance hypothesis. Residual energy and helicity spectra are also considered; the role played by the conservation of magnetic helicity is studied, and scaling laws are found for the magnetic helicity and residual helicity spectra. We put these results in the context of the dynamics of a globally isotropic MHD flow that is locally anisotropic because of the influence of the strong large-scale magnetic field, leading to a partial equilibration between kinetic and magnetic modes for the energy and the helicity. PMID:21867311
Multi-spacecraft measurement of anisotropic power levels and scaling in solar wind turbulence
K. T. Osman; Horbury, T. S.
2009-01-01
Measurements by the four Cluster spacecraft in the solar wind are used to determine quantitatively the field-aligned anisotropy of magnetohydrodynamic inertial range turbulence power levels and spectral indexes. We find, using time-lagged second order structure functions, that the spectral index is near 2 around the field-parallel direction, which is consistent with a "critical balance" turbulent cascade. Solar wind fluctuations are found to be anisotropic with power mainly ...
Magnetic Discontinuities in Magnetohydrodynamic Turbulence and in the Solar Wind
Zhdankin, Vladimir; Boldyrev, Stanislav; Mason, Joanne; Perez, Jean Carlos
2012-01-01
Recent measurements of solar wind turbulence report the presence of intermittent, exponentially distributed angular discontinuities in the magnetic field. In this Letter, we study whether such discontinuities can be produced by magnetohydrodynamic (MHD) turbulence. We detect the discontinuities by measuring the fluctuations of the magnetic field direction, Delta theta, across fixed spatial increments Delta x in direct numerical simulations of MHD turbulence with an imposed uniform guide field...
A new framework for magnetohydrodynamic simulations with anisotropic pressure
Hirabayashi, Kota; Amano, Takanobu
2016-01-01
We describe a new theoretical and numerical framework of the magnetohydrodynamic simulation incorporated with an anisotropic pressure tensor, which can play an important role in a collisionless plasma. A classical approach to handle the anisotropy is based on the double adiabatic approximation assuming that a pressure tensor is well described only by the components parallel and perpendicular to the local magnetic field. This gyrotropic assumption, however, fails around a magnetically neutral region, where the cyclotron period may get comparable to or even longer than a dynamical time in a system, and causes a singularity in the mathematical expression. In this paper, we demonstrate that this singularity can be completely removed away by the combination of direct use of the 2nd-moment of the Vlasov equation and an ingenious gyrotropization model. Numerical tests also verify that the present model properly reduces to the standard MHD or the double adiabatic formulation in an asymptotic manner under an appropria...
The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics
Tricco, Terrence S.; Price, Daniel J.; Federrath, Christoph
2016-01-01
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small-scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of star-forming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few ...
The inverse cascade of magnetic helicity in magnetohydrodynamic turbulence
Müller, W.; Malapaka, S.; Busse, A.
2012-01-01
The nonlinear dynamics of magnetic helicity, $H^M$, which is responsible for large-scale magnetic structure formation in electrically conducting turbulent media is investigated in forced and decaying three-dimensional magnetohydrodynamic turbulence. This is done with the help of high resolution direct numerical simulations and statistical closure theory. The numerically observed spectral scaling of $H^M$ is at variance with earlier work using a statistical closure model [Pouquet et al., J. Fl...
Intermittency of quasi-static magnetohydrodynamic turbulence: A wavelet viewpoint
International Nuclear Information System (INIS)
Intermittency of quasi-static magnetohydrodynamic (MHD) turbulence in an imposed magnetic field is examined, using three-dimensional orthonormal wavelets. The wavelet analysis is applied to two turbulent MHD flows computed by direct numerical simulation with 5123 grid points and with different intensities of the imposed magnetic field. It is found that the imposed magnetic field leads to a substantial amplification of intermittency of the flow, especially in the direction of the imposed magnetic field.
Theoretical study of anisotropic MHD turbulence with low magnetic Reynolds number
Sukoriansky, Semion; Zemach, Efi
2016-03-01
Flows of electrically conducting fluids under the action of external magnetic field present an example of strongly anisotropic turbulence. Such flows are not only important for different engineering applications, but also provide an interesting framework for studies of quasi-two-dimensional turbulence with strongly modified transport properties in easily controllable laboratory experiments. We present theoretical results that advance our understanding of magnetohydrodynamic (MHD) flows with low magnetic Reynolds number by treating this phenomenon within the quasi-normal scale elimination (QNSE) theory. Previous applications of the theory to turbulent flows with stable stratification and solid body rotation have demonstrated that QNSE is a powerful tool for studies of anisotropic turbulent flows. We derive expressions for scale-dependent eddy viscosities and eddy diffusivities in the directions parallel and normal to the external magnetic field and investigate progressive anisotropization of turbulent transport of momentum and passive scalar. The theory yields analytical expressions for anisotropic one-dimensional spectra of MHD turbulence. In particular, the theory sheds light upon the modification of the Kolmogorov k-5/3 spectrum by anisotropic Ohmic (Joule) dissipation.
The residual energy in freely decaying magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Within the framework of the eddy-damped quasi-normal Markovian approximation for incompressible isotropic magnetohydrodynamic (MHD) turbulence a prediction for the inertial range scaling of the residual energy spectrum, ERk= vertical bar Ekkinetic - Emagnetick vertical bar ∼ k-7/3, is obtained. This scaling, while in contradiction to earlier theoretical results, is shown to be in agreement with high-resolution direct numerical simulations of nonhelical decaying MHD turbulence. The underlying phenomenology states a dynamic quasi-equilibrium of the small-scale turbulent dynamo and the Alfven effect
Direct Evidence of the Transition from Weak to Strong Magnetohydrodynamic Turbulence.
Meyrand, Romain; Galtier, Sébastien; Kiyani, Khurom H
2016-03-11
One of the most important predictions in magnetohydrodynamics is that in the presence of a uniform magnetic field b_{0}e[over ^]_{∥} a transition from weak to strong wave turbulence should occur when going from large to small perpendicular scales. This transition is believed to be a universal property of several anisotropic turbulent systems. We present, for the first time, direct evidence of such a transition using a decaying three-dimensional direct numerical simulation of incompressible balanced magnetohydrodynamic turbulence with a grid resolution of 3072^{2}×256. From large to small scales, the change of regime is characterized by (i) a change of slope in the energy spectrum going from approximately -2 to -3/2, (ii) an increase of the ratio between the wave and nonlinear times, with a critical ratio of χ_{c}∼1/3, (iii) a modification of the isocontours of energy revealing a transition from a purely perpendicular cascade to a cascade compatible with the critical-balance-type phenomenology, and (iv) an absence followed by a dramatic increase of the communication between Alfvén modes. The changes happen at approximately the same transition scale and can be seen as manifest signatures of the transition from weak to strong wave turbulence. Furthermore, we observe a significant nonlocal three-wave coupling between strongly and weakly nonlinear modes resulting in an inverse transfer of energy from small to large scales. PMID:27015486
Direct Evidence of the Transition from Weak to Strong Magnetohydrodynamic Turbulence
Meyrand, Romain; Galtier, Sébastien; Kiyani, Khurom H.
2016-03-01
One of the most important predictions in magnetohydrodynamics is that in the presence of a uniform magnetic field b0e^∥ a transition from weak to strong wave turbulence should occur when going from large to small perpendicular scales. This transition is believed to be a universal property of several anisotropic turbulent systems. We present, for the first time, direct evidence of such a transition using a decaying three-dimensional direct numerical simulation of incompressible balanced magnetohydrodynamic turbulence with a grid resolution of 30722×256 . From large to small scales, the change of regime is characterized by (i) a change of slope in the energy spectrum going from approximately -2 to -3 /2 , (ii) an increase of the ratio between the wave and nonlinear times, with a critical ratio of χc˜1 /3 , (iii) a modification of the isocontours of energy revealing a transition from a purely perpendicular cascade to a cascade compatible with the critical-balance-type phenomenology, and (iv) an absence followed by a dramatic increase of the communication between Alfvén modes. The changes happen at approximately the same transition scale and can be seen as manifest signatures of the transition from weak to strong wave turbulence. Furthermore, we observe a significant nonlocal three-wave coupling between strongly and weakly nonlinear modes resulting in an inverse transfer of energy from small to large scales.
Perpendicular diffusion of energetic particles in noisy reduced magnetohydrodynamic turbulence
Shalchi, Andreas; Hussein, Mohammad
2014-01-01
Recently a model for noisy reduced magnetohydrodynamic turbulence was proposed. The latter model was already used to study the random walk of magnetic field lines. In the current article we use the same model to investigate the diffusion of energetic particles across the mean magnetic field. To compute the perpendicular diffusion coefficient two analytical theories are used, namely the Non- Linear Guiding Center (NLGC) theory and the Unified Non-Linear Transport (UNLT) theory. It is shown tha...
Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Spectral numerical simulations of homogeneous incompressible magnetohydrodynamic turbulence at Reynolds mumbers up to about 500, are performed using a uniform grid of 1803 collocation points. Strong vorticity and current sheets obtain both in the presence and in the absence of magnetic nulls. Contrary to vortex sheets in hydrodynamics, these structures do not destabilize into filaments, but are locally disrupted. They are the main loci of kinetic and magnetic dissipations. copyright 1995 American Institute of Physics
Multi-spacecraft measurement of anisotropic power levels and scaling in solar wind turbulence
Directory of Open Access Journals (Sweden)
K. T. Osman
2009-08-01
Full Text Available Measurements by the four Cluster spacecraft in the solar wind are used to determine quantitatively the field-aligned anisotropy of magnetohydrodynamic inertial range turbulence power levels and spectral indexes. We find, using time-lagged second order structure functions, that the spectral index is near 2 around the field-parallel direction, which is consistent with a "critical balance" turbulent cascade. Solar wind fluctuations are found to be anisotropic with power mainly in wavevectors perpendicular to the mean field, where the spectral index is around 5/3.
Magnetohydrodynamic turbulence and enhanced atomic processes in astrophysical plasmas
Spangler, Steven R.
1998-08-01
This article discusses a way in which enhanced atomic physics processes, including radiative energy losses, may occur in an astrophysical plasma containing magnetohydrodynamic turbulence. Two-dimensional (2D) magnetohydrodynamics (MHD) is adopted as a model. A major characteristic feature of 2D MHD turbulence is the development of strong current sheets on a dynamical time scale L/V0 where L is the spatial scale of the turbulent fluid and V0 is the scale of the velocity fluctuations. The current contained in the sheets will be carried by an electron drift relative to the ions. The case of a plasma containing minority atoms or ions with an excited state accessible to collisions from the tail of the electron distribution is considered. In the current carrying sheets or filaments, the electron distribution function will be perturbed such that collisional excitations will be enhanced relative to the current-free plasma. Subsequent radiative de-excitation of the atoms or ions removes energy from the turbulence. Expressions are presented for the electron drift velocity arising in 2D turbulence, the enhancement of collisional excitations of a trace atom or ion, and the energy lost to the plasma turbulence by radiative de-excitation of these atoms or ions. The mechanism would be most pronounced in plasmas for which the magnitude of the magnetic field is large, the outer scale of the turbulence is small, and the electron density and temperature are low. A brief discussion of the relevance of this mechanism to some specific astrophysical plasmas is given.
Minimal flow units for magnetohydrodynamic turbulence
Orlandi, P.
2016-08-01
We present direct numerical simulations of two minimal flow units (MFUs) to investigate the differences between inviscid and viscous simulations, and the different behavior of the evolution for conducting fluids. In these circumstances the introduction of the Lorentz force in the momentum equation produces different scenarios. The Taylor–Green vortex, in the past, was an MFU widely considered for both conducting and non-conducting fluids. The simulations were performed by pseudo-spectral numerical methods; these are repeated here by using a finite difference second-order accurate, energy-conserving scheme for ν =0. Having observed that this initial condition could be inefficient for capturing the eventual occurrence of a finite time singularity a potentially more efficient MFU consisting of two interacting Lamb dipoles was considered. It was found that the two flows have a different time evolution in the vortical dominated stage. In this stage, turbulent structures of different size are generated leading to spectra, in the inviscid conditions, with a {k}-3 range. In real conditions the viscosity produces smaller scales characteristic of fully developed turbulence with energy spectra with well defined exponential and inertial ranges. In the presence of non-conducting conditions the passive vector behaves as the vorticity. The evolution is different in the presence of conducting conditions. Although the time evolution is different, both flows lead to spectra in Kolmogorov units with the same shape at high and intermediate wave numbers.
Magnetohydrodynamic Turbulence and Reconnection in the Magnetotail
El-Alaoui, Mostafa; Richard, Robert L.; Ashour-Abdalla, Maha; Goldstein, Melvyn L.; Walker, Raymond J.
2011-01-01
We have used a global MHD simulation with high spatial resolution to investigate the origin and properties of turbulence in the plasma sheet. In this simulation we imposed a steady southward IMF with a magnitude of 5 nT at the upstream simulation boundary for more than three hours followed by ninety minutes of northward IMF of the same magnitude. The solar wind number density was 20 cm-3, the thermal pressure was 20 pPa, and the velocity was 500 km/s in the x direction. The moderately high dynamic pressure confined the magnetotail to the high-grid resolution region. Even for these nominal solar wind parameters and steady driving the plasma sheet became turbulent. The power spectral densities and probability distribution functions computed from the simulations were comparable to those obtained from spacecraft observations. The largest scale vortices were associated with reconnection outflows and, in the southward IMF case, with the diversion of high speed flows in the near-Earth region. Both time and space domain analyses revealed that there were three scales present, the large scale of the driving processes, the intermediate inertial scale and the dissipative scale.
Temporal Intermittency of Energy Dissipation in Magnetohydrodynamic Turbulence
Zhdankin, Vladimir; Boldyrev, Stanislav
2015-01-01
Energy dissipation in magnetohydrodynamic (MHD) turbulence is known to be highly intermittent in space, being concentrated in sheet-like coherent structures. Much less is known about intermittency in time, another fundamental aspect of turbulence which has great importance for observations of solar flares and other space/astrophysical phenomena. In this Letter, we investigate the temporal intermittency of energy dissipation in numerical simulations of MHD turbulence. We consider four-dimensional spatiotemporal structures, "flare events", responsible for a large fraction of the energy dissipation. We find that although the flare events are often highly complex, they exhibit robust power-law distributions and scaling relations. We find that the probability distribution of dissipated energy has a power law index close to -1.75, similar to observations of solar flares, indicating that intense dissipative events dominate the heating of the system. We also discuss the temporal asymmetry of flare events as a signatu...
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Squire, J.; Bhattacharjee, A.
2015-11-01
This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action—the magnetic analog of the "shear-current" effect. In addition, consideration of α effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of α , since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.
Scaling of compressible magnetohydrodynamic turbulence in the fast solar wind
Banerjee, Supratik; Sahraoui, Fouad; Galtier, Sebastien
2016-01-01
The role of compressible fluctuations in the energy cascade of fast solar wind turbulence is studied using a reduced form of an exact law derived recently (Banerjee and Galtier, PRE, 2013) for compressible isothermal magnetohydrodynamics and in-situ observations from the THEMIS B/ARTEMIS P1 spacecraft. A statistical survey of the data revealed a turbulent energy cascade over two decades of scales, which is broader than the previous estimates made from an exact incompressible law. A term-by-term analysis of the compressible model reveals new insight into the role played by the compressible fluctuations in the energy cascade. The compressible fluctuations are shown to amplify (2 to 4 times) the turbulent cascade rate with respect to the incompressible model in 10 % of the analyzed samples. This new estimated cascade rate is shown to provide the adequate energy dissipation required.
Electromotive force due to magnetohydrodynamic fluctuations in sheared rotating turbulence
Energy Technology Data Exchange (ETDEWEB)
Squire, J. [Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States); Bhattacharjee, A. [Dept Astrophys Sci, Max Planck Princeton Ctr Plasma Phys, Princeton, NJ 08543 USA; Princeton Plasma Physics Lab. (PPPL), Princeton, NJ (United States)
2015-11-01
This article presents a calculation of the mean electromotive force arising from general small-scale magnetohydrodynamical turbulence, within the framework of the second-order correlation approximation. With the goal of improving understanding of the accretion disk dynamo, effects arising through small-scale magnetic fluctuations, velocity gradients, density and turbulence stratification, and rotation, are included. The primary result, which supplements numerical findings, is that an off-diagonal turbulent resistivity due to magnetic fluctuations can produce large-scale dynamo action-the magnetic analog of the "shear-current" effect. In addition, consideration of alpha effects in the stratified regions of disks gives the puzzling result that there is no strong prediction for a sign of alpha, since the effects due to kinetic and magnetic fluctuations, as well as those due to shear and rotation, are each of opposing signs and tend to cancel each other.
Leprovost, Nicolas; Kim, Eun-Jin
2009-08-01
We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, alpha and beta effect) in Reynolds-averaged equations. We show that turbulent transport (turbulent viscosity and diffusivity) is quenched by a strong flow shear and a strong magnetic field. For a weak flow shear, we further show that the magnetic shear increases the turbulence intensity while decreasing the turbulent transport. In the presence of a strong flow shear, the effect of the magnetic shear is found to oppose the effect of flow shear (which reduces turbulence due to shear stabilization) by enhancing turbulence and transport, thereby weakening the strong quenching by flow shear stabilization. In the case of a strong magnetic field (compared to flow shear), magnetic shear increases turbulence intensity and quenches turbulent transport. PMID:19792244
Broken Ergodicity in Two-Dimensional Homogeneous Magnetohydrodynamic Turbulence
Shebalin, John V.
2010-01-01
Two-dimensional (2-D) homogeneous magnetohydrodynamic (MHD) turbulence has many of the same qualitative features as three-dimensional (3-D) homogeneous MHD turbulence.The se features include several ideal invariants, along with the phenomenon of broken ergodicity. Broken ergodicity appears when certain modes act like random variables with mean values that are large compared to their standard deviations, indicating a coherent structure or dynamo.Recently, the origin of broken ergodicity in 3-D MHD turbulence that is manifest in the lowest wavenumbers was explained. Here, a detailed description of the origins of broken ergodicity in 2-D MHD turbulence is presented. It will be seen that broken ergodicity in ideal 2-D MHD turbulence can be manifest in the lowest wavenumbers of a finite numerical model for certain initial conditions or in the highest wavenumbers for another set of initial conditions.T he origins of broken ergodicity in ideal 2-D homogeneous MHD turbulence are found through an eigen analysis of the covariance matrices of the modal probability density functions.It will also be shown that when the lowest wavenumber magnetic field becomes quasi-stationary, the higher wavenumber modes can propagate as Alfven waves on these almost static large-scale magnetic structures
Spectral properties of decaying turbulence in electron magnetohydrodynamics
International Nuclear Information System (INIS)
The spectral properties of decaying turbulence in 2(1/2)-dimensional electron magnetohydrodynamics are studied numerically. In the range kde-7/3 and k-13/3, respectively. The self-similar decay state of the turbulence is reached after an initial phase of fast exchange between the axial and poloidal magnetic energies. The time behavior t-2/3 of the total energy is found to be consistent with that obtained from selective decay. The maximum of the energy spectrum shifts towards low mode numbers and decays in time as t-1, in agreement with the infrared scaling of the turbulence. In the large de limit, both energy and mean square generalized momentum exhibit direct cascades. No stationary turbulent state could be found as long as the axial kinetic energy is large as compared to the poloidal kinetic energy initially. The global physical quantities decay well before turbulent macroscopic quantities have established similar space-time behavior, and the turbulence is infected by the lack of stationarity. The system decouples into a Navier-Stokes equation and a passive scalar equation only if the poloidal kinetic energy is larger than or equal to the axial kinetic energy. In this limit the k-5/3 and k-3 spectra of the poloidal kinetic energy are recovered
Reinterpreting aircraft measurements in anisotropic scaling turbulence
Directory of Open Access Journals (Sweden)
S. J. Hovde
2009-07-01
Full Text Available Due to both systematic and turbulent induced vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic or "quasi isotropic" in the sense that their exponents are the same in all directions. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is scaling but anisotropic. In this paper, we show how such turbulence can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.
We demonstrate this using 16 legs of Gulfstream 4 aircraft near the top of the troposphere following isobars each between 500 and 3200 km in length. First we show that over wide ranges of scale, the horizontal spectra of the aircraft altitude are nearly k^{-5/3}. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations; for scales less than ≈40 km (on average the wind fluctuations lead the pressure and altitude, whereas for larger scales, the pressure fluctuations leads the wind. At the same transition scale, there is a break in the wind spectrum which we argue is caused by the aircraft starting to accurately follow isobars at the larger scales. In comparison, the temperature and humidity have low coherencies and phases and there are no apparent scale breaks, reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.
Using spectra and structure functions for the wind, we then estimate their exponents (β, H at small (5/3, 1/3 and large scales (2
Cosmic Ray propagation in sub-Alfvenic magnetohydrodynamic turbulence
Cohet, Romain
2016-01-01
This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free path dependences in terms of the turbulence level described by the Alfv\\'enic Mach number and in terms of the particle rigidity. We use an upgrade version of the magnetohydrodynamic code {\\tt RAMSES} which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. We derive the cosmic ray mean free paths in terms of the Alfv\\'enic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced...
Energy transfers in shell models for magnetohydrodynamics turbulence.
Lessinnes, Thomas; Carati, Daniele; Verma, Mahendra K
2009-06-01
A systematic procedure to derive shell models for magnetohydrodynamic turbulence is proposed. It takes into account the conservation of ideal quadratic invariants such as the total energy, the cross helicity, and the magnetic helicity, as well as the conservation of the magnetic energy by the advection term in the induction equation. This approach also leads to simple expressions for the energy exchanges as well as to unambiguous definitions for the energy fluxes. When applied to the existing shell models with nonlinear interactions limited to the nearest-neighbor shells, this procedure reproduces well-known models but suggests a reinterpretation of the energy fluxes. PMID:19658594
Reinterpreting aircraft measurements in anisotropic scaling turbulence
Directory of Open Access Journals (Sweden)
S. Lovejoy
2009-02-01
Full Text Available Due to unavoidable vertical fluctuations, the interpretation of atmospheric aircraft measurements requires a theory of turbulence. Until now virtually all the relevant theories have been isotropic. However almost all the available data on the vertical structure shows that it is scaling but with exponents different from the horizontal: the turbulence is anisotropic not isotropic. In this paper, we show how this can lead to spurious breaks in the scaling and to the spurious appearance of the vertical scaling exponent at large horizontal lags.
We demonstrate this using 16 legs of Gulfstream 4 tropospheric data following isobars each between 500 and 3200 km in length. First we show that the horizontal spectra of the aircraft altitude are nearly k^{−5/3} (although smoothed by aircraft intertia at scales <3 km. In addition, we show that the altitude and pressure fluctuations along these fractal trajectories have a high degree of coherence with the measured wind (especially with its longitudinal component. There is also a strong phase relation between the altitude, pressure and wind fluctuations with all of these effects occurring over the entire range of scales so that the trajectories influence the wind measurements over large ranges of scale. In comparison, the temperature and humidity have no apparent scale breaks and the corresponding coherencies and phases are low reinforcing the hypothesis that it is the aircraft trajectory that is causally linked to the scale breaks in the wind measurements.
Using spectra and structure functions we then estimate the small and large scale exponents finding that they are close to the Kolmogorov values (5/3, 1/3 and the vertical values (2.4, 0.73 respectively (for the spectral and real space scaling exponents (β, H the latter are close to those estimated by drop sondes (2.4, 0.75 in the vertical direction. In addition, for each leg we estimate the energy flux, the sphero
Nonlinear closures for scale separation in supersonic magnetohydrodynamic turbulence
Grete, Philipp; Schmidt, Wolfram; Schleicher, Dominik R G; Federrath, Christoph
2015-01-01
Turbulence in compressible plasma plays a key role in many areas of astrophysics and engineering. The extreme plasma parameters in these environments, e.g. high Reynolds numbers, supersonic and super-Alfvenic flows, however, make direct numerical simulations computationally intractable even for the simplest treatment -- magnetohydrodynamics (MHD). To overcome this problem one can use subgrid-scale (SGS) closures -- models for the influence of unresolved, subgrid-scales on the resolved ones. In this work we propose and validate a set of constant coefficient closures for the resolved, compressible, ideal MHD equations. The subgrid-scale energies are modeled by Smagorinsky-like equilibrium closures. The turbulent stresses and the electromotive force (EMF) are described by expressions that are nonlinear in terms of large scale velocity and magnetic field gradients. To verify the closures we conduct a priori tests over 137 simulation snapshots from two different codes with varying ratios of thermal to magnetic pre...
The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics
Tricco, Terrence S; Federrath, Christoph
2016-01-01
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small-scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of star-forming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning met...
Dynamics of decaying two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
High-resolution numerical studies of decaying two-dimensional magnetohydrodynamic turbulence using up to 7682 modes in general periodic systems reveal the following properties: I) the evolution proceeds in a quasi-selfsimilar way with constant kinetic to magnetic energy ratio and constant micro- and macro-scale Reynolds numbers; II) the energy dissipation rate is independent of the values of the dissipation coefficients η, μ; III) the inertial-range energy spectra follow a Kolmogorov law, Ek=Cε2/3k-5/3 with C=3.7±0.3. Small-scale fluctuations are concentrated in the region of weak large-scale magnetic fields. The resulting strong intermittency is analogous to the behavior recently observed in two-dimensional hydrodynamic turbulence (see, for instance, J. Fluid Mech. (1988) 194, 333), with the magnetic field intensity taking the role vorticity plays in hydrodynamic systems. (orig.)
Non-elliptic wavevector anisotropy for magnetohydrodynamic turbulence
Narita, Y.
2015-11-01
A model of non-elliptic wavevector anisotropy is developed for the inertial-range spectrum of magnetohydrodynamic turbulence and is presented in the two-dimensional wavevector domain spanning the directions parallel and perpendicular to the mean magnetic field. The non-elliptic model is a variation of the elliptic model with different scalings along the parallel and the perpendicular components of the wavevectors to the mean magnetic field. The non-elliptic anisotropy model reproduces the smooth transition of the power-law spectra from an index of -2 in the parallel projection with respect to the mean magnetic field to an index of -5/3 in the perpendicular projection observed in solar wind turbulence, and is as competitive as the critical balance model to explain the measured frequency spectra in the solar wind. The parameters in the non-elliptic spectrum model are compared with the solar wind observations.
Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence.
Nigro, Giuseppina; Carbone, Vincenzo
2010-07-01
The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process. PMID:20866731
Spontaneous chiral symmetry breaking of Hall magnetohydrodynamic turbulence.
Meyrand, Romain; Galtier, Sébastien
2012-11-01
Hall magnetohydrodynamics (MHD) is investigated through three-dimensional direct numerical simulations. We show that the Hall effect induces a spontaneous chiral symmetry breaking of the turbulent dynamics. The normalized magnetic polarization is introduced to separate the right- (R) and left-handed (L) fluctuations. A classical k(-7/3) spectrum is found at small scales for R magnetic fluctuations which corresponds to the electron MHD prediction. A spectrum compatible with k(-11/3) is obtained at large-scales for the L magnetic fluctuations; we call this regime the ion MHD. These results are explained heuristically by rewriting the Hall MHD equations in a succinct vortex dynamical form. Applications to solar wind turbulence are discussed. PMID:23215387
Magnetic reversals in a modified shell model for magnetohydrodynamics turbulence
Nigro, Giuseppina; Carbone, Vincenzo
2010-07-01
The aim of the paper is the study of dynamo action using a simple nonlinear model in the framework of magnetohydrodynamic turbulence. The nonlinear behavior of the system is described by using a shell model for velocity field and magnetic field fluctuations, modified for the magnetic field at the largest scale by a term describing a supercritical pitchfork bifurcation. Turbulent fluctuations generate a dynamical situation where the large-scale magnetic field jumps between two states which represent the opposite polarities of the magnetic field. Despite its simplicity, the model has the capability to describe a long time series of reversals from which we infer results about the statistics of persistence times and scaling laws of cancellations between opposite polarities for different magnetic diffusivity coefficients. These properties of the model are compared with real paleomagnetic data, thus revealing the origin of long-range correlations in the process.
Helical mode interactions and spectral transfer processes in magnetohydrodynamic turbulence
Linkmann, Moritz F; McKay, Mairi E; Jäger, Julia
2015-01-01
Spectral transfer processes in magnetohydrodynamic (MHD) turbulence are investigated analytically by decomposition of the velocity and magnetic fields in Fourier space into helical modes. Steady solutions of the dynamical system which governs the evolution of the helical modes are determined, and a stability analysis of these solutions is carried out. The interpretation of the analysis is that unstable solutions lead to energy transfer between the interacting modes while stable solutions do not. From this, a dependence of possible interscale energy and helicity transfers on the helicities of the interacting modes is derived. As expected from the inverse cascade of magnetic helicity in 3D MHD turbulence, mode interactions with like helicities lead to transfer of energy and magnetic helicity to smaller wavenumbers. However, some interactions of modes with unlike helicities also contribute to an inverse energy transfer. As such, an inverse energy cascade for nonhelical magnetic fields is shown to be possible. Fu...
RESONANCE BROADENING AND HEATING OF CHARGED PARTICLES IN MAGNETOHYDRODYNAMIC TURBULENCE
International Nuclear Information System (INIS)
The heating, acceleration, and pitch-angle scattering of charged particles by magnetohydrodynamic (MHD) turbulence are important in a wide range of astrophysical environments, including the solar wind, accreting black holes, and galaxy clusters. We simulate the interaction of high-gyrofrequency test particles with fully dynamical simulations of subsonic MHD turbulence, focusing on the parameter regime with β ∼ 1, where β is the ratio of gas to magnetic pressure. We use the simulation results to calibrate analytical expressions for test particle velocity-space diffusion coefficients and provide simple fits that can be used in other work. The test particle velocity diffusion in our simulations is due to a combination of two processes: interactions between particles and magnetic compressions in the turbulence (as in linear transit-time damping; TTD) and what we refer to as Fermi Type-B (FTB) interactions, in which charged particles moving on field lines may be thought of as beads sliding along moving wires. We show that test particle heating rates are consistent with a TTD resonance that is broadened according to a decorrelation prescription that is Gaussian in time (but inconsistent with Lorentzian broadening due to an exponential decorrelation function, a prescription widely used in the literature). TTD dominates the heating for vs >> vA (e.g., electrons), where vs is the thermal speed of species s and vA is the Alfvén speed, while FTB dominates for vs A (e.g., minor ions). Proton heating rates for β ∼ 1 are comparable to the turbulent cascade rate. Finally, we show that velocity diffusion of collisionless, large gyrofrequency particles due to large-scale MHD turbulence does not produce a power-law distribution function.
Scaling and anisotropy in magnetohydrodynamic turbulence in a strong mean magnetic field
International Nuclear Information System (INIS)
We present an analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudospectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles θ with respect to B0 reveals a specific structure which remains hidden when not taking axial symmetry with respect to B0 into account. For each direction, starting at the forced large scales, the spectrum first exhibits an amplitude drop around a wave number k0 which marks the start of a scaling range and goes on up to a dissipative wave number kd(θ). The three-dimensional spectrum for k≥k0 is described by a single θ-independent functional form F(k/kd), with the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from B0=5 up to B0=10brms, as well as when passing from resistive to ideal flows. We conjecture that at fixed B0 the direction-independent scaling regime is reached when increasing the Reynolds number above a threshold which raises with increasing B0. Below that threshold critically balanced turbulence is expected.
Small-scale behavior of Hall magnetohydrodynamic turbulence
Stawarz, Julia E.; Pouquet, Annick
2015-12-01
Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 7683 points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k-7 /3 scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.
Protostellar jets and magnetised turbulence with smoothed particle magnetohydrodynamics
Tricco, Terrence
2016-01-01
Magnetic fields are an integral component of the formation of stars. During my thesis work, I built new methods to model magnetic fields in smoothed particle magnetohydrodynamics which enforce the divergence-free constraint on the magnetic field and reduce numerical dissipation of the magnetic field. Using these methods, we have performed simulations of isolated protostar formation, studying the production of jets and outflows of material and their effect on transporting angular momentum away from the protostar and reducing the efficiency of star formation. A major code comparison project on the small-scale turbulent dynamo amplification of magnetic fields was performed, using conditions representative of molecular clouds, the formation site of stars. The results were compared against results from grid-based methods, finding excellent agreement on their statistics and qualitative behaviour. I will outline the numerical methods developed, and present the results from our protostar and molecular cloud simulations.
Turbulent energy dissipation and intermittency in ambipolar diffusion magnetohydrodynamics
Momferratos, Georgios; Falgarone, Edith; Forêts, Guillaume Pineau des
2015-01-01
The dissipation of kinetic and magnetic energy in the interstellar medium (ISM) can proceed through viscous, Ohmic or ambipolar diffusion (AD). It occurs at very small scales compared to the scales at which energy is presumed to be injected. This localized heating may impact the ISM evolution but also its chemistry, thus providing observable features. Here, we perform 3D spectral simulations of decaying magnetohydrodynamic turbulence including the effects of AD. We find that the AD heating power spectrum peaks at scales in the inertial range, due to a strong alignment of the magnetic and current vectors in the dissipative range. AD affects much greater scales than the AD scale predicted by dimensional analysis. We find that energy dissipation is highly concentrated on thin sheets. Its probability density function follows a lognormal law with a power-law tail which hints at intermittency, a property which we quantify by use of structure function exponents. Finally, we extract structures of high dissipation, de...
Magnetic moment non-conservation in magnetohydrodynamic turbulence models
Dalena, S; Rappazzo, A F; Mace, R L; Matthaeus, W H
2012-01-01
The fundamental assumptions of the adiabatic theory do not apply in presence of sharp field gradients as well as in presence of well developed magnetohydrodynamic turbulence. For this reason in such conditions the magnetic moment $\\mu$ is no longer expected to be constant. This can influence particle acceleration and have considerable implications in many astrophysical problems. Starting with the resonant interaction between ions and a single parallel propagating electromagnetic wave, we derive expressions for the magnetic moment trapping width $\\Delta \\mu$ (defined as the half peak-to-peak difference in the particle magnetic moment) and the bounce frequency $\\omega_b$. We perform test-particle simulations to investigate magnetic moment behavior when resonances overlapping occurs and during the interaction of a ring-beam particle distribution with a broad-band slab spectrum. We find that magnetic moment dynamics is strictly related to pitch angle $\\alpha$ for a low level of magnetic fluctuation, $\\delta B/B_0...
Chiral Exact Relations for Helicities in Hall Magnetohydrodynamic Turbulence
Banerjee, Supratik
2016-01-01
Besides total energy, three-dimensional incompressible Hall magnetohydrodynamics (MHD) possesses two inviscid invariants which are the magnetic helicity and the generalized helicity. New exact relations are derived for homogeneous (non-isotropic) stationary Hall MHD turbulence (and also for its inertialess electron MHD limit) with non-zero helicities and in the asymptotic limit of large Reynolds numbers. The universal laws are written only in terms of mixed second-order structure functions, i.e. the scalar product of two different increments. It provides, therefore, a direct measurement of the dissipation rates for the corresponding invariant flux. This study shows that the generalized helicity cascade is strongly linked to the left polarized fluctuations while the magnetic helicity cascade is linked to the right polarized fluctuations.
Energy cascade and its locality in compressible magnetohydrodynamic turbulence
Yang, Yan; Shi, Yipeng; Wan, Minping; Matthaeus, William H.; Chen, Shiyi
2016-06-01
We investigate energy transfer across scales in three-dimensional compressible magnetohydrodynamic (MHD) turbulence, a model often used to study space and astrophysical plasmas. Analysis shows that kinetic and magnetic energies cascade conservatively from large to small scales in cases with varying degrees of compression. With more compression, energy fluxes due to pressure dilation and subscale mass flux are greater, but conversion between kinetic and magnetic energy by magnetic line stretching is less efficient. Energy transfer between the same fields is dominated by local contributions regardless of compressive effects. In contrast, the conversion between kinetic and internal energy by pressure dilation is dominated by the largest scale contributions. Energy conversion between the velocity and magnetic fields is weakly local.
Turbulent Magnetohydrodynamic Reconnection Mediated by the Plasmoid Instability
Huang, Yi-Min
2015-01-01
It has been established that the Sweet-Parker current layer in high Lundquist number reconnection is unstable to the super-Alfv\\'enic plasmoid instability. Past two-dimensional magnetohydrodynamic simulations have demonstrated that the plasmoid instability leads to a new regime where the Sweet-Parker current layer changes into a chain of plasmoids connected by secondary current sheets, and the averaged reconnection rate becomes nearly independent of the Lundquist number. In this work, three-dimensional simulation with a guide field shows that the additional degree of freedom allows plasmoid instabilities to grow at oblique angles, which interact and lead to self-generated turbulent reconnection. The averaged reconnection rate in the self-generated turbulent state is of the order of a hundredth of the characteristic Alfv\\'en speed, which is similar to the two-dimensional result but is an order of magnitude lower than the fastest reconnection rate reported in recent studies of externally driven three-dimensiona...
The small-scale turbulent dynamo in smoothed particle magnetohydrodynamics
Tricco, T. S.; Price, D. J.; Federrath, C.
2016-05-01
Supersonic turbulence is believed to be at the heart of star formation. We have performed smoothed particle magnetohydrodynamics (SPMHD) simulations of the small- scale dynamo amplification of magnetic fields in supersonic turbulence. The calculations use isothermal gas driven at rms velocity of Mach 10 so that conditions are representative of starforming molecular clouds in the Milky Way. The growth of magnetic energy is followed for 10 orders in magnitude until it reaches saturation, a few percent of the kinetic energy. The results of our dynamo calculations are compared with results from grid-based methods, finding excellent agreement on their statistics and their qualitative behaviour. The simulations utilise the latest algorithmic developments we have developed, in particular, a new divergence cleaning approach to maintain the solenoidal constraint on the magnetic field and a method to reduce the numerical dissipation of the magnetic shock capturing scheme. We demonstrate that our divergence cleaning method may be used to achieve ∇ • B = 0 to machine precision, albeit at significant computational expense.
Inertial-Range Kinetic Turbulence in Pressure-Anisotropic Astrophysical Plasmas
Kunz, M W; Chen, C H K; Abel, I G; Cowley, S C
2015-01-01
A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al. 2009) for pressure-anisotropic plasmas, allowing for species drifts---a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas (e.g. intracluster medium). Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g., the Alfven ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. The main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvenic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the...
Antonov, N. V.; Kostenko, M. M.
2015-11-01
The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝δ (t -t') k4 -d -y , where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y . The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y . The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant.
Scaling and anisotropy of magnetohydrodynamic turbulence in a strong mean magnetic field
Grappin, Roland
2010-01-01
We present a new analysis of the anisotropic spectral energy distribution in incompressible magnetohydrodynamic (MHD) turbulence permeated by a strong mean magnetic field. The turbulent flow is generated by high-resolution pseudo-spectral direct numerical simulations with large-scale isotropic forcing. Examining the radial energy distribution for various angles $\\theta$ with respect to $\\mathbf{B}_0$ reveals a specific structure which remains hidden when not taking axial symmetry with respect to $B_0$ into account. For each direction, starting at the forced large-scales, the spectrum first exhibits an amplitude drop around a wavenumber $k_0$ which marks the start of a scaling range and goes on up to a dissipative wavenumber $k_d(\\theta)$. The 3D spectrum for $k \\ge k_0$ is described by a single $\\theta$-independent functional form $F(k/k_d)$, the scaling law being the same in every direction. The previous properties still hold when increasing the mean field from $B_0=5$ up to $B_0=10 \\ b_{rms}$, as well as wh...
Antonov, N V; Kostenko, M M
2015-11-01
The field-theoretic renormalization group and the operator product expansion are applied to the model of passive vector (magnetic) field advected by a random turbulent velocity field. The latter is governed by the Navier-Stokes equation for compressible fluid, subject to external random force with the covariance ∝ δ(t-t')k(4-d-y), where d is the dimension of space and y is an arbitrary exponent. From physics viewpoints, the model describes magnetohydrodynamic turbulence in the so-called kinematic approximation, where the effects of the magnetic field on the dynamics of the fluid are neglected. The original stochastic problem is reformulated as a multiplicatively renormalizable field-theoretic model; the corresponding renormalization group equations possess an infrared attractive fixed point. It is shown that various correlation functions of the magnetic field and its powers demonstrate anomalous scaling behavior in the inertial-convective range already for small values of y. The corresponding anomalous exponents, identified with scaling (critical) dimensions of certain composite fields ("operators" in the quantum-field terminology), can be systematically calculated as series in y. The practical calculation is performed in the leading one-loop approximation, including exponents in anisotropic contributions. It should be emphasized that, in contrast to Gaussian ensembles with finite correlation time, the model and the perturbation theory presented here are manifestly Galilean covariant. PMID:26651785
Cheng, Mingjian; Guo, Lixin; Li, Jiangting; Huang, Qingqing
2016-08-01
Rytov theory was employed to establish the transmission model for the optical vortices carried by Bessel-Gaussian (BG) beams in weak anisotropic turbulence based on the generalized anisotropic von Karman spectrum. The influences of asymmetry anisotropic turbulence eddies and source parameters on the signal orbital angular momentum (OAM) mode detection probability of partially coherent BG beams in anisotropic turbulence were discussed. Anisotropic characteristics of the turbulence could enhance the OAM mode transmission performance. The spatial partially coherence of the beam source would increase turbulent aberration's effect on the optical vortices. BG beams could dampen the influences of the turbulence because of their nondiffraction and self-healing characteristics. PMID:27505641
The role of directionality on the structure and dynamics of strongly anisotropic turbulent flows
International Nuclear Information System (INIS)
Strong anisotropy in turbulent flows may be induced by body forces, Coriolis, buoyancy, Lorentz, and/or by large-scale gradients. These effects combined to the redistribution pressure terms are first identified by an angle dependence of the wave vector k in Fourier space, the directionality. The resulting anisotropic structure is not taken into account in classical phenomenological theory, using essentially 'isotropised' dimensional analysis. Besides, it is generally hidden in practical engineering models by means of tuned constants, which may vary if the flow changes of nature. In this paper, different examples of anisotropic turbulence are revisited and compared to each other in order to shed light on fundamental aspects of this specific turbulence. To begin with, flows without energy production like rotating turbulence are considered. In this case, isotropy is broken by mean of third-order correlations in the equations. These correlations quantify the inter-scale energy transfer, and must be investigated at three-point, or triad by triad in Fourier space. This allows to account for the role of typical anisotropic frequency 2Ωcosθk, with θk the angle of the wave vector to the axis of rotation, and to simultaneously restore the role of phase coherence. We pursue the discussion with a second flow case, with production, quasi-static magnetohydrodynamics. This illustrates turbulence forced towards two-dimensional structure by an explicit Ohmic dissipation term. Linear dynamics displays an angle (called Moreau, or Shebalin) capable of reflecting the basic anisotropy in models as simple as κ-ε. In the final phase of transition towards 2D structure, however, dynamics are essentially driven by third-order velocity correlations, and both successive linear and nonlinear phases yield counter-intuitive anisotropic results. The last case considered here is the turbulent mixing induced by a Rayleigh-Taylor instability. It is shown that anisotropy plays a central
Onofri, M; Malara, F; Veltri, P
2010-11-19
A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity. PMID:21231314
Kinetic dissipation and anisotropic heating in a turbulent collisionless plasma
Parashar, T N; Cassak, P A; Matthaeus, W H
2008-01-01
The kinetic evolution of the Orszag-Tang vortex is studied using collisionless hybrid simulations. In the magnetohydrodynamic regime this vortex leads rapidly to broadband turbulence. Significant differences from MHD arise at small scales, where the fluid scale energy dissipates into heat almost exclusively through the magnetic field because the protons are decoupled from the magnetic field. Although cyclotron resonance is absent, the protons heat preferentially in the plane perpendicular to the mean field, as in the corona and solar wind. Effective transport coefficients are calculated.
Antonov, N V; Gulitskiy, N M
2015-01-01
Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is studied by means of the field-theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, not correlated in time, with the pair correlation function of the form ∝δ(t-t')/k(⊥)(d-1+ξ), where k(⊥)=|k(⊥)| and k(⊥) is the component of the wave vector, perpendicular to the distinguished direction ("direction of the flow")--the d-dimensional generalization of the ensemble introduced by Avellaneda and Majda [Commun. Math. Phys. 131, 381 (1990)]. The stochastic advection-diffusion equation for the transverse (divergence-free) vector field includes, as special cases, the kinematic dynamo model for magnetohydrodynamic turbulence and the linearized Navier-Stokes equation. In contrast to the well-known isotropic Kraichnan's model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: Instead of powerlike corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. The key point is that the matrices of scaling dimensions of the relevant families of composite operators appear nilpotent and cannot be diagonalized. The detailed proof of this fact is given for the correlation functions of arbitrary order. PMID:25679703
Coherent vorticity extraction in turbulent channel flow using anisotropic wavelets
Yoshimatsu, Katsunori; Sakurai, Teluo; Schneider, Kai; Farge, Marie; Morishita, Koji; Ishihara, Takashi
2014-11-01
We examine the role of coherent vorticity in a turbulent channel flow. DNS data computed at friction-velocity based Reynolds number 320 is analyzed. The vorticity is decomposed using three-dimensional anisotropic orthogonal wavelets. Thresholding of the wavelet coefficients allows to extract the coherent vorticity, corresponding to few strong wavelet coefficients. It retains the vortex tubes of the turbulent flow. Turbulent statistics, e.g., energy, enstrophy and energy spectra, are close to those of the total flow. The nonlinear energy budgets are also found to be well preserved. The remaining incoherent part, represented by the large majority of the weak coefficients, corresponds to a structureless, i.e., a noise-like background flow.
Simulations of energetic particles interacting with nonlinear anisotropic dynamical turbulence
Heusen, M.; Shalchi, A.
2016-09-01
We investigate test-particle diffusion in dynamical turbulence based on a numerical approach presented before. For the turbulence we employ the nonlinear anisotropic dynamical turbulence model which takes into account wave propagation effects as well as damping effects. We compute numerically diffusion coefficients of energetic particles along and across the mean magnetic field. We focus on turbulence and particle parameters which should be relevant for the solar system and compare our findings with different interplanetary observations. We vary different parameters such as the dissipation range spectral index, the ratio of the turbulence bendover scales, and the magnetic field strength in order to explore the relevance of the different parameters. We show that the bendover scales as well as the magnetic field ratio have a strong influence on diffusion coefficients whereas the influence of the dissipation range spectral index is weak. The best agreement with solar wind observations can be found for equal bendover scales and a magnetic field ratio of δ B / B0 = 0.75.
International Nuclear Information System (INIS)
We carried out three-dimensional magnetohydrodynamic simulations to study the effects of plasma viscosity on the formation of sharp discontinuities of density and temperature distributions, cold fronts, in clusters of galaxies. By fixing the gravitational potential that confines the cool, dense plasma in a moving subcluster, we simulated its interaction with the hot, lower density plasma around the subcluster. At the initial state, the intracluster medium (ICM) is assumed to be threaded by uniform magnetic fields. The enhancement of plasma viscosity along the direction of magnetic fields is incorporated as anisotropic viscosity depending on the direction of magnetic fields. We found that the Kelvin-Helmholtz instability at the surface of the subcluster grows even in models with anisotropic viscosity, because its effects on the velocity shear across the magnetic field lines are suppressed. We also found that magnetic fields around the interface between the subcluster and ICM are amplified even in the presence of viscosity, while magnetic fields behind the subcluster are amplified up to β–1 ∼ 0.01 in models with viscosity, whereas they are amplified up to β–1 ∼ 0.1 in models without viscosity, where β is the ratio of gas pressure to magnetic pressure.
Plasmoid Instabilities Mediated Three-Dimensional Magnetohydrodynamic Turbulent Reconnection
Energy Technology Data Exchange (ETDEWEB)
Huang, Yi-min [Princeton University; Guo, Fan [Los Alamos National Laboratory
2015-07-21
After some introductory remarks on fast reconnection in resistive MHD due to plasmoid instability, oblique tearing modes in 3D, and previous studies on 3D turbulent reconnection, the subject is presented under the following topics: 3D simulation setup, time evolution of the 3D simulation, comparison with Sweet-Parker and 2D plasmoid reconnection, and diagnostics of the turbulent state (decomposition of mean fields and fluctuations, power spectra of energy fluctuations, structure function and eddy anisotropy with respect to local magnetic field). Three primary conclusions were reached: (1) The results suggest that 3D plasmoid instabilities can lead to self-generated turbulent reconnection (evidence of energy cascade and development of inertial range, energy fluctuations preferentially align with the local magnetic field, which is one of the characteristics of MHD turbulence); (2) The turbulence is highly inhomogeneous, due to the presence of magnetic shear and outflow jets (conventional MHD turbulence theories or phenomenologies may not be applicable – e.g. scale-dependent anisotropy as predicted by Goldreich & Sridhar is not found); (3) 3D turbulent reconnection is different from 2D plasmoid-dominated reconnection in many aspects. However, in fully developed state, reconnection rates in 2D and 3D are comparable — this result needs to be further checked in higher S.
Cluster observation of magnetohydrodynamic turbulence in the plasma sheet boundary layer
Narita, Y.
2016-04-01
Measurement of turbulent magnetic field is presented from the Earth magnetotail crossing of the Cluster spacecraft on August 25, 2006, as an ideal case study of magnetohydrodynamic turbulence in the plasma sheet boundary layer on a spatial scale of about 10,000 km. The fluctuation energy of the magnetic field is evaluated in both the frequency and wavevector domains. The observed plasma sheet turbulence event shows anisotropy in the wavevector domain with a spectral extension perpendicular to the mean magnetic field. The analyses of the dispersion relation and phase speed diagrams indicate that the coherent wave components should be regarded as a set of the linear-mode waves and the other fluctuation components in magnetohydrodynamics. Although the magnetic field fluctuation amplitudes are sufficiently small compared to the large-scale field strength, there is no clear indication of the linear-mode dominance in the plasma sheet. As a lesson, magnetohydrodynamic turbulence must be modeled by including both linear-mode waves and nonlinear wave components such as sideband waves.
International Nuclear Information System (INIS)
We have developed a three-fluid, three-dimensional magnetohydrodynamic solar wind model that incorporates turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a system of co-moving solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Numerical steady-state solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations for turbulence energy, cross helicity, and correlation length are obtained by the time relaxation method in the corotating with the Sun frame of reference in the region from 0.3 to 100 AU (but still inside the termination shock). The model equations include the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. The turbulence transport model is based on the Reynolds decomposition and turbulence phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. In addition to using separate energy equations for the solar wind protons and electrons, a significant improvement over our previous work is that the turbulence model now uses an eddy viscosity approximation for the Reynolds stress tensor and the mean turbulent electric field. The approximation allows the turbulence model to account for driving of turbulence by large-scale velocity gradients. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including embedded turbulence, heating, and acceleration throughout the heliosphere. The model results are
Nearly incompressible fluids. II - Magnetohydrodynamics, turbulence, and waves
Zank, G. P.; Matthaeus, W. H.
1993-01-01
The theory of nearly incompressible (NI) fluid dynamics developed previously for hydrodynamics is extended to magnetohydrodynamics (MHD). Based on a singular expansion technique, modified systems of fluid equations are obtained for which the effects of compressibility are admitted only weakly in terms of the different possible incompressible solutions. NI MHD represents the interface between the compressible and incompressible magnetofluid descriptions in the subsonic regime. It is shown that three distinct NI descriptions exist corresponding to each of the three possible plasma beta regimes. The detailed theory of weakly compressible corrections to the various incompressible MHD descriptions is presented, and the implications for the solar wind are discussed.
Anisotropic Formation of Magnetized Cores in Turbulent Clouds
Chen, Che-Yu
2015-01-01
In giant molecular clouds (GMCs), shocks driven by converging turbulent flows create high-density, strongly-magnetized regions that are locally sheetlike. In previous work, we showed that within these layers, dense filaments and embedded self-gravitating cores form by gathering material along the magnetic field lines. Here, we extend the parameter space of our three-dimensional, turbulent MHD core formation simulations. We confirm the anisotropic core formation model we previously proposed, and quantify the dependence of median core properties on the pre-shock inflow velocity and upstream magnetic field strength. Our results suggest that bound core properties are set by the total dynamic pressure (dominated by large-scale turbulence) and thermal sound speed c_s in GMCs, independent of magnetic field strength. For models with Mach number between 5 and 20, the median core masses and radii are comparable to the critical Bonnor-Ebert mass and radius defined using the dynamic pressure for P_ext. Our results corres...
Hierarchical Structure of Magnetohydrodynamic Turbulence In Position-Position-Velocity Space
Burkhart, Blakesley; Goodman, Alyssa; Rosolowsky, Erik
2012-01-01
Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic Position-Position-Velocity (PPV) emission cubes of optically thin isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the physics of the gas, i.e. self-gravity and the global sonic and Alfvenic Mach number. Simulations with higher Alfvenic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observed a strong sonic and Alfvenic dependency when we apply the the statistical moments (i.e. mean, variance, skewness, kurtosis) to the dendrogram distribution. Larger magnetic field and sonic Mach number correspond to larger values of the moments. Application of the dendrogram to 3D density cubes, also known as Position-Position-Position cube...
Residual energy in magnetohydrodynamic turbulence and in the solar wind
Boldyrev, Stanislav; Zhdankin, Vladimir
2011-01-01
Recent observations indicate that kinetic and magnetic energies are not in equipartition in the solar wind turbulence. Rather, magnetic fluctuations are more energetic and have somewhat steeper energy spectrum compared to the velocity fluctuations. This leads to the presence of the so-called residual energy E_r=E_v-E_b in the inertial interval of turbulence. This puzzling effect is addressed in the present paper in the framework of weak turbulence theory. Using a simple model of weakly colliding Alfv\\'en waves, we demonstrate that the kinetic-magnetic equipartition indeed gets broken as a result of nonlinear interaction of Alfv\\'en waves. We establish that magnetic energy is indeed generated more efficiently as a result of these interactions, which proposes an explanation for the solar wind observations.
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
C.A. González; Dmitruk, P.; Mininni, P.D.; Matthaeus, W. H.
2016-01-01
The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over ...
Pratt, J.; Busse, A.; Müller, W. -C.
2013-01-01
Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate on time scales ...
Large-eddy simulations of fluid and magnetohydrodynamic turbulence using renormalized parameters
Indian Academy of Sciences (India)
Mahendra K Verma; Shishir Kumar
2004-09-01
In this paper a procedure for large-eddy simulation (LES) has been devised for fluid and magnetohydrodynamic turbulence in Fourier space using the renormalized parameters; The parameters calculated using field theory have been taken from recent papers by Verma [1, 2]. We have carried out LES on 643 grid. These results match quite well with direct numerical simulations of 1283. We show that proper choice of parameter is necessary in LES.
Particle acceleration by turbulent magnetohydro-dynamic reconnection
Matthaeus, W. H.; Ambrosiano, J. J.; Goldstein, M. L.
1984-01-01
Test particles in a two dimensional, turbulent MHD simulation are found to undergo significant acceleration. The magnetic field configuration is a periodic sheet pinch which undergoes reconnection. The test particles are trapped in the reconnection region for times of order an Alfven transit time in the large electric fields that characterize the turbulent reconnection process at the relatively large magnetic Reynolds number used in the simulation. The maximum speed attained by these particles is consistent with an analytic estimate which depends on the reconnection electric field, the Alfven speed, and the ratio of Larmor period to the Alfven transit time.
Fluctuation dynamo driven by shear-bursts in convectively-driven magnetohydrodynamic turbulence
Pratt, J; Mueller, W -C
2013-01-01
Intermittent large-scale high-shear flows are found to occur frequently and spontaneously in direct numerical simulations of statistically stationary turbulent Boussinesq magnetohydrodynamic (MHD) convection. The energetic steady-state of the system is sustained by convective driving of the velocity field and small-scale dynamo action. The intermittent emergence of flow structures with strong velocity and magnetic shearing generates magnetic energy at an elevated rate over time-scales longer than the characteristic time of the large-scale convective motion. The resilience of magnetic energy amplification suggests that intermittent shear-bursts are a significant driver of dynamo action in turbulent magnetoconvection.
A numerical study of the alpha model for two-dimensional magnetohydrodynamic turbulent flows
Mininni, P D; Pouquet, A G
2004-01-01
We explore some consequences of the ``alpha model,'' also called the ``Lagrangian-averaged'' model, for two-dimensional incompressible magnetohydrodynamic (MHD) turbulence. This model is an extension of the smoothing procedure in fluid dynamics which filters velocity fields locally while leaving their associated vorticities unsmoothed, and has proved useful for high Reynolds number turbulence computations. We consider several known effects (selective decay, dynamic alignment, inverse cascades, and the probability distribution functions of fluctuating turbulent quantities) in magnetofluid turbulence and compare the results of numerical solutions of the primitive MHD equations with their alpha-model counterparts' performance for the same flows, in regimes where available resolution is adequate to explore both. The hope is to justify the use of the alpha model in regimes that lie outside currently available resolution, as will be the case in particular in three-dimensional geometry or for magnetic Prandtl number...
Arthur, S J; Mellema, G; De Colle, F; Vázquez-Semadeni, E
2011-01-01
We present the results of radiation-magnetohydrodynamic simulations of the formation and expansion of HII regions and their surrounding photodissociation regions in turbulent, magnetised, molecular clouds on scales of up to 4 parsecs. We include the effects of ionising and non-ionising ultraviolet radiation and x rays from young star clusters. We find that the HII region expansion reduces the disordered component of the B field, imposing a large-scale order on the field around its border, with the field in the neutral gas tending to lie along the ionisation front, while the field in the ionised gas tends to be perpendicular to the front. The highest pressure compressed neutral and molecular gas is driven towards approximate equipartition between thermal/magnetic/turbulent energy densities, whereas lower pressure neutral/molecular gas divides into quiescent, magnetically dominated regions, and, on the other hand, turbulent, demagnetised regions. The ionised gas shows approximate thermal/turbulent equipartition...
Isichenko, M B
1994-01-01
The long-time relaxation of ideal two dimensional magnetohydrodynamic turbulence subject to the conservation of two infinite families of constants of motion---the magnetic and the "cross" topology invariants--is examined. The analysis of the Gibbs ensemble, where all integrals of motion are respected, predicts the initial state to evolve into an equilibrium, stable coherent structure (the most probable state) and decaying Gaussian turbulence (fluctuations) with a vanishing, but always positive temperature. The non-dissipative turbulence decay is accompanied by decrease in both the amplitude and the length scale of the fluctuations, so that the fluctuation energy remains finite. The coherent structure represents a set of singular magnetic islands with plasma flow whose magnetic topology is identical to that of the initial state, while the energy and the cross topology invariants are shared between the coherent structure and the Gaussian turbulence. These conservation laws suggest the variational principle of i...
Quasi-static magnetohydrodynamic turbulence at high Reynolds number
International Nuclear Information System (INIS)
We analyse the anisotropy of turbulence in an electrically conducting fluid submitted to a uniform magnetic field, for low magnetic Reynolds number, using the quasi-static approximation. In the linear limit, the kinetic energy of velocity components normal to the magnetic field decays faster than the kinetic energy of the component along the magnetic field (Moffatt, 1967). However, numerous numerical studies predict a different behaviour, wherein the final state is characterised by dominant horizontal energy. We investigate the corresponding nonlinear phenomenon using Direct Numerical Simulations (DNS) and spectral closures based on Eddy Damping Quasi-Normal Markovian (EDQNM) models. The initial temporal evolution of the decaying flow indicates that the turbulence is very similar to the so-called 'two-and-a-half-dimensional' flow (Montgomery and Turner, 1982) which explains the observations in numerical studies. EDQNM models confirm this statement at higher Reynolds number.
Kolmogorov's law for two-dimensional electron-magnetohydrodynamic turbulence
Celani, A.; Prandi, R.; Boffetta, G
1997-01-01
The analogue of the Kolmogorov's four-fifths law is derived for two-dimensional, homogeneous, isotropic EMHD turbulence in the energy cascade inertial range. Direct numerical simulations for the freely decaying case show that this relation holds true for different values of the adimensional electron inertial length scale, $d_e$. The energy spectrum is found to be close to the expected Kolmogorov spectrum.
Long-term evolution of decaying magnetohydrodynamic turbulence in the multiphase interstellar medium
International Nuclear Information System (INIS)
Supersonic turbulence in the interstellar medium (ISM) is believed to decay rapidly within a flow crossing time irrespective of the degree of magnetization. However, this general consensus of decaying magnetohydrodynamic (MHD) turbulence relies on local isothermal simulations, which are unable to take into account the roles of the global structures of magnetic fields and the ISM. Utilizing three-dimensional MHD simulations including interstellar cooling and heating, we investigate decaying MHD turbulence within cold neutral medium sheets embedded in a warm neutral medium. The early evolution of turbulent kinetic energy is consistent with previous results for decaying compressible MHD turbulence characterized by rapid energy decay with a power-law form of E∝t –1 and by a short decay time compared with the flow crossing time. If initial magnetic fields are strong and perpendicular to the sheet, however, long-term evolution of the kinetic energy shows that a significant amount of turbulent energy (∼0.2E 0) still remains even after 10 flow crossing times for models with periodic boundary conditions. The decay rate is also greatly reduced as the field strength increases for such initial and boundary conditions, but not if the boundary conditions are those for a completely isolated sheet. We analyze velocity power spectra of the remaining turbulence to show that in-plane, incompressible motions parallel to the sheet dominate at later times.
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2012-01-01
To study the effects of interstellar pickup protons and turbulence on the structure and dynamics of the solar wind, we have developed a fully three-dimensional magnetohydrodynamic solar wind model that treats interstellar pickup protons as a separate fluid and incorporates the transport of turbulence and turbulent heating. The governing system of equations combines the mean-field equations for the solar wind plasma, magnetic field, and pickup protons and the turbulence transport equations for the turbulent energy, normalized cross-helicity, and correlation length. The model equations account for photoionization of interstellar hydrogen atoms and their charge exchange with solar wind protons, energy transfer from pickup protons to solar wind protons, and plasma heating by turbulent dissipation. Separate mass and energy equations are used for the solar wind and pickup protons, though a single momentum equation is employed under the assumption that the pickup protons are comoving with the solar wind protons.We compute the global structure of the solar wind plasma, magnetic field, and turbulence in the region from 0.3 to 100 AU for a source magnetic dipole on the Sun tilted by 0 deg - .90 deg and compare our results with Voyager 2 observations. The results computed with and without pickup protons are superposed to evaluate quantitatively the deceleration and heating effects of pickup protons, the overall compression of the magnetic field in the outer heliosphere caused by deceleration, and the weakening of corotating interaction regions by the thermal pressure of pickup protons.
Mininni, Pablo; Odier, Philippe; Pinton, Jean-François; Plihon, Nicolas; Verhille, Gautier; Volk, Romain; Bourgoin, Mickael
2014-01-01
We analyze time series stemming from experiments and direct numerical simulations of hydrodynamic and magnetohydrodynamic turbulence. Simulations are done in periodic boxes, but with a volumetric forcing chosen to mimic the geometry of the flow in the experiments, the von K\\'arm\\'an swirling flow between two counter-rotating impellers. Parameters in the simulations are chosen to (within computational limitations) allow comparisons between the experiments and the numerical results. Conducting fluids are considered in all cases. Two different configurations are considered: a case with a weak externally imposed magnetic field, and a case with self-sustained magnetic fields. Evidence of long-term memory and $1/f$ noise is observed in experiments and simulations, in the case with weak magnetic field associated with the hydrodynamic behavior of the shear layer in the von K\\'arm\\'an flow, and in the dynamo case associated with slow magnetohydrodynamic behavior of the large scale magnetic field.
Sub-grid-scale description of turbulent magnetic reconnection in magnetohydrodynamics
Widmer, F.; Büchner, J.; Yokoi, N.
2016-04-01
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could transport energy from large to small scales where binary particle collisions are rare. We have investigated the influence of small scale magnetohydrodynamics (MHD) turbulence on the reconnection rate in the framework of a compressible MHD approach including sub-grid-scale (SGS) turbulence. For this sake, we considered Harris-type and force-free current sheets with finite guide magnetic fields directed out of the reconnection plane. The goal is to find out whether unresolved by conventional simulations MHD turbulence can enhance the reconnection process in high-Reynolds-number astrophysical plasmas. Together with the MHD equations, we solve evolution equations for the SGS energy and cross-helicity due to turbulence according to a Reynolds-averaged turbulence model. The SGS turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. By this way, the feedback of the unresolved turbulence into the MHD reconnection process is taken into account. It is shown that the turbulence controls the regimes of reconnection by its characteristic timescale τt. The dependence on resistivity was investigated for large-Reynolds-number plasmas for Harris-type as well as force-free current sheets with guide field. We found that magnetic reconnection depends on the relation between the molecular and apparent effective turbulent resistivity. We found that the turbulence timescale τt decides whether fast reconnection takes place or whether the stored energy is just diffused away to small scale turbulence. If the amount of energy transferred from large to small scales is enhanced, fast reconnection can take place. Energy spectra allowed us to characterize the different regimes of reconnection. It was found that reconnection is even faster for larger Reynolds numbers controlled by the molecular resistivity η, as
Implementation of an anisotropic turbulence model in the COMMIX- 1C/ATM computer code
International Nuclear Information System (INIS)
The computer code COMMIX-1C/ATM, which describes single-phase, three-dimensional transient thermofluiddynamic problems, has provided the framework for the extension of the standard k-var-epsilon turbulence model to a six-equation model with additional transport equations for the turbulence heat fluxes and the variance of temperature fluctuations. The new, model, which allows simulation of anisotropic turbulence in stratified shear flows, is referred to as the Anisotropic Turbulence Model (ATM) has been verified with numerical computations of stable and unstable stratified shear flow between parallel plates
Cosmic ray propagation in sub-Alfvénic magnetohydrodynamic turbulence
Cohet, R.; Marcowith, A.
2016-04-01
Context. The propagation of cosmic rays or energetic charged particles in magnetized turbulence is a complex problem which involves non-linear wave-particle interactions and chaotic magnetic field lines transport. This problem has been addressed until recently using either analytical calculations or simulations using prescribed turbulence models. With the advent of super computers it is now possible to investigate energetic charged particle propagation using direct computation of electromagnetic fields. This is in particular the case for high-energy particles propagation in magnetohydrodynamic turbulence. Aims: This work has the main objective to provide a detailed investigation of cosmic ray propagation in magnetohydrodynamic turbulent fields generated by forcing the fluid velocity field at large scales. It provides a derivation of the particle mean free path dependences in terms of the turbulence level described by the Alfvénic Mach number and in terms of the particle rigidity. Methods: We use an upgrade version of the magnetohydrodynamic code RAMSES which includes a forcing module and a kinetic module and solve the Lorentz equation for each particle. The simulations are performed using a 3 dimension periodical box in the test-particle and magnetostatic limits. The forcing module is implemented using an Ornstein-Uhlenbeck process. An ensemble average over a large number of particle trajectories is applied to reconstruct the particle mean free paths. Results: We derive the cosmic ray mean free paths in terms of the Alfvénic Mach numbers and particle reduced rigidities in different turbulence forcing geometries. The reduced particle rigidity is ρ = rL/L where rL is the particle Larmor radius and L is the simulation box length related to the turbulence coherence or injection scale Linj by L ~ 5 Linj. We have investigated with a special attention compressible and solenoidal forcing geometries. Conclusions: We find that compressible forcing solutions are compatible
Radice, David; Ott, Christian D
2015-01-01
(Abridged) In the implicit large eddy simulation (ILES) paradigm, the dissipative nature of high-resolution shock-capturing schemes is exploited to provide an implicit model of turbulence. Recent 3D simulations suggest that turbulence might play a crucial role in core-collapse supernova explosions, however the fidelity with which turbulence is simulated in these studies is unclear. Especially considering that the accuracy of ILES for the regime of interest in CCSN, weakly compressible and strongly anisotropic, has not been systematically assessed before. In this paper we assess the accuracy of ILES using numerical methods most commonly employed in computational astrophysics by means of a number of local simulations of driven, weakly compressible, anisotropic turbulence. We report a detailed analysis of the way in which the turbulent cascade is influenced by the numerics. Our results suggest that anisotropy and compressibility in CCSN turbulence have little effect on the turbulent kinetic energy spectrum and a...
Cui, Linyan; Xue, Bindang
2015-09-01
Theoretical and experimental investigations have shown that the atmospheric turbulence exhibits both anisotropic and non-Kolmogorov properties. Very recent analyses of angle of arrival (AOA) fluctuations of an optical wave in anisotropic non-Kolmogorov turbulence have adopted the assumption that the propagation path was in the z-direction with circular symmetry of turbulence cells maintained in the orthogonal xy-plane throughout the path, and one single anisotropy factor was adopted in the orthogonal xy-plane to parameterize the asymmetry of turbulence cells or eddies in both horizontal and vertical directions. In this work, the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane is no longer required, and two anisotropy parameters are introduced in the orthogonal xy-plane to investigate the AOA fluctuations. In addition, deviations from the classic 11/3 spectral power law behavior for Kolmogorov turbulence are allowed by assuming spectral power law value variations between 3 and 4. With the Rytov approximation theory, new theoretical models for the variance of AOA fluctuations are developed for optical plane and spherical waves propagating through weak anisotropic non-Kolmogorov atmospheric turbulence. When the two anisotropic parameters are equal to each other, they reduce correctly to the recently published results (the circular symmetry assumption of turbulence cells or eddies in the orthogonal xy-plane was adopted). Furthermore, when these two anisotropic parameters equal one, they reduce correctly to the previously published analytic expressions for the cases of optical wave propagation through weak isotropic non-Kolmogorov turbulence. PMID:26367438
Banerjee, Supratik
2013-01-01
Compressible isothermal magnetohydrodynamic turbulence is analyzed under the assumption of statistical homogeneity and in the asymptotic limit of large kinetic and magnetic Reynolds numbers. Following Kolmogorov we derive an exact relation for some two-point correlation functions which generalizes the expression recently found for hydrodynamics. We show that the magnetic field brings new source and flux terms into the dynamics which may act on the inertial range similarly as a source or a sink for the mean energy transfer rate. The introduction of a uniform magnetic field simplifies significantly the exact relation for which a simple phenomenology may be given. A prediction for axisymmetric energy spectra is eventually proposed.
Direct Numerical Simulation of turbulent magnetohydrodynamic flows in an open-channel
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Y.; Kunugi, T.; Serizawa, A. [Kyoto Univ. (Japan). Dept. of Nuclear Engineering
2000-10-01
In this study, Direct Numerical Simulation (DNS) of magnetohydrodynamic (MHD) flows simulated the liquid wall concept in nuclear fusion applications, i.e., turbulent open-channel flows heating under the isoflux condition at the free-surface and insulting condition at the bottom wall, was employed. The magnetic field was imposed in the spanwise direction and the erect of Lorenz force was expressed in terms of the electrostatic potential with an assumption of a low magnetic Reynolds number. As the result, new method for the thermal boundary condition at the free-surface is advanced and numerical investigation of MHD flow was conducted. (author)
Reconnection-Driven Magnetohydrodynamic Turbulence in a Simulated Coronal-Hole Jet
Uritsky, Vadim M; DeVore, C Richard; Karpen, Judith T
2016-01-01
Extreme-ultraviolet and X-ray jets occur frequently in magnetically open coronal holes on the Sun, especially at high solar latitudes. Some of these jets are observed by white-light coronagraphs as they propagate through the outer corona toward the inner heliosphere, and it has been proposed that they give rise to microstreams and torsional Alfv\\'{e}n waves detected in situ in the solar wind. To predict and understand the signatures of coronal-hole jets, we have performed a detailed statistical analysis of such a jet simulated with an adaptively refined magnetohydrodynamics model. The results confirm the generation and persistence of three-dimensional, reconnectiondriven magnetic turbulence in the simulation. We calculate the spatial correlations of magnetic fluctuations within the jet and find that they agree best with the M\\"{u}ller - Biskamp scaling model including intermittent current sheets of various sizes coupled via hydrodynamic turbulent cascade. The anisotropy of the magnetic fluctuations and the sp...
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
González, C A; Mininni, P D; Matthaeus, W H
2016-01-01
The effect of compressibility in charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the compressibilty effect over the particle dynamics we performed different numerical experiments: an incompressible case, and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. We show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the ot...
Self-organisation and non-linear dynamics in driven magnetohydrodynamic turbulent flows
Dallas, Vassilios
2014-01-01
Magnetohydrodynamic turbulent flows driven by random mechanical and electromagnetic external forces of zero helicities are investigated by means of direct numerical simulations. It is shown that despite the absence of helicities in the forcing, the system is attracted to self-organized helical states that exhibit laminar behaviour despite the large value of the Reynolds numbers examined. We demonstrate that the correlation time of the external forces is controlling the time spent on these states, i.e. for short correlation times the system remains in the turbulent state while as the correlation time is increased the system spends more and more time in the self-organised states. As a result, time averaged statistics can significantly be affected by the time spent on these states. These results have important theoretical implications for the understanding of the suppression of non-linearities in plasma fusion devises as well as in astrophysical observations.
Discrete filters for large-eddy simulation of forced compressible magnetohydrodynamic turbulence
Chernyshov, A. A.; Petrosyan, A. S.
2016-06-01
We discuss results of the applicability of discrete filters for the large-eddy simulation (LES) method of forced compressible magnetohydrodynamic (MHD) turbulent flows with the scale-similarity model. New results are obtained for cross-helicity and residual energy. Cross-helicity and residual energy are important quantities in magnetohydrodynamic turbulence and have no hydrodynamic counterpart. The influences and effects of discrete filter shapes on the scale-similarity model are examined in physical space using finite-difference numerical schemes. We restrict ourselves to the Gaussian filter and the top-hat filter. Representations of this subgrid-scale model, which correspond to various 3- and 5-point approximations of both Gaussian and top-hat filters for different values of parameter ε (the ratio of the cut-off length-scale of the filter to the mesh size), are investigated. Discrete filters produce more discrepancies for the magnetic field. It is shown that the Gaussian filter is more sensitive to the parameter ɛ than the top-hat filter in compressible forced MHD turbulence. The 3-point filters at ε =2 and ε =3 give the least accurate results whereas the 5-point Gaussian filter shows the best results at ε =2 and ε =3. There are only very small differences deep into the dissipation region in favor of ε =2. For cross-helicity, the 5-point discrete filters are in good agreement with the results of direct numerical simulation (DNS), while the 3-point filter produces the largest discrepancies with DNS results. There is no strong dependence on the choice of the parameter ε and order approximation is a much more important factor for the cross-helicity. The difference between the filters is less for the residual energy compared with total energy. Thus, the total energy is more sensitive to the choice of discrete filter in the modeling of compressible MHD turbulence using the LES method.
Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean
Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda
2016-09-01
The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.
Field theoretic calculation of energy cascade rates in non-helical magnetohydrodynamic turbulence
Indian Academy of Sciences (India)
Mahendra K Verma
2003-09-01
Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydrodynamic turbulence have been calculated by solving the ﬂux equations to the ﬁrst order in perturbation. For zero cross helicity and space dimension = 3, magnetic energy cascades from large length-scales to small length-scales (forward cascade). In addition, there are energy ﬂuxes from large-scale magnetic ﬁeld to small-scale velocity ﬁeld, large-scale velocity ﬁeld to small-scale magnetic ﬁeld, and large-scale velocity ﬁeld to large-scale magnetic ﬁeld. Kolmogorov’s constant for magnetohydrodynamics is approximately equal to that for ﬂuid turbulence (≈ 1.6) for Alfvén ratio 0.5 ≤ A ≤ ∞. For higher space-dimensions, the energy ﬂuxes are qualitatively similar, and Kolmogorov’s constant varies as 1/3. For the normalized cross helicity c → 1, the cascade rates are proportional to (1-c)/(1+c), and the Kolmogorov’s constants vary signiﬁcantly with c.
Hall effects and sub-grid-scale modeling in magnetohydrodynamic turbulence simulations
Miura, Hideaki; Araki, Keisuke; Hamba, Fujihiro
2016-07-01
Effects of the Hall term on short-wave components of magnetohydrodynamic turbulence and sub-grid-scale modeling of the effects are studied. Direct numerical simulations of homogeneous magnetohydrodynamic turbulence with and without the Hall term are carried out. The Hall term excites short-wave components in the magnetic field, demanding a high numerical resolution to resolve the scales smaller than the ion skin depth. A k 7 / 3-like scaling-law in the magnetic energy spectrum associated with the excitation of the short-wave components is clearly shown by the use of both an isotropic spectrum and a one-dimensional spectrum. It is also shown that the introduction of the Hall term can cause a structural transition in the vorticity field from tubes to sheets. In order to overcome a strong demand on high-resolution in space and time and to enable quicker computations, large eddy simulations with a Smagorinsky-type sub-grid-scale model are carried out. It is shown that our large eddy simulations successfully reproduce not only the energy spectrum but also tubular vortex structures, reducing the computational cost considerably.
Field theoretic calculation of energy cascade rates in non-helical magnetohydrodynamic turbulence
Indian Academy of Sciences (India)
Mahendra K Verma
2004-06-01
Energy cascade rates and Kolmogorov’s constant for non-helical steady magnetohydrodynamic turbulence have been calculated by solving the ﬂux equations to the ﬁrst order in perturbation. For zero cross helicity and space dimension $d = 3$, magnetic energy cascades from large length-scales to small length-scales (forward cascade). In addition, there are energy ﬂuxes from large-scale magnetic ﬁeld to small-scale velocity ﬁeld, large-scale velocity ﬁeld to small-scale magnetic ﬁeld, and large-scale velocity ﬁeld to large-scale magnetic ﬁeld. Kolmogorov’s constant for magnetohydrodynamics is approximately equal to that for ﬂuid turbulence $(≈ 1.6)$ for Alfvén ratio $0.5≤ r_{A}≤ ∞$. For higher space-dimensions, the energy ﬂuxes are qualitatively similar, and Kolmogorov’s constant varies as $d^{1/3}$. For the normalized cross helicity $_{c}→ 1$, the cascade rates are proportional to $(1-_{c})/(1+_{c})$, and the Kolmogorov’s constants vary signiﬁcantly with $_{c}$.
Inertial-range kinetic turbulence in pressure-anisotropic astrophysical plasmas
Kunz, M. W.; Schekochihin, A. A.; Chen, C. H. K.; Abel, I. G.; Cowley, S. C.
2015-10-01
> A theoretical framework for low-frequency electromagnetic (drift-)kinetic turbulence in a collisionless, multi-species plasma is presented. The result generalises reduced magnetohydrodynamics (RMHD) and kinetic RMHD (Schekochihin et al., Astrophys. J. Suppl. Ser., vol. 182, 2009, pp. 310-377) to the case where the mean distribution function of the plasma is pressure-anisotropic and different ion species are allowed to drift with respect to each other - a situation routinely encountered in the solar wind and presumably ubiquitous in hot dilute astrophysical plasmas such as the intracluster medium. Two main objectives are achieved. First, in a non-Maxwellian plasma, the relationships between fluctuating fields (e.g. the Alfvén ratio) are order-unity modified compared to the more commonly considered Maxwellian case, and so a quantitative theory is developed to support quantitative measurements now possible in the solar wind. Beyond these order-unity corrections, the main physical feature of low-frequency plasma turbulence survives the generalisation to non-Maxwellian distributions: Alfvénic and compressive fluctuations are energetically decoupled, with the latter passively advected by the former; the Alfvénic cascade is fluid, satisfying RMHD equations (with the Alfvén speed modified by pressure anisotropy and species drifts), whereas the compressive cascade is kinetic and subject to collisionless damping (and for a bi-Maxwellian plasma splits into three independent collisionless cascades). Secondly, the organising principle of this turbulence is elucidated in the form of a conservation law for the appropriately generalised kinetic free energy. It is shown that non-Maxwellian features in the distribution function reduce the rate of phase mixing and the efficacy of magnetic stresses, and that these changes influence the partitioning of free energy amongst the various cascade channels. As the firehose or mirror instability thresholds are approached, the dynamics
Solar wind low-frequency magnetohydrodynamic turbulence: extended self-similarity and scaling laws
Directory of Open Access Journals (Sweden)
P. Veltri
1996-01-01
Full Text Available In this paper we review some of the work done in investigating the scaling properties of Magnetohydrodynamic turbulence, by using velocity fluctuations measurements performed in the interplanetary space plasma by the Helios spacecraft. The set of scaling exponents ξq for the q-th order velocity structure functions, have been determined by using the Extended Self-Similarity hypothesis. We have found that the q-th order velocity structure function, when plotted vs. the 4-th order structure function, displays a range of self-similarity which extends over all the lengths covered by measurements, thus allowing for a very good determination of ξq. Moreover the results seem to show that the scaling exponents are the same regardless the various observation periods considered. The obtained scaling exponents have been compared with the results of some intermittency models for Kraichnan's turbulence, derived in the framework of infinitely divisible fragmentation processes, showing the good agreement between these models and our observations. Finally, on the basis of the actually available data sets, we show that scaling laws in Solar Wind turbulence seem to be different from turbulent scaling laws in the ordinary fluid flows. This is true for high-order velocity structure functions, while low-order velocity structure functions show the same scaling laws. Since our measurements involve length scales which extend over many order of magnitude where dissipation is practically absent, our results show that Solar Wind turbulence can be regarded as a testing bench for the investigation of general scaling behaviour in turbulent flows. In particular our results strongly support the point of view which attributes a key role to the inertial range dynamics in determining the intermittency characteristics in fluid flows, in contrast with the point of view which attributes intermittency to a finite Reynolds number effect.
Weakly Compressible Magnetohydrodynamic Turbulence in the Solar Wind and the Interstellar Medium
Bhattacharjee, A.; Ng, C. S.; Spangler, S. R.
1998-02-01
A new four-field system of equations is derived from the compressible magnetohydrodynamic (MHD) equations for low Mach number turbulence in the solar wind and the interstellar medium, permeated by a spatially varying magnetic field. The plasma beta is assumed to be of order unity or less. It is shown that the full MHD equations can be reduced rigorously to a closed system for four fluctuating field variables: magnetic flux, vorticity, pressure, and parallel flow. Although the velocity perpendicular to the magnetic field is shown to obey a two-dimensional incompressibility condition (analogous to the Proudman-Taylor theorem in hydrodynamics), the three-dimensional dynamics exhibit the effects of compressibility. In the presence of spatial inhomogeneities, the four dynamical equations are coupled to each other, and pressure fluctuations enter the weakly compressible dynamics at leading order. If there are no spatial inhomogeneities and or if the plasma beta is low, the four-field equations reduce to the well-known equations of reduced magnetohydrodynamics (RMHD). For pressure-balanced structures, the four-field equations undergo a remarkable simplification which provides insight on the special nature of the fluctuations driven by these structures. The important role of spatial inhomogeneities is elucidated by 2.5-dimensional numerical simulations. In the presence of inhomogeneities, the saturated pressure and density fluctuations scale with the Mach number of the turbulence, and the system attains equipartition with respect to the kinetic, magnetic, and thermal energy of the fluctuations. The present work suggests that if heliospheric and interstellar turbulence exists in a plasma with large-scale, nonturbulent spatial gradients, one expects the pressure and density fluctuations to be of significantly larger magnitude than suggested in nearly incompressible models such as pseudosound.
HIERARCHICAL STRUCTURE OF MAGNETOHYDRODYNAMIC TURBULENCE IN POSITION-POSITION-VELOCITY SPACE
International Nuclear Information System (INIS)
Magnetohydrodynamic turbulence is able to create hierarchical structures in the interstellar medium (ISM) that are correlated on a wide range of scales via the energy cascade. We use hierarchical tree diagrams known as dendrograms to characterize structures in synthetic position-position-velocity (PPV) emission cubes of isothermal magnetohydrodynamic turbulence. We show that the structures and degree of hierarchy observed in PPV space are related to the presence of self-gravity and the global sonic and Alfvénic Mach numbers. Simulations with higher Alfvénic Mach number, self-gravity and supersonic flows display enhanced hierarchical structure. We observe a strong dependency on the sonic and Alfvénic Mach numbers and self-gravity when we apply the statistical moments (i.e., mean, variance, skewness, kurtosis) to the leaf and node distribution of the dendrogram. Simulations with self-gravity, larger magnetic field and higher sonic Mach number have dendrogram distributions with higher statistical moments. Application of the dendrogram to three-dimensional density cubes, also known as position-position-position (PPP) cubes, reveals that the dominant emission contours in PPP and PPV are related for supersonic gas but not for subsonic. We also explore the effects of smoothing, thermal broadening, and velocity resolution on the dendrograms in order to make our study more applicable to observational data. These results all point to hierarchical tree diagrams as being a promising additional tool for studying ISM turbulence and star forming regions for obtaining information on the degree of self-gravity, the Mach numbers and the complicated relationship between PPV and PPP data.
Depletion of Nonlinearity in Magnetohydrodynamic Turbulence: Insights from Analysis and Simulations
Gibbon, J; Krstulovic, G; Pandit, R; Politano, H; Ponty, Y; Pouquet, A; Sahoo, G; Stawarz, J
2015-01-01
We build on recent developments in the study of fluid turbulence [Gibbon \\textit{et al.} Nonlinearity 27, 2605 (2014)] to define suitably scaled, order-$m$ moments, $D_m^{\\pm}$, of $\\omega^\\pm= \\omega \\pm j$, where $\\omega$ and $j$ are, respectively, the vorticity and current density in three-dimensional magnetohydrodynamics (MHD). We show by mathematical analysis, for unit magnetic Prandtl number $P_M$, how these moments can be used to identify three possible regimes for solutions of the MHD equations; these regimes are specified by inequalities for $D_m^{\\pm}$ and $D_1^{\\pm}$. We then compare our mathematical results with those from our direct numerical simulations (DNSs) and thus demonstrate that 3D MHD turbulence is like its fluid-turbulence counterpart insofar as all solutions, which we have investigated, remain in \\textit{only one of these regimes}; this regime has depleted nonlinearity. We examine the implications of our results for the exponents $q^{\\pm}$ that characterize the power-law dependences of...
Lagrangian-averaged model for magnetohydrodynamic turbulence and the absence of bottlenecks.
Pietarila Graham, Jonathan; Mininni, Pablo D; Pouquet, Annick
2009-07-01
We demonstrate that, for the case of quasiequipartition between the velocity and the magnetic field, the Lagrangian-averaged magnetohydrodynamics (LAMHD) alpha model reproduces well both the large-scale and the small-scale properties of turbulent flows; in particular, it displays no increased (superfilter) bottleneck effect with its ensuing enhanced energy spectrum at the onset of the subfilter scales. This is in contrast to the case of the neutral fluid in which the Lagrangian-averaged Navier-Stokes alpha model is somewhat limited in its applications because of the formation of spatial regions with no internal degrees of freedom and subsequent contamination of superfilter-scale spectral properties. We argue that, as the Lorentz force breaks the conservation of circulation and enables spectrally nonlocal energy transfer (associated with Alfvén waves), it is responsible for the absence of a viscous bottleneck in magnetohydrodynamics (MHD), as compared to the fluid case. As LAMHD preserves Alfvén waves and the circulation properties of MHD, there is also no (superfilter) bottleneck found in LAMHD, making this method capable of large reductions in required numerical degrees of freedom; specifically, we find a reduction factor of approximately 200 when compared to a direct numerical simulation on a large grid of 1536;{3} points at the same Reynolds number. PMID:19658812
Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea
Cranmer, Steven R
2015-01-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfven waves. These forces involve the conversion of transverse Alfven waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region. Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic...
On the spatio-temporal behavior of magnetohydrodynamic turbulence in a magnetized plasma
Lugones, R; Mininni, P D; Wan, M; Matthaeus, W H
2016-01-01
Using direct numerical simulations of three-dimensional magnetohydrodynamic (MHD) turbulence the spatio-temporal behavior of magnetic field fluctuations is analyzed. Cases with relatively small, medium and large values of a mean background magnetic field are considered. The (wavenumber) scale dependent time correlation function is directly computed for different simulations, varying the mean magnetic field value. From this correlation function the time decorrelation is computed and compared with different theoretical times, namely, the local non-linear time, the random sweeping time, and the Alfv\\'enic time, the latter being a wave effect. It is observed that time decorrelations are dominated by sweeping effects, and only at large values of the mean magnetic field and for wave vectors mainly aligned with this field time decorrelations are controlled by Alfv\\'enic effects.
Basu, Abhik; Naji, Ali; Pandit, Rahul
2014-01-01
We generalize the method of A. M. Polyakov, [ Phys. Rev. E 52 6183 (1995)] for obtaining structure-function relations in turbulence in the stochastically forced Burgers equation, to develop structure-function hierarchies for turbulence in three models for magnetohydrodynamics (MHD). These are the Burgers analogs of MHD in one dimension [ Eur. Phys. J. B 9 725 (1999)], and in three dimensions (3DMHD and 3D Hall MHD). Our study provides a convenient and unified scheme for the development of structure-function hierarchies for turbulence in a variety of coupled hydrodynamical equations. For turbulence in the three sets of MHD equations mentioned above, we obtain exact relations for third-order structure functions and their derivatives; these expressions are the analogs of the von Kármán-Howarth relations for fluid turbulence. We compare our work with earlier studies of such relations in 3DMHD and 3D Hall MHD. PMID:24580182
Zhdankin, Vladimir
2015-11-01
Energy dissipation is highly intermittent in large-scale turbulent plasmas, being localized in space and in time. This intermittency is manifest by the presence of coherent structures such as current (and vorticity) sheets, which account for a large fraction of the overall energy dissipation and may serve as sites for magnetic reconnection and particle acceleration. The statistical analysis of these dissipative structures is a robust and informative methodology for probing the underlying dynamics, both in numerical simulations and in observations. In this talk, the statistical properties of current sheets in numerical simulations of driven magnetohydrodynamic (MHD) turbulence are described, including recent results obtained from applying new methods for characterizing their morphology. Instantaneously, the overall energy dissipation is found to be evenly spread among current sheets spanning a continuum of energy dissipation rates and inertial-range sizes, while their thicknesses are localized deep inside the dissipation range. The temporal dynamics are then investigated by tracking the current sheets in time and considering the statistics of the resulting four-dimensional spatiotemporal structures, which correspond to dissipative events or flares in astrophysical systems. These dissipative events are found to exhibit robust power-law distributions and scaling relations, and are often highly complex, long-lived, and weakly asymmetric in time. Based on the distribution for their dissipated energies, the strongest dissipative events are found to dominate the overall energy dissipation in the system. These results are compared to the observed statistics of solar flares, and some possible implications for the solar wind are also described.
Magnetic field amplification and saturation in two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Two-dimensional (2-D) magnetohydrodynamic turbulence is investigated for weak initial magnetic fields using numerical simulation. It is found that the magnetic field is amplified owing to the formation of flux sheets with saturation due either to resistive diffusion (kinematic regime) or to nonlinear effects (dynamic regime). In the kinematic regime, which corresponds to the problem of passive scalar convection by 2-D Navier--Stokes turbulence, the saturation value of the magnetic energy is observed to scale as EMmax∝η-0.8 in approximate agreement with a simple theoretical estimate, EMmax/EM(0)congruent Rm, where Rm is the magnetic Reynolds number. Because of the strongly disparate kinetic and magnetic energy spectra in the kinematic regime, roughly EVk∼k-3, EMk∼k, dynamic interaction on small scales already occurs at very small global energy ratios EM/EV, giving rise to strongly enhanced kinetic energy dissipation. In the fully dynamic regime (reached for EM/EV|t=0>R-1m) global magnetic and kinetic energies become tightly coupled, with EM/EV being approximately constant in time and the energy dissipation rates being independent of the collisional diffusion coefficients. Finally, the effect of the magnetic Prandtl number Pr=μ/η is discussed
Driving Solar Spicules and Jets with Magnetohydrodynamic Turbulence: Testing a Persistent Idea
Cranmer, Steven R.; Woolsey, Lauren N.
2015-10-01
The solar chromosphere contains thin, highly dynamic strands of plasma known as spicules. Recently, it has been suggested that the smallest and fastest (Type II) spicules are identical to intermittent jets observed by the Interface Region Imaging Spectrograph. These jets appear to expand out along open magnetic field lines rooted in unipolar network regions of coronal holes. In this paper we revisit a thirty-year-old idea that spicules may be caused by upward forces associated with Alfvén waves. These forces involve the conversion of transverse Alfvén waves into compressive acoustic-like waves that steepen into shocks. The repeated buffeting due to upward shock propagation causes nonthermal expansion of the chromosphere and a transient levitation of the transition region (TR). Some older models of wave-driven spicules assumed sinusoidal wave inputs, but the solar atmosphere is highly turbulent and stochastic. Thus, we model this process using the output of a time-dependent simulation of reduced magnetohydrodynamic turbulence. The resulting mode-converted compressive waves are strongly variable in time, with a higher TR occurring when the amplitudes are large and a lower TR when the amplitudes are small. In this picture, the TR bobs up and down by several Mm on timescales less than a minute. These motions produce narrow, intermittent extensions of the chromosphere that have similar properties as the observed jets and Type II spicules.
On the Anisotropic Nature of MRI-driven Turbulence in Astrophysical Disks
DEFF Research Database (Denmark)
Murphy, Gareth; Pessah, Martin E.
2015-01-01
power along each of the three independent directions differs by several orders of magnitude over most scales, except the largest ones. Our results suggest that a first-principles theory to describe fully developed MRI-driven turbulence will likely have to consider the anisotropic nature of the flow at a...
On the compressibility effect in test particle acceleration by magnetohydrodynamic turbulence
González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.
2016-08-01
The effect of compressibility in a charged particle energization by magnetohydrodynamic (MHD) fields is studied in the context of test particle simulations. This problem is relevant to the solar wind and the solar corona due to the compressible nature of the flow in those astrophysical scenarios. We consider turbulent electromagnetic fields obtained from direct numerical simulations of the MHD equations with a strong background magnetic field. In order to explore the flow compressibility effect over the particle dynamics, we performed different numerical experiments: an incompressible case and two weak compressible cases with Mach number M = 0.1 and M = 0.25. We analyze the behavior of protons and electrons in those turbulent fields, which are well known to form aligned current sheets in the direction of the guide magnetic field. What we call protons and electrons are test particles with scales comparable to (for protons) and much smaller than (for electrons) the dissipative scale of MHD turbulence, maintaining the correct mass ratio m e / m i . For these test particles, we show that compressibility enhances the efficiency of proton acceleration, and that the energization is caused by perpendicular electric fields generated between currents sheets. On the other hand, electrons remain magnetized and display an almost adiabatic motion, with no effect of compressibility observed. Another set of numerical experiments takes into account two fluid modifications, namely, electric field due to Hall effect and electron pressure gradient. We show that the electron pressure has an important contribution to electron acceleration allowing highly parallel energization. In contrast, no significant effect of these additional terms is observed for the protons.
International Nuclear Information System (INIS)
The amplification of magnetic fields (MFs) in the intracluster medium (ICM) is attributed to turbulent dynamo (TD) action, which is generally derived in the collisional-MHD framework. However, this assumption is poorly justified a priori, since in the ICM the ion mean free path between collisions is of the order of the dynamical scales, thus requiring a collisionless MHD description. The present study uses an anisotropic plasma pressure that brings the plasma within a parametric space where collisionless instabilities take place. In this model, a relaxation term of the pressure anisotropy simulates the feedback of the mirror and firehose instabilities, in consistency with empirical studies. Our three-dimensional numerical simulations of forced transonic turbulence, aiming the modeling of the turbulent ICM, were performed for different initial values of the MF intensity and different relaxation rates of the pressure anisotropy. We found that in the high-β plasma regime corresponding to the ICM conditions, a fast anisotropy relaxation rate gives results that are similar to the collisional-MHD model, as far as the statistical properties of the turbulence are concerned. Also, the TD amplification of seed MFs was found to be similar to the collisional-MHD model. The simulations that do not employ the anisotropy relaxation deviate significantly from the collisional-MHD results and show more power at the small-scale fluctuations of both density and velocity as a result of the action of the instabilities. For these simulations, the large-scale fluctuations in the MF are mostly suppressed and the TD fails in amplifying seed MFs.
Arthur, S. J.; Henney, W. J.; Mellema, G.; de Colle, F.; Vázquez-Semadeni, E.
2011-06-01
We present the results of radiation-magnetohydrodynamic simulations of the formation and expansion of H II regions and their surrounding photodissociation regions (PDRs) in turbulent, magnetized, molecular clouds on scales of up to 4 pc. We include the effects of ionizing and non-ionizing ultraviolet radiation and X-rays from population synthesis models of young star clusters. For all our simulations we find that the H II region expansion reduces the disordered component of the magnetic field, imposing a large-scale order on the field around its border, with the field in the neutral gas tending to lie along the ionization front, while the field in the ionized gas tends to be perpendicular to the front. The highest pressure-compressed neutral and molecular gas is driven towards approximate equipartition between thermal, magnetic and turbulent energy densities, whereas lower pressure neutral/molecular gas bifurcates into, on the one hand, quiescent, magnetically dominated regions and, on the other hand, turbulent, demagnetized regions. The ionized gas shows approximate equipartition between thermal and turbulent energy densities, but with magnetic energy densities that are 1-3 orders of magnitude lower. A high velocity dispersion (˜8 km s-1) is maintained in the ionized gas throughout our simulations, despite the mean expansion velocity being significantly lower. The magnetic field does not significantly brake the large-scale H II region expansion on the length and time-scales accessible to our simulations, but it does tend to suppress the smallest scale fragmentation and radiation-driven implosion of neutral/molecular gas that forms globules and pillars at the edge of the H II region. However, the relative luminosity of ionizing and non-ionizing radiation has a much larger influence than the presence or absence of the magnetic field. When the star cluster radiation field is relatively soft (as in the case of a lower mass cluster, containing an earliest spectral
Simulation study on light propagation in an anisotropic turbulence field of entrainment zone.
Yuan, Renmin; Sun, Jianning; Luo, Tao; Wu, Xuping; Wang, Chen; Fu, Yunfei
2014-06-01
The convective atmospheric boundary layer was modeled in the water tank. In the entrainment zone (EZ), which is at the top of the convective boundary layer (CBL), the turbulence is anisotropic. An anisotropy coefficient was introduced in the presented anisotropic turbulence model. A laser beam was set to horizontally go through the EZ modeled in the water tank. The image of two-dimensional (2D) light intensity fluctuation was formed on the receiving plate perpendicular to the light path and was recorded by the CCD. The spatial spectra of both horizontal and vertical light intensity fluctuations were analyzed. Results indicate that the light intensity fluctuation in the EZ exhibits strong anisotropic characteristics. Numerical simulation shows there is a linear relationship between the anisotropy coefficients and the ratio of horizontal to vertical fluctuation spectra peak wavelength. By using the measured temperature fluctuations along the light path at different heights, together with the relationship between temperature and refractive index, the one-dimensional (1D) refractive index fluctuation spectra were derived. The anisotropy coefficients were estimated from the 2D light intensity fluctuation spectra modeled by the water tank. Then the turbulence parameters can be obtained using the 1D refractive index fluctuation spectra and the corresponding anisotropy coefficients. These parameters were used in numerical simulation of light propagation. The results of numerical simulations show this approach can reproduce the anisotropic features of light intensity fluctuations in the EZ modeled by the water tank experiment. PMID:24921536
Ignatyev, Yurii; Agathonov, Alexander
2010-01-01
Exact solutions of the self-consistent relativistic magnetohydrodynamics equations for an anisotropic magnetized plasma on the background of Bondi-Pirani-Robinson's vacuum plane gravitational wave (PGW) metric with an arbitrary polarization are obtained, which generalize the results obtained earlier by one of the authors for the transverse polarization of a gravitational wave. Based on the reformulated energobalance equation it is shown that in the linear approximation by gravitational wave a...
Burkhart, Blakesley; Ossenkopf, V.; Lazarian, A.; Stutzki, J.
2013-07-01
We study the effects of radiative transfer on the probability distribution functions (PDFs) of simulations of magnetohydrodynamic turbulence in the widely studied 13CO 2-1 transition. We find that the integrated intensity maps generally follow a log-normal distribution, with the cases that have τ ≈ 1 best matching the PDF of the column density. We fit a two-dimensional variance-sonic Mach number relationship to our logarithmic PDFs of the form \\sigma _{\\ln (\\Sigma /\\Sigma _0)}^2=A\\times \\ln (1+b^2{\\cal M}_s^2) and find that, for parameter b = 1/3, parameter A depends on the radiative transfer environment. We also explore the variance, skewness, and kurtosis of the linear PDFs finding that higher moments reflect both higher sonic Mach number and lower optical depth. Finally, we apply the Tsallis incremental PDF function and find that the fit parameters depend on both Mach numbers, but also are sensitive to the radiative transfer parameter space, with the τ ≈ 1 case best fitting the incremental PDF of the true column density. We conclude that, for PDFs of low optical depth cases, part of the gas is always subthermally excited so that the spread of the line intensities exceeds the spread of the underlying column densities and hence the PDFs do not reflect the true column density. Similarly, PDFs of optically thick cases are dominated by the velocity dispersion and therefore do not represent the true column density PDF. Thus, in the case of molecules like carbon monoxide, the dynamic range of intensities, structures observed, and, consequently, the observable PDFs are less determined by turbulence and more often determined by radiative transfer effects.
International Nuclear Information System (INIS)
We study the effects of radiative transfer on the probability distribution functions (PDFs) of simulations of magnetohydrodynamic turbulence in the widely studied 13CO 2-1 transition. We find that the integrated intensity maps generally follow a log-normal distribution, with the cases that have τ ≈ 1 best matching the PDF of the column density. We fit a two-dimensional variance-sonic Mach number relationship to our logarithmic PDFs of the form σln2(Σ/Σ0) = A x ln(1+b2Ms2) and find that, for parameter b = 1/3, parameter A depends on the radiative transfer environment. We also explore the variance, skewness, and kurtosis of the linear PDFs finding that higher moments reflect both higher sonic Mach number and lower optical depth. Finally, we apply the Tsallis incremental PDF function and find that the fit parameters depend on both Mach numbers, but also are sensitive to the radiative transfer parameter space, with the τ ≈ 1 case best fitting the incremental PDF of the true column density. We conclude that, for PDFs of low optical depth cases, part of the gas is always subthermally excited so that the spread of the line intensities exceeds the spread of the underlying column densities and hence the PDFs do not reflect the true column density. Similarly, PDFs of optically thick cases are dominated by the velocity dispersion and therefore do not represent the true column density PDF. Thus, in the case of molecules like carbon monoxide, the dynamic range of intensities, structures observed, and, consequently, the observable PDFs are less determined by turbulence and more often determined by radiative transfer effects.
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Sanjoy [Johns Hopkins University Applied Physics Laboratory, Laurel, Maryland 20723 (United States); Parashar, Tulasi N. [University of Delaware, Newark, Delaware 19716 (United States)
2015-04-15
The local k-space ratio of linear and nonlinear accelerations associated with a variety of initial conditions undergoing steady relaxation is investigated for the Hall–finite-Larmor-radius magnetohydrodynamics (MHD) system in the presence of a mean magnetic field. Building on a related study (Paper I) where it was shown that discrepancies exist between describing the global and local characterizations of the pure MHD system with mean magnetic field, we find regions of the Fourier space that are consistently dominated by linear acceleration and other regions that are consistently dominated by nonlinear acceleration, independent of the overall system's description as linear, weakly nonlinear, or turbulent. In general, dynamics within a certain angular range of the mean magnetic field direction are predominantly linear, while dynamics adjacent the Hall scales along the field-parallel direction and dynamics adjacent the finite Larmor radius scales in the field-perpendicular direction can become strongly nonlinear. The nonlinear influences are particularly significant as the plasma beta increases from unity to higher values.
International Nuclear Information System (INIS)
Hall effects on local structures in homogeneous, isotropic, and incompressible magnetohydrodynamic turbulence are studied numerically. The transition of vortices from sheet-like to tubular structures induced by the Hall term is found, while the kinetic energy spectrum does not distinguish the two types of structures. It is shown by the use of the sharp low-pass filter that the transition occurs not only in the scales smaller than the ion skin depth but also in a larger scale. The transition is related with the forward energy transfer in the spectral space. Analyses by the use of the sharp low-pass filter show that the nonlinear energy transfer associated with the Hall term is dominated by the forward transfer and relatively local in the wave number space. A projection of the simulation data to a Smagorinsky-type sub-grid-scale model shows that the high wave number component of the Hall term may possibly be replaced by the model effectively
Energy Technology Data Exchange (ETDEWEB)
Miura, H., E-mail: miura.hideaki@nifs.ac.jp [Department of Helical Plasma Research, National Institute for Fusion Science, 322-6 Oroshi, Toki, Gifu 509-5292 (Japan); Araki, K. [Faculty of Engineering, Okayama University of Science, 1-1 Ridai-cho, Okayama 700-0005 (Japan)
2014-07-15
Hall effects on local structures in homogeneous, isotropic, and incompressible magnetohydrodynamic turbulence are studied numerically. The transition of vortices from sheet-like to tubular structures induced by the Hall term is found, while the kinetic energy spectrum does not distinguish the two types of structures. It is shown by the use of the sharp low-pass filter that the transition occurs not only in the scales smaller than the ion skin depth but also in a larger scale. The transition is related with the forward energy transfer in the spectral space. Analyses by the use of the sharp low-pass filter show that the nonlinear energy transfer associated with the Hall term is dominated by the forward transfer and relatively local in the wave number space. A projection of the simulation data to a Smagorinsky-type sub-grid-scale model shows that the high wave number component of the Hall term may possibly be replaced by the model effectively.
International Nuclear Information System (INIS)
The local k-space ratio of linear and nonlinear accelerations associated with a variety of initial conditions undergoing steady relaxation is investigated for the Hall–finite-Larmor-radius magnetohydrodynamics (MHD) system in the presence of a mean magnetic field. Building on a related study (Paper I) where it was shown that discrepancies exist between describing the global and local characterizations of the pure MHD system with mean magnetic field, we find regions of the Fourier space that are consistently dominated by linear acceleration and other regions that are consistently dominated by nonlinear acceleration, independent of the overall system's description as linear, weakly nonlinear, or turbulent. In general, dynamics within a certain angular range of the mean magnetic field direction are predominantly linear, while dynamics adjacent the Hall scales along the field-parallel direction and dynamics adjacent the finite Larmor radius scales in the field-perpendicular direction can become strongly nonlinear. The nonlinear influences are particularly significant as the plasma beta increases from unity to higher values
Stabilization of the turbulent flows in anisotropic viscoelastic tubes
Kizilova, N.; Hamadiche, M.
Flow around the aircrafts and marine vehicles is turbulized that increases the skin-friction drag and fuel consumption. Here stability of the fully developed turbulent flow of an incompressible fluid in the viscoelastic tube is considered. The eddy viscosity concept is considered to be adequate and the flow velocity, wall displacement and pressures in the fluid and solid wall are timeaveraged quantities. Continuity conditions for the components of the velocity and stress tensor at the fluid-wall interface and no displacement condition at the outer wall of the tube are considered. Solution of the coupled system has been found in the form of the normal mode and the obtained system has been studied using the numerical technique described in [1,2]. The temporal and spatial eigenvalues and the dependencies of the temporal and spatial amplification rates on the rheological parameters of the wall have been computed. It was shown stability of the modes can be increased by a proper choice of the wall parameters. Successful combinations of the wall thickness, elasticity and viscosity have been found for a large variety of materials. It was shown a substantial reduction in the viscous wall shear stress accompanied by a decrease in the turbulence production or Reynolds stress can be reached via using the viscoelastic coating on the rigid surface. The obtained results are in a good agreement with recent direct numerical computations [3].
Measurements of the solid-body rotation of anisotropic particles in 3D turbulence
International Nuclear Information System (INIS)
We introduce a new method to measure Lagrangian vorticity and the rotational dynamics of anisotropic particles in a turbulent fluid flow. We use 3D printing technology to fabricate crosses (two perpendicular rods) and jacks (three mutually perpendicular rods). Time-resolved measurements of their orientation and solid-body rotation rate are obtained from four video images of their motion in a turbulent flow between oscillating grids with Rλ = 91. The advected particles have a largest dimension of 6 times the Kolmogorov length, making them a good approximation to anisotropic tracer particles. Crosses rotate like disks and jacks rotate like spheres, so these measurements, combined with previous measurements of tracer rods, allow experimental study of axisymmetric ellipsoids across the full range of aspect ratios. The measured mean square tumbling rate, 〈 p-dot i p-dot i〉, confirms previous direct numerical simulations that indicate that disks tumble much more rapidly than rods. Measurements of the alignment of a unit vector defining the orientation of crosses with the direction of their solid-body rotation rate vector provide the first direct observation of the alignment of anisotropic particles by the velocity gradients in a turbulent flow. (fast track communication)
Alfvén-dynamo balance and magnetic excess in magnetohydrodynamic turbulence
Grappin, Roland; Müller, Wolf-Christian; Verdini, Andrea
2016-05-01
Context. Three-dimensional magnetohydrodynamic (3D MHD) turbulent flows with initially magnetic and kinetic energies at equipartition spontaneously develop a magnetic excess (or residual energy) in both numerical simulations and the solar wind. Closure equations obtained in 1983 describe the residual spectrum as resulting from a balance between a dynamo source proportional to the total energy spectrum and a linear Alfvén damping term. A good agreement was found in 2005 with incompressible simulations; however, recent solar wind measurements disagree with these results. Aims: The previous dynamo-Alfvén theory is generalized to a family of models, leading to simple relations between residual and total energy spectra. We want to assess these models in detail against MHD simulations and solar wind data. Methods: We tested the family of models against compressible decaying MHD simulations with a low Mach number, low cross-helicity, and zero-mean magnetic field with or without expansion terms (EBM; expanding box model). Results: A single dynamo-Alfvén model is found to describe correctly both solar wind scalings and compressible simulations without or with expansion. This model is equivalent to the 1983-2005 closure equation, but it incorporates the critical balance of nonlinear turnover and linear Alfvén times, while the dynamo source term remains unchanged. We elucidate the discrepancy with previous incompressible simulations. The model predicts a linear relation between the spectral slopes of total and residual energies mR = -1/2 + 3/2mT. By examining previous solar wind data, our relation is found to be valid for any cross-helicity, and is even better at high cross-helicity with the total energy slope varying from 1.7 to 1.55.
Energy Technology Data Exchange (ETDEWEB)
Gomez, T; Sagaut, P; Schilling, O; Zhou, Y
2006-07-05
A spectral subggrid-scale eddy viscosity and magnetic resisitivity model based on the eddy-damped quasi-normal Markovian (EDQNM) spectral kinetic and magnetic energy transfer presented in [12] is used in large-eddy simulation (LES) of large kinetic and magnetic Reynold number magneto-hydrodynamic (MHD) turbulence. The proposed model is assessed via a posteri tests on three-dimensional, incompressible, isotropic, non-helical, freely-decaying MHD turbulence at asymptotically large Reynolds numbers. Using LES with an initial condition characterized by an Alfv{acute e}n ratio of kinetic to magnetic energy {tau}{sub A} equal to unity, it is shown that at the kinetic energy spectrum E{sub K}(k) and magnetic energy spectrum E{sub M}(k) exhibit Kolmogorov -5/3 inertial subrange scalings in the LES, consistent with the EDQNM model.
The anisotropic nature of the intermittent turbulence spectra in the solar wind
Wang, X.; Tu, C. Y.; He, J.; Marsch, E.; Wang, L.
2014-12-01
Intermittent structures in the solar wind turbulence carry important information on the turbulent non-linear dynamics and the heating effect of solar wind. However, the intermittency on small scales was rarely studied. Here we present a study of intermittent structures in the small timescale from 5 seconds to 100 seconds using the data from WIND observations in the high-speed solar wind. We find that the intermittent structures dominate the magnetic field turbulence in the scale. In this scale, the power spectrum of the intermittent structures with PVI >1 appears to be anisotropic with regards to the angle θRB between the direction of the local background magnetic field and the radial direction. The anisotropic nature in this sub-range is presented as follows: 1. At the scale τ=12s, the power spectral density of the intermittency withθRB = 84o-90o is one time larger than that of the intermittency with θRB =0o-6o; 2. The power spectrum becomes flatter as θRB increases, with an index of -2 at θRB =0o-6o and index of -1.6 at θRB =84o-90o; 3. The most probable value of the proton temperature distribution of the intermittent structures is 2.1×105K, higher than the most probable proton temperature for the general solar wind (1.9×105K); 4. The most probable value of the proton temperature of the intermittency with θRB =70o-90o is 2.2×105K, clearly higher than that with θRB =0o-20o, which is 2.0×105K. We think that the intermittent structures in the scale from 5s to 100s and their anisotropic spectral nature could be related to the non-linear interactions in the MHD turbulence, and they may have some influence on the dissipation processes in the solar wind turbulence.
Turbulent anomalous transport and anisotropic electron heating in a return current system
International Nuclear Information System (INIS)
Anisotropic electron heating due to self-generated electromagnetic turbulences is observed in collisionless return current plasmas. The corresponding energy conversion, electron heating, and associated anomalous momentum transport are investigated by means of a two-dimensional electromagnetic particle-in-cell simulation code. The return current model consists of two counterstreaming electron beams with different temperatures and a stationary ion background. First, a general multifluid dispersion analyzer is presented in a clear matrix form that allows to study electron streaming instabilities. The numerical simulation confirms the predicted electrostatic electron-electron acoustic instability. Generating electromagnetic waves, the system evolves into a nonlinear stage. As a result, the electron drifts are slowed down due to turbulence-induced anomalous momentum exchange. Localized electric and magnetic field fluctuations play major roles in the energy conversion. Perpendicular electron heating follows the growth of magnetic field perturbations and the slowing of the electron drifts. Parallel and perpendicular electron heating occurs at different time scales. It is shown that the longer lasting perpendicular electron heating is caused by preheated parallel electron flows. The deflection of the preheated parallel electron flows in the localized turbulences, which is essentially a two-dimensional effect, leads to perpendicular electron heating even after the saturation of parallel electron heating. We conclude that the self-generated magnetic turbulence dominates the anomalous transport process in the late stage of return current system evolution.
The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch
Navarro, Alejandro Bañón; Teaca, Bogdan; Jenko, Frank
2016-04-01
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each perpendicular direction is introduced as well, which shows that the redistribution of energy in the presence of zonal flows is highly anisotropic.
SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds
Lehmann, Andrew; Wardle, Mark
2016-01-01
The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks --- fast, intermediate and slow --- distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of s...
Li, Ye; Zhang, Yixin; Zhu, Yun; Chen, Minyu
2016-07-01
Based on the spatial power spectrum of the refractive index of anisotropic turbulence, the average polarizability of the Gaussian Schell-model quantized beams and lateral coherence length of the spherical wave propagating through the ocean water channel are derived. Numerical results show that, in strong temperature fluctuation, the depolarization effects of anisotropic turbulence are inferior to isotropic turbulence, as the other parameters of two links are the same. The depolarization effects of salinity fluctuation are less than the effects of the temperature fluctuation; the average polarizability of beams increases when increasing the inner scale of turbulence and the source's transverse size; and the larger rate of dissipation of kinetic energy per unit mass of fluid enhances the average polarizability of beams. The region of the receiving radius is smaller than the characteristic radius and the average polarizability of beams in isotropy turbulence is smaller than that of beams in anisotropy turbulence. However, the receiving radius region is larger than a characteristic radius and the average polarizability of beams in isotropy turbulence is larger than that of beams in anisotropy turbulence. PMID:27409215
Anisotropic Turbulent Advection of a Passive Vector Field: Effects of the Finite Correlation Time
Antonov, N. V.; Gulitskiy, N. M.
2016-02-01
The turbulent passive advection under the environment (velocity) field with finite correlation time is studied. Inertial-range asymptotic behavior of a vector (e.g., magnetic) field, passively advected by a strongly anisotropic turbulent flow, is investigated by means of the field theoretic renormalization group and the operator product expansion. The advecting velocity field is Gaussian, with finite correlation time and prescribed pair correlation function. The inertial-range behavior of the model is described by two regimes (the limits of vanishing or infinite correlation time) that correspond to nontrivial fixed points of the RG equations and depend on the relation between the exponents in the energy energy spectrum ɛ ∝ k⊥1-ξ and the dispersion law ω ∝ k⊥2-η . The corresponding anomalous exponents are associated with the critical dimensions of tensor composite operators built solely of the passive vector field itself. In contrast to the well-known isotropic Kraichnan model, where various correlation functions exhibit anomalous scaling behavior with infinite sets of anomalous exponents, here the dependence on the integral turbulence scale L has a logarithmic behavior: instead of power-like corrections to ordinary scaling, determined by naive (canonical) dimensions, the anomalies manifest themselves as polynomials of logarithms of L. Due to the presence of the anisotropy in the model, all multiloop diagrams are equal to zero, thus this result is exact.
On the weakly anisotropic nature of the time-stationary turbulence in the solar wind
Wang, Xin; Tu, Chuanyi; He, Jiansen; Marsch, Eckart; Wang, Linghua
2016-03-01
At the frequency range from 0.01 Hz to 0.1 Hz, the power spectrum of the fluctuations in the solar wind turbulence was recently observed to be anisotropic with respect to the direction of local mean magnetic field (B0). These observations are considered as evidence for a "critical balance" style cascade. However, we find that the anisotropy of the spectral index seems to be very weak, if we use continuous time series which are time-stationary and have nearly constant local B0. We apply the fast fourier transform (FFT) on these time series selected from the eight-year magnetic field (B) and flow velocity (V) data observed by the WIND spacecraft in the high-speed solar wind. Our results show that the FFT spectral indices of the time series with B0 nearly parallel and perpendicular to the Sun-to-Earth radial direction are not significantly different. This work provides new clues on the nature of the anisotropy of the solar wind turbulence and thus will improve our understanding of the turbulent energy cascade.
Sujovolsky, N E
2016-01-01
We study the transition in dimensionality of a three-dimensional magnetohydrodynamic flow forced only mechanically, when the strength of a magnetic guiding field is gradually increased. We use numerical simulations to consider cases in which the mechanical forcing injects (or not) helicity in the flow. As the guiding field is increased, the strength of the magnetic field fluctuations decrease as a power law of the guiding field intensity. We show that for strong enough guiding fields, the helical magnetohydrodynamic flow can become almost two-dimensional. In this case, the mechanical energy can undergo a process compatible with an inverse cascade, being transferred preferentially towards scales larger than the forcing scale. The presence of helicity changes the spectral scaling of the small magnetic field fluctuations, and affects the statistics of the velocity field and of the velocity gradients. Moreover, at small scales the dynamics of the flow becomes dominated by a direct cascade of helicity, which can b...
Inertial ranges and resistive instabilities in two-dimensional magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
Direct numerical simulations of decaying two-dimensional magnetohydrodynamic flows at Reynolds numbers of several thousand are performed, using resolutions of 10242 collocation points. An inertial range extending to about one decade is observed, with spectral properties depending on the velocity--magnetic field correlation. At very small scales, resistive tearing destabilizes current sheets generated by the inertial dynamics and leads to the formation of small-scale magnetic islands, which may then grow and reach the size of inertial scales
Vetcha, N.; Smolentsev, S.; Abdou, M.; Moreau, R.
2013-02-01
We consider magnetohydrodynamic (MHD) rectangular duct flows with volumetric heating. The flows are upward, subject to a strong transverse magnetic field perpendicular to the temperature gradient, such that the flow dynamics is quasi-two-dimensional. The internal volumetric heating imitates conditions of a blanket of a fusion power reactor, where a buoyancy-driven flow is imposed on the forced flow. Studies of this mixed-convection flow include analysis for the basic flow, linear stability analysis and Direct Numerical Simulation (DNS)-type computations. The parameter range covers the Hartmann number (Ha) up to 500, the Reynolds number (Re) from 1000 to 10 000, and the Grashof number (Gr) from 105 to 5 × 108. The linear stability analysis predicts two primary instability modes: (i) bulk instability associated with the inflection point in the velocity profile near the "hot" wall and (ii) side-wall boundary layer instability. A mixed instability mode is also possible. An equation for the critical Hartmann number has been obtained as a function of Re and Gr. Effects of Ha, Re, and Gr on turbulent flows are addressed via nonlinear computations that demonstrate two characteristic turbulence regimes. In the "weak" turbulence regime, the induced vortices are localized near the inflection point of the basic velocity profile, while the boundary layer at the wall parallel to the magnetic field is slightly disturbed. In the "strong" turbulence regime, the bulk vortices interact with the boundary layer causing its destabilization and formation of secondary vortices that may travel across the flow, even reaching the opposite wall. In this regime, the key phenomena are vortex-wall and various vortex-vortex interactions. Flow and magnetic field effects on heat transfer are also analyzed.
Sub-Grid-Scale Description of Turbulent Magnetic Reconnection in Magnetohydrodynamics
Widmer, Fabien; Yokoi, Nobumitsu
2015-01-01
Magnetic reconnection requires, at least locally, a non-ideal plasma response. In collisionless space and astrophysical plasmas, turbulence could permit this instead of the too rare binary collisions. We investigated the influence of turbulence on the reconnection rate in the framework of a single fluid compressible MHD approach. The goal is to find out, whether unresolved, sub-grid for MHD simulations, turbulence can enhance the reconnection process in high Reynolds number astrophysical plasma. We solve, simultaneously with the grid-scale MHD equations, evolution equations for the sub-grid turbulent energy and cross helicity according to Yokoi's model (Yokoi (2013)) where turbulence is self-generated and -sustained through the inhomogeneities of the mean fields. Simulations of Harris and force free sheets confirm the results of Higashimori et al. (2013) and new results are obtained about the dependence on resistivity for large Reynolds number as well as guide field effects. The amount of energy transferred f...
Directory of Open Access Journals (Sweden)
V. Carbone
Full Text Available Some signed measures in turbulence are found to be sign-singular, that is their sign reverses continuously on arbitrary finer scales with a reduction of the cancellation between positive and negative contributions. The strength of the singularity is characterized by a scaling exponent κ, the cancellation exponent. In the present study by using some turbulent samples of the velocity field obtained from spacecraft measurements in the interplanetary medium, we show that sign-singularity is present everywhere in low-frequency turbulent samples. The cancellation exponent can be related to the characteristic scaling laws of turbulence. Differences in the values of κ, calculated in both high- and low-speed streams, allow us to outline some physical differences in the samples with different velocities.
The Energy Dissipation Rate of Supersonic, Magnetohydrodynamic Turbulence in Molecular Clouds
MacLow, M M
1998-01-01
Molecular clouds have broad linewidths suggesting turbulent supersonic motions in the clouds. These motions are usually invoked to explain why molecular clouds take much longer than a free-fall time to form stars. It has classically been thought that supersonic hydrodynamical turbulence would dissipate its energy quickly, but that the introduction of strong magnetic fields could maintain these motions. In a previous paper it has been shown, however, that isothermal, compressible, MHD and hydrodynamical turbulence decay at virtually the same rate, requiring that constant driving occur to maintain the observed turbulence. In this paper direct numerical computations of uniformly driven turbulence with the ZEUS astrophysical MHD code are used to derive the absolute value of energy dissipation as a function of the driving wavelength and amplitude. The ratio of the formal decay time of turbulence E_{kin}/\\dot{E}_{kin} to the free-fall time of the gas can then be derived as a function of the ratio of driving wavelen...
SHOCKFIND - An algorithm to identify magnetohydrodynamic shock waves in turbulent clouds
Lehmann, Andrew; Federrath, Christoph; Wardle, Mark
2016-08-01
The formation of stars occurs in the dense molecular cloud phase of the interstellar medium. Observations and numerical simulations of molecular clouds have shown that supersonic magnetised turbulence plays a key role for the formation of stars. Simulations have also shown that a large fraction of the turbulent energy dissipates in shock waves. The three families of MHD shocks - fast, intermediate and slow - distinctly compress and heat up the molecular gas, and so provide an important probe of the physical conditions within a turbulent cloud. Here we introduce the publicly available algorithm, SHOCKFIND, to extract and characterise the mixture of shock families in MHD turbulence. The algorithm is applied to a 3-dimensional simulation of a magnetised turbulent molecular cloud, and we find that both fast and slow MHD shocks are present in the simulation. We give the first prediction of the mixture of turbulence-driven MHD shock families in this molecular cloud, and present their distinct distributions of sonic and Alfvénic Mach numbers. Using subgrid one-dimensional models of MHD shocks we estimate that ˜0.03 % of the volume of a typical molecular cloud in the Milky Way will be shock heated above 50 K, at any time during the lifetime of the cloud. We discuss the impact of this shock heating on the dynamical evolution of molecular clouds.
The anisotropic redistribution of free energy for gyrokinetic plasma turbulence in a Z-pinch
Navarro, Alejandro Banon; Jenko, Frank
2015-01-01
For a Z-pinch geometry, we report on the nonlinear redistribution of free energy across scales perpendicular to the magnetic guide field, for a turbulent plasma described in the framework of gyrokinetics. The analysis is performed using a local flux-surface approximation, in a regime dominated by electrostatic fluctuations driven by the entropy mode, with both ion and electron species being treated kinetically. To explore the anisotropic nature of the free energy redistribution caused by the emergence of zonal flows, we use a polar coordinate representation for the field-perpendicular directions and define an angular density for the scale flux. Positive values for the classically defined (angle integrated) scale flux, which denote a direct energy cascade, are shown to be also composed of negative angular sections, a fact that impacts our understanding of the backscatter of energy and the way in which it enters the modeling of sub-grid scales for turbulence. A definition for the flux of free energy across each...
Kolmogorov-Sinai entropy in field line diffusion by anisotropic magnetic turbulence
International Nuclear Information System (INIS)
The Kolmogorov-Sinai (KS) entropy in turbulent diffusion of magnetic field lines is analyzed on the basis of a numerical simulation model and theoretical investigations. In the parameter range of strongly anisotropic magnetic turbulence the KS entropy is shown to deviate considerably from the earlier predicted scaling relations (1992 Rev. Mod. Phys. 64 961). In particular, a slowing down logarithmic behavior versus the so-called Kubo number R >> 1 (R = (δB/B0) (ξ||/ξperpendicular), where δB/B0 is the ratio of the rms magnetic fluctuation field to the magnetic field strength, and ξperpendicular and ξ|| are the correlation lengths in respective dimensions) is found instead of a power-law dependence. These discrepancies are explained from general principles of Hamiltonian dynamics. We discuss the implication of Hamiltonian properties in governing the paradigmatic 'percolation' transport, characterized by R → ∞, associating it with the concept of pseudochaos (random non-chaotic dynamics with zero Lyapunov exponents). Applications of this study pertain to both fusion and astrophysical plasma and by mathematical analogy to problems outside the plasma physics.
Hydrodynamical and magnetohydrodynamic global bifurcations in a highly turbulent von Karman flow
International Nuclear Information System (INIS)
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
Park, Kiwan
2015-01-01
The inverse cascade of magnetic energy occurs when helicity or rotational instability exists in the magnetohydrodynamic (MHD) system. This well known phenomenon provides a basis for the large scale magnetic field in space. However even the decaying nonhelical magnetic energy can evolve to expand its scale. This phenomenon, inverse transfer of decaying nonhelical magnetic field may hold some vital clues to the origin of large scale magnetic field in the astrophysical system without helicity nor any significant driving source. Zeldovich's rope model has been considered as the basic principle with regard to the amplification of magnetic field. However, since the rope model assuming a driving force is not appropriate to the decaying system, we suggest a supplementary dynamo model based on the magnetic induction equation. The model explicitly shows the basic principle of migration and amplification of magnetic field. The expansion of scale and intensity of magnetic field is basically the consequent result of the r...
Large-Eddy Simulations of Magnetohydrodynamic Turbulence in Astrophysics and Space Physics
Miesch, Mark S; Brandenburg, Axel; Petrosyan, Arakel; Pouquet, Annick; Cambon, Claude; Jenko, Frank; Uzdensky, Dmitri; Stone, James; Tobias, Steve; Toomre, Juri; Velli, Marco
2015-01-01
We live in an age in which high-performance computing is transforming the way we do science. Previously intractable problems are now becoming accessible by means of increasingly realistic numerical simulations. One of the most enduring and most challenging of these problems is turbulence. Yet, despite these advances, the extreme parameter regimes encountered in astrophysics and space physics (as in atmospheric and oceanic physics) still preclude direct numerical simulation. Numerical models must take a Large Eddy Simulation (LES) approach, explicitly computing only a fraction of the active dynamical scales. The success of such an approach hinges on how well the model can represent the subgrid-scales (SGS) that are not explicitly resolved. In addition to the parameter regime, astrophysical and heliophysical applications must also face an equally daunting challenge: magnetism. The presence of magnetic fields in a turbulent, electrically conducting fluid flow can dramatically alter the coupling between large and...
Dynamics and statistics of inverse cascade processes in 2D magnetohydrodynamic turbulence
International Nuclear Information System (INIS)
The inverse cascade of the mean square potential A in a 2D magnetofluid randomly forced at small scales is studied by numerical simulation. One finds the spectrum Ak ≅ 2.6 element of A2/3k-7/3. The cascade proceeds by coalescence of current filaments, which is a fast reconnection process owing to high turbulent resistivity. Statistics of δvl and δBl are strictly Gaussian, also in the condensation phase of Ak at k 1. Only when the coherent magnetic field intensity exceeds that of the fluctuations, non-Gaussian statistics in δB6 occur, which are, however, entirely due to the static magnetic structure and not associated with intermittency of the small-scale turbulence, the latter remaining Gaussian. (orig.)
On the effect of rotation on magnetohydrodynamic turbulence at high magnetic Reynolds number
Favier, Benjamin F N; Cambon, Claude; 10.1080/03091929.2010.544655
2011-01-01
This article is focused on the dynamics of a rotating electrically conducting fluid in a turbulent state. As inside the Earth's core or in various industrial processes, a flow is altered by the presence of both background rotation and a large scale magnetic field. In this context, we present a set of 3D direct numerical simulations of incompressible decaying turbulence. We focus on parameters similar to the ones encountered in geophysical and astrophysical flows, so that the Rossby number is small, the interaction parameter is large, but the Elsasser number, defining the ratio between Coriolis and Lorentz forces, is about unity. These simulations allow to quantify the effect of rotation and thus inertial waves on the growth of magnetic fluctuations due to Alfv\\'en waves. Rotation prevents the occurrence of equipartition between kinetic and magnetic energies, with a reduction of magnetic energy at decreasing Elsasser number {\\Lambda}. It also causes a decrease of energy transfer mediated by cubic correlations....
Anisotropic turbulence and zonal jets in rotating flows with a β-effect
Directory of Open Access Journals (Sweden)
B. Galperin
2006-01-01
Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the
Zhao, Yuanhang; Zhang, Yixin; Hu, Zhengda; Li, Ye; Wang, Donglin
2016-07-01
Polarization and spatial coherence of quantization Gaussian Schell-beams propagating through the anisotropic non-Kolmogorov turbulence of marine-atmosphere channel are studied based on the quantized Huygens-Fresnel principle and the degree of quantum polarization. The spatial coherence length and the polarization degree of linearly polarization quantization Gaussian Schell-beams are developed. The effects of outer scale on the lateral coherence length are not obvious as same as the effects of wavelength on the degree of polarization. The degree of polarization decreases as the source transverse coherent width, anisotropic factor, the number of received photons, spectral index, the inner scale of turbulent eddies and source transverse radius decrease or generalized refractive-index structure parameter increases. The refractive-index structure parameter, spectral index and inner scale have also effect on the changes of lateral coherence length. Those results can be used to improve the performance of a polarization-encoded quantum communication system.
Energy Technology Data Exchange (ETDEWEB)
Ptuskin, V.S.; /Troitsk, IZMIRAN /Maryland U.; Moskalenko, Igor V.; /Stanford U., HEPL; Jones, F.C.; /NASA, Goddard; Strong, A.W.; /Garching, Max Planck Inst., MPE; Zirakashvili, V.N.; /Troitsk, IZMIRAN /Heidelberg, Max Planck Inst. Astron.
2006-01-17
The physical processes involved in diffusion of Galactic cosmic rays in the interstellar medium are addressed. We study the possibility that the nonlinear MHD cascade sets the power-law spectrum of turbulence which scatters charged energetic particles. We find that the dissipation of waves due to the resonant interaction with cosmic ray particles may terminate the Kraichnan-type cascade below wavelengths 10{sup 13} cm. The effect of this wave dissipation has been incorporated in the GALPROP numerical propagation code in order to asses the impact on measurable astrophysical data. The energy-dependence of the cosmic-ray diffusion coefficient found in the resulting self-consistent model may explain the peaks in the secondary to primary nuclei ratios observed at about 1 GeV/nucleon.
Collisionless magnetohydrodynamics with gyrokinetic effects
International Nuclear Information System (INIS)
Anisotropic magnetohydrodynamics equations, which also capture the dynamics of quasi-transverse small scales obeying the gyrokinetic ordering, are derived using fourth-rank moment closures, based on a refined description of linear Landau damping and finite Larmor radius (FLR) corrections. This 'FLR-Landau fluid model' reproduces the dispersion relation of low-frequency waves, up to scales that, in the case of quasi-transverse kinetic Alfven waves, can be much smaller than the ion gyroradius. The mirror instability, which requires temperature anisotropy, is also captured, together with its quenching at small scales. This model that accurately reproduces the collisionless dissipation of low-frequency modes, should provide an efficient tool to simulate mesoscale turbulence in a magnetized collisionless plasma
de Laage de Meux, B.; Audebert, B.; Manceau, R.; Perrin, R.
2015-03-01
A general forcing method for Large Eddy Simulation (LES) is proposed for the purpose of providing the flow with fluctuations that satisfy a desired statistical state. This method, the Anisotropic Linear Forcing (ALF) introduces an unsteady linear tensor function of the resolved velocity which acts as a restoring force in the mean velocity and resolved stress budgets. The ALF generalizes and extends several forcing previously proposed in the literature. In order to make it possible to impose the integral length scale of the turbulence generated by the forcing term, an alternative formulation of the ALF, using a differential spatial filter, is proposed and analyzed. The anisotropic forcing of the Reynolds stresses is particularly attractive, since unsteady turbulent fluctuations can be locally enhanced or damped, depending on the target stresses. As such, it is shown that the ALF is an effective method to promote turbulent fluctuations downstream of the LES inlet or at the interface between RANS and LES in zonal hybrid RANS/LES modeling. The detailed analysis of the influence of the ALF parameters in spatially developing channel flows and hybrid computations where the ALF target statistics are given by a RANS second-moment closure show that this original approach performs as well as the synthetic eddy method. However, since the ALF method is more flexible and significant computational savings are obtained, the method appears a promising all-in-one solution for general embedded LES simulations.
Constrained multi-scale turnover Lagrangian map for anisotropic synthetic turbulence: A priori tests
Li, Y; C. Rosales
2014-01-01
Synthetic turbulence has been useful in the modelling and simulation of turbulence, and as a surrogate to understand the dynamics of real hydrodynamic turbulence. In a recently proposed Multiscale Turnover Lagrangian Map (MTLM) method, an initial random field is transformed into a synthetic field after a series of simple mappings, with moderate computational cost. It has been shown that the resulted fields reproduce highly realistic statistics on many aspects of isotropic hydrodynamic turbule...
The Inherently Three-Dimensional Nature of Magnetized Plasma Turbulence
Howes, Gregory G
2013-01-01
It is often asserted or implicitly assumed, without justification, that the results of two-dimensional investigations of plasma turbulence are applicable to the three-dimensional plasma environments of interest. A projection method is applied to derive two scalar equations that govern the nonlinear evolution of the Alfvenic and pseudo-Alfvenic components of ideal incompressible magnetohydrodynamic (MHD) plasma turbulence. The mathematical form of these equations makes clear the inherently three-dimensional nature of plasma turbulence, enabling an analysis of the nonlinear properties of two-dimensional limits often used to study plasma turbulence. In the anisotropic limit k_perp >>k_parallel that naturally arises in magnetized plasma systems, the perpendicular 2D limit retains the dominant nonlinearities that are mediated only by the Alfvenic fluctuations but lacks the wave physics associated with the linear term that is necessary to capture the anisotropic cascade of turbulent energy. In the in-plane 2D limit...
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
Dennis, Graham R.; Hudson, Stuart R.; Dewar, Robert L.; Hole, Matthew J.
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit...
Kuznetsov, E A
2015-01-01
Statistical characteristics of the Kraichnan direct cascade for two-dimensional hydrodynamic turbulence are numerically studied (with spatial resolution $8192\\times 8192$) in the presence of pumping and viscous-like damping. It is shown that quasi-shocks of vorticity and their Fourier partnerships in the form of jets introduce an essential influence in turbulence leading to strong angular dependencies for correlation functions. The energy distribution as a function of modulus $k$ for each angle in the inertial interval has the Kraichnan behavior, $\\sim k^{-4}$, and simultaneously a strong dependence on angles. However, angle average provides with a high accuracy the Kraichnan turbulence spectrum $E_k=C_K\\eta^{2/3} k^{-3}$ where $\\eta$ is enstrophy flux and the Kraichnan constant $C_K\\simeq 1.3$, in correspondence with the previous simulations. Familiar situation takes place for third-order velocity structure function $S_3^L$ which, as for the isotropic turbulence, gives the same scaling with respect to separa...
International Nuclear Information System (INIS)
The aim of this study was to analyze the feedback process between the magnetic turbulence and the pressure gradients in Large Helical Device (LHD) inward-shifted configurations as well as its role in the transition between the soft-hard magnetohydrodynamic (MHD) regimes for instabilities driven by the mode 1/2 in the middle plasma. In the present paper, we summarize the results of two simulations with different Lundquist numbers, S=2.5×105 and 106, assuming a plasma in the slow reconnection regime. The results for the high Lundquist number simulation show that the magnetic turbulence and the pressure gradient in the middle plasma region of LHD are below the critical value to drive the transition to the hard MHD regime, therefore only relaxations in the soft MHD limit are triggered (1/2 sawtooth-like events) [Phys. Plasmas 19, 082512 (2012)]. In the case of the simulation with low Lundquist number, the system reaches the hard MHD limit and a plasma collapse is observed
Magnetohydrodynamics and Plasma Cosmology
Kleidis, K; Papadopoulos, D B; Vlahos, L
2005-01-01
We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.
M. El-Alaoui; R. L. Richard; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from ...
Stability of Kolmogorov scaling in the theory of anisotropically driven developed turbulence
International Nuclear Information System (INIS)
The fully developed turbulence with axial anisotropy for dimensions d>2 was investigated by means of renormalization group approach. The influence of anisotropy on the stability of the Kolmogorov scaling regime was analyzed. It was shown that there are only rather specific values of the anisotropy parameters in which the three-dimensional scaling regime is destroyed by the influence of axial anisotropy. The borderline dimension between stable scaling regime and unstable one was calculated as a function of the anisotropy parameters
Multi-scale percolation and scaling laws for anisotropic turbulent diffusion
Energy Technology Data Exchange (ETDEWEB)
Bakunin, O.G.; Schep, T.J
2004-02-23
This Letter deals with scaling laws that describe transport and correlation effects in anisotropic media. The method of multi-scale continuum percolation is used. Multi-scale continuum percolation in 2D random flows is based upon a description in terms of a hierarchy of spatial scales {lambda}. In that theory the correlation function of the velocity scales as {lambda}{sup -{alpha}}. On the other hand, fractal theory leads to the scaling with time {lambda}{proportional_to}t{sup H}, where H is the Hurst factor. A closer examination of fractal and percolation concepts allows us to obtain not only the value of the exponents but also the relationship between them. It is shown that super-diffusive, 1/2
Multi-scale percolation and scaling laws for anisotropic turbulent diffusion
International Nuclear Information System (INIS)
This Letter deals with scaling laws that describe transport and correlation effects in anisotropic media. The method of multi-scale continuum percolation is used. Multi-scale continuum percolation in 2D random flows is based upon a description in terms of a hierarchy of spatial scales λ. In that theory the correlation function of the velocity scales as λ-α. On the other hand, fractal theory leads to the scaling with time λ∝tH, where H is the Hurst factor. A closer examination of fractal and percolation concepts allows us to obtain not only the value of the exponents but also the relationship between them. It is shown that super-diffusive, 1/2< H<1, and sub-diffusive behavior, 0< H<1/2, in an anisotropic medium can be described by a single scaling law obtained from percolation theory. The model of double diffusion (H=1/4) and the one of Dreizin-Dykhne (H=3/4) are treated as examples. The connection between these scaling laws and the order of the fractional time derivative in the transport equation is pointed out
Scale-by-scale energy fluxes in anisotropic non-homogeneous turbulence behind a square cylinder
Alves Portela, Felipe; Papadakis, George; Vassilicos, John Christos
2015-11-01
The turbulent wake behind a square section cylinder is studied by means of high resolution direct numerical simulations using an in-house finite volume code. The Reynolds number based on the cylinder side is 3900. Single- and two-point statistics are collected in the lee of the cylinder for over 30 shedding periods, allowing for an extensive description of the development of the turbulence. The power spectrum in the frequency domain of velocity fluctuations displays a near -5/3 power law in the near wake, where the turbulence is neither isotropic nor homogeneous. In the same region of the flow, two-point statistics reveal a direct cascade of fluctuating kinetic energy down the scales as a result of the combined effect of linear and non-linear interactions. For scales aligned with the mean flow the non-linear interactions dominate the cascade. Conversely, for scales normal to the mean flow the cascade is dominated by the linear interactions while the non-linear term is mostly responsible for redistributing energy to different orientations. The authors acknowledge support form the EU through the FP7 Marie Curie MULTISOLVE project (grant agreement No. 317269).
Energy Technology Data Exchange (ETDEWEB)
Ravelet, F
2005-09-15
We report experimental studies of the turbulent von Karman flow, inertially stirred between counter-rotating impellers. We first study the flow and its transition from laminar to turbulent regime. We highlight the role of slowly varying large scales, due to the presence of an azimuthal mixing layer. The large scales of this flow can be unstable in turbulent regime. We study the statistics of the transitions between the different mean states. The second part is dedicated to an experiment in liquid sodium, called VKS2. We optimize the time-averaged flow in order to allow kinematic dynamo action. We report the very first results of the experiment, and discuss the role of the large scales temporal non-stationariness. (author)
The Effects of Anisotropic Viscosity on Turbulence and Heat Transport in the Intracluster Medium
Parrish, Ian J; Quataert, Eliot; Sharma, Prateek
2012-01-01
In the intracluster medium (ICM) of galaxy clusters, heat and momentum are transported almost entirely along (but not across) magnetic field lines. We perform the first fully self-consistent Braginskii-MHD simulations of galaxy clusters including both of these effects. Specifically, we perform local and global simulations of the magnetothermal instability (MTI) and the heat-flux-driven buoyancy instability (HBI) and assess the effects of viscosity on their saturation and astrophysical implications. We find that viscosity has only a modest effect on the saturation of the MTI. As in previous calculations, we find that the MTI can generate nearly sonic turbulent velocities in the outer parts of galaxy clusters, although viscosity somewhat suppresses the magnetic field amplification. At smaller radii in cool-core clusters, viscosity can decrease the linear growth rates of the HBI. However, it has less of an effect on the HBI's nonlinear saturation, in part because three-dimensional interchange motions (magnetic f...
Mean-field magnetohydrodynamics and dynamo theory
Krause, F
2013-01-01
Mean-Field Magnetohydrodynamics and Dynamo Theory provides a systematic introduction to mean-field magnetohydrodynamics and the dynamo theory, along with the results achieved. Topics covered include turbulence and large-scale structures; general properties of the turbulent electromotive force; homogeneity, isotropy, and mirror symmetry of turbulent fields; and turbulent electromotive force in the case of non-vanishing mean flow. The turbulent electromotive force in the case of rotational mean motion is also considered. This book is comprised of 17 chapters and opens with an overview of the gen
Haas, Fernando
2005-01-01
The quantum hydrodynamic model for charged particle systems is extended to the cases of non zero magnetic fields. In this way, quantum corrections to magnetohydrodynamics are obtained starting from the quantum hydrodynamical model with magnetic fields. The quantum magnetohydrodynamics model is analyzed in the infinite conductivity limit. The conditions for equilibrium in ideal quantum magnetohydrodynamics are established. Translationally invariant exact equilibrium solutions are obtained in t...
El-Alaoui, M.; Richard, R. L.; Ashour-Abdalla, M.; Walker, R. J.; Goldstein, M. L.
2012-01-01
We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF) conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs) for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
Directory of Open Access Journals (Sweden)
M. El-Alaoui
2012-03-01
Full Text Available We report the results of MHD simulations of Earth's magnetosphere for idealized steady solar wind plasma and interplanetary magnetic field (IMF conditions. The simulations feature purely northward and southward magnetic fields and were designed to study turbulence in the magnetotail plasma sheet. We found that the power spectral densities (PSDs for both northward and southward IMF had the characteristics of turbulent flow. In both cases, the PSDs showed the three scale ranges expected from theory: the energy-containing scale, the inertial range, and the dissipative range. The results were generally consistent with in-situ observations and theoretical predictions. While the two cases studied, northward and southward IMF, had some similar characteristics, there were significant differences as well. For southward IMF, localized reconnection was the main energy source for the turbulence. For northward IMF, remnant reconnection contributed to driving the turbulence. Boundary waves may also have contributed. In both cases, the PSD slopes had spatial distributions in the dissipative range that reflected the pattern of resistive dissipation. For southward IMF there was a trend toward steeper slopes in the dissipative range with distance down the tail. For northward IMF there was a marked dusk-dawn asymmetry with steeper slopes on the dusk side of the tail. The inertial scale PSDs had a dusk-dawn symmetry during the northward IMF interval with steeper slopes on the dawn side. This asymmetry was not found in the distribution of inertial range slopes for southward IMF. The inertial range PSD slopes were clustered around values close to the theoretical expectation for both northward and southward IMF. In the dissipative range, however, the slopes were broadly distributed and the median values were significantly different, consistent with a different distribution of resistivity.
Magnetohydrodynamics of Fractal Media
Vasily E. Tarasov
2007-01-01
The fractal distribution of charged particles is considered. An example of this distribution is the charged particles that are distributed over fractal. The fractional integrals are used to describe fractal distribution. These integrals are considered as approximations of integrals on fractals. Typical turbulent media could be of a fractal structure and the corresponding equations should be changed to include the fractal features of the media. The magnetohydrodynamics equations for fractal me...
Kubo number and magnetic field line diffusion coefficient for anisotropic magnetic turbulence
International Nuclear Information System (INIS)
The magnetic field line diffusion coefficients Dx and Dy are obtained by numerical simulations in the case that all the magnetic turbulence correlation lengths lx, ly, and lz are different. We find that the variety of numerical results can be organized in terms of the Kubo number, the definition of which is extended from R=(δB/B0)(l#parallel#/l#perpendicular#) to R=(δB/B0)(lz/lx), for lx≥ly. Here, l#parallel# (l#perpendicular#) is the correlation length along (perpendicular to) the average field B0=B0{cflx e}z. We have anomalous, non-Gaussian transport for R{approx-lt}0.1, in which case the mean square deviation scales nonlinearly with time. For R{approx-gt}1 we have several Gaussian regimes: an almost quasilinear regime for 0.1{approx-lt}R{approx-lt}1, an intermediate, transition regime for 1{approx-lt}R{approx-lt}10, and a percolative regime for R{approx-gt}10. An analytical form of the diffusion coefficient is proposed, Di=D(δBlz/B0lx)μ(li/lx)νlx2/lz, which well describes the numerical simulation results in the quasilinear, intermediate, and percolative regimes
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
Dennis, Graham R; Dewar, Robert L; Hole, Matthew J
2014-01-01
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields.
Multi-region relaxed magnetohydrodynamics with anisotropy and flow
International Nuclear Information System (INIS)
We present an extension of the multi-region relaxed magnetohydrodynamics (MRxMHD) equilibrium model that includes pressure anisotropy and general plasma flows. This anisotropic extension to our previous isotropic model is motivated by Sun and Finn's model of relaxed anisotropic magnetohydrodynamic equilibria. We prove that as the number of plasma regions becomes infinite, our anisotropic extension of MRxMHD reduces to anisotropic ideal MHD with flow. The continuously nested flux surface limit of our MRxMHD model is the first variational principle for anisotropic plasma equilibria with general flow fields
Maulik, Romit
2016-01-01
In this paper, we introduce a relaxation filtering closure approach to account for subgrid scale effects in explicitly filtered large eddy simulations using the concept of anisotropic diffusion. We utilize the Perona-Malik diffusion model and demonstrate its shock capturing ability and spectral performance for solving the Burgers turbulence problem, which is a simplified prototype for more realistic turbulent flows showing the same quadratic nonlinearity. Our numerical assessments present the behavior of various diffusivity functions in conjunction with a detailed sensitivity analysis with respect to the free modeling parameters. In comparison to direct numerical simulation (DNS) and under-resolved DNS results, we find that the proposed closure model is efficient in the prevention of energy accumulation at grid cut-off and is also adept at preventing any possible spurious numerical oscillations due to shock formation under the optimal parameter choices. In contrast to other relaxation filtering approaches, it...
Bailly, Christophe
2015-01-01
This book covers the major problems of turbulence and turbulent processes, including physical phenomena, their modeling and their simulation. After a general introduction in Chapter 1 illustrating many aspects dealing with turbulent flows, averaged equations and kinetic energy budgets are provided in Chapter 2. The concept of turbulent viscosity as a closure of the Reynolds stress is also introduced. Wall-bounded flows are presented in Chapter 3, and aspects specific to boundary layers and channel or pipe flows are also pointed out. Free shear flows, namely free jets and wakes, are considered in Chapter 4. Chapter 5 deals with vortex dynamics. Homogeneous turbulence, isotropy, and dynamics of isotropic turbulence are presented in Chapters 6 and 7. Turbulence is then described both in the physical space and in the wave number space. Time dependent numerical simulations are presented in Chapter 8, where an introduction to large eddy simulation is offered. The last three chapters of the book summarize remarka...
Magnetohydrodynamic cosmologies
International Nuclear Information System (INIS)
We analyse a class of cosmological models in magnetohydrodynamic regime extending and completing the results of a previous paper. The material content of the models is a perfect fluid plus electromagnetic fields. The fluid is neutral in average but admits an electrical current which satisfies Ohm's law. All models fulfil the physical requirements of near equilibrium thermodynamics and can be favourably used as a more realistic description of the interior of a collapsing star in a magnetohydrodynamic regime with or without a magnetic field. (author)
Institute of Scientific and Technical Information of China (English)
Z. Lin; R.E. Waltz
2007-01-01
@@ Turbulent transport driven by plasma pressure gradients [Tangl978] is one of the most important scientific challenges in burning plasma experiments since the balance between turbulent transport and the self-heating by the fusion products (a-particles) determines the performance of a fusion reactor like ITER.
Lingam, M; Morrison, Philip; E. Tassi
2015-01-01
A version of extended magnetohydrodynamics (MHD) that incorporates electron inertia is obtained by constructing an action principle. Unlike MHD which freezes in magnetic flux, the present theory freezes in an alternative flux related to the electron canonical momentum. The associated Hamiltonian formulation is derived and reduced models that have previously been used to describe collisionless reconnection are obtained.
Intermittent dissipation and lack of universality in one-dimensional Alfvénic turbulence
International Nuclear Information System (INIS)
The randomly driven Cohen–Kulsrud–Burgers equation is used to study the influence of viscous intermediate shocks (IS) on Alfvénic turbulence. Some of these structures are unstable and undergo gradient collapse leading, as the viscosity is reduced, to increasingly intermittent dissipation bursts. The slow decay at intermediate scales of stable IS prevents the existence of a usual inertial range. Furthermore, the dissipation is unable to adiabatically compensate for the energy injection, making the total energy sensitive to the viscosity parameter. Turbulence thus looses its universal character. Preliminary simulations extend these conclusions to magnetohydrodynamic equations with anisotropic viscosity, typical of strongly magnetized plasmas.
Pratt, J; Mueller, W -C; Chapman, S C; Watkins, N W
2014-01-01
Local regions of anomalous particle dispersion, and intermittent events that occur in turbulent flows can greatly influence the global statistical description of the flow. These local behaviors can be identified and analyzed by comparing the growth of neighboring convex hulls of Lagrangian tracer particles. Although in our simulations of homogeneous turbulence the convex hulls generally grow in size, after the Lagrangian particles that define the convex hulls begin to disperse, our analysis reveals short periods when the convex hulls of the Lagrangian particles shrink, evidence that particles are not dispersing simply. Shrinkage can be associated with anisotropic flows, since it occurs most frequently in the presence of a mean magnetic field or thermal convection. We compare dispersion between a wide range of statistically homogeneous and stationary turbulent flows ranging from homogeneous isotropic Navier-Stokes turbulence over different configurations of magnetohydrodynamic turbulence and Boussinesq convect...
International Nuclear Information System (INIS)
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail
Energy Technology Data Exchange (ETDEWEB)
Haas, Fernando; Pascoal, Kellen Alves [Instituto de Física, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, 91501-970 Porto Alegre, RS (Brazil); Mendonça, José Tito [IPFN, Instituto Superior Técnico, Universidade de Lisboa, 1049-001 Lisboa, Portugal and Instituto de Física, Universidade de São Paulo, 05508-090 São Paulo, SP (Brazil)
2016-01-15
A new neutrino magnetohydrodynamics (NMHD) model is formulated, where the effects of the charged weak current on the electron-ion magnetohydrodynamic fluid are taken into account. The model incorporates in a systematic way the role of the Fermi neutrino weak force in magnetized plasmas. A fast neutrino-driven short wavelengths instability associated with the magnetosonic wave is derived. Such an instability should play a central role in strongly magnetized plasma as occurs in supernovae, where dense neutrino beams also exist. In addition, in the case of nonlinear or high frequency waves, the neutrino coupling is shown to be responsible for breaking the frozen-in magnetic field lines condition even in infinite conductivity plasmas. Simplified and ideal NMHD assumptions were adopted and analyzed in detail.
International Nuclear Information System (INIS)
Over the past 2 decades, ideal magnetohydrodynamics (MHD), has developed into a relatively mature theory within the field of plasma physics. MHD represents the simplest, self-consistent model describing the macroscopic equilibrium and stability properties of plasma. Thus, the role of ideal MHD in magnetic fusion is the discovery of magnetic geometries that possess attractive equilibrium and stability properties for fusion reactors. This book is based on the author's two-semester sequence in MHD theory offered at MIT. The first semester is devoted to ideal magnetohydrodynamics and is largely involved in studying equilibrium and fast, often catastrophic, instabilities. The second semester treats slower, nonideal effects (such as resistivity, pressure anisotropy, and finite Larmor radius effects) and their influence on plasmas that are stable or at most, weakly unstable against the ideal modes. This textbook is concerned with the first semester's material. The author's goal is to provide an in-depth introduction to the subject of ideal magnetohydrodynamics. The style has a theoretical emphasis with considerable discussion of the application of theory to experiments and generous examples of the experiments themselves. The book has been written to satisfy the needs of the pedagogical requirements of the student. Accordingly, there are many descriptive explanations and virtually every equation is derived - either in detail, in outline form, or in the Appendices. Chapters are basically divided between equilibrium: general considerations, one-dimensional configurations, two-dimensional configurations, three-dimensional configurations; and stability; general considerations, one-dimensional configurations, and multidimensional configurations
Magnetohydrodynamics of accretion disks
International Nuclear Information System (INIS)
The thesis consists of an introduction and summary, and five research papers. The introduction and summary provides the background in accretion disk physics and magnetohydrodynamics. The research papers describe numerical studies of magnetohydrodynamical processes in accretion disks. Paper 1 is a one-dimensional study of the effect of magnetic buoyancy on a flux tube in an accretion disk. The stabilizing influence of an accretion disk corona on the flux tube is demonstrated. Paper 2-4 present numerical simulations of mean-field dynamos in accretion disks. Paper 11 verifies the correctness of the numerical code by comparing linear models to previous work by other groups. The results are also extended to somewhat modified disk models. A transition from an oscillatory mode of negative parity for thick disks to a steady mode of even parity for thin disks is found. Preliminary results for nonlinear dynamos at very high dynamo numbers are also presented. Paper 3 describes the bifurcation behaviour of the nonlinear dynamos. For positive dynamo numbers it is found that the initial steady solution is replaced by an oscillatory solution of odd parity. For negative dynamo numbers the solution becomes chaotic at sufficiently high dynamo numbers. Paper 4 continues the studies of nonlinear dynamos, and it is demonstrated that a chaotic solution appears even for positive dynamo numbers, but that it returns to a steady solution of mixed parity at very high dynamo numbers. Paper 5 describes a first attempt at simulating the small-scale turbulence of an accretion disk in three dimensions. There is only find cases of decaying turbulence, but this is rather due to limitations of the simulations than that turbulence is really absent in accretion disks
Scaling laws in magnetized plasma turbulence
Energy Technology Data Exchange (ETDEWEB)
Boldyrev, Stanislav [Univ. of Wisconsin, Madison, WI (United States)
2015-06-28
Interactions of plasma motion with magnetic fields occur in nature and in the laboratory in an impressively broad range of scales, from megaparsecs in astrophysical systems to centimeters in fusion devices. The fact that such an enormous array of phenomena can be effectively studied lies in the existence of fundamental scaling laws in plasma turbulence, which allow one to scale the results of analytic and numerical modeling to the sized of galaxies, velocities of supernovae explosions, or magnetic fields in fusion devices. Magnetohydrodynamics (MHD) provides the simplest framework for describing magnetic plasma turbulence. Recently, a number of new features of MHD turbulence have been discovered and an impressive array of thought-provoking phenomenological theories have been put forward. However, these theories have conflicting predictions, and the currently available numerical simulations are not able to resolve the contradictions. MHD turbulence exhibits a variety of regimes unusual in regular hydrodynamic turbulence. Depending on the strength of the guide magnetic field it can be dominated by weakly interacting Alfv\\'en waves or strongly interacting wave packets. At small scales such turbulence is locally anisotropic and imbalanced (cross-helical). In a stark contrast with hydrodynamic turbulence, which tends to ``forget'' global constrains and become uniform and isotropic at small scales, MHD turbulence becomes progressively more anisotropic and unbalanced at small scales. Magnetic field plays a fundamental role in turbulent dynamics. Even when such a field is not imposed by external sources, it is self-consistently generated by the magnetic dynamo action. This project aims at a comprehensive study of universal regimes of magnetic plasma turbulence, combining the modern analytic approaches with the state of the art numerical simulations. The proposed study focuses on the three topics: weak MHD turbulence, which is relevant for laboratory devices
International Nuclear Information System (INIS)
A version of extended magnetohydrodynamics (MHD) that incorporates electron inertia is obtained by constructing an action principle. Unlike MHD which freezes in magnetic flux, the present theory freezes in an alternative flux related to the electron canonical momentum. The associated Hamiltonian formulation is derived and reduced models that have previously been used to describe collisionless reconnection are obtained. - Highlights: • A rare, and possibly novel, version of MHD presented, and similarities to MHD highlighted via an appropriate frozen flux constraint. • Hamiltonian and action principle formalisms for this model, inertial MHD, are presented. • Shown to reproduce the Ottaviani–Porcelli model of reconnection as a special case
Logarithmic Conformal Field Theory Solutions of Two Dimensional Magnetohydrodynamics
Skoulakis, Spyros; Thomas, Steven
1998-01-01
We consider the application of logarithmic conformal field theory in finding solutions to the turbulent phases of 2-dimensional models of magnetohydrodynamics. These arise upon dimensional reduction of standard (infinite conductivity) 3-dimensional magnetohydrodynamics, after taking various simplifying limits. We show that solutions of the corresponding Hopf equations and higher order integrals of motion can be found within the solutions of ordinary turbulence proposed by Flohr, based on the ...
Anisotropic transport and early dynamical impact of Cosmic Rays around Supernova remnants
Girichidis, Philipp; Walch, Stefanie; Hanasz, Michal
2014-01-01
We present a novel implementation of cosmic rays (CR) in the magneto-hydrodynamic code FLASH. CRs are described as separate fluids with different energies. CR advection, energy dependent anisotropic diffusion with respect to the magnetic field and adiabatic losses to follow the evolution of spectra are taken into account. We present a first study of the transport and immediate (~150 kyr) dynamical impact of CRs on the turbulent magnetised interstellar medium around supernova remnants on scales up to 80 pc. CR diffusion quickly leads to an efficient acceleration of low-density gas (mainly perpendicular to the magnetic field) with accelerations up to two orders of magnitude above the thermal values. Peaked (at 1 GeV) CR injection spectra have a stronger impact on the dynamics than power-law spectra. For realistic magnetic field configurations low energy CRs (with smaller diffusion coefficients) distribute anisotropically with large spatial variations of a factor of ten and more. Adiabatic losses can change the ...
Marcus, Guy; Parsa, Shima; Kramel, Stefan; Ni, Rui; Voth, Greg
2013-11-01
We have developed a general methodology to experimentally measure the time-resolved Lagrangian orientation and solid body rotation rate of anisotropic particles with arbitrary aspect ratio from standard stereoscopic video image data. We apply these techniques to particles advected in a Rλ ~ 110 fluid flow, where turbulence is generated by two grids oscillating in phase. We use 3D printing technology to design and fabricate neutrally buoyant rods, crosses (two perpendicular rods), and jacks (three mutually perpendicular rods) with a largest dimension of 7 times the Kolmogorov length scale, which makes them good approximations to tracer particles. We have measured the mean square rotation rate, ṗiṗi , of particles spanning the full range of aspect ratios and obtained results that agree with direct numerical simulations. By measuring the full solid-body rotation of jacks, we provide a new, extensible way to directly probe the Lagrangian vorticity of a fluid. We also present direct measurements of the alignment of crosses with the direction of their solid body rotation rate vector--in agreement with direct numerical simulations. Supported by NSF grant DMR1208990.
Maron, Jason L.; Chandran, Benjamin D. G.; Blackman, Eric G.
2003-01-01
We investigate field-line separation in strong MHD turbulence using direct numerical simulations. We find that in the static-magnetic-field approximation the thermal conductivity in galaxy clusters is reduced by a factor of about 50 relative to the Spitzer thermal conductivity of a non-magnetized plasma. This value is too small for heat conduction to balance radiative cooling in clusters.
Energy Technology Data Exchange (ETDEWEB)
Sovinec, C.R.
1995-12-31
Numerical computation is used to investigate resistive magnetohydrodynamic (MHD) fluctuations in the reversed-field pinch (RFP) and in tokamak-like configurations driven solely by direct current (DC) helicity injection. A Lundquist number (S) scan of RFP turbulence without plasma pressure produces the weak scaling of S{sup -0.18} for the root-mean-square magnetic fluctuation level for 2.5x10{sup 3}{le}S{le}4x10{sup 4}. The temporal behavior of fluctuations and the reversal parameter becomes more regular as S is increased, acquiring a {open_quotes}sawtooth{close_quotes} shape at the largest value of S. Simulations with plasma pressure and anisotropic thermal conduction demonstrate energy transport resulting from parallel heat fluctuations. To investigate means of improving RFP energy confinement, three forms of current profile modification are tested. Radio frequency (RF) current drive is modeled with an auxiliary electron force, and linear stability calculations are used.
Yoshimura, H.; Wang, Z.; Wu, F.
1984-05-01
Differential rotation dependence of the selection mechanism for magnetic parity of solar and stellar cycles is studied by assuming various differential rotation profiles in the dynamo equation. The parity selection depends on propagation direction of oscillating magnetic fields in the form of dynamo waves which propagate along isorotation surfaces. When there is any radial gradient in the differential rotation, dynamo waves propagate either equatorward or poleward. In the former case, field systems of the two hemispheres approach each other and collide at the equator. Then, odd parity is selected. In the latter case, field systems of the two hemispheres recede from each other and do not collide at the equator, and even parity is selected. Thus the equatorial migration of wings of the butterfly diagram of the solar cycle and its odd parity are intrinsically related. In the case of purely latitudinal differential rotation, dynamo waves propagate purely radially and growth rates of odd and even modes are nearly the same even when dynamo strength is weak when the parity selection mechanism should work most efficiently. In this case, anisotropy of turbulent diffusivity is a decisive factor to separate odd and even modes. Unlike in the case of radial-gradient-dominated differential rotation in which any difference between diffusivities for poloidal and toroidal fields enhances the parity selection without changing the parity, the parity selection in the case of latitudinal-gradient-dominated differential rotation depends on the difference of diffusivities for poloidal and toroidal fields. When diffusivity for poloidal fields is larger than that for toroidal fields, odd parity is selected; and when diffusivity for toroidal fields is larger, even parity is selected. This suggests that diffusivity for poloidal fields is larger than that for toroidal fields in the solar convection zone where magnetic parity is odd and where radial gradient influence on the parity selection
Salhi, A.; Cambon, C.
2007-05-01
Angular phase mixing in rapidly rotating or in strongly stratified flows is quantified for single-time single-point energy components, using linear theory. In addition to potential energy, turbulent kinetic energy is more easily analyzed in terms of its toroidal and poloidal components, and then in terms of vertical and horizontal components. Since the axial symmetry around the direction n (which bears both the system angular velocity and the mean density gradient) is consistent with basic dynamical equations, the input of initial anisotropy is investigated in the axisymmetric case. A general way to construct axisymmetric initial data is used, with a classical expansion in terms of scalar spherical harmonics for the 3D spectral density of kinetic energy e, and a modified expansion for the polarization anisotropy Z, which reflects the unbalance in terms of poloidal and toroidal energy components. The expansion involves Legendre polynomials of arbitrary order, P2n0(cosθ), (n=0,1,2,…,N0), in which the term [cosθ=(k•n)/∣k∣] characterizes the anisotropy in k-wavespace; two sets of parameters, β2n(e) and β2n(z), separately generate the directional anisotropy and the polarization anisotropy. In the rotating case, the phase mixing results in damping the polarization anisotropy, so that toroidal and poloidal energy components asymptotically equilibrate after transient oscillations. Complete analytical solutions are found in terms of Bessel functions. The envelope of these oscillations decay with time like (ft)-2 (f being the Coriolis parameter), whereas those for the vertical and horizontal components decay like (ft)-3. The long-time limit of the ratio of horizontal component to vertical one depends only on β2(e), which is eventually related to a classical component in structure-based modeling, independently of the degree of the expansion of the initial data. For the stratified case, both the degree of initial anisotropy and the initial unbalance in terms of
Spectral properties of electromagnetic turbulence in plasmas
Directory of Open Access Journals (Sweden)
D. Shaikh
2009-03-01
Full Text Available We report on the nonlinear turbulent processes associated with electromagnetic waves in plasmas. We focus on low-frequency (in comparison with the electron gyrofrequency nonlinearly interacting electron whistlers and nonlinearly interacting Hall-magnetohydrodynamic (H-MHD fluctuations in a magnetized plasma. Nonlinear whistler mode turbulence study in a magnetized plasma involves incompressible electrons and immobile ions. Two-dimensional turbulent interactions and subsequent energy cascades are critically influenced by the electron whisters that behave distinctly for scales smaller and larger than the electron skin depth. It is found that in whistler mode turbulence there results a dual cascade primarily due to the forward spectral migration of energy that coexists with a backward spectral transfer of mean squared magnetic potential. Finally, inclusion of the ion dynamics, resulting from a two fluid description of the H-MHD plasma, leads to several interesting results that are typically observed in the solar wind plasma. Particularly in the solar wind, the high-time-resolution databases identify a spectral break at the end of the MHD inertial range spectrum that corresponds to a high-frequency regime. In the latter, turbulent cascades cannot be explained by the usual MHD model and a finite frequency effect (in comparison with the ion gyrofrequency arising from the ion inertia is essentially included to discern the dynamics of the smaller length scales (in comparison with the ion skin depth. This leads to a nonlinear H-MHD model, which is presented in this paper. With the help of our 3-D H-MHD code, we find that the characteristic turbulent interactions in the high-frequency regime evolve typically on kinetic-Alfvén time-scales. The turbulent fluctuation associated with kinetic-Alfvén interactions are compressive and anisotropic and possess equipartition of the kinetic and magnetic energies.
Filamentary magnetohydrodynamic plasmas
International Nuclear Information System (INIS)
A filamentary construct of magnetohydrodynamical plasma dynamics, based on the Elsasser variables was developed. This approach is modeled after discrete vortex models of hydrodynamical turbulence, which cannot be expected in general to produce results identical to ones based on a Fourier decomposition of the fields. In a highly intermittent plasma, the induction force is small compared to the convective motion, and when this force is neglected. the plasma vortex system is described by a Hamiltonian. For a system with many such vortices we present a statistical treatment of a collection of discrete current-vorticity concentrations. Canonical and microcanonical statistical calculations show that both the vorticity and the current spectra are peaked at long wavelengths, and the expected states revert to known hydrodynamical states as the magnetic field vanishes. These results differ from previous Fourier-based statistical theories. but it is found that when the filament calculation is expanded to include the inductive force, the results approach the Fourier equilibria in the low-temperature limit, and the previous Hamiltonian plasma vortex results in the high-temperature limit. Numerical simulations of a large number of filaments are carried out and support the theory. A three-dimensional vortex model is outlined as well, which is also Hamiltonian when the inductive force is neglected
Attractors of magnetohydrodynamic flows in an Alfvenic state
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Sanz, Javier [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1999-08-13
We present a simplified form of the magnetohydrodynamic system which describes the evolution of a plasma where the small-scale velocity and magnetic field are aligned in the form of Alfven waves, such as happens in several turbulent situations. Bounds on the dimension of the global attractor are found, and are shown to be an improvement of the standard ones for the full magnetohydrodynamic equations. (author)
Turbulent transport and dynamo in sheared MHD turbulence with a non-uniform magnetic field
Leprovost, Nicolas; Kim, Eun-Jin
2009-01-01
We investigate three-dimensional magnetohydrodynamics turbulence in the presence of velocity and magnetic shear (i.e., with both a large-scale shear flow and a nonuniform magnetic field). By assuming a turbulence driven by an external forcing with both helical and nonhelical spectra, we investigate the combined effect of these two shears on turbulence intensity and turbulent transport represented by turbulent diffusivities (turbulent viscosity, α and β effect) in Reynolds-averaged equations. ...
Particle energization and current sheets in Alfvenic plasma turbulence
Makwana, Kirit; Li, Hui; Guo, Fan; Daughton, William; Cattaneo, Fausto
2015-11-01
Plasma turbulence is driven by injecting energy at large scales through stirring or instabilities. This energy cascades forward to smaller scales by nonlinear interactions, described by magnetohydrodynamics (MHD) at scales larger than the ion gyroradius. At smaller scales, the fluid description of MHD breaks down and kinetic mechanisms convert turbulent energy into particle energy. We investigate this entire process by simulating the cascade of strongly interacting Alfven waves using MHD and particle-in-cell (PIC) simulations. The plasma beta is varied and particle heating is analyzed. Anisotropic heating of particles is observed. We calculate the fraction of injected energy converted into non-thermal energy. At low beta we obtain a significant non-thermal component to the particle energy distribution function. We investigate the mechanisms behind this acceleration. The velocity distribution function is correlated with the sites of turbulent current sheets. The different dissipative terms due to curvature drift, gradB drift, polarization drifts, and parallel current density are also calculated. This has applications for understanding particle energization in turbulent space plasmas.
Limits on the ion temperature anisotropy in the turbulent intracluster medium
Santos-Lima, R.; Yan, H.; de Gouveia Dal Pino, E. M.; Lazarian, A.
2016-08-01
Turbulence in the weakly collisional intracluster medium (ICM) of galaxies is able to generate strong thermal velocity anisotropies in the ions (with respect to the local magnetic field direction), if the magnetic moment of the particles is conserved in the absence of Coulomb collisions. In this scenario, the anisotropic pressure magnetohydrodynamic (AMHD) turbulence shows a very different statistical behaviour from the standard MHD one and is unable to amplify seed magnetic fields. This is in contrast to previous cosmological MHD simulations that are successful in explaining the observed magnetic fields in the ICM. On the other hand, temperature anisotropies can also drive plasma instabilities that can relax the anisotropy. This work aims to compare the relaxation rate with the growth rate of the anisotropies driven by the turbulence. We employ quasi-linear theory to estimate the ion scattering rate resulting from the parallel firehose, mirror and ion-cyclotron instabilities, for a set of plasma parameters resulting from AMHD simulations of the turbulent ICM. We show that the ICM turbulence can sustain only anisotropy levels very close to the instability thresholds. We argue that the AMHD model that bounds the anisotropies at the marginal stability levels can describe the Alfvénic turbulence cascade in the ICM.
Experiments in Magnetohydrodynamics
Rayner, J. P.
1970-01-01
Describes three student experiments in magnetohydrodynamics (MHD). In these experiments, it was found that the electrical conductivity of the local water supply was sufficient to demonstrate effectively some of the features of MHD flowmeters, generators, and pumps. (LC)
Parallel Simulations in Turbulent MHD
International Nuclear Information System (INIS)
The large-scale dynamics of plasma flows can often be described within a fluidistic approximation known as one-fluid magnetohydrodynamics. Complex flows such as those corresponding to turbulent regimes are ubiquitous in laboratory plasmas and in astrophysics, because of their typically very large Reynolds numbers. Numerical simulations have become a powerful tool for the study of complex plasma flows in recent years. The aim of the present paper is to introduce the reader to some of the standard numerical approximations used for the integration of the magnetohydrodynamic equations. In particular, we focus on pseudo-spectral methods and on how to develop parallel codes to speed up large Reynolds number simulations. We show the results arising from numerical simulations of astrophysical interest such as the development of turbulent flows in reduced magnetohydrodynamics and the generation of magnetic fields by dynamo mechanisms in three dimensional magnetohydrodynamics
Parallel Simulations in Turbulent MHD
Energy Technology Data Exchange (ETDEWEB)
Gomez, Daniel O. [C. Universitaria, Buenos Aires (Argentina). Dept. of Physics, Pabellon I; Mininni, Pablo D. [National Center for Atmospheric Research, Boulder, CO (United States). Advanced Study Program; Dmitruk, Pablo [Univ. of Delaware, Newark (United States). Bartol Research Inst.
2005-04-01
The large-scale dynamics of plasma flows can often be described within a fluidistic approximation known as one-fluid magnetohydrodynamics. Complex flows such as those corresponding to turbulent regimes are ubiquitous in laboratory plasmas and in astrophysics, because of their typically very large Reynolds numbers. Numerical simulations have become a powerful tool for the study of complex plasma flows in recent years. The aim of the present paper is to introduce the reader to some of the standard numerical approximations used for the integration of the magnetohydrodynamic equations. In particular, we focus on pseudo-spectral methods and on how to develop parallel codes to speed up large Reynolds number simulations. We show the results arising from numerical simulations of astrophysical interest such as the development of turbulent flows in reduced magnetohydrodynamics and the generation of magnetic fields by dynamo mechanisms in three dimensional magnetohydrodynamics.
Gradient Particle Magnetohydrodynamics
Maron, Jason L.; Howes, Gregory G.
2001-01-01
We introduce Gradient Particle Magnetohydrodynamics (GPM), a new Lagrangian method for magnetohydrodynamics based on gradients corrected for the locally disordered particle distribution. The development of a numerical code for MHD simulation using the GPM algorithm is outlined. Validation tests simulating linear and nonlinear sound waves, linear MHD waves, advection of magnetic fields in a magnetized vortex, hydrodynamical shocks, and three-dimensional collapse are presented, demonstrating th...
Hamiltonian formulation of reduced magnetohydrodynamics
International Nuclear Information System (INIS)
Reduced magnetohydrodynamics (RMHD) has become a principal tool for understanding nonlinear processes, including disruptions, in tokamak plasmas. Although analytical studies of RMHD turbulence have been useful, the model's impressive ability to simulate tokamak fluid behavior has been revealed primarily by numerical solution. The present work describes a new analytical approach, not restricted to turbulent regimes, based on Hamiltonian field theory. It is shown that the nonlinear (ideal) RMHD system, in both its high-beta and low-beta versions, can be expressed in Hanmiltonian form. Thus a Poisson bracket, [ , ], is constructed such that each RMHD field quantitity, xi/sub i/, evolves according to xi/sub i/ = [xi/sub i/,H], where H is the total field energy. The new formulation makes RMHD accessible to the methodology of Hamiltonian mechanics; it has lead, in particular, to the recognition of new RMHD invariants and even exact, nonlinear RMHD solutions. A canonical version of the Poisson bracket, which requires the introduction of additional fields, leads to a nonlinear variational principle for time-dependent RMHD
Lattice Boltzmann approaches to magnetohydrodynamics and electromagnetism
Dellar, Paul
2010-03-01
J u B E g We present a lattice Boltzmann approach for magnetohydrodynamics and electromagnetism that expresses the magnetic field using a discrete set of vector distribution functions i. The i were first postulated to evolve according to a vector Boltzmann equation of the form ti+ ξi.∇i= - 1τ ( i- i^(0) ), where the ξi are a discrete set of velocities. The right hand side relaxes the i towards some specified functions i^(0) of the fluid velocity , and of the macroscopic magnetic field given by = ∑ii. Slowly varying solutions obey the equations of resistive magnetohydrodynamics. This lattice Boltzmann formulation has been used in large-scale (up to 1800^3 resolution) simulations of magnetohydrodynamic turbulence. However, this is only the simplest form of Ohm's law. We may simulate more realistic extended forms of Ohm's law using more complex collision operators. A current-dependent relaxation time yields a current-dependent resistivity η(|∇x|), as used to model ``anomalous'' resistivity created by small-scale plasma processes. Using a hydrodynamic matrix collision operator that depends upon the magnetic field , we may simulate Braginskii's magnetohydrodynamics, in which the viscosity for strains parallel to the magnetic field lines is much larger than the viscosity for strains in perpendicular directions. Changing the collision operator again, from the above vector Boltzmann equation we may derive the full set of Maxwell's equations, including the displacement current, and Ohm's law, - 1c^2 tE+ ∇x= μo,= σ( E + x). The original lattice Boltzmann scheme was designed to reproduce resistive magnetohydrodynamics in the non-relativistic limit. However, the kinetic formulation requires a system of first order partial differential equations with collision terms. This system coincides with the full set of Maxwell's equations and Ohm's law, so we capture a much wider range of electromagnetic phenomena, including electromagnetic waves.
BOOK REVIEW: Nonlinear Magnetohydrodynamics
Shafranov, V.
1998-08-01
Nonlinear magnetohydrodynamics by Dieter Biskamp is a thorough introduction to the physics of the most impressive non-linear phenomena that occur in conducting magnetoplasmas. The basic systems, in which non-trivial dynamic processes are observed, accompanied by changes of geometry of the magnetic field and the effects of energy transformation (magnetic energy into kinetic energy or the opposite effect in magnetic dynamos), are the plasma magnetic confinement systems for nuclear fusion and space plasmas, mainly the solar plasma. A significant number of the examples of the dynamic processes considered are taken from laboratory plasmas, for which an experimental check of the theory is possible. Therefore, though the book is intended for researchers and students interested in both laboratory, including nuclear fusion, and astrophysical plasmas, it is most probably closer to the first category of reader. In the Introduction the author notes that unlike the hydrodynamics of non-conducting fluids, where the phenomena caused by rapid fluid motions are the most interesting, for plasmas in a strong magnetic field the quasi-static configurations inside which the local dynamic processes occur are often the most important. Therefore, the reader will also find in this book rather traditional material on the theory of plasma equilibrium and stability in magnetic fields. In addition, it is notable that, as opposed to a linear theory, the non-linear theory, as a rule, cannot give quite definite explanations or predictions of phenomena, and consequently there are in the book many results obtained by consideration of numerical models with the use of supercomputers. The treatment of non-linear dynamics is preceded by Chapters 2 to 4, in which the basics of MHD theory are presented with an emphasis on the role of integral invariants of the magnetic helicity type, a derivation of the reduced MHD equations is given, together with examples of the exact solutions of the equilibrium
Wave turbulence in magnetized plasmas
Directory of Open Access Journals (Sweden)
S. Galtier
2009-02-01
Full Text Available The paper reviews the recent progress on wave turbulence for magnetized plasmas (MHD, Hall MHD and electron MHD in the incompressible and compressible cases. The emphasis is made on homogeneous and anisotropic turbulence which usually provides the best theoretical framework to investigate space and laboratory plasmas. The solar wind and the coronal heating problems are presented as two examples of application of anisotropic wave turbulence. The most important results of wave turbulence are reported and discussed in the context of natural and simulated magnetized plasmas. Important issues and possible spurious interpretations are also discussed.
Magnetohydrodynamics in rectangular ducts
International Nuclear Information System (INIS)
Magnetohydrodynamic flow in straight ducts or bends is a key issue, which has to be investigated for developing self-cooled liquid metal blankets of fusion reactors. The code presented solves the full set of governing equations and simulates all phenomena of such flows, including inertial effects. The range of application is limited by computer storage only. (orig./WL)
Topological soliton in magnetohydrodynamics
Kamchatnov, A. M.
2004-01-01
We use the Hopf mapping to construct a magnetic configuration consisting of closed field lines, each of which is linked with all the other ones. We obtain in this way a solution of the equations of magnetohydrodynamics of an ideal incompressible fluid with infinite conductivity, which describes a localized topological soliton.
Solar Flares: Magnetohydrodynamic Processes
Kazunari Shibata; Tetsuya Magara
2011-01-01
This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD) processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a fl...
Dual strings and magnetohydrodynamics
Olesen, P.
1995-01-01
We investigate whether dual strings could be solutions of the magnetohydrodynamics equations in the limit of infinite conductivity. We find that the induction equation is satisfied, and we discuss the Navier-Stokes equation (without viscosity) with the Lorentz force included. We argue that the dual string equations (with a non-universal maximum velocity) should describe the large scale motion of narrow magnetic flux tubes, because of a large reparametrization (gauge) invariance of the magneti...
Nonresonant Grain Acceleration in MHD Turbulence
Yan, Huirong
2009-01-01
We discuss a new type of dust acceleration mechanism that acts in a turbulent magnetized medium. The magnetohydrodynamic (MHD) turbulence can accelerate grains through resonant as well as nonresonant interactions. We show that the magnetic compression provides higher velocities for super-Alfvenic turbulence and can accelerate an extended range of grains in warm media compared to gyroresonance. While fast modes dominate the acceleration for the large grains, slow modes can be important for sub...
Magnetic reversals in a simple model of magnetohydrodynamics.
Benzi, Roberto; Pinton, Jean-François
2010-07-01
We study a simple magnetohydrodynamical approach in which hydrodynamics and MHD turbulence are coupled in a shell model, with given dynamo constraints in the large scales. We consider the case of a low Prandtl number fluid for which the inertial range of the velocity field is much wider than that of the magnetic field. Random reversals of the magnetic field are observed and it shown that the magnetic field has a nontrivial evolution--linked to the nature of the hydrodynamics turbulence. PMID:20867710
Radio Wave Scintillations and Models of Interstellar Turbulence
Spangler, Steven R.
1998-05-01
There are a number of well-established observational results from radio scintillations which have implications for the nature of interstellar turbulence. Among such results are evidence for anisotropy and a Kolmogorov spectrum for the density irregularities. It is probable the galactic magnetic field organizes these irregularities so that spatial gradients along the field are much less than those perpendicular to the field. Such a behavior for turbulence is predicted by theories of magnetohydrodynamic turbulence in which the amplitude is small. The turbulence is then described by a theory termed reduced magnetohydrodynamics. A limiting case of reduced magnetohydrodynamics is two dimensional magnetohydrodynamics, in which the direction of the large scale magnetic field z defines the ignorable coordinate. Two dimensional magnetohydrodynamics consists of a pair of coupled nonlinear partial differential equations for the velocity stream function psi and the z component of the magnetic vector potential A_z. A number of observed features of interstellar turbulence can be identified with solutions to the equations of two dimensional magnetohydrodynamics. Examples are the development of Kolmogorov-like spectra for the velocity and magnetic field from a wide class (although not totally general) initial conditions, a natural explanation for the formation of intermittancy in turbulence, and the rapid development of small scale, large spatial wavenumber fluctuations, in contrast to the eddy cascade of hydrodynamic turbulence. The equations of two dimensional magnetohydrodynamics may serve as a simple but tractable model of interstellar plasma turbulence that may complement and be superior to the traditional model of an ensemble of magnetohydrodynamic waves.
Conservation of Circulation in Magnetohydrodynamics
Bekenstein, J D; Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We demonstrate, both at the Newtonian and (general) relativistic levels, theexistence of a generalization of Kelvin's circulation theorem (for pure fluids)which is applicable to perfect magnetohydrodynamics. The argument is based onthe least action principle for magnetohydrodynamic flow. Examples of the newconservation law are furnished. The new theorem should be helpful inidentifying new kinds of vortex phenomena distinct from magnetic ropes or fluidvortices.
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
EvangelosChaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similar fashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is done by replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vector potential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vector analysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHD equations.
The Modified Magnetohydrodynamical Equations
Institute of Scientific and Technical Information of China (English)
Evangelos Chaliasos
2003-01-01
After finding the really self-consistent electromagnetic equations for a plasma, we proceed in a similarfashion to find how the magnetohydrodynamical equations have to be modified accordingly. Substantially this is doneby replacing the "Lorentz" force equation by the correct (in our case) force equation. Formally we have to use the vectorpotential instead of the magnetic field intensity. The appearance of the formulae presented is the one of classical vectoranalysis. We thus find a set of eight equations in eight unknowns, as previously known concerning the traditional MHDequations.
Accurate, meshless methods for magnetohydrodynamics
Hopkins, Philip F.; Raives, Matthias J.
2016-01-01
Recently, we explored new meshless finite-volume Lagrangian methods for hydrodynamics: the `meshless finite mass' (MFM) and `meshless finite volume' (MFV) methods; these capture advantages of both smoothed particle hydrodynamics (SPH) and adaptive mesh refinement (AMR) schemes. We extend these to include ideal magnetohydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains nabla \\cdot B≈ 0. We implement these in the code GIZMO, together with state-of-the-art SPH MHD. We consider a large test suite, and show that on all problems the new methods are competitive with AMR using constrained transport (CT) to ensure nabla \\cdot B=0. They correctly capture the growth/structure of the magnetorotational instability, MHD turbulence, and launching of magnetic jets, in some cases converging more rapidly than state-of-the-art AMR. Compared to SPH, the MFM/MFV methods exhibit convergence at fixed neighbour number, sharp shock-capturing, and dramatically reduced noise, divergence errors, and diffusion. Still, `modern' SPH can handle most test problems, at the cost of larger kernels and `by hand' adjustment of artificial diffusion. Compared to non-moving meshes, the new methods exhibit enhanced `grid noise' but reduced advection errors and diffusion, easily include self-gravity, and feature velocity-independent errors and superior angular momentum conservation. They converge more slowly on some problems (smooth, slow-moving flows), but more rapidly on others (involving advection/rotation). In all cases, we show divergence control beyond the Powell 8-wave approach is necessary, or all methods can converge to unphysical answers even at high resolution.
Yang, H.-Y. Karen; Reynolds, Christopher S.
2016-02-01
Feedback from the active galactic nuclei (AGNs) is one of the most promising heating mechanisms to circumvent the cooling-flow problem in galaxy clusters. However, the role of thermal conduction remains unclear. Previous studies have shown that anisotropic thermal conduction in cluster cool cores (CCs) could drive the heat-flux-driven buoyancy instabilities (HBIs) that reorient the field lines in the azimuthal directions and isolate the cores from conductive heating from the outskirts. However, how the AGN interacts with the HBI is still unknown. To understand these interwined processes, we perform the first 3D magnetohydrodynamic simulations of isolated CC clusters that include anisotropic conduction, radiative cooling, and AGN feedback. We find the following: (1) For realistic magnetic field strengths in clusters, magnetic tension can suppress a significant portion of HBI-unstable modes, and thus the HBI is either completely inhibited or significantly impaired, depending on the unknown magnetic field coherence length. (2) Turbulence driven by AGN jets can effectively randomize magnetic field lines and sustain conductivity at ∼1/3 of the Spitzer value; however, the AGN-driven turbulence is not volume filling. (3) Conductive heating within the cores could contribute to ∼10% of the radiative losses in Perseus-like clusters and up to ∼50% for clusters twice the mass of Perseus. (4) Thermal conduction has various impacts on the AGN activity and intracluster medium properties for the hottest clusters, which may be searched by future observations to constrain the level of conductivity in clusters. The distribution of cold gas and the implications are also discussed.
Magnetohydrodynamic process in solar activity
Directory of Open Access Journals (Sweden)
Jingxiu Wang
2014-01-01
Full Text Available Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from space and on the ground urge a great need for the studies of magnetohydrodynamics and plasma physics to achieve better understanding of the mechanism or mechanisms of solar activity. On the other hand, the spectacular solar activity always serves as a great laboratory of magnetohydrodynamics. In this article, we reviewed a few key unresolved problems in solar activity studies and discussed the relevant issues in solar magnetohydrodynamics.
Turbulent Amplification and Structure of the Intracluster Magnetic Field
Beresnyak, Andrey; Miniati, Francesco
2015-01-01
We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We ar...
Finite dissipation and intermittency in magnetohydrodynamics
Mininni, P D
2009-01-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536^3 points and up to Taylor Reynolds number of 1200. The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than for fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, as observed recently in the solar wind. Finally, we discu...
Global simulations of magnetorotational turbulence II: turbulent energetics
Parkin, E R
2013-01-01
Magnetorotational turbulence draws its energy from gravity and ultimately releases it via dissipation. However, the quantitative details of this energy flow have not been assessed for global disk models. In this work we examine the energetics of a well-resolved, three-dimensional, global magnetohydrodynamic accretion disk simulation by evaluating statistically-averaged mean-field equations for magnetic, kinetic, and internal energy using simulation data. The results reveal that turbulent magnetic (kinetic) energy is primarily injected by the correlation between Maxwell (Reynolds) stresses and shear in the (almost Keplerian) mean flow, and removed by dissipation. This finding differs from previous work using local (shearing-box) models, which indicated that turbulent kinetic energy was primarily sourced from the magnetic energy reservoir. Lorentz forces provide the bridge between the magnetic and kinetic energy reservoirs, converting ~ 1/5 of the total turbulent magnetic power input into turbulent kinetic ener...
Experience with turbulence interaction and turbulence-chemistry models at Fluent Inc.
Choudhury, D.; Kim, S. E.; Tselepidakis, D. P.; Missaghi, M.
1995-01-01
This viewgraph presentation discusses (1) turbulence modeling: challenges in turbulence modeling, desirable attributes of turbulence models, turbulence models in FLUENT, and examples using FLUENT; and (2) combustion modeling: turbulence-chemistry interaction and FLUENT equilibrium model. As of now, three turbulence models are provided: the conventional k-epsilon model, the renormalization group model, and the Reynolds-stress model. The renormalization group k-epsilon model has broadened the range of applicability of two-equation turbulence models. The Reynolds-stress model has proved useful for strongly anisotropic flows such as those encountered in cyclones, swirlers, and combustors. Issues remain, such as near-wall closure, with all classes of models.
New trends in turbulence; Turbulence: nouveaux aspects
Energy Technology Data Exchange (ETDEWEB)
Lesieur, M. [Institut National Polytechnique, LEGI/INPG, Institut de Mecanique, UMR 101, 38 - Grenoble (France); Yaglom, A. [Institut of Atmospheric Physics, Russian Academy of Sciences, Moscow (Russian Federation)]|[MIT, Dept. of Aeronautics and Astronautics, Cambridge, MA (United States); David, F. [CEA Saclay, SPhT, 91 - Gif-sur-Yvette (France)
2001-07-01
According to a Russian scientist, the flow of fluids actually met both in nature and engineering practice are turbulent in the overwhelmingly majority of cases. This document that reviews all the progress made recently in the understanding of turbulence, is made up of 10 courses. Course 1 ''a century of turbulence'' deals with the linear and non-linear points of views. In course 2 ''measures of anisotropy and the universal properties of turbulence'' the author gives a very complete account of fully developed turbulence experimental data both in the laboratory and in the atmosphere. Course 3 ''large-eddy simulations of turbulence (LES)'', LES are powerful tools to simulate the coherent vortices formation and evolution in a deterministic way. In Course 4 ''statistical turbulence modelling for the computation of physically complex flows'' the author describes methods used for predicting statistical industrial flows, where the geometry is right now too complex to allow the use of LES. In course 5 ''computational aero-acoustics'' an informative review of computational aero-acoustics with many applications to aircraft noise, is made. In course 6 ''the topology of turbulence'' the author presents the basis of topological fluid dynamics and stresses the importance of helicity in neutral and in magnetohydrodynamics (MHD) flows. In course 7 ''burgulence'' the authors deal with finite-time singularities, but mostly on the basis of Burger equations in one or several dimensions with the formation of multiple shocks. In course 8 ''2-dimensional turbulence'' the author presents numerous examples of 2D turbulence in the laboratory (rotating or MHD flows, plasmas), in the ocean and in the planetary atmosphere. Course 9 ''analysing and computing turbulent flows using wavelets'' is a useful presentation of
Magnetohydrodynamic inertial reference system
Eckelkamp-Baker, Dan; Sebesta, Henry R.; Burkhard, Kevin
2000-07-01
Optical platforms increasingly require attitude knowledge and optical instrument pointing at sub-microradian accuracy. No low-cost commercial system exists to provide this level of accuracy for guidance, navigation, and control. The need for small, inexpensive inertial sensors, which may be employed in pointing control systems that are required to satisfy angular line-of-sight stabilization jitter error budgets to levels of 1-3 microradian rms and less, has existed for at least two decades. Innovations and evolutions in small, low-noise inertial angular motion sensor technology and advances in the applications of the global positioning system have converged to allow improvement in acquisition, tracking and pointing solutions for a wide variety of payloads. We are developing a small, inexpensive, and high-performance inertial attitude reference system that uses our innovative magnetohydrodynamic angular rate sensor technology.
Spectrum of anomalous magnetohydrodynamics
Giovannini, Massimo
2016-05-01
The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role, and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
Essential Magnetohydrodynamics for Astrophysics
Spruit, H C
2013-01-01
This text is intended as an introduction to magnetohydrodynamics in astrophysics, emphasizing a fast path to the elements essential for physical understanding. It assumes experience with concepts from fluid mechanics: the fluid equation of motion and the Lagrangian and Eulerian descriptions of fluid flow. In addition, the basics of vector calculus and elementary special relativity are needed. Not much knowledge of electromagnetic theory is required. In fact, since MHD is much closer in spirit to fluid mechanics than to electromagnetism, an important part of the learning curve is to overcome intuitions based on the vacuum electrodynamics of one's high school days. The first chapter (only 36 pp) is meant as a practical introduction including exercises. This is the `essential' part. The exercises are important as illustrations of the points made in the text (especially the less intuitive ones). Almost all are mathematically unchallenging. The supplement in chapter 2 contains further explanations, more specialize...
Computational fusion magnetohydrodynamics
International Nuclear Information System (INIS)
Simple magnetohydrodynamic models provide the framework for much of our understanding of the macroscopic behavior of magnetically confined laboratory plasmas. In even the simplest of models, however, the many different time and spatial scales, the multidimensionality, and the nonlinearity of the equations make finding solutions difficult. In realistic geometries obtaining quantitative results to aid our understanding, to interpret experiment, and to design new devices, involves the development of large scale numerical codes. During the past decade considerable effort has been extended in the fusion community to develop equilibrium, linear stability, and nonlinear time evolution codes in two and three dimensions, some of which have had a considerable impact on the fusion program. An overview of the various types of codes and numerical methods is given. Emphasis is on the spectrum of linear perturbations and ideal MHD stability, boundary layer methods and resistive MHD stability, and modeling of nonlinear, time evolution resistive MHD phenomena in tokamak configurations
Potential vorticity in magnetohydrodynamics
Webb, G. M.; Mace, R. L.
2015-01-01
A version of Noether's second theorem using Lagrange multipliers is used to investigate fluid relabelling symmetries conservation laws in magnetohydrodynamics (MHD). We obtain a new generalized potential vorticity type conservation equation for MHD which takes into account entropy gradients and the J × B force on the plasma due to the current J and magnetic induction B. This new conservation law for MHD is derived by using Noether's second theorem in conjunction with a class of fluid relabelling symmetries in which the symmetry generator for the Lagrange label transformations is non-parallel to the magnetic field induction in Lagrange label space. This is associated with an Abelian Lie pseudo algebra and a foliated phase space in Lagrange label space. It contains as a special case Ertel's theorem in ideal fluid mechanics. An independent derivation shows that the new conservation law is also valid for more general physical situations.
Direct Evidence of the Transition from Weak to Strong MHD Turbulence
Meyrand, Romain; Kiyani, Khurom H
2015-01-01
One of the most important predictions in magnetohydrodynamics (MHD) is that in the presence of a uniform magnetic field $\\textbf{b}_{0}$ a transition from weak to strong wave turbulence should occur when going from large to small perpendicular scales. This transition is believed to be a universal property of several anisotropic turbulent systems. We present for the first time direct evidence of such a transition thanks to a three-dimensional direct numerical simulation of incompressible balanced MHD turbulence with a grid resolution of $3072^2 \\times 256$. From large to small-scales, the change of regime is characterized by i) a change of slope in the energy spectrum going from approximately $-2$ to $-3/2$; ii) an increase of the ratio between the wave and nonlinear times, with a critical ratio of $\\chi_{c}\\sim0.35$; iii) an absence followed by a dramatic increase of the communication between Alfv\\'en modes; and iv) a modification of the iso-contours of energy revealing a transition from a purely perpendicula...
Anisotropic plasma with flows in tokamak: Steady state and stability
International Nuclear Information System (INIS)
An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics
Conservation of circulation in magnetohydrodynamics
Bekenstein; Oron
2000-10-01
We demonstrate at both the Newtonian and (general) relativistic levels the existence of a generalization of Kelvin's circulation theorem (for pure fluids) that is applicable to perfect magnetohydrodynamics. The argument is based on the least action principle for magnetohydrodynamic flow. Examples of the new conservation law are furnished. The new theorem should be helpful in identifying new kinds of vortex phenomena distinct from magnetic ropes or fluid vortices. PMID:11089118
Magnetohydrodynamic process in solar activity
Jingxiu Wang; Jie Jiang
2014-01-01
Magnetohydrodynamics is one of the major disciplines in solar physics. Vigorous magnetohydrodynamic process is taking place in the solar convection zone and atmosphere. It controls the generating and structuring of the solar magnetic fields, causes the accumulation of magnetic non-potential energy in the solar atmosphere and triggers the explosive magnetic energy release, manifested as violent solar flares and coronal mass ejections. Nowadays detailed observations in solar astrophysics from s...
Magnetohydrodynamic Augmented Propulsion Experiment
Litchford, Ron J.; Cole, John; Lineberry, John; Chapman, Jim; Schmidt, Harold; Cook, Stephen (Technical Monitor)
2002-01-01
A fundamental obstacle to routine space access is the specific energy limitations associated with chemical fuels. In the case of vertical take-off, the high thrust needed for vertical liftoff and acceleration to orbit translates into power levels in the 10 GW range. Furthermore, useful payload mass fractions are possible only if the exhaust particle energy (i.e., exhaust velocity) is much greater than that available with traditional chemical propulsion. The electronic binding energy released by the best chemical reactions (e.g., LOX/LH2 for example, is less than 2 eV per product molecule (approx. 1.8 eV per H2O molecule), which translates into particle velocities less than 5 km/s. Useful payload fractions, however, will require exhaust velocities exceeding 15 km/s (i.e., particle energies greater than 20 eV). As an added challenge, the envisioned hypothetical RLV (reusable launch vehicle) should accomplish these amazing performance feats while providing relatively low acceleration levels to orbit (2-3g maximum). From such fundamental considerations, it is painfully obvious that planned and current RLV solutions based on chemical fuels alone represent only a temporary solution and can only result in minor gains, at best. What is truly needed is a revolutionary approach that will dramatically reduce the amount of fuel and size of the launch vehicle. This implies the need for new compact high-power energy sources as well as advanced accelerator technologies for increasing engine exhaust velocity. Electromagnetic acceleration techniques are of immense interest since they can be used to circumvent the thermal limits associated with conventional propulsion systems. This paper describes the Magnetohydrodynamic Augmented Propulsion Experiment (MAPX) being undertaken at NASA Marshall Space Flight Center (MSFC). In this experiment, a 1-MW arc heater is being used as a feeder for a 1-MW magnetohydrodynamic (MHD) accelerator. The purpose of the experiment is to demonstrate
Fluid simulations of non-resonant anisotropic ion heating
D. Laveder; Passot, T.; Sulem, P.L.
2013-01-01
The finite Larmor radius (FLR)-Landau fluid model, which extends the usual anisotropic magnetohydrodynamics to magnetized collisionless plasmas by retaining linear Landau damping and finite Larmor radius corrections down to the sub-ionic scales in the quasi-transverse directions, is used to study the non-resonant heating of the plasma by randomly driven Alfvén waves. One-dimensional numerical simulations, free from any artificial dissipation, are used to analyze the influence on the thermal d...
Fluid simulations of non-resonant anisotropic ion heating
D. Laveder; Passot, T.; Sulem, P.L.
2013-01-01
The finite Larmor radius (FLR)-Landau fluid model, which extends the usual anisotropic magnetohydrodynamics to magnetized collisionless plasmas by retaining linear Landau damping and finite Larmor radius corrections down to the sub-ionic scales in the quasi-transverse directions, is used to study the non-resonant heating of the plasma by randomly driven Alfvén waves. One-dimensional numerical simulations, free from any artificial dissipation, are used to analyze the influence...
Influences of short-wave truncations to spectral energy budget in hall MHD turbulence
International Nuclear Information System (INIS)
The effect of a sharp short-wave truncation on Hall magnetohydrodynamic (MHD) turbulence is studied numerically to obtain basic information for constructing sub-grid-scale models of the Hall MHD equations. Hall MHD turbulence is found to be less sensitive to truncation than MHD turbulence, because the Hall term suppresses energy transfer in the magnetic field at relatively low wave numbers. (author)
Magnetohydrodynamic power generation
International Nuclear Information System (INIS)
The paper describes research and development in the field of magnetohydrodynamic power generation technology, based on discussions held in the Joint IAEA/UNESCO International Liaison Group on MHD electrical power generation. Research and development programmes on open cycle, closed cycle plasma and liquid-metal MHD are described. Open cycle MHD has now entered the engineering development stage. The paper reviews the results of cycle analyses and economic and environmental evaluations: substantial agreement has been reached on the expected overall performance and necessary component specifications. The achievement in the Soviet Union on the U-25 MHD pilot plant in obtaining full rated electrical power of 20.4 MW is described, as well as long duration testing of the integrated operation of MHD components. Work in the United States on coal-fired MHD generators has shown that, with slagging of the walls, a run time of about one hundred hours at the current density and electric field of a commercial MHD generator has been achieved. Progress obtained in closed cycle plasma and liquid metal MHD is reviewed. Electrical power densities of up to 140 MWe/m3 and an enthalpy extraction as high as 24 per cent have been achieved in noble gas MHD generator experiments. (Auth.)
JET snake magnetohydrodynamic equilibria
International Nuclear Information System (INIS)
Magnetohydrodynamic (MHD) equilibrium states with a three-dimensional helical core that display the characteristics of a saturated ideal internal kink mode are computed to model snake structures that have been observed in the JET tokamak (Weller et al 1987 Phys. Rev. Lett. 59 2303). The equilibrium states are calculated with a peaked pressure profile and a weak to moderate reversed core magnetic shear with a minimum safety factor qmin near unity in the neighbourhood of the mid-radius of the plasma. Snake equilibrium states are computed in the range 0.94 min < 1.03. This range aligns with linearly unstable ideal MHD internal kink solutions of the purely axisymmetric branch of the equilibrium states. The energy difference between the bifurcated axisymmetric and helical snake equilibrium solutions is minimal. One very important novelty is that the helical structures are computed with an equilibrium code developed for three-dimensional (3D) stellarator applications in a tokamak context and cannot be obtained with standard Grad-Shafranov equation solvers. (letter)
Nonlinear ideal magnetohydrodynamics instabilities
International Nuclear Information System (INIS)
Explosive phenomena such as internal disruptions in toroidal discharges and solar flares are difficult to explain in terms of linear instabilities. A plasma approaching a linear stability limit can, however, become nonlinearly and explosively unstable, with noninfinitesimal perturbations even before the marginal state is reached. For such investigations, a nonlinear extension of the usual MHD (magnetohydrodynamic) energy principle is helpful. (This was obtained by Merkel and Schlueter, Sitzungsberichted. Bayer. Akad. Wiss., Munich, 1976, No. 7, for Cartesian coordinate systems.) A coordinate system independent Eulerian formulation for the Lagrangian allowing for equilibria with flow and with built-in conservation laws for mass, magnetic flux, and entropy is developed in this paper which is similar to Newcomb's Lagrangian method of 1962 [Nucl. Fusion, Suppl., Pt. II, 452 (1962)]. For static equilibria nonlinear stability is completely determined by the potential energy. For a potential energy which contains second- and nth order or some more general contributions only, it is shown in full generality that linearly unstable and marginally stable systems are explosively unstable even for infinitesimal perturbations; linearly absolutely stable systems require finite initial perturbations. For equilibria with Abelian symmetries symmetry breaking initial perturbations are needed, which should be observed in numerical simulations. Nonlinear stability is proved for two simple examples, m=0 perturbations of a Bennet Z-pinch and z-independent perturbations of a θ pinch. The algebra for treating these cases reduces considerably if symmetries are taken into account from the outset, as suggested by M. N. Rosenbluth (private communication, 1992)
Generalized reduced magnetohydrodynamic equations
International Nuclear Information System (INIS)
A new derivation of reduced magnetohydrodynamic (MHD) equations is presented. A multiple-time-scale expansion is employed. It has the advantage of clearly separating the three time scales of the problem associated with (1) MHD equilibrium, (2) fluctuations whose wave vector is aligned perpendicular to the magnetic field, and (3) those aligned parallel to the magnetic field. The derivation is carried out without relying on a large aspect ratio assumption; therefore this model can be applied to any general configuration. By accounting for the MHD equilibrium and constraints to eliminate the fast perpendicular waves, equations are derived to evolve scalar potential quantities on a time scale associated with the parallel wave vector (shear-Alfven wave time scale), which is the time scale of interest for MHD instability studies. Careful attention is given in the derivation to satisfy energy conservation and to have manifestly divergence-free magnetic fields to all orders in the expansion parameter. Additionally, neoclassical closures and equilibrium shear flow effects are easily accounted for in this model. Equations for the inner resistive layer are derived which reproduce the linear ideal and resistive stability criterion of Glasser, Greene, and Johnson. The equations have been programmed into a spectral initial value code and run with shear flow that is consistent with the equilibrium input into the code. Linear results of tearing modes with shear flow are presented which differentiate the effects of shear flow gradients in the layer with the effects of the shear flow decoupling multiple harmonics
PREFACE: Turbulent Mixing and Beyond Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Rosner, Robert
2008-10-01
presentations were published in the Book of Abstracts, International Conference `Turbulent Mixing and Beyond', August 18-26, 2007, Copyright 2007 Abdus Salam International Centre for Theoretical Physics, Trieste, Italy, ISBN 92-95003-36-5. This Topical Issue consists of nearly 60 articles accepted for publication in the Conference Proceedings and reflects a substantial part of the Conference contributions. The articles cover a broad variety of TMB-2007 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical Turbulence and Turbulent Mixing (invariant, scaling, spectral properties, scalar transports) Wall-bounded Flows (structure and fundamentals, unsteady boundary layers, super-sonic flows, shock - boundary layer interaction) Interfacial Dynamics (Rayleigh-Taylor, Richtmyer-Meshkov and Kelvin-Helmholtz instabilities) Unsteady Turbulent Processes (turbulence and turbulent mixing in unsteady, multiphase and anisotropic flows) High Energy Density Physics (laser-material interaction, Z-pinches, laser-driven, heavy-ion and magnetic fusion) Astrophysics (supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic micro-wave background) Magneto-hydrodynamics (magneto-convection, magneto-rotational instability, accretion disks, dynamo) Plasmas in Ionosphere (coupled plasmas, anomalous resistance, ionosphere) Physics of Atmosphere (environmental fluid dynamics, forecasting, data analysis, error estimate) Geophysics (turbulent convection in stratified, rotating and active flows) Combustion (dynamics of flames, fires, blast waves and explosions) Mathematical Aspects of Multi-Scale Dynamics (vortex dynamics, singularities, discontinuities, asymptotic dynamics, weak solutions, well- and ill-posedness) Statistical Approaches, Stochastic Processes and Probabilistic Description (uncertainty quantification, anomalous diffusion, long-tail distributions, wavelets) Advanced Numerical Simulations
International Nuclear Information System (INIS)
In this work we numerically test a model of Hall magnetohydrodynamics in the presence of a strong mean magnetic field: the reduced Hall magnetohydrodynamic model (RHMHD) derived by [Gomez et al., Phys. Plasmas 15, 102303 (2008)] with the addition of weak compressible effects. The main advantage of this model lies in the reduction of computational cost. Nevertheless, up until now the degree of agreement with the original Hall MHD system and the range of validity in a regime of turbulence were not established. In this work direct numerical simulations of three-dimensional Hall MHD turbulence in the presence of a strong mean magnetic field are compared with simulations of the weak compressible RHMHD model. The results show that the degree of agreement is very high (when the different assumptions of RHMHD, such as spectral anisotropy, are satisfied). Nevertheless, when the initial conditions are isotropic but the mean magnetic field is maintained strong, the results differ at the beginning but asymptotically reach a good agreement at relatively short times. We also found evidence that the compressibility still plays a role in the dynamics of these systems, and the weak compressible RHMHD model is able to capture these effects. In conclusion the weak compressible RHMHD model is a valid approximation of the Hall MHD turbulence in the relevant physical context.
Broken Ergodicity in MHD Turbulence
Shebalin, John V.
2010-01-01
Ideal magnetohydrodynamic (MHD) turbulence may be represented by finite Fourier series, where the inherent periodic box serves as a surrogate for a bounded astrophysical plasma. Independent Fourier coefficients form a canonical ensemble described by a Gaussian probability density function containing a Hermitian covariance matrix with positive eigenvalues. The eigenvalues at lowest wave number can be very small, resulting in a large-scale coherent structure: a turbulent dynamo. This is seen in computations and a theoretical explanation in terms of 'broken ergodicity' contains Taylor s theory of force-free states. An important problem for future work is the case of real, i.e., dissipative flows. In real flows, broken ergodicity and coherent structure are still expected to occur in MHD turbulence at the largest scale, as suggested by low resolution simulations. One challenge is to incorporate coherent structure at the largest scale into the theory of turbulent fluctuations at smaller scales.
Solar Flares: Magnetohydrodynamic Processes
Directory of Open Access Journals (Sweden)
Kazunari Shibata
2011-12-01
Full Text Available This paper outlines the current understanding of solar flares, mainly focused on magnetohydrodynamic (MHD processes responsible for producing a flare. Observations show that flares are one of the most explosive phenomena in the atmosphere of the Sun, releasing a huge amount of energy up to about 10^32 erg on the timescale of hours. Flares involve the heating of plasma, mass ejection, and particle acceleration that generates high-energy particles. The key physical processes for producing a flare are: the emergence of magnetic field from the solar interior to the solar atmosphere (flux emergence, local enhancement of electric current in the corona (formation of a current sheet, and rapid dissipation of electric current (magnetic reconnection that causes shock heating, mass ejection, and particle acceleration. The evolution toward the onset of a flare is rather quasi-static when free energy is accumulated in the form of coronal electric current (field-aligned current, more precisely, while the dissipation of coronal current proceeds rapidly, producing various dynamic events that affect lower atmospheres such as the chromosphere and photosphere. Flares manifest such rapid dissipation of coronal current, and their theoretical modeling has been developed in accordance with observations, in which numerical simulations proved to be a strong tool reproducing the time-dependent, nonlinear evolution of a flare. We review the models proposed to explain the physical mechanism of flares, giving an comprehensive explanation of the key processes mentioned above. We start with basic properties of flares, then go into the details of energy build-up, release and transport in flares where magnetic reconnection works as the central engine to produce a flare.
Dissipation and reconnection in boundary-driven reduced magnetohydrodynamics
International Nuclear Information System (INIS)
We study the statistics of coherent current sheets, the population of X-type critical points, and reconnection rates in a coronal loop geometry, via numerical simulations of reduced magnetohydrodynamic turbulence. Current sheets and sites of reconnection (magnetic X-points) are identified in two-dimensional planes of the three-dimensional simulation domain. The geometry of the identified current sheets—including area, length, and width—and the magnetic dissipation occurring in the current sheets are statistically characterized. We also examine the role of magnetic reconnection, by computing the reconnection rates at the identified X-points and investigating their association with current sheets.
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R
2008-01-01
The properties of linear Alfv\\'en, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comparison with the Newtonian MHD limits easier and to stress the graphical representation of their anisotropic linear wave properties using the phase and group speed diagrams. By drawing these for both the fluid rest frame and for a laboratory Lorentzian frame which sees the plasma move with a three-velocity having an arbitrary orientation with respect to the magnetic field, a graphical view of the relativistic aberration effects is obtained for all three MHD wave families. Moreover, it is confirmed that the classical Huygens construction relates the phase and group speed diagram in the usual way, even for the lab frame viewpoint. Since the group speed diagrams correspond to exact solutions for initial conditions co...
Effect of Externally Driven Magnetic Islands on Resistive Ballooning Turbulence
NISHIMURA, Seiya; Yagi, Masatoshi
2011-01-01
Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps th...
Extended Kelvin theorem in relativistic magnetohydrodynamics
Bekenstein, Jacob D.; Oron, Asaf
2000-01-01
We prove the existence of a generalization of Kelvin's circulation theorem in general relativity which is applicable to perfect isentropic magnetohydrodynamic flow. The argument is based on a new version of the Lagrangian for perfect magnetohydrodynamics. We illustrate the new conserved circulation with the example of a relativistic magnetohydrodynamic flow possessing three symmetries.
International Nuclear Information System (INIS)
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulent motions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the 'inertial range' above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-field strength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Mathematical and physical theory of turbulence
Cannon, John
2006-01-01
Although the current dynamical system approach offers several important insights into the turbulence problem, issues still remain that present challenges to conventional methodologies and concepts. These challenges call for the advancement and application of new physical concepts, mathematical modeling, and analysis techniques. Bringing together experts from physics, applied mathematics, and engineering, Mathematical and Physical Theory of Turbulence discusses recent progress and some of the major unresolved issues in two- and three-dimensional turbulence as well as scalar compressible turbulence. Containing introductory overviews as well as more specialized sections, this book examines a variety of turbulence-related topics. The authors concentrate on theory, experiments, computational, and mathematical aspects of Navier-Stokes turbulence; geophysical flows; modeling; laboratory experiments; and compressible/magnetohydrodynamic effects. The topics discussed in these areas include finite-time singularities a...
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-01-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code Arepo. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this co...
Induction-drive magnetohydrodynamic propulsion
International Nuclear Information System (INIS)
The use of magnetohydrodynamic propulsion for marine applications is reviewed with emphasis on induction-drive systems such as the open-quotes rippleclose quotes motor. Comparisons are made with direct-drive MHD propulsion systems. Application to pumps for hazardous fluids and liquid-metal coolants is also discussed. 13 refs., 8 figs., 2 tabs
Spectral analysis in magnetohydrodynamic equilibria
Energy Technology Data Exchange (ETDEWEB)
Nunez, Manuel; Galindo, Felix [Departamento de Analisis Matematico, Universidad de Valladolid, Valladolid (Spain)
1998-12-11
It has been universally assumed that the spectrum of the magnetohydrodynamics equations, linearized around an equilibrium state, provides enough information on the short-term evolution of the plasma to study certain stability properties. We show that this is true if one takes into account viscous and resistive effects and the equilibrium satisfies certain regularity conditions. (author)
Geodesic acoustic mode in anisotropic plasma with heat flux
International Nuclear Information System (INIS)
Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q2, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation
Geodesic acoustic mode in anisotropic plasma with heat flux
Energy Technology Data Exchange (ETDEWEB)
Ren, Haijun, E-mail: hjren@ustc.edu.cn [CAS Key Laboratory of Geospace Environment and Department of Modern Physics, University of Science and Technology of China, Hefei 230026 (China)
2015-10-15
Geodesic acoustic mode (GAM) in an anisotropic tokamak plasma is investigated in fluid approximation. The collisionless anisotropic plasma is described within the 16-momentum magnetohydrodynamic (MHD) fluid closure model, which takes into account not only the pressure anisotropy but also the anisotropic heat flux. It is shown that the GAM frequency agrees better with the kinetic result than the standard Chew-Goldberger-Low (CGL) MHD model. When zeroing the anisotropy, the 16-momentum result is identical with the kinetic one to the order of 1/q{sup 2}, while the CGL result agrees with the kinetic result only on the leading order. The discrepancies between the results of the CGL fluid model and the kinetic theory are well removed by considering the heat flux effect in the fluid approximation.
Turbulent breakage of ductile aggregates
Marchioli, Cristian
2015-01-01
In this paper we study breakage rate statistics of small colloidal aggregates in non-homogeneous anisotropic turbulence. We use pseudo-spectral direct numerical simulation of turbulent channel flow and Lagrangian tracking to follow the motion of the aggregates, modelled as sub-Kolmogorov massless particles. We focus specifically on the effects produced by ductile rupture: This rupture is initially activated when fluctuating hydrodynamic stresses exceed a critical value, $\\sigma>\\sigma_{cr}$, and is brought to completion when the energy absorbed by the aggregate meets the critical breakage value. We show that ductile rupture breakage rates are significantly reduced with respect to the case of instantaneous brittle rupture (i.e. breakage occurs as soon as $\\sigma>\\sigma_{cr}$). These discrepancies are due to the different energy values at play as well as to the statistical features of energy distribution in the anisotropic turbulence case examined.
Accurate, Meshless Methods for Magneto-Hydrodynamics
Hopkins, Philip F
2016-01-01
Recently, we developed a pair of meshless finite-volume Lagrangian methods for hydrodynamics: the 'meshless finite mass' (MFM) and 'meshless finite volume' (MFV) methods. These capture advantages of both smoothed-particle hydrodynamics (SPH) and adaptive mesh-refinement (AMR) schemes. Here, we extend these to include ideal magneto-hydrodynamics (MHD). The MHD equations are second-order consistent and conservative. We augment these with a divergence-cleaning scheme, which maintains div*B~0 to high accuracy. We implement these in the code GIZMO, together with a state-of-the-art implementation of SPH MHD. In every one of a large suite of test problems, the new methods are competitive with moving-mesh and AMR schemes using constrained transport (CT) to ensure div*B=0. They are able to correctly capture the growth and structure of the magneto-rotational instability (MRI), MHD turbulence, and the launching of magnetic jets, in some cases converging more rapidly than AMR codes. Compared to SPH, the MFM/MFV methods e...
Finite dissipation and intermittency in magnetohydrodynamics.
Mininni, P D; Pouquet, A
2009-08-01
We present an analysis of data stemming from numerical simulations of decaying magnetohydrodynamic (MHD) turbulence up to grid resolution of 1536(3) points and up to Taylor Reynolds number of approximately 1200 . The initial conditions are such that the initial velocity and magnetic fields are helical and in equipartition, while their correlation is negligible. Analyzing the data at the peak of dissipation, we show that the dissipation in MHD seems to asymptote to a constant as the Reynolds number increases, thereby strengthening the possibility of fast reconnection events in the solar environment for very large Reynolds numbers. Furthermore, intermittency of MHD flows, as determined by the spectrum of anomalous exponents of structure functions of the velocity and the magnetic field, is stronger than that of fluids, confirming earlier results; however, we also find that there is a measurable difference between the exponents of the velocity and those of the magnetic field, reminiscent of recent solar wind observations. Finally, we discuss the spectral scaling laws that arise in this flow. PMID:19792189
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-01-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Scaling laws in chiral hydrodynamic turbulence
Yamamoto, Naoki
2016-06-01
We study the turbulent regime of chiral (magneto)hydrodynamics for charged and neutral matter with chirality imbalance. We find that the chiral magnetohydrodynamics for charged plasmas possesses a unique scaling symmetry, only without fluid helicity under the local charge neutrality. We also find a different type of unique scaling symmetry in the chiral hydrodynamics for neutral matter with fluid helicity in the inertial range. We show that these symmetries dictate the self-similar inverse cascade of the magnetic and kinetic energies. Our results imply the possible inverse energy cascade in core-collapse supernovae due to the chiral transport of neutrinos.
Stirring turbulence with turbulence
Cekli, Hakki Ergun; Joosten, René; van de Water, Willem
2015-12-01
We stir wind-tunnel turbulence with an active grid that consists of rods with attached vanes. The time-varying angle of these rods is controlled by random numbers. We study the response of turbulence on the statistical properties of these random numbers. The random numbers are generated by the Gledzer-Ohkitani-Yamada shell model, which is a simple dynamical model of turbulence that produces a velocity field displaying inertial-range scaling behavior. The range of scales can be adjusted by selection of shells. We find that the largest energy input and the smallest anisotropy are reached when the time scale of the random numbers matches that of the largest eddies of the wind-tunnel turbulence. A large mismatch of these times creates a highly intermittent random flow with interesting but quite anomalous statistics.
International Nuclear Information System (INIS)
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Energy Technology Data Exchange (ETDEWEB)
Zhao, J. S.; Wu, D. J. [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing (China); Voitenko, Y.; De Keyser, J., E-mail: js_zhao@pmo.ac.cn [Solar-Terrestrial Centre of Excellence, Space Physics Division, Belgian Institute for Space Aeronomy, Ringlaan-3-Avenue Circulaire, B-1180 Brussels (Belgium)
2014-04-20
We study the nonlocal nonlinear coupling and generation of kinetic Alfvén waves (KAWs) and kinetic slow waves (KSWs) by magnetohydrodynamic Alfvén waves (MHD AWs) in conditions typical for the solar wind in the inner heliosphere. This cross-scale process provides an alternative to the turbulent energy cascade passing through many intermediate scales. The nonlinearities we study are proportional to the scalar products of wave vectors and hence are called 'scalar' ones. Despite the strong Landau damping of kinetic waves, we found fast growing KAWs and KSWs at perpendicular wavelengths close to the ion gyroradius. Using the parametric decay formalism, we investigate two independent decay channels for the pump AW: forward decay (involving co-propagating product waves) and backward decay (involving counter-propagating product waves). The growth rate of the forward decay is typically 0.05 but can exceed 0.1 of the pump wave frequency. The resulting spectral transport is nonlocal and anisotropic, sharply increasing perpendicular wavenumbers but not parallel ones. AWs and KAWs propagating against the pump AW grow with about the same rate and contribute to the sunward wave flux in the solar wind. Our results suggest that the nonlocal decay of MHD AWs into KAWs and KSWs is a robust mechanism for the cross-scale spectral transport of the wave energy from MHD to dissipative kinetic scales in the solar wind and similar media.
Solar wind magnetic turbulence: Inferences from spectral shape
Treumann, R A; Narita, Y
2016-01-01
Some differences between theoretical, numerical and observational determinations of spectral slopes of solar wind turbulence are interpreted in the thermodynamical sense. Confirmations of turbulent Kolmogorov slopes in solar wind magnetic turbulence and magnetohydrodynamic simulations exhibit tiny differences. These are used to infer about entropy generation in the turbulent cascade and to infer about the anomalous turbulent collision frequency in the dissipative range as well as the average energy input in solar wind turbulence. Anomalous turbulent collision frequencies are obtained of the order of v < 200 Hz. The corresponding stationary solar wind magnetic energy input into magnetic turbulence in the Kolmogorov inertial range is obtained to be of the order of 50 eV/s. Its thermal fate is discussed.
Variational Integrators for Reduced Magnetohydrodynamics
Kraus, Michael; Grasso, Daniela
2015-01-01
Reduced magnetohydrodynamics is a simplified set of magnetohydrodynamics equations with applications to both fusion and astrophysical plasmas, possessing a noncanonical Hamiltonian structure and consequently a number of conserved functionals. We propose a new discretisation strategy for these equations based on a discrete variational principle applied to a formal Lagrangian. The resulting integrator preserves important quantities like the total energy, magnetic helicity and cross helicity exactly (up to machine precision). As the integrator is free of numerical resistivity, spurious reconnection along current sheets is absent in the ideal case. If effects of electron inertia are added, reconnection of magnetic field lines is allowed, although the resulting model still possesses a noncanonical Hamiltonian structure. After reviewing the conservation laws of the model equations, the adopted variational principle with the related conservation laws are described both at the continuous and discrete level. We verify...
Geometric Results for Compressible Magnetohydrodynamics
Arter, Wayne
2013-01-01
Recently, compressible magnetohydrodynamics (MHD) has been elegantly formulated in terms of Lie derivatives. This paper exploits the geometrical properties of the Lie bracket to give new insights into the properties of compressible MHD behaviour, both with and without feedback of the magnetic field on the flow. These results are expected to be useful for the solution of MHD equations in both tokamak fusion experiments and space plasmas.
Energy Technology Data Exchange (ETDEWEB)
Schekochihin, A. A.; Cowley, S. C.; Dorland, W.; Hammett, G. W.; Howes, G. G.; Quataert, E.; Tatsuno, T.
2009-04-23
This paper presents a theoretical framework for understanding plasma turbulence in astrophysical plasmas. It is motivated by observations of electromagnetic and density fluctuations in the solar wind, interstellar medium and galaxy clusters, as well as by models of particle heating in accretion disks. All of these plasmas and many others have turbulentmotions at weakly collisional and collisionless scales. The paper focuses on turbulence in a strong mean magnetic field. The key assumptions are that the turbulent fluctuations are small compared to the mean field, spatially anisotropic with respect to it and that their frequency is low compared to the ion cyclotron frequency. The turbulence is assumed to be forced at some system-specific outer scale. The energy injected at this scale has to be dissipated into heat, which ultimately cannot be accomplished without collisions. A kinetic cascade develops that brings the energy to collisional scales both in space and velocity. The nature of the kinetic cascade in various scale ranges depends on the physics of plasma fluctuations that exist there. There are four special scales that separate physically distinct regimes: the electron and ion gyroscales, the mean free path and the electron diffusion scale. In each of the scale ranges separated by these scales, the fully kinetic problem is systematically reduced to a more physically transparent and computationally tractable system of equations, which are derived in a rigorous way. In the "inertial range" above the ion gyroscale, the kinetic cascade separates into two parts: a cascade of Alfvenic fluctuations and a passive cascade of density and magnetic-fieldstrength fluctuations. The former are governed by the Reduced Magnetohydrodynamic (RMHD) equations at both the collisional and collisionless scales; the latter obey a linear kinetic equation along the (moving) field lines associated with the Alfvenic component (in the collisional limit, these compressive fluctuations
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
Energy Technology Data Exchange (ETDEWEB)
Jardin, S C
2010-09-28
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today’s magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today’s computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Implicit Methods for the Magnetohydrodynamic Description of Magnetically Confined Plasmas
International Nuclear Information System (INIS)
Implicit algorithms are essential for predicting the slow growth and saturation of global instabilities in today's magnetically confined fusion plasma experiments. Present day algorithms for obtaining implicit solutions to the magnetohydrodynamic (MHD) equations for highly magnetized plasma have their roots in algorithms used in the 1960s and 1970s. However, today's computers and modern linear and non-linear solver techniques make practical much more comprehensive implicit algorithms than were previously possible. Combining these advanced implicit algorithms with highly accurate spatial representations of the vector fields describing the plasma flow and magnetic fields and with improved methods of calculating anisotropic thermal conduction now makes possible simulations of fusion experiments using realistic values of plasma parameters and actual configuration geometry.
Magnetohydrodynamic normal mode analysis of plasma with equilibrium pressure anisotropy
Fitzgerald, M; Qu, Z S
2014-01-01
In this work, we generalise linear magnetohydrodynamic (MHD) stability theory to include equilibrium pressure anisotropy in the fluid part of the analysis. A novel 'single-adiabatic' (SA) fluid closure is presented which is complementary to the usual 'double-adiabatic' (CGL) model and has the advantage of naturally reproducing exactly the MHD spectrum in the isotropic limit. As with MHD and CGL, the SA model neglects the anisotropic perturbed pressure and thus loses non-local fast-particle stabilisation present in the kinetic approach. Another interesting aspect of this new approach is that the stabilising terms appear naturally as separate viscous corrections leaving the isotropic SA closure unchanged. After verifying the self-consistency of the SA model, we re-derive the projected linear MHD set of equations required for stability analysis of tokamaks in the MISHKA code. The cylindrical wave equation is derived analytically as done previously in the spectral theory of MHD and clear predictions are made for ...
Stable smoothed particle magnetohydrodynamics in very steep density gradients
Lewis, Benjamin T; Monaghan, Joseph J; Price, Daniel J
2015-01-01
The equations of smoothed particle magnetohydrodynamics (SPMHD), even with the various corrections to instabilities so far proposed, have been observed to be unstable when a very steep density gradient is necessarily combined with a variable smoothing length formalism. Here we consider in more detail the modifications made to the SPMHD equations in LBP2015 that resolve this instability by replacing the smoothing length in the induction and anisotropic force equations with an average smoothing length term. We then explore the choice of average used and compare the effects on a test `cylinder-in-a-box' problem and the collapse of a magnetised molecular cloud core. We find that, aside from some benign numerical effects at low resolutions for the quadratic mean, the formalism is robust as to the choice of average but that in complicated models it is essential to apply the average to both equations; in particular, all four averages considered exhibit similar conservation properties. This improved formalism allows ...
Cho, Jungyeon
2011-05-13
Electron magnetohydrodynamics (EMHD) provides a fluidlike description of small-scale magnetized plasmas. An EMHD wave propagates along magnetic field lines. The direction of propagation can be either parallel or antiparallel to the magnetic field lines. We numerically study propagation of three-dimensional (3D) EMHD wave packets moving in one direction. We obtain two major results. (1) Unlike its magnetohydrodynamic (MHD) counterpart, an EMHD wave packet is dispersive. Because of this, EMHD wave packets traveling in one direction create opposite-traveling wave packets via self-interaction and cascade energy to smaller scales. (2) EMHD wave packets traveling in one direction clearly exhibit inverse energy cascade. We find that the latter is due to conservation of magnetic helicity. We compare inverse energy cascade in 3D EMHD turbulence and two-dimensional (2D) hydrodynamic turbulence. PMID:21668138
Polarimetric studies of magnetic turbulence with interferometer
Lee, Hyeseung; Cho, Jungyeon
2016-01-01
We study statistical properties of synchrotron polarization emitted from media with magnetohydrodynamic (MHD) turbulence. We use both synthetic and MHD turbulence simulation data for our studies. We obtain the spatial spectrum and its derivative with respect to wavelength of synchrotron polarization arising from both synchrotron radiation and Faraday rotation fluctuations. In particular, we investigate how the spectrum changes with frequency. We find that our simulations agree with the theoretical predication in Lazarian \\& Pogosyan (2016). We conclude that the spectrum of synchrotron polarization and it derivative can be very informative tools to get detailed information about the statistical properties of MHD turbulence from radio observations of diffuse synchrotron polarization. Especially, they are useful to recover the statistics of turbulent magnetic field as well as turbulent density of electrons. We also simulate interferometric observations that incorporate the effects of noise and finite telesco...
Lam, F.
2014-01-01
It is shown that the Cauchy problem of the equations in magnetohydrodynamics in the whole space is globally well-posed for any initial smooth and localized data. In general, the mathematical structure of solution shows that the coupled magnetic-vortical field has the characters of turbulence, if the initial data exceed certain size. In particular, if a strong magnetic force dominates the flow evolution, the current density possesses a cubic non-linearity. The solution of the non-linear proble...
Hydromagnetic waves in a plasma of isotropic thermal and anisotropic suprathermal components
International Nuclear Information System (INIS)
Low frequency plane waves supported by a medium containing a thermal plasma of isotropic pressure and a suprathermal collisionless plasma having anisotropic pressure are investigated. The usual Alfvacute en, slow and fast modes of isotropic pressure magnetohydrodynamics persist. In addition, a suprathermal mode appears which displays a rich variety of behavior due to an additional degree of freedom compared to the analogous mode when both the plasma components are described by collision-dominated magnetohydrodynamics. Since these modes are significant in a number of situations, they are extensively investigated by computing their phase speeds for wide-ranging numerical parameters. copyright 1996 American Institute of Physics
Hydromagnetic waves in a plasma of isotropic thermal and anisotropic suprathermal components
Energy Technology Data Exchange (ETDEWEB)
Kalra, G.L.; Ghildyal, V. [Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India)
1996-10-01
Low frequency plane waves supported by a medium containing a thermal plasma of isotropic pressure and a suprathermal collisionless plasma having anisotropic pressure are investigated. The usual Alfv{acute e}n, slow and fast modes of isotropic pressure magnetohydrodynamics persist. In addition, a suprathermal mode appears which displays a rich variety of behavior due to an additional degree of freedom compared to the analogous mode when both the plasma components are described by collision-dominated magnetohydrodynamics. Since these modes are significant in a number of situations, they are extensively investigated by computing their phase speeds for wide-ranging numerical parameters. {copyright} {ital 1996 American Institute of Physics.}
Energy Technology Data Exchange (ETDEWEB)
Greco, A.; Servidio, S. [Dipartimento di Fisica, Universita della Calabria, Rende (Italy); Matthaeus, W. H. [Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, DE (United States); D' Amicis, R. [INAF-Istituto di Fisica dello Spazio Interplanetario, Rome (Italy); Dmitruk, P. [Departamento de Fisica, FCEyN, Universidad de Buenos Aires and IFIBA, CONICET, Pabellon 1, Ciudad Universitaria, Buenos Aires (Argentina)
2012-04-20
The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2 mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.
Greco, A.; Matthaeus, W. H.; D'Amicis, R.; Servidio, S.; Dmitruk, P.
2012-04-01
The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2 mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.
International Nuclear Information System (INIS)
The formation of coherent structures in turbulence is a signature of a developing cascade and therefore might be observable by analyzing inner heliospheric solar wind turbulence. To test this idea, data from the Helios 2 mission, for six streams of solar wind at different heliocentric distances and of different velocities, were subjected to statistical analysis using the partial variance of increments (PVI) approach. We see a clear increase of the PVI distribution function versus solar wind age for higher PVI cutoff, indicating development of non-Gaussian coherent structures. The plausibility of this interpretation is confirmed by a similar behavior observed in two-dimensional magnetohydrodynamics simulation data at corresponding dimensionless nonlinear times.
Fundamental fluid mechanics and magnetohydrodynamics
Hosking, Roger J
2016-01-01
This book is primarily intended to enable postgraduate research students to enhance their understanding and expertise in Fluid Mechanics and Magnetohydrodynamics (MHD), subjects no longer treated in isolation. The exercises throughout the book often serve to provide additional and quite significant knowledge or to develop selected mathematical skills, and may also fill in certain details or enhance readers’ understanding of essential concepts. A previous background or some preliminary reading in either of the two core subjects would be advantageous, and prior knowledge of multivariate calculus and differential equations is expected.
Hamiltonian formalism of extended magnetohydrodynamics
International Nuclear Information System (INIS)
The extended magnetohydrodynamics (MHD) system, including the Hall effect and the electron inertia effect, has a Hamiltonian structure embodied by a noncanonical Poisson algebra on an infinite-dimensional phase space. A nontrivial part of the formulation is the proof of Jacobi's identity for the Poisson bracket. We unearth a basic Lie algebra that generates the Poisson bracket. A class of similar Poisson algebra may be generated by the same Lie algebra, which encompasses the Hall MHD system and inertial MHD system. (paper)
Analysis of stability of a homogeneous state of anisotropic plasma
International Nuclear Information System (INIS)
Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves
Analysis of stability of a homogeneous state of anisotropic plasma
Energy Technology Data Exchange (ETDEWEB)
Zakharov, V. Yu., E-mail: vladiyuz@mail.ru; Chernova, T. G., E-mail: chernova-tg@yandex.ru; Stepanov, S. E., E-mail: stepanov@bmstu-kaluga.ru [Bauman Moscow State Technical University, Kaluga Branch (Russian Federation)
2015-04-15
Small-amplitude waves in collisionless magnetized plasma are considered in the framework of one-fluid anisotropic magnetohydrodynamics with allowance for the anisotropy of the pressure and thermal flux. Stability of a homogeneous plasma state is analyzed using an eighth-order dispersion relation. Restrictions on the parameters of the homogeneous state at which the dispersion relation has no complex roots at any value of the angle between the wave vector and the unperturbed magnetic field are obtained. The applied method also makes it possible to determine the types of unstable waves.
Anisotropic Stars II Stability
Dev, K; Dev, Krsna; Gleiser, Marcelo
2003-01-01
We investigate the stability of self-gravitating spherically symmetric anisotropic spheres under radial perturbations. We consider both the Newtonian and the full general-relativistic perturbation treatment. In the general-relativistic case, we extend the variational formalism for spheres with isotropic pressure developed by Chandrasekhar. We find that, in general, when the tangential pressure is greater than the radial pressure, the stability of the anisotropic sphere is enhanced when compared to isotropic configurations. In particular, anisotropic spheres are found to be stable for smaller values of the adiabatic index $\\gamma$.
Bulk Comptonization by turbulence in accretion discs
Kaufman, J.; Blaes, O. M.
2016-06-01
Radiation pressure dominated accretion discs around compact objects may have turbulent velocities that greatly exceed the electron thermal velocities within the disc. Bulk Comptonization by the turbulence may therefore dominate over thermal Comptonization in determining the emergent spectrum. Bulk Comptonization by divergenceless turbulence is due to radiation viscous dissipation only. It can be treated as thermal Comptonization by solving the Kompaneets equation with an equivalent `wave' temperature, which is a weighted sum over the power present at each scale in the turbulent cascade. Bulk Comptonization by turbulence with non-zero divergence is due to both pressure work and radiation viscous dissipation. Pressure work has negligible effect on photon spectra in the limit of optically thin turbulence, and in this limit radiation viscous dissipation alone can be treated as thermal Comptonization with a temperature equivalent to the full turbulent power. In the limit of extremely optically thick turbulence, radiation viscous dissipation is suppressed, and the evolution of local photon spectra can be understood in terms of compression and expansion of the strongly coupled photon and gas fluids. We discuss the consequences of these effects for self-consistently resolving and interpreting turbulent Comptonization in spectral calculations in radiation magnetohydrodynamic simulations of high luminosity accretion flows.
Meridional circulation in turbulent protoplanetary disks
Fromang, Sebastien; Lyra, Wladimir; Masset, Frederic
2011-01-01
Based on the viscous disk theory, a number of recent studies have suggested there is large scale meridional circulation in protoplanetary disks. Such a flow could account for the presence of crystalline silicates, including calcium- and aluminum-rich inclusions (CAIs), at large distances from the sun. This paper aims at examining whether such large-scale flows exist in turbulent protoplanetary disks. High-resolution global hydrodynamical and magnetohydrodynamical (MHD) numerical simulations o...
Gravitomagnetic Instabilities in Anisotropically Expanding Fluids
Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas
Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.
Scaling, Intermittency and Decay of MHD Turbulence
Lazarian, A
2004-01-01
We discuss a few recent developments that are important for understanding of MHD turbulence. First, MHD turbulence is not so messy as it is usually believed. In fact, the notion of strong non-linear coupling of compressible and incompressible motions along MHD cascade is not tenable. Alfven, slow and fast modes of MHD turbulence follow their own cascades and exhibit degrees of anisotropy consistent with theoretical expectations. Second, the fast decay of turbulence is not related to the compressibility of fluid. Rates of decay of compressible and incompressible motions are very similar. Third, viscosity by neutrals does not suppress MHD turbulence in a partially ionized gas. Instead, MHD turbulence develops magnetic cascade at scales below the scale at which neutrals damp ordinary hydrodynamic motions. Forth, density statistics does not exhibit the universality that the velocity and magnetic field do. For instance, at small Mach numbers the density is anisotropic, but it gets isotropic at high Mach numbers. F...
Anisotropy of Third-order Structure Functions in MHD Turbulence
Czech Academy of Sciences Publication Activity Database
Verdini, A.; Grappin, R.; Hellinger, Petr; Landi, S.; Mueller, W.Ch.
2015-01-01
Roč. 804, č. 2 (2015), 119/1-119/13. ISSN 0004-637X R&D Projects: GA ČR GAP209/12/2023 Institutional support: RVO:67985815 Keywords : magnetohydrodynamics * solar wind * turbulence Subject RIV: BN - Astronomy, Celestial Mechanics, Astrophysics Impact factor: 5.993, year: 2014
Turbulent General Magnetic Reconnection
Eyink, G. L.
2015-07-01
Plasma flows with a magnetohydrodynamic (MHD)-like turbulent inertial range, such as the solar wind, require a generalization of general magnetic reconnection (GMR) theory. We introduce the slip velocity source vector per unit arclength of field line, the ratio of the curl of the non-ideal electric field in the generalized Ohm’s Law and magnetic field strength. It diverges at magnetic nulls, unifying GMR with null-point reconnection. Only under restrictive assumptions is the slip velocity related to the gradient of quasi-potential (which is the integral of parallel electric field along magnetic field lines). In a turbulent inertial range, the non-ideal field becomes tiny while its curl is large, so that line slippage occurs even while ideal MHD becomes accurate. The resolution is that ideal MHD is valid for a turbulent inertial range only in a weak sense that does not imply magnetic line freezing. The notion of weak solution is explained in terms of renormalization group (RG) type theory. The weak validity of the ideal Ohm’s law in the inertial range is shown via rigorous estimates of the terms in the generalized Ohm’s Law. All non-ideal terms are irrelevant in the RG sense and large-scale reconnection is thus governed solely by ideal dynamics. We discuss the implications for heliospheric reconnection, in particular for deviations from the Parker spiral model. Solar wind observations show that reconnection in a turbulence-broadened heliospheric current sheet, which is consistent with Lazarian-Vishniac theory, leads to slip velocities that cause field lines to lag relative to the spiral model.
Gravito-magnetic instabilities in anisotropically expanding fluids
Kleidis, Kostas; Papadopoulos, Demetrios B; Vlahos, Loukas
2008-01-01
Gravitational instabilities in a magnetized Friedman - Robertson - Walker (FRW) Universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW Universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this article we use the general-relativistic (GR) version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravito-magnetic instabilities can lead to sub-horizona...
Scalar and vector spherical harmonic spectral equations of rotating magnetohydrodynamics
Ivers, D. J.; Phillips, C. G.
2008-12-01
Vector spherical harmonic analyses have been used effectively to solve laminar and mean-field magnetohydrodynamic dynamo problems with product interactions, such as magnetic induction, anisotropic alpha-effect and anisotropic magnetic diffusion, that are difficult to analyse spectrally in spherical geometries. Spectral forms of the non-linear rotating, Boussinesq and anelastic, momentum, magnetic induction and heat equations are derived for spherical geometries from vector spherical harmonic expansions of the velocity, magnetic induction, vorticity, electrical current and gravitational acceleration and from scalar spherical harmonic expansions of the pressure and temperature. By combining the vector spherical harmonic spectral forms of the momentum equation and the magnetic induction equation with poloidal-toroidal representations of the velocity and the magnetic field, non-linear spherical harmonic spectral equations are also derived for the poloidal-toroidal potentials of the velocity or the momentum density in the anelastic approximation and the magnetic field. Both compact and spectral interaction expansion forms are given. Vector spherical harmonic spectral forms of the linearized rotating magnetic induction, momentum and heat equations for a general basic state can be obtained by linearizing the corresponding non-linear spectral equations. Similarly, the spherical harmonic spectral equations for the poloidal-toroidal potentials of the velocity and the magnetic field may be linearized. However, for computational applications, new alternative hybrid linearized spectral equations are derived. The algorithmically simpler hybrid equations depend on vector spherical harmonic expansions of the velocity, magnetic field, vorticity, electrical current and gravitational acceleration of the basic state and scalar spherical harmonic expansions of the poloidal-toroidal potentials of the perturbation velocity, magnetic field and temperature. The spectral equations derived
Diffusive Acceleration of Particles at Oblique, Relativistic, Magnetohydrodynamic Shocks
Summerlin, Errol J
2011-01-01
Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma ray bursts. These sources remain good candidate sites for the generation of ultra-high energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann...
A Second Order Godunov Method for Multidimensional Relativistic Magnetohydrodynamics
Beckwith, Kris
2011-01-01
We describe a new Godunov algorithm for relativistic magnetohydrodynamics (RMHD) that combines a simple, unsplit second order accurate integrator with the constrained transport (CT) method for enforcing the solenoidal constraint on the magnetic field. A variety of approximate Riemann solvers are implemented to compute the fluxes of the conserved variables. The methods are tested with a comprehensive suite of multidimensional problems. These tests have helped us develop a hierarchy of correction steps that are applied when the integration algorithm predicts unphysical states due to errors in the fluxes, or errors in the inversion between conserved and primitive variables. Although used exceedingly rarely, these corrections dramatically improve the stability of the algorithm. We present preliminary results from the application of these algorithms to two problems in RMHD: the propagation of supersonic magnetized jets, and the amplification of magnetic field by turbulence driven by the relativistic Kelvin-Helmhol...
FLASH magnetohydrodynamic simulations of shock-generated magnetic field experiments
Tzeferacos, P.; Fatenejad, M.; Flocke, N.; Gregori, G.; Lamb, D. Q.; Lee, D.; Meinecke, J.; Scopatz, A.; Weide, K.
2012-12-01
We report the results of benchmark FLASH magnetohydrodynamic (MHD) simulations of experiments conducted by the University of Oxford High Energy Density Laboratory Astrophysics group and its collaborators at the Laboratoire pour l'Utilisation des Lasers Intenses (LULI). In these experiments, a long-pulse laser illuminates a target in a chamber filled with Argon gas, producing shock waves that generate magnetic fields via the Biermann battery mechanism. We first outline the implementation of 2D cylindrical geometry in the unsplit MHD solver in FLASH and present results of verification tests. We then describe the results of benchmark 2D cylindrical MHD simulations of the LULI experiments using FLASH that explore the impact of external fields along with the possibility of magnetic field amplification by turbulence that is associated with the shock waves and that is induced by a grid placed in the gas-filled chamber.
Meridional circulation in turbulent protoplanetary disks
Fromang, Sebastien; Masset, Frederic
2011-01-01
Based on viscous disk theory, a number of recent studies have suggested the existence of a large scale meridional circulation in protoplanetary disks. Such a flow could account for the presence of crystalline silicates, among which Calcium and Aluminium-rich Inclusions (CAIs), at large distances from the sun. This paper aims at examining whether such large scale flows exist in turbulent protoplanetary disks. High resolution global hydrodynamical and magnetohydrodynamical numerical simulations of turbulent protoplanetary disks are used to infer the properties of the flow in such disks. By performing hydrodynamic simulations using explicit viscosity, we demonstrate that our numerical setup does not suffer from any numerical artifact. The aforementioned meridional circulation is readily recovered in viscous and laminar disks. In MHD simulations, the magneto-rotational instability drives turbulence in the disks. Averaging out the turbulent fluctuations over long timescale, the results fail to show any large scale...
Anisotropic microstructure near the sun
International Nuclear Information System (INIS)
Radio scattering observations provide a means of measuring a two-dimensional projection of the three-dimensional spatial spectrum of electron density, i.e., in the plane perpendicular to the line of sight. Earlier observations have shown that the microstructure at scales of the order of 10 km becomes highly field-aligned inside of 10 R· [Armstrong et al., 1990]. Earlier work has also shown that density fluctuations at scales larger than 1000 km have a Kolmogorov spectrum, whereas the smaller scale structure has a flatter spectrum and is considerably enhanced above the Kolmogorov ''background'' [Coles et al., 1991]. Here we present new observations made during 1990 and 1992. These confirm the earlier work, which was restricted to one source on a few days, but they suggest that the anisotropy changes abruptly near 6 R· which was not clear in the earlier data. The axial ratio measurements are shown on Figure 1 below. The new observations were made with a more uniform sampling of the spatial plane. They show that contours of constant correlation are elliptical. This is apparently inconsistent with the spatial correlation of the ISEE-3 magnetic field which shows a 'Maltese Cross' shape [Matthaeus et al., 1990]. However this inconsistency may be only apparent: the magnetic field and density correlations need not have the same shape; the scale of the magnetic field correlations is at least 4 orders of magnitude larger; they are much further from the sun; and they are point measurements whereas ours are path-integrated. We also made two simultaneous measurements, at 10 R·, of the anisotropy on scales of 200 to 4000 km. Significant anisotropy was seen on the smaller scales, but the larger scale structure was essentially isotropic. This suggests that the process responsible for the anisotropic microstructure is independent of the larger scale isotropic turbulence. It is then tempting to speculate that the damping of this anisotropic process inside of 6 R· contributes to
Renormalization group in MHD turbulence
International Nuclear Information System (INIS)
The Renormalization Group (RNG) theory is applied to magnetohydrodynamic (MHD) equations written in Elsaesser variables, as done by Yakhot and Orszag. As a result, a system of coupled nonlinear differential equations for the 'effective' or turbulent 'viscosities' is obtained. Without solving this system, it is possible to prove their exponential behaviour at the 'fixed-point' and also determine the effective viscosity and resistivity. Our results do not allow negative effective viscosity or resistivity, but in certain cases the system tends to zero viscosity or resistivity. The range of possible values of the turbulent Prandtl number is also determined; the system tends to different values of this number, depending on the initial values of the viscosity and resistivity and the way the system is excited. (orig.)
Density gradient effects in the tokamak edge turbulence with temperature gradient driving
International Nuclear Information System (INIS)
Based on the magnetohydrodynamics, a new theoretical model is established. In this model the density gradient effects is added into the tokamak edge turbulence with temperature gradient driving. The physical mechanism and the density gradient effects in evolution of this turbulence are discussed. The fluctuation levels and the associated diffusion coefficients at the turbulent saturation are calculated. The theoretical results are in agreement with the experimental ones on TEXT
Long-wavelength instability of periodic flows and whistler waves in electron magnetohydrodynamics
International Nuclear Information System (INIS)
Stability analysis of periodic flows and whistlers with respect to long-wavelength perturbations within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown hat the destabilizing effect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow anisotropy or α-like effect to its micro helicity. The criteria of the corresponding instabilities are obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two types of periodic flows are presented. (author)
Magneto-hydrodynamic converter with liquid metal
International Nuclear Information System (INIS)
The magneto-hydrodynamic converter with liquid metal contains a source of heat, a two phase nozzle, a separator, a liquid diffuser, a liquid metal cooler, a magneto-hydrodynamic generator and means for heating and compressing a liquid coming from the cooler, which are hydraulically connected and in sequence, and which form a closed circuit. A diffuser and a condenser which are hydraulically connected together, are connected between the separator and the means for heating and compressing the liquid metal coming from the cooler. The magneto-hydrodynamic converter with liquid metal can be used to genrate electricity in thermal and nuclear powerstations. (orig.)
Three-Fluid Magnetohydrodynamic Modeling of the Solar Wind in the Outer Heliosphere
Usmanov, Arcadi V.; Goldstein, Melvyn L.; Matthaeus, William H.
2011-01-01
We have developed a three-fluid, fully three-dimensional magnetohydrodynamic model of the solar wind plasma in the outer heliosphere as a co-moving system of solar wind protons, electrons, and interstellar pickup protons, with separate energy equations for each species. Our approach takes into account the effects of electron heat conduction and dissipation of Alfvenic turbulence on the spatial evolution of the solar wind plasma and interplanetary magnetic fields. The turbulence transport model is based on the Reynolds decomposition of physical variables into mean and fluctuating components and uses the turbulent phenomenologies that describe the conversion of fluctuation energy into heat due to a turbulent cascade. We solve the coupled set of the three-fluid equations for the mean-field solar wind and the turbulence equations for the turbulence energy, cross helicity, and correlation length. The equations are written in the rotating frame of reference and include heating by turbulent dissipation, energy transfer from interstellar pickup protons to solar wind protons, and solar wind deceleration due to the interaction with the interstellar hydrogen. The numerical solution is constructed by the time relaxation method in the region from 0.3 to 100 AU. Initial results from the novel model are presented.
Vortex disruption by magnetohydrodynamic feedback
Mak, Julian; Hughes, D W
2016-01-01
In an electrically conducting fluid, vortices stretch out a weak, large-scale magnetic field to form strong current sheets on their edges. Associated with these current sheets are magnetic stresses, which are subsequently released through reconnection, leading to vortex disruption, and possibly even destruction. This disruption phenomenon is investigated here in the context of two-dimensional, homogeneous, incompressible magnetohydrodynamics. We derive a simple order of magnitude estimate for the magnetic stresses --- and thus the degree of disruption --- that depends on the strength of the background magnetic field (measured by the parameter $M$, a ratio between the Alfv\\'en speed and a typical flow speed) and on the magnetic diffusivity (measured by the magnetic Reynolds number $\\mbox{Rm}$). The resulting estimate suggests that significant disruption occurs when $M^{2}\\mbox{Rm} = O(1)$. To test our prediction, we analyse direct numerical simulations of vortices generated by the breakup of unstable shear flo...
The spectrum of anomalous magnetohydrodynamics
Giovannini, Massimo
2016-01-01
The equations of anomalous magnetohydrodynamics describe an Abelian plasma where conduction and chiral currents are simultaneously present and constrained by the second law of thermodynamics. At high frequencies the magnetic currents play the leading role and the spectrum is dominated by two-fluid effects. The system behaves instead as a single fluid in the low-frequency regime where the vortical currents induce potentially large hypermagnetic fields. After deriving the physical solutions of the generalized Appleton-Hartree equation, the corresponding dispersion relations are scrutinized and compared with the results valid for cold plasmas. Hypermagnetic knots and fluid vortices can be concurrently present at very low frequencies and suggest a qualitatively different dynamics of the hydromagnetic nonlinearities.
Simplified Variational Principles for Barotropic Magnetohydrodynamics
Yahalom, Asher; Lynden-Bell, Donald
2006-01-01
Variational principles for magnetohydrodynamics were introduced by previous authors both in Lagrangian and Eulerian form. In this paper we introduce simpler Eulerian variational principles from which all the relevant equations of barotropic magnetohydrodynamics can be derived. The variational principle is given in terms of six independent functions for non-stationary barotropic flows and three independent functions for stationary barotropic flows. This is less then the seven variables which a...
On the Magnetohydrodynamics/Gravity Correspondence
Lysov, Vyacheslav
2013-01-01
The fluid/gravity correspondence relates solutions of the incompressible Navier-Stokes equation to metrics which solve the Einstein equations. In this paper we extend this duality to a new magnetohydrodynamics/gravity correspondence, which translates solutions of the equations of magnetohydrodynamics (describing charged fluids) into geometries that satisfy the Einstein-Maxwell equations. We present an explicit example of this new correspondence in the context of flat Minkowski space. We show ...
Relativistic Conformal Magneto-Hydrodynamics from Holography
Buchbinder, Evgeny I.; Buchel, Alex
2009-01-01
We use the AdS/CFT correspondence to study first-order relativistic viscous magneto-hydrodynamics of (2+1) dimensional conformal magnetic fluids. It is shown that the first order magneto-hydrodynamics constructed following Landau and Lifshitz from the positivity of the entropy production is inconsistent. We propose additional contributions to the entropy motivated dissipative current and, correspondingly, new dissipative transport coefficients. We use the strongly coupled M2-brane plasma in e...
Averaging anisotropic cosmologies
International Nuclear Information System (INIS)
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity
Anisotropic Metamaterial Optical Fibers
Pratap, Dheeraj; Pollock, Justin G; Iyer, Ashwin K
2014-01-01
Internal physical structure can drastically modify the properties of waveguides: photonic crystal fibers are able to confine light inside a hollow air core by Bragg scattering from a periodic array of holes, while metamaterial loaded waveguides for microwaves can support propagation at frequencies well below cutoff. Anisotropic metamaterials assembled into cylindrically symmetric geometries constitute light-guiding structures that support new kinds of exotic modes. A microtube of anodized nanoporous alumina, with nanopores radially emanating from the inner wall to the outer surface, is a manifestation of such an anisotropic metamaterial optical fiber. The nanopores, when filled with a plasmonic metal such as silver or gold, greatly increase the electromagnetic anisotropy. The modal solutions in anisotropic circular waveguides can be uncommon Bessel functions with imaginary orders.
Statistical analysis of anomalous transport in resistive interchange turbulence
International Nuclear Information System (INIS)
A new anomalous transport model for resistive interchange turbulence is derived from statistical analysis applying two-scale direct-interaction approximation to resistive magnetohydrodynamic equations with a gravity term. Our model is similar to the K-ε model for eddy viscosity of turbulent shear flows in that anomalous transport coefficients are expressed in terms of by the turbulent kinetic energy K and its dissipation rate ε while K and ε are determined by transport equations. This anomalous transport model can describe some nonlocal effects such as those from boundary conditions which cannot be treated by conventional models based on the transport coefficients represented by locally determined plasma parameters. (author)
Effect of externally driven magnetic islands on resistive ballooning turbulence
International Nuclear Information System (INIS)
Turbulent transport in the edge region of tokamak plasmas is simulated using a reduced set of magnetohydrodynamic equations. Repetitive and intermittent transport bursts driven by resistive ballooning turbulence with external heating are observed. The effect of a resonant magnetic perturbation (RMP) on turbulent heat transport is examined, where the electromagnetic response of the plasma to the RMP is solved consistently. The penetration of the RMP excites a magnetic island chain and damps the poloidal flow near the magnetic islands. The transport bursts are found to be replaced by more moderate and continuous transport. The change in the transport pattern is associated with the effect of the RMP on nonlinear coupling of fluctuations. (author)
Plasma turbulence measured by fast sweep reflectometry on Tore Supra
International Nuclear Information System (INIS)
Traditionally devoted to electron density profile measurement we show that fast frequency sweeping reflectometry technique can bring valuable and innovative measurements onto plasma turbulence. While fast frequency sweeping technique is traditionally devoted to electron density radial profile measurements we show in this paper how we can handle the fluctuations of the reflected signal to recover plasma density fluctuation measurements with a high spatial and temporal resolution. Large size turbulence related to magneto-hydrodynamic (MHD) activity and the associated magnetic islands can be detected. The radial profile of the micro-turbulence, which is responsible for plasma anomalous transport processes, is experimentally determined through the fluctuation of the reflected phase signal. (authors)
Particle acceleration, transport and turbulence in cosmic and heliospheric physics
Matthaeus, W.
1992-01-01
In this progress report, the long term goals, recent scientific progress, and organizational activities are described. The scientific focus of this annual report is in three areas: first, the physics of particle acceleration and transport, including heliospheric modulation and transport, shock acceleration and galactic propagation and reacceleration of cosmic rays; second, the development of theories of the interaction of turbulence and large scale plasma and magnetic field structures, as in winds and shocks; third, the elucidation of the nature of magnetohydrodynamic turbulence processes and the role such turbulence processes might play in heliospheric, galactic, cosmic ray physics, and other space physics applications.
Turbulence and diffusion fossil turbulence
Gibson, C H
2000-01-01
Fossil turbulence processes are central to turbulence, turbulent mixing, and turbulent diffusion in the ocean and atmosphere, in astrophysics and cosmology, and in most other natural flows. George Gamov suggested in 1954 that galaxies might be fossils of primordial turbulence produced by the Big Bang. John Woods showed that breaking internal waves on horizontal dye sheets in the interior of the stratified ocean form highly persistent remnants of these turbulent events, which he called fossil turbulence. The dark mixing paradox of the ocean refers to undetected mixing that must exist somewhere to explain why oceanic scalar fields like temperature and salinity are so well mixed, just as the dark matter paradox of galaxies refers to undetected matter that must exist to explain why rotating galaxies don't fly apart by centrifugal forces. Both paradoxes result from sampling techniques that fail to account for the extreme intermittency of random variables involved in self-similar, nonlinear, cascades over a wide ra...
Hwu, Chyanbin
2010-01-01
As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a
Pérez-Nadal, Guillem
2016-01-01
We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates "scaling like time" is generically greater than one. We propose the Cartesian product of two curved spaces, with the metric of each space parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry.
Phase transition to turbulence in a pipe
Goldenfeld, Nigel
Leo Kadanoff taught us much about phase transitions, turbulence and collective behavior. Here I explore the transition to turbulence in a pipe, showing how a collective mode determines the universality class. Near the transition, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Direct numerical simulations reveal that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as represented by Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to a Landau theory of predator-prey type, in the directed percolation universality class. Stochastic simulations of this model reproduce the functional form and phenomenology of pipe flow experiments. Talk based on work performed with Hong-Yan Shih and Tsung-Lin Hsieh. This work was partially supported by the National Science Foundation through Grant NSF-DMR-1044901.
PREFACE Turbulent Mixing and Beyond
Abarzhi, Snezhana I.; Gauthier, Serge; Niemela, Joseph J.
2010-12-01
, maintaining the scope and the interdisciplinary character of the meeting while keeping the focus on a fundamental scientific problem of non-equilibrium processes and on the Conference objectives. The abstracts of the 194 accepted presentations of more than 400 authors were published in the Book of Abstracts of the Second International Conference and Advanced School 'Turbulent Mixing and Beyond', 27 July-7 August 2009 , Copyright © 2009, the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy (ISBN 92095003-41-1). This Topical Issue consists of 70 articles accepted for publication in the Conference Proceedings and represents a substantial part of the Conference contributions. The articles are in a broad variety of TMB-2009 themes and are sorted alphabetically by the last name of the first author within each of the following topics: Canonical turbulence and turbulent mixing: invariant, scaling, spectral properties, scalar transports, convection; Wall-bounded flows: structure and fundamentals, non-canonical turbulent boundary layers, including unsteady and transitional flows, supersonic and hypersonic flows, shock-boundary layer interactions; Non-equilibrium processes: unsteady, multiphase and shock-driven turbulent flows, anisotropic non-local dynamics, connection of continuous description at macro-scales to kinetic processes at atomistic scales; Interfacial dynamics: instabilities of Rayleigh-Taylor, Kelvin-Helmholtz, Richtmyer-Meshkov, Landau-Darrieus, Saffman-Taylor High energy density physics: inertial confinement and heavy-ion fusion, Z-pinches, light-matter and laser-plasma interactions, non-equilibrium heat transfer; Material science: material transformation under high strain rates, equation of state, impact dynamics, mixing at nano- and micro-scales; Astrophysics: supernovae, interstellar medium, star formation, stellar interiors, early Universe, cosmic-microwave background, accretion disks; Magneto-hydrodynamics: magnetic fusion and magnetically
Magnetohydrodynamical simulations of a deep tidal disruption in general relativity
Sądowski, Aleksander; Tejeda, Emilio; Gafton, Emanuel; Rosswog, Stephan; Abarca, David
2016-06-01
We perform hydro- and magnetohydrodynamical general-relativistic simulations of a tidal disruption of a 0.1 M⊙ red dwarf approaching a 105 M⊙ non-rotating massive black hole on a close (impact parameter β = 10) elliptical (eccentricity e = 0.97) orbit. We track the debris self-interaction, circularization and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the hole. The effective viscosity in the debris disc stems from the original hydrodynamical turbulence, which dominates over the magnetic component. The radiative efficiency is very low because of low energetics of the gas crossing the horizon and large optical depth that results in photon trapping. Although the parameters of the simulated tidal disruption are probably not representative of most observed events, it is possible to extrapolate some of its properties towards more common configurations.
Discrete vortex representation of magnetohydrodynamics
International Nuclear Information System (INIS)
We present an alternative approach to statistical analysis of an intermittent ideal MHD fluid in two dimensions, based on the hydrodynamical discrete vortex model applied to the Elsasser variables. The model contains negative temperature states which predict the formation of magnetic islands, but also includes a natural limit under which the equilibrium states revert to the familiar twin-vortex states predicted by hydrodynamical turbulence theories. Numerical dynamical calculations yield equilibrium spectra in agreement with the theoretical predictions
On the Newtonian anisotropic configurations
Energy Technology Data Exchange (ETDEWEB)
Shojai, F. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Institute for Research in Fundamental Sciences (IPM), Foundations of Physics Group, School of Physics, Tehran (Iran, Islamic Republic of); Fazel, M.R.; Stepanian, A. [University of Tehran, Department of Physics, Tehran (Iran, Islamic Republic of); Kohandel, M. [Alzahra University, Department of Sciences, Tehran (Iran, Islamic Republic of)
2015-06-15
In this paper we are concerned with the effects of an anisotropic pressure on the boundary conditions of the anisotropic Lane-Emden equation and the homology theorem. Some new exact solutions of this equation are derived. Then some of the theorems governing the Newtonian perfect fluid star are extended, taking the anisotropic pressure into account. (orig.)
Indian Academy of Sciences (India)
B B Bhowmik; A Rajput
2004-06-01
Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.
Anisotropic Ambient Volume Shading.
Ament, Marco; Dachsbacher, Carsten
2016-01-01
We present a novel method to compute anisotropic shading for direct volume rendering to improve the perception of the orientation and shape of surface-like structures. We determine the scale-aware anisotropy of a shading point by analyzing its ambient region. We sample adjacent points with similar scalar values to perform a principal component analysis by computing the eigenvectors and eigenvalues of the covariance matrix. In particular, we estimate the tangent directions, which serve as the tangent frame for anisotropic bidirectional reflectance distribution functions. Moreover, we exploit the ratio of the eigenvalues to measure the magnitude of the anisotropy at each shading point. Altogether, this allows us to model a data-driven, smooth transition from isotropic to strongly anisotropic volume shading. In this way, the shape of volumetric features can be enhanced significantly by aligning specular highlights along the principal direction of anisotropy. Our algorithm is independent of the transfer function, which allows us to compute all shading parameters once and store them with the data set. We integrated our method in a GPU-based volume renderer, which offers interactive control of the transfer function, light source positions, and viewpoint. Our results demonstrate the benefit of anisotropic shading for visualization to achieve data-driven local illumination for improved perception compared to isotropic shading. PMID:26529745
Dynamics of Anisotropic Universes
Pérez, J
2006-01-01
We present a general study of the dynamical properties of Anisotropic Bianchi Universes in the context of Einstein General Relativity. Integrability results using Kovalevskaya exponents are reported and connected to general knowledge about Bianchi dynamics. Finally, dynamics toward singularity in Bianchi type VIII and IX universes are showed to be equivalent in some precise sence.
Magnetohydrodynamic Propulsion for the Classroom
Font, Gabriel I.; Dudley, Scott C.
2004-10-01
The cinema industry can sometimes prove to be an ally when searching for material with which to motivate students to learn physics. Consider, for example, the electromagnetic force on a current in the presence of a magnetic field. This phenomenon is at the heart of magnetohydrodynamic (MHD) propulsion systems. A submarine employing this type of propulsion was immortalized in the movie Hunt for Red October. While mentioning this to students certainly gets their attention, it often elicits comments that it is only fiction and not physically possible. Imagine their surprise when a working system is demonstrated! It is neither difficult nor expensive to construct a working system that can be demonstrated in the front of a classroom.2 In addition, all aspects of the engineering hurdles that must be surmounted and myths concerning this "silent propulsion" system are borne out in a simple apparatus. This paper details how to construct an inexpensive MHD propulsion boat that can be demonstrated for students in the classroom.
Magnetohydrodynamics of Chiral Relativistic Fluids
Boyarsky, Alexey; Ruchayskiy, Oleg
2015-01-01
We study the dynamics of a plasma of charged relativistic fermions at very high temperature $T\\gg m$, where $m$ is the fermion mass, coupled to the electromagnetic field. In particular, we derive a magneto-hydrodynamical description of the evolution of such a plasma. We show that, as compared to conventional MHD for a plasma of non-relativistic particles, the hydrodynamical description of the relativistic plasma involves new degrees of freedom described by a pseudo-scalar field originating in a local asymmetry in the densities of left-handed and right-handed fermions. This field can be interpreted as an effective axion field. Taking into account the chiral anomaly we present dynamical equations for the evolution of this field, as well as of other fields appearing in the MHD description of the plasma. Due to its non-linear coupling to helical magnetic fields, the axion field significantly affects the dynamics of a magnetized plasma and can give rise to a novel type of inverse cascade.
Electrolysis resistance reduced by magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
O' Brien, R.N. [Victoria Univ., Victoria, BC (Canada). Dept. of Chemistry
2009-07-01
The production of hydrogen by electrolysis of water has been known for many years, and the Nernst equation has been used to produce pressurized hydrogen. It has also been thought that the cost of hydrogen produced by electrolysis is higher than by steam reduction of natural gas. However, the consensus of opinion in research efforts is that hydrogen is at least 2.5 times the cost of gasoline per watt hour of energy. This paper described an experiment that used the main attributes of a cell outlined from Kirk-Othmer. Since the cell was difficult to construct and insufficient data was collected on the magnetohydrodynamic (MHD) process, a simpler, easily portable demonstration cell was devised. Experiments were run and the data were plotted both as impressed voltage at constant current versus time and resistance at constant current versus time. The cells were small, the electrolyte was enough to flood the cell and allow egress of hydrogen and oxygen. Since much of the raw data needed for a real calculation applicable to the industry was absent, only laboratory scale MHD scale experimental data was presented, and the volatile cost of petroleum was not assessed or included. It was not possible to claim that hydrogen was as cheap as gasoline for internal combustion engines or fuel cell cars, but water electrolysis in MHD conditions clearly rated consideration. 2 figs.
Relativistic magnetohydrodynamics in one dimension.
Lyutikov, Maxim; Hadden, Samuel
2012-02-01
We derive a number of solutions for one-dimensional dynamics of relativistic magnetized plasma that can be used as benchmark estimates in relativistic hydrodynamic and magnetohydrodynamic numerical codes. First, we analyze the properties of simple waves of fast modes propagating orthogonally to the magnetic field in relativistically hot plasma. The magnetic and kinetic pressures obey different equations of state, so that the system behaves as a mixture of gases with different polytropic indices. We find the self-similar solutions for the expansion of hot strongly magnetized plasma into vacuum. Second, we derive linear hodograph and Darboux equations for the relativistic Khalatnikov potential, which describe arbitrary one-dimensional isentropic relativistic motion of cold magnetized plasma and find their general and particular solutions. The obtained hodograph and Darboux equations are very powerful: A system of highly nonlinear, relativistic, time-dependent equations describing arbitrary (not necessarily self-similar) dynamics of highly magnetized plasma reduces to a single linear differential equation. PMID:22463331
Magnetohydrodynamic (MHD) driven droplet mixer
Lee, Abraham P.; Lemoff, Asuncion V.; Miles, Robin R.
2004-05-11
A magnetohydrodynamic fluidic system mixes a first substance and a second substance. A first substrate section includes a first flow channel and a first plurality of pairs of spaced electrodes operatively connected to the first flow channel. A second substrate section includes a second flow channel and a second plurality of pairs of spaced electrodes operatively connected to the second flow channel. A third substrate section includes a third flow channel and a third plurality of pairs of spaced electrodes operatively connected to the third flow channel. A magnetic section and a control section are operatively connected to the spaced electrodes. The first substrate section, the second substrate section, the third substrate section, the first plurality of pairs of spaced electrodes, the second plurality of pairs of spaced electrodes, the third plurality of pairs of spaced electrodes, the magnetic section, and the control section are operated to move the first substance through the first flow channel, the second substance through the second flow channel, and both the first substance and the second substance into the third flow channel where they are mixed.
Anisotropic clustering of inertial particles in homogeneous shear flow
Gualtieri, P.; Picano, F.; Casciola, C. M
2009-01-01
Recently, clustering of inertial particles in turbulence has been thoroughly analyzed for statistically homogeneous isotropic flows. Phenomenologically, spatial homogeneity of particles configurations is broken by the advection of a range of eddies determined by the Stokes relaxation time of the particles which results in a multi-scale distribution of local concentrations and voids. Much less is known concerning anisotropic flows. Here, by addressing direct numerical simulations (DNS) of a st...
THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION
International Nuclear Information System (INIS)
We study the amplification of magnetic fields during the formation of primordial halos. The turbulence generated by gravitational infall motions during the formation of the first stars and galaxies can amplify magnetic fields very efficiently and on short timescales up to dynamically significant values. Using the Kazantsev theory, which describes the so-called small-scale dynamo—a magnetohydrodynamical process converting kinetic energy from turbulence into magnetic energy—we can then calculate the growth rate of the small-scale magnetic field. Our calculations are based on a detailed chemical network and we include non-ideal magnetohydrodynamical effects such as ambipolar diffusion and Ohmic dissipation. We follow the evolution of the magnetic field up to larger scales until saturation occurs on the Jeans scale. Assuming a weak magnetic seed field generated by the Biermann battery process, both Burgers and Kolmogorov turbulence lead to saturation within a rather small density range. Such fields are likely to become relevant after the formation of a protostellar disk and, thus, could influence the formation of the first stars and galaxies in the universe.
THE SMALL-SCALE DYNAMO AND NON-IDEAL MAGNETOHYDRODYNAMICS IN PRIMORDIAL STAR FORMATION
Energy Technology Data Exchange (ETDEWEB)
Schober, Jennifer; Federrath, Christoph; Glover, Simon; Klessen, Ralf S. [Zentrum fuer Astronomie der Universitaet Heidelberg, Institut fuer Theoretische Astrophysik, Albert-Ueberle-Str. 2, D-69120 Heidelberg (Germany); Schleicher, Dominik [Institut fuer Astrophysik, Georg-August-Universitaet Goettingen, Friedrich-Hund-Platz, D-37077 Goettingen (Germany); Banerjee, Robi, E-mail: schober@stud.uni-heidelberg.de, E-mail: christoph.federrath@monash.edu, E-mail: glover@uni-heidelberg.de, E-mail: klessen@uni-heidelberg.de, E-mail: dschleic@astro.physik.uni-goettingen.de, E-mail: banerjee@hs.uni-hamburg.de [Hamburger Sternwarte, Gojenbergsweg 112, D-21029 Hamburg (Germany)
2012-08-01
We study the amplification of magnetic fields during the formation of primordial halos. The turbulence generated by gravitational infall motions during the formation of the first stars and galaxies can amplify magnetic fields very efficiently and on short timescales up to dynamically significant values. Using the Kazantsev theory, which describes the so-called small-scale dynamo-a magnetohydrodynamical process converting kinetic energy from turbulence into magnetic energy-we can then calculate the growth rate of the small-scale magnetic field. Our calculations are based on a detailed chemical network and we include non-ideal magnetohydrodynamical effects such as ambipolar diffusion and Ohmic dissipation. We follow the evolution of the magnetic field up to larger scales until saturation occurs on the Jeans scale. Assuming a weak magnetic seed field generated by the Biermann battery process, both Burgers and Kolmogorov turbulence lead to saturation within a rather small density range. Such fields are likely to become relevant after the formation of a protostellar disk and, thus, could influence the formation of the first stars and galaxies in the universe.
International Nuclear Information System (INIS)
We have explored numerical solutions of the three-dimensional magnetohydrodynamic equations and of the Strauss equations. In the former case, the emphasis has been on relaxation to force-free, field-reversed states in magnetofluids bounded by rigid conductors; in the latter case, the emphasis has been on disruptions. The competition between dynamic alignment of the velocity fields and magnetic fields and selective decay toward minimum energy states has been explored. Analytical expressions for density fluctuation spectra in MHD turbulence have been derived. Analytical expressions for turbulent MHD resistivities and viscosities have been derived
A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics
Mocz, Philip; Pakmor, Rüdiger; Springel, Volker; Vogelsberger, Mark; Marinacci, Federico; Hernquist, Lars
2016-08-01
We present a constrained transport (CT) algorithm for solving the 3D ideal magnetohydrodynamic (MHD) equations on a moving mesh, which maintains the divergence-free condition on the magnetic field to machine-precision. Our CT scheme uses an unstructured representation of the magnetic vector potential, making the numerical method simple and computationally efficient. The scheme is implemented in the moving mesh code AREPO. We demonstrate the performance of the approach with simulations of driven MHD turbulence, a magnetized disc galaxy, and a cosmological volume with primordial magnetic field. We compare the outcomes of these experiments to those obtained with a previously implemented Powell divergence-cleaning scheme. While CT and the Powell technique yield similar results in idealized test problems, some differences are seen in situations more representative of astrophysical flows. In the turbulence simulations, the Powell cleaning scheme artificially grows the mean magnetic field, while CT maintains this conserved quantity of ideal MHD. In the disc simulation, CT gives slower magnetic field growth rate and saturates to equipartition between the turbulent kinetic energy and magnetic energy, whereas Powell cleaning produces a dynamically dominant magnetic field. Such difference has been observed in adaptive-mesh refinement codes with CT and smoothed-particle hydrodynamics codes with divergence-cleaning. In the cosmological simulation, both approaches give similar magnetic amplification, but Powell exhibits more cell-level noise. CT methods in general are more accurate than divergence-cleaning techniques, and, when coupled to a moving mesh can exploit the advantages of automatic spatial/temporal adaptivity and reduced advection errors, allowing for improved astrophysical MHD simulations.
DIFFUSIVE ACCELERATION OF PARTICLES AT OBLIQUE, RELATIVISTIC, MAGNETOHYDRODYNAMIC SHOCKS
International Nuclear Information System (INIS)
Diffusive shock acceleration (DSA) at relativistic shocks is expected to be an important acceleration mechanism in a variety of astrophysical objects including extragalactic jets in active galactic nuclei and gamma-ray bursts. These sources remain good candidate sites for the generation of ultrahigh energy cosmic rays. In this paper, key predictions of DSA at relativistic shocks that are germane to the production of relativistic electrons and ions are outlined. The technique employed to identify these characteristics is a Monte Carlo simulation of such diffusive acceleration in test-particle, relativistic, oblique, magnetohydrodynamic (MHD) shocks. Using a compact prescription for diffusion of charges in MHD turbulence, this approach generates particle angular and momentum distributions at any position upstream or downstream of the shock. Simulation output is presented for both small angle and large angle scattering scenarios, and a variety of shock obliquities including superluminal regimes when the de Hoffmann-Teller frame does not exist. The distribution function power-law indices compare favorably with results from other techniques. They are found to depend sensitively on the mean magnetic field orientation in the shock, and the nature of MHD turbulence that propagates along fields in shock environs. An interesting regime of flat-spectrum generation is addressed; we provide evidence for it being due to shock drift acceleration, a phenomenon well known in heliospheric shock studies. The impact of these theoretical results on blazar science is outlined. Specifically, Fermi Large Area Telescope gamma-ray observations of these relativistic jet sources are providing significant constraints on important environmental quantities for relativistic shocks, namely, the field obliquity, the frequency of scattering, and the level of field turbulence.
Magnetohydrodynamic simulations of global accretion disks with vertical magnetic fields
International Nuclear Information System (INIS)
We report results of three-dimensional magnetohydrodynamical (MHD) simulations of global accretion disks threaded with weak vertical magnetic fields. We perform the simulations in the spherical coordinates with different temperature profiles and accordingly different rotation profiles. In the cases with a spatially constant temperature, because the rotation frequency is vertically constant in the equilibrium condition, general properties of the turbulence excited by magnetorotational instability are quantitatively similar to those obtained in local shearing box simulations. On the other hand, in the cases with a radially variable temperature profile, the vertical differential rotation, which is inevitable in the equilibrium condition, winds up the magnetic field lines in addition to the usual radial differential rotation. As a result, the coherent wound magnetic fields contribute to the Maxwell stress in the surface regions. We obtain nondimensional density and velocity fluctuations ∼0.1-0.2 at the midplane. The azimuthal power spectra of the magnetic fields show shallower slopes, ∼m 0 – m –1, than those of velocity and density. The Poynting flux associated with the MHD turbulence drives intermittent and structured disk winds as well as sound-like waves toward the midplane. The mass accretion mainly occurs near the surfaces, and the gas near the midplane slowly moves outward in the time domain of the present simulations. The vertical magnetic fields are also dragged inward in the surface regions, while they stochastically move outward and inward around the midplane. We also discuss an observational implication of induced spiral structure in the simulated turbulent disks.
EuHIT, Collaboration
2015-01-01
As a member of the EuHIT (European High-Performance Infrastructures in Turbulence - see here) consortium, CERN is participating in fundamental research on turbulence phenomena. To this end, the Laboratory provides European researchers with a cryogenic research infrastructure (see here), where the first tests have just been performed.
Energy Technology Data Exchange (ETDEWEB)
Nazarenko, Sergey [Warwick Univ., Coventry (United Kingdom). Mathematics Inst.
2011-07-01
Wave Turbulence refers to the statistical theory of weakly nonlinear dispersive waves. There is a wide and growing spectrum of physical applications, ranging from sea waves, to plasma waves, to superfluid turbulence, to nonlinear optics and Bose-Einstein condensates. Beyond the fundamentals the book thus also covers new developments such as the interaction of random waves with coherent structures (vortices, solitons, wave breaks), inverse cascades leading to condensation and the transitions between weak and strong turbulence, turbulence intermittency as well as finite system size effects, such as ''frozen'' turbulence, discrete wave resonances and avalanche-type energy cascades. This book is an outgrow of several lectures courses held by the author and, as a result, written and structured rather as a graduate text than a monograph, with many exercises and solutions offered along the way. The present compact description primarily addresses students and non-specialist researchers wishing to enter and work in this field. (orig.)
From the Einstein-Szilard Patent to Modern Magnetohydrodynamics.
Povh, I. L.; Barinberg, A. D.
1979-01-01
Examines present-day and future prospects of the applications of modern magnetohydrodynamics in a number of countries. Explains how the electromagnetic pump, which was invented by Einstein and Leo Szilard, led to the development of applied magnetohydrodynamics. (HM)
Magnetohydrodynamic stability comparison theorems revisited
International Nuclear Information System (INIS)
Magnetohydrodynamic (MHD) stability comparison theorems are presented for several different plasma models, each one corresponding to a different level of collisionality: a collisional fluid model (ideal MHD), a collisionless kinetic model (kinetic MHD), and two intermediate collisionality hybrid models (Vlasov-fluid and kinetic MHD-fluid). Of particular interest is the re-examination of the often quoted statement that ideal MHD makes the most conservative predictions with respect to stability boundaries for ideal modes. Some of the models have already been investigated in the literature and we clarify and generalize these results. Other models are essentially new and for them we derive new comparison theorems. Three main conclusions can be drawn: (1) it is crucial to distinguish between ergodic and closed field line systems; (2) in the case of ergodic systems, ideal MHD does indeed make conservative predictions compared to the other models; (3) in closed line systems undergoing perturbations that maintain the closed line symmetry this is no longer true. Specifically, when the ions are collisionless and their gyroradius is finite, as in the Vlasov-fluid model, there is no compressibility stabilization. The Vlasov-fluid model is more unstable than ideal MHD. The reason for this is related to the wave-particle resonance associated with the perpendicular precession drift motion of the particles (i.e., the ExB drift and magnetic drifts), combined with the absence of any truly toroidally trapped particles. The overall conclusion is that to determine macroscopic stability boundaries for ideal modes for any magnetic geometry using a simple conservative approach, one should analyze the ideal MHD energy principle for incompressible displacements.
Turbulent Amplification and Structure of the Intracluster Magnetic Field
Beresnyak, Andrey
2015-01-01
We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We argue that this approach is necessary (a) to properly normalize dynamo action to the available intra-cluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intra-cluster medium. We find that while the properties of intra-cluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfven speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming th...
Fractures in anisotropic media
Shao, Siyi
Rocks may be composed of layers and contain fracture sets that cause the hydraulic, mechanical and seismic properties of a rock to be anisotropic. Coexisting fractures and layers in rock give rise to competing mechanisms of anisotropy. For example: (1) at low fracture stiffness, apparent shear-wave anisotropy induced by matrix layering can be masked or enhanced by the presence of a fracture, depending on the fracture orientation with respect to layering, and (2) compressional-wave guided modes generated by parallel fractures can also mask the presence of matrix layerings for particular fracture orientations and fracture specific stiffness. This report focuses on two anisotropic sources that are widely encountered in rock engineering: fractures (mechanical discontinuity) and matrix layering (impedance discontinuity), by investigating: (1) matrix property characterization, i.e., to determine elastic constants in anisotropic solids, (2) interface wave behavior in single-fractured anisotropic media, (3) compressional wave guided modes in parallel-fractured anisotropic media (single fracture orientation) and (4) the elastic response of orthogonal fracture networks. Elastic constants of a medium are required to understand and quantify wave propagation in anisotropic media but are affected by fractures and matrix properties. Experimental observations and analytical analysis demonstrate that behaviors of both fracture interface waves and compressional-wave guided modes for fractures in anisotropic media, are affected by fracture specific stiffness (controlled by external stresses), signal frequency and relative orientation between layerings in the matrix and fractures. A fractured layered medium exhibits: (1) fracture-dominated anisotropy when the fractures are weakly coupled; (2) isotropic behavior when fractures delay waves that are usually fast in a layered medium; and (3) matrix-dominated anisotropy when the fractures are closed and no longer delay the signal. The
Anisotropic progressive photon mapping
Liu, XiaoDan; Zheng, ChangWen
2014-01-01
Progressive photon mapping solves the memory limitation problem of traditional photon mapping. It gives the correct radiance with a large passes, but it converges slowly. We propose an anisotropic progressive photon mapping method to generate high quality images with a few passes. During the rendering process, different from standard progressive photon mapping, we store the photons on the surfaces. At the end of each pass, an anisotropic method is employed to compute the radiance of each eye ray based on the stored photons. Before move to a new pass, the photons in the scene are cleared. The experiments show that our method generates better results than the standard progressive photon mapping in both numerical and visual qualities.
Molecular anisotropic magnetoresistance
Otte, Fabian; Heinze, Stefan; Mokrousov, Yuriy
2015-01-01
Using density functional theory calculations, we demonstrate that the effect of anisotropic magnetoresistance (AMR) can be enhanced by orders of magnitude with respect to conventional bulk ferromagnets in junctions containing molecules sandwiched between ferromagnetic leads. We study ballistic transport in metal-benzene complexes contacted by $3d$ transition-metal wires. We show that the gigantic AMR can arise from spin-orbit coupling effects in the leads, drastically enhanced by orbital-symm...
Sub-fluid models in dissipative magneto-hydrodynamics
Materassi, Massimo; Consolini, Giuseppe; Tassi, Emanuele
2012-01-01
We address the problem of a description of plasma dynamics by means of magnetohydrodynamic models coupling the macroscopic, large scale fluid behavior, with the microscopic degrees of freedom. Three relevant subjects in this direction are described: the "algebrization" of dissipation in magnetohydrodynamics via the metriplectic formalism, a stochastic field theory for magnetohydrodynamics and a fractal model for fast magnetic reconnection.
Extremely Anisotropic Scintillations
Walker, Mark; Bignall, Hayley
2008-01-01
A small number of quasars exhibit interstellar scintillation on time-scales less than an hour; their scintillation patterns are all known to be anisotropic. Here we consider a totally anisotropic model in which the scintillation pattern is effectively one-dimensional. For the persistent rapid scintillators J1819+3845 and PKS1257-326 we show that this model offers a good description of the two-station time-delay measurements and the annual cycle in the scintillation time-scale. Generalising the model to finite anisotropy yields a better match to the data but the improvement is not significant and the two additional parameters which are required to describe this model are not justified by the existing data. The extreme anisotropy we infer for the scintillation patterns must be attributed to the scattering medium rather than a highly elongated source. For J1819+3845 the totally anisotropic model predicts that the particular radio flux variations seen between mid July and late August should repeat between late Au...
Energy- and flux-budget (EFB) turbulence closure model for stably stratified flows
Zilitinkevich, S S; Kleeorin, N; Rogachevskii, I
2006-01-01
We propose a new turbulence closure model based on the budget equations for the basic second moments: turbulent kinetic and potential energies: TKE and TPE, which comprise the turbulent total energy: TTE = TKE + TPE; and vertical turbulent fluxes of momentum and buoyancy (potential temperature). Besides the new concept of the TTE, other key points are: non-gradient correction to the traditional formulation for the flux of buoyancy (potential temperature), and advanced analysis of the stability dependence of anisotropy of turbulence. The proposed model affords the existence of turbulence at any gradient Richardson number, Ri. Instead of the critical value of Ri separating the turbulent and the laminar regimes, the model includes its threshold value, between 0.2 and 0.3, which separates two turbulent regimes of essentially different nature: fully developed, chaotic turbulence at low Ri and weak, strongly anisotropic turbulence at large Ri. Predictions from the proposed model are consistent with available data f...
Magnetohydrodynamically generated velocities in confined plasma
International Nuclear Information System (INIS)
We investigate by numerical simulation the rotational flows in a toroid confining a conducting magnetofluid in which a current is driven by the application of externally supported electric and magnetic fields. The computation involves no microscopic instabilities and is purely magnetohydrodynamic (MHD). We show how the properties and intensity of the rotations are regulated by dimensionless numbers (Lundquist and viscous Lundquist) that contain the resistivity and viscosity of the magnetofluid. At the magnetohydrodynamic level (uniform mass density and incompressible magnetofluids), rotational flows appear in toroidal, driven MHD. The evolution of these flows with the transport coefficients, geometry, and safety factor are described
Generalized magnetofluid connections in relativistic magnetohydrodynamics.
Asenjo, Felipe A; Comisso, Luca
2015-03-20
The concept of magnetic connections is extended to nonideal relativistic magnetohydrodynamical plasmas. Adopting a general set of equations for relativistic magnetohydrodynamics including thermal-inertial, thermal electromotive, Hall, and current-inertia effects, we derive a new covariant connection equation showing the existence of generalized magnetofluid connections that are preserved during the dissipationless plasma dynamics. These connections are intimately linked to a general antisymmetric tensor that unifies the electromagnetic and fluid fields, allowing the extension of the magnetic connection notion to a much broader concept. PMID:25839284
Cosmic-ray pitch-angle scattering in imbalanced MHD turbulence simulations
Weidl, Martin S; Teaca, Bogdan; Schlickeiser, Reinhard
2015-01-01
Pitch-angle scattering rates for cosmic-ray particles in magnetohydrodynamic (MHD) simulations with imbalanced turbulence are calculated for fully evolving electromagnetic turbulence. We compare with theoretical predictions derived from the quasilinear theory of cosmic-ray diffusion for an idealized slab spectrum and demonstrate how cross helicity affects the shape of the pitch-angle diffusion coefficient. Additional simulations in evolving magnetic fields or static field configurations provide evidence that the scattering anisotropy in imbalanced turbulence is not primarily due to coherence with propagating Alfven waves, but an effect of the spatial structure of electric fields in cross-helical MHD turbulence.
A dynamics investigation into edge plasma turbulence
International Nuclear Information System (INIS)
The present experimental work investigates plasma turbulence in the edge region of magnetized high-temperature plasmas. A main topic is the turbulent dynamics parallel to the magnetic field, where hitherto only a small data basis existed, especially for very long scale lengths in the order of ten of meters. A second point of special interest is the coupling of the dynamics parallel and perpendicular to the magnetic field. This anisotropic turbulent dynamics is investigated by two different approaches. Firstly, spatially and temporally high-resolution measurements of fluctuating plasma parameters are investigated by means of two-point correlation analysis. Secondly, the propagation of signals externally imposed into the turbulent plasma background is studied. For both approaches, Langmuir probe arrays were utilized for diagnostic purposes. (orig.)
Directory of Open Access Journals (Sweden)
D. Falceta-Gonçalves
2011-01-01
Full Text Available The Interstellar Medium (ISM is a complex, multi-phase system, where the history of the stars occurs. The processes of birth and death of stars are strongly coupled to the dynamics of the ISM. The observed chaotic and diffusive motions of the gas characterize its turbulent nature. Understanding turbulence is crucial for understanding the star-formation process and the energy-mass feedback from evolved stars. Magnetic fields, threading the ISM, are also observed, making this effort even more difficult. In this work, I briefly review the main observations and the characterization of turbulence from these observable quantities. Following on, I provide a review of the physics of magnetized turbulence. Finally, I will show the main results from theoretical and numerical simulations, which can be used to reconstruct observable quantities, and compare these predictions to the observations.
Nazarenko, Sergey
2015-07-01
Wave turbulence is the statistical mechanics of random waves with a broadband spectrum interacting via non-linearity. To understand its difference from non-random well-tuned coherent waves, one could compare the sound of thunder to a piece of classical music. Wave turbulence is surprisingly common and important in a great variety of physical settings, starting with the most familiar ocean waves to waves at quantum scales or to much longer waves in astrophysics. We will provide a basic overview of the wave turbulence ideas, approaches and main results emphasising the physics of the phenomena and using qualitative descriptions avoiding, whenever possible, involved mathematical derivations. In particular, dimensional analysis will be used for obtaining the key scaling solutions in wave turbulence - Kolmogorov-Zakharov (KZ) spectra.
Dimotakis, Paul E.
2005-01-01
The ability of turbulent flows to effectively mix entrained fluids to a molecular scale is a vital part of the dynamics of such flows, with wide-ranging consequences in nature and engineering. It is a considerable experimental, theoretical, modeling, and computational challenge to capture and represent turbulent mixing which, for high Reynolds number (Re) flows, occurs across a spectrum of scales of considerable span. This consideration alone places high-Re mixing phenomena beyond the reach o...
Directory of Open Access Journals (Sweden)
Trunev A. P.
2014-05-01
Full Text Available In this article we have investigated the solutions of Maxwell's equations, Navier-Stokes equations and the Schrödinger associated with the solutions of Einstein's equations for empty space. It is shown that in some cases the geometric instability leading to turbulence on the mechanism of alternating viscosity, which offered by N.N. Yanenko. The mechanism of generation of matter from dark energy due to the geometric turbulence in the Big Bang has been discussed
An overview of Millionschikov's quasi-normality hypothesis applied to turbulence
Directory of Open Access Journals (Sweden)
Mamaloukas C.
2014-02-01
Full Text Available In this paper, we examine the zero-fourth cumulant approximation that was applied to fluctuating velocity components of homogeneous and isotropic turbulence by M.D. Millionschikov. Since the publication of the remarkable paper of Millionschikov, many authors have applied this hypothesis to solve the closure problem of turbulence. We discuss here various studies by the other authors on the developments of this hypothesis and their applications to the incompressible velocity temperature, hydrodynamic and magnetohydrodynamic fluctuating pressure fields and the general magnetohydrodynamic turbulence field. Lastly, we discuss broadly the computational difficulties that arise in turbulence problems and their possible refinements. We include also some enlightments of the process of future work that could be undertaken in this field of research
The acceleration and propagation of energetic particles in turbulent cosmic plasmas
International Nuclear Information System (INIS)
This thesis concentrates on the acceleration and propagation of energetic particles in turbulent cosmic plasmas. The stochastic acceleration of relativistic electrons by long-wavelength weak magnetohydrodynamic turbulence is considered and a model is discussed that allows the determination of both the electron energy spectrum and the wavenumber spectrum of the magnetohydrodynamic turbulence in a consistent way. The question of second phase acceleration in large solar flares and the precise form of the force exerted on the background plasma when Alfven waves are generated by fast particles are considered. The energy balance in the shock wave acceleration, the propagation of energetic particles in a high β plasma (β>102) and sheared flow as a possible source of plasma turbulence for a magnetized plasma with field-aligned flow, are discussed. (Auth./C.F.)
Model anisotropic quantum Hall states
Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su
2012-01-01
Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...
International Nuclear Information System (INIS)
This paper presents an overview of the progress made in understanding plasma turbulence. It has relied heavily on numerical simulations to gain some intuition on the physical processes underlying nonlinear interaction and as a cross check for quantitative estimates derived from weak turbulence theory or DIA-based strong turbulence theory. The mathematical description of plasmas, especially those confined in a magnetic bottle, is far more complex than the Navier-Stokes fluid. Yet because of the dispersion of the plasma eigenmodes, the DIA perhaps has greater validity in a plasma than in a Navier-Stokes fluid. Recent developments in dynamical-systems theory have not yet been implemented in plasma turbulence at the level discussed in other studies for boundary-layer turbulence. This technique has promise for evaluating the behavior of large eddies, which may dominate plasma transport as a low-order system. In the collisionless, kinetic regime, where turbulence in x, v phase space has to be addressed, the new methods involving noneigenmode entities called clumps and holes, need further evolution to gain complete acceptability. For the future, a combination of analytical tools and numerical methods may afford the optimum route. Some examples of this are revireviewed
Barzilay, Yudith
2007-01-01
We compute the structure and degree of neutronization of general relativistic magnetohydrodynamic (GRMHD) outflows originating from the inner region of neutrino-cooled disks. We consider both, outflows expelled from a hydrostatic disk corona and outflows driven by disk turbulence. We show that in outflows driven thermally from a static disk the electron fraction quickly evolves to its equilibrium value which is dominated by neutrino capture. Those outflows are generally proton rich and, under certain conditions, can be magnetically dominated. They may also provide sites for effective production of 56Ni. Centrifugally driven outflows and outflows driven by disk turbulence, on the other hand, can preserve the large in-disk neutron excess. Those outflows are, quite generally, subrelativistic by virtue of the large mass flux driven by the additional forces.
Bhatia, Tanayveer Singh
2016-01-01
The emergence of turbulence in shear flows is a well-investigated field. Yet, one of major issues is the apparent contradiction between linear stability analysis quoting a flow to be stable and results from experiments and simulations proving it to be otherwise. There is some success, in particular in astrophysical systems, based on Magneto-Rotational Instability (MRI). However, MRI requires the system to be weakly magnetized, which is not a feature of general magnetohydrodynamic (MHD) flows. Nevertheless, linear perturbations of such flows are nonnormal in nature which argues for an origin of nonlinearity therein. The idea is, nonnormal perturbations could produce huge transient energy growth (TEG), which may lead to non-linearity and further turbulence. However, so far, nonnormal effects in shear flows have not been explored much in the presence of magnetic fields. Here, we consider the perturbed visco-resistive incompressible MHD shear flows with rotation in general. Basically we consider the magnetized ve...
Dynamo onset as a first-order transition: lessons from a shell model for magnetohydrodynamics.
Sahoo, Ganapati; Mitra, Dhrubaditya; Pandit, Rahul
2010-03-01
We carry out systematic and high-resolution studies of dynamo action in a shell model for magnetohydrodynamic (MHD) turbulence over wide ranges of the magnetic Prandtl number PrM and the magnetic Reynolds number ReM. Our study suggests that it is natural to think of dynamo onset as a nonequilibrium first-order phase transition between two different turbulent, but statistically steady, states. The ratio of the magnetic and kinetic energies is a convenient order parameter for this transition. By using this order parameter, we obtain the stability diagram (or nonequilibrium phase diagram) for dynamo formation in our MHD shell model in the (PrM-1,ReM) plane. The dynamo boundary, which separates dynamo and no-dynamo regions, appears to have a fractal character. We obtain a hysteretic behavior of the order parameter across this boundary and suggestions of nucleation-type phenomena. PMID:20365864
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R.; Meliani, Z.
2008-01-01
The properties of linear Alfven, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comp
Linear wave propagation in relativistic magnetohydrodynamics
Keppens, R.; Meliani, Z.
2008-01-01
The properties of linear Alfvén, slow, and fast magnetoacoustic waves for uniform plasmas in relativistic magnetohydrodynamics (MHD) are discussed, augmenting the well-known expressions for their phase speeds with knowledge on the group speed. A 3+1 formalism is purposely adopted to make direct comp
Potential Vorticity Formulation of Compressible Magnetohydrodynamics
Arter, Wayne
2012-01-01
Compressible ideal magnetohydrodynamics (MHD) is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed.
On energy conservation in extended magnetohydrodynamics
International Nuclear Information System (INIS)
A systematic study of energy conservation for extended magnetohydrodynamic models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy
Kelvin's Canonical Circulation Theorem in Hall Magnetohydrodynamics
Shivamoggi, B K
2016-01-01
The purpose of this paper is to show that, thanks to the restoration of the legitimate connection between the current density and the plasma flow velocity in Hall magnetohydrodynamics (MHD), Kelvin's Circulation Theorem becomes valid in Hall MHD. The ion-flow velocity in the usual circulation integral is now replaced by the canonical ion-flow velocity.
On the Relativistic anisotropic configurations
Shojai, F; Stepanian, A
2016-01-01
In this paper we study anisotropic spherical polytropes within the framework of general relativity. Using the anisotropic Tolman-Oppenheimer-Volkov (TOV) equations, we explore the relativistic anisotropic Lane-Emden equations. We find how the anisotropic pressure affects the boundary conditions of these equations. Also we argue that the behaviour of physical quantities near the center of star changes in the presence of anisotropy. For constant density, a class of exact solution is derived with the aid of a new ansatz and its physical properties are discussed.
Relaxation of Anisotropic Glasses
DEFF Research Database (Denmark)
Deubener, Joachim; Martin, Birgit; Wondraczek, Lothar; Yue, Yuanzheng
2004-01-01
Anisotropic glasses are obtained from uniaxial compressing and pulling of glass forming liquids above the transition temperature range. To freeze-in, at least partly the structural state of the flowing melt, cylindrical samples were subjected to a controlled cooling process under constant load...... differential scanning calorimetry (DSC) and dilatometry. The energy release and expansion-shrinkage behaviour of the glasses are investigated as a function of the applied deformation stress. Structural origins of the frozen-in birefringence induced by viscous flow are discussed and correlation between the...
Anisotropically Inflating Universes
Barrow, J D; Barrow, John D.; Hervik, Sigbjorn
2008-01-01
We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.
Anisotropic Stars Exact Solutions
Dev, K; Dev, Krsna; Gleiser, Marcelo
2000-01-01
We study the effects of anisotropic pressure on the properties of spherically symmetric, gravitationally bound objects. We consider the full general relativistic treatment of this problem and obtain exact solutions for various form of equations of state connecting the radial and tangential pressures. It is shown that pressure anisotropy can have significant effects on the structure and properties of stellar objects. In particular, the maximum value of 2M/R can approach unity (2M/R < 8/9 for isotropic objects) and the surface redshift can be arbitrarily large.
Optics of anisotropic nanostructures
Rokushima, Katsu; Antoš, Roman; Mistrík, Jan; Višňovský, Štefan; Yamaguchi, Tomuo
2006-07-01
The analytical formalism of Rokushima and Yamakita [J. Opt. Soc. Am. 73, 901-908 (1983)] treating the Fraunhofer diffraction in planar multilayered anisotropic gratings proved to be a useful introduction to new fundamental and practical situations encountered in laterally structured periodic (both isotropic and anisotropic) multilayer media. These are employed in the spectroscopic ellipsometry for modeling surface roughness and in-depth profiles, as well as in the design of various frequency-selective elements including photonic crystals. The subject forms the basis for the solution of inverse problems in scatterometry of periodic nanostructures including magnetic and magneto-optic recording media. It has no principal limitations as for the frequencies and period to radiation wavelength ratios and may include matter wave diffraction. The aim of the paper is to make this formalism easily accessible to a broader community of students and non-specialists. Many aspects of traditional electromagnetic optics are covered as special cases from a modern and more general point of view, e.g., plane wave propagation in isotropic media, reflection and refraction at interfaces, Fabry-Perot resonator, optics of thin films and multilayers, slab dielectric waveguides, crystal optics, acousto-, electro-, and magneto-optics, diffraction gratings, etc. The formalism is illustrated on a model simulating the diffraction on a ferromagnetic wire grating.
Magnetohydrodynamical simulations of a tidal disruption in general relativity
Sadowski, A; Gafton, E; Rosswog, S; Abarca, D
2015-01-01
We perform hydro- and magnetohydrodynamical general relativistic simulations of a tidal disruption of a $0.1\\,M_\\odot$ red dwarf approaching a $10^5\\,M_\\odot$ non-rotating massive black hole on a close (impact parameter $\\beta=10$) elliptical (eccentricity $e=0.97$) orbit. We track the debris self-interaction, circularization, and the accompanying accretion through the black hole horizon. We find that the relativistic precession leads to the formation of a self-crossing shock. The dissipated kinetic energy heats up the incoming debris and efficiently generates a quasi-spherical outflow. The self-interaction is modulated because of the feedback exerted by the flow on itself. The debris quickly forms a thick, almost marginally bound disc that remains turbulent for many orbital periods. Initially, the accretion through the black hole horizon results from the self-interaction, while in the later stages it is dominated by the debris originally ejected in the shocked region, as it gradually falls back towards the h...
Radiation Magnetohydrodynamics In Global Simulations Of Protoplanetary Disks
Flock, M; González, M; Commerçon, B
2013-01-01
Our aim is to study the thermal and dynamical evolution of protoplanetary disks in global simulations, including the physics of radiation transfer and magneto-hydrodynamic (MHD) turbulence caused by the magneto-rotational instability. We develop a radiative transfer method based on the flux-limited diffusion approximation that includes frequency dependent irradiation by the central star. This hybrid scheme is implemented in the PLUTO code. The focus of our implementation is on the performance of the radiative transfer method. Using an optimized Jacobi preconditioned BiCGSTAB solver, the radiative module is three times faster than the MHD step for the disk setup we consider. We obtain weak scaling efficiencies of 70% up to 1024 cores. We present the first global 3D radiation MHD simulations of a stratified protoplanetary disk. The disk model parameters are chosen to approximate those of the system AS 209 in the star-forming region Ophiuchus. Starting the simulation from a disk in radiative and hydrostatic equi...
Solar Wind Collisional Age from a Global Magnetohydrodynamics Simulation
Chhiber, R.; Usmanov, AV; Matthaeus, WH; Goldstein, ML
2016-04-01
Simple estimates of the number of Coulomb collisions experienced by the interplanetary plasma to the point of observation, i.e., the “collisional age”, can be usefully employed in the study of non-thermal features of the solar wind. Usually these estimates are based on local plasma properties at the point of observation. Here we improve the method of estimation of the collisional age by employing solutions obtained from global three-dimensional magnetohydrodynamics simulations. This enables evaluation of the complete analytical expression for the collisional age without using approximations. The improved estimation of the collisional timescale is compared with turbulence and expansion timescales to assess the relative importance of collisions. The collisional age computed using the approximate formula employed in previous work is compared with the improved simulation-based calculations to examine the validity of the simplified formula. We also develop an analytical expression for the evaluation of the collisional age and we find good agreement between the numerical and analytical results. Finally, we briefly discuss the implications for an improved estimation of collisionality along spacecraft trajectories, including Solar Probe Plus.
DEFF Research Database (Denmark)
W. Davis, S.; M. Stone, J.; Pessah, Martin Elias
2010-01-01
We examine the effects of density stratification on magnetohydrodynamic turbulence driven by the magnetorotational instability in local simulations that adopt the shearing box approximation. Our primary result is that, even in the absence of explicit dissipation, the addition of vertical gravity...
Tchen, C. M.
1986-01-01
Theoretical and numerical works in atmospheric turbulence have used the Navier-Stokes fluid equations exclusively for describing large-scale motions. Controversy over the existence of an average temperature gradient for the very large eddies in the atmosphere suggested that a new theoretical basis for describing large-scale turbulence was necessary. A new soliton formalism as a fluid analogue that generalizes the Schrodinger equation and the Zakharov equations has been developed. This formalism, processing all the nonlinearities including those from modulation provided by the density fluctuations and from convection due to the emission of finite sound waves by velocity fluctuations, treats large-scale turbulence as coalescing and colliding solitons. The new soliton system describes large-scale instabilities more explicitly than the Navier-Stokes system because it has a nonlinearity of the gradient type, while the Navier-Stokes has a nonlinearity of the non-gradient type. The forced Schrodinger equation for strong fluctuations describes the micro-hydrodynamical state of soliton turbulence and is valid for large-scale turbulence in fluids and plasmas where internal waves can interact with velocity fluctuations.
Gauthier, Serge; Keane, Christopher J.; Niemela, Joseph J.; Abarzhi, Snezhana I.
2013-07-01
physical and numerical experiments in material science. Demianov et al carry out turbulent mixing RT simulations with non-Newtonian fluids. Winkler and Abel carry out thermal convection experiments on very thin freestanding films, where turbulent mixing extends nearly to nano-scales. The work of Winkler and Abel was recognized at TMB-2011 with the Best Poster Award issued by Physica Scripta . Ziaei-Rad numerically investigates pressure drop and heat transfer in laminar and turbulent nano-fluid flow consisting of Al2O3 and water. Astrophysics. In their state-of-the-art simulations, Endeve et al present a study of turbulence and magnetic field amplification from spiral stationary accretion shock instability in core-collapse supernovae. Gibson questions if turbulence and fossil turbulence may lead to life in the Universe and puts forward a set of arguments to support this point of view. Magneto-hydrodynamics. Two research papers are particularly devoted to magneto-hydrodynamics (MHD). Karelsky et al study nonlinear dynamics of MHD in the shallow water approximation over an arbitrary surface within the Riemann invariant form. Kitiashvili et al report on turbulent properties of the 'Quiet Sun' by comparing kinetic energy spectra that are obtained from infrared TiO observations with the New Solar Telescope with 3D radiative MHD numerical simulations employing the state-of-the-art 'SolarBox' code. Canonical plasmas. Four papers are devoted to canonical plasmas. Baryshnikov et al investigate the influence of dust concentration on shock wave splitting in discharge plasmas in different gases. Kemel et al use direct numerical simulations and mean-field simulations to investigate the effects of non-uniformity of the magnetic field on the suppression of the turbulent pressure, which tends to make the mean magnetic field more non-uniform. Pradipta and Lee investigate, by means of experiments and theoretical analysis, the acoustic gravity waves created by anomalous heat sources. In a
Interaction of HVCs with the Outskirts of Galactic Disks: Turbulence
Santillan, A; Kim, J; Franco, J; Hernandez-Cervantes, L
2009-01-01
There exist many physical processes that may contribute to the driving of turbulence in galactic disks. Some of them could drive turbulence even in the absence of star formation. For example, hydrodynamic (HD) or magnetohydrodynamic (MHD) instabilities, frequent mergers of small satellite clumps, ram pressure, or infalling gas clouds. In this work we present numerical simulations to study the interaction of compact high velocity clouds (CHVC) with the outskirts of magnetized gaseous disks. With our numerical simulations we show that the rain of small HVCs onto the disk is a potential source of random motions in the outer parts of HI disks.
Anisotropic diffusion of volatile pollutants at air-water interface
Directory of Open Access Journals (Sweden)
Li-ping CHEN
2013-04-01
Full Text Available The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3 release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Anisotropic diffusion of volatile pollutants at air-water interface
Institute of Scientific and Technical Information of China (English)
Li-ping CHEN; Jing-tao CHENG; Guang-fa DENG
2013-01-01
The volatile pollutants that spill into natural waters cause water pollution. Air pollution arises from the water pollution because of volatilization. Mass exchange caused by turbulent fluctuation is stronger in the direction normal to the air-water interface than in other directions due to the large density difference between water and air. In order to explore the characteristics of anisotropic diffusion of the volatile pollutants at the air-water interface, the relationship between velocity gradient and mass transfer rate was established to calculate the turbulent mass diffusivity. A second-order accurate smooth transition differencing scheme (STDS) was proposed to guarantee the boundedness for the flow and mass transfer at the air-water interface. Simulations and experiments were performed to study the trichloroethylene (C2HCl3) release. By comparing the anisotropic coupling diffusion model, isotropic coupling diffusion model, and non-coupling diffusion model, the features of the transport of volatile pollutants at the air-water interface were determined. The results show that the anisotropic coupling diffusion model is more accurate than the isotropic coupling diffusion model and non-coupling diffusion model. Mass transfer significantly increases with the increase of the air-water relative velocity at a low relative velocity. However, at a higher relative velocity, an increase in the relative velocity has no effect on mass transfer.
Anisotropic spheres in general relativity
International Nuclear Information System (INIS)
A prescription originally conceived for perfect fluids is extended to the case of anisotropic pressures. The method is used to obtain exact analytical solutions of the Einstein equations for spherically symmetric selfgravitating distribution of anisotropic matter. The solutions are matched to the Schwarzschild exterior metric. (author). 15 refs
Magnetic reconnection as an element of turbulence
Directory of Open Access Journals (Sweden)
S. Servidio
2011-10-01
Full Text Available In this work, recent advances on the study of reconnection in turbulence are reviewed. Using direct numerical simulations of decaying incompressible two-dimensional magnetohydrodynamics (MHD, it was found that in fully developed turbulence complex processes of reconnection locally occur (Servidio et al., 2009, 2010a. In this complex scenario, reconnection is spontaneous but locally driven by the fields, with the boundary conditions provided by the turbulence. Matching classical turbulence analysis with a generalized Sweet-Parker theory, the statistical features of these multiple-reconnection events have been identified. A discussion on the accuracy of our algorithms is provided, highlighting the necessity of adequate spatial resolution. Applications to the study of solar wind discontinuities are reviewed, comparing simulations to spacecraft observations. New results are shown, studying the time evolution of these local reconnection events. A preliminary study on the comparison between MHD and Hall MHD is reported. Our new approach to the study of reconnection as an element of turbulence has broad applications to space plasmas, shedding a new light on the study of magnetic reconnection in nature.
International Nuclear Information System (INIS)
This paper is an introduction course in modelling turbulent thermohydraulics, aimed at computational fluid dynamics users. No specific knowledge other than the Navier Stokes equations is required beforehand. Chapter I (which those who are not beginners can skip) provides basic ideas on turbulence physics and is taken up in a textbook prepared by the teaching team of the ENPC (Benque, Viollet). Chapter II describes turbulent viscosity type modelling and the 2k-ε two equations model. It provides details of the channel flow case and the boundary conditions. Chapter III describes the 'standard' (Rij-ε) Reynolds tensions transport model and introduces more recent models called 'feasible'. A second paper deals with heat transfer and the effects of gravity, and returns to the Reynolds stress transport model. (author)
Turbulent Reconnection in Relativistic Plasmas And Effects of Compressibility
Takamoto, Makoto; Lazarian, Alexandre
2015-01-01
We report turbulence effects on magnetic reconnection in relativistic plasmas using 3-dimensional relativistic resistive magnetohydrodynamics simulations. We found reconnection rate became independent of the plasma resistivity due to turbulence effects similarly to non-relativistic cases. We also found compressible turbulence effects modified the turbulent reconnection rate predicted in non-relativistic incompressible plasmas; The reconnection rate saturates and even decays as the injected velocity approaches to the Alfv\\'en velocity. Our results indicate the compressibility cannot be neglected when compressible component becomes about half of incompressible mode occurring when the Alfv\\'en Mach number reaches about $0.3$. The obtained maximum reconnection rate is around $0.05$ to $0.1$, which will be able to reach around $0.1$ to $0.2$ if injection scales are comparable to the sheet length.
Numerical Simulations of Driven Supersonic Relativistic MHD Turbulence
Zrake, Jonathan; 10.1063/1.3621748
2011-01-01
Models for GRB outflows invoke turbulence in relativistically hot magnetized fluids. In order to investigate these conditions we have performed high-resolution three-dimensional numerical simulations of relativistic magneto-hydrodynamical (RMHD) turbulence. We find that magnetic energy is amplified to several percent of the total energy density by turbulent twisting and folding of magnetic field lines. Values of epsilon_B near 1% are thus naturally expected. We study the dependence of saturated magnetic field energy fraction as a function of Mach number and relativistic temperature. We then present power spectra of the turbulent kinetic and magnetic energies. We also present solenoidal (curl-like) and dilatational (divergence-like) power spectra of kinetic energy. We propose that relativistic effects introduce novel couplings between these spectral components. The case we explore in most detail is for equal amounts of thermal and rest mass energy, corresponding to conditions after collisions of shells with re...
Intermittent heating of the solar corona by MHD turbulence
Directory of Open Access Journals (Sweden)
É. Buchlin
2007-10-01
Full Text Available As the dissipation mechanisms considered for the heating of the solar corona would be sufficiently efficient only in the presence of small scales, turbulence is thought to be a key player in the coronal heating processes: it allows indeed to transfer energy from the large scales to these small scales. While Direct numerical simulations which have been performed to investigate the properties of magnetohydrodynamic turbulence in the corona have provided interesting results, they are limited to small Reynolds numbers. We present here a model of coronal loop turbulence involving shell-models and Alfvén waves propagation, allowing the much faster computation of spectra and turbulence statistics at higher Reynolds numbers. We also present first results of the forward-modelling of spectroscopic observables in the UV.
International Nuclear Information System (INIS)
A generalization of a transformation due to Kurskov and Ozernoi is used to rewrite the usual equations governing subsonic turbulence in Robertson-Walker cosmological models as Navier-Stokes equations with a time-dependent viscosity. This paper first rederives some well-known results in a very simple way by means of this transformation. The main result however is that the establishment of a Kolmogorov spectrum at recombination appears to be incompatible with subsonic turbulence. The conditions after recombination are also discussed briefly. (author)
Broken Ergodicity in Ideal, Homogeneous, Incompressible Turbulence
Morin, Lee; Shebalin, John; Fu, Terry; Nguyen, Phu; Shum, Victor
2010-01-01
We discuss the statistical mechanics of numerical models of ideal homogeneous, incompressible turbulence and their relevance for dissipative fluids and magnetofluids. These numerical models are based on Fourier series and the relevant statistical theory predicts that Fourier coefficients of fluid velocity and magnetic fields (if present) are zero-mean random variables. However, numerical simulations clearly show that certain coefficients have a non-zero mean value that can be very large compared to the associated standard deviation. We explain this phenomena in terms of broken ergodicity', which is defined to occur when dynamical behavior does not match ensemble predictions on very long time-scales. We review the theoretical basis of broken ergodicity, apply it to 2-D and 3-D fluid and magnetohydrodynamic simulations of homogeneous turbulence, and show new results from simulations using GPU (graphical processing unit) computers.
Averaging anisotropic cosmologies
Barrow, J D; Barrow, John D.; Tsagas, Christos G.
2006-01-01
We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...
Thermodynamics of anisotropic branes
Ávila, Daniel; Patiño, Leonardo; Trancanelli, Diego
2016-01-01
We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a `Minkowski embedding', in which they lie outside of the horizon, and a `black hole embedding', in which they fall into the horizon. This transition depends on two independent dimensionless ratios, which are formed out of the black hole temperature, its anisotropy parameter, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.
Protostellar outflows with Smoothed Particle Magnetohydrodynamics (SPMHD)
Bürzle, Florian; Stasyszyn, Federico; Dolag, Klaus; Klessen, Ralf S
2011-01-01
The protostellar collapse of a molecular cloud core is usually accompanied by outflow phenomena. The latter are thought to be driven by magnetorotational processes from the central parts of the protostellar disc. While several 3D AMR/nested grid studies of outflow phenomena in collapsing magnetically supercritical dense cores have been reported in the literature, so far no such simulation has been performed using the Smoothed Particle Hydrodynamics (SPH) method. This is mainly due to intrinsic numerical difficulties in handling magnetohydrodynamics within SPH, which only recently were partly resolved. In this work, we use an approach where we evolve the magnetic field via the induction equation, augmented with stability correction and divergence cleaning schemes. We consider the collapse of a rotating core of one solar mass, threaded by a weak magnetic field initially parallel to the rotation axis so that the core is magnetically supercritical. We show, that Smoothed Particle Magnetohydrodynamics (SPMHD) is a...
Three-dimensional magnetohydrodynamic equilibria - I
International Nuclear Information System (INIS)
By using an analytical method, the paper treats the three-dimensional magnetohydrodynamic equilibria of an incompressible, perfectly conducting plasma with an embedded magnetic field in the presence of a gravitational field. We derive a nonlinear second-order partial differential equation for the magnetic potential or stream function. According to the basic equation obtained by us, we analyse a simple example of solutions with the realistic physical property. This set of solutions represents a magnetohydrodynamic equilibrium model for the solar prominence. The results show that the z-component of the inertia force is everywhere upward, adding to upward the Lorentz force and pressure gradient in supporting the plasma weight in a magnetic well. (author)
A Meshless Method for Magnetohydrodynamics and Applications to Protoplanetary Disks
McNally, Colin P.
2012-08-01
study. Nonetheless, how the test is posed circumvents the issues raised by tests starting from a sharp contact discontinuity yet it still shows the poor performance of Smoothed Particle Hydrodynamics. We then comment on the connection between this behavior and the underlying lack of zeroth-order consistency in Smoothed Particle Hydrodynamics interpolation. In astrophysical magnetohydrodynamics (MHD) and electrodynamics simulations, numerically enforcing the divergence free constraint on the magnetic field has been difficult. We observe that for point-based discretization, as used in finite-difference type and pseudo-spectral methods, the divergence free constraint can be satisfied entirely by a choice of interpolation used to define the derivatives of the magnetic field. As an example we demonstrate a new class of finite-difference type derivative operators on a regular grid which has the divergence free property. This principle clarifies the nature of magnetic monopole errors. The principles and techniques demonstrated in this chapter are particularly useful for the magnetic field, but can be applied to any vector field. Finally, we examine global zoom-in simulations of turbulent magnetorotationally unstable flow. We extract and analyze the high-current regions produced in the turbulent flow. Basic parameters of these regions are abstracted, and we build one dimensional models including non-ideal MHD, and radiative transfer. For sufficiently high temperatures, an instability resulting from the temperature dependence of the Ohmic resistivity is found. This instability concentrates current sheets, resulting in the possibility of rapid heating from temperatures on the order of 600 Kelvin to 2000 Kelvin in magnetorotationally turbulent regions of protoplanetary disks. This is a possible local mechanism for the melting of chondrules and the formation of other high-temperature materials in protoplanetary disks.
Experimental study of turbulent flow with dispersed rod-like particles through optical measurements
Abbasi Hoseini, Afshin
2014-01-01
The knowledge of the behavior of non-spherical particles suspended in turbulent flows covers a wide range of applications in engineering and science. Dispersed two-phase flows and turbulence are the most challenging subjects in engineering, and when combined it gives rise to more complexities as the result of the inherent stochastic nature of the turbulence of the carrier-phase together with the random distribution of the dispersed phase. Moreover, for anisotropic particles the coupling betwe...
Review of wave-turbulence interactions in the stable atmospheric boundary layer
Yagüe Anguis, Carlos; otros, ...
2015-01-01
Flow in a stably stratified environment is characterized by anisotropic and intermittent turbulence and wavelike motions of varying amplitudes and periods. Understanding turbulence intermittency and wave-turbulence interactions in a stably stratified flow remains a challenging issue in geosciences including planetary atmospheres and oceans. The stable atmospheric boundary layer (SABL) commonly occurs when the ground surface is cooled by longwave radiation emission such as at night over land s...
Capacitor discharges, magnetohydrodynamics, X-rays, ultrasonics
Früngel, Frank B A
1965-01-01
High Speed Pulse Technology, Volume 1: Capacitor Discharges - Magnetohydrodynamics - X-Rays - Ultrasonics deals with the theoretical and engineering problems that arise in the capacitor discharge technique.This book discusses the characteristics of dielectric material, symmetrical switch tubes with mercury filling, and compensation conductor forms. The transformed discharge for highest current peaks, ignition transformer for internal combustion engines, and X-ray irradiation of subjects in mechanical motion are also elaborated. This text likewise covers the transformed capacitor discharge in w
On energy conservation in extended magnetohydrodynamics
Kimura, Keiji; Morrison, P. J.
2014-01-01
A systematic study of energy conservation for extended magnetohydrodynamic (MHD) models that include Hall terms and electron inertia is performed. It is observed that commonly used models do not conserve energy in the ideal limit, i.e., when viscosity and resistivity are neglected. In particular, a term in the momentum equation that is often neglected is seen to be needed for conservation of energy.
Nambu brackets in fluid mechanics and magnetohydrodynamics
International Nuclear Information System (INIS)
Concrete examples of the construction of Nambu brackets for equations of motion (both 3D and 2D) of Boussinesq stratified fluids and also for magnetohydrodynamical equations are given. It serves a generalization of Hamiltonian formulation for the considered equations of motion. Two alternative Nambu formulations are proposed, first by using fluid dynamical (kinetic) helicity and/or enstrophy as constitutive elements and second, by using the existing conservation laws of the governing equation.
Intrinsic rotation of toroidally confined magnetohydrodynamics
Morales, Jorge; Bos, Wouter; Schneider, Kai; Montgomery, David
2012-01-01
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics (MHD) in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of t...
Decaying magnetohydrodynamics: effects of initial conditions
Basu, Abhik
1999-01-01
We study the effects of homogenous and isotropic initial conditions on decaying Magnetohydrodynamics (MHD). We show that for an initial distribution of velocity and magnetic field fluctuations, appropriately defined structure functions decay as power law in time. We also show that for a suitable choice of initial cross-correlations between velocity and magnetic fields even order structure functions acquire anomalous scaling in time where as scaling exponents of the odd order structure functio...
Potential vorticity formulation of compressible magnetohydrodynamics.
Arter, Wayne
2013-01-01
Compressible ideal magnetohydrodynamics is formulated in terms of the time evolution of potential vorticity and magnetic flux per unit mass using a compact Lie bracket notation. It is demonstrated that this simplifies analytic solution in at least one very important situation relevant to magnetic fusion experiments. Potentially important implications for analytic and numerical modelling of both laboratory and astrophysical plasmas are also discussed. PMID:23383802
New approach to nonrelativistic ideal magnetohydrodynamics
Banerjee, Rabin; Kumar, Kuldeep
2016-01-01
We provide a novel action principle for nonrelativistic ideal magnetohydrodynamics in the Eulerian scheme exploiting a Clebsh-type parametrisation. Both Lagrangian and Hamiltonian formulations have been considered. Within the Hamiltonian framework, two complementary approaches have been discussed using Dirac's constraint analysis. In one case the Hamiltonian is canonical involving only physical variables but the brackets have a noncanonical structure, while the other retains the canonical str...
Smoothed Particle Magnetohydrodynamics (some shocking results...)
Price, D. J.; Monaghan, J. J.
2003-01-01
There have been some issues in the past in attempts to simulate magnetic fields using the Smoothed Particle Hydrodynamics (SPH) method. SPH is well suited to star formation problems because of its Lagrangian nature. We present new, stable and conservative methods for magnetohydrodynamics (MHD) in SPH and present numerical tests on both waves and shocks in one dimension to show that it gives robust and accurate results.
Beltrami States in 2D Electron Magnetohydrodynamics
Shivamoggi, B. K.
2015-01-01
In this paper, the Hamiltonian formulations along with the Poisson brackets for two-dimensional (2D) electron magnetohydrodynamics (EMHD) flows are developed. These formulations are used to deduce the Beltrami states for 2D EMHD flows. In the massless electron limit, the EMHD Beltrami states reduce to the force-free states, though there is no force-free Beltrami state in the general EMHD case.
Singular limits of the equations of magnetohydrodynamics
P. Kukučka
2011-01-01
This paper studies the asymptotic limit for solutions to the equations of magnetohydrodynamics, specifically, the Navier-Stokes-Fourier system describing the evolution of a compressible, viscous, and heat conducting fluid coupled with the Maxwell equations governing the behavior of the magnetic field, when Mach number and Alfv,n number tends to zero. The introduced system is considered on a bounded spatial domain in R(3), supplemented with conservative boundary conditions. Convergence towards...
Metriplectic framework for dissipative magneto-hydrodynamics
M. Materassi; Tassi, Emanuele
2012-01-01
The metriplectic framework, which allows for the formulation of an algebraic structure for dissipative systems, is applied to visco-resistive Magneto-Hydrodynamics (MHD), adapting what had already been done for non-ideal Hydrodynamics (HD). The result is obtained by extending the HD symmetric bracket and free energy to include magnetic field dynamics and resistive dissipation. The correct equations of motion are obtained once one of the Casimirs of the Poisson bracket for ideal MHD is identif...
Higher-order methods for relativistic magnetohydrodynamics
Núñez-de la Rosa, Jonatan; Munz, Claus-Dieter
2014-01-01
A higher-order finite volume method based on WENO7 reconstruction for solving the relativistic magnetohydrodynamics equations in two-dimensional domains is presented. In the presence of strong shocks, a WENO3 reconstruction is used instead. The time discretization is performed by a Strong Stability-Preserving Runge-Kutta method of fourth order. Numerical results include the Orszag-Tang vortex, the Rotor problem and the Spherical Blast Wave problem.
Generation of Coherent Structures in Electron Magnetohydrodynamics
Dastgeer, S
2003-01-01
Nonlinear coherent vortices of two-dimensional incompressible electron magnetohydrodynamics (EMHD) are investigated in a îow in which curl of generalized electron momenta is frozen into electron component of îow against immobile ions background. The vortices are found to be generated through nonlinear self interaction of relatively fast electron whistler modes, when they are subject to modulational instability. The unstable EMHD modes are identiìed in the spectrum that lead to localized coher...
Relabeling symmetries in hydrodynamics and magnetohydrodynamics
Energy Technology Data Exchange (ETDEWEB)
Padhye, N.; Morrison, P.J.
1996-04-01
Lagrangian symmetries and concomitant generalized Bianchi identities associated with the relabeling of fluid elements are found for hydrodynamics and magnetohydrodynamics (MHD). In hydrodynamics relabeling results in Ertel`s theorem of conservation of potential vorticity, while in MHD it yields the conservation of cross helicity. The symmetries of the reduction from Lagrangian (material) to Eulerian variables are used to construct the Casimir invariants of the Hamiltonian formalism.
International Nuclear Information System (INIS)
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers model to statistical physics, cosmology, and fluid dynamics. Also Burgers turbulence appeared as one of the simplest instances of a nonlinear system out of equilibrium. The study of random Lagrangian systems, of stochastic partial differential equations and their invariant measures, the theory of dynamical systems, the applications of field theory to the understanding of dissipative anomalies and of multiscaling in hydrodynamic turbulence have benefited significantly from progress in Burgers turbulence. The aim of this review is to give a unified view of selected work stemming from these rather diverse disciplines
Energy Technology Data Exchange (ETDEWEB)
Talbot, L.; Cheng, R.K. [Lawrence Berkeley Laboratory, CA (United States)
1993-12-01
Turbulent combustion is the dominant process in heat and power generating systems. Its most significant aspect is to enhance the burning rate and volumetric power density. Turbulent mixing, however, also influences the chemical rates and has a direct effect on the formation of pollutants, flame ignition and extinction. Therefore, research and development of modern combustion systems for power generation, waste incineration and material synthesis must rely on a fundamental understanding of the physical effect of turbulence on combustion to develop theoretical models that can be used as design tools. The overall objective of this program is to investigate, primarily experimentally, the interaction and coupling between turbulence and combustion. These processes are complex and are characterized by scalar and velocity fluctuations with time and length scales spanning several orders of magnitude. They are also influenced by the so-called {open_quotes}field{close_quotes} effects associated with the characteristics of the flow and burner geometries. The authors` approach is to gain a fundamental understanding by investigating idealized laboratory flames. Laboratory flames are amenable to detailed interrogation by laser diagnostics and their flow geometries are chosen to simplify numerical modeling and simulations and to facilitate comparison between experiments and theory.
Hamiltonian and action principle formalisms for spin-1/2 magnetohydrodynamics
International Nuclear Information System (INIS)
A Hamiltonian and Action Principle formulation of spin-1/2 magnetohydrodynamics is presented via a first-principles derivation of the underlying Lagrangian, and the associated Hamiltonian. The derivation invokes the notion of “frozen-in” constraints, symmetry breaking, and similarities with Ginzburg-Landau theory to arrive at the relevant terms in the Hamiltonian. The model thus obtained includes the effects of spin and other quantum corrections and is shown to be in full agreement with existent models in the literature. It is also indicated how two-fluid effects, gyroviscosity, and anisotropic pressure can be included in the model, in addition to incorporating higher-order (nonlinear) quantum spin corrections. An interesting analogy with the theory of liquid crystals is also highlighted
Asymptotic solutions of magnetohydrodynamics equations near the derivatives discontinuity lines
International Nuclear Information System (INIS)
Asymptotic solutions of one-dimensional and scalar magnetohydrodynamics equations near the derivatives discontinuity lines have been discussed. The equations of magnetohydrodynamics for the cases of finite and infinite conductivities are formulated and the problem of eigenvalues and eigenvectors is solved. The so called transport equations which describe the behaviour of derivatives in solutions of the quasilinear equations have been used to find the asymptotic solutions of the magnetohydrodynamics equations. (S.B.)
Dust polarization and ISM turbulence
Caldwell, Robert R; Kamionkowski, Marc
2016-01-01
Perhaps the most intriguing result of Planck's dust-polarization measurements is the observation that the power in the E-mode polarization is twice that in the B mode, as opposed to pre-Planck expectations of roughly equal dust powers in E and B modes. Here we show how the E- and B-mode powers depend on the detailed properties of the fluctuations in the magnetized interstellar medium. These fluctuations are classified into the slow, fast, and Alfv\\'en magnetohydrodynamic (MHD) waves, which are determined once the ratio of gas to magnetic-field pressures is specified. We also parametrize models in terms of the power amplitudes and power anisotropies for the three types of waves. We find that the observed EE/BB ratio (and its scale invariance) and positive TE correlation cannot be easily explained in terms of favored models for MHD turbulence. The observed power-law index for temperature/polarization fluctuations also disfavors MHD turbulence. We thus speculate that the 0.1--30 pc length scales probed by these ...
Mixing in Magnetized Turbulent Medium
Sur, Sharanya; Scannapieco, Evan
2014-01-01
Turbulent motions are essential to the mixing of entrained fluids and are also capable of amplifying weak initial magnetic fields by small-scale dynamo action. Here we perform a systematic study of turbulent mixing in magnetized media, using three-dimensional magnetohydrodynamic simulations that include a scalar concentration field. We focus on how mixing depends on the magnetic Prandtl number, Pm, from 1 to 4 and the Mach number, M}, from 0.3 to 2.4. For all subsonic flows, we find that the velocity power spectrum has a k^-5/3 slope in the early, kinematic phase, but steepens due to magnetic back reactions as the field saturates. The scalar power spectrum, on the other hand, flattens compared to k^-5/3 at late times, consistent with the Obukohov-Corrsin picture of mixing as a cascade process. At higher Mach numbers, the velocity power spectrum also steepens due to the presence of shocks, and the scalar power spectrum again flattens accordingly. Scalar structures are more intermittent than velocity structures...
Distributed chaos tuned to large scale coherent motions in turbulence
Bershadskii, A
2016-01-01
It is shown, using direct numerical simulations and laboratory experiments data, that distributed chaos is often tuned to large scale coherent motions in anisotropic inhomogeneous turbulence. The examples considered are: fully developed turbulent boundary layer (range of coherence: $14 < y^{+} < 80$), turbulent thermal convection (in a horizontal cylinder), and Cuette-Taylor flow. Two ways of the tuning have been described: one via fundamental frequency (wavenumber) and another via subharmonic (period doubling). For the second way the large scale coherent motions are a natural component of distributed chaos. In all considered cases spontaneous breaking of space translational symmetry is accompanied by reflexional symmetry breaking.
Multiscale three-point velocity increment correlation in turbulent flows
International Nuclear Information System (INIS)
The three-point velocity increment correlation function is proposed to represent the multiscale correlations in turbulent flows. The inertial–inertial correlation and the inertial–dissipative correlation are discussed due to their endogenetic properties in turbulence and their roles in large-eddy simulation. The zero-correlation points are then emphasized as equilibrium points between them. The credibility of this theoretical result is numerically verified in both isotropic and anisotropic flows. Results imply the universality of this zero-correlation scaling in different turbulent flows. This work is expected to be a dependable theoretical base for creating multiscale subgrid models in large-eddy simulation.
International Nuclear Information System (INIS)
Theoretical studies of magnetohydrodynamic (MHD) turbulence and observations of solar wind fluctuations suggest that MHD turbulence in the interstellar medium is anisotropic at small scales, with smooth variations along the background magnetic field and sharp variations perpendicular to the background field. Turbulence with this anisotropy is inefficient at scattering cosmic rays, and thus the scattering rate ν may be smaller than has been traditionally assumed in diffusion models of Galactic cosmic-ray propagation, at least for cosmic-ray energies E above 1011-1012 eV at which self-confinement is not possible. In this paper, it is shown that Galactic cosmic rays can be effectively confined through magnetic reflection by molecular clouds, even when turbulent scattering is weak. Elmegreen's quasi-fractal model of molecular-cloud structure is used to argue that a typical magnetic field line passes through a molecular cloud complex once every ∼300 pc. Once inside the complex, the field line will in most cases be focused into one or more dense clumps in which the magnetic field can be much stronger than the average field in the intercloud medium (ICM). Cosmic rays following field lines into cloud complexes are most often magnetically reflected back into the ICM, since strong-field regions act as magnetic mirrors. For a broad range of cosmic-ray energies, a cosmic ray initially following some particular field line separates from that field line sufficiently slowly that the cosmic ray can be trapped between neighboring cloud complexes for long periods of time. The suppression of cosmic-ray diffusion due to magnetic trapping is calculated in this paper with the use of phenomenological arguments, asymptotic analysis, and Monte Carlo particle simulations. Formulas for the coefficient of diffusion perpendicular to the Galactic disk are derived for several different parameter regimes within the E-ν plane. In one of these parameter regimes in which scattering is weak, it
Anisotropic Inflation with General Potentials
Shi, Jiaming; Qiu, Taotao
2015-01-01
Anomalies in recent observational data indicate that there might be some "anisotropic hair" generated in an inflation period. To obtain general information about the effects of this anisotropic hair to inflation models, we studied anisotropic inflation models that involve one vector and one scalar using several types of potentials. We determined the general relationship between the degree of anisotropy and the fraction of the vector and scalar fields, and concluded that the anisotropies behave independently of the potentials. We also generalized our study to the case of multi-directional anisotropies.
DNS and k-ε model simulation of MHD turbulent channel flows with heat transfer
International Nuclear Information System (INIS)
In this study, the magneto-hydro-dynamic (MHD) pressure loss and heat-transfer characteristics of the low-magnetic Reynolds number and higher Prandtl number (Pr) fluid such as the FLiBe, were investigated by means of direct numerical simulation (DNS) and the evaluation of MHD turbulence models was also carried out in higher Reynolds number (Re) condition. As the results, the similarity-law between the velocity and the temperature profiles was not satisfied with increase of Hartman number (Ha) and was noticeable at the near critical Ha condition to maintain turbulent flow. In higher Re condition, MHD turbulence models coupled with k-ε model of turbulence can reproduce the MHD pressure loss trend with increase of Ha. However, the turbulent model which can consider the anisotropy of the Reynolds stresses and the local change of the turbulent Prandtl number might be required in the view point of quantitative prediction
Two regimes of forced turbulent convection
Eidelman, A; Kleeorin, N; Rogachevskii, I; Sapir-Katiraie, I
2009-01-01
We study experimentally a forced turbulent convection in the Rayleigh-B\\'{e}nard apparatus with an additional source of turbulence produced by the two oscillating grids located nearby the side walls of the chamber. Two different regimes have been observed in the forced turbulent convection. When the frequency of the grid oscillations f>2 Hz, the large-scale circulation (LSC) is totally destroyed, and the destruction of the LSC is accompanied by a strong change of the mean temperature distribution. For the very low frequency the thermal structure inside the LSC is inhomogeneous and anisotropic. The hot thermal plumes accumulate at one side of LSC, and cold plumes concentrate at the opposite side of LSC. The mean temperature gradient in the horizontal direction inside the LSC is significantly larger than in the vertical direction. For the high frequency (f > 10 Hz), LSC has not been observed and the mean temperature gradient in the central flow region in the vertical direction, \
Lambda-effect from forced turbulence simulations
Käpylä, P J
2008-01-01
Aims: We determine the components of the $\\Lambda$-effect tensor that quantifies the contributions to the turbulent momentum transport even for uniform rotation. Methods: Three-dimensional numerical simulations are used to study turbulent transport in triply periodic cubes under the influence of rotation and anisotropic forcing. Comparison is made with analytical results obtained via the so-called minimal tau-approximation. Results: In the case where the turbulence intensity in the vertical direction dominates, the vertical stress is always negative. This situation is expected to occur in stellar convection zones. The horizontal component of the stress is weaker and exhibits a maximum at latitude 30 degrees - regardless of how rapid the rotation is. The minimal tau-approximation captures many of the qualitative features of the numerical results, provided the relaxation time tau is close to the turnover time, i.e. the Strouhal number is of order unity.
Inlet free-stream turbulence effects on diffuser performance
Hoffman, J. A.; Gonzales, G.
1983-01-01
The performance of a subsonic two dimensional diffuser was experimentally evaluated as a function of inlet free-stream turbulence parameters. Anisotropic inlet free-stream turbulence with the eddy axis perpendicular to the flow and parallel to the diverging walls of the diffuser appears to be more effective at transmitting energy to the diverging walls of the diffuser, thereby improving diffuser performance, as compared to isotropic turbulence or anisotropic turbulence with the eddy axis perpendicular to the diverging walls of the diffuser. The pressure recovery of the diffuser was found to be strongly dependent upon the inlet free-stream total turbulence intensity, was independent of eddy size for large eddy dimensions, and was dependent upon eddy size for small eddy dimensions. The improvement in the diffuser's static pressure recovery coefficient at a total included divergence angle of 20 deg, compared to the low inlet turbulence case, was found to be as much as 21 times larger than the pressure loss across the turbulence generators.
Gradient expansion for anisotropic hydrodynamics
Florkowski, Wojciech; Spaliński, Michał
2016-01-01
We compute the gradient expansion for anisotropic hydrodynamics. The results are compared with the corresponding expansion of the underlying kinetic-theory model with the collision term treated in the relaxation time approximation. We find that a recent formulation of anisotropic hydrodynamics based on an anisotropic matching principle yields the first three terms of the gradient expansion in agreement with those obtained for the kinetic theory. This gives further support for this particular hydrodynamic model as a good approximation of the kinetic-theory approach. We further find that the gradient expansion of anisotropic hydrodynamics is an asymptotic series, and the singularities of the analytic continuation of its Borel transform indicate the presence of non-hydrodynamic modes.
Photon states in anisotropic media
Indian Academy of Sciences (India)
Deepak Kumar
2002-08-01
Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.
The fundamental difference between shear alpha viscosity and turbulent magnetorotational stresses
DEFF Research Database (Denmark)
Pessah, Martin Elias; Chan, Chi-kwan; Psaltis, Dimitrios
2006-01-01
Numerical simulations of turbulent, magnetized, differentially rotating flows driven by the magnetorotational instability are often used to calculate the effective values of alpha viscosity that is invoked in analytical models of accretion discs. In this paper we use various dynamical models of...... turbulent magnetohydrodynamic stresses, as well as numerical simulations of shearing boxes, to show that angular momentum transport in MRI-driven accretion discs cannot be described by the standard model for shear viscosity. In particular, we demonstrate that turbulent magnetorotational stresses are not...
Federrath, Christoph; Schober, Jennifer; Banerjee, Robi; Klessen, Ralf S; Schleicher, Dominik R G; 10.1103/PhysRevLett.107.114504
2011-01-01
We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.
Yang, H -Y K
2015-01-01
Feedback from the active galactic nuclei (AGN) is one of the most promising heating mechanisms to circumvent the cooling-flow problem in galaxy clusters. However, the role of thermal conduction remains unclear. Previous studies have shown that anisotropic thermal conduction in cluster cool cores (CC) could drive the heat-flux driven buoyancy instabilities (HBI) that re-orient the field lines in the azimuthal directions and isolate the cores from conductive heating from the outskirts. However, how the AGN interacts with the HBI is still unknown. To understand these interwined processes, we perform the first 3D magnetohydrodynamic (MHD) simulations of isolated CC clusters that include anisotropic conduction, radiative cooling, and AGN feedback. We find that: (1) For realistic magnetic field strengths in clusters, magnetic tension can suppress a significant portion of HBI-unstable modes and thus the HBI is either completely inhibited or significantly impaired, depending on the unknown magnetic field coherence le...
Application of Anisotropic Texture Components
Eschner, Th.; Fundenberger, J.-J.
1997-01-01
The description of textures in terms of texture components is an established conception in quantitative texture analysis. Recent developments lead to the representation of orientation distribution functions as a weighted sum of model functions, each corresponding to one anisotropic texture component. As was shown previously, an adequate texture description is possible with only a very small number of anisotropic texture components. As a result, textures and texture changes can be described by...
DEFF Research Database (Denmark)
Nielsen, Mogens Peter; Shui, Wan; Johansson, Jens
2011-01-01
In this report a new turbulence model is presented.In contrast to the bulk of modern work, the model is a classical continuum model with a relatively simple constitutive equation. The constitutive equation is, as usual in continuum mechanics, entirely empirical. It has the usual Newton or Stokes...... term with stresses depending linearly on the strain rates. This term takes into account the transfer of linear momentum from one part of the fluid to another. Besides there is another term, which takes into account the transfer of angular momentum. Thus the model implies a new definition of turbulence....... The model is in a virgin state, but a number of numerical tests have been carried out with good results. It is published to encourage other researchers to study the model in order to find its merits and possible limitations....
Bec, Jeremie; Khanin, Konstantin
2007-01-01
The last decades witnessed a renewal of interest in the Burgers equation. Much activities focused on extensions of the original one-dimensional pressureless model introduced in the thirties by the Dutch scientist J.M. Burgers, and more precisely on the problem of Burgers turbulence, that is the study of the solutions to the one- or multi-dimensional Burgers equation with random initial conditions or random forcing. Such work was frequently motivated by new emerging applications of Burgers mod...
Kühnen, Jakob; Hof, Björn
2015-11-01
We show that a simple modification of the velocity profile in a pipe can lead to a complete collapse of turbulence and the flow fully relaminarises. The annihilation of turbulence is achieved by a steady manipulation of the streamwise velocity component alone, greatly reducing control efforts. Several different control techniques are presented: one with a local modification of the flow profile by means of a stationary obstacle, one employing a nozzle injecting fluid through a small gap at the pipe wall and one with a moving wall, where a part of the pipe is shifted in the streamwise direction. All control techniques act on the flow such that the streamwise velocity profile becomes more flat and turbulence gradually grows faint and disappears. In a smooth straight pipe the flow remains laminar downstream of the control. Hence a reduction in skin friction by a factor of 8 and more can be accomplished. Stereoscopic PIV-measurements and movies of the development of the flow during relaminarisation are presented.
Anisotropic Alfven-ballooning modes in the Earth's magnetosphere
International Nuclear Information System (INIS)
We have carried out a theoretical analysis of the stability and parallel structure of coupled shear-Alfven and slow-magnetosonic waves in the Earth's inner magnetosphere including effects of finite anisotropic plasma pressure. Multiscale perturbation analysis of the anisotropic Grad-Shafranov equation yields an approximate self-consistent magnetohydrodynamic (MHD) equilibrium. This MHD equilibrium is used in the numerical solution of a set of eigenmode equations which describe the field line eigenfrequency, linear stability, and parallel eigenmode structure. We call these modes anisotropic Alfven-ballooning modes. The main results are: The field line eigenfrequency can be significantly lowered by finite pressure effects. The parallel mode structure of the transverse wave components is fairly insensitive to changes in the plasma pressure but the compressional magnetic component can become highly peaked near the magnetic equator due to increased pressure, especially when P perpendicular > P parallel. For the isotropic case ballooning instability can occur when the ratio of the plasma pressure to the magnetic pressure, exceeds a critical value βoB ∼ 3.5 at the equator. Compared to the isotropic case the critical beta value is lowered by anisotropy, either due to decreased field-line-bending stabilization when P parallel > P perpendicular, or due to increased ballooning-mirror destabilization when P perpendicular > P parallel. We use a ''β-6 stability diagram'' to display the regions of instability with respect to the equatorial values of the parameters bar β and δ, where bar β = (1/3)(βparallel + 2 β perpendicular) is an average beta value and δ = 1 - P parallel/P perpendicular is a measure of the plasma anisotropy
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
Energy Technology Data Exchange (ETDEWEB)
Jian-Zhou Zhu and Gregory W. Hammett
2011-01-10
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence [T.-D. Lee, "On some statistical properties of hydrodynamical and magnetohydrodynamical fields," Q. Appl. Math. 10, 69 (1952)] is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
Gyrokinetic Statistical Absolute Equilibrium and Turbulence
International Nuclear Information System (INIS)
A paradigm based on the absolute equilibrium of Galerkin-truncated inviscid systems to aid in understanding turbulence (T.-D. Lee, 'On some statistical properties of hydrodynamical and magnetohydrodynamical fields,' Q. Appl. Math. 10, 69 (1952)) is taken to study gyrokinetic plasma turbulence: A finite set of Fourier modes of the collisionless gyrokinetic equations are kept and the statistical equilibria are calculated; possible implications for plasma turbulence in various situations are discussed. For the case of two spatial and one velocity dimension, in the calculation with discretization also of velocity v with N grid points (where N + 1 quantities are conserved, corresponding to an energy invariant and N entropy-related invariants), the negative temperature states, corresponding to the condensation of the generalized energy into the lowest modes, are found. This indicates a generic feature of inverse energy cascade. Comparisons are made with some classical results, such as those of Charney-Hasegawa-Mima in the cold-ion limit. There is a universal shape for statistical equilibrium of gyrokinetics in three spatial and two velocity dimensions with just one conserved quantity. Possible physical relevance to turbulence, such as ITG zonal flows, and to a critical balance hypothesis are also discussed.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Vincenzo Carbone
2013-05-01
Full Text Available In this review we will focus on a topic of fundamental importance for both astrophysics and plasma physics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Helios inner heliosphere and Ulysses' high latitude observations, recent multi-spacecrafts measurements in the solar wind (Cluster four satellites and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
The Solar Wind as a Turbulence Laboratory
Directory of Open Access Journals (Sweden)
Bruno Roberto
2005-09-01
Full Text Available In this review we will focus on a topic of fundamental importance for both plasma physics and astrophysics, namely the occurrence of large-amplitude low-frequency fluctuations of the fields that describe the plasma state. This subject will be treated within the context of the expanding solar wind and the most meaningful advances in this research field will be reported emphasizing the results obtained in the past decade or so. As a matter of fact, Ulysses’ high latitude observations and new numerical approaches to the problem, based on the dynamics of complex systems, brought new important insights which helped to better understand how turbulent fluctuations behave in the solar wind. In particular, numerical simulations within the realm of magnetohydrodynamic (MHD turbulence theory unraveled what kind of physical mechanisms are at the basis of turbulence generation and energy transfer across the spectral domain of the fluctuations. In other words, the advances reached in these past years in the investigation of solar wind turbulence now offer a rather complete picture of the phenomenological aspect of the problem to be tentatively presented in a rather organic way.
Wave turbulent diffusion due to the Doppler shift
Balk, A. M.
2006-08-01
Turbulent diffusion of a passive tracer caused by a random wavefield is believed to be quadratic with respect to the energy spectrum ɛk of the velocity field (i.e. proportional to epsi4, where epsi is the order of the wave amplitudes). So, the wave turbulent diffusion (say, on the ocean surface or in the air) is often believed to be dominated by the turbulent diffusion due to the incompressible flow. In this paper, we show that the wave turbulent diffusion can be associated with the Doppler shift and find that the wave turbulent diffusion can be more significant than previously thought. This mechanism works if the velocity field is compressible and statistically anisotropic, with the result that the wave system has a significant Stokes drift. The contribution of this mechanism has a lower order in epsi. We confirm our results with numerical simulations. To derive these results, we develop the statistical near-identity transformation.
Decaying turbulence at the laminar-turbulence transition in a pipe
Goldenfeld, Nigel; Hsieh, Tsung-Lin; Shih, Hong-Yan
2015-11-01
As a follow-up to Donnelly's pioneering research on the decay of superfluid turbulence in a pipe, we have studied a different regime: transitional turbulence. Near the onset to turbulence in a pipe, turbulent puffs decay either directly or through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Using direct numerical simulations of transitional pipe flow, we show that a collective mode, a so-called zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations, as measured in terms of Reynolds stress. This zonal flow imposes a shear on the turbulent fluctuations that tends to suppress their anisotropy, leading to stochastic oscillatory dynamics. These results motivate the proposal that the laminar-turbulence non-equilibrium phase transition can be modeled by an effective theory, usefully thought of as predator-prey dynamics, leading to a predicted universality class of directed percolation. This work was partially supported by the National Science Foundation through grant NSF-DMR-1044901.
Self-organized criticality in MHD driven plasma edge turbulence
International Nuclear Information System (INIS)
We analyze long-range time correlations and self-similar characteristics of the electrostatic turbulence at the plasma edge and scrape-off layer in the Tokamak Chauffage Alfvén Brésillien (TCABR), with low and high Magnetohydrodynamics (MHD) activity. We find evidence of self-organized criticality (SOC), mainly in the region near the tokamak limiter. Comparative analyses of data before and during the MHD activity reveals that during the high MHD activity the Hurst parameter decreases. Finally, we present a cellular automaton whose parameters are adjusted to simulate the analyzed turbulence SOC change with the MHD activity variation. -- Highlights: ► We analyze time correlations of the electrostatic turbulence in plasma. ► We study self-similar characteristics with low and high magnetohydrodynamics activity. ► We find evidence of self-organized criticality (SOC) behavior. ► SOC behavior is pronounced close to radial positions just after the limiter. ► We present a cellular automata that simulate the analyzed turbulence.
Statistical Mechanics of Turbulent Dynamos
Shebalin, John V.
2014-01-01
Incompressible magnetohydrodynamic (MHD) turbulence and magnetic dynamos, which occur in magnetofluids with large fluid and magnetic Reynolds numbers, will be discussed. When Reynolds numbers are large and energy decays slowly, the distribution of energy with respect to length scale becomes quasi-stationary and MHD turbulence can be described statistically. In the limit of infinite Reynolds numbers, viscosity and resistivity become zero and if these values are used in the MHD equations ab initio, a model system called ideal MHD turbulence results. This model system is typically confined in simple geometries with some form of homogeneous boundary conditions, allowing for velocity and magnetic field to be represented by orthogonal function expansions. One advantage to this is that the coefficients of the expansions form a set of nonlinearly interacting variables whose behavior can be described by equilibrium statistical mechanics, i.e., by a canonical ensemble theory based on the global invariants (energy, cross helicity and magnetic helicity) of ideal MHD turbulence. Another advantage is that truncated expansions provide a finite dynamical system whose time evolution can be numerically simulated to test the predictions of the associated statistical mechanics. If ensemble predictions are the same as time averages, then the system is said to be ergodic; if not, the system is nonergodic. Although it had been implicitly assumed in the early days of ideal MHD statistical theory development that these finite dynamical systems were ergodic, numerical simulations provided sufficient evidence that they were, in fact, nonergodic. Specifically, while canonical ensemble theory predicted that expansion coefficients would be (i) zero-mean random variables with (ii) energy that decreased with length scale, it was found that although (ii) was correct, (i) was not and the expected ergodicity was broken. The exact cause of this broken ergodicity was explained, after much
DECAY ESTIMATES FOR ISENTROPIC COMPRESSIBLE MAGNETOHYDRODYNAMIC EQUATIONS IN BOUNDED DOMAIN
Institute of Scientific and Technical Information of China (English)
Mohamed Ahmed Abdallah; Jiang Fei; Tan Zhong
2012-01-01
In this paper,under the hypothesis that (o) is upper bounded,we construct a Lyapunov functional for the multidimensional isentropic compressible magnetohydrodynamic equations and show that the weak solutions decay exponentially to the equilibrium state in L2 norm.Our result verifies that the method of Daoyuan Fang,Ruizhao Zi and Ting Zhang [1] can be adapted to magnetohydrodynamic equations.
New approach to nonrelativistic ideal magnetohydrodynamics
Banerjee, Rabin
2016-01-01
We provide a novel action principle for nonrelativistic ideal magnetohydrodynamics in the Eulerian scheme exploiting a Clebsh-type parametrisation. Both Lagrangian and Hamiltonian formulations have been considered. Within the Hamiltonian framework, two complementary approaches have been discussed using Dirac's constraint analysis. In one case the Hamiltonian is canonical involving only physical variables but the brackets have a noncanonical structure, while the other retains the canonical structure of brackets by enlarging the phase space. The conservation of the stress tensor reveals interesting aspects of the theory.
Two stability problems related to resistive magnetohydrodynamics
International Nuclear Information System (INIS)
Two general problems related to resistive magnetohydrodynamic stability are addressed in this paper: 1. A general stability condition previously derived by the author for a class of real systems, occuring especially in plasma physics, is proved to persist to second order, despite the addition of several antisymmetric operators of first order in the linearized stability equation. 2. For a special but representative choice of the stability operators, a nonperturbative analysis demonstrates the existence of a critical density for the appearance of an overstability and the connected Hopf bifurcation, as suggested in a previous note of the author. (orig.)
Intrinsic rotation of toroidally confined magnetohydrodynamics.
Morales, Jorge A; Bos, Wouter J T; Schneider, Kai; Montgomery, David C
2012-10-26
The spatiotemporal self-organization of viscoresistive magnetohydrodynamics in a toroidal geometry is studied. Curl-free toroidal magnetic and electric fields are imposed. It is observed in our simulations that a flow is generated, which evolves from dominantly poloidal to toroidal when the Lundquist numbers are increased. It is shown that this toroidal organization of the flow is consistent with the tendency of the velocity field to align with the magnetic field. Up-down asymmetry of the geometry causes the generation of a nonzero toroidal angular momentum. PMID:23215195
National Oceanic and Atmospheric Administration, Department of Commerce — Forecast turbulence hazards identified by the Graphical Turbulence Guidance algorithm. The Graphical Turbulence Guidance product depicts mid-level and upper-level...
Redistribution of energetic particles by background turbulence
International Nuclear Information System (INIS)
The quest to understand the turbulent transport of particles, momentum and energy in magnetized plasmas remains a key challenge in fusion research. A basic issue being .still relatively poorly understood is the turbulent ExB advection of charged test particles with large gyroradii. Especially the interaction of alpha particles or impurities with the background turbulence is of great interest. In order to understand the dependence of the particle diffusivity on the interaction mechanisms between FLR effects and the special structure of a certain type of turbulence, direct numerical simulations are done in artificially created two dimensional turbulent electrostatic fields, assuming a constant magnetic field. Finite gyroradius effects are introduced using the gyrokinetic approximation which means that the gyrating particle is simply replaced by a charged ring. Starting from an idealized isotropic potential with Gaussian autocorrelation function, numerous test particle simulations are done varying both the gyroradius and the Kubo number of the potential. It is found that for Kubo numbers larger than about unity, the particle diffusivity is almost independent of the gyroradius as long as the latter does not exceed the correlation length of the electrostatic potential, whereas for small Kubo numbers the diffusivity is monotonically reduced. The underlying physical mechanisms of this behavior are identified and an analytic approach is developed which favorably agrees with the simulation results. The investigations are extended by introducing anisotropic structures like streamers and zonal flows into the artificial potential, leading to quantitative modulations of the gyroradius dependence of the diffusion coefficient. Analytic models are used to explain these various effects. After having developed a general overview on the behavior in simplified artificial potentials, test particle simulations in realistic turbulence created by the gyrokinetic turbulence code GENE are
Multi-fluid problems in magnetohydrodynamics with applications to astrophysical processes
Greenfield, Eric John
2016-01-01
I begin this study by presenting an overview of the theory of magnetohydrodynamics and the necessary conditions to justify the fluid treatment of a plasma. Upon establishing the fluid description of a plasma we move on to a discussion of magnetohydrodynamics in both the ideal and Hall regimes. This framework is then extended to include multiple plasmas in order to consider two problems of interest in the field of theoretical space physics. The first is a study on the evolution of a partially ionized plasma, a topic with many applications in space physics. A multi-fluid approach is necessary in this case to account for the motions of an ion fluid, electron fluid and neutral atom fluid; all of which are coupled to one another by collisions and/or electromagnetic forces. The results of this study have direct application towards an open question concerning the cascade of Kolmogorov-like turbulence in the interstellar plasma which we will discuss below. The second application of multi-fluid magnetohydrodynamics that we consider in this thesis concerns the amplification of magnetic field upstream of a collisionless, parallel shock. The relevant fluids here are the ions and electrons comprising the interstellar plasma and the galactic cosmic ray ions. Previous works predict that the streaming of cosmic rays lead to an instability resulting in significant amplification of the interstellar magnetic field at supernova blastwaves. This prediction is routinely invoked to explain the acceleration of galactic cosmic rays up to energies of 1015 eV. I will examine this phenomenon in detail using the multi-fluid framework outlined below. The purpose of this work is to first confirm the existence of an instability using a purely fluid approach with no additional approximations. If confirmed, I will determine the necessary conditions for it to operate.
Toward the Theory of Turbulence in Magnetized Plasmas
International Nuclear Information System (INIS)
The goal of the project was to develop a theory of turbulence in magnetized plasmas at large scales, that is, scales larger than the characteristic plasma microscales (ion gyroscale, ion inertial scale, etc.). Collisions of counter-propagating Alfven packets govern the turbulent cascade of energy toward small scales. It has been established that such an energy cascade is intrinsically anisotropic, in that it predominantly supplies energy to the modes with mostly field-perpendicular wave numbers. The resulting energy spectrum of MHD turbulence, and the structure of the fluctuations were studied both analytically and numerically. A new parallel numerical code was developed for simulating reduced MHD equations driven by an external force. The numerical setting was proposed, where the spectral properties of the force could be varied in order to simulate either strong or weak turbulent regimes. It has been found both analytically and numerically that weak MHD turbulence spontaneously generates a 'condensate', that is, concentration of magnetic and kinetic energy at small kllel)). A related topic that was addressed in the project is turbulent dynamo action, that is, generation of magnetic field in a turbulent flow. We were specifically concentrated on the generation of large-scale magnetic field compared to the scales of the turbulent velocity field. We investigate magnetic field amplification in a turbulent velocity field with nonzero helicity, in the framework of the kinematic Kazantsev-Kraichnan model
Wavelet analysis of magnetic turbulence in the Earth's plasma sheet
Baumjohann, W; Runov, A; Volwerk, M; Zhang, T L; Balogh, A
2004-01-01
Recent studies provide evidence for the multi-scale nature of magnetic turbulence in the plasma sheet. Wavelet methods represent modern time series analysis techniques suitable for the description of statistical characteristics of multi-scale turbulence. Cluster FGM (fluxgate magnetometer) magnetic field high-resolution (~67 Hz) measurements are studied during an interval in which the spacecraft are in the plasma sheet. As Cluster passes through different plasma regions, physical processes exhibit non-steady properties on magnetohydrodynamic (MHD) and small, possibly kinetic scales. As a consequence, the implementation of wavelet-based techniques becomes complicated due to the statistically transitory properties of magnetic fluctuations and finite size effects. Using a supervised multi-scale technique which allows existence test of moments, the robustness of higher-order statistics is investigated. On this basis the properties of magnetic turbulence are investigated for changing thickness of the plasma sheet.
Elastic turbulence in von Karman swirling flow between two disks
Burghelea, T; Steinberg, V; Burghelea, Teodor; Segre, Enrico; Steinberg, Victor
2006-01-01
We discuss the role of elastic stress in the statistical properties of elastic turbulence, realized by the flow of a polymer solution between two disks. The dynamics of the elastic stress are analogous to those of a small scale fast dynamo in magnetohydrodynamics, and to those of the turbulent advection of a passive scalar in the Batchelor regime. Both systems are theoretically studied in literature, and this analogy is exploited to explain the statistical properties, the flow structure, and the scaling observed experimentally. Several features of elastic turbulence are confirmed experimentally and presented in this paper: (i) saturation of the rms of the vorticity and of velocity gradients in the bulk, leading to the saturation of the elastic stress; (ii) large rms of the velocity gradients in the boundary layer, linearly growth with Wi; (iii) skewed PDFs of the injected power, with exponential tails, which indicate intermittency; PDF of the acceleration exhibit well-pronounced exponential tails too; (iv) a ...
Hall MHD Stability and Turbulence in Magnetically Accelerated Plasmas
Energy Technology Data Exchange (ETDEWEB)
H. R. Strauss
2012-11-27
The object of the research was to develop theory and carry out simulations of the Z pinch and plasma opening switch (POS), and compare with experimental results. In the case of the Z pinch, there was experimental evidence of ion kinetic energy greatly in excess of the ion thermal energy. It was thought that this was perhaps due to fine scale turbulence. The simulations showed that the ion energy was predominantly laminar, not turbulent. Preliminary studies of a new Z pinch experiment with an axial magnetic field were carried out. The axial magnetic is relevant to magneto - inertial fusion. These studies indicate the axial magnetic field makes the Z pinch more turbulent. Results were also obtained on Hall magnetohydrodynamic instability of the POS.
Global magnetohydrodynamic simulations on multiple GPUs
Wong, Un-Hong; Wong, Hon-Cheng; Ma, Yonghui
2014-01-01
Global magnetohydrodynamic (MHD) models play the major role in investigating the solar wind-magnetosphere interaction. However, the huge computation requirement in global MHD simulations is also the main problem that needs to be solved. With the recent development of modern graphics processing units (GPUs) and the Compute Unified Device Architecture (CUDA), it is possible to perform global MHD simulations in a more efficient manner. In this paper, we present a global magnetohydrodynamic (MHD) simulator on multiple GPUs using CUDA 4.0 with GPUDirect 2.0. Our implementation is based on the modified leapfrog scheme, which is a combination of the leapfrog scheme and the two-step Lax-Wendroff scheme. GPUDirect 2.0 is used in our implementation to drive multiple GPUs. All data transferring and kernel processing are managed with CUDA 4.0 API instead of using MPI or OpenMP. Performance measurements are made on a multi-GPU system with eight NVIDIA Tesla M2050 (Fermi architecture) graphics cards. These measurements show that our multi-GPU implementation achieves a peak performance of 97.36 GFLOPS in double precision.
Small scale magnetic flux-averaged magnetohydrodynamics
International Nuclear Information System (INIS)
By relaxing exact magnetic flux conservation below a scale λ a system of flux-averaged magnetohydrodynamic equations are derived from Hamilton's principle with modified constraints. An energy principle can be derived from the linearized averaged system because the total system energy is conserved. This energy principle is employed to treat the resistive tearing instability and the exact growth rate is recovered when λ is identified with the resistive skin depth. A necessary and sufficient stability criteria of the tearing instability with line tying at the ends for solar coronal loops is also obtained. The method is extended to both spatial and temporal averaging in Hamilton's principle. The resulting system of equations not only allows flux reconnection but introduces irreversibility for appropriate choice of the averaging function. Except for boundary contributions which are modified by the time averaging process total energy and momentum are conserved over times much longer than the averaging time τ but not for less than τ. These modified boundary contributions correspond to the existence, also, of damped waves and shock waves in this theory. Time and space averaging is applied to electron magnetohydrodynamics and in one-dimensional geometry predicts solitons and shocks in different limits
Venaille, Antoine; Vallis, Geoffrey K
2014-01-01
We investigate the non-linear equilibration of a two-layer quasi-geostrophic flow in a channel forced by an imposed unstable zonal mean flow, paying particular attention to the role of bottom friction. In the limit of low bottom friction, classical theory of geostrophic turbulence predicts an inverse cascade of kinetic energy in the horizontal with condensation at the domain scale and barotropization on the vertical. By contrast, in the limit of large bottom friction, the flow is dominated by ribbons of high kinetic energy in the upper layer. These ribbons correspond to meandering jets separating regions of homogenized potential vorticity. We interpret these result by taking advantage of the peculiar conservation laws satisfied by this system: the dynamics can be recast in such a way that the imposed mean flow appears as an initial source of potential vorticity levels in the upper layer. The initial baroclinic instability leads to a turbulent flow that stirs this potential vorticity field while conserving the...
Magnetohydrodynamic study of electromagnetic separation of nonmetallic inclusions from aluminum melt
Institute of Scientific and Technical Information of China (English)
SHU; Da(疏达); SUN; Baode(孙宝德); WANG; Jun(王俊); ZHANG; Xueping(张雪萍); ZHOU; Yaohe(周尧和)
2002-01-01
Magnetohydrodynamic flow around the nonmetallic inclusions in aluminum melt and the force exerted on the inclusions were explored by dimensional analysis and numerical calculations. Dimensional analysis shows that the invariant characterizes the force exerted on the inclusions and the flow intensity of the melt. The physical significance of A is represented as a modified particle Reynolds number that reflects the effects of electromagnetic force. The fluid flow around the particle becomes unstable when A＞2×103. It is shown that the neglect of the inertial terms has little effect on the force exerted on the inclusions in the range of A≤1×106. However, the analytical solution of the maximum velocity inside the melt does not apply due to the appearance of turbulent flow in the case of A＞2×103.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations
Hotta, H.; Rempel, M.; Yokoyama, T.
2016-03-01
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲1012square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities—that is, large Reynolds numbers.
Large-scale magnetic fields at high Reynolds numbers in magnetohydrodynamic simulations.
Hotta, H; Rempel, M; Yokoyama, T
2016-03-25
The 11-year solar magnetic cycle shows a high degree of coherence in spite of the turbulent nature of the solar convection zone. It has been found in recent high-resolution magnetohydrodynamics simulations that the maintenance of a large-scale coherent magnetic field is difficult with small viscosity and magnetic diffusivity (≲10 (12) square centimenters per second). We reproduced previous findings that indicate a reduction of the energy in the large-scale magnetic field for lower diffusivities and demonstrate the recovery of the global-scale magnetic field using unprecedentedly high resolution. We found an efficient small-scale dynamo that suppresses small-scale flows, which mimics the properties of large diffusivity. As a result, the global-scale magnetic field is maintained even in the regime of small diffusivities-that is, large Reynolds numbers. PMID:27013727
Cancellation properties in Hall magnetohydrodynamics with a strong guide magnetic field.
Martin, L N; De Vita, G; Sorriso-Valvo, L; Dmitruk, P; Nigro, G; Primavera, L; Carbone, V
2013-12-01
We present a signed measure analysis of compressible Hall magnetohydrodynamic turbulence with an external guide field. Signed measure analysis allows us to characterize the scaling behavior of the sign-oscillating flow structures and their geometrical properties (fractal dimensions of structures). A reduced numerical model, valid when a strong guide magnetic field is present, is used here. In order to discuss the effect of the Hall term, different values for the ion skin depth are considered in the simulations. Results show that as the Hall term is increased, the fractal dimension of the current and vorticity sheets decreases. This observation, together with previous analysis of the same fields, provides a comprehensive description of the effect of the Hall force on the formation of structures. Two main processes are identified, namely, the widening and unraveling of the sheets. PMID:24483577
Continuum mechanics of anisotropic materials
Cowin, Stephen C
2013-01-01
Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.
Superlens from complementary anisotropic metamaterials
Li, G. X.; Tam, H. L.; Wang, F. Y.; Cheah, K. W.
2007-12-01
Metamaterials with isotropic property have been shown to possess novel optical properties such as a negative refractive index that can be used to design a superlens. Recently, it was shown that metamaterials with anisotropic property can translate the high-frequency wave vector k values from evanescence to propagating. However, electromagnetic waves traveling in single-layer anisotropic metamaterial produce diverging waves of different spatial frequency. In this work, it is shown that, using bilayer metamaterials that have complementary anisotropic property, the diverging waves are recombined to produce a subwavelength image, i.e., a superlens device can be designed. The simulation further shows that the design can be achieved using a metal/oxide multilayer, and a resolution of 30 nm can be easily obtained in the optical frequency range.
Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models
Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.
2014-12-01
Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.
He, Jiansen; Marsch, Eckart; Chen, Christopher H K; Wang, Linghua; Pei, Zhongtian; Zhang, Lei; Salem, Chadi S; Bale, Stuart D
2015-01-01
Magnetohydronamic turbulence is believed to play a crucial role in heating the laboratorial, space, and astrophysical plasmas. However, the precise connection between the turbulent fluctuations and the particle kinetics has not yet been established. Here we present clear evidence of plasma turbulence heating based on diagnosed wave features and proton velocity distributions from solar wind measurements by the Wind spacecraft. For the first time, we can report the simultaneous observation of counter-propagating magnetohydrodynamic waves in the solar wind turbulence. Different from the traditional paradigm with counter-propagating Alfv\\'en waves, anti-sunward Alfv\\'en waves (AWs) are encountered by sunward slow magnetosonic waves (SMWs) in this new type of solar wind compressible turbulence. The counter-propagating AWs and SWs correspond respectively to the dominant and sub-dominant populations of the imbalanced Els\\"asser variables. Nonlinear interactions between the AWs and SMWs are inferred from the non-orth...
Kinetic Alfv\\'{e}n turbulence below and above ion-cyclotron frequency
Zhao, J S; Wu, D J; Yu, M Y
2015-01-01
Alfv\\'{e}nic turbulent cascade perpendicular and parallel to the background magnetic field is studied accounting for anisotropic dispersive effects and turbulent intermittency. The perpendicular dispersion and intermittency make the perpendicular-wavenumber magnetic spectra steeper and speed up production of high ion-cyclotron frequencies by the turbulent cascade. On the contrary, the parallel dispersion makes the spectra flatter and decelerate the frequency cascade above the ion-cyclotron frequency. Competition of the above factors results in spectral indices distributed in the interval [-2,-3], where -2 is the index of high-frequency space-filling turbulence, and -3 is the index of low-frequency intermittent turbulence formed by tube-like fluctuations. Spectra of fully intermittent turbulence fill a narrower range of spectral indices [-7/3,-3], which almost coincides with the range of indexes measured in the solar wind. This suggests that the kinetic-scale turbulent spectra are shaped mainly by dispersion a...
Measurements of Turbulence at Two Tidal Energy Sites in Puget Sound, WA
Energy Technology Data Exchange (ETDEWEB)
Thomson, Jim; Polagye, Brian; Durgesh, Vibhav; Richmond, Marshall C.
2012-06-05
Field measurements of turbulence are pre- sented from two sites in Puget Sound, WA (USA) that are proposed for electrical power generation using tidal current turbines. Rapidly sampled data from multiple acoustic Doppler instruments are analyzed to obtain statistical mea- sures of fluctuations in both the magnitude and direction of the tidal currents. The resulting turbulence intensities (i.e., the turbulent velocity fluctuations normalized by the harmonic tidal currents) are typically 10% at the hub- heights (i.e., the relevant depth bin) of the proposed turbines. Length and time scales of the turbulence are also analyzed. Large-scale, anisotropic eddies dominate the energy spectra, which may be the result of proximity to headlands at each site. At small scales, an isotropic turbulent cascade is observed and used to estimate the dissipation rate of turbulent kinetic energy. Data quality and sampling parameters are discussed, with an emphasis on the removal of Doppler noise from turbulence statistics.
Ecological collapse and the emergence of traveling waves at the onset of shear turbulence
Shih, Hong-Yan; Goldenfeld, Nigel
2015-01-01
The transition to turbulence exhibits remarkable spatio-temporal behavior that continues to defy detailed understanding. Near the onset to turbulence in pipes, transient turbulent regions decay either directly or, at higher Reynolds numbers through splitting, with characteristic time-scales that exhibit a super-exponential dependence on Reynolds number. Here we report numerical simulations of transitional pipe flow, showing that a zonal flow emerges at large scales, activated by anisotropic turbulent fluctuations; in turn, the zonal flow suppresses the small-scale turbulence leading to stochastic predator-prey dynamics. We show that this "ecological" model of transitional turbulence reproduces the super-exponential lifetime statistics and phenomenology of pipe flow experiments. Our work demonstrates that a fluid on the edge of turbulence is mathematically analogous to an ecosystem on the edge of extinction, and provides an unbroken link between the equations of fluid dynamics and the directed percolation univ...
Dynamical analysis of anisotropic inflation
Karčiauskas, Mindaugas
2016-06-01
The inflaton coupling to a vector field via the f(φ)2F μνFμν term is used in several contexts in the literature, such as to generate primordial magnetic fields, to produce statistically anisotropic curvature perturbation, to support anisotropic inflation, and to circumvent the η-problem. In this work, I perform dynamical analysis of this system allowing for the most general Bianchi I initial conditions. I also confirm the stability of attractor fixed points along phase-space directions that had not been investigated before.
Latest developments in anisotropic hydrodynamics
Tinti, Leonardo
2015-01-01
We discuss the leading order of anisotropic hydrodynamics expansion. It has already been shown that in the (0+1) and (1+1)-dimensional cases it is consistent with the second order viscous hydrodynamics, and it provides a striking agreement with the exact solutions of the Boltzmann equation. Quite recently, a new set of equations has been proposed for the leading order of anisotropic hydrodynamics, which is consistent with the second order viscous hydrodynamics in the most general (3+1)-dimensional case, and does not require a next-to-leading treatment for describing pressure anisotropies in the transverse plane.