WorldWideScience

Sample records for anisotropic magnetocaloric effect

  1. Direct measurements of conventional and anisotropic magnetocaloric effect in binary RAl2 single crystals

    Science.gov (United States)

    Monteiro, J. C. B.; Gandra, F. G.

    2017-06-01

    We report on specific heat and magnetocaloric effect (MCE) measurements in single crystals of HoAl2, DyAl2, and TbAl2 measured by a heat flux technique using Peltier devices. Those compounds order ferromagnetically at 31 K, 61 K, and 106 K respectively, and present a spin reorientation transition (SRT) below TC. We study the dependence of the SRT with magnetic field and temperature by means of specific heat measurements performed in single crystals oriented at the [" separators="| 100 ], [" separators="| 110 ], and [" separators="| 111 ] directions with the aid of calculations using a simple model. We obtained the conventional MCE for HoAl2 and TbAl2 and also the anisotropic version of the effect obtained indirectly from the specific heat for TbAl2 and DyAl2. We also present the results for a direct determination of the anisotropic MCE for DyAl2 by measuring the heat flux generated by a rotation of the single crystal under constant field.

  2. Magnetocaloric effect (MCE): Microscopic approach within Tyablikov approximation for anisotropic ferromagnets

    Energy Technology Data Exchange (ETDEWEB)

    Kotelnikova, O.A.; Prudnikov, V.N. [Physical Faculty, Lomonosov State University, Department of Magnetism, Moscow (Russian Federation); Rudoy, Yu.G., E-mail: rudikar@mail.ru [People' s Friendship University of Russia, Department of Theoretical Physics, Moscow (Russian Federation)

    2015-06-01

    The aim of this paper is to generalize the microscopic approach to the description of the magnetocaloric effect (MCE) started by Kokorina and Medvedev (E.E. Kokorina, M.V. Medvedev, Physica B 416 (2013) 29.) by applying it to the anisotropic ferromagnet of the “easy axis” type in two settings—with external magnetic field parallel and perpendicular to the axis of easy magnetization. In the last case there appears the field induced (or spin-reorientation) phase transition which occurs at the critical value of the external magnetic field. This value is proportional to the exchange anisotropy constant at low temperatures, but with the rise of temperature it may be renormalized (as a rule, proportional to the magnetization). We use the explicit form of the Hamiltonian of the anisotropic ferromagnet and apply widely used random phase approximation (RPA) (known also as Tyablikov approximation in the Green function method) which is more accurate than the well known molecular field approximation (MFA). It is shown that in the first case the magnitude of MCE is raised whereas in the second one the MCE disappears due to compensation of the critical field renormalized with the magnetization.

  3. Analysis of the Anisotropic Magnetocaloric Effect in RMn2O5 Single Crystals

    Directory of Open Access Journals (Sweden)

    Mohamed Balli

    2017-11-01

    Full Text Available Thanks to the strong magnetic anisotropy shown by the multiferroic RMn2O5 (R = magnetic rare earth compounds, a large adiabatic temperature change can be induced (around 10 K by rotating them in constant magnetic fields instead of the standard magnetization-demagnetization method. Particularly, the TbMn2O5 single crystal reveals a giant rotating magnetocaloric effect (RMCE under relatively low constant magnetic fields reachable by permanent magnets. On the other hand, the nature of R3+ ions strongly affects their RMCEs. For example, the maximum rotating adiabatic temperature change exhibited by TbMn2O5 is more than five times larger than that presented by HoMn2O5 in a constant magnetic field of 2 T. In this paper, we mainly focus on the physics behind the RMCE shown by RMn2O5 multiferroics. We particularly demonstrate that the rare earth size could play a crucial role in determining the magnetic order, and accordingly, the rotating magnetocaloric properties of RMn2O5 compounds through the modulation of exchange interactions via lattice distortions. This is a scenario that seems to be supported by Raman scattering measurements.

  4. Anisotropic thermal conductivity in epoxy-bonded magnetocaloric composites

    Science.gov (United States)

    Weise, Bruno; Sellschopp, Kai; Bierdel, Marius; Funk, Alexander; Bobeth, Manfred; Krautz, Maria; Waske, Anja

    2016-09-01

    Thermal management is one of the crucial issues in the development of magnetocaloric refrigeration technology for application. In order to ensure optimal exploitation of the materials "primary" properties, such as entropy change and temperature lift, thermal properties (and other "secondary" properties) play an important role. In magnetocaloric composites, which show an increased cycling stability in comparison to their bulk counterparts, thermal properties are strongly determined by the geometric arrangement of the corresponding components. In the first part of this paper, the inner structure of a polymer-bonded La(Fe, Co, Si)13-composite was studied by X-ray computed tomography. Based on this 3D data, a numerical study along all three spatial directions revealed anisotropic thermal conductivity of the composite: Due to the preparation process, the long-axis of the magnetocaloric particles is aligned along the xy plane which is why the in-plane thermal conductivity is larger than the thermal conductivity along the z-axis. Further, the study is expanded to a second aspect devoted to the influence of particle distribution and alignment within the polymer matrix. Based on an equivalent ellipsoids model to describe the inner structure of the composite, numerical simulation of the thermal conductivity in different particle arrangements and orientation distributions were performed. This paper evaluates the possibilities of microstructural design for inducing and adjusting anisotropic thermal conductivity in magnetocaloric composites.

  5. Magnetocaloric effect and its implementation in critical behaviour ...

    Indian Academy of Sciences (India)

    Model; manganites; magnetization; magnetocaloric effect; critical exponent. 1. Introduction. Large number of magnetocaloric effect (MCE) materials have attracted much ... external magnetic field, which is advantageous for applica- tion as magnetic ... of the magnetic phase transition and critical behaviour can be obtained by ...

  6. Magnetocaloric effect in Heusler shape-memory alloys

    International Nuclear Information System (INIS)

    Planes, A.; Manosa, Ll.; Moya, X.; Krenke, T.; Acet, M.; Wassermann, E.F.

    2007-01-01

    We present a comparative study of the magnetocaloric properties of Ni-Mn-X Heusler shape-memory alloys with X=Ga, Sn and In. In these materials, the magnetocaloric effect is a consequence of the magnetostructural coupling that enables the magnetic shape-memory properties. We show that inverse magnetocaloric effects can occur in these materials. The origin of this anomalous behavior is different in stoichiometric Ni 2 MnGa and in Ni-Mn-Sn/In. In the former case it is related to the strong uniaxial magnetic anisotropy of the martensitic phase, while in the later it is an intrinsic effect associated with an incipient antiferromagnetism

  7. Investigation on the magnetocaloric effect in TbN compound

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P.J. von, E-mail: von.ranke@uol.com.br [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Alvarenga, T.S.T.; Nóbrega, E.P.; Alho, B.P.; Ribeiro, P.O. [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Carvalho, A. Magnus G. [Divisão de Metrologia de Materiais (DIMAT), Instituto Nacional de Metrologia, Normalização e Qualidade Industrial (INMETRO), Duque de Caxias, RJ 25250-020 (Brazil); Sousa, V.S.R. de; Caldas, A.; Oliveira, N.A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil)

    2013-09-15

    One of the biggest challenges in materials science is to understand the microscopic mechanisms responsible in storage and release material entropy. TbN compound, which presents non-degeneracy in ground state, was studied and the calculated magnetocaloric effect is in good agreement with the recent experimental data. Also inverse magnetocaloric effect and spin reorientation transition were predicted in TbN. The theoretical investigations were carried out using a Hamiltonian, which includes the crystalline electrical field, Zeeman and exchange interactions. - Highlights: • Theoretical description of the magnetocaloric effect in TbN. • Influence of the crystalline electrical field anisotropy on TbN. • Predictions of inverse and anomalous magnetocaloric effect in TbN.

  8. Theoretical investigations on the magnetocaloric and barocaloric effects in Tb{sub y}Gd{sub (1−y)}Al{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, P.O.; Alho, B.P.; Alvarenga, T.S.T.; Nóbrega, E.P. [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Carvalho, A.Magnus G. [Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo – UNIFESP, 12231-280 São José dos Campos, SP (Brazil); Instituto Nacional de Metrologia, Qualidade e Tecnologia – INMETRO, 25250-020 Duque de Caxias, RJ (Brazil); Sousa, V.S.R. de; Caldas, A.; Oliveira, N.A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Ranke, P.J. von, E-mail: von.ranke@uol.com.br [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil)

    2013-06-25

    Highlights: ► Anisotropic magnetocaloric effect in in Tb{sub 0.4}Gd{sub 0.6}Al{sub 2}. ► Prediction of barocaloric effect in Tb{sub 0.4}Gd{sub 0.6}Al{sub 2}. ►An optimal hybrid magnetocaloric material using Tb{sub y}Gd{sub (1-y)}Al{sub 2} compounds. -- Abstract: We report the calculations on the magnetocaloric and barocaloric effects in ferromagnetic series Tb{sub y}Gd{sub (1−y)}Al{sub 2}. Our model includes the crystalline electrical field interaction, exchange interactions among Tb–Tb, Gd–Gd and Tb–Gd magnetic ions and the Zeeman effect for an anisotropic system. The lattice and electronic entropies were included in adiabatic processes. The magnetocaloric effect calculated for magnetic field changes along the easy magnetic direction 〈1 1 1〉 is in good agreement with the experimental data. Calculation along the hard magnetization direction 〈0 0 1〉 predicts anomalous magnetocaloric effect, which was ascribed to the spin reorientation processes. From the available experimental data of Curie temperature dependence on pressure, the exchange model parameters were scaled and the barocaloric effect was calculated.

  9. Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology

    Science.gov (United States)

    2018-01-16

    Thermoelectric Cooling - A Synergistic Cooling Technology Sb. GRANT NUMBER N00173-14-1-G016 Sc. PROGRAM ELEMENT NUMBER 82-2020-17 6. AUTHOR(S) 5d...Magnetocaloric Effect and Thermoelectric Cooling - A Synergistic Cooling Technology NRL Grant N00173-14-l-G016 CODE 8200: Spacecraft Engineering Department...82-11-0 1: Space and Space Systems Technology General Engineering & Research, L.L.C. Technical & Administrative point of contact: Dr. Robin

  10. Magnetocaloric effect of Gd 5 Si 2 Ge 2 alloys in low magnetic field

    Indian Academy of Sciences (India)

    The magnetocaloric effect (MCE) is studied by measuring magnetic entropy change ( M) and adiabatic temperature change ( ad) in a magnetic field of 1.5 T using a vibrating sample magnetometer (VSM) and a home-made magnetocaloric effect measuring apparatus, respectively. The maximum M of the alloys ...

  11. Magnetocaloric effect in quantum spin-s chains

    Directory of Open Access Journals (Sweden)

    A. Honecker

    2009-01-01

    Full Text Available We compute the entropy of antiferromagnetic quantum spin-s chains in an external magnetic field using exact diagonalization and Quantum Monte Carlo simulations. The magnetocaloric effect, i. e., temperature variations during adiabatic field changes, can be derived from the isentropes. First, we focus on the example of the spin-s=1 chain and show that one can cool by closing the Haldane gap with a magnetic field. We then move to quantum spin-s chains and demonstrate linear scaling with s close to the saturation field. In passing, we propose a new method to compute many low-lying excited states using the Lanczos recursion.

  12. Large magnetocaloric effect of GdNiAl2 compound

    International Nuclear Information System (INIS)

    Dembele, S.N.; Ma, Z.; Shang, Y.F.; Fu, H.; Balfour, E.A.; Hadimani, R.L.; Jiles, D.C.; Teng, B.H.; Luo, Y.

    2015-01-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl 2 . Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl 2 alloy is CuMgAl 2 -type phase structure with about 1 wt% GdNi 2 Al 3 secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10 2 J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl 2 compound. • The ΔS Mmax and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl 2 comparing with other candidates

  13. Innovative Methodological Approaches for evaluating the Magnetocaloric Effect in Functional Materials

    OpenAIRE

    Cugini, Francesco

    2018-01-01

    The experimental characterization of magnetocaloric effect has a fundamental role in the development of an efficient, environmentally friendly and cost-effective room-temperature magnetic refrigeration technology. The proper measure of the magnetocaloric effect as a function of temperature and magnetic field, in terms of adiabatic temperature change and isothermal entropy change, is required to compare the potentiality of different materials and to lead to their development. Moreover, the tes...

  14. Tuning of the magneto-caloric effects in MnFe(P,As) by substitution of elements

    International Nuclear Information System (INIS)

    Tegus, O.; Brueck, E.; Li, X.W.; Zhang, L.; Dagula, W.; Boer, F.R. de; Buschow, K.H.J.

    2004-01-01

    MnFe(P,As) displays a large magnetocaloric effect around room temperature. Substitution of Cr for Fe results in a reduction of both the ordering temperature and the magnetocaloric effect. Substitution of Co for Fe leads to a decrease of the ordering temperature, whereas 10% extra Fe substituted for Mn leads to an increase of the ordering temperature. Finally, 10% extra Mn substituted for Fe results in an enhanced magnetocaloric effect with hardly any change of ordering temperature

  15. Simulation of the magnetocaloric effect in Tb nanofilms

    Energy Technology Data Exchange (ETDEWEB)

    Anselmo, Dory Hélio A. L., E-mail: doryh@dfte.ufrn.br [Departamento de Física Teórica e Experimental (DFTE), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN (Brazil); Mello, Vamberto D. [Departamento de Física,Universidade do Estado do Rio Grande do Norte (UERN), Mossoró-RN (Brazil); Vasconcelos, Manoel S. [Escola de Ciência e Tecnologia (ECT), Universidade Federal do Rio Grande do Norte (UFRN), Natal-RN (Brazil)

    2014-03-31

    Rare-earth (RE) metals have different magnetic structures resulting from the competition between the crystal-field and exchange interactions. When a magnetic field is applied it creates a third interaction and the magnetic structures are more complicated. In thin films, it is expected that even the magnetic arrangement itself can be strongly modified. Rare-earth helimagnets such as Terbium (Tb), Holmium (Ho) and Dysprosium (Dy) represent the best candidates to evidence such finite-size effects. This finite-size effect is caused by the reduced number of atoms in the direction perpendicular to the film plane that leads to a decrease of the total magnetic exchange energy. We report this contribution to the investigation of magnetocaloric effect (MCE) of thin Terbium films in the helimagnetic temperature range, from T{sub C} = 219 K to T{sub N} = 231 K, for external fields of the order of 1 kOe. We find that for strong fields, H = 50 kOe, the adiabatic temperature change ΔT near the Néel temperature is around 15 K for any thickness of Tb films. However large thickness effects are found for small values of the magnetic field. For field strength of the order of a few kOe, the thermocaloric efficiency increases significantly for ultrathin (nanomagnetic) films.

  16. Colossal magnetocaloric effect in magneto-auxetic systems

    Science.gov (United States)

    Dudek, M. R.; Wojciechowski, K. W.; Grima, J. N.; Caruana-Gauci, R.; Dudek, K. K.

    2015-08-01

    We show that a mechanically driven magnetocaloric effect (MCE) in magneto-auxetic systems (MASs) in the vicinity of room temperature is possible and the effect can be colossal. Even at zero external magnetic field, the magnetic entropy change in this reversible process can be a few times larger in magnitude than in the case of the giant MCE discovered by Pecharsky and Gschneidner in Gd5(Si2Ge2). MAS represent a novel class of metamaterials having magnetic insertions embedded within a non-magnetic matrix which exhibits a negative Poisson’s ratio. The auxetic behaviour of the non-magnetic matrix may either enhance the magnetic ordering process or it may result in a transition to the disordered phase. In the MAS under consideration, a spin 1/2 system is chosen for the magnetic component and the well-known Onsager solution for the two-dimensional square lattice Ising model at zero external magnetic field is used to show that the isothermal change in magnetic entropy accompanying the auxetic behaviour can take a large value at room temperature. The practical importance of our findings is that MCE materials used in present engineering applications may be further enhanced by changing their geometry such that they exhibit auxetic behaviour.

  17. Colossal magnetocaloric effect in magneto-auxetic systems

    International Nuclear Information System (INIS)

    Dudek, M R; Dudek, K K; Wojciechowski, K W; Grima, J N; Caruana-Gauci, R

    2015-01-01

    We show that a mechanically driven magnetocaloric effect (MCE) in magneto-auxetic systems (MASs) in the vicinity of room temperature is possible and the effect can be colossal. Even at zero external magnetic field, the magnetic entropy change in this reversible process can be a few times larger in magnitude than in the case of the giant MCE discovered by Pecharsky and Gschneidner in Gd 5 (Si 2 Ge 2 ). MAS represent a novel class of metamaterials having magnetic insertions embedded within a non-magnetic matrix which exhibits a negative Poisson’s ratio. The auxetic behaviour of the non-magnetic matrix may either enhance the magnetic ordering process or it may result in a transition to the disordered phase. In the MAS under consideration, a spin 1/2 system is chosen for the magnetic component and the well-known Onsager solution for the two-dimensional square lattice Ising model at zero external magnetic field is used to show that the isothermal change in magnetic entropy accompanying the auxetic behaviour can take a large value at room temperature. The practical importance of our findings is that MCE materials used in present engineering applications may be further enhanced by changing their geometry such that they exhibit auxetic behaviour. (paper)

  18. Nonuniversal scaling of the magnetocaloric effect as an insight into spin-lattice interactions in manganites

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Neves Bez, Henrique

    2016-01-01

    is not given uniquely by the critical exponents of the ferromagnetic-paramagnetic phase transition, i.e., the scaling is nonuniversal. A theoretical description based on the Bean-Rodbell model and taking into account compositional inhomogeneities is shown to be able to account for the observed field dependence....... In this way the determination of the nonuniversal field dependence of the magnetocaloric effect close to a phase transition can be used as a method to gain insight into the strength of the spin-lattice interactions of magnetic materials. The approach is shown also to be applicable to first-order transitions.......We measure the magnetocaloric effect of the manganite series La0.67Ca0.33-xSrxMnO3 by determining the isothermal entropy change upon magnetization, using variable-field calorimetry. The results demonstrate that the field dependence of the magnetocaloric effect close to the critical temperature...

  19. The effect of plastic deformation on magnetic and magnetocaloric properties of Gd-B alloys

    Science.gov (United States)

    Taskaev, Sergey; Skokov, Konstantin; Karpenkov, Dmitry; Khovaylo, Vladimir; Ulyanov, Maxim; Bataev, Dmitry; Dyakonov, Alexandr; Fazlitdinova, Alfiya; Gutfleisch, Oliver

    2017-11-01

    We report on the magnetocaloric effect in Gd100-xBx (x = 0, 10, 15) cold rolled ribbons. A moderate entropy change ΔS = 5 J/kg·K and adiabatic change of ΔT = 4.8 K were observed for the as-cast materials in an external magnetic field of 3 T which is less by 20% in comparison with the pure gadolinium metal. It was found that a significant (up to 70%) depression of magnetization and magnetocaloric properties developed in the course of plastic deformation can completely be restored by means of a high temperature heat treatment. It is concluded that cold rolling is one promising technique for producing foil shaped magnetocaloric materials suitable for designing heat exchangers of magnetic cooling devices.

  20. Magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Jeppesen, Stinus

    2008-10-15

    New and improved magnetocaloric materials are one of the cornerstones in the development of room temperature magnetic refrigeration. Magnetic refrigeration has been used since the 1930ies in cryogenic applications, but has since the discovery of room temperature refrigerants received enormous attention. This Ph.D. work has been mainly concerned with developing a new technique to characterize the magnetocaloric effect (MCE) and using this technique in the investigations on new and improved magnetocaloric materials. For this purpose a novel differential scanning calorimeter (DSC) with applied magnetic fields was developed for measuring heat capacity as function of magnetic field. Measurements using the developed DSC demonstrate a very high sensitivity, fast measurements and good agreement with results obtained by other techniques. Furthermore, two material systems have been described in this work. Both systems take basis in the mixed-valence manganite system La{sub 1-x}Ca{sub x}MnO{sub 3} well known from research on colossal magnetoresistance (CMR). The mixed-valence manganite crystallizes in the perovskite structure of general formula ABO{sub 3}. The first material system is designed to investigate the influence of low level Cu doping on the B-site. Six different samples were prepared with over-stoichiometric compositions La{sub 0.67}Ca{sub 0.33}Mn{sub 1.05}Cu{sub x}O{sub 3}, x=0, 1, 2, 3, 4 and 5%. All compositions crystallized well in the same perovskite structure, but the morphology of the samples changed drastically with doping. Investigation on the magnetocaloric properties revealed that small levels of Cu up to around 3% could improve the magnetocaloric performance of the materials. Furthermore, Cu could be used to tune the temperature interval without deteriorating the MCE, which is a much desired characteristic for potential use in magnetic refrigerators. A less comprehensive part of the work has been concerned with the investigation of doping on the A

  1. Anisotropy of the magnetocaloric effect in DyNiAl

    Czech Academy of Sciences Publication Activity Database

    Kaštil, J.; Javorský, P.; Andreev, Alexander V.

    2009-01-01

    Roč. 321, č. 15 (2009), s. 2318-2321 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100520 Keywords : magnetocaloric effec * DyNiAl * magnetism * anisotropy Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.204, year: 2009

  2. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Chonghui [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Yu, E-mail: yuwang@mail.xjtu.edu.cn [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Multi-disciplinary Materials Research Center, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping [MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter and State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2015-05-05

    Highlights: • Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} alloy exhibits normal elastocaloric and magnetocaloric effects. • L2{sub 1} atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2{sub 1} atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2{sub 1} atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni{sub 51}Cu{sub 4}Mn{sub 20}Ga{sub 25} ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system.

  3. Influence of atomic ordering on elastocaloric and magnetocaloric effects of a Ni–Cu–Mn–Ga ferromagnetic shape memory alloy

    International Nuclear Information System (INIS)

    Huang, Chonghui; Wang, Yu; Tang, Zhao; Liao, Xiaoqi; Yang, Sen; Song, Xiaoping

    2015-01-01

    Highlights: • Ni 51 Cu 4 Mn 20 Ga 25 alloy exhibits normal elastocaloric and magnetocaloric effects. • L2 1 atomic order of the alloy is increased after annealing at 773 K for 10 h. • Increasing L2 1 atomic order improves its elastocaloric and magnetocaloric effects. • Atomic ordering modifies the magnetic and martensitic transitions of the system. - Abstract: The coexisting elastocaloric and magnetocaloric effects in ferromagnetic shape memory alloys have attracted much attention for the potential application in solid state refrigeration. Previous studies show that the L2 1 atomic ordering of Heusler ferromagnetic shape memory alloys plays important role on their magnetocaloric effect. However, no research work investigates the effect of atomic ordering on their elastocaloric effect yet. In this study, we investigated the influence of atomic ordering on the elastocaloric and magnetocaloric effects of a Ni 51 Cu 4 Mn 20 Ga 25 ferromagnetic shape memory alloy. The alloy exhibits normal elastocaloric effect and normal magnetocaloric effect near room temperature. Moreover, we found that the enhancement of atomic order in this alloy can greatly increase the entropy change and refrigeration capacity of its elastocaloric and magnetocaloric effects. This is attributed to that the atomic ordering modifies the magnetic and martensitic transitions of the system

  4. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field

    DEFF Research Database (Denmark)

    Jeppesen, Stinus; Linderoth, Søren; Pryds, Nini

    2008-01-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high...

  5. Magnetocaloric properties of distilled gadolinium: effects of structural inhomogeneity and hydrogen impurity

    Czech Academy of Sciences Publication Activity Database

    Burkhanov, G.S.; Kolchugina, N.B.; Tereshina, Evgeniya; Tereshina, I. S.; Politova, G.A.; Chzhan, V.B.; Badurski, D.; Chistyakov, O.D.; Paukov, M.; Drulis, H.; Havela, L.

    2014-01-01

    Roč. 104, č. 24 (2014), "242402-1"-"242402-5" ISSN 0003-6951 R&D Projects: GA ČR GAP204/12/0150 Institutional support: RVO:68378271 Keywords : high-purity rare- earth metals * gadolinium * magnetocaloric effect * hydrogenation * structural studies Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.302, year: 2014

  6. Measuring the effect of demagnetization in stacks of gadolinium plates using the magnetocaloric effect

    International Nuclear Information System (INIS)

    Lipso, K.W.; Nielsen, K.K.; Christensen, D.V.; Bahl, C.R.H.; Engelbrecht, K.; Theil Kuhn, L.; Smith, A.

    2011-01-01

    The effect of demagnetization in a stack of gadolinium plates is determined experimentally by using spatially resolved measurements of the adiabatic temperature change due to the magnetocaloric effect. The number of plates in the stack, the spacing between them and the position of the plate on which the temperature is measured are varied. The orientation of the magnetic field is also varied. The measurements are compared to a magnetostatic model previously described. The results show that the magnetocaloric effect, due to the change in the internal field, is sensitive to the stack configuration and the orientation of the applied field. This may have significant implications for the construction of a magnetic cooling device. - Highlights: → The magnetocaloric effect is used as an indirect measure of the internal magnetic field. → To our knowledge nobody has published experimental determination of demagnetizing field in stack configurations of plates of magnetic material. → We present good agreement between the experimental results and an established numerical model. → This serves to show that the model may be used further to predict, e.g., optimal configurations.

  7. Effect of low temperature annealing on magneto-caloric effect of Ni–Mn–Sn–Al ferromagnetic shape memory alloy

    Energy Technology Data Exchange (ETDEWEB)

    Agarwal, Sandeep [Haldia Institute of Technology, Haldia 721657, West Bengal (India); LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India); Stern-Taulats, Enric; Mañosa, Lluís [Departament d’Estructura i Constituents de la Matèria, Facultat de Física, Universitat de Barcelona, 08028 Barcelona, Catalonia (Spain); Mukhopadhyay, P.K., E-mail: pkm@bose.res.in [LCMP, Department of Condensed Matter Physics and Material Sciences, S.N. Bose National Centre for Basic Sciences, JD Block, Salt Lake, Kolkata 700098 (India)

    2015-08-25

    Highlights: • Magnetic properties of the system changed after secondary heat treatment. • MCE was enhanced after Al was partially replaced with Sn in Ni–Mn–Al system. • Suitable heat treatment further increased overall MCE in the sample. • Change in magnetic properties occurred due to change in atomic ordering. - Abstract: We studied the effect of low temperature annealing on the atomic ordering and consequent changes in the magnetization and magnetocaloric effect of the sample. The annealing at lower temperatures initially decreased the magnetization and magnetocaloric effect in the sample, but at higher annealing temperatures both increased. The changes in magnetization and magnetocaloric effect arise from the change in atomic ordering. We have shown that post quenching heat treatment offers easy way of optimizing the alloy for magnetocaloric effect. In order to verify that there was no overestimation in the measurement of magnetocaloric effect we also performed an infield calorimetric measurements and compared them with those from the magnetization measurements. We did not find remarkable difference between them.

  8. Heat capacity and magnetocaloric effect in polycrystalline Gd 1-xSm xMn 2Si 2

    Science.gov (United States)

    Kumar, Pramod; Singh, Niraj K.; Suresh, K. G.; Nigam, A. K.; Malik, S. K.

    2007-12-01

    We report the magnetocaloric effect in terms of isothermal magnetic entropy change as well as adiabatic temperature change, calculated using the heat capacity data. Using the zero-field heat capacity data, the magnetic contribution to the heat capacity has been estimated. The variations in the magnetocaloric behavior have been explained on the basis of the magnetic structure of these compounds. The refrigerant capacities have also been calculated for these compounds.

  9. Magnetocaloric effect and other low-temperature properties of Pr2Pt2 In

    Science.gov (United States)

    Mboukam, J. J.; Sondezi, B. M.; Tchokonté, M. B. Tchoula; Bashir, A. K. H.; Strydom, A. M.; Britz, D.; Kaczorowski, D.

    2018-05-01

    We report on X-ray diffraction, electrical transport, heat capacity and magnetocaloric effect measurements of a polycrystalline sample of Pr2Pt2 In . The compound forms in the tetragonal Mo2FeB2 type structure and orders ferromagnetically at TC=9 K. In the ordered state, its thermodynamic and electrical transport properties are dominated by magnon contributions with an energy gap of about 8 K in the spin-wave spectrum. The magnitude of magnetocaloric effect is similar to the values reported for most rare-earth based intermetallics. Characteristic behavior of the isothermal magnetic entropy change maximum points to a second-order character of the ferromagnetic phase transition in the compound studied.

  10. Observation of large magnetocaloric effect in equiatomic binary compound ErZn

    Directory of Open Access Journals (Sweden)

    Lingwei Li

    2017-05-01

    Full Text Available The magnetism, magnetocaloric effect and universal behaviour in rare earth Zinc binary compound of ErZn have been studied. The ErZn compound undergoes a second order paramagnetic (PM to ferromagnetic (FM transition at Curie temperature of TC ∼ 20 K. The ErZn compound exhibits a large reversible magnetocaloric effect (MCE around its own TC. The rescaled magnetic entropy change curves overlap with each other under various magnetic field changes, further confirming the ErZn with the second order phase transition. For the magnetic field change of 0-7 T, the maximum values of the magnetic entropy change (−ΔSMmax, relative cooling power (RCP and refrigerant capacity (RC for ErZn are 23.3 J/kg K, 581 J/kg and 437 J/kg, respectively.

  11. MnFe(PGe) compounds: Preparation, structural evolution, and magnetocaloric effects

    International Nuclear Information System (INIS)

    Yue Ming; Zhang Hong-Guo; Zhang Jiu-Xing; Liu Dan-Min

    2015-01-01

    The interdependences of preparation conditions, magnetic and crystal structures, and magnetocaloric effects (MCE) of the MnFePGe-based compounds are reviewed. Based upon those findings, a new method for the evaluation of the MCE in these compounds, based on differential scanning calorimetry (DSC), is proposed. The MnFePGe-based compounds are a group of magnetic refrigerants with giant magnetocaloric effect (GMCE), and as such, have drawn tremendous attention, especially due to their many advantages for practical applications. Structural evolution and phase transformation in the compounds as functions of temperature, pressure, and magnetic field are reported. Influences of preparation conditions upon the homogeneity of the compounds’ chemical composition and microstructure, both of which play a key role in the MCE and thermal hysteresis of the compounds, are introduced. Lastly, the origin of the “virgin effect” in the MnFePGe-based compounds is discussed. (paper)

  12. Large rotating magnetocaloric effect in ErAlO3 single crystal

    Directory of Open Access Journals (Sweden)

    X. Q. Zhang

    2017-05-01

    Full Text Available Magnetic and magnetocaloric properties of ErAlO3 single crystal were investigated. Magnetization of ErAlO3 shows obvious anisotropy when magnetic field is applied along the a, b and c axes, which leads to large anisotropic magnetic entropy change. In particular, large rotating field entropy change from the b to c axis within the bc plane is obtained and reaches 9.7 J/kg K at 14 K in a field of 5 T. This suggests the possibility of using ErAlO3 single crystal for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  13. Order of magnetic transition and large magnetocaloric effect in Er3Co

    International Nuclear Information System (INIS)

    Jun, Shen; Jian-Feng, Wu; Jin-Liang, Zhao; Feng-Xia, Hu; Ji-Rong, Sun; Bao-Gen, Shen

    2010-01-01

    We have studied the magnetic and magnetocaloric properties of the Er 3 Co compound, which undergoes ferromagnetic ordering below the Curie temperature T C = 13 K. It is found by fitting the isothermal magnetization curves that the Landau model is appropriate to describe the Er 3 Co compound. The giant magnetocaloric effect (MCE) without hysteresis loss around T C is found to result from the second-order ferromagnetic-to-paramagnetic transition. The maximal value of magnetic entropy change is 24.5 J/kg·K with a refrigerant capacity (RC) value of 476 J/kg for a field change of 0–5 T. Large reversible MEC and RC indicate the potentiality of Er 3 Co as a candidate magnetic refrigerant at low temperatures. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  14. Magnetocaloric effect in Ni{sub 2}MnGa single crystal in the vicinity of the martensitic phase transition

    Energy Technology Data Exchange (ETDEWEB)

    Radelytskyi, I., E-mail: radel@ifpan.edu.pl [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Pękała, M. [Department of Chemistry, University of Warsaw, Al. Zwirki i Wigury 101, 02-089 Warsaw (Poland); Szymczak, R. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Gawryluk, D.J. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Laboratory for Scientific Developments and Novel Materials, Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Berkowski, M.; Fink-Finowicki, J. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland); Diduszko, R. [Tele and Radio Research Institute, ul Ratuszowa 11, 03-450 Warsaw (Poland); Dyakonov, V.; Szymczak, H. [Institute of Physics, PAS, Al. Lotnikow 32/46, 02-668 Warsaw (Poland)

    2017-05-15

    The magnetocaloric effect in the vicinity of the martensitic transformation for a single crystalline alloy with a composition close to the stoichiometric Ni{sub 2}MnGa has been determined indirectly by M(T,H) magnetization measurements. It has an inverse character. The magnetocaloric parameters, i.e., the magnetic entropy change, refrigeration capacity and various hysteretic effects have been calculated from the M(T,H) dependences. Besides the martensitic transition a weak entirely separated intermartensitic transition was observed. These two successive magneto-structural transformations give contributions to the observed magnetocaloric effect. Unusual dependence of entropy change as a function of magnetic field has been explained as arising because of two different mechanisms. Additionally, to confirm that studied martensitic transformation is a first order phase transition electrical resistivity and thermoelectric power measurements have been performed. - Highlights: • Inverse magnetocaloric effect in Ni{sub 50.4}Mn{sub 24.9}Ga{sub 24.7} single crystal was measured. • The martensitic and separated intermartensitic transition were investigated. • Anisotropy of measured magnetocaloric effect was discussed.

  15. Effects of pre-deformation on the martensitic transformation and magnetocaloric property in Ni-Mn-Co-Sn ribbons

    International Nuclear Information System (INIS)

    Ma Sheng-Can; Xuan Hai-Cheng; Zhang Cheng-Liang; Wang Liao-Yu; Cao Qing-Qi; Wang Dun-Hui; Du You-Wei

    2010-01-01

    This paper investigates the martensitic transformation and magnetocaloric effect in pre-deformed Ni-Mn-Co-Sn ribbons. The experimental results show that the reverse martensitic transformation temperature T M increases with the increasing pre-pressure, suggesting that pre-deformation is another effective way to adjust T M in ferromagnetic shape memory alloys. Large magnetic entropy changes and refrigerant capacities are obtained in these ribbons as well. It also discusses the origin of the enhanced martensitic transformation temperature and magnetocaloric property in pre-deformed Ni-Mn-Co-Sn ribbons

  16. Magnetic and magnetocaloric properties of Ni-Mn-Cr-Sn Heusler alloys under the effects of hydrostatic pressure

    Science.gov (United States)

    Pandey, Sudip; Us Saleheen, Ahmad; Quetz, Abdiel; Chen, Jing-Han; Aryal, Anil; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The magnetic, thermal, and magnetocaloric properties of Ni45Mn43CrSn11 Heusler alloy have been investigated using differential scanning calorimetry and magnetization with hydrostatic pressure measurements. A shift in the martensitic transition temperature (TM) to higher temperatures was observed with the application of pressure. The application of pressure stabilizes the martensitic state and demonstrated that pressure can be a parameter used to control and tune the martensitic transition temperature (the temperature where the largest magnetocaloric effect is observed). The magnetic entropy change significantly decreases from 33 J/kg K to 16 J/kg K under the application of a hydrostatic pressure of 0.95 GPa. The critical field of the direct metamagnetic transition increases, whereas the initial susceptibility (dM/dH) in the low magnetic field region drastically decreases with increasing pressure. The relevant parameters that affect the magnetocaloric properties are discussed.

  17. Magnetocaloric effect and refrigeration cooling power in amorphous Gd7Ru3 alloys

    OpenAIRE

    Pramod Kumar; Rachana Kumar

    2015-01-01

    In this paper, we report the magnetic, heat capacity and magneto-caloric effect (MCE) of amorphous Gd7Ru3 compound. Both, temperature dependent magnetization and heat capacity data reveals that two transitions at 58 K and 34 K. MCE has been calculated in terms of isothermal entropy change (ΔSM) and adiabatic temperature change (ΔTad) using the heat capacity data in different fields. The maximum values of ΔSM and ΔTad are 21 Jmol−1K−1 and 5 K respectively, for field change of 50 kOe whereas re...

  18. Effect of terbium substitution on the magnetocaloric properties of Gd3Ga5O12

    International Nuclear Information System (INIS)

    Reshmi, C.P.; Savitha Pillai, S.; Varma, Manoj Raama; Suresh, K.G.

    2011-01-01

    The magnetic refrigeration is an environment friendly cooling technology based on magnetocaloric effect. The most crucial ingredient behind a magnetic refrigerator is a magnetic material which possesses large magnetocaloric effect. Certain materials when placed in a magnetic field suddenly get heats up and suddenly cooled down by the application and the removal of magnetic field due to their change in entropy. This is measured either in terms of isothermal entropy change and adiabatic temperature change observed when the applied magnetic field is varied. The refrigerators which operate below 15K have applications in liquefying helium and for the development of space based cooling system for the space crafts. The material of choice in this temperature range is rare earth gallium garnets. Rare earth garnets are complex ceramic oxides having the chemical formula A 3 B 2 C 3 O 12 have attracted attention due to their interesting magnetic properties. The magnetism in R 3 Ga 5 O 12 is due to the exchange interaction between the rare earth spins. In the proposed work we have chosen Gd 3 Ga 5 O 12 as parent material, substituted Tb systematically in the place of Gd. The structural studies were done by using Rietveld analysis of X-Ray diffraction. There is a systematic variation of volume and lattice parameter upon substitution of Tb. The magnetic characterizations were done by a vibrating sample magnetometer. The experimental magnetic moments of the materials were calculated from the M-T curve by using Curie-Weiss fit and are good agreement with the theoretical values. There is a systematic increase of magnetic moments by Tb substitution. The magnetocaloric effect is calculated by using the integrated Maxwell's relation from the magnetization data. At low magnetic fields the Tb substituted compounds show good MCE values than GGG. Tb substitution enhances the magnetocaloric effect at low magnetic fields and the ΔS M values are higher for x = 1 and 3 at 1T. Hence these

  19. Pressure effects on the magnetocaloric properties of MnFeP.sub.1-x./sub.As.sub.x./sub..

    Czech Academy of Sciences Publication Activity Database

    Brück, E.; Kamarád, Jiří; Sechovský, V.; Arnold, Zdeněk; Tegus, O.; De Boer, F. R.

    2007-01-01

    Roč. 310, - (2007), e1008-e1009 ISSN 0304-8853 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetic refrigeration * magnetocaloric effect * pressure effect * MnFe(P, As) compounds Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.704, year: 2007

  20. Magnetocaloric effect in “reduced” dimensions: Thin films, ribbons, and microwires of Heusler alloys and related compounds: Magnetocaloric effect in “reduced” dimensions

    Energy Technology Data Exchange (ETDEWEB)

    Khovaylo, Vladimir V. [National University of Science and Technology MISiS, Moscow 119049 Russia; ITMO University, St. Petersburg 197101 Russia; Rodionova, Valeria V. [National University of Science and Technology MISiS, Moscow 119049 Russia; Innovation Park and Institute of Physics & Technology, Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russia; Shevyrtalov, Sergey N. [Innovation Park and Institute of Physics & Technology, Immanuel Kant Baltic Federal University, Kaliningrad 236041 Russia; Novosad, Val [Materials Science Division, Argonne National Laboratory, Argonne IL 60439 USA

    2014-08-19

    Room temperature magnetic refrigeration is an energy saving and environmentally-friendly technology which has developed rapidly from a basic idea to prototype devices. The performance of magnetic refrigerators crucially depends on the magnetocaloric properties and the geometry of the employed refrigerants. Here we review the magnetocaloric properties of Heusler alloys and related compounds with a high surface to volume ratio such as films, ribbons and microwires, and compare them with their bulk counterparts.

  1. Magnetocaloric effect of Gd4(BixSb1-x)3 alloy series

    International Nuclear Information System (INIS)

    Niu, Xuejun

    1999-01-01

    Alloys from the Gd 4 (Bi x Sb 1-x ) 3 series were prepared by melting a stoichiometric amounts of pure metals in an induction furnace. The crystal structure is of the anti-Th 3 P 4 type (space group Ibar 43d) for all the compounds tested. The linear increase of the lattice parameters with Bi concentration is attributed to the larger atomic radius of Bi than that of Sb. Magnetic measurements show that the alloys order ferromagnetically from 266K to 330K, with the ordering temperature increasing with decreasing Bi concentration. The alloys are soft ferromagnets below their Curie temperatures, and follow the Curie-Weiss law above their ordering temperatures. The paramagnetic effective magnetic moments are low compared to the theoretical value for a free Gd 3+ , while the ordered magnetic moments are close to the theoretical value for Gd. The alloys exhibit a moderate magnetocaloric effect (MCE) whose maxima are located between 270K and 338K and have relatively wide peaks. The peak MCE temperature decreases with decreasing Bi concentration while the peak height increases with decreasing Bi concentration. The Curie temperatures determined from inflection points of heat capacity are in good agreement with those obtained from the magnetocaloric effect. The MCE results obtained from the two different methods (magnetization and heat capacity) agree quite well with each other for all of the alloys in the series

  2. Influence of the materials magnetic state on the accurate determination of the magnetocaloric effect

    Directory of Open Access Journals (Sweden)

    Forchelet J.

    2012-06-01

    Full Text Available In this paper, we report a detailed study of the magnetocaloric effect (MCE in different first order magnetic transition (FOMT materials with different situation of the magnetic state (magnetic order. For this purpose, R-Co2, MnAs based compounds were considered in this study. The MCE is discussed in terms of Maxwell relation (MR and Clausius-Clapeyron (C-C equation. The deviation observed between both methods is discussed and analyzed. On the other hand, practically all the reported data of the MCE in the literature are associated to the applied external magnetic field and have not been corrected taking into account the demagnetization effect related to the materials shape. The obtained results demonstrate that this phenomenon can alter drastically the MCE values by cancelling out a large part of the external field, resulting in spurious values of the measured MCE. The effect of the demagnetization field on the magnetocaloric performances is also the subject of this paper.

  3. Magnetocaloric effect in magnetothermally-responsive nanocarriers for hyperthermia-triggered drug release

    International Nuclear Information System (INIS)

    Li Jianbo; Qu Yang; Ren Jie; Yuan Weizhong; Shi Donglu

    2012-01-01

    The magnetocaloric effects and lower critical solution temperature (LCST) were investigated in a magnetothermally-responsive nanocarrier for magnetothermal drug release under alternating magnetic field (AMF). The Mn 0.2 Zn 0.8 Fe 2 O 4 nanoparticles with low T c were dispersed in a polymeric matrix consisting of N-Isopropyl acrylamide (NIPAAm) and N-hydroxymethyl acrylamide (HMAAm). The magnetocaloric effects and LCST of the nanocarriers were characterized by using high-resolution electron transmission microscopy, thermogravimetric analyses, and vibrating sample magnetometer. The maximum self-heating temperature of 42.9 °C was achieved by optimizing the Mn 0.2 Zn 0.8 Fe 2 O 4 concentration in the polymer matrix. By adjusting the NIPAAm to HMAAm ratio, the LCST was controlled at an ideal level of 40.1 °C for efficient thermosensitive drug delivery. Magnetothermally responsive drug release of Doxorubicin, an anticancer drug, was significantly enhanced by application of an external AMF on the nanocarriers. The cytotoxicity experimental results in vitro show good biocompatibility and efficient therapeutic effects in cancer treatment. (paper)

  4. Multifunctional phenomena in rare-earth intermetallic compounds with a laves phase structure: giant magnetostriction and magnetocaloric effect

    Czech Academy of Sciences Publication Activity Database

    Tereshina, I.; Cwik, J.; Tereshina, Evgeniya; Politova, G.; Burkhanov, G.; Chzhan, V.; Ilyushin, A.; Miller, M.; Zaleski, A.; Nenkov, K.; Schultz, L.

    2014-01-01

    Roč. 50, č. 11 (2014), s. 2504604 ISSN 0018-9464 Institutional support: RVO:68378271 Keywords : giant magnetostriction * Laves phase structure * magnetic anisotropy * magnetocaloric effect * rare-earth intermetallic Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.386, year: 2014

  5. Magnetocaloric effect in potassium doped lanthanum manganite perovskites prepared by a pyrophoric method

    Science.gov (United States)

    Das, Soma; Dey, T. K.

    2006-08-01

    The magnetocaloric effect (MCE) in fine grained perovskite manganites of the type La1-xKxMnO3 (0value of 3.00 J kg-1 K-1 at 310 K amongst the compounds investigated. Moreover, the maximum magnetic entropy change exhibits a linear dependence with applied magnetic field. The estimated adiabatic temperature change at TC and at 1 T field also increases with K doping, being a maximum of 2.1 K for the La0.85K0.15MnO3 compound. The relative cooling power (RCP) of La1-xKxMnO3 compounds is estimated to be about one-third of that of the prototype magnetic refrigerant material (pure Gd). However, La1-xKxMnO3 compounds possess an MCE around room temperature, which is comparable to that of Gd. Further, tailoring of their TC, higher chemical stability, lower eddy current heating and lower cost of synthesis are some of the attractive features of K doped lanthanum manganites that are advantageous for a magnetic refrigerant. The temperature dependence of the magnetic entropy change (ΔSM) measured under various magnetic fields is explained fairly well using the Landau theory of phase transitions. Contributions of magnetoelastic and electron interaction are found to have a strong influence in the magnetocaloric effect of manganites.

  6. FAST TRACK COMMUNICATION: Reproducible room temperature giant magnetocaloric effect in Fe-Rh

    Science.gov (United States)

    Manekar, Meghmalhar; Roy, S. B.

    2008-10-01

    We present the results of magnetocaloric effect (MCE) studies in polycrystalline Fe-Rh alloy over a temperature range of 250-345 K across the first order antiferromagnetic to ferromagnetic transition. By measuring the MCE under various thermomagnetic histories, contrary to the long held belief, we show here explicitly that the giant MCE in Fe-Rh near room temperature does not vanish after the first field cycle. In spite of the fact that the virgin magnetization curve is lost after the first field cycle near room temperature, reproducibility in the MCE under multiple field cycles can be achieved by properly choosing a combination of isothermal and adiabatic field variation cycles in the field-temperature phase space. This reproducible MCE leads to a large effective refrigerant capacity of 324.42 J kg-1, which is larger than that of the well-known magnetocaloric material Gd5Si2Ge2. This information could be important as Fe-Rh has the advantage of having a working temperature of around 300 K, which can be used for room temperature magnetic refrigeration.

  7. Monte Carlo simulation study of magnetocaloric effect in NdMnO{sub 3} perovskite

    Energy Technology Data Exchange (ETDEWEB)

    Masrour, R., E-mail: rachidmasrour@hotmail.com [Laboratory of Materials, Processes, Environment and Quality, Cady Ayyed University, National School of Applied Sciences, PB 63 46000 Safi (Morocco); Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Jabar, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Benyoussef, A. [Laboratoire de Magnétisme et Physique des Hautes Energies L.M.P.H.E.URAC 12, Université Mohammed V, Faculté des Sciences, B.P. 1014, Rabat (Morocco); Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hassan II Academy of Science and Technology, Rabat (Morocco); Hamedoun, M. [Institute of Nanomaterials and Nanotechnologies, MAScIR, Rabat (Morocco); Hlil, E.K. [Institut Curie, CNRS et Université Joseph Fourier, BP 166, F-38042 Grenoble Cedex 9 (France)

    2016-03-01

    The magnetocaloric effect in NdMnO{sub 3} perovskite is investigated by using the Monte Carlo simulations. The Curie temperature T{sub C} of NdMnO{sub 3} compound is deduced from the variation of the magnetization vs. the temperature with different values of external magnetic field. The variation of magnetization with the external magnetic field H is given. The specific heat with the temperature is established for different external magnetic field. The thermal magnetic entropy for different external magnetic field and different exchange interactions in NdMnO{sub 3} compound is obtained. The adiabatic temperature change is obtained. The relative cooling power with different external magnetic field is established. The magnetocaloric effect has been investigated from magnetization. - Highlights: • Results obtained show that the PM–FM transition is of second order in NdMnO{sub 3}. • Critical properties of NdSi at the FM–PM transition have been analyzed. • The Curie temperature and magnetic entropy have been obtained.

  8. The normal and inverse magnetocaloric effect in RCu2 (R=Tb, Dy, Ho, Er) compounds

    International Nuclear Information System (INIS)

    Zheng, X.Q.; Xu, Z.Y.; Zhang, B.; Hu, F.X.; Shen, B.G.

    2017-01-01

    Orthorhombic polycrystalline RCu 2 (R=Tb, Dy, Ho and Er) compounds were synthesized and the magnetic properties and magnetocaloric effect (MCE) were investigated in detail. All of the RCu 2 compounds are antiferromagnetic (AFM) ordered. As temperature increases, RCu 2 compounds undergo an AFM to AFM transition at T t and an AFM to paramagnetic (PM) transition at T N . Besides of the normal MCE around T N , large inverse MCE around T t was found in TbCu 2 compound. Under a field change of 0–7 T, the maximal value of inverse MCE is even larger than the value of normal MCE around T N for TbCu 2 compound. Considering of the normal and inverse MCE, TbCu 2 shows the largest refrigerant capacity among the RCu 2 (R=Tb, Dy, Ho and Er) compounds indicating its potential applications in low temperature multistage refrigeration. - Highlights: • Large inverse magnetocaloric effect is observed in TbCu 2 compound. • The AFM to AFM transition is observed in RCu 2 (R=Tb, Dy, Ho, Er) compounds. • The MCE performance of TbCu 2 compound is evaluated in a more comprehensively way.

  9. Pressure effects on the magnetocaloric properties of MnFeP1-x As x

    International Nuclear Information System (INIS)

    Brueck, E.; Kamarad, J.; Sechovsky, V.; Arnold, Z.; Tegus, O.; Boer, F.R. de

    2007-01-01

    We studied the effect of hydrostatic pressure on the magnetic and magnetocaloric properties of the potential magnetic-refrigerant materials MnFeP 1- x As x with x=0.35 and 0.55. While applied pressure reduces both the Curie temperature and magnetic moment of the former compound, the Curie temperature of the latter is increased whereas the moment is hardly affected by pressure. The same trends are seen in the magnetocaloric properties. These results indicate a different character of the magnetism in these two materials. While the compound with x=0.35 exhibits a volume instability like a weak itinerant ferromagnet, whereas the one with x=0.55 behaves as a strong itinerant ferromagnet. An alternative scenario may be formulated within the localized-moment picture. One may interpret the effect of pressure on the compound with x=0.35 as an indication of pressure-induced enhancement of antiferromagnetic interactions. This latter interpretation is offered by a pronounced enhancement of the high-field susceptibility under pressure

  10. Direct and indirect measurement of the magnetocaloric effect in bulk and nanostructured Ni-Mn-In Heusler alloy

    Science.gov (United States)

    Ghahremani, Mohammadreza; Aslani, Amir; Hosseinnia, Marjan; Bennett, Lawrence H.; Della Torre, Edward

    2018-05-01

    A systematic study of the magnetocaloric effect of a Ni51Mn33.4In15.6 Heusler alloy converted to nanoparticles via high energy ball-milling technique in the temperature range of 270 to 310 K has been performed. The properties of the particles were characterized by x-ray diffraction, electron microscopy, and magnetometer techniques. Isothermal magnetic field variation of magnetization exhibits field hysteresis in bulk Ni51Mn33.4In15.6 alloy across the martensitic transition which significantly lessened in the nanoparticles. The magnetocaloric effects of the bulk and nanoparticle samples were measured both with direct method, through our state of the art direct test bed apparatus with controllability over the applied fields and temperatures, as well as an indirect method through Maxwell and thermodynamic equations. In direct measurements, nanoparticle sample's critical temperature decreased by 6 K, but its magnetocaloric effect enhanced by 17% over the bulk counterpart. Additionally, when comparing the direct and indirect magnetocaloric curves, the direct method showed 14% less adiabatic temperature change in the bulk and 5% less adiabatic temperature change in the nanostructured sample.

  11. Large magnetocaloric effect of GdNiAl{sub 2} compound

    Energy Technology Data Exchange (ETDEWEB)

    Dembele, S.N.; Ma, Z.; Shang, Y.F. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Fu, H., E-mail: fuhao@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Balfour, E.A. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R.L.; Jiles, D.C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, IA 50011 (United States); Ames Laboratory, US Department of Energy, Ames, IA 50011 (United States); Teng, B.H.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China)

    2015-10-01

    This paper presents the structure, magnetic properties, and magnetocaloric effect of the polycrystalline compound GdNiAl{sub 2}. Powder X-ray diffraction (XRD) measurement and Rietveld refinement revealed that GdNiAl{sub 2} alloy is CuMgAl{sub 2}-type phase structure with about 1 wt% GdNi{sub 2}Al{sub 3} secondary phase. Magnetic measurements suggest that the compound is ferromagnetic and undergoes a second-order phase transition near 28 K. The maximum value of magnetic entropy change reaches 16.0 J/kg K for an applied magnetic field change of 0–50 kOe and the relative cooling power was 6.4×10{sup 2} J/kg. It is a promising candidate as a magnetocaloric material working near liquid hydrogen temperature (~20 K) exhibiting large relative cooling power. - Highlights: • Preferred orientation with axis of [010] was found in the GdNiAl{sub 2} compound. • The ΔS{sub Mmax} and the RCP are 16.0 J/kg K and 640 J/kg, respectively, for ΔH=50 kOe. • Relative low rare earth content in GdNiAl{sub 2} comparing with other candidates.

  12. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  13. Measurement of pressure effects on the magnetic and the magnetocaloric properties of the intermetallic compounds DyCo2 and Er(Co1-xSix)2

    International Nuclear Information System (INIS)

    Singh, Niraj K; Kumar, Pramod; Suresh, K G; Nigam, A K; Coelho, A A; Gama, S

    2007-01-01

    The effect of external pressure on the magnetic properties and magnetocaloric effect of polycrystalline compounds DyCo 2 and Er(Co 1-x Si x ) 2 (x = 0,0.025 and 0.05) has been studied. The ordering temperatures of both the parent and the Si-substituted compounds are found to decrease with pressure. In all the compounds, the critical field for metamagnetic transition increases with pressure. It is seen that the magnetocaloric effect in the parent compounds is almost insensitive to pressure, while there is considerable enhancement in the case of Si-substituted compounds. Spin fluctuations arising from the magnetovolume effect play a crucial role in determining the pressure dependence of the magnetocaloric effect in these compounds. The variation of the magnetocaloric effect is explained on the basis of the Landau theory of magnetic phase transitions

  14. Pressure effect on phase transitions and magnetocaloric effect in Gd.sub.5./sub.Ge.sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Skorokhod, Yuriy; Kamarád, Jiří; Magen, C.; Algarabel, P.A.

    2009-01-01

    Roč. 105, č. 3 (2009), 07A934/1-07A934/3 ISSN 0021-8979 R&D Projects: GA ČR(CZ) GA106/06/0368 Institutional research plan: CEZ:AV0Z10100521 Keywords : Curie temperature * ferromagnetic materials * ferromagnetic-antiferromagnetic transitions * gadolinium compounds * magnetocaloric effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.072, year: 2009

  15. New type of magnetocaloric effect: Implications on low-temperature magnetic refrigeration using an Ericsson cycle

    International Nuclear Information System (INIS)

    Takeya, H.; Pecharsky, V.K.; Gschneidner, K.A. Jr.; Moorman, J.O.

    1994-01-01

    The low-temperature, high magnetic field heat capacity (1.5 to 70 K and 0 to 9.85 T), dc and ac magnetic behaviors of the compound (Gd 0.54 Er 0.46 )AlNi show that field-induced magnetic entropy change is significant and almost constant over the temperature region of ∼15 to ∼45 K. The resulting temperature dependence of the magnetocaloric effect, nearly constant over a 30+ K temperature range, is unprecedented (most magnetic materials have a caretlike shape temperature dependence). These data show that (Gd 0.54 Er 0.46 )AlNi can be used as an effective active magnetic regenerator material for an Ericsson-cycle magnetic refrigerator, and could substitute for complex composite layered materials suggested earlier

  16. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  17. Giant magnetocaloric effect in Gd5(Si2Ge2 alloy with low purity Gd

    Directory of Open Access Journals (Sweden)

    Cleber Santiago Alves

    2004-12-01

    Full Text Available Gd5(Ge1-xSi x, x < 4 based alloys are potential candidates for magnetic refrigeration in the range ~20 - ~290 K. However, one of the greatest obstacles for the use of that technology in large scale is the utilization of high pure Gd metal (99.99 wt. (% to produce the GdGeSi alloys, since the impurity elements decrease the intensity of the magnetocaloric effect (EMC¹. In this work, we prove that annealing of the Gd5Ge2Si2 can promote remarkable values for the EMC in comparison to those obtained for the alloy with high pure Gd. Also, the as cast alloy and the annealed alloy are not monophasic, but have at least two crystalline phases in their microstructure. Results for X-ray analysis, optical and electronic microscopy and magnetization measurements are reported.

  18. Magnetocaloric effects in MnFeP1-x As x -based compounds

    International Nuclear Information System (INIS)

    Brueck, E.; Ilyn, M.; Tishin, A.M.; Tegus, O.

    2005-01-01

    Here we present the results of an investigation of some magnetic and thermal properties of the compounds MnFeP 0.45 As 0.55 , MnFeP 0.47 As 0.53 , and Mn 1.1 Fe 0.9 P 0.47 As 0.53 which can be regarded as possible magnetic refrigerants for room temperature applications. Magnetization measurements are performed in the temperature range 250-330 K, in magnetic fields up to 5 T. The coexistence of the magnetic and structural first-order phase transitions is revealed in all three samples, suggesting its key role in the large values observed for the magnetocaloric effect. The adiabatic temperature change measured directly was up to 4.0, 3.4, and 4.2 K for a magnetic field change of 1.45 T

  19. Giant magnetocaloric effect, magnetization plateaux and jumps of the regular Ising polyhedra

    International Nuclear Information System (INIS)

    Strečka, Jozef; Karľová, Katarína; Madaras, Tomáš

    2015-01-01

    Magnetization process and adiabatic demagnetization of the antiferromagnetic Ising spin clusters with the shape of regular polyhedra (Platonic solids) are exactly examined within the framework of a simple graph-theoretical approach. While the Ising cube as the only unfrustrated (bipartite) spin cluster shows just one trivial plateau at zero magnetization, the other regular Ising polyhedra (tetrahedron, octahedron, icosahedron and dodecahedron) additionally display either one or two intermediate plateaux at fractional values of the saturation magnetization. The nature of highly degenerate ground states emergent at intermediate plateaux owing to a geometric frustration is clarified. It is evidenced that the regular Ising polyhedra exhibit a giant magnetocaloric effect in a vicinity of magnetization jumps, whereas the Ising octahedron and dodecahedron belong to the most prominent geometrically frustrated spin clusters that enable an efficient low-temperature refrigeration by the process of adiabatic demagnetization

  20. Magnetocaloric effect in Sr2CrIrO6 double perovskite: Monte Carlo simulation

    Science.gov (United States)

    El Rhazouani, O.; Slassi, A.; Ziat, Y.; Benyoussef, A.

    2017-05-01

    Monte Carlo simulation (MCS) combined with the Metropolis algorithm has been performed to study the magnetocaloric effect (MCE) in the promising double perovskite (DP) Sr2CrIrO6 that has not so far been synthetized. This paper presents the global magneto-thermodynamic behavior of Sr2CrIrO6 compound in term of MCE and discusses the behavior in comparison to other DPs. Thermal dependence of the magnetization has been investigated for different values of reduced external magnetic field. Thermal magnetic entropy and its change have been obtained. The adiabatic temperature change and the relative cooling power have been established. Through the obtained results, Sr2CrIrO6 DP could have some potential applications for magnetic refrigeration over a wide temperature range above room temperature and at large magnetic fields.

  1. Glass formation, magnetic properties and magnetocaloric effect of ternary Ho–Al–Co bulk metallic glass

    International Nuclear Information System (INIS)

    Zhang, Huiyan; Li, Ran; Ji, Yunfei; Liu, Fanmao; Luo, Qiang; Zhang, Tao

    2012-01-01

    A ternary Ho–Al–Co system with high glass-forming ability (GFA) was developed and fully glassy rods with diameters up to 1 cm can be produced for the best glass former of Ho 55 Al 27.5 Co 17.5 alloy. The thermal stability and low-temperature magnetic properties of the Ho 55 Al 27.5 Co 17.5 bulk metallic glass (BMG) were studied. The magnetic transition temperature of this alloy is ∼14 K as determined by the thermomagnetic measurement. Two indicators, i.e. isothermal magnetic entropy change (ΔS M ) and the relative cooling power (RCP), were adopted to evaluate the magnetocaloric effect (MCE) of the alloy under a low magnetic field up to 2 T, which can be generated by permanent magnets. The values of |ΔS M | and RCP are 7.98 J kg −1 K −1 and 191.5 J kg −1 , respectively. The Ho 55 Al 27.5 Co 17.5 BMG with good MCE and high GFA provides an attractive candidate for magnetic refrigeration applications, like hydrogen liquefaction and storage. - Highlights: ► A ternary Ho–Al–Co BMG system with high glass-forming ability was developed. ► Fully glassy rods of Ho 55 Al 27.5 Co 17.5 alloy were produced up to 1 cm in diameter. ► The thermal stability and magnetic properties of the BMG were evaluated. ► The BMG exhibits good magnetocaloric effect under a low magnetic field up to 2 T.

  2. Room temperature magnetocaloric effect in Ni-Mn-In-Cr ferromagnetic shape memory alloy thin films

    Energy Technology Data Exchange (ETDEWEB)

    Akkera, Harish Sharma [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India); Singh, Inderdeep [Mechanical and Industrial Engineering Department, Indian Institute of Technology Roorkee, Uttarakhand-24667 (India); Kaur, Davinder, E-mail: dkaurfph@iitr.ernet.in [Functionalnanomaterials Research Lab, Department of Physics, Indian Institute of Technology Roorkee, Uttarakhand-247667 (India)

    2017-02-15

    The influence of Cr substitution for In on the martensitic phase transformation and magnetocaloric effect (MCE) has been investigated in Ni-Mn-Cr-In ferromagnetic shape memory alloy (FSMA) thin films fabricated by magnetron sputtering. Temperature dependent magnetization (M-T) measurements demonstrated that the martensitic transformation temperatures (T{sub M}) monotonously increase with the increase of Cr content due to change in valence electron concentration (e/a) and cell volume. From the study of isothermal magnetization curves (M-H), magnetocaloric effect around the martensitic transformation has been investigated in these FSMA thin films. The magnetic entropy change ∆S{sub M} of 7.0 mJ/cm{sup 3}-K was observed in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film at 302 K in an applied field of 2 T. Further, the refrigerant capacity (RC) was also calculated for all the films in an applied field of 2 T. These findings indicate that the Cr doped Ni-Mn-In FSMA thin films are potential candidates for room temperature micro-length-scale magnetic refrigeration applications. - Highlights: • The Cr content leads to an increase in the martensitic transformation temperature. • The ∆S{sub M} =7 mJ/cm{sup 3}-K at 302 K was observed in the Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5}. • The RC =39.2 mJ/K at 2 T was obtained in Ni{sub 51.1}Mn{sub 34.9}In{sub 9.5}Cr{sub 4.5} film.

  3. The effect of tapering on a magnetocaloric regenerator bed

    DEFF Research Database (Denmark)

    Dallolio, Stefano; Lei, Tian; Engelbrecht, Kurt

    2017-01-01

    . Therefore, this paper investigates the effect of the tapering of the regenerators, which exhibit better air-gap utilization. Several simulations using a 1D AMR model were run to study the performance of the tapered regenerator, and the results were compared to the case of the straight regenerator bed...

  4. Hysteresis in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    von Moos, Lars

    , obtained at the initial low and final high field. However, in first order materials thermal entropy hysteresis loops are obtained through characterization, corresponding to measurements done in an increasing and a decreasing temperature mode. Indirectly determining the MCE through the use of the Maxwell...... order materials, taking the magnetic and thermal history dependence of material properties into account, as well as the heat production due to hysteretic losses. MnFe(P,As) and Gd5Si2Ge2 compounds are modelled and it is found that the Preisach approach is suitable to reproduce material behavior in both......In this thesis the effects of hysteresis on magnetocaloric material properties and their performance in magnetic refrigeration devices are investigated. This is done through an experimental and model study of first order magnetocaloric materials MnFe(P,As) and Gd5Si2Ge2. The experimental...

  5. Anisotropic and excellent magnetocaloric properties of La0.7Ca0.3MnO3 single crystal with anomalous magnetization

    International Nuclear Information System (INIS)

    Debnath, J.C.; Zeng, R.; Kim, J.H.; Chen, D.P.; Dou, S.X.

    2012-01-01

    Highlights: ► ΔS M shows a very large reversibility value at low field. ► The single crystal exhibits anisotropy in the MCE. ► La 0.7 Ca 0.3 MnO 3 is weakly itinerant ferromagnetic. ► No hysteresis loss is observed. - Abstract: Magnetic properties and the magnetocaloric effect (MCE) have been investigated in La 0.7 Ca 0.3 MnO 3 single crystal with applied field along both the ab-plane and the c-direction. Due to the magnetocrystalline anisotropy, the crystal exhibits anisotropy in the MCE. Upon application of a 5 T field, the magnetic entropy changes (ΔS M ), reaching values of 7.668 J/(kg K) and 6.412 J/(kg K) for both the ab-plane and the c-direction, respectively. A magnetic entropy change of 3.3 J/(kg K) was achieved for a magnetic field change of 1.5 T at the Curie temperature, T C = 245 K. Due to the absence of grains in the single crystal, the ΔS M distribution here is much more uniform than for gadolinium (Gd) and other polycrystalline manganites, which is desirable for an Ericsson-cycle magnetic refrigerator. For a field change of 5 T, the relative cooling power, RCP, reached 358.17 J/kg, while the maximum adiabatic temperature change of 5.33 K and a magnetoresistance (MR) ratio of 507.88% at T C were observed. We analysed the magnetization of La 0.7 Ca 0.3 MnO 3 single crystal at T C and estimated several parameters of spin fluctuation on the basis of a self-consistent renormalization theory of spin fluctuations, with reciprocal susceptibility above T C . We found that the magnetic property of La 0.7 Ca 0.3 MnO 3 is weakly itinerant ferromagnetic. A large reversible MCE and no hysteresis loss with a considerable value of refrigerant capacity indicate that La 0.7 Ca 0.3 MnO 3 single crystal is a potential candidate as a magnetic refrigerant.

  6. Phase transitions and magnetocaloric effects in intermetallic compounds MnFeX (X=P, As, Si, Ge)

    International Nuclear Information System (INIS)

    Tegus, O.; Bao Li-Hong; Song Lin

    2013-01-01

    Since the discovery of giant magnetocaloric effect in MnFeP 1−x As x compounds, much valuable work has been performed to develop and improve Fe 2 P-type transition-metal-based magnetic refrigerants. In this article, the recent progress of our studies on fundamental aspects of theoretical considerations and experimental techniques, effects of atomic substitution on the magnetism and magnetocalorics of Fe 2 P-type intermetallic compounds MnFeX (X=P, As, Ge, Si) is reviewed. Substituting Si (or Ge) for As leads to an As-free new magnetic material MnFeP 1−x Si(Ge) x . These new materials show large magnetocaloric effects resembling MnFe(P, As) near room temperature. Some new physical phenomena, such as huge thermal hysteresis and ‘virgin’ effect, were found in new materials. On the basis of Landau theory, a theoretical model was developed for studying the mechanism of phase transition in these materials. Our studies reveal that MnFe(P, Si) compound is a very promising material for room-temperature magnetic refrigeration and thermo-magnetic power generation. (topical review - magnetism, magnetic materials, and interdisciplinary research)

  7. Glassy formation ability, magnetic properties and magnetocaloric effect in Al27Cu18Er55 amorphous ribbon

    Science.gov (United States)

    Li, Lingwei; Xu, Chi; Yuan, Ye; Zhou, Shengqiang

    2018-05-01

    In this work, we have fabricated the Al27Cu18Er55 amorphous ribbon with good glassy formation ability by melt-spinning technology. A broad paramagnetic (PM) to ferromagnetic (FM) transition (second ordered) together with a large reversible magnetocaloric effect (MCE) in Al27Cu18Er55 amorphous ribbon was observed around the Curie temperature TC ∼ 11 K. Under the magnetic field change (ΔH of 0-7 T, the values of MCE parameter of the maximum magnetic entropy change (-ΔSMmax) and refrigerant capacity (RC) for Al27Cu18Er55 amorphous ribbon reach 21.4 J/kg K and 599 J/kg, respectively. The outstanding glass forming ability as well as the excellent magneto-caloric properties indicate that Al27Cu18Er55 amorphous could be a good candidate for low temperature magnetic refrigeration.

  8. Magnetocaloric effect in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16

    Science.gov (United States)

    Sharma, V. K.; Chattopadhyay, M. K.; Kumar, Ravi; Ganguli, Tapas; Tiwari, Pragya; Roy, S. B.

    2007-12-01

    We present results of detailed ac susceptibility, magnetization and specific heat measurements in Heusler alloys Ni50Mn34In16 and Ni50Mn34Sn16. These alloys undergo a paramagnetic to ferromagnetic transition around 305 K, which is followed by a martensitic transition in the temperature regime around 220 K. Inside the martensite phase both the alloys show signatures of field-induced transition from martensite to austenite phase. Both field- and temperature-induced martensite-austenite transitions are relatively sharp in Ni50Mn34In16. We estimate the isothermal magnetic entropy change and adiabatic temperature change across the various phase transitions in these alloys and investigate the possible influence of these transitions on the estimated magnetocaloric effect. The sharp martensitic transition in Ni50Mn34In16 gives rise to a comparatively large inverse magnetocaloric effect across this transition. On the other hand the magnitudes of the conventional magnetocaloric effect associated with the paramagnetic to ferromagnetic transition are quite comparable in these alloys.

  9. Experimental study of magnetocaloric effect in the two-level quantum system KTm(MoO4)2

    Science.gov (United States)

    Tarasenko, R.; Tkáč, V.; Orendáčová, A.; Orendáč, M.; Valenta, J.; Sechovský, V.; Feher, A.

    2018-05-01

    KTm(MoO4)2 belongs to the family of binary alkaline rare-earth molybdates. This compound can be considered to be an almost ideal quantum two-level system at low temperatures. Magnetocaloric properties of KTm(MoO4)2 single crystals were investigated using specific heat and magnetization measurement in the magnetic field applied along the easy axis. Large conventional magnetocaloric effect (-ΔSM ≈ 10.3 J/(kg K)) was observed in the magnetic field of 5 T in a relatively wide temperature interval. The isothermal magnetic entropy change of about 8 J/(kgK) has been achieved already for the magnetic field of 2 T. Temperature dependence of the isothermal entropy change under different magnetic fields is in good agreement with theoretical predictions for a quantum two-level system with Δ ≈ 2.82 cm-1. Investigation of magnetocaloric properties of KTm(MoO4)2 suggests that the studied system can be considered as a good material for magnetic cooling at low temperatures.

  10. Electromagnetic effects on cracking of anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, Muhammad; Sadiq, Sobia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2016-10-15

    In this paper, we study the electromagnetic effects on the stability of a spherically symmetric anisotropic fluid distribution satisfying two polytropic equations of state and construct the corresponding generalized Tolman-Oppenheimer-Volkoff equations. We apply perturbations on matter variables via the polytropic constant as well as the polytropic index and formulate the force distribution function. It is found that the compact object is stable for a feasible choice of perturbed polytropic index in the presence of charge. (orig.)

  11. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  12. Magnetocaloric effect in (La1-xAx)2/3Ba1/3Mn1.05O3-δ

    DEFF Research Database (Denmark)

    Ancona-Torres, Carlos Eugenio; Menon, Mohan; Bahl, Christian Robert Haffenden

    Recently, a large magnetocaloric effect has been reported in La2/3Ba1/3MnO3-δ at about 300 K. In this paper, we investigate the effect of the ion size distribution at the A site on the magnetocaloric effect of this perovskite material. This is accomplished by replacing the lanthanum by Ce, Pr......, and Nd, which allows us to study the effect of both the average size, , and the distribution, σrA, on the magnetic properties of the system. Using magnetization and heat capacity measurements, we determine the important magnetocaloric parameters ΔSM and ΔTad of (La1-xAx)2/3Ba1/3Mn1.05O3-δ powders...

  13. Three isostructural one-dimensional Ln(III) chains with distorted cubane motifs showing dual fluorescence and slow magnetic relaxation/magnetocaloric effect.

    Science.gov (United States)

    Li, Yan; Yu, Jia-Wen; Liu, Zhong-Yi; Yang, En-Cui; Zhao, Xiao-Jun

    2015-01-05

    Three new homometallic lanthanide complexes with mixed carboxylate-modified rigid ligands, [Ln(μ3-OH)(na)(pyzc)]n (na(-) = 1-naphtholate, pyzc(-) = 2-pyrazinecarboxylate, Ln = Dy (1), Yb (2), and Gd (3)), were solvothermally synthesized, and their structures and magnetic as well as photophysical properties were completely investigated. Complexes 1-3 are crystallographically isostructural, exhibiting linear chains with four bidentate bridging μ-COO(-) moieties encapsulated cubic {Ln4(μ3-OH)4}(8+) clusters repeatedly extended by 4-fold chelating-bridging-pyzc(-) connectors. Magnetically, the former two complexes with highly anisotropic Dy(III) and weak anisotropic Yb(III) ions in the distorted NO7 triangular dodecahedron coordination environment display field-induced slow relaxation of magnetization. Fitting the dynamic magnetic data to the Arrhenius law gives energy barrier ΔE/kB = 39.6 K and pre-exponential factor τo = 1.52 × 10(-8) s for 1 and ΔE/kB = 14.1 K and τo = 2.13 × 10(-7) s for 2. By contrast, complex 3 with isotropic Gd(III) ion and weak intracluster antiferromagnetic coupling shows a significant cryogenic magnetocaloric effect, with a maximum -ΔSm value of 30.0 J kg(-1) K(-1) at 2.5 K and 70 kOe. Additionally, the chromophoric na(-) and pyzc(-) ligands can serve as antenna groups, selectively sensitizing the Dy(III)- and Yb(III)-based luminescence of 1 and 2 in the UV-visible region by an intramolecular energy transfer process. Thus, complexes 1-3, incorporating field-induced slow magnetic magnetization and interesting luminescence together, can be used as composite magneto-optical materials. More importantly, these interesting results further demonstrate that the mixed-ligand system with rigid carboxylate-functionalized chromophores can be excellent candidates for the preparations of new bifunctional magneto-optical materials.

  14. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    Directory of Open Access Journals (Sweden)

    Peter Keefe

    2004-03-01

    Full Text Available Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of traditional formulations of the Second Law, evidenced by attainment of a final process temperature below that which would result from an adiabatic magneto-caloric process applied to bulk dimensioned specimens.

  15. Complex magnetic properties and large magnetocaloric effects in RCoGe (R=Tb, Dy compounds

    Directory of Open Access Journals (Sweden)

    Yan Zhang

    2018-05-01

    Full Text Available Complicated magnetic phase transitions and Large magnetocaloric effects (MCEs in RCoGe (R=Tb, Dy compounds have been reported in this paper. Results show that the TbCoGe compounds have a magnetic phase transition from antiferromagnetic to paramagnetic (AFM-PM at TN∼16 K, which is close to the value reported by neutron diffraction. The DyCoGe compound undergoes complicated phase changes from 2 K up to 300 K. The peak at 10 K displays a phase transition from antiferromagnetic to ferromagnetic (AFM-FM. In particular, a significant ferromagnetic to paramagnetic (FM-PM phase transition was found at the temperature as high as 175 K and the cusp becomes more abrupt with the magnetic field increasing from 0.01 T to 0.1 T. The maximum value of magnetic entropy change of TbCoGe and DyCoGe compounds achieve 14.5 J/kg K and 11.5 J/kg K respectively for a field change of 0-5 T. Additionally, the correspondingly considerable refrigerant capacity value of 260 J/kg and 242 J/kg are also obtained respectively, suggesting that both TbCoGe and DyCoGe compounds could be considered as good candidates for low temperature magnetic refrigerant.

  16. The influence of Co substitution on the magnetocaloric effect of Gd(Al,Fe)2

    International Nuclear Information System (INIS)

    Deng, J Q; Yan, J L; Huang, J L; Zhu, J M; Chen, X; Zhuang, Y H

    2007-01-01

    The magnetocaloric effect (MCE) in samples GdAl 1.7 (Fe 1-x Co x ) 0.3 with x= 0, 0.1, 0.2, 0.3 and 0.4 were investigated by x-ray diffraction (XRD) and magnetization measurements. It was found that five samples crystallize well in the MgCu 2 -type structure. The lattice parameter and the values of Curie temperature decrease with increasing Co content, whereas the magnetic-entropy change and cooling capacity increase. In the magnetic-field change of 2.0 T the maximum of the magnetic-entropy change and refrigerant capacity in sample GdAl 1.7 Fe 0.7 Co 0.3 reach 4.8 J kg -1 K -1 and 88.3 J kg -1 , respectively. The maximum of the magnetic-entropy change is comparable to that of Gd metal (3.8 J kg -1 K -1 in Δ B=1.5 T)

  17. Negative thermal expansion and magnetocaloric effect in Mn-Co-Ge-In thin films

    Science.gov (United States)

    Liu, Y.; Qiao, K. M.; Zuo, S. L.; Zhang, H. R.; Kuang, H.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-01-01

    MnCoGe-based alloys with magnetostructural transition show giant negative thermal expansion (NTE) behavior and magnetocaloric effects (MCEs) and thus have attracted a lot of attention. However, the drawback of bad mechanical behavior in these alloys obstructs their practical applications. Here, we report the growth of Mn-Co-Ge-In films with thickness of about 45 nm on (001)-LaAlO3, (001)-SrTiO3, and (001)-Al2O3 substrates. The films grown completely overcome the breakable nature of the alloy and promote its multifunctional applications. The deposited films have a textured structure and retain first-order magnetostructural transition. NTE and MCE behaviors associated with the magnetostructural transition have been studied. The films exhibit a completely repeatable NTE around room temperature. NTE coefficient α can be continuously tuned from the ultra-low expansion (α ˜ -2.0 × 10-7/K) to α ˜ -6.56 × 10-6/K, depending on the growth and particle size of the films on different substrates. Moreover, the films exhibit magnetic entropy changes comparable to the well-known metamagnetic films. All these demonstrate potential multifunctional applications of the present films.

  18. Table-like magnetocaloric effect in Gd–Ni–Al amorphous/nanocrystalline composites

    International Nuclear Information System (INIS)

    Zheng, Qiang; Zhang, Linlin; Du, Juan

    2017-01-01

    In this work, Gd–Ni–Al amorphous/nanocrystalline composites produced by melt-spinning method with double magnetocaloric effect (MCE) plateaus have been developed. Two MCE plateaus, ∼4.7 J kg −1 K −1 (90–120 K) and ∼3.60 J kg −1 K −1 (250–275 K), were discovered in Gd 80 Ni 11.6 Al 8.4 for a magnetic field change of 0 to 5 T. For Gd 90 Ni 5.8 Al 4.2 , the plateau values are ∼3.90 J kg −1 K −1 (85–120 K) and ∼6.70 J kg −1 K −1 (265–280 K) for a magnetic field change of 0–5 T. The reason why MCE plateau formation was investigated and discussed. These composites having two MCE plateaus are competitive candidates for the ideal Ericsson cycle. (paper)

  19. Research for magnetocaloric effect of Gd{sub 1-x}Dy{sub x} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Xueling; Shitao, Li; An, Zhang; Hui, Xu; Ni, Jiansen; Zhou, Bangxin [Institute of Materials, Shanghai University, Shanghai 20007 (China)

    2007-12-15

    The magnetocaloric effect (MEC) in Gd{sub 1-x}Dy{sub x} (x=0.13,0.20,0.27,0.34,0.40) alloys is investigated using commercial elements with purity of up to 99.80% for Gd and Dy. These alloys are prepared by arc melting in stoichiometric proportions on a water-cooled copper crucible under high pure argon atmosphere. As a result, when x was changed from 0 to 40at%, the adiabatic temperature change ({delta}T) increases from 1.6 K to 3.1 K, the Curie temperature decreased from 288 K to 245.5 K. Gd{sub 73}Dy{sub 27} exhibits the largest {delta}T{sub max} value of 3.1 K at the T{sub C} value of 260 K among the alloys investigated up to 1.2 T (tesla) applied field, it is almost same as the {delta}T of high pure unitary Gd (99.99%) and is clearly superior to commercial unitary Gd (99.80%). The T{sub C} of Gd{sub 73}Dy{sub 27} alloy is minor to high pure unitary Gd (99.99%) and commercially unitary Gd (99.80%). But this alloy prepared by commercial elements with low cost has better MEC to be a promising candidate for magnetic working substances for room temperature magnetic refrigeration. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  20. Giant anisotropy of magnetocaloric effect in TbMnO3 single crystals

    Science.gov (United States)

    Jin, Jin-Ling; Zhang, Xiang-Qun; Li, Guo-Ke; Cheng, Zhao-Hua; Zheng, Lin; Lu, Yi

    2011-05-01

    The magnetocaloric effect (MCE) in TbMnO3 single crystals was investigated by isothermal magnetization curves for the ab plane at low temperatures. Large magnetic entropy change, ΔSM = -18.0 J/kg K, and the refrigerant capacity, RC = 390.7 J/kg, are achieved near the ordering temperature of Tb3+ moment (TNTb) under 70 kOe along the a axis. Furthermore, the TbMnO3 single crystal exhibits a giant MCE anisotropy. The difference of ΔSMand RC between the a and b axes is field and temperature dependent, which reaches maximum values of 11.4 J/kg K and 304.1 J/kg, respectively. By taking magnetocrystalline anisotropy into account, the rotating ΔSMwithin the ab plane can be well simulated, indicating that the anisotropy of ΔSMis directly contributed from the magnetocrystalline anisotropy. Our finding for giant MCE anisotropy in TbMnO3 single crystals explores the possibility of using this material for magnetic refrigerators by rotating its magnetization vector rather than moving it in and out of the magnet.

  1. Hydrostatic pressure-tuned magnetostructural transition and magnetocaloric effect in Mn-Co-Ge-In compounds

    Science.gov (United States)

    Liang, F. X.; Shen, F. R.; Liu, Y.; Li, J.; Qiao, K. M.; Wang, J.; Hu, F. X.; Sun, J. R.; Shen, B. G.

    2018-05-01

    Polycrystalline MnCoGe0.99In0.01 with magnetostructural transition temperature (Tmstr) around 330 K has been prepared by arc-melting technique, and the pressure-tuned magnetostructural transition as well as the magnetocaloric effect (MCE) has been investigated. The experimental results indicate that a pressure (P) smaller than 0.53 GPa can shift Tmstr to lower temperature at a considerable rate of 119 K/GPa with the coupled nature of magnetostructural transition unchanged. However, as P reaches 0.53 GPa, the martensitic structural transition temperature (TM) further shifts to 254 K while the magnetic transition temperature of austenitic phase (TCA) occurs at around 282 K, denoting the decoupling of magnetostructural transition. Further increasing P to 0.87 GPa leads the further shift of TM to a lower temperature while the TCA keeps nearly unchanged. Therefore, the entropy change (ΔS) of the MnCoGe0.99In0.01 under different magnetic fields can be tailored by adjusting the hydrostatic pressure.

  2. Indirect measurement of the magnetocaloric effect using a novel differential scanning calorimeter with magnetic field.

    Science.gov (United States)

    Jeppesen, S; Linderoth, S; Pryds, N; Kuhn, L Theil; Jensen, J Buch

    2008-08-01

    A simple and high-sensitivity differential scanning calorimeter (DSC) unit operating under magnetic field has been built for indirect determination of the magnetocaloric effect. The principle of the measuring unit in the calorimeter is based on Peltier elements as heat flow sensors. The high sensitivity of the apparatus combined with a suitable calibration procedure allows very fast and accurate heat capacity measurements under magnetic field to be made. The device was validated from heat capacity measurements for the typical DSC reference material gallium (Ga) and a La(0.67)Ca(0.33)MnO(3) manganite system and the results were highly consistent with previous reported data for these materials. The DSC has a working range from 200 to 340 K and has been tested in magnetic fields reaching 1.8 T. The signal-to-noise ratio is in the range of 10(2)-10(3) for the described experiments. Finally the results have been compared to results from a Quantum Design(R) physical properties measuring system. The configuration of the system also has the advantage of being able to operate with other types of magnets, e.g., permanent magnets or superconducting coils, as well as the ability to be expanded to a wider temperature range.

  3. Magnetocaloric effect of polycrystalline Sm0.5Ca0.5MnO3 compound: Investigation of low temperature magnetic state

    Science.gov (United States)

    Das, Kalipada; Banu, Nasrin; Das, I.; Dev, B. N.

    2018-06-01

    An attempt has been made to probe low temperature magnetic state of the polycrystalline Sm0.5Ca0.5MnO3 compound via magnetization and magnetocaloric studies. In the context of the earlier debatable reports on the above mentioned compound between the existence of glassy magnetic state and small ferromagnetic domains from the 'ac' susceptibility measurements, our experimental observation from magnetocaloric effect study clearly indicates the existence of ferromagnetic droplets along with certain amount of superparamagnetic component at low temperature (magnetization (even at H = 0.01 T) data do not exhibit the spin freezing nature at the low temperature which is almost a generic tendency of glassy magnetic state. Our study also highlights the competence of magnetocaloric effect as a tool to distinguish between different magnetic states of a compound.

  4. Magnetocaloric effect in La(FexSi1-x)13 doped with hydrogen and under external pressure

    International Nuclear Information System (INIS)

    Medeiros, L.G. de; Oliveira, N.A. de

    2006-01-01

    In this paper, we calculate the magnetocaloric effect in the compounds La(Fe x Si 1-x ) 13 doped with hydrogen and subjected to external pressure. We use a microscopical model where the Coulomb interaction between itinerant electrons is treated in the mean field approach. The effect of hydrogen atoms is considered as a chemical pressure. We also include phenomenologically the magnetoelastic coupling via the renormalization of the electron dispersion relation and the Debye temperature. The calculated isothermal entropy changes upon magnetic field variations for the compound La(Fe 0.88 Si 0.12 ) 13 H y are in good agreement with the available experimental data

  5. Conventional and inverse magnetocaloric effect in Pr2CuSi3 and Gd2CuSi3 compounds

    International Nuclear Information System (INIS)

    Wang, Fang; Yuan, Feng-ying; Wang, Jin-zhi; Feng, Tang-fu; Hu, Guo-qi

    2014-01-01

    Highlights: • Two phase transitions in a narrow temperature range were observed and studied. • Both typical and inverse magnetocaloric effect were observed and discussed. • The inverse magnetocaloric effect was attributed to the spin-glass behavior. - Abstract: Magnetic properties and magnetocaloric effect (MCE) in Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds were investigated systematically. Both Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds experienced two phase transitions in a relatively narrow temperature range: first a paramagnet (PM)–ferromagnet (FM) second-order phase transition at 12 and 26 K and then a FM–spin glass (SG) transition at 6 K and 7.5 K, respectively. The magnetic entropy change (ΔS M ) was calculated based on Maxwell relation using the collected magnetization data. The maximum of ΔS M for Pr 2 CuSi 3 and Gd 2 CuSi 3 compounds was 7.6 and 5 J kg −1 K −1 , respectively, at the applied filed change of 0–5 T. The shape of the temperature dependence of ΔS M (ΔS M –T) curve was obviously different from that of the conventional magnetic materials undergoing only one typical phase transition. In the left half part of ΔS M –T curve, ΔS M is not very sensitive to the applied field and they tend to intersect with the decrease of temperature. Both typical conventional and inverse MCE behavior were observed in Gd 2 CuSi 3 , which would be originated from the two transition features at the low temperatures

  6. Effective stress law for anisotropic elastic deformation

    International Nuclear Information System (INIS)

    Carroll, M.M.

    1979-01-01

    An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee

  7. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-11-12

    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  8. The Effective Coherence Length in Anisotropic Superconductors

    International Nuclear Information System (INIS)

    Polturak, E.; Koren, G.; Nesher, O

    1999-01-01

    If electrons are transmitted from a normal conductor(N) into a superconductor(S), common wisdom has it that the electrons are converted into Cooper pairs within a coherence length from the interface. This is true in conventional superconductors with an isotropic order parameter. We have established experimentally that the situation is rather different in high Tc superconductors having an anisotropic order parameter. We used epitaxial thin film S/N bilayers having different interface orientations in order to inject carriers from S into N along different directions. The distance to which these carriers penetrate were determined through their effect on the Tc of the bilayers. We found that the effective coherence length is 20A only along the a or b directions, while in other directions we find a length of 250dr20A out of plane, and an even larger value for in-plane, off high symmetry directions. These observations can be explained using the Blonder-Tinkham-Klapwijk model adapted to anisotropic superconductivity. Several implications of our results on outstanding problems with high Tc junctions will be discussed

  9. Study of the magnetic phase transitions and magnetocaloric effect in Dy{sub 2}Cu{sub 2}In compound

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Yikun, E-mail: ykzhang10@hotmail.com [State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200072 (China); School of Materials Science and Engineering, Shanghai University, 200072 (China); Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany); Xu, Xiao; Yang, Yang; Hou, Long; Ren, Zhongming [State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200072 (China); School of Materials Science and Engineering, Shanghai University, 200072 (China); Li, Xi, E-mail: lx_net@sina.com [State Key Laboratory of Advanced Special Steels, Shanghai University, Shanghai, 200072 (China); Shanghai Key Laboratory of Advanced Ferrometallurgy, Shanghai University, Shanghai, 200072 (China); School of Materials Science and Engineering, Shanghai University, 200072 (China); Wilde, Gerhard [Institute of Materials Physics, University of Münster, Wilhelm-Klemm-Straße 10, D-48149, Münster (Germany)

    2016-05-15

    The magnetic properties and magnetocaloric effect (MCE) in Dy{sub 2}Cu{sub 2}In compound have been investigated. Dy{sub 2}Cu{sub 2}In undergoes two magnetic phase transitions, a paramagnetic to ferromagnetic (FM) at T{sub C} ∼ 49.5 K followed by a spin reorientation (SR) at T{sub SR} ∼ 19.5 K. For a magnetic field change of 0–7 T, the maximum values of the magnetic entropy change (−ΔS{sub M}{sup max}) are estimated to be 16.5 around T{sub C} and 6.7 J/kg K around T{sub SR} with a large relative cooling power (RCP) value of 617 J/kg. The modified Arrott plots and universal curves of the rescaled ΔS{sub M} confirmed that the magnetic phase transitions in Dy{sub 2}Cu{sub 2}In compound belongs the second order phase transitions. The present results may provide some clues to search for new magnetocaloric materials belonging to RE{sub 2}T{sub 2}X system. - Highlights: • Magnetic properties and magnetocaloric effect in Dy{sub 2}Cu{sub 2}In was studied. • The Dy{sub 2}Cu{sub 2}In undergoes 2 s order magnetic phase transitions. • A large reversible MCE was observed in Dy{sub 2}Cu{sub 2}In. • The origin of MCE and its potential application in Dy{sub 2}Cu{sub 2}In were discussed.

  10. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Directory of Open Access Journals (Sweden)

    Aparna Sankar

    2018-05-01

    Full Text Available Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62 similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2 Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ∼1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC respectively. Field dependent magnetization (M-H at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ∼27 Jkg-1K-1 and ∼24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ∼440 J/kg and ∼432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  11. Magnetocaloric effect in textured rare earth intermetallic compound ErNi

    Science.gov (United States)

    Sankar, Aparna; Chelvane, J. Arout; Morozkin, A. V.; Nigam, A. K.; Quezado, S.; Malik, S. K.; Nirmala, R.

    2018-05-01

    Melt-spun ErNi crystallizes in orthorhombic FeB-type structure (Space group Pnma, no. 62) similar to the arc-melted ErNi compound. Room temperature X-ray diffraction (XRD) experiments reveal the presence of texture and preferred crystal orientation in the melt-spun ErNi. The XRD data obtained from the free surface of the melt-spun ErNi show large intensity enhancement for (1 0 2) Bragg reflection. The scanning electron microscopy image of the free surface depicts a granular microstructure with grains of ˜1 μm size. The arc-melted and the melt-spun ErNi compounds order ferromagnetically at 11 K and 10 K (TC) respectively. Field dependent magnetization (M-H) at 2 K shows saturation behaviour and the saturation magnetization value is 7.2 μB/f.u. for the arc-melted ErNi and 7.4 μB/f.u. for the melt-spun ErNi. The isothermal magnetic entropy change (ΔSm) close to TC has been calculated from the M-H data. The maximum isothermal magnetic entropy change, -ΔSmmax, is ˜27 Jkg-1K-1 and ˜24 Jkg-1K-1 for the arc-melted and melt-spun ErNi for 50 kOe field change, near TC. The corresponding relative cooling power values are ˜440 J/kg and ˜432 J/kg respectively. Although a part of ΔSm is lost to crystalline electric field (CEF) effects, the magnetocaloric effect is substantially large at 10 K, thus rendering melt-spun ErNi to be useful in low temperature magnetic refrigeration applications such as helium gas liquefaction.

  12. Pressure enhancement of the giant magnetocaloric effect in LaFe.sub.11.6./sub.Si.sub.1.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Sun, Y.; Arnold, Zdeněk; Kamarád, Jiří; Wang, G.-J.; Shen, B.G.; Cheng, Z.-H.

    2006-01-01

    Roč. 89, č. 17 (2006), 172513/1-172513/3 ISSN 0003-6951 R&D Projects: GA ČR GA202/06/0178 Institutional research plan: CEZ:AV0Z10100521 Keywords : intermetallic compounds * magnetocaloric effect * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  13. Magneto-caloric effect in the pseudo-binary intermetallic YPrFe{sub 17} compound

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Pablo [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Gorria, Pedro, E-mail: pgorria@uniovi.es [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Sanchez Llamazares, Jose L. [Division de Materiales Avanzados, Instituto Potosino de Investigacion Cientifica y Tecnologica, Camino a la presa San Jose 2055, CP 78216, San Luis Potosi (Mexico); Perez, Maria J. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain); Franco, Victorino [Departamento de Fisica de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Reiffers, Marian; Kovac, Jozef [Institute of Experimental Physics, Watsonova 47, SK-04001 Kosice (Slovakia); Puente-Orench, Ines [Institute Laue Langevin, 6 rue Jules Horowitz, 38042 Grenoble (France); Blanco, Jesus A. [Departamento de Fisica, Universidad de Oviedo, Calvo Sotelo, s/n, 33007 Oviedo (Spain)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer YPrFe{sub 17} exhibits a broad {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). Black-Right-Pointing-Pointer We obtain |{Delta}S{sub M}| Almost-Equal-To 2.3 J kg{sup -1} K{sup -1} and RCP Almost-Equal-To 100 J kg{sup -1}for a magnetic field change of 1.5 T. Black-Right-Pointing-Pointer A single master curve for {Delta}S{sub M} is found when compared with other isostructural R{sub 2}Fe{sub 17} binary alloys. - Abstract: We have synthesized the intermetallic YPrFe{sub 17} compound by arc-melting. X-ray and neutron powder diffraction show that the crystal structure is rhombohedral with R3{sup Macron }m space group (Th{sub 2}Zn{sub 17}-type). The investigated compound exhibits a broad isothermal magnetic entropy change {Delta}S{sub M}(T) associated with the ferro-to-paramagnetic phase transition (T{sub C} Almost-Equal-To 290 K). The |{Delta}S{sub M}| ( Almost-Equal-To 2.3 J kg{sup -1} K{sup -1}) and the relative cooling power ( Almost-Equal-To 100 J kg{sup -1}) have been calculated for applied magnetic field changes up to 1.5 T. A single master curve for {Delta}S{sub M} under different values of the magnetic field change can be obtained by a rescaling of the temperature axis. The results are compared and discussed in terms of the magneto-caloric effect in the isostructural R{sub 2}Fe{sub 17} (R = Y, Pr and Nd) binary intermetallic alloys.

  14. Magnetocaloric effect and multifunctional properties of Ni-Mn-based Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Dubenko, Igor, E-mail: igor_doubenko@yahoo.com [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Samanta, Tapas; Kumar Pathak, Arjun [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States); Kazakov, Alexandr; Prudnikov, Valerii [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); Stadler, Shane [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803 (United States); Granovsky, Alexander [Faculty of Physics, Moscow State University, Vorob' evy Gory, 11999I Moscow (Russian Federation); IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Zhukov, Arcady [IKERBASQUE, The Basque Foundation for Science, 48011 Bilbao (Spain); Departamento de Fisica de Materiales, Facultad de Quimica, Universidad del Pais Vasco, Paseo M. de Lardizabal 3, 20018 Donostia - San Sebastian (Spain); Ali, Naushad [Department of Physics, Southern Illinois University, Carbondale, IL 62901 (United States)

    2012-10-15

    The studies of magnetocaloric properties, phase transitions, and phenomena related to magnetic heterogeneity in the vicinity of the martensitic transition (MT) in Ni-Mn-In and Ni-Mn-Ga off-stoichiometric Heusler alloys are summarized. The crystal structure, magnetocaloric effect (MCE), and magnetotransport properties were studied for the following alloys: Ni{sub 50}Mn{sub 50-x}In{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 35}In{sub 15}, Ni{sub 50}Mn{sub 35-x}Co{sub x}In{sub 15}, Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge), Ni{sub 50}Mn{sub 35}In{sub 15-x}Si{sub x}, Ni{sub 50-x}Co{sub x}Mn{sub 25+y}Ga{sub 25-y}, and Ni{sub 50-x}Co{sub x}Mn{sub 32-y}FeyGa{sub 18}. It was found that the magnetic entropy change, {Delta}S, associated with the inverse MCE in the vicinity of the temperature of the magneto-structural transition, TM, persists in a range of (125-5) J/(kg K) for a magnetic field change {Delta}H=5 T. The corresponding temperature varies with composition from 143 to 400 K. The MT in Ni{sub 50}Mn{sub 50-x}In{sub x} (x=13.5) results in a transition between two paramagnetic states. Associated with the paramagnetic austenite-paramagnetic martensite transition {Delta}S=24 J/(kg K) was detected for {Delta}H=5 T at T=350 K. The variation in composition of Ni{sub 2}MnGa can drastically change the magnetic state of the martensitic phase below and in the vicinity of TM. The presence of the martensitic phase with magnetic moment much smaller than that in the austenitic phase above TM leads to the large inverse MCE in the Ni{sub 42}Co{sub 8}Mn{sub 32-y}FeyGa{sub 18} system. The adiabatic change of temperature ({Delta}T{sub ad}) in the vicinity of TC and TM of Ni{sub 50}Mn{sub 35}In{sub 15} and Ni{sub 50}Mn{sub 35}In{sub 14}Z (Z=Al, Ge) was found to be {Delta}T{sub ad}=-2 K and 2 K for {Delta}H=1.8 T, respectively. It was observed that |{Delta}T{sub ad}| Almost-Equal-To 1 K for {Delta}H=1 T for both types of transitions. The results on resistivity, magnetoresistance, Hall

  15. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  16. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.; Alkhalifah, Tariq Ali; Waheed, Umair bin

    2014-01-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth's subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  17. The physical mechanism of magnetic field controlled magnetocaloric effect and magnetoresistance in bulk PrGa compound

    Science.gov (United States)

    Zheng, X. Q.; Wu, H.; Chen, J.; Zhang, B.; Li, Y. Q.; Hu, F. X.; Sun, J. R.; Huang, Q. Z.; Shen, B. G.

    2015-01-01

    The PrGa compound shows excellent performance on the magnetocaloric effect (MCE) and magnetoresistance (MR). The physical mechanism of MCE and MR in PrGa compound was investigated and elaborated in detail on the basis of magnetic measurement, heat capacity measurement and neutron powder diffraction (NPD) experiment. New types of magnetic structure and magnetic transition are found. The results of the NPD along with the saturation magnetic moment (MS) and magnetic entropy (SM) indicate that the magnetic moments are randomly distributed within the equivalent conical surface in the ferromagnetic (FM) temperature range. PrGa compound undergoes an FM to FM transition and an FM to paramagnetic (PM) transition as temperature increases. The magnetizing process was discussed in detail and the physical mechanism of the magnetic field controlled magnetocaloric effect (MCE) and the magnetoresistance (MR) was studied. The formation of the plateau on MCE curve was explained and MR was calculated in detail on the basis of the magnetic structure and the analysis of the magnetizing process. The experimental results are in excellent agreement with the calculations. Finally, the expression of MR = β(T)X2 and its application conditions were discussed, where X is M(H)/Meff, and Meff is the paramagnetic effective moment. PMID:26455711

  18. The effect of adding aluminum and iron to Tb–Dy–Ho–Co multicomponent alloys on their structure and magnetic and magnetocaloric properties

    Czech Academy of Sciences Publication Activity Database

    Politova, G.A.; Burkhanov, G.S.; Tereshina, I. S.; Kaminskaya, T.; Chzhan, V.B.; Tereshina, Evgeniya

    2017-01-01

    Roč. 62, č. 4 (2017), s. 577-582 ISSN 1063-7842 Institutional support: RVO:68378271 Keywords : multicomponent alloys * Laves phase compounds * magnetocaloric effect Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 0.632, year: 2016

  19. Direct and indirect measurement of the magnetocaloric effect in a La0.6Ca0.4MnO3 ceramic perovskite

    DEFF Research Database (Denmark)

    Dinesen, A.R.; Linderoth, Søren; Mørup, Steen

    2002-01-01

    The adiabatic temperature change DeltaT(ad) due to a change of the external magnetic field (the magnetocaloric effect) for a perovskite-type La0.6Ca0.4MnO3 sample has been measured directly and indirectly (from the entropy change) and the results are compared. From the indirect method, involving...

  20. Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1-xVxCoGe alloys

    International Nuclear Information System (INIS)

    Ma, S.C.; Zheng, Y.X.; Xuan, H.C.; Shen, L.J.; Cao, Q.Q.; Wang, D.H.; Zhong, Z.C.; Du, Y.W.

    2012-01-01

    The magnetic and magnetocaloric properties have been investigated in a series of Mn 1-x V x CoGe (x=0.01, 0.02, 0.03, and 0.05) alloys. The substitution of V for Mn reduces the structural transformation temperature of MnCoGe alloy effectively and results in a second-order magnetic transition in Mn 0.95 V 0.05 CoGe alloys. Large room temperature magnetocaloric effect and almost zero magnetic hysteresis losses are simultaneously achieved in the alloys with x=0.01, 0.02, and 0.03. The reasons for the negligible magnetic hysteresis losses and the potential application for the roomtemperature magnetic refrigeration are discussed. - Highlights: → V-substitution for Mn reduces the structural transformation temperature of MnCoGe. → FM-PM transition presents the second-order nature in Mn0.95V0.05CoGe. → The first-order FM-PM transitions are observed for alloys with x=0.01, 0.02, and 0.03. → Large room temperature MCEs are achieved in these alloys. → Negligible magnetic HL is achieved for these alloys simultaneously.

  1. Second Law Violation By Magneto-Caloric Effect Adiabatic Phase Transition of Type I Superconductive Particles

    OpenAIRE

    Keefe, Peter

    2004-01-01

    Abstract: The nature of the thermodynamic behavior of Type I superconductor particles, having a cross section less than the Ginzburg-Landau temperature dependent coherence length is discussed for magnetic field induced adiabatic phase transitions from the superconductive state to the normal state. Argument is advanced supporting the view that when the adiabatic magneto-caloric process is applied to particles, the phase transition is characterized by a decrease in entropy in violation of tradi...

  2. Magnetocaloric effect of Er.sub.5./sub.Si.sub.4./sub. under hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Arnold, Zdeněk; Magen, C.; Morellon, L.; Algarabel, P.A.; Kamarád, Jiří; Ibarra, M. R.; Pecharsky, V. K.; Gschneidner, Jr., K. A.

    2009-01-01

    Roč. 79, č. 14 (2009), 144430/1-144430/6 ISSN 1098-0121 R&D Projects: GA ČR GA202/09/0030 Institutional research plan: CEZ:AV0Z10100521 Keywords : Curie temperature * entropy * erbium compounds * ferromagnetic materials * high-pressure solid-state phase transformations * magnetisation * magnetocaloric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009

  3. Direct measurement of the magnetocaloric effect in Tb5Si2Ge2

    International Nuclear Information System (INIS)

    Tocado, L.; Palacios, E.; Burriel, R.

    2005-01-01

    A method for measuring the adiabatic temperature change ΔT S upon quasi-static application of an external magnetic field H is proposed. ΔT S is directly measured with an accuracy better than 0.01K. Results of experiments on the giant magnetocaloric compound Tb 5 Si 2 Ge 2 are compared with those obtained from magnetization and heat capacity in an applied field

  4. Hydrostatic pressure effect on the magnetocaloric behavior of Ga-doped MnNiGe magnetic equiatomic alloy

    International Nuclear Information System (INIS)

    Dutta, P; Das, D; Chatterjee, S; Pramanick, S; Majumdar, S

    2016-01-01

    The magnetocaloric properties of a new class of ferromagnetic shape memory alloys of nominal composition MnNiGe 0.928 Ga 0.072 have been investigated in ambient conditions as well as in the presence of external hydrostatic pressure. Both inverse (6.35 Jkg −1 K −1 for 0  −  50 kOe around 160 K) and conventional (−4.54 Jkg −1 K −1 for 0–50 kOe around 210 K) magnetocaloric effects (MCEs) have been observed around the structural and magnetic transitions respectively. The sample can be thought of as being derived from the parent MnNiGe alloy, where Ga was doped at the expense of the Ge atom. Ga doping at Ge sites brings down the martensitic transition temperature to below room temperature and induces ferromagnetism by affecting the lattice volume of the alloy. However, below the first-order martensitic transition the alloy loses its ferromagnetism. Application of external hydrostatic pressure results in a revival of ferromagnetic interactions in the martensitic phase of the alloy and a considerable increase in the refrigeration capacity around the conventional MCE region. (paper)

  5. Magnetocaloric cooling: the phenomenon and materials

    Science.gov (United States)

    Pecharsky, Vitalij

    2015-03-01

    The discovery of the giant magnetocaloric effect in Gd5Si2Ge2 and other R5T4 compounds (R = rare earth metal and T is a Group 14 element) generated a broad interest in the magnetocaloric effect and magnetic refrigeration near room temperature in particular, and in magnetostructural transitions in general. Reports on the giant magnetocaloric effect in other systems soon followed. These include MnFePxAs1-x and related compounds, La(Fe1-xSix)13 and their hydrides, Mn(AsxSb1-x) , CoMnSixGe1-x and related compounds, Ni2MnGa and some closely related Heusler phases, and a few non-metallic systems. A common feature observed in all giant magnetocaloric effect materials is the enhancement of the magnetic entropy change by the overlapping contribution from the lattice. In addition to the interplay between magnetic and lattice entropies, both of which are intrinsic materials' parameters that in principle can be modeled theoretically from first principles, extrinsic parameters such as microstructure and nanostructure, have been found to play a role in controlling both the magnetostructural transition(s) and magnetocaloric effect. Both the intrinsic and extrinsic parameters are, therefore, important in order to maximize magnetocaloric effect. The role of different control parameters and the potential pathways towards materials exhibiting advanced magnetocaloric effect will be discussed. This work is supported by the Division of Materials Science and Engineering, Office of Basic Energy Sciences of the U.S. Department of Energy under Contract No. DE-AC02-07CH11358 with Iowa State University.

  6. The correlation of the magnetic properties and the magnetocaloric effect in (Gd1-xErx)NiAl alloys

    International Nuclear Information System (INIS)

    Korte, B.J.; Pecharsky, V.K.; Gschneidner, K.A. Jr.

    1998-01-01

    A study of the magnetic properties of several (Gd 1-x Er x )NiAl alloys (where x=0, 0.30, 0.40, 0.46, 0.50, 0.55, 0.60, 0.80, and 1.00) was undertaken using both ac and dc magnetic and heat capacity measurements in an attempt to understand the table-like magnetocaloric effect previously observed in (Gd 0.54 Er 0.46 )NiAl. Results indicate the presence of both antiferromagnetic and ferromagnetic ordering processes in all alloys containing Gd. For ErNiAl, a metamagnetic transition from an antiferromagnetic ground state was observed. Within each alloy, several magnetic transitions occur over a temperature range from 10 K [in (Gd 0.20 Er 0.80 )NiAl] up to 35 K (in GdNiAl), with all but the lowest temperature transition shifting to higher temperatures with increasing Gd content. The change in magnetic entropy (ΔS mag ) induced by a change in field is observed to peak around the Nacute eel temperature for ErNiAl while gradually broadening and shifting toward the Curie temperature as the Gd content is increased. For Gd-rich alloys, a significant contribution to ΔS mag is observed at both the low and high temperature transitions, resulting in a rounded, skewed caret-like temperature profile of the magnetocaloric effect. Factors, which are believed to contribute to this effect, include the presence and temperature spacing of multiple zero-field transitions, which most likely result from competing anisotropy and exchange interactions within a frustrated hexagonal spin lattice. This leads to broad peaks in the magnetic heat capacity that span several transition temperatures, providing for a substantial ΔS mag over an extended temperature range. This characteristic is desired for application to magnetic refrigeration, where certain thermodynamic cycles (e.g., Ericsson cycle) require specific temperature profiles of the magnetocaloric effect in refrigerant materials (e.g., a constant change in magnetic entropy as a function of temperature within the region of cooling). In

  7. Spatially resolved measurements of the magnetocaloric effect and the local magnetic field using thermography

    DEFF Research Database (Denmark)

    Christensen, Dennis; Bjørk, Rasmus; Nielsen, Kaspar Kirstein

    2010-01-01

    The magnetocaloric effect causes a magnetic material to change temperature upon application of a magnetic field. Here, spatially resolved measurements of the adiabatic temperature change are performed on a plate of gadolinium using thermography. The adiabatic temperature change is used to extract...... the corresponding change in the local magnetic field strength. The measured temperature change and local magnetic field strength are compared to results obtained with a numerical model, which takes demagnetization into account and employs experimental data....

  8. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu; Hu, Fengxia; Wu, Rongrong; Wang, Jianping; Chen, Liming; Sun, Jirong; Shen, Baogen; Li, Lain-Jong; Zhang, Bei; Zhang, Xixiang

    2014-01-01

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  9. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.

    2013-03-28

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting antiferromagnetic martensite to ferromagnetic state, a 200 K Curie-temperature window was established between Curie temperatures of austenite and martensite phases. In the window, a first-order magnetostructural transition between paramagnetic austenite and ferromagnetic martensite occurs with a sharp jump in magnetization, showing a magnetic entropy change as large as −40 J kg−1 K−1 in a 50 kOe field change. This giant magnetocaloric effect enables Mn1− x Co x NiGe to become a potential magnetic refrigerant.

  10. Evolution of magnetostructural transition and magnetocaloric effect with Al doping in MnCoGe1-xAlx compounds

    KAUST Repository

    Bao, Lifu

    2014-01-03

    The effect of Al doping in MnCoGe1-xAlx compounds has been investigated. The substitution of Al for Ge enhances Mn-Mn covalent bonding by shortening the distance of nearest Mn atom layers, and thus stabilizes the hexagonal structure. As a result, first-order magnetostructural transition between ferromagnetic martensite and paramagnetic austenite takes place for the optimized compositions (x = 0.01, 0.02). Accompanied with the magnetostructural transition, large magnetocaloric effect (MCE) is observed. More doping of Al(x = 0.03, 0.04) leads to the separation of magnetic and structural transitions and remarkable reduction of MCE. © 2014 IOP Publishing Ltd.

  11. Developments in magnetocaloric refrigeration

    International Nuclear Information System (INIS)

    Brueck, Ekkes

    2005-01-01

    Modern society relies on readily available refrigeration. Magnetic refrigeration has three prominent advantages compared with compressor-based refrigeration. First, there are no harmful gases involved; second, it may be built more compactly as the working material is a solid; and third, magnetic refrigerators generate much less noise. Recently a new class of magnetic refrigerant-materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: they exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase-transition of first order. This MCE is larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review we compare the different materials considering both scientific aspects and industrial applicability. Because fundamental aspects of MCE are not so widely discussed, we also give some theoretical considerations. (topical review)

  12. Magnetocaloric refrigeration concepts: current state of the art

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein

    2014-01-01

    Refrigeration devices based on the magnetocaloric effect have been prototyped in great numbers during the past decade. The search for the optimal combination of magnetic field source, regenerator geometry, magnetocaloric material composition and flow system design has resulted in a variety...

  13. Constraints on the Adiabatic Temperature Change in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian Robert Haffenden; Smith, Anders

    2010-01-01

    The thermodynamics of the magnetocaloric effect implies constraints on the allowed variation in the adiabatic temperature change for a magnetocaloric material. An inequality for the derivative of the adiabatic temperature change with respect to temperature is derived for both first- and second...

  14. Thermodynamic behavior and enhanced magnetocaloric effect in a frustrated spin-1/2 Ising-Heisenberg triangular tube

    Science.gov (United States)

    Alécio, Raphael Cavalcante; Strečka, Jozef; Lyra, Marcelo L.

    2018-04-01

    The thermodynamic behavior of an Ising-Heisenberg triangular tube with Heisenberg intra-rung and Ising inter-rung interactions is exactly obtained in an external magnetic field within the framework of the transfer-matrix method. We report rigorous results for the temperature dependence of the magnetization, entropy, pair correlations and specific heat, as well as typical iso-entropic curves. The discontinuous field-driven ground-state phase transitions are reflected in some anomalous thermodynamic behavior as for instance a striking low-temperature peak of the specific heat and an enhanced magnetocaloric effect. It is demonstrated that the intermediate magnetization plateaus shrink in and the relevant sharp edges associated with the magnetization jump round off upon increasing temperature.

  15. Magnetic properties and magnetocaloric effects in Mn1.2Fe0.8P1-xGex compounds

    International Nuclear Information System (INIS)

    Ou, Z Q; Wang, G F; Lin Song; Tegus, O; Brueck, E; Buschow, K H J

    2006-01-01

    We have studied the magnetic properties and magnetocaloric effects in the Mn 1.2 Fe 0.8 P 1-x Ge x compounds with x = 0.2, 0.22, 0.3, 0.4 and 0.5. X-ray diffraction patterns show that the Mn 1.2 Fe 0.8 P 1-x Ge x compounds crystallize in the hexagonal Fe 2 P-type crystal structure. The magnetic moments of the Mn 1.2 Fe 0.8 P 1-x Ge x compounds measured at 5 K and 5 T increase with increasing Ge content. The Curie temperature increases strongly and the magnetic entropy change has a maximum around 233 K for the compound with x = 0.22, which is about 19 and 31 J kg -1 K -1 for a field change of 2 and 5 T, respectively

  16. The effects of substituting Ag for In on the magnetoresistance and magnetocaloric properties of Ni-Mn-In Heusler alloys

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2016-05-01

    Full Text Available The effect of substituting Ag for In on the structural, magnetocaloric, and thermomagnetic properties of Ni50Mn35In15−xAgx (x = 0.1, 0.2, 0.5, and 1 Heusler alloys was studied. The magnitude of the magnetization change at the martensitic transition temperature (TM decreased with increasing Ag concentration. Smaller magnetic entropy changes (ΔSM were observed for the alloys with larger Ag concentrations and the martensitic transition shifted to higher temperature. A shift of TM by about 25 K to higher temperature was observed for an applied hydrostatic pressure of P = 6.6 kbar with respect to ambient pressure. A large drop in resistivity was observed for large Ag concentration. The magnetoresistance was dramatically suppressed due to an increase in the disorder of the system with increasing Ag concentration. Possible mechanisms responsible for the observed behavior are discussed.

  17. Magnetocaloric effects in RTX intermetallic compounds (R = Gd–Tm, T = Fe–Cu and Pd, X = Al and Si)

    International Nuclear Information System (INIS)

    Zhang Hu; Shen Bao-Gen

    2015-01-01

    The magnetocaloric effect (MCE) of RTSi and RT Al systems with R = Gd–Tm, T = Fe–Cu and Pd, which have been widely investigated in recent years, is reviewed. It is found that these RTX compounds exhibit various crystal structures and magnetic properties, which then result in different MCE. Large MCE has been observed not only in the typical ferromagnetic materials but also in the antiferromagnetic materials. The magnetic properties have been studied in detail to discuss the physical mechanism of large MCE in RTX compounds. Particularly, some RTX compounds such as ErFeSi, HoCuSi, HoCuAl exhibit large reversible MCE under low magnetic field change, which suggests that these compounds could be promising materials for magnetic refrigeration in a low temperature range. (topical review)

  18. Pulsed high-magnetic-field experiments: New insights into the magnetocaloric effect in Ni-Mn-In Heusler alloys

    International Nuclear Information System (INIS)

    Salazar Mejía, C.; Nayak, A. K.; Felser, C.; Nicklas, M.; Ghorbani Zavareh, M.; Wosnitza, J.; Skourski, Y.

    2015-01-01

    The present pulsed high-magnetic-field study on Ni 50 Mn 35 In 15 gives an extra insight into the thermodynamics of the martensitic transformation in Heusler shape-memory alloys. The transformation-entropy change, ΔS, was estimated from field-dependent magnetization experiments in pulsed high magnetic fields and by heat-capacity measurements in static fields. We found a decrease of ΔS with decreasing temperature. This behavior can be understood by considering the different signs of the lattice and magnetic contributions to the total entropy. Our results further imply that the magnetocaloric effect will decrease with decreasing temperature and, furthermore, the martensitic transition is not induced anymore by changing the temperature in high magnetic fields

  19. Effect of spin fluctuations in magnetocaloric and magnetoresistance properties of Dy10Co20Si70 alloy

    Science.gov (United States)

    Rashid, T. P.; Arun, K.; Curlik, Ivan; Ilkovic, Sergej; Reiffers, Marian; Dzubinska, Andrea; Nagalakshmi, R.

    2017-09-01

    Systematic investigations on the structure, magnetic, thermodynamic, magnetocaloric and magnetoresistance (MR) properties of the arc melted Dy10Co20Si70 alloy are presented. The Dy10Co20Si70 alloy crystallizes in tetragonal BaNiSn3-type DyCoSi3 (space group = I4mm; No. 107) as a major phase and CaF2-type CoSi2 (space group = Fm-3m; No. 225) and C-type Si (space group = Fd-3m; No. 227) as minor phases. The title compound exhibits multiple magnetic transitions having antiferromagnetic ordering at temperatures, viz., T1 = 10.8 K, T2 = 8.8 K and T3 = 3.3 K. The magnetic and thermodynamic studies confirm these magnetic anomalies in the compound. The large value of maximum magnetic entropy change, -ΔSMM a x = 16.4 and 26.6 J/kg K for the field change ΔH of 50 and 90 kOe, respectively, observed in the compound is associated with field induced magnetic transitions. Asymmetric broadening of the magnetic entropy change peaks above the ordering temperatures resulting in significant refrigerant capacities of 361 and 868 J/kg for ΔH = 50 and 90 kOe, respectively, in the compound is due to the spin fluctuation effect. The sign reversal in MR measurements is attributed to the field induced antiferromagnetic to ferromagnetic transition. A large positive MR (42% in 90 kOe) is observed at 2 K. The H2 dependence of both the magnetocaloric effect (MCE) and MR in the paramagnetic regime indicates the role of the applied magnetic field in suppressing the spin fluctuations. The large MCE and MR together with no thermal or magnetic hysteresis establish this new compound as an attractive multifunctional magnetic material.

  20. Ageing effect on the magnetocaloric properties of Gd, Gd5Si1.9Ge2.1 and on the eutectic composition Gd75Cd25

    International Nuclear Information System (INIS)

    Canepa, F; Cirafici, S; Napoletano, M; Cimberle, M R; Tagliafico, L; Scarpa, F

    2008-01-01

    The ageing effects due to the interaction with typical working fluids (water and air) of magnetic refrigerant materials have been analysed for up to one year. Among the many compounds reported to exhibit a sufficiently high magnetocaloric effect, we decided to artificially age Gd, which represents the first choice high magnetocaloric element, Gd 5 Si 1.9 Ge 2.1 , belonging to the series Gd 5 (Si x Ge 4-x ) 4 which for x ∼ 0.5 displays a giant magnetocaloric effect, and finally, the eutectic Gd 75 Cd 25 alloy, presenting an almost constant adiabatic temperature rise in an interesting temperature span (260-280 K). Magnetothermal results give evidence that corrosion and corrosion/erosion processes take place with different results on the refrigerant properties of all the materials. The adiabatic temperature rise is strongly reduced due to surface oxidation which lowers thermal conduction while the effect on the refrigerant capacity Q is definitely smaller. The effects of corrosion/erosion processes are confirmed by quantitative chemical analysis performed on the refrigerant fluid before and after the ageing process. Employing working fluids with a reduced corrosive effect but with comparable thermal properties may be a viable way of avoiding corrosion damage; alternatively the use of additives to decrease the corrosive properties of the fluids is strongly suggested

  1. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  2. Pressure effects in the giant magnetocaloric compounds Gd.sub.5./sub.(Si.sub.x./sub.Ge.sub.1 - x./sub.).sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Morellon, L.; Arnold, Zdeněk; Algarabel, P. A.; Magen, C.; Ibarra, M. R.; Skorokhod, Yuriy

    2004-01-01

    Roč. 16, - (2004), s. 1623-1630 ISSN 0953-8984 R&D Projects: GA ČR GA106/02/0943 Grant - others:CICYT(ES) MAT2000-1756 Institutional research plan: CEZ:AV0Z1010914 Keywords : magnetocaloric effect * high pressure * Gd 5 Si 4-x Ge x * magnetic transitions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.049, year: 2004

  3. Giant magnetocaloric effect in antiferromagnetic DyVO{sub 4} compound

    Energy Technology Data Exchange (ETDEWEB)

    Midya, A., E-mail: arindam.midya@saha.ac.in; Khan, N.; Bhoi, D.; Mandal, P.

    2014-09-01

    We have investigated the magnetic and magnetocaloric properties of DyVO{sub 4} by magnetization and heat capacity measurements. χ(T) shows antiferromagnetic to paramagnetic transition at T{sub N}{sup Dy}∼3.5K. The compound undergoes a metamagnetic transition and exhibits a huge entropy change. The maximum values of magnetic entropy change (ΔS{sub M}), adiabatic temperature change (ΔT{sub ad}) and refrigerant capacity (RC) reach 26 J kg{sup −1} K{sup −1}, 17 K, and 526 J kg{sup −1}, respectively for a field change of 0–8 T. Moreover, the material is highly insulating and exhibits no thermal and field hysteresis, satisfying the necessary conditions for a good magnetic refrigerant material.

  4. Magnetism and large magnetocaloric effect in HoFe{sub 2-x}Al{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Mican, S., E-mail: sever.mican@ubbcluj.ro [Babes-Bolyai University Cluj-Napoca, RO-400084 Cluj-Napoca (Romania); Benea, D., E-mail: diana.benea@phys.ubbcluj.ro [Babes-Bolyai University Cluj-Napoca, RO-400084 Cluj-Napoca (Romania); Tetean, R., E-mail: romulus.tetean@phys.ubbcluj.ro [Babes-Bolyai University Cluj-Napoca, RO-400084 Cluj-Napoca (Romania)

    2013-02-05

    Highlights: Black-Right-Pointing-Pointer Structural, magnetic and magnetocaloric properties of HoFe{sub 2-x}Al{sub x} compounds are reported. Black-Right-Pointing-Pointer Electronic structure calculations show a good agreement between theory and experiment. Black-Right-Pointing-Pointer Magnetic transitions close to room temperature for the Fe-rich samples. Black-Right-Pointing-Pointer High values of the relative cooling power for all of the investigated samples. Black-Right-Pointing-Pointer No hysteresis losses in applied fields of up to 4 T. - Abstract: The structural, magnetic and magnetocaloric properties of several HoFe{sub 2-x}Al{sub x} compounds were investigated. The compounds in the Fe-rich region (0.36 Less-Than-Or-Slanted-Equal-To x Less-Than-Or-Slanted-Equal-To 0.4) crystallize in the cubic MgCu{sub 2} (C15) structure, while for the ones in the intermediate region (0.75 Less-Than-Or-Slanted-Equal-To x Less-Than-Or-Slanted-Equal-To 1.125) the hexagonal MgZn{sub 2} (C14) structure was observed. Electronic structure calculations were performed, showing a good agreement between theory and experiment. The Curie temperatures were found to decrease with Al content. For the Fe-rich compounds, these are close to room temperature, while for the compounds in the intermediate region, transition temperatures are well below 300 K. No magnetic hysteresis was found around the Curie temperature for applied magnetic fields of up to 4 T. All of the investigated compounds undergo a second-order magnetic phase transition at the Curie temperature. A maximum magnetic entropy change value of 7.6 J/kg K was obtained for the sample with x = 1.125, all of the samples displaying rather large RCP values. The possibility of incorporating these materials in magnetic refrigeration devices is discussed.

  5. Magnetocaloric effect, thermal conductivity, and magnetostriction of epoxy-bonded La(Fe0.88Si0.12)13 hydrides

    Science.gov (United States)

    Matsumoto, K.; Murayama, D.; Takeshita, M.; Ura, Y.; Abe, S.; Numazawa, T.; Takata, H.; Matsumoto, Y.; Kuriiwa, T.

    2017-09-01

    Magnetic materials with large magnetocaloric effect are significantly important for magnetic refrigeration. La(Fe0.88Si0.12)13 compounds are one of the promising magnetocaloric materials that have a first order magnetic phase transition. Transition temperature of hydrogenated La(Fe0.88Si0.12)13 increased up to room temperature region while keeping metamagnetic transition properties. From view point of practical usage, bonded composite are very attractive and their properties are important. We made epoxy bonded La(Fe0.88Si0.12)13 hydrides. Magnetocaloric effect was studied by measuring specific heat, magnetization, and temperature change in adiabatic demagnetization. The composite had about 20% smaller entropy change from the hydrogenated La(Fe0.88Si0.12)13 powder in 2 T. Thermal conductivity of the composite was several times smaller than La(Fe,Si)13. The small thermal conductivity was explained due to the small thermal conductivity of epoxy. Thermal conductivity was observed to be insensitive to magnetic field in 2 T. Thermal expansion and magnetostriction of the composite material were measured. The composite expanded about 0.25% when it entered into ferromagnetic phase. Magnetostriction of the composite in ferromagnetic phase was about 0.2% in 5 T and much larger than that in paramagnetic phase. The composite didn’t break after about 100 times magnetic field changes in adiabatic demagnetization experiment even though it has magnetostriction.

  6. Europium substitution effects on structural, magnetic and magnetocaloric properties in La0.5Ca0.5MnO3

    Directory of Open Access Journals (Sweden)

    Boujelben W.

    2012-06-01

    Full Text Available We have investigated structural, magnetic and magnetocaloric properties of polycrystalline samples La0.5-xEuxCa0.5MnO3 (x=0 and 0.1. Rietveld refinement of the X-ray diffraction patterns show that our samples are single phase and crystallize in the orthorhombic structure with Pnma space group. Magnetization measurements versus temperature at a magnetic applied field of 500 Oe indicate that La0.4Eu0.1Ca0.5MnO3 sample exhibits a paramagnetic to ferromagnetic transition with decreasing temperature. Magnetic measurements reveal strong magnetocaloric effect in the vicinity of the Curie temperature TC. The parent compound shows a negative magnetic entropy change of ∆SM=−1.13Jkg−1K−1 at 220K and a positive magnetocaloric effects ∆SM=1Jkg−1K−1 at 150K under a magnetic applied field of 2T. La0.4Eu0.1Ca0.5MnO3 exhibits a maximum value of magnetic entropy change ∆SM=−1.15Jkg−1K−1 at 130K under an applied field of 2T and a large relative cooling power RCP with a maximum value of 72 J/kg.

  7. Effect of spin reorientation on magnetocaloric and transport properties of NdAl{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Souza, M.V. de, E-mail: marcos_vinicios@hotmail.com [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, J.A. da [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Silva, L.S. [Núcleo de Pós-Graduação em Física, Campus Prof. José Aloísio de Campos, UFS, 49100-000 São Cristóvão, SE (Brazil); Instituto Federal de Tocantins, IFTO – Campus Colinas do Tocantins, AV. Bernardo Sayao S/N, Chácara Raio de Sol, Setor Santa Maria, CEP 77760-000 Colinas do Tocantins, TO (Brazil)

    2017-01-01

    We report the magneto-thermal and resistive properties of rare-earth dialuminide NdAl{sub 2}, including spin reorientation transition. To this purpose, we used a theoretical model that considers the interactions of exchange and Zeeman, besides the anisotropy due to the electrical crystal field. The theoretical results obtained were compared to experimental data of the NdAl{sub 2} in single crystal and bulk forms. Explicitly, we have calculated the anisotropic variation of magnetic entropy with the magnetic field oriented along the three principal crystallographic directions: [100], [110], and [111] of NdAl{sub 2} single crystal, where a signature of the spin reorientation is observed in the [110] and [111] directions. Moreover, of magnetoresistivity we consider the applied magnetic field along the crystallographic directions [100] and [110]. In turn, for the polycrystalline form, the good agreement between theory and experiment confirms the presence of spin reorientation, which was predicted theoretically in magnetization curves. - Highlights: • Modeling of the thermodynamics quantities in NdAl{sub 2} single crystal and policrystal. • Modeling of the transport properties in NdAl{sub 2} single crystal. • Effect of reorientation of spin on caloric and transport properties.

  8. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  9. Fracture of anisotropic materials with plastic strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2013-01-01

    A unit cell is adopted to numerically analyze the effect of plastic anisotropy on frac-ture evolution in a micro-reinforced fiber-composite. The matrix material exhibit size-effects and an anisotropic strain-gradient plasticity model accounting for such size-effects through a mate-rial length scale...

  10. Effect of rapid quenching on the magnetism and magnetocaloric effect of equiatomic rare earth intermetallic compounds RNi (R = Gd, Tb and Ho)

    Energy Technology Data Exchange (ETDEWEB)

    Rajivgandhi, R. [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India); Arout Chelvane, J. [Defence Metallurgical Research Laboratory, Hyderabad 500 058 (India); Quezado, S.; Malik, S.K. [Departamento de F’ısica Teorica e Experimental, Universidade Federal do Rio Grande do Norte, Natal 59072-970 (Brazil); Nirmala, R., E-mail: nirmala@physics.iitm.ac.in [Department of Physics, Indian Institute of Technology Madras, Chennai 600 036 (India)

    2017-07-01

    Highlights: • Melt-spinning yields microcrystalline RNi (R = Gd, Tb and Ho) samples with texture. • The texture-induced anisotropy affects magnetic and magnetocaloric properties. • Melt-spinning helps one engineer magnetocaloric effect in rare-earth compounds. - Abstract: Magnetocaloric effect (MCE) in RNi (where R = Gd, Tb and Ho) compounds has been studied in their arc-melted and melt-spun forms. The compound GdNi has the orthorhombic CrB-type structure (Space group Cmcm, No. 63) and the compound HoNi has the orthorhombic FeB-type structure (Space group Pnma, No. 62) at room temperature regardless of their synthesis condition. However, arc-melted TbNi orders in a monoclinic structure (Space group P2{sub 1}/m, No. 11) and when it is rapidly quenched to a melt-spun form, it crystallizes in an orthorhombic structure (Space group Pnma, No. 62). The arc-melted GdNi, TbNi and HoNi compounds order ferromagnetically at ∼69 K, ∼67 K and ∼36 K (T{sub C}) respectively. While the melt-spun GdNi shows about 6 K increase in T{sub C}, the ordering temperature of TbNi remains nearly the same in both arc-melted and melt-spun forms. In contrast, a reduction in T{sub C} by about 8 K is observed in melt-spun HoNi, when compared to its arc-melted counterpart. Isothermal magnetic entropy change, ∆S{sub m}, calculated from the field dependent magnetization data indicates an enhanced relative cooling power (RCP) for melt-spun GdNi for field changes of 20 kOe and 50 kOe. A lowered RCP value is observed in melt-spun TbNi and HoNi. These changes could have resulted from the competing shape anisotropy and the granular microstructure induced by the melt-spinning process. Tailoring the MCE of rare earth intermetallic compounds by suitably controlled synthesis techniques is certainly one of the directions to go forward in the search of giant magnetocaloric materials.

  11. A theory for the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in dilute magnetic alloys

    International Nuclear Information System (INIS)

    Satter, M.A.

    1990-08-01

    In this paper, a formalism for studying the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in a dilute noble metal- transition metal magnetic alloy has been developed from relativistic scattering theory. The theoretical development and the computational techniques of this formalism are based on relativistic spin-polarized scattering theory and relativistic band structure frameworks. For studying the magnetic anisotropic effect a convenient ''working'' frame of reference with its axes oriented along the fcc crystal axes is set up. This formalism is applied to study the situation for two Fe impurities in paramagnetic Au hosts. For AuFe dilute alloy, the two impurity site interaction as a function of separation is not oscillatory and the anisotropic effect is found to be less than the two site interaction itself only by an order of magnitude. Apart from the anisotropic coupling of the two impurity spins to the separation vector, for the first time, another weak anisotropic coupling to the crystal axes is also contained in the two site interaction. These anisotropic effects are the results of the relativistic spin-orbit interaction which are incorporated into the formalism. (author). 22 refs, 5 figs

  12. Magnetocaloric effect in In doped YbMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Sattibabu, Bhumireddi, E-mail: bsb.satti@gmail.com [School of Engineering Sciences and Technology, University of Hyderabad, Hyderabad 500046 (India); Department of Electronics and Physics, Institute of Science, GITAM University, Visakhapatnam 530045 (India); Bhatnagar, A.K., E-mail: anilb42@gmail.com [School of Physics, University of Hyderabad, Hyderabad 500046 (India); Vinod, K.; Mani, Awadhesh [Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam 603102 (India)

    2017-06-01

    Magnetic and magnetocaloric (MCE) properties of Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3} polycrystalline samples are presented in this paper. Isothermal magnetization measurements reveal a field induced magnetic transition. Magnetic entropy change of 2.34±0.35 J/mole-K for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and 2.64±0.38 J/mole-K for Yb{sub 0.8}In{sub 0.2}MnO{sub 3} field change ΔH =10 KOe is observed around the ferromagnetic ordering temperature of Yb{sup 3+}. Values of relative cooling power for the same field change are found to be 38.03±9 J /mol, and 40.90±10 J/mol for Yb{sub 0.9}In{sub 0.1}MnO{sub 3} and Yb{sub 0.8}In{sub 0.2}MnO{sub 3}, respectively. These values suggest In doped YbMnO{sub 3} may be a potential candidate for magnetic refrigerant at low temperatures.

  13. Table-like magnetocaloric effect of Fe88−xNdxCr8B4 composite materials

    International Nuclear Information System (INIS)

    Lai, J.W.; Zheng, Z.G.; Zhong, X.C.; Franco, V.; Montemayor, R.; Liu, Z.W.; Zeng, D.C.

    2015-01-01

    The narrow working temperature range due to the sharp magnetic entropy change |ΔS M | peak and large thermal or magnetic hysteresis restricts the practical application of magnetocaloric materials. In this work, the table-like magnetocaloric effect (MCE) was obtained in the multilayer composite of Fe 88−x Nd x Cr 8 B 4 alloys with various Nd substitutions for Fe (x=5, 8, 10, 12, and 15), which were prepared by arc-melting followed by melt-spinning. The substation of Nd was found to enhance the glass-forming ability. For the alloys with Nd substitution from 5 at% to 15 at%, the Curie temperature (T C ) ranged from 322 K to 350 K and the peak value of |ΔS M | remained almost constant, 3.4–3.5 J/(kg K) under an applied field of 0–5 T. The composite with various Nd contents was prepared by stocking the ribbons layer by layer. The |ΔS M | of the composite approached a nearly constant value of ∼3.2 J/(kg K) in a field change of 0–5 T in a wide temperature span over 40 K, resulting in large refrigerant capacity value of >408 J/kg. This |ΔS M | value was much larger than the previous reported Fe-based amorphous composite Fe 78−x Ce x Si 4 Nb 5 B 12 Cu 1 . This composite can be used as the working material in the Ericsson-cycle magnetic regenerative refrigerator around room temperature. - Highlights: • The T C ranges from 322 K to 350 K when increasing Nd substitution from 5 to 15 at%. • |ΔS M | remains relatively constant, about 3.4–3.5 J/(kg K) under H=0–5 T. • RC decreases from 93 to 78 J/kg in a field change of 1.5 T when Nd increasing. • Table-like MCE ,|ΔS M | ~3.2J/kg K under 0–5 T, appeared in the composite. • A wide working temperature range (40 K) and enhanced RC (>408J/kg) were obtained in the composite

  14. Finite-size effects for anisotropic bootstrap percolation : Logarithmic corrections

    NARCIS (Netherlands)

    van Enter, Aernout C. D.; Hulshof, Tim

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  15. Finite-size effects for anisotropic bootstrap percolation: logerithmic corrections

    NARCIS (Netherlands)

    Enter, van A.C.D.; Hulshof, T.

    2007-01-01

    In this note we analyse an anisotropic, two-dimensional bootstrap percolation model introduced by Gravner and Griffeath. We present upper and lower bounds on the finite-size effects. We discuss the similarities with the semi-oriented model introduced by Duarte.

  16. Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni-Mn-In-Z Heusler alloys.

    Science.gov (United States)

    Kazakov, Alexander; Prudnikov, Valerii; Granovsky, Alexander; Perov, Nikolai; Dubenko, Igor; Pathak, Arjun Kumar; Samanta, Tapas; Stadler, Shane; Ali, Naushad; Zhukov, Arcady; Ilyin, Maxim; Gonzalez, Julian

    2012-09-01

    The magnetic, magnetotransport, and magnetocaloric properties near compound phase transitions in Ni50Mn35In14Z (Z = In, Ge, Al), and Ni48Co2Mn35In15 Heusler alloys have been studied using VSM and SQUID magnetometers (at magnetic fields (H) up to 5 T), four-probe method (at H = 0.005-1.5 T), and an adiabatic magnetocalorimeter (for H changes up to deltaH = 1.8 T), respectively. The martensitic transformation (MT) is accompanied by large magnetoresistance (up to 70%), a significant change in resistivity (up to 200%), and a sign reversal of the ordinary Hall effect coefficient, all related to a strong change in the electronic spectrum at the MT. The field dependences of the Hall resistance are complex in the vicinity of the MT, indicating a change in the relative concentrations of the austenite and martensite phases at strong fields. Negative and positive changes in adiabatic temperatures of about -2 K and +2 K have been observed in the vicinity of MT and Curie temperatures, respectively, for deltaH = 1.8 T.

  17. Magnetocaloric effect and corrosion resistance of La(Fe, Si)13 composite plates bonded by different fraction of phenolic resin

    Science.gov (United States)

    Zhang, K. S.; Xue, J. N.; Wang, Y. X.; Sun, H.; Long, Y.

    2018-04-01

    La(Fe, Si)13-based composite plates were successfully fabricated using different amount of phenolic resin. The introduction of phenolic resin as binder increased the corrosion resistance and maintained giant magnetocaloric effect for La(Fe, Si)13-based composite plates. It was found that corroded spots were firstly observed on the boundaries between resin and La(Fe, Si)13 particles, rather than in La(Fe, Si)13-based particles, after being immersed in static distilled water. The corrosion rate decreased significantly with the increase of resin content. And the increase of the content of phenolic resin leads to the reduction of corrosion current density. Meanwhile, the volumetric magnetic entropy change ΔSM decreases slightly as the content of phenolic resin increases. The ΔSM of the plates with 3 wt.%, 5 wt.% and 8 wt.% resin are 63.1, 61.2 and 59.8 mJ/cm3 K under a low magnetic field change of 1 T, respectively.

  18. Magnetic Properties and Magnetocaloric Effect in Layered NdMn1.9Ti0.1Si2

    Directory of Open Access Journals (Sweden)

    M.F. Md Din

    2014-04-01

    Full Text Available The structural and magnetic properties of the NdMn1.9Ti0.1Si2 compund have been studied by high-intensity x-ray and high-resolution neutron powder diffraction, specific heat, dc magnetization, and differential scanning calorimetry measurements over the temperature range of 3-450 K. The Curie temperature and Néel temperature of layered NdMn1.9Ti0.1Si2 are indicated as TC ~ 22 K and TN ~ 374 K respectively. The first order magnetic transition from antiferromagnetic [AFil-type] to ferromagnetic [F(Nd+Fmc] around TC is found in layered NdMn1.9Ti0.1Si2 and is associated with large magnetocaloric effect. This behavior has been confirmed as a contribution of the magnetostructural coupling by using neutron and x-ray powder diffraction. The magnetic entropy change –ΔSM ~ 15.3 J kg-1 K-1 and adiabatic temperature change ΔTad ~ 4.7 K have been determined using magnetization and specific heat measurement under 0-5 T applied fields. This compound exhibits almost no thermal and magnetic hysteresis, thus potentially applicable in low temperature region for magnetic refrigerator material

  19. Table-like magnetocaloric effect in Gd56Ni15Al27Zr2 alloy and its field independence feature

    International Nuclear Information System (INIS)

    Agurgo Balfour, E.; Ma, Z.; Fu, H.; Wang, L.; Luo, Y.; Hadimani, R. L.; Jiles, D. C.; Wang, S. F.

    2015-01-01

    In order to obtain “table-like” magnetocaloric effect (MCE), multiple-phase Gd 56 Ni 15 Al 27 Zr 2 alloy was prepared by arc-melting followed by suck-casting method. Powder x-ray diffraction and calorimetric measurements reveal that the sample contains both glassy and crystalline phases. The fraction of the glassy phase is about 62%, estimated from the heat enthalpy of the crystallization. The crystalline phases, Gd 2 Al and GdNiAl further broadened the relatively wider magnetic entropy change (−ΔS M ) peak of the amorphous phase, which resulted in the table-like MCE over a maximum temperature range of 52.5 K to 77.5 K. The plateau feature of the MCE was found to be nearly independent of the applied magnetic field from 3 T to 5 T. The maximum −ΔS M value of the MCE platforms is 6.0 J/kg K under applied magnetic field change of 5 T. Below 3 T, the field independence of the table-like feature disappears. The relatively large constant values of −ΔS M for the respective applied magnetic fields have promising applications in magnetic refrigeration using regenerative Ericsson cycle

  20. Investigate the effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Peamsuwan, R.; Kumvongsa, C.

    2009-01-01

    The effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors in BCS weak-coupling limit is investigated. An analytical specific heat jump and the numerical specific heat are shown by using anisotropic order parameters, and the electron-phonon interaction and non-electron-phonon interaction. The two models of anisotropic order parameters are used for numerical calculation that we find little effect on the numerical results. The specific heat jump of MgB 2 , Lu 2 Fe 3 Si 5 and Nb 3 Sn superconductors can fit well with both of them. By comparing the experimental data with overall range of temperature, the best fit is Nb 3 Sn, MgB 2 , and Lu 2 Fe 3 Si 5 superconductors.

  1. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  2. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  3. Effect of B-doping on the structural, magnetotransport and magnetocaloric properties of La0.67Ca0.33MnO3 compounds

    International Nuclear Information System (INIS)

    Kolat, V.S.; Gencer, H.; Gunes, M.; Atalay, S.

    2007-01-01

    In this study, the effect of Mn site substitution of B on the structural, electrical and magnetocaloric properties of manganites was investigated. Polycrystalline manganites with the chemical composition La 0.67 Ca 0.33 Mn 1-x B x O 3 (x = 0, 0.1, 0.2 and 0.3) were prepared by the standard solid-state process. It was found that the magnetisation, the Curie temperature and the maximum value of the magnetic entropy change |ΔS m | decrease with increasing concentration of B

  4. (Dy0.5Er0.5)Al2: A large magnetocaloric effect material for low-temperature magnetic refrigeration

    International Nuclear Information System (INIS)

    Gschneidner, K.A. Jr.; Takeya, H.; Moorman, J.O.; Pecharsky, V.K.

    1994-01-01

    The low-temprature heat capacity and ac and dc magnetic properties of (Dy 0.5 Er 0.5 )Al 2 have been studied as a function of magnetic fields up to ∼10 T. The magnetocaloric effect in (Dy 0.5 Er 0.5 )Al 2 is 30% larger than that of the prototype material, GdPd. Magnetic measurements show that there is no measurable magnetic hysteresis above ∼17 K. These results suggest that (Dy 0.5 Er 0.5 )Al 2 would be a significantly better magnetic refrigerant than GdPd

  5. Effect of vanadium doping on structural, magnetic and magnetocaloric properties of La{sub 0.5}Ca{sub 0.5}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Mansouri, M., E-mail: mansourimoufida23@yahoo.fr [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Omrani, H. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Cheikhrouhou-Koubaa, W. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Centre de Recherche en Informatique, Multimédia et Traitement Numérique des Données, BP 275, Sakiet Ezzit, 3021 Sfax (Tunisia); Koubaa, M. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia); Madouri, A. [Laboratoire de Photonique et Nanostructure, LPN-CNRS, Route de Nozay, 91460 Marcoussis (France); Cheikhrouhou, A. [Laboratoire de Physique des Matériaux, Faculté des Sciences de Sfax, Sfax University, B.P. 1171, 3000 Sfax (Tunisia)

    2016-03-01

    We report the effect of vanadium doping on structural, magnetic and magnetocaloric properties of La{sub 0.5}Ca{sub 0.5}Mn{sub 1−x}V{sub x}O{sub 3} (x=0.05; 0.1). Our samples were elaborated using the conventional solid state reaction method at high temperatures. X-Ray powder diffraction at room temperature indicates that our samples crystallize in the orthorhombic structure with Pbnm space group. Magnetic measurements reveal a paramagnetic-ferromagnetic transition with decreasing temperature. Magnetocaloric studies show that the maximum of the magnetic entropy change and the relative cooling power (RCP) are found to be 2.42 J Kg{sup −1} K{sup −1} and 162.75 J Kg{sup −1} for x=0.05 and 3.12 J Kg{sup −1} K{sup −1} and 221.31 J Kg{sup −1} for x=0.1 under a field change of 5 T. - Highlights: • The La{sub 0.5}Ca{sub 0.5}Mn{sub 1−x}V{sub x}O{sub 3}(x=0.05 and x=0.1) compounds were synthesized using conventional solid state reaction method. • T{sub C} increases with V content from 187 K for x=0.05 to 263 K for x=0.1 • Large magnetocaloric effect is reported based on second order phase transition. • Noticeable |∆S{sub M}| at 5 T field makes the system useful for magnetic refrigeration.

  6. Effect of neutron anisotropic scattering in fast reactor analysis

    International Nuclear Information System (INIS)

    Chiba, Gou

    2004-01-01

    Numerical tests were performed about an effect of a neutron anisotropic scattering on criticality in the Sn transport calculation. The simplest approximation, the consistent P approximation and the extended transport approximation were compared with each other in one-dimensional slab fast reactor models. JAERI fast set which has been used for fast reactor analyses is inadequate to evaluate the effect because it doesn't include the scattering matrices and the self-shielding factors to calculate the group-averaged cross sections weighted by the higher-order moment of angular flux. In the present study, the sub-group method was used to evaluate the group-averaged cross sections. Results showed that the simplest approximation is inadequate and the transport approximation is effective for evaluating the anisotropic scattering. (author)

  7. New aspects of magnetocaloric effect in NiMn{sub 0.89}Cr{sub 0.11}Ge

    Energy Technology Data Exchange (ETDEWEB)

    Jaworska-Gołąb, T., E-mail: teresa.jaworska-golab@uj.edu.pl [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Baran, S. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Duraj, R. [Institute of Physics, Cracow University of Technology, Podchorążych 1, 30-084 Kraków (Poland); Marzec, M. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland); Dyakonov, V. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa (Poland); A.A. Galkin Donetsk Physico-Technical Institute, 83-114 Donetsk (Ukraine); Sivachenko, A. [A.A. Galkin Donetsk Physico-Technical Institute, 83-114 Donetsk (Ukraine); Tyvanchuk, Yu. [Chemistry Department, Ivan Franko National University of Lviv, 79-005 Lviv (Ukraine); Szymczak, H. [Institute of Physics, Polish Academy of Sciences, al. Lotników 32/46, 02-668 Warszawa (Poland); Szytuła, A. [Institute of Physics, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków (Poland)

    2015-07-01

    Investigations of structural and magnetic phase transitions in the NiMn{sub 0.89}Cr{sub 0.11}Ge half-Heusler alloy were carried out by DSC, XRD (80–400 K), magnetic susceptibility and magnetization (1.9–400 K, magnetic field up to 9.0 T, pressure up to 5.25 kbar) measurements. At high temperatures the sample is a single phase crystallizing in the hexagonal crystal structure (Ni{sub 2}In-type, space group P6{sub 3}/mmc) while below 260 K, down to 100 K, some amount of the hexagonal phase coexists with the orthorhombic (TiNiSi-type, space group Pnma) one. Strong magnetostructural coupling is observed. Magnetic data indicate that with increasing temperature magnetic properties of the sample change from antiferro- to ferro- and then to paramagnetic ones. The latter magnetic phase transition is associated with the crystal structure change and results in large magnetic entropy change equal to −51 J/kg K at μ{sub 0}H= 9.0 T near 260 K. Application of external pressure shifts T{sub C} towards lower temperatures. - Highlights: • # Pnma below 210 K, # P6{sub 3}/mmc above 260 K, for 210 K magnetocaloric effect observed about 260 K at ambient pressure. • Magnetostructural effect observed at 260 K (ΔV/V= 2.4%) at ambient pressure. • Magnetic measurements under hydrostatic pressure up to 5.25 kbar; (p, T) diagram.

  8. Tuning of magnetocaloric effect in a La.sub.0.69./sub.Ca.sub.0.31./sub.MnO.sub.3./sub. single crystal by pressure,

    Czech Academy of Sciences Publication Activity Database

    Sun, Y.; Kamarád, Jiří; Arnold, Zdeněk; Kou, Z.; Cheng, Z.

    2006-01-01

    Roč. 88, č. 10 (2006), 102505/1-102505/3 ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA106/06/0368 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetocaloric effect * pressure effect * manganites * single crystal Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.977, year: 2006

  9. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  10. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin; Alkhalifah, Tariq Ali

    2014-01-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  11. Martensitic phase transformations and magnetocaloric effect in Al co-sputtered Ni–Mn–Sb alloy thin films

    International Nuclear Information System (INIS)

    Akkera, Harish Sharma; Choudhary, Nitin; Kaur, Davinder

    2015-01-01

    Highlights: • The Al content leads to a increase in the martensitic transformation temperature. • A maximum ΔS M = 23 mJ/cm 3 K at 300 K was observed in the N 49.8 Mn 32.97 Al 4.43 Sb 12.8 . • The refrigeration capacity RC = 64.4 mJ/cm 3 at 2 T for N 49.8 Mn 32.97 Al 4.43 Sb 12.8 film. - Abstract: We systematically investigated the influence of aluminium (Al) content on the martensitic transformations and magnetocaloric effect (MCE) in Ni–Mn–Sb ferromagnetic shape memory alloy (FSMA) thin films. The temperature-dependent magnetization (M–T) and resistance (R–T) results displayed a monotonic increase in martensitic transformation temperature (T M ) with increasing Al content. From the isothermal magnetization (M–H) curves, a large magnetic entropy change (ΔS M ) of 23 mJ/cm 3 K was observed in N 49.8 Mn 32.97 Al 4.43 Sb 12.8 . A remarkable enhancement of MCE could be attributed to the significant change in the magnetization of Ni–Mn–Sb films with increasing Al content. Furthermore, a high refrigerant capacity (RC) was observed in Ni–Mn–Sb–Al thin films as compared to pure Ni–Mn–Sb. The substitution of Al for Mn in Ni–Mn–Sb thin films with field induced MCE are potential candidates for micro length scale magnetic refrigeration applications where low magnetic fields are desirable

  12. Insulating phase in Sr{sub 2}IrO{sub 4}: An investigation using critical analysis and magnetocaloric effect

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, Imtiaz Noor; Pramanik, A.K., E-mail: akpramanik@mail.jnu.ac.in

    2017-01-15

    The nature of insulating phase in 5d based Sr{sub 2}IrO{sub 4} is quite debated as the theoretical as well as experimental investigations have put forward evidences in favor of both magnetically driven Slater-type and interaction driven Mott-type insulator. To understand this insulating behavior, we have investigated the nature of magnetic state in Sr{sub 2}IrO{sub 4} through studying critical exponents, low temperature thermal demagnetization and magnetocaloric effect. The estimated critical exponents do not exactly match with any universality class, however, the values obey the scaling behavior. The exponent values suggest that spin interaction in present material is close to mean-field model. The analysis of low temperature thermal demagnetization data, however, shows dual presence of localized- and itinerant-type of magnetic interaction. Moreover, field dependent change in magnetic entropy indicates magnetic interaction is close to mean-field type. While this material shows an insulating behavior across the magnetic transition, yet a distinct change in slope in resistivity is observed around T{sub c}. We infer that though the insulating phase in Sr{sub 2}IrO{sub 4} is more close to be Slater-type but the simultaneous presence of both Slater- and Mott-type is the likely scenario for this material. - Highlights: • Critical analysis shows Sr{sub 2}IrO{sub 4} has ferromagnetic ordering temperature T{sub c}~225 K. • Obtained critical exponents imply spin interaction is close to mean-field model. • Analysis of magneto-entropy data also supports mean-field type interaction. • However, the presence of both itinerant and localized spin interaction is evident. • Sr{sub 2}IrO{sub 4} has simultaneous presence of both Slater- and Mott-type insulating phase.

  13. Giant reversible magnetocaloric effect in flower-like β-Co(OH){sub 2} hierarchical superstructures self-assembled by nanosheets

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Xianguo; Feng, Chao; Xiao, Feng; Jin, Chuangui; Xia, Ailin, E-mail: liuxianguohugh@gmail.com, E-mail: eeswor@polyu.edu.hk [Anhui Key Laboratory of Metal Materials and Processing, School of Materials Science and Engineering, Anhui University of Technology, Ma' anshan, PR (China); Or, Siu Wing [Department of Electrical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon (Hong Kong); Sun, Yuping [Center for Engineering Practice and Innovation Education, Anhui University of Technology, Ma' anshan, PR (China)

    2014-01-15

    A facile hydrothermal strategy is proposed to synthesize flower-like β- Co(OH){sub 2} hierarchical microspherical superstructures with a diameter of 0.5-1.5 µm, which are self-assembled by β - Co(OH){sub 2} nano sheets with the average thickness ranging between 20 and 40 nm. The magnetocaloric effect associated with magnetic phase transitions in Co(OH){sub 2} superstructures has been investigated. A sign change in the magnetocaloric effect is induced by a magnetic field, which is related to a filed-induced transition from the antiferromagnetic to the ferromagnetic state below the Néel temperature. The large reversible magnetic-entropy change –ΔS{sub m} (13.4 J/kg K at 15 K for a field change of 5 T) indicates that flower-like Co(OH){sub 2} superstructures is a potential candidate for application in magnetic refrigeration in the low-temperature range. (author)

  14. Toward a better understanding of the magnetocaloric effect: An experimental and theoretical study of MnFe{sub 4}Si{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Gourdon, Olivier, E-mail: gourdono@lanl.gov [Los Alamos Neutron Scattering Center, National Laboratory, Los Alamos, NM 87545 (United States); Gottschlich, Michael; Persson, Joerg [Jülich Center for Neutron Science JCNS-2 and Peter Grünberg Institut PGI-4, JARA-FIT, Forschungszentrum Jülich 52425 Jülich (Germany); Cruz, Clarina de la [Quantum Condensed Matter Division, Spallation Neutron Source, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Petricek, Vaclav [Institute of Physics ASCR v.v.i., Na Slovance 2, 182 21 Prague (Czech Republic); McGuire, Michael A. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 (United States); Brückel, Thomas [Jülich Center for Neutron Science JCNS-2 and Peter Grünberg Institut PGI-4, JARA-FIT, Forschungszentrum Jülich 52425 Jülich (Germany)

    2014-08-15

    The intermetallic compound MnFe{sub 4}Si{sub 3} has been studied by high-resolution Time of Flight (TOF) neutron powder diffraction. MnFe{sub 4}Si{sub 3} crystallizes in the hexagonal space group P6{sub 3}/mcm with lattice constants of a=b=6.8043(4) Å and c=4.7254(2) Å at 310 K. Magnetic susceptibility measurements show clearly the magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. Magnetic structure refinements based on neutron powder diffraction data with and without external magnetic field reveal strong evidence on the origin of the large magnetocaloric effect (MCE) in this material as a partial reordering of the spins between ∼270 K and 300 K. In addition, electronic structure calculations using the self-consistent, spin-polarized Tight Binding-Linear MuffinTin Orbital (TB-LMTO) method were also accomplished to address the “coloring problem” (Mn/Fe site preference) as well as the unique ferromagnetic behavior of this intermetallic compound. - Graphical abstract: Theoretical and experimental reinvestigation of the magnetic structure of MnFe{sub 4}Si{sub 3} for a better understanding of its large magnetocaloric effect (MCE). - Highlights: • Strong magnetic transition from paramagnetism to ferromagnetism at about 302(2) K. • MCE associated to a partial reordering of the spins between ∼270 K and 300 K. • DFT calculations show strong relation between MCE and spintronic materials.

  15. Magnetocaloric effect and critical behavior in melt-extracted Gd{sub 60}Co{sub 15}Al{sub 25} microwires

    Energy Technology Data Exchange (ETDEWEB)

    Xing, Dawei; Jiang, Sida; Chen, Dongming; Liu, Yanfen; Sun, Jianfei [School of Materials Science and Engineering, Harbin Institute of Technology (China); Shen, Hongxian [School of Materials Science and Engineering, Harbin Institute of Technology (China); Institute of Materials and Department of Physics, University of South Florida, Tampa, FL (United States); Liu, Jingshun [School of Materials Science and Engineering, Inner Mongolia University of Technology, Hohhot (China); Phan, Manh-Huong [Institute of Materials and Department of Physics, University of South Florida, Tampa, FL (United States); Wang, Huan; Qin, Faxiang [Institute for Composites Science and Innovation (InCSI), College of Materials Science and Engineering, Zhejiang University, Hangzhou (China)

    2015-09-15

    High-quality Gd{sub 60}Co{sub 15}Al{sub 25} microwires with an average diameter of 40 μm were successfully fabricated by the melt-extraction method. The as-cast microwires undergo a second-order paramagnetic to ferromagnetic (PM-FM) transition at ∝100 K. Large values of the magnetic entropy change (-ΔS{sub M} ∝9.73 J kg{sup -1} K{sup -1}) and the refrigerant capacity (RC ∝732 J kg{sup -1}) are achieved for a field change of 5 T. A careful analysis of critical exponents near the PM-FM transition indicates the significant effects of structural disorder on the long-range ferromagnetic interaction and the magnetocaloric response of the microwires. The excellent magnetocaloric properties make the Gd{sub 60}Co{sub 15}Al{sub 25} microwires very promising for use in magnetic refrigerators operating in the liquid nitrogen temperature range. (copyright 2015 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds....... The theory gives explicitly a temperature dependent renormalization of both the crystal field and the interactions, and a damping of the excitations and in addition a central park component. The general theory is illustrated by a discussion of the singlet-doublet system. The correlation effects...

  17. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham; Filonenko, Konstantin; Heiselberg, Per

    2018-01-01

    magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...

  18. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Sudip Kumar, E-mail: sudips@barc.gov.in [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Sarita [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Babu, P.D. [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Biswas, Aniruddha [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India); Siruguri, Vasudeva [UGC-DAE Consortium for Scientific Research, Mumbai Centre, BARC, Mumbai, 400085 (India); Krishnan, Madangopal [Glass and Advanced Materials Division, Bhabha Atomic Research Centre, Mumbai, 400085 (India)

    2016-06-15

    In an effort to produce Giant Magnetocaloric effect (GMCE) near room temperature, in a first ever such study, the austenite transformation temperature (A{sub s}) was fine tuned to ferromagnetic Curie temperature (T{sub C}) in Ferromagnetic Shape Memory Alloys (FSMA) and a large GMCE of ΔSM = −81.8 J/Kg-K was achieved in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloy during reverse martensitic transformation (heating cycle) for a magnetic field change of 9 T at 303 K. Fine tuning of A{sub s} with T{sub C} was achieved by Cu substitution in Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0)-based FSMAs. Characterizations of these alloys were carried out using Optical and Scanning Electron Microscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and DC magnetization measurements. Addition of Cu to stoichiometric Heusler type Ni{sub 2}MnGa increases the martensitic transformation temperatures and decreases T{sub C}. Concurrently, ΔSM increases with Cu addition and peaks at 6.5 at% Cu for which there is a virtual overlap between T{sub C} and A{sub s}. Maximum Refrigerant Capacity (RCP) of 327.0 J/Kg was also achieved in the heating cycle for 9 T field change at 303 K. Corresponding values for the cooling cycle measurements (measured during forward transformation) were 30.4 J/Kg-K and 123.5 J/Kg respectively for the same 6.5 at% Cu sample under the same thermo-magnetic conditions. - Highlights: • A{sub s} was fine tuned to T{sub C} in Cu substituted Ni{sub 50}Mn{sub 25−x}Cu{sub x}Ga{sub 25} (0 ≤ x ≤ 7.0) alloys. • MT temperature increases with Cu addition while T{sub C} decreases. • A virtual overlapping of A{sub s} with T{sub C} was found in Ni{sub 50}Mn{sub 18.5}Cu{sub 6.5}Ga{sub 25} alloys. • ΔSM = −81.8 J/Kg-K achieved from reverse MT for Δ(μ{sub 0}H) = 9 T at 303 K. • A highest RCP value of 94.6 J/Kg was observed for Δ(μ{sub 0}H) = 5 T in Cu:6.5 alloys.

  19. Giant magnetocaloric effect from reverse martensitic transformation in Ni–Mn–Ga–Cu ferromagnetic shape memory alloys

    International Nuclear Information System (INIS)

    Sarkar, Sudip Kumar; Sarita; Babu, P.D.; Biswas, Aniruddha; Siruguri, Vasudeva; Krishnan, Madangopal

    2016-01-01

    In an effort to produce Giant Magnetocaloric effect (GMCE) near room temperature, in a first ever such study, the austenite transformation temperature (A_s) was fine tuned to ferromagnetic Curie temperature (T_C) in Ferromagnetic Shape Memory Alloys (FSMA) and a large GMCE of ΔSM = −81.8 J/Kg-K was achieved in Ni_5_0Mn_1_8_._5Cu_6_._5Ga_2_5 alloy during reverse martensitic transformation (heating cycle) for a magnetic field change of 9 T at 303 K. Fine tuning of A_s with T_C was achieved by Cu substitution in Ni_5_0Mn_2_5_−_xCu_xGa_2_5 (0 ≤ x ≤ 7.0)-based FSMAs. Characterizations of these alloys were carried out using Optical and Scanning Electron Microscopy, X-ray Diffraction (XRD), Differential Scanning Calorimetry (DSC) and DC magnetization measurements. Addition of Cu to stoichiometric Heusler type Ni_2MnGa increases the martensitic transformation temperatures and decreases T_C. Concurrently, ΔSM increases with Cu addition and peaks at 6.5 at% Cu for which there is a virtual overlap between T_C and A_s. Maximum Refrigerant Capacity (RCP) of 327.0 J/Kg was also achieved in the heating cycle for 9 T field change at 303 K. Corresponding values for the cooling cycle measurements (measured during forward transformation) were 30.4 J/Kg-K and 123.5 J/Kg respectively for the same 6.5 at% Cu sample under the same thermo-magnetic conditions. - Highlights: • A_s was fine tuned to T_C in Cu substituted Ni_5_0Mn_2_5_−_xCu_xGa_2_5 (0 ≤ x ≤ 7.0) alloys. • MT temperature increases with Cu addition while T_C decreases. • A virtual overlapping of A_s with T_C was found in Ni_5_0Mn_1_8_._5Cu_6_._5Ga_2_5 alloys. • ΔSM = −81.8 J/Kg-K achieved from reverse MT for Δ(μ_0H) = 9 T at 303 K. • A highest RCP value of 94.6 J/Kg was observed for Δ(μ_0H) = 5 T in Cu:6.5 alloys.

  20. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    International Nuclear Information System (INIS)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo; Hamburg Univ.

    2012-03-01

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient υ 2 . We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on υ 2 . We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  1. Strain effects on anisotropic magnetoresistance in a nanowire spin valve

    Science.gov (United States)

    Hossain, Md I.; Maksud, M.; Subramanian, A.; Atulasimha, J.; Bandyopadhyay, S.

    2016-11-01

    The longitudinal magnetoresistance of a copper nanowire contacted by two cobalt contacts shows broad spin-valve peaks at room temperature. However, when the contacts are slightly heated, the peaks change into troughs which are signature of anisotropic magnetoresistance (AMR). Under heating, the differential thermal expansion of the contacts and the substrate generates a small strain in the cobalt contacts which enhances the AMR effect sufficiently to change the peak into a trough. This shows the extreme sensitivity of AMR to strain. The change in the AMR resistivity coefficient due to strain is estimated to be a few m Ω -m/microstrain.

  2. Highly Sensitive Flexible Magnetic Sensor Based on Anisotropic Magnetoresistance Effect.

    Science.gov (United States)

    Wang, Zhiguang; Wang, Xinjun; Li, Menghui; Gao, Yuan; Hu, Zhongqiang; Nan, Tianxiang; Liang, Xianfeng; Chen, Huaihao; Yang, Jia; Cash, Syd; Sun, Nian-Xiang

    2016-11-01

    A highly sensitive flexible magnetic sensor based on the anisotropic magnetoresistance effect is fabricated. A limit of detection of 150 nT is observed and excellent deformation stability is achieved after wrapping of the flexible sensor, with bending radii down to 5 mm. The flexible AMR sensor is used to read a magnetic pattern with a thickness of 10 μm that is formed by ferrite magnetic inks. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Very large refrigerant capacity at room temperature with reproducible magnetocaloric effect in Fe0.975Ni0.025Rh

    International Nuclear Information System (INIS)

    Manekar, Meghmalhar; Roy, S B

    2011-01-01

    We present the results of magnetocaloric effect (MCE) measurements on Fe 0.975 Ni 0.025 Rh. The MCE is estimated using both the isothermal field-dependent magnetization and the temperature-dependent magnetization in constant magnetic fields. We find a very large effective refrigerant capacity of nearly 492.8 J kg -1 , with the hot end at about 307 K, which is reproducible over many field cycles. We compare this refrigerant capacity with those of two well known systems, namely Gd 5 Ge 1.9 Si 2 Fe 0.1 and MnFeP 0.45 As 0.55 , which show a large MCE near room temperature, and also with our earlier results on the parent Fe-Rh alloy. The large effective refrigerant capacity in our sample is one of the largest achieved yet at room temperature with a significant improvement over the parent Fe-Rh system. (fast track communication)

  4. Magnetocaloric heat pump device, a heating or cooling system and a magnetocaloric heat pump assembly

    DEFF Research Database (Denmark)

    2014-01-01

    The invention provides a magnetocaloric heat pump device, comprising a magnetocaloric bed; a magnetic field source, the magnetocaloric bed and the magnetic field source being arranged to move relative to each other so as to generate a magnetocaloric refrigeration cycle within the heat pump, wherein...

  5. Influence of Dy addition on the magnetocaloric effect of La0.67Ca0.33Mn0.9V0.1O3 ceramics

    International Nuclear Information System (INIS)

    Nisha, P.; Savitha Pillai, S.; Suresh, K.G.; Raama Varma, Manoj

    2012-01-01

    The influence of partial substitution of La by Dy on the magnetocaloric response of (La 1-x Dy x ) 0.67 Ca 0.33 Mn 0.9 V 0.1 O 3 , where x=0.03, 0.15 and 0.25 is studied. Rietveld refinement of X-ray diffraction pattern using GSAS method shows that the compounds adopt the orthorhombic structure with Pnma space group. The systematic change in lattice parameters and magnetic phase transition indicates the substitution effect of Dy. From the magnetization isotherms at different temperatures, magnetic entropy change close to their respective transition temperatures (T C ) has been evaluated. The maximum value of entropy change near T C is found to be about 4.8 J/kg K at 187.5 K for LCMVDy 0.03 , 2.45 J/kg K at 107.5 K for LCMVDy 0.15 and 2.15 J/kg K at 92.5 K for LCMVDy 0.25 at 4 T. Dy addition produces a reduction in T C and in magnitude of the magnetic entropy change. Even though the entropy change decreases with increasing Dy substitution the refrigerant temperature range, ΔT, is found to be 10 K for LCMVDy 0.03 , 31 K for LCMVDy 0.15 and 35 K for LCMVDy 0.25 compounds [90%] at 4 T. The field dependence of the magnetic entropy change is also analyzed showing the power law dependence, ΔS M ∞H n where n=0.75(2) for LCMVDy 0.03 , n=0.80(4) for LCMVDy 0.15 and n=0.92(8) for LCMVDy 0.25 compounds at their respective transition temperatures. The relative cooling power and its field dependance are also analyzed. - Highlights: → Studied magnetocaloric response of Dy substituted solid state synthesized LCMVO. → Studied the field dependence of the magnetic entropy change (ΔS M ∞H n ). → Studied the field dependence of Relative cooling power (RCP∞H 1+1/δ ). → Considerably large magnetocaloric effect and moderate relative cooling power.

  6. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  7. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Fisker Skjoldan, P.

    2011-03-15

    Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies, damping, and periodic mode shapes of a rotating wind turbine by describing the rotor degrees of freedom in the inertial frame. This approach is valid only for an isotropic system. Anisotropic systems, e.g., with an unbalanced rotor or operating in wind shear, are treated with the general approaches of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions and the computationally efficient implicit Floquet analysis in anisotropic conditions. The tool is validated against system identifications with the partial Floquet method on the nonlinear BHawC model of a 2.3 MW wind turbine. System identification results show that nonlinear effects on the 2.3 MW turbine in most cases are small, but indicate that the controller creates nonlinear damping. In isotropic conditions the periodic mode shape contains up to three harmonic components, but in anisotropic conditions it can contain an infinite number of harmonic components with frequencies that are multiples of the rotor speed. These harmonics appear in calculated frequency responses of the turbine. Extreme wind shear changes the modal damping when the flow is separated due to an interaction between

  8. Magnetocaloric effect in multiferroic Y-type hexaferrite Ba0.5Sr1.5Zn2(Fe0.92Al0.0812O22

    Directory of Open Access Journals (Sweden)

    Wenfei Xu

    2014-06-01

    Full Text Available Magnetocaloric effect is investigated in multiferroic Ba0.5Sr1.5Zn2(Fe0.92Al0.0812O22 ceramic with Y-type hexagonal system. Three magnetic transitions, from alternating longitudinal conical to mixed conical at ∼240 K, to ferrimagnetic at ∼297 K, further to paramagnetic at ∼702 K, are unambiguously determined. Furthermore, obvious MCE is shown, and the maximum values of the magnetic entropy change and relative cooling power are evaluated to be 1.53 JKg−1K−1 and 280 JKg−1 for a field change of 7 T, respectively. In addition, inverse MCE is also observed, which might be associated with the first-order magnetic phase transition between two incommensurate longitudinal conical phases.

  9. The persistence of the magnetocaloric effect in (La1-x)A(x)(0.67)Ba0.33Mn1.05O3-δ

    DEFF Research Database (Denmark)

    Ancona-Torres, Carlos Eugenio; Pryds, Nini; Kuhn, Luise Theil

    2010-01-01

    Polycrystalline samples of (La1-xAx)0.67Ba0.33Mn1.05O3-δ, with A being a mixture of lanthanides containing 66% La, 22% Nd, 8% Pr and 4% Ce, were prepared by the glycine-nitrate method, with target compositions of x = 0, 0.33, 0.67 and 1. The effect of the mixture of lanthanides on the Curie...... temperature, TC, and the magnetocaloric properties was investigated. The prepared samples are single phase, with space group R-3c. The lattice parameters and average A-site ionic radius, rA decrease linearly with x while the size disorder, as characterized by the variance, σ2, increases from 0.014 to 0...

  10. Magnetocaloric effect and transport properties of Gd5Ge2(Si1-x Sn x )2 (x=0.23 and 0.40) compounds

    International Nuclear Information System (INIS)

    Campoy, J.C.P.; Plaza, E.J.R.; Nascimento, F.C.; Coelho, A.A.; Pereira, M.C.; Fabris, J.D.; Raposo, M.T.; Cardoso, L.P.; Persiano, A.I.C.; Gama, S.

    2007-01-01

    We report a study about the structural properties of polycrystalline samples of nominal composition Gd 5 Ge 2 (Si 1- x Sn x ) 2 (x=0.23, 0.40) that closely influence their physical behavior particularly related to electric resistivity and magnetocaloric (MCE) effect. The samples were characterized by X-ray diffraction (XRD) using the Rietveld refinement method, metallographic analyses, 119 Sn Moessbauer spectroscopy, DC magnetization and electrical transport measurements. It was identified a Gd 5 Si 2 Ge 2 -monoclinic phase for x=0.23 and a Sm 5 Sn 4 -orthorhombic phase (type II) for x=0.40, both with two non-equivalent crystallographic sites for the Sn ions. We were able to infer on the role of tin on the magnetic and transport properties in these compounds

  11. Magnetocaloric effect in gadolinium-oxalate framework Gd2(C2O4)3(H2O)6⋅(0⋅6H2O)

    International Nuclear Information System (INIS)

    Sibille, Romain; Didelot, Emilie; Mazet, Thomas; Malaman, Bernard; François, Michel

    2014-01-01

    Magnetic refrigerants incorporating Gd 3+ ions and light organic ligands offer a good balance between isolation of the magnetic centers and their density. We synthesized the framework material Gd 2 (C 2 O 4 ) 3 (H 2 O) 6 ⋅0.6H 2 O by a hydrothermal route and characterized its structure. The honeycomb lattice of Gd 3+ ions interlinked by oxalate ligands in the (a,c) plane ensures their decoupling in terms of magnetic exchange interactions. This is corroborated by magnetic measurements indicating negligible interactions between the Gd 3+ ions in this material. The magnetocaloric effect was evaluated from isothermal magnetization measurements. The maximum entropy change −ΔS M max reaches 75.9 mJ cm −3 K −1 (around 2 K) for a moderate field change (2 T)

  12. Magnetocaloric effect in the La0.8Ce0.2Fe11.4-xCoxSi1.6 compounds

    International Nuclear Information System (INIS)

    Wang, G.F.; Song, L.; Li, F.A.; Ou, Z.Q.; Tegus, O.; Brueck, E.; Buschow, K.H.J.

    2009-01-01

    The effects of substitution of Co for Fe on the magnetic and magnetocaloric properties of La 0.8 Ce 0.2 Fe 11.4-x Co x Si 1.6 (0, 0.2, 0.4, 0.6, 0.8 and 1.0) compounds have been investigated. X-ray diffraction shows that all compounds crystallize in the NaZn 13 -type structure. Magnetic measurements show that the Curie temperature (T C ) can be tuned between 184 and 294 K by changing the Co content from 0 to 1. A field-induced methamagnetic transition occurs in samples with x=0, 0.2 and 0.4. The magnetic entropy changes of the compounds have been determined from the isothermal magnetization measurements by using the Maxwell relation.

  13. Waveguide effect under 'antiguiding' conditions in graded anisotropic media.

    Science.gov (United States)

    Kozlov, A V; Mozhaev, V G; Zyryanova, A V

    2010-02-24

    A new wave confinement effect is predicted in graded crystals with a concave slowness surface under conditions of growth of the phase velocity with decreasing distance from the waveguide axis. This finding overturns the common notion about the guiding and 'antiguiding' profiles of wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of ray analysis and particular exact wave solutions. The exact solution obtained for localized flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted effect. Since this solution is substantially different with respect to the existence conditions from all others yet reported, and it cannot be deduced from the previously known results, the predicted waves can be classified as a new type of waveguide mode in graded anisotropic media. Although the concrete calculations are given in the article for acoustic waves, its general predictions are expected to be valid for waves of various natures, including spin, plasma, and optical waves.

  14. Waveguide effect under 'antiguiding' conditions in graded anisotropic media

    International Nuclear Information System (INIS)

    Kozlov, A V; Mozhaev, V G; Zyryanova, A V

    2010-01-01

    A new wave confinement effect is predicted in graded crystals with a concave slowness surface under conditions of growth of the phase velocity with decreasing distance from the waveguide axis. This finding overturns the common notion about the guiding and 'antiguiding' profiles of wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of ray analysis and particular exact wave solutions. The exact solution obtained for localized flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted effect. Since this solution is substantially different with respect to the existence conditions from all others yet reported, and it cannot be deduced from the previously known results, the predicted waves can be classified as a new type of waveguide mode in graded anisotropic media. Although the concrete calculations are given in the article for acoustic waves, its general predictions are expected to be valid for waves of various natures, including spin, plasma, and optical waves.

  15. Magnetism of a sigma-phase Fe{sub 60}V{sub 40} alloy: Magnetic susceptibilities and magnetocaloric effect studies

    Energy Technology Data Exchange (ETDEWEB)

    Bałanda, Maria [Institute of Nuclear Physics, Polish Academy of Science, PL-31-342 Kraków (Poland); Dubiel, Stanisław M., E-mail: Stanislaw.Dubiel@fis.agh.edu.pl [AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, PL-30-059 Kraków (Poland); Pełka, Robert [Institute of Nuclear Physics, Polish Academy of Science, PL-31-342 Kraków (Poland)

    2017-06-15

    Highlights: • Sigma-phase Fe{sub 60}V{sub 40} alloy was studied by means of AC and DC magnetic susceptibilities. • Re-entrant character of the magnetism has been evidenced. • Curie temperature was found as ∼169 K and the spin-freezing temperature as ∼164 K. • Critical exponents β = 0.6, γ = 1.0 and Δ = 1.6 were determined. • Magnetocaloric effect was investigated. - Abstract: Magnetic properties of a sigma-phase Fe{sub 60}V{sub 40} intermetallic compound were studied by means of ac and dc magnetic susceptibility and magnetocaloric effect measurements. The compound is a soft magnet yet it was found to behave like a re-entrant spin-glass system. The magnetic ordering temperature was found to be T{sub C} ≈ 170 K, while the spin-freezing temperature was ∼164 K. Its relative shift per decade of ac frequency was 0.002, a value smaller than that typical of canonical spin-glasses. Magnetic entropy change, ΔS, in the vicinity of T{sub C} was determined for magnetic field, H, ranging between 5 and 50 kOe. Analysis of ΔS in terms of the power law yielded the critical exponent, n, vs. temperature with the minimum value of 0.75 at T{sub C}, while from the analysis of a relative shift of the maximum value of ΔS with the field a critical exponent Δ = 1.7 was obtained. Based on scaling laws relationships values of other two exponents viz. β = 0.6 and γ = 1 were determined.

  16. Anomalous Skin Effect for Anisotropic Electron Velocity Distribution Function

    International Nuclear Information System (INIS)

    Igor Kaganovich; Edward Startsev; Gennady Shvets

    2004-01-01

    The anomalous skin effect in a plasma with a highly anisotropic electron velocity distribution function (EVDF) is very different from skin effect in a plasma with the isotropic EVDF. An analytical solution was derived for the electric field penetrated into plasma with the EVDF described as a Maxwellian with two temperatures Tx >> Tz, where x is the direction along the plasma boundary and z is the direction perpendicular to the plasma boundary. The skin layer was found to consist of two distinctive regions of width of order nTx/w and nTz/w, where nTx,z/w = (Tx,z/m)1/2 is the thermal electron velocity and w is the incident wave frequency

  17. Quantification of the effect of hysteresis on the adiabatic temperature change in magnetocaloric materials

    DEFF Research Database (Denmark)

    von Moos, Lars; Bahl, Christian R.H.; Nielsen, Kaspar Kirstein

    2014-01-01

    description of the phase transition at varying magnetic fields and temperatures. Using detailed experimental property data, a Preisach type model is used to describe the thermal hysteresis effects and simulate the material under realistic working conditions. We find that the adiabatic temperature change...

  18. Magnetic hysterysis evolution of Ni-Al alloy with Fe and Mn substitution by vacuum arc melting to produce the room temperature magnetocaloric effect material

    Energy Technology Data Exchange (ETDEWEB)

    Notonegoro, Hamdan Akbar [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Mechanical Engineering Dept., FT-Universitas Sultan Ageng Tirtayasa, Cilegon 42435 (Indonesia); Kurniawan, Budhy; Manaf, Azwar, E-mail: azwar@sci.ui.ac.id [PPS Materials Science, FMIPA-Universitas Indonesia, Depok 16424 (Indonesia); Setiawan, Jan [Center for Nuclear Fuel Tecnology-Badan Tenaga Atom Nasional, Tangerang Selatan 15310 (Indonesia)

    2016-06-17

    The development of magnetocaloric effect (MCE) material is done in order to reduce the damage of the ozone layer caused by the chlorofluorocarbons (CFCs) emitted into the air. The research dealing with synthesis of magnetocaloric materials based of Ni-Al Heusler Alloy structure and by varying substitution some atoms of Ni with Fe and Al with Mn on Ni-Al Heusler Alloy structure to become Ni{sub 44}Fe{sub 6}Mn{sub 32}Al{sub 18}. Vacuum Arc Melting (VAM) equipment is used to form the alloys on vacuum condition and by flowing argon gas atmosphere and then followed by annealing process for 72 hours. X-Ray Diffraction (XRD) reveals that crystallite structure of material is observed. We define that Ni{sub 44}Fe{sub 6} as X{sub 2}, Mn{sub 25} as Y, and Al{sub 18}Mn{sub 7} as Z. Based on the XRD result, we observed that the general formula X{sub 2}YZ is not changed. The PERMAGRAF measurement revealed that there exists of magnetic hysterysis. The hysterysis show that the magnetic structures of the system undego evolution from diamagnetic to soft ferromagnetic material which all of the compound have the same crystallite structure. This evolution indicated that the change in the composition has led to changes the magnetic composition. Mn is the major element that gives strong magnetic properties to the sample. When Mn partially replaced position of Al, the sample became dominant to be influenced to improve their magnetic properties. In addition, substitution a part of Ni by Fe in the composition reveals a pinning of the domain walls in the sample.

  19. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  20. Pressure effects in the giant magnetocaloric compounds Gd5(SixGe1-x)4

    International Nuclear Information System (INIS)

    Morellon, L; Arnold, Z; Algarabel, P A; Magen, C; Ibarra, M R; Skorokhod, Y

    2004-01-01

    We report a study of the effect of hydrostatic pressure up to 9 kbar on selected compounds of the Gd 5 (Si x Ge 1-x ) 4 series (x = 0.8, 0.45, 0.1) by means of ac magnetic susceptibility, compressibility, and linear thermal expansion measurements. The pressure-induced increase of the transition temperatures at the second-order boundaries of the phase diagram is rather moderate: dT C /dP ∼ +0.3Kk-bar -1 (x = 0.8) and dT N /P ∼+0.7Kkbar -1 (x = 0.1). This effect is stronger in the 0 C /dP ∼ +3 Kk-bar -1 (x = 0.45,0.1), indicating that the ferromagnetic ordering can be simultaneously driven through a pressure-induced structural transformation. The values of d lnT C /d lnV calculated with the use of the measured value of compressibility (k ∼1.8 M-bar -1 ) are significantly lower than those estimated from the concentration dependence of the lattice cell volume, thus demonstrating that the dependence of the transition temperatures upon changing the Si/Ge ratio across the series cannot be explained by a pure volume effect

  1. Enhanced magnetocaloric effect tuning efficiency in Ni-Mn-Sn alloy ribbons

    Science.gov (United States)

    Quintana-Nedelcos, A.; Sánchez Llamazares, J. L.; Daniel-Perez, G.

    2017-11-01

    The present work was undertaken to investigate the effect of microstructure on the magnetic entropy change of Ni50Mn37Sn13 ribbon alloys. Unchanged sample composition and cell parameter of austenite allowed us to study strictly the correlation between the average grain size and the total magnetic field induced entropy change (ΔST). We found that a size-dependent martensitic transformation tuning results in a wide temperature range tailoring (>40 K) of the magnetic entropy change with a reasonably small variation on the peak value of the total field induced entropy change. The peak values varied from 6.0 J kg-1 K-1 to 7.7 J kg-1 K-1 for applied fields up to 2 T. Different tuning efficiencies obtained by diverse MCE tailoring approaches are compared to highlight the advantages of the herein proposed mechanism.

  2. Anisotropic effects of terahertz emission from laser sparks in air

    International Nuclear Information System (INIS)

    Zharova, N. A.; Mironov, V. A.; Fadeev, D. A.

    2010-01-01

    Strong terahertz (THz) radiation can be generated by intense femtosecond laser pulses propagating in air. The excitation of transient current induced in the wake just behind the laser pulse is studied in detail using numerical simulations on the basis of Maxwell's equations for THz-band fields and hydrodynamic model for the plasma motion. It is shown that the thermal effects, anisotropic in character in the case of linear polarized laser field, can explain observed quadrupole-type THz radiation pattern in the experiment performed by Akhmedzhanov et al. [Radiophys. Quantum Electron. 52, 482 (2009)]. Taking into account the transverse structure of the plasma filament, our numerical code enables us to calculate the spatial distribution and temporal evolution of terahertz electron current, its spectrum, and angular emission pattern. It is shown that an expansion of full fields in terms of azimuthal modes is a useful tool for research of THz generation in many situations of practical interest.

  3. Numerical analysis of anisotropic diffusion effect on ICF hydrodynamic instabilities

    Directory of Open Access Journals (Sweden)

    Olazabal-Loumé M.

    2013-11-01

    Full Text Available The effect of anisotropic diffusion on hydrodynamic instabilities in the context of Inertial Confinement Fusion (ICF flows is numerically assessed. This anisotropy occurs in indirect-drive when laminated ablators are used to modify the lateral transport [1,2]. In direct-drive, non-local transport mechanisms and magnetic fields may modify the lateral conduction [3]. In this work, numerical simulations obtained with the code PERLE [4], dedicated to linear stability analysis, are compared with previous theoretical results [5]. In these approaches, the diffusion anisotropy can be controlled by a characteristic coefficient which enables a comprehensive study. This work provides new results on the ablative Rayleigh-Taylor (RT, ablative Richtmyer-Meshkov (RM and Darrieus-Landau (DL instabilities.

  4. Effect of orbital symmetry on the anisotropic superexchange interaction

    International Nuclear Information System (INIS)

    Kim, Beom Hyun; Min, B I

    2011-01-01

    Employing the microscopic superexchange model incorporating the effect of spin-orbit interaction, we have investigated the Dzyaloshinsky-Moriya (DM) interaction in perovskite transition-metal (TM) oxides and explored the interplay between the DM interaction and the TM-3d orbital symmetry. For d 3 and d 5 systems with isotropic orbital symmetry, the DM vectors are well described by a simple symmetry analysis considering only the bond geometry. In contrast, the DM interaction for d 4 systems with anisotropic orbital symmetry shows slightly different behavior, which does not obey simple symmetry analysis. The direction as well as the strength of the DM vector varies depending on the occupied orbital shape. We have understood this behavior based on the orbital symmetry induced by local crystal field variation.

  5. Anisotropic hydrodynamics, holography and the chiral magnetic effect

    Energy Technology Data Exchange (ETDEWEB)

    Gahramanov, Ilmar; Kalaydzhyan, Tigran; Kirsch, Ingo [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Hamburg Univ. (Germany). Zentrum fuer Mathematische Physik

    2012-03-15

    We discuss a possible dependence of the chiral magnetic effect (CME) on the elliptic flow coefficient {upsilon}{sub 2}. We first study this in a hydrodynamic model for a static anisotropic plasma with multiple anomalous U(1) currents. In the case of two charges, one axial and one vector, the CME formally appears as a first-order transport coefficient in the vector current. We compute this transport coefficient and show its dependence on {upsilon}{sub 2}. We also determine the CME-coefficient from first-order corrections to the dual AdS background using the fluid-gravity duality. For small anisotropies, we find numerical agreement with the hydrodynamic result. (orig.)

  6. An effective one-dimensional anisotropic fingerprint enhancement algorithm

    Science.gov (United States)

    Ye, Zhendong; Xie, Mei

    2012-01-01

    Fingerprint identification is one of the most important biometric technologies. The performance of the minutiae extraction and the speed of the fingerprint verification system rely heavily on the quality of the input fingerprint images, so the enhancement of the low fingerprint is a critical and difficult step in a fingerprint verification system. In this paper we proposed an effective algorithm for fingerprint enhancement. Firstly we use normalization algorithm to reduce the variations in gray level values along ridges and valleys. Then we utilize the structure tensor approach to estimate each pixel of the fingerprint orientations. At last we propose a novel algorithm which combines the advantages of onedimensional Gabor filtering method and anisotropic method to enhance the fingerprint in recoverable region. The proposed algorithm has been evaluated on the database of Fingerprint Verification Competition 2004, and the results show that our algorithm performs within less time.

  7. Strain dependent magnetocaloric effect in La0.67Sr0.33MnO3 thin-films

    Directory of Open Access Journals (Sweden)

    V. Suresh Kumar

    2013-05-01

    Full Text Available The strain dependent magnetocaloric properties of La0.67Sr0.33MnO3 thin films deposited on three different substrates (001 LaAlO3 (LAO, (001 SrTiO3 (STO, and (001 La0.3Sr0.7Al0.65Ta0.35O9 (LSAT have been investigated under low magnetic fields and around magnetic phase transition temperatures. Compared to bulk samples, we observe a remarkable decrease in the ferromagnetic transition temperature that is close to room temperature, closely matched isothermal magnetic entropy change and relative cooling power values in tensile strained La0.67Sr0.33MnO3 films. The epitaxial strain plays a significant role in tuning the peak position of isothermal magnetic entropy change towards room temperature with improved cooling capacity.

  8. Anisotropic intrinsic spin Hall effect in quantum wires

    International Nuclear Information System (INIS)

    Cummings, A W; Akis, R; Ferry, D K

    2011-01-01

    We use numerical simulations to investigate the spin Hall effect in quantum wires in the presence of both Rashba and Dresselhaus spin-orbit coupling. We find that the intrinsic spin Hall effect is highly anisotropic with respect to the orientation of the wire, and that the nature of this anisotropy depends strongly on the electron density and the relative strengths of the Rashba and Dresselhaus spin-orbit couplings. In particular, at low densities, when only one subband of the quantum wire is occupied, the spin Hall effect is strongest for electron momentum along the [1-bar 10] axis, which is the opposite of what is expected for the purely 2D case. In addition, when more than one subband is occupied, the strength and anisotropy of the spin Hall effect can vary greatly over relatively small changes in electron density, which makes it difficult to predict which wire orientation will maximize the strength of the spin Hall effect. These results help to illuminate the role of quantum confinement in spin-orbit-coupled systems, and can serve as a guide for future experimental work on the use of quantum wires for spin-Hall-based spintronic applications. (paper)

  9. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali; Ma, X.; Waheed, Umair bin; Zuberi, Mohammad

    2013-01-01

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented

  10. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  11. Effective Ohm's law for magnetized plasmas with anisotropic inhomogeneities

    International Nuclear Information System (INIS)

    Shamma, S.E.; Martinez-Sanchez, M.; Louis, J.F.

    1978-01-01

    Reduction formulae for the effective, or macroscopic, Ohm's law parameters are derived for inhomogeneous plasmas with anisotropic conductivity fluctuations having two general types of geometry: (a) elongated or shortened in the direction of the magnetic field and (b) two-dimensional, with the direction of constant properties lying in the plane perpendicular to the magnetic field. In each case, two approaches are used: (a) a small perturbation method and (b) an approximate method where each region in the plasma is considered separately, and consistency conditions are used to relate the results corresponding to each separate region to the effective properties of the whole plasma. Both methods are found to agree well when the fluctuations are weak, but differences appear at high fluctuation levels and, for nonuniformities very elongated along B, when the Hall parameter β is high. Comparison with available exact solutions valid at high β and strong fluctuation levels indicates that the self-consistency method gives accurate results even in these cases. The results of these analyses are used to evaluate the performance reduction in magnetohydrodynamic channels with plasma nonuniformities of several geometries, including axial streamers, perfectly isotropic fluctuations, and fluctuations elongated along B; the power density is reduced most strongly when β and the rms of the fluctuations are high, and also when the inhomogeneities are stretched along the magnetic field

  12. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  13. Table-like magnetocaloric effect of Fe{sub 88−x}Nd{sub x}Cr{sub 8}B{sub 4} composite materials

    Energy Technology Data Exchange (ETDEWEB)

    Lai, J.W.; Zheng, Z.G.; Zhong, X.C. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Franco, V. [Departamento Física de la Materia Condensada, ICMSE-CSIC, Universidad de Sevilla, P.O. Box 1065, 41080 Sevilla (Spain); Montemayor, R.; Liu, Z.W. [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China); Zeng, D.C., E-mail: medczeng@scut.edu.cn [School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640 (China)

    2015-09-15

    The narrow working temperature range due to the sharp magnetic entropy change |ΔS{sub M}| peak and large thermal or magnetic hysteresis restricts the practical application of magnetocaloric materials. In this work, the table-like magnetocaloric effect (MCE) was obtained in the multilayer composite of Fe{sub 88−x}Nd{sub x}Cr{sub 8}B{sub 4} alloys with various Nd substitutions for Fe (x=5, 8, 10, 12, and 15), which were prepared by arc-melting followed by melt-spinning. The substation of Nd was found to enhance the glass-forming ability. For the alloys with Nd substitution from 5 at% to 15 at%, the Curie temperature (T{sub C}) ranged from 322 K to 350 K and the peak value of |ΔS{sub M}| remained almost constant, 3.4–3.5 J/(kg K) under an applied field of 0–5 T. The composite with various Nd contents was prepared by stocking the ribbons layer by layer. The |ΔS{sub M}| of the composite approached a nearly constant value of ∼3.2 J/(kg K) in a field change of 0–5 T in a wide temperature span over 40 K, resulting in large refrigerant capacity value of >408 J/kg. This |ΔS{sub M}| value was much larger than the previous reported Fe-based amorphous composite Fe{sub 78−x}Ce{sub x}Si{sub 4}Nb{sub 5}B{sub 12}Cu{sub 1}. This composite can be used as the working material in the Ericsson-cycle magnetic regenerative refrigerator around room temperature. - Highlights: • The T{sub C} ranges from 322 K to 350 K when increasing Nd substitution from 5 to 15 at%. • |ΔS{sub M}| remains relatively constant, about 3.4–3.5 J/(kg K) under H=0–5 T. • RC decreases from 93 to 78 J/kg in a field change of 1.5 T when Nd increasing. • Table-like MCE ,|ΔS{sub M}| ~3.2J/kg K under 0–5 T, appeared in the composite. • A wide working temperature range (40 K) and enhanced RC (>408J/kg) were obtained in the composite.

  14. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  15. Theoretical investigations on magnetocaloric effect in Er{sub 1−y}Tb{sub y}Al{sub 2} series

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, P.O., E-mail: paula.ribeiro@gmail.com [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Alho, B.P.; Alvarenga, T.S.T.; Nóbrega, E.P.; Sousa, V.S.R. de [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil); Carvalho, A. Magnus G. [Laboratório Nacional de Luz Síncrotron, CNPEM, 13083-970 Campinas, SP (Brazil); Caldas, A. [Sociedade Unificada de Ensino Superior e Cultura, SUESC, 20211-351 Rio de Janeiro, RJ (Brazil); Oliveira, N.A. de; Ranke, P.J. von [Instituto de Física, Universidade do Estado do Rio de Janeiro – UERJ, Rua São Francisco Xavier, 524, 20550-013 RJ (Brazil)

    2015-04-01

    We report on the magnetic and magnetocaloric effect calculations in rare earth Er{sub 1−y}Tb{sub y}Al{sub 2} compounds (y=0.00, 0.25, 0.5, 0.75 and 1.00). Our model Hamiltonian has contributions of the crystalline electrical field anisotropy in both Er and Tb magnetic sublattices, disorder in exchange interactions among Er–Er, Tb–Tb and Er–Tb magnetic ions and the Zeeman effect. The magnetization, the isothermal entropy change (ΔS{sub T}) and the adiabatic temperature change (ΔT{sub ad}) dependence on temperature were simulated and, compared with the experimental data available. - Highlights: • Modeling Er{sub (1−y)}Tb{sub y}Al{sub 2} intermetallic compounds. • Magnetic entropy changes in Er{sub (1−y)}Tb{sub y}Al{sub 2}. • Adiabatic temperature changes in Er{sub 0.75}Tb{sub 0.25}Al{sub 2} and Er{sub 0.65}Tb{sub 0.35}Al{sub 2} compounds.

  16. Adiabatic physics of an exchange-coupled spin-dimer system: Magnetocaloric effect, zero-point fluctuations, and possible two-dimensional universal behavior

    International Nuclear Information System (INIS)

    Brambleby, J.; Goddard, P. A.; Singleton, John; Jaime, Marcelo; Lancaster, T.

    2017-01-01

    We present the magnetic and thermal properties of the bosonic-superfluid phase in a spin-dimer network using both quasistatic and rapidly changing pulsed magnetic fields. The entropy derived from a heat-capacity study reveals that the pulsed-field measurements are strongly adiabatic in nature and are responsible for the onset of a significant magnetocaloric effect (MCE). In contrast to previous predictions we show that the MCE is not just confined to the critical regions, but occurs for all fields greater than zero at sufficiently low temperatures. We explain the MCE using a model of the thermal occupation of exchange-coupled dimer spin states and highlight that failure to take this effect into account inevitably leads to incorrect interpretations of experimental results. In addition, the heat capacity in our material is suggestive of an extraordinary contribution from zero-point fluctuations and appears to indicate universal behavior with different critical exponents at the two field-induced critical points. Finally, the data at the upper critical point, combined with the layered structure of the system, are consistent with a two-dimensional nature of spin excitations in the system.

  17. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  18. A study of the phase transition and magnetocaloric effect in multiferroic La{sub 2}MnNiO{sub 6} single crystals

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: mohamed.balli@usherbrooke.ca; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, Quebec J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, Quebec J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario M5G 1Z8 (Canada); Gospodinov, M. M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2014-05-07

    Magnetic and magnetocaloric properties of single crystal double perovskite La{sub 2}MnNiO{sub 6} have been investigated in details. Its ordered phase with a high Curie temperature (T{sub C} = 280 K) exhibits a significant refrigerant capacity around room temperature. A model based on the mean field theory approximation has been used in order to quantify the magnetic and magnetocaloric properties in the ordered La{sub 2}MnNiO{sub 6}. The magnetization and entropy changes were satisfactorily simulated as a function of temperature and magnetic field. On the other hand, the presence of cationic disorder in La{sub 2}MnNiO{sub 6} phases allows to shift the Curie point to low temperature without a significant change in the magnetocaloric performance.

  19. A comparative study of critical phenomena and magnetocaloric properties of ferromagnetic ternary alloys

    Science.gov (United States)

    Yüksel, Yusuf; Akinci, Ümit

    2018-01-01

    Magnetic and magnetocaloric properties, as well as the phase diagrams of a ferromagnetic ternary alloy system have been studied. A detailed comparison of two different methods, namely the effective field theory (EFT), and Monte Carlo (MC) simulations has been provided. Our numerical data show that the general qualitative picture presented by two methods are in a good agreement with each other. In terms of the magnetocaloric properties, our results yield that it is possible to design magnetic materials with a variety of working temperatures and magnetocaloric properties (such as large ΔSM and q values) by manipulating the magnetic phase transition via tuning the compositional factor (i.e. the mixing ratio of sublattice ions). The observed magnetocaloric effect has been found to be a direct one with ΔSM < 0 associated with a second order phase transition.

  20. Fluid-like elasticity induced by anisotropic effective mass density

    DEFF Research Database (Denmark)

    Ma, Guancong; Fu, Caixing; Wang, Guanghao

    We present a three-dimensional anisotropic elastic metamaterial, which can generate dipolar resonances. Repeating these subwavelength units can lead to one-dimensional arrays, which are essentially elastic rods that can withstand both longitudinal, and flexural vibrations. Band structure analysis...

  1. Effect of anisotropic plasticity on mixed mode interface crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge...

  2. Minimal Sampling for Effective Acquisition of Anisotropic BRDFs

    Czech Academy of Sciences Publication Activity Database

    Vávra, Radomír; Filip, Jiří

    2016-01-01

    Roč. 35, č. 7 (2016), s. 299-309 ISSN 0167-7055 R&D Projects: GA ČR(CZ) GA14-02652S Institutional support: RVO:67985556 Keywords : BRDF * anisotropic * measurement Subject RIV: BD - Theory of Information Impact factor: 1.611, year: 2016 http://library.utia.cas.cz/separaty/2016/RO/vavra-0463872.pdf

  3. Phase formation kinetics, hardness and magnetocaloric effect of sub-rapidly solidified LaFe11.6Si1.4 plates during isothermal annealing

    Science.gov (United States)

    Dai, Yuting; Xu, Zhishuai; Luo, Zhiping; Han, Ke; Zhai, Qijie; Zheng, Hongxing

    2018-05-01

    High-temperature phase transition behavior and intrinsic brittleness of NaZn13-type τ1 phase in La-Fe-Si magnetocaloric materials are two key problems from the viewpoint of materials production and practical applications. In the present work, the Johnson-Mehl-Avrami-Kolmogorov (JMAK) equation was introduced to quantitatively characterize the formation kinetics of τ1 phase in sub-rapidly solidified LaFe11.6Si1.4 plates during the isothermal annealing process. Avrami index was estimated to be 0.43 (∼0.5), which suggests that the formation of τ1 phase is in a diffusion-controlled one-dimensional growth mode. Meanwhile, it is found that the Vickers hardness as a function of annealing time for sub-rapidly solidified plates also agrees well with the JMAK equation. The Vickers hardness of τ1 phase was estimated to be about 754. Under a magnetic field change of 30 kOe, the maximum magnetic entropy change was about 22.31 J/(kg·K) for plates annealed at 1323 K for 48 h, and the effective magnetic refrigeration capacity reached 191 J/kg.

  4. Table-like magnetocaloric effect in Gd{sub 56}Ni{sub 15}Al{sub 27}Zr{sub 2} alloy and its field independence feature

    Energy Technology Data Exchange (ETDEWEB)

    Agurgo Balfour, E.; Ma, Z.; Fu, H., E-mail: fuhao@uestc.edu.cn, E-mail: rockingsandstorm@163.com; Wang, L.; Luo, Y. [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Hadimani, R. L.; Jiles, D. C. [Department of Electrical and Computer Engineering, Iowa State University, Ames, Iowa 50011 (United States); Ames Laboratory, U.S. Department of Energy, Ames, Iowa 50011 (United States); Wang, S. F., E-mail: fuhao@uestc.edu.cn, E-mail: rockingsandstorm@163.com [North Electronic Device Research Institute, Beijing 100141 (China)

    2015-09-28

    In order to obtain “table-like” magnetocaloric effect (MCE), multiple-phase Gd{sub 56}Ni{sub 15}Al{sub 27}Zr{sub 2} alloy was prepared by arc-melting followed by suck-casting method. Powder x-ray diffraction and calorimetric measurements reveal that the sample contains both glassy and crystalline phases. The fraction of the glassy phase is about 62%, estimated from the heat enthalpy of the crystallization. The crystalline phases, Gd{sub 2}Al and GdNiAl further broadened the relatively wider magnetic entropy change (−ΔS{sub M}) peak of the amorphous phase, which resulted in the table-like MCE over a maximum temperature range of 52.5 K to 77.5 K. The plateau feature of the MCE was found to be nearly independent of the applied magnetic field from 3 T to 5 T. The maximum −ΔS{sub M} value of the MCE platforms is 6.0 J/kg K under applied magnetic field change of 5 T. Below 3 T, the field independence of the table-like feature disappears. The relatively large constant values of −ΔS{sub M} for the respective applied magnetic fields have promising applications in magnetic refrigeration using regenerative Ericsson cycle.

  5. Magneto-thermal conduction and magneto-caloric effect in poly and nano crystalline forms of multiferroic GdCrO3

    International Nuclear Information System (INIS)

    Uma, S; Philip, J

    2014-01-01

    Gadolinium chromite, GdCrO 3 , belongs to the family of rare earth chromites, exhibiting multiferroism with coupling between electric polarization and magnetic ordering. It is understood that the interaction between Gd 3+ and Cr 3+ ions is responsible for switchable polarization in this system. Below Néel temperature the spins of Cr 3+ ions interact in anti-parallel through super exchange mechanism, giving rise to antiferromagnetic ordering at around 169 K in poly and nanocrystalline phases of this material. In order to understand the nature of spin–lattice coupling and magnon–phonon interaction in the intermediate temperature range (150–250 K), the magneto-thermal conduction and magneto-caloric effect in poly and nanocrystalline forms of this material are reported. These properties show anomalies around 169 K, which is described as due to spin–phonon coupling. When particle sizes are reduced to nanometer scales, thermal conductivity decreases significantly while specific heat capacity increases. The former is explained as due to reduction in phonon mean free path and phonon scattering from nanoparticle interfaces, while the latter is ascribed to contributions from Einstein oscillators at weakly bound atoms at the interfaces of nanocrystals. (paper)

  6. Room temperature inverse magnetocaloric effect in Pd substituted Ni{sub 50}Mn{sub 37}Sn{sub 13} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Ritwik, E-mail: ritwik.saha@tifr.res.in; Nigam, A.K.

    2014-09-01

    The structural, magnetic and magnetocaloric effects for Ni{sub 50−x}Pd{sub x}Mn{sub 37}Sn{sub 13} Heusler alloys have been investigated around both structural and magnetic transitions. The room temperature X-ray diffraction indicates 10 M modulated martensitic structure with an orthorhombic unit cell for x=0 and 1. However, the superstructure reflections for x=2 alloy imply that the pattern is related to the L2{sub 1} phase. The maximum entropy change occurring at the martensitic transition is found to be 21 J kg{sup −1} K{sup −1} for Ni{sub 50}Mn{sub 37}Sn{sub 13} alloy around room temperature. Despite the smaller change in entropy around room temperature, 3.8 times larger value of refrigerant capacity (184.6 J/kg) is achieved for 2% substitution of Pd, due to occurrence of magnetic entropy change in a broader temperature region.

  7. Reversible and irreversible magnetocaloric effect in the NdBa{sub 2}Cu{sub 3}O{sub 7} superconductor in relation to specific heat and magnetization

    Energy Technology Data Exchange (ETDEWEB)

    Plackowski, T [Departement de Physique de la Matiere Condensee, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Institute of Low Temperature and Structure Research, ulica Okolna 2, 50-422 Wroclaw (Poland); Wang, Y [Departement de Physique de la Matiere Condensee, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Lortz, R [Departement de Physique de la Matiere Condensee, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Junod, A [Departement de Physique de la Matiere Condensee, Universite de Geneve, CH-1211 Geneva 4 (Switzerland); Wolf, Th [Forschungszentrum Karlsruhe, Institut fuer Technische Physik, Postfach 3640, D-76021Karlsruhe (Germany)

    2005-11-02

    A recently developed technique for measuring the isothermal magnetocaloric coefficient (M{sub T}) is applied to the study of a superconducting NdBa{sub 2}Cu{sub 3}O{sub 7} single crystal. Results are compared with magnetization (M) and specific heat (C). In the reversible region both C and M{sub T} follow the scaling law of the 3D-xy universality class. The anomalies connected with flux-line lattice melting are visible on M{sub T}(B) curves as peaks and steps, similar to C(T) curves yet with much smaller background. At lower temperature, in the irreversible region the M{sub T}(B) behaviour resembles more that of M(B), exhibiting the 'fishtail' effect. Our results confirm that the peculiarities of the phase diagram known from the high-temperature superconductor YBa{sub 2}Cu{sub 3}O{sub 7}, e.g. vortex melting, dominance of critical fluctuations and absence of a B{sub c2} critical field line, are a common property of RE-123 systems.

  8. Effects of the partial substitution of Ni by Cr on the transport, magnetic, and magnetocaloric properties of Ni50Mn37In13

    Directory of Open Access Journals (Sweden)

    Sudip Pandey

    2017-05-01

    Full Text Available The structural, magnetic, and magnetotransport properties of Ni50-xCrxMn37In13 Heusler alloys have been synthesized and investigated by x-ray diffraction (XRD, field and pressure dependent magnetization, and electrical resistivity measurements. The partial substitution of Ni by Cr in Ni50Mn37In13 significantly improves the magnetocaloric effect in the vicinity of the martensitic transition (TM. This system also shows a large negative entropy change at the Curie temperature (TC, making it a candidate material for application in a refrigeration cycle that exploits both positive and negative magnetic entropy changes. The refrigeration capacity (RC values at TM and TC increase significantly by more than 20 % with Cr substitution. The application of hydrostatic pressure increases the temperature stability of the martensitic phase in Ni45Cr5Mn37In13. The influence of Cr substitution on the transport properties of Ni48Cr2Mn37In13 is discussed. An asymmetric magnetoresistance, i.e., a spin-valve-like behavior, has been observed near TM for Ni48Cr2Mn37In13.

  9. Enhancement of magnetocaloric effect by external hydrostatic pressure in MnNi0.75Fe0.25Ge alloy

    Science.gov (United States)

    Mandal, K.; Dutta, P.; Dasgupta, P.; Pramanick, S.; Chatterjee, S.

    2018-06-01

    A systematic investigation on the structural and magnetic properties of an Fe-doped MnNiGe alloy with nominal composition MnNi0.75Fe0.25Ge has been performed. Temperature dependent x-ray diffraction studies indicate a clear structural phase transition (martensitic type) from the high temperature hexagonal austenite phase (space group P63/mmc) to the low temperature orthorhombic martensite phase (space group Pnma). Interestingly, about 1.4% of the high temperature hexagonal phase has been observed at 15 K, which is well below the martensitic phase transition (MPT) temperature. The studied alloy is found to be ferromagnetic in nature at the lowest temperature of measurement and the saturation moment increases in the presence of external hydrostatic pressure (P). In addition, it shows a significantly large conventional (negative) magnetocaloric effect with an adiabatic entropy change () of about ‑16.2 J kg‑1 K‑1 around the MPT for a magnetic field changing from 0  →  5 T. The most interesting observation is the  ∼40.1% increase in the peak value of on application of 6 kbar of external P. A considerable increment in the refrigeration capacity has also been noted with the applied P.

  10. Microstructure and magnetocaloric effect in cast LaFe11.5Si1.5Bx (x=0.5, 1.0)

    International Nuclear Information System (INIS)

    Zhang, H.; Long, Y.; Cao, Q.; Mudryk, Ya.; Zou, M.; Gschneidner, K.A.; Pecharsky, V.K.

    2010-01-01

    Phase formation, structure, and the magnetocaloric effect (MCE) in as-cast LaFe 11.5 Si 1.5 B x (x=0.5, 1.0) compounds have been studied. The Curie temperatures, T C , are ∼211 and 230 K for x=0.5 and 1.0, respectively, which are higher than that of annealed LaFe 11.5 Si 1.5 (T C =183 K), while the maximum magnetic entropy changes at the respective T C under a magnetic field change of 0-5 T are 7.8 and 5.8 J/(kg K). Wavelength dispersive spectrometry (WDS) analysis shows that only a small fraction of boron atoms is dissolved in the NaZn 13 -type structure phase, and that the compositions of the as-cast LaFe 11.5 Si 1.5 B x (x=0.5, 1.0) alloys are much different from the intended nominal compositions. These as-cast alloys exhibit second-order magnetic phase transitions and low MCEs. However, based on the relative cooling power, the as-cast LaFe 11.5 Si 1.5 B x alloys are promising candidates for magnetic refrigerants over a wide temperature range.

  11. Coupled magnetostructural transition in Ni-Mn-V-Ga Heusler alloys and its effect on the magnetocaloric and transport properties

    International Nuclear Information System (INIS)

    Devarajan, U; Kannan, M; Thiyagarajan, R; Arumugam, S; Manivel Raja, M; Rama Rao, N V; Singh, Sanjay; Venkateshwarlu, D; Ganesan, V; Ohashi, M

    2016-01-01

    In the present work, the magnetocaloric and transport properties of Ni 2.2 Mn 0.72−x V x Ga 1.08 (x  =  0.0, 0.04, 0.08, 0.12) magnetic shape memory alloys are investigated. The alloys show a coupled magnetostructural transition from paramagnetic austenite to ferromagnetic martensite in a composition range of 0  ⩽  x  ⩽  0.08. For higher V substitution (x  =  0.12), the martensite transition is lower than the conventional ferromagnetic transition. Large magnetic entropy change values of about 12.4, 16.2 and 19 J kg −1 K −1 and corresponding refrigeration capacities of 60.6, 82.5, and 103 J kg −1 were observed for x  =  0, 0.04 and 0.08 alloys, respectively. The above two parameters linearly increase with increasing magnetic field. The indirect adiabatic temperature change calculated from the heat capacity measurement is found to be at its maximum for x  =  0.12 at H  =  8 T. The magnetoresistance is observed to increase from 0% (x  =  0.12) to 28% (x  =  0) at the maximum field of 8 T. The Sommerfeld coefficients are almost the same for the parent and a V-doped sample, which reveals a low free electron density, and the Debye coefficients decrease with an increase in V doping, confirming the phenomenon of electron–phonon scattering. The critical exponents at second order magnetic transition for x  = 0.12 are calculated as β  =  0.482, γ  =  1.056, δ  =  3.021, which agrees closely with mean field theory. (paper)

  12. Magnetocaloric effects in Mn1.35Fe0.65P1−xSix compounds

    International Nuclear Information System (INIS)

    Geng Yao-Xiang; Tegus O; Bi Li-Ge

    2012-01-01

    The structural and magnetocaloric properties of Mn 1.35 Fe 0.65 P 1−x Si x compounds are investigated. The Si-substituted compounds, Mn 1.35 Fe 0.65 P 1−x Si x with x = 0.52, 0.54, 0.55, 0.56, and 0.57, are prepared by high-energy ball milling and the solid-state reaction. The X-ray diffraction shows that the compounds crystallize into the Fe 2 P-type hexagonal structure with space group P6-bar2m. The magnetic measurements show that the Curie temperature of the compound increases from 253 K for x = 0.52 to 296 K for x = 0.56. The isothermal magnetic-entropy change of the Mn 1.35 Fe 0.65 P 1−x Si x compound decreases with the Si content increasing. The maximal value of the magnetic-entropy change is about 7.0 J/kg·K in the Mn 1.35 Fe 0.65 P 0.48 Si 0.52 compound with a field change of 1.5 T. The compound quenched in water possesses a larger magnetic entropy change and a smaller thermal hysteresis than the non-quenched samples. The thermal hysteresis of the compound is less than 3.5 K. The maximum adiabatic temperature change is about 1.4 K in the Mn 1.35 Fe 0.65 P 0.45 Si 0.55 compound with a field change of 1.48 T. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  13. Improvement of magnetocaloric properties of Gd-Ge-Si alloys by alloying with iron

    Directory of Open Access Journals (Sweden)

    Erenc-Sędziak T.

    2013-01-01

    Full Text Available The influence of annealing of Gd5Ge2Si2Fex alloys at 1200°C and of alloying with various amount of iron on structure as well as thermal and magnetocaloric properties is investigated. It was found that annealing for 1 to 10 hours improves the entropy change, but reduces the temperature of maximum magnetocaloric effect by up to 50 K. Prolonged annealing of the Gd5Ge2Si2 alloy results in the decrease of entropy change due to the reduction of Gd5Ge2Si2 phase content. Addition of iron to the ternary alloy enhances the magnetocaloric effect, if x = 0.4 – 0.6, especially if alloying is combined with annealing at 1200°C: the peak value of the isothermal entropy change from 0 to 2 T increases from 3.5 to 11 J/kgK. Simultaneously, the temperature of maximum magnetocaloric effect drops to 250 K. The changes in magnetocaloric properties are related to the change in phase transformation from the second order for arc molten ternary alloy to first order in the case of annealed and/or alloyed with iron. The results of this study indicate that the minor addition of iron and heat treatment to Gd-Ge-Si alloys may be useful in improving the materials’ magnetocaloric properties..

  14. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  15. Influence of manganite powder grain size and Ag-particle coating on the magnetocaloric effect and the active magnetic regenerator performance

    DEFF Research Database (Denmark)

    Turcaud, J.A.; Neves Bez, Henrique; Ruiz-Trejo, E.

    2015-01-01

    The magnetocaloric performance of La0.67Ca0.27Sr0.06Mn1.05O3 is investigated as a function of the powder grain size and also as a function of decoration of grains with highly conductive silver particulates as a coating layer. We demonstrate that the thermal and electrical conductivities can be si...

  16. The effects of small metal additions (Co, Cu, Ga, Mn, Al, Bi, Sn) on the magnetocaloric properties of the Gd5Ge2Si2 alloy

    Czech Academy of Sciences Publication Activity Database

    Shull, R. D.; Provenzano, V.; Shapiro, A. J.; Fu, A.; Lufaso, M. W.; Karapetrova, J.; Kletetschka, Günther; Mikula, V.

    2006-01-01

    Roč. 99, č. 8 (2006), s. 8-8 ISSN 0021-8979 Institutional research plan: CEZ:AV0Z30130516 Keywords : magnetocaloric * (Co, Cu, Ga, Mn, Al, Bi, Sn) additions * Cryogenic properties Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.316, year: 2006

  17. Effect of Fe substitution on the structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Y.W.; Yan, J.L., E-mail: yjl@gxu.edu.cn; Feng, E.L.; Tang, G.W.; Zhou, K.W.

    2017-01-15

    The structure and magnetocaloric effect of Mn{sub 5−x}Fe{sub x}GeSi{sub 2} compounds were studied. Analysis of X-ray powder diffraction and energy dispersive X-Ray spectroscopy revealed that Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the Mn{sub 5}Si{sub 3}-type structure (space group P6{sub 3}/mcm), maintaining the structure of Mn{sub 5}Ge{sub 3}; and alloys with x=1.5 and 2 consist of the major Mn{sub 5}Si{sub 3}-type phase and the minor Ni{sub 2}In-type phase (space group P6{sub 3}/mmc). The results of Rietveld refinement showed that the cell parameters for the Mn{sub 5}Si{sub 3}-type phase decrease with increasing Fe content. The positive slopes in Arrott plots indicate that a second-order ferromagnetic to paramagnetic transition occurs. The Curie temperature increases with increasing Fe content from 182 K for x=0.6 to 224 K for x=2. The maximum magnetic entropy change of 3.7 J/(kg K) for x=0.8 was found under a magnetic field change of 0–20 kOe. - Highlights: • Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys with x<1 crystallize in the hexagonal Mn{sub 5}Si{sub 3}-type structure. Alloys with x=1.5 and 2 consist of a major Mn{sub 5}Si{sub 3}-type phase and a secondary Ni{sub 2}In-type phase. • The cell parameters decrease and the Curie temperature increases with increasing x in Mn{sub 5−x}Fe{sub x}GeSi{sub 2} alloys. • The maximum -∆S{sub M} of 3.7 J/(kg K) and RCP of 211 J/kg for x=0.8 was found under a magnetic field change of 0–20 kOe.

  18. Experimental study of the anisotropic magneto-Seebeck effect in (Ga,Mn)As thin films

    Energy Technology Data Exchange (ETDEWEB)

    Althammer, Matthias; Krupp, Alexander T.; Brenninger, Thomas; Venkateshvaran, Deepak; Opel, Matthias; Gross, Rudolf; Goennenwein, Sebastian T.B. [Walther-Meissner-Institut, Bayerische Akademie der Wissenschaften, Garching (Germany); Dreher, Lukas [Walter Schottky Institut, Technische Universitaet Muenchen, Garching (Germany); Schoch, Wladimir; Limmer, Wolfgang [Abteilung Halbleiterphysik, Universitaet Ulm, Ulm (Germany)

    2011-07-01

    In analogy to anisotropic magnetoresistance (AMR), the thermopower of ferromagnetic materials also characteristically depends on the orientation of the magnetization vector. This anisotropic magneto-thermopower - or anisotropic magneto-Seebeck effect (AMS) - has only scarcely been studied to date. Taking the ferromagnetic semiconductor (Ga,Mn)As with its large magneto-resistive effects as a prototype example, we have measured the evolution of both the AMR and the AMS effects at liquid He temperatures as a function of the orientation of a magnetic field applied in the (Ga,Mn)As film plane, for different, fixed magnetic field magnitudes. Our data show that the AMS effect can be adequately modeled only if the symmetry of the (Ga,Mn)As crystal is explicitly taken into account. We quantitatively compare our AMR and AMS measurements with corresponding model calculations, and address the validity of the Mott relations linking the magneto-resistance and the magneto-Seebeck coefficients.

  19. Effects on RCS of a perfect electromagnetic conductor sphere in the presence of anisotropic plasma layer

    Science.gov (United States)

    Ghaffar, A.; Hussan, M. M.; Illahi, A.; Alkanhal, Majeed A. S.; Ur Rehman, Sajjad; Naz, M. Y.

    2018-01-01

    Effects on RCS of perfect electromagnetic conductor (PEMC) sphere by coating with anisotropic plasma layer are studied in this paper. The incident, scattered and transmitted electromagnetic fields are expanded in term of spherical vector wave functions using extended classical theory of scattering. Co and cross-polarized scattered field coefficients are obtained at the interface of free space-anisotropic plasma and at anisotropic plasma-PEMC sphere core by scattering matrices method. The presented analytical expressions are general for any perfect conducting sphere (PMC, PEC, or PEMC) with general anisotropic/isotropic material coatings that include plasma and metamaterials. The behavior of the forward and backscattered radar cross section of PEMC sphere with the variation of the magnetic field strength, incident frequency, plasma density, and effective collision frequency for the co-polarized and the cross polarized fields are investigated. It is also observed from the obtained results that anisotropic layer on PEMC sphere shows reciprocal behavior as compared to isotopic plasma layer on PEMC sphere. The comparisons of the numerical results of the presented analytical expressions with available results of some special cases show the correctness of the analysis.

  20. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers

    Science.gov (United States)

    Kumar, Vineet; Lee, Dong-Joo

    2017-11-01

    Rubber specimens were prepared by mixing micron-sized iron particles dispersed in room-temperature-vulcanized (RTV) silicone rubber by solution mixing. The possible correlations of the particle volume, size, and distribution with the mechanical properties of the specimens were examined. An isotropic mechanical test shows that at 60 phr, the elastic modulus was 3.29 MPa (electrolyte), 2.92 MPa (carbonyl), and 2.61 MPa (hybrid). The anisotropic effect was examined by curing the specimen under magnetic fields of 0.5-2.0 T at 90° relative to the applied strain. The measurements show anisotropic effects of 11% (carbonyl), 9% (electrolyte), and 6% (hybrid) at 40 phr and 1 T. At 80 phr, the polymer-filler compatibility factor (c-factor) was estimated using the Pythagorean theorem as 0.53 (regular) and 0.73 (anisotropic studies). The improved features could be useful in applications such as controlled damping, vibrational absorption, or automotive bushings.

  1. Scaling and universality in magnetocaloric materials

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Bahl, Christian R. H.

    2014-01-01

    -order phase transition within the context of the theory of critical phenomena. Sufficiently close to the critical temperature of a second-order material, the scaling of the isothermal entropy change will be determined by the critical exponents and will be the same as that of the singular part of the entropy......The magnetocaloric effect of a magnetic material is characterized by two quantities, the isothermal entropy change and the adiabatic temperature change, both of which are functions of temperature and applied magnetic field. We discuss the scaling properties of these quantities close to a second...... fields are not universal, showing significant variation for models in the same universality class. As regards the adiabatic temperature change, it is not determined exclusively by the singular part of the free energy and its derivatives. We show that the field dependence of the adiabatic temperature...

  2. Magnetocaloric refrigeration near room temperature (invited)

    International Nuclear Information System (INIS)

    Brueck, E.; Tegus, O.; Thanh, D.T.C.; Buschow, K.H.J.

    2007-01-01

    Modern society relies on readily available refrigeration. The ideal cooling machine would be a compact, solid state, silent and energy-efficient heat pump that does not require maintenance. Magnetic refrigeration has three prominent advantages compared to compressor-based refrigeration. First, there are no harmful gases involved, second it may be built more compact as the working material is a solid and third magnetic refrigerators generate much less noise. Recently, a new class of magnetic refrigerant materials for room-temperature applications was discovered. These new materials have important advantages over existing magnetic coolants: They exhibit a large magnetocaloric effect (MCE) in conjunction with a magnetic phase transition of first order. This MCE is, larger than that of Gd metal, which is used in the demonstration refrigerators built to explore the potential of this evolving technology. In the present review, we compare the different materials considering both scientific aspects and industrial applicability

  3. Aeroelastic modal dynamics of wind turbines including anisotropic effects

    DEFF Research Database (Denmark)

    Skjoldan, Peter Fisker

    frequency is thus identified as the dominant frequency in the response of a pure excitation of the mode observed in the inertial frame. A modal analysis tool based directly on the complex aeroelastic wind turbine code BHawC is presented. It uses the Coleman approach in isotropic conditions......Several methods for aeroelastic modal analysis of a rotating wind turbine are developed and used to analyse the modal dynamics of two simplified models and a complex model in isotropic and anisotropic conditions. The Coleman transformation is used to enable extraction of the modal frequencies...... of Floquet analysis or Hill's method which do not provide a unique reference frame for observing the modal frequency, to which any multiple of the rotor speed can be added. This indeterminacy is resolved by requiring that the periodic mode shape be as constant as possible in the inertial frame. The modal...

  4. Anisotropic confinement effects in a two-dimensional plasma crystal.

    Science.gov (United States)

    Laut, I; Zhdanov, S K; Räth, C; Thomas, H M; Morfill, G E

    2016-01-01

    The spectral asymmetry of the wave-energy distribution of dust particles during mode-coupling-induced melting, observed for the first time in plasma crystals by Couëdel et al. [Phys. Rev. E 89, 053108 (2014)PLEEE81539-375510.1103/PhysRevE.89.053108], is studied theoretically and by molecular-dynamics simulations. It is shown that an anisotropy of the well confining the microparticles selects the directions of preferred particle motion. The observed differences in intensity of waves of opposed directions are explained by a nonvanishing phonon flux. Anisotropic phonon scattering by defects and Umklapp scattering are proposed as possible reasons for the mean phonon flux.

  5. Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.

  6. Microstructure evolution and large magnetocaloric effect of La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 alloy prepared by strip-casting and annealing

    Science.gov (United States)

    Zhong, X. C.; Feng, X. L.; Huang, J. H.; Zhang, H.; Huang, Y. L.; Liu, Z. W.; Jiao, D. L.

    2018-04-01

    The microstructure and magnetocaloric effect of the La0.8Ce0.2(Fe0.95Co0.05)11.8Si1.2 strip-cast flakes annealed between 1273K and 1423K for different time have been investigated. For the flakes annealed for 2h from 1273K to 1423K, the shape and distribution of α-Fe, La-rich and NaZn13-type 1:13 phases are quite sensitive to the annealing temperature. Especially, at a high annealing temperature of 1423K, the 1:13 phase began to decompose into macroscopic α-Fe conglomerations and La-rich dendrites. With the increase of annealing time from 0 to 12h at 1323K, the amount of 1:13 phase increased significantly and reached ˜93.50 wt.% at 12h. However, an overlong annealing time also led to 1:13 phase decomposition and influenced the magnetic performance. For the flakes annealed at 1323K for 12h, large magnetic entropy change value of 18.12Jkg-1K-1 at 5T has been obtained. The present results indicate that strip casting method can potentially be used in mass production of high performance magnetocaloric materials.

  7. The effect of boron doping on crystal structure, magnetic properties and magnetocaloric effect of DyCo{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Wang, C.L., E-mail: wangchaolun2004@163.com [The Ames Laboratory U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); School of Materials Science and Engineering, University of Science and Technology of Beijing, Beijing 100083 (China); Liu, J. [The Ames Laboratory U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States); Mudryk, Y.; Gschneidner, K.A. [The Ames Laboratory U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Long, Y. [School of Materials Science and Engineering, University of Science and Technology of Beijing, Beijing 100083 (China); Pecharsky, V.K. [The Ames Laboratory U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States)

    2016-05-01

    The magnetic properties and magnetic entropy changes of DyCo{sub 2}B{sub x} (x=0, 0.05, 0.1, and 0.2) alloys were investigated. The Curie temperature (T{sub C}) increases with increasing B concentration. The frequency dependence of ac magnetic susceptibility of DyCo{sub 2} caused by the narrow domain wall pinning effect is depressed by B doping, but the coercivity and the magnetic viscosity are prominently increased in the B doped alloys. The magnetic transition nature of DyCo{sub 2}B{sub x} changes from the first-order to the second-order with increasing x, which leads to the decrease of the maximum magnetic entropy change. However, the relative cooling power (RCP) of DyCo{sub 2} and the B doped alloys remains nearly constant. - Highlights: • The discrepancy between the ZFC and FCC curves of DyCo{sub 2}B{sub x} is enhanced in the B doped samples, while the frequency dependence of the ac magnetic susceptibility is depressed. • The Curie temperature, coercivity and viscosity of DyCo{sub 2}B{sub x} are increased by B doping • The magnetic transition nature of the B doped samples is changed from first order to second order, leading to the decrease of magnetic entropy change. However, the relative cooling power of DyCo{sub 2}B{sub 0.05} is increased about 18%.

  8. Giant anisotropic magnetoresistance and planar Hall effect in the Dirac semimetal Cd3As2

    Science.gov (United States)

    Li, Hui; Wang, Huan-Wen; He, Hongtao; Wang, Jiannong; Shen, Shun-Qing

    2018-05-01

    Anisotropic magnetoresistance is the change tendency of resistance of a material on the mutual orientation of the electric current and the external magnetic field. Here, we report experimental observations in the Dirac semimetal Cd3As2 of giant anisotropic magnetoresistance and its transverse version, called the planar Hall effect. The relative anisotropic magnetoresistance is negative and up to -68% at 2 K and 10 T. The high anisotropy and the minus sign in this isotropic and nonmagnetic material are attributed to a field-dependent current along the magnetic field, which may be induced by the Berry curvature of the band structure. This observation not only reveals unusual physical phenomena in Weyl and Dirac semimetals, but also finds additional transport signatures of Weyl and Dirac fermions other than negative magnetoresistance.

  9. Effect of strain path change on limits to ductility of anisotropic metal sheets

    DEFF Research Database (Denmark)

    Kuroda, M.; Tvergaard, Viggo

    2000-01-01

    of the anisotropic plasticity models, and it is shown that elastic straining plays a large role, as the stresses quickly move from one point of the yield surface to another. When the load is removed between steps, the stress point moves in a different manner, which results in quite different flow localization......Localized necking in thin metal sheets is analyzed by using the M-K-model approach, and the effect of a number of different non-proportional strain paths prior to the occurrence flow localization are considered. The analyses account for plastic anisotropy, using four different anisotropic...

  10. Necking of anisotropic micro-films with strain-gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2008-01-01

    Necking of stubby micro-films of aluminum is investigated numerically by considering tension of a specimen with an initial imperfection used to onset localisation. Plastic anisotropy is represented by two different yield criteria and strain-gradient effects are accounted for using the visco......-plastic finite strain model. Furthermore, the model is extended to isotropic anisotropic hardening (evolving anisotropy). For isotropic hardening plastic anisotropy affects the predicted overall nominal stress level, while the peak stress remains at an overall logarithmic strain corresponding to the hardening...... exponent. This holds true for both local and nonlocal materials. Anisotropic hardening delays the point of maximum overall nominal stress....

  11. Effect of Fe substitution on magnetocaloric effect in La0.7Sr0.3Mn1-xFexO3 (0.05≤x≤0.20)

    International Nuclear Information System (INIS)

    Barik, S.K.; Krishnamoorthi, C.; Mahendiran, R.

    2011-01-01

    We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La 0.7 Sr 0.3 Mn 1-x Fe x O 3 (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (T C ) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (-ΔS m ) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg -1 K -1 at 343 K (x=0.05) to 1.3 J kg -1 K -1 at 105 K (x=0.2), under ΔH=5 T. The La 0.7 Sr 0.3 Mn 0.93 Fe 0.07 O 3 sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg -1 , and magnetic entropy of 4 J kg -1 K -1 which will be an interesting compound for application in room temperature refrigeration. - Research highlights: → We report magnetocaloric effect in La 0.7 Sr 0.3 Mn 1-x Fe x O 3 (x=0-0.2). → Magnetic entropy change (ΔS m ) decreases with increasing x. → A large ΔS m and refrigeration capacity are found around 300 K in x=0.07.

  12. Influence of kondo effect on the specific heat jump of anisotropic superconductors

    Science.gov (United States)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. We give explicit expressions for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally.

  13. Influence of Kondo effect on the specific heat jump of anisotropic superconductors

    International Nuclear Information System (INIS)

    Yoksan, S.

    1986-01-01

    A calculation for the specific heat jump of an anisotropic superconductor with Kondo impurities is presented. The impurities are treated within the Matsuura - Ichinose - Nagaoka framework and the anisotropy effect is described by the factorizable model of Markowitz and Kadanoff. Explicit expressions are given for the change in specific heat jump due to anisotropy and impurities which can be tested experimentally. (author)

  14. Effect of Si/Ge ratio on resistivity and thermopower in Gd{sub 5}Si{sub x}Ge{sub 4-x} magnetocaloric compounds

    Energy Technology Data Exchange (ETDEWEB)

    Raj Kumar, D.M. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Manivel Raja, M., E-mail: mraja@dmrl.drdo.i [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Prabahar, K.; Chandrasekaran, V. [Defence Metallurgical Research Laboratory, Kanchanbagh, Hyderabad 500058 (India); Poddar, Asok; Ranganathan, R. [Saha Institute of Nuclear Physics, Kolkata 700064 (India); Suresh, K.G. [Indian Institute of Technology Bombay, Mumbai 400076 (India)

    2011-07-15

    The effect of Si/Ge ratio on resistivity and thermopower behavior has been investigated in the magnetocaloric ferromagnetic Gd{sub 5}Si{sub x}Ge{sub 4-x} compounds with x=1.7-2.3. Microstructural studies reveal the presence of Gd{sub 5}(Si,Ge){sub 4}-matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The x=1.7 and 2.0 samples display the presence of a first order structural transition from orthorhombic to monoclinic phase followed by a magnetic transition of the monoclinic phase. The alloys with x=2.2 and 2.3 display only magnetic transitions of the orthorhombic phase. A low temperature feature apparent in the AC susceptibility and resistivity data below 100 K reflects an antiferromagnetic transition of secondary phase(s) present in these compounds. The resistivity behavior study correlates with microstructural studies. A large change in thermopower of -8 {mu}V/K was obtained at the magneto-structural transition for the x=2 compound. - Research highlights: Effect of Si/Ge ratio on microstructure, magneto-structural transitions, resistivity ({rho}) and thermopower S(T) behaviour has been investigated in Gd{sub 5}Si{sub x}Ge{sub 4-x} compounds with x=1.7, 2.0, 2.2 and 2.3. Microstructural studies reveal the presence of a Gd{sub 5}(Si,Ge){sub 4} -matrix phase (5:4-type) along with traces of secondary phases (5:5 or 5:3-type). The resistivity behaviour has shown good correlation with the microstructural studies. A large change in thermopower of -8{mu}V/K was obtained at the magneto-structural transition for the x=2 compound. The resistivity and change in thermopower values were high for the alloys with Si/Ge ratio {<=}1 compared to that of the alloys with Si/Ge ratio >1.

  15. Integration of a magnetocaloric heat pump in a low-energy residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    2018-01-01

    The EnovHeat project aims at developing an innovative heat pump system based on the magnetocaloric effect and active magnetic regenerator technology to provide for the heating needs of a single family house in Denmark. Unlike vapor-compression devices, magnetocaloric heat pumps use the reversible...... heat pump can deliver 2600 W of heating power with an appreciable average seasonal system COP of 3.93. On variable part-load operation with a simple fluid flow controller, it can heat up an entire house with an average seasonal system COP of 1.84....... magnetocaloric effect of a solid refrigerant to build a cooling/heating cycle. It has the potential for high coefficient of performance, more silent operation and efficient part-load control. After presenting the operation principles of the magnetocaloric device and the different models used in the current...... numerical study, this article demonstrates for the first time the possibility to utilize this novel heat pump in a building. This device can be integrated in a single hydronic loop including a ground source heat exchanger and a radiant under-floor heating system. At maximum capacity, this magnetocaloric...

  16. Critical behavior of Y-doped Nd0.7Sr0.3MnO3 manganites exhibiting the tricritical point and large magnetocaloric effect

    International Nuclear Information System (INIS)

    Phan, The-Long; Ho, T.A.; Thang, P.D.; Tran, Q.T.; Thanh, T.D.; Phuc, N.X.; Phan, M.H.; Huy, B.T.; Yu, S.C.

    2014-01-01

    Highlights: • Tricritical point in Y-doped Nd 0.7 Sr 0.3 MnO 3 manganites. • A large magnetic-entropy change. • Magnetic inhomogeneity and phase separation. - Abstract: We have determined the values of critical exponents of two polycrystalline samples (Nd 1−x Y x ) 0.7 Sr 0.3 MnO 3 (x = 0 and 0.07) from the magnetization data versus temperature and magnetic field, M(H, T), to learn about their magnetic and magnetocaloric (MC) properties. The results reveal the samples exhibiting the crossover of first-order and second-order phase transitions, where the exponent values β = 0.271 and γ = 0.922 for x = 0, and β = 0.234–0.236 and γ = 1.044–1.063 for x = 0.07 determined by using modified Arrott plots and static-scaling hypothesis are close to those expected for the tricritical mean-field theory (β = 0.25 and γ = 1.0). Particularly, the T C of x = 0 and 0.07 can be any value in the temperature ranges of 240–255 K and 170–278 K, respectively, depending on the magnitude of applied magnetic field and determination techniques. Around the T C , studying the MC effect of the samples has revealed a large magnetic-entropy change (ΔS m ) up to ∼8 J/kg K for the applied field interval ΔH = 50 kOe, corresponding to refrigerant capacity values of 200–245 J/kg. These phenomena are related to the crossover nature and the persisting of FM/anti-FM interactions even above the T C , as further confirmed by electron-spin-resonance data, Curie–Weiss law-based analyses, and an exponential parameter characteristic of magnetic order n = dLn|ΔS m |/dLnH

  17. Magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal revisited

    Energy Technology Data Exchange (ETDEWEB)

    Balli, M., E-mail: Mohamed.balli@Usherbrooke.ca [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Roberge, B.; Vermette, J.; Jandl, S. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Fournier, P. [Regroupement québécois sur les matériaux de pointe, Département de physique, Université de Sherbrooke, QC, Canada J1K 2R1 (Canada); Canadian Institute for Advanced Research, Toronto, Ontario, Canada M5G 1Z8 (Canada); Gospodinov, M.M. [Institute of Solid State Physics, Bulgarian Academy of Science, Sofia 1184 (Bulgaria)

    2015-12-01

    Magnetic and magnetocaloric properties of the hexagonal HoMnO{sub 3} single crystal have been revisited. It was found that the magnetocaloric effect shown by HoMnO{sub 3} strongly depends on the crystal orientation in respect to the applied magnetic field. Consequently, a large thermal effect can be induced by spinning the single crystal HoMnO{sub 3} around the a (or b) axis in a constant magnetic field instead of the conventional magnetization–demagnetization process. Under 7 T, the maximum rotating entropy change was evaluated to be about 8 J/kg K. The associated adiabatic temperature change reaches a value of about 5 K. These values are comparable to those of the other oxides exhibiting a large rotating magnetocaloric effect. The presence of both conventional and rotating thermal effects makes the hexagonal HoMnO{sub 3} more interesting from a practical point of view.

  18. Magnetocaloric properties and critical behavior of high relative cooling power FeNiB nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Chaudhary, V. [Interdisciplinary Graduate School, Nanyang Technological University, Singapore 639798 (Singapore); Energy Research Institute @NTU, Nanyang Technological University, Singapore 637553 (Singapore); School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Maheswar Repaka, D. V.; Chaturvedi, A.; Ramanujan, R. V., E-mail: ramanujan@ntu.edu.sg [School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798 (Singapore); Sridhar, I. [School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798 (Singapore)

    2014-10-28

    Low cost magnetocaloric nanomaterials have attracted considerable attention for energy efficient applications. We report a very high relative cooling power (RCP) in a study of the magnetocaloric effect in quenched FeNiB nanoparticles. RCP increases from 89.8 to 640 J kg{sup −1} for a field change of 1 and 5 T, respectively, these values are the largest for rare earth free iron based magnetocaloric nanomaterials. To investigate the magnetocaloric behavior around the Curie temperature (T{sub C}), the critical behavior of these quenched nanoparticles was studied. Detailed analysis of the magnetic phase transition using the modified Arrott plot, Kouvel-Fisher method, and critical isotherm plots yields critical exponents of β = 0.364, γ = 1.319, δ = 4.623, and α = −0.055, which are close to the theoretical exponents obtained from the 3D-Heisenberg model. Our results indicate that these FeNiB nanoparticles are potential candidates for magnetocaloric fluid based heat pumps and low grade waste heat recovery.

  19. Inapplicability of the Maxwell relation for the quantification of caloric effects in anisotropic ferroic materials

    Czech Academy of Sciences Publication Activity Database

    Niemann, R.; Heczko, Oleg; Schultz, L.; Fähler, S.

    2014-01-01

    Roč. 37, SI (2014), 281-288 ISSN 0140-7007 R&D Projects: GA ČR(CZ) GAP107/11/0391 Institutional support: RVO:68378271 Keywords : magnetocaloric * shape memory alloy s * multiferroic * Ni-Mn-Ga * Maxwell relation Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.241, year: 2014

  20. Magnetic properties and magnetocaloric effect in the HoNi1−xCuxIn (x=0, 0.1, 0.3, 0.4) intermetallic compounds

    International Nuclear Information System (INIS)

    Mo, Zhao-Jun; Shen, Jun; Yan, Li-Qin; Tang, Cheng-Chun; He, Xiao-Nan; Zheng, Xinqi; Wu, Jian-Feng; Sun, Ji-Rong; Shen, Bao-Gen

    2014-01-01

    The magnetic properties and magnetocaloric effect (MCE) in HoNi 1−x Cu x In (x=0, 0.1, 0.3, 0.4) compounds have been investigated. With the substitution of Cu for Ni, the Ho magnetic moment will cant from the c-axis, and form a complicated magnetic structure. These compounds exhibit two successive magnetic transitions with the increase in temperature. The large reversible magnetocaloric effects have been observed in HoNi 1−x Cu x In compounds around T ord , with no thermal and magnetic hysteresis loss. The large reversible isothermal magnetic entropy change (−ΔS M ) is 20.2 J/kg K and the refrigeration capacity (RC) reaches 356.7 J/kg for field changes of 5 T for HoNi 0.7 Cu 0.3 In. Especially, the value of −ΔS M (12.5 J/kg K) and the large RC (132 J/kg) are observed for field changes of 2 T for HoNi 0.9 Cu 0.1 In. Additionally, the values of RC are improved to 149 J/K for the field changes of 2 T due to a wide temperature span for the mix of HoNi 0.9 Cu 0.1 In and HoNi 0.7 Cu 0.3 In compounds with the mass ratio of 1:1. These compounds with excellent MCE are expected to have effective applications in magnetic refrigeration around 20 K. - Highlights: • For magnetic-field changes of 2 T, the values of RC are improved to 149 J/K. • MCEs of these compounds show no thermal and magnetic hysteresis. • Compounds show two successive magnetic transitions with the increase in temperature. • With the substitution of Cu for Ni, compounds form a complicated magnetic structure

  1. Behavior of the magnetocaloric effect in La0.7Ba0.2Ca0.1Mn1-xSnxO3 manganite oxides as promising candidates for magnetic refrigeration

    Science.gov (United States)

    Dhahri, Ja.; Mnefgui, Safa; Ben Hassine, A.; Tahri, Ta.; Oumezzine, M.; Hlil, E. K.

    2018-05-01

    The magnetocaloric effect along with magnetic phase transition in the peroveskite polycrystalline samples La0.7Ba0.2Ca0.1Mn1-xSnxO3 (x = 0 and 0.1) was investigated. The samples were synthesized using conventional solid state reaction at 1400 °C temperature. Magnetization vs. temperature measurements, under a magnetic field of μ0H = 0.05 T, showed a paramagnetic-ferromagnetic transition at Curie temperature, TC, which decreases from 310 K for x = 0-290 K for x = 0.1. A large magnetic entropy change | ΔSM | deduced from isothermal magnetization curves, has been observed in our samples with a peak centered on their respective TC. Interesting values of the relative cooling power (RCP), 237 J kg-1 for x = 0 and 248 J kg-1 x = 0.1, make these samples promising candidates for magnetic refrigeration around room temperature.

  2. Investigation of magnetocaloric effect in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3} by magnetic, differential scanning calorimetry and thermal analysis

    Energy Technology Data Exchange (ETDEWEB)

    Aparnadevi, M; Barik, S K [Department of Physics, 2 Science Drive 3, National University of Singapore, Lower Kent Ridge Road, Singapore-117 452 (Singapore); Mahendiran, R [Department of Physics, 2 Science Drive 3, National University of Singapore, Lower Kent Ridge Road, Singapore-117 452 (Singapore)

    2012-10-15

    We investigated magnetocaloric effect in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3} by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with T{sub C}=200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of {Delta}S{sub m}=-7.2 J kg{sup -1} K{sup -1} at T=212.5 K and refrigeration capacity of 228 J kg{sup -1} are found for a field change of {Delta}H=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound. - Highlights: Black-Right-Pointing-Pointer We report magnetic entropy change measured by indirect and direct methods in La{sub 0.45}Pr{sub 0.25}Ca{sub 0.3}MnO{sub 3.} Black-Right-Pointing-Pointer Anomalous field-induced induced metamagnetic transition is found in the paramagnetic state. Black-Right-Pointing-Pointer A large reversible magnetic entropy change ({Delta}S{sub m}=7.2 J kg{sup -1} K{sup -1} for {Delta}H=5 T). Black-Right-Pointing-Pointer A large refrigeration capacity (RC=228 J kg{sup -1}). Black-Right-Pointing-Pointer Collapse of magnetic polarons is suggested as possible origin of the large MCE.

  3. Investigation of magnetocaloric effect in La0.45Pr0.25Ca0.3MnO3 by magnetic, differential scanning calorimetry and thermal analysis

    International Nuclear Information System (INIS)

    Aparnadevi, M.; Barik, S.K.; Mahendiran, R.

    2012-01-01

    We investigated magnetocaloric effect in La 0.45 Pr 0.25 Ca 0.3 MnO 3 by direct methods (changes in temperature and latent heat) and indirect method (magnetization isotherms). This compound undergoes a first-order paramagnetic to ferromagnetic transition with T C =200 K upon cooling. The paramagnetic phase becomes unstable and it transforms into a ferromagnetic phase under the application of magnetic field, which results in a field-induced metamagnetic transition (FIMMT). The FIMMT is accompanied by release of latent heat and temperature of the sample as evidenced from differential scanning calorimetry and thermal analysis experiments. A large magnetic entropy change of ΔS m =−7.2 J kg −1 K −1 at T=212.5 K and refrigeration capacity of 228 J kg −1 are found for a field change of ΔH=5 T. It is suggested that destruction of magnetic polarons and growth of ferromagnetic phase accompanied by a lattice volume change with increasing magnetic field is responsible for the large magnetocaloric effect in this compound. - Highlights: ► We report magnetic entropy change measured by indirect and direct methods in La 0.45 Pr 0.25 Ca 0.3 MnO 3. ► Anomalous field-induced induced metamagnetic transition is found in the paramagnetic state. ► A large reversible magnetic entropy change (ΔS m =7.2 J kg −1 K −1 for ΔH=5 T). ► A large refrigeration capacity (RC=228 J kg −1 ). ► Collapse of magnetic polarons is suggested as possible origin of the large MCE.

  4. Glass formation ability, structure and magnetocaloric effect of a heavy rare-earth bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Jo, C.-L. [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)], E-mail: jochollong@163.com; Xia Lei; Ding Ding; Dong Yuanda; Gracien, Ekoko [Shanghai University, School of Materials Science and Engineering, Yanchang Road 149, Zhabei District, 200072 Shanghai (China)

    2008-06-30

    The glass formation ability, the structure and the magnetocaloric effect of the bulk metallic glassy Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy were investigated. Bulk metallic glassy (BMGs) alloys were prepared by a copper-mold casting method. The glass forming ability and their structure were studied by using X-ray diffraction (XRD) and differential scanning calorimeter (DSC). The XRD analysis revealed that the as-cast cylinder of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed fully amorphous structure in 2 mm diameter. The DSC revealed that the bulk cylinder of the Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} alloy showed a distinct glass transition temperature and a relatively wide supercooled liquid region before crystallization. SQUID investigated the magnetic properties and the entropy changes. The Curie temperature of Gd{sub 55}Co{sub 20}Fe{sub 5}Al{sub 20} BMGs alloy was about 130 K, but the maximum magnetic entropy changes(-{delta}S{sub M}) showed at about 125 K, a little lower than the Curie temperature 130 K. The reason could probably be due to the presence of a little amount of nanocrystalline particles between amorphous phases. The BMG alloy has the characteristic of second-order transition (SOT) on Arrott plots. The results showed that the amorphous sample had a relatively improved magnetocaloric effect, indicating that the amorphous alloy could be considered as a candidate for magnetic refrigeration applications in the temperature interval range of 100-200 K.

  5. Effects of Anisotropic Thermal Conductivity in Magnetohydrodynamics Simulations of a Reversed-Field Pinch

    International Nuclear Information System (INIS)

    Onofri, M.; Malara, F.; Veltri, P.

    2010-01-01

    A compressible magnetohydrodynamics simulation of the reversed-field pinch is performed including anisotropic thermal conductivity. When the thermal conductivity is much larger in the direction parallel to the magnetic field than in the perpendicular direction, magnetic field lines become isothermal. As a consequence, as long as magnetic surfaces exist, a temperature distribution is observed displaying a hotter confined region, while an almost uniform temperature is produced when the magnetic field lines become chaotic. To include this effect in the numerical simulation, we use a multiple-time-scale analysis, which allows us to reproduce the effect of a large parallel thermal conductivity. The resulting temperature distribution is related to the existence of closed magnetic surfaces, as observed in experiments. The magnetic field is also affected by the presence of an anisotropic thermal conductivity.

  6. Crack growth resistance for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2006-01-01

    For a plastically anisotropic solid a plasticity model using a plastic flow rule with non-normality is applied to predict crack growth. The fracture process is modelled in terms of a traction–separation law specified on the crack plane. A phenomenological elastic–viscoplastic material model...... is applied, using one of two different anisotropic yield criteria to account for the plastic anisotropy, and in each case the effect of the normality flow rule is compared with the effect of non-normality. Conditions of small scale yielding are assumed, with mode I loading conditions far from the crack......-tip, and various directions of the crack plane relative to the principal axes of the anisotropy are considered. It is found that the steady-state fracture toughness is significantly reduced when the non-normality flow rule is used. Furthermore, it is shown that the predictions are quite sensitive to the value...

  7. Anisotropic electro-optic effect on InGaAs quantum dot chain modulators.

    Science.gov (United States)

    Liu, Wei; Liang, Baolai; Huffaker, Diana; Fetterman, Harold

    2013-10-15

    We investigated the anisotropic electro-optic (EO) effect on InGaAs quantum dot (QD) chain modulators. The linear EO coefficients were determined as 24.3 pm/V (33.8 pm/V) along the [011] direction and 30.6 pm/V (40.3 pm/V) along the [011¯] direction at 1.55 μm (1.32 μm) operational wavelength. The corresponding half-wave voltages (Vπs) were measured to be 5.35 V (4.35 V) and 4.65 V (3.86 V) at 1.55 μm (1.32 μm) wavelength. This is the first report on the anisotropic EO effect on QD chain structures. These modulators have 3 dB bandwidths larger than 10 GHz.

  8. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window

    KAUST Repository

    Liu, E. K.; Zhang, H. G.; Xu, G. Z.; Zhang, X. M.; Ma, R. S.; Wang, W. H.; Chen, J. L.; Zhang, H. W.; Wu, G. H.; Feng, L.; Zhang, Xixiang

    2013-01-01

    An effective scheme of isostructural alloying was applied to establish a Curie-temperature window in isostructural MnNiGe-CoNiGe system. With the simultaneous accomplishment of decreasing structural-transition temperature and converting

  9. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    OpenAIRE

    Zhang, Guofeng; Zhu, Hanjie

    2015-01-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the ...

  10. Quantum effects and elimination of the conformal anomaly in anisotropic space-time

    International Nuclear Information System (INIS)

    Grib, A.A.; Nesteruk, A.V.

    1988-01-01

    In homogeneous anisotropic space-time the connection between the problem of the elimination of infrared divergences and the conformal anomaly of the regularized energy-momentum tensor is studied. It is shown that removal of the infrared divergence by means of a cutoff leads to the absence of a conformal anomaly. A physical interpretation of the infrared cutoff as a shift in the particle-energy spectrum by an amount equal to the effective temperature of the gravitational field is proposed

  11. Saving Moore’s Law Down To 1 nm Channels With Anisotropic Effective Mass

    Science.gov (United States)

    Ilatikhameneh, Hesameddin; Ameen, Tarek; Novakovic, Bozidar; Tan, Yaohua; Klimeck, Gerhard; Rahman, Rajib

    2016-08-01

    Scaling transistors’ dimensions has been the thrust for the semiconductor industry in the last four decades. However, scaling channel lengths beyond 10 nm has become exceptionally challenging due to the direct tunneling between source and drain which degrades gate control, switching functionality, and worsens power dissipation. Fortunately, the emergence of novel classes of materials with exotic properties in recent times has opened up new avenues in device design. Here, we show that by using channel materials with an anisotropic effective mass, the channel can be scaled down to 1 nm and still provide an excellent switching performance in phosphorene nanoribbon MOSFETs. To solve power consumption challenge besides dimension scaling in conventional transistors, a novel tunnel transistor is proposed which takes advantage of anisotropic mass in both ON- and OFF-state of the operation. Full-band atomistic quantum transport simulations of phosphorene nanoribbon MOSFETs and TFETs based on the new design have been performed as a proof.

  12. Effect of Fe substitution on magnetocaloric effect in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3} (0.05{<=}x{<=}0.20)

    Energy Technology Data Exchange (ETDEWEB)

    Barik, S K; Krishnamoorthi, C [Department of Physics and NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, National University of Singapore, Singapore 117542, Singapore. (Singapore); Mahendiran, R [Department of Physics and NUS Nanoscience and Nanotechnology Initiative, 2 Science Drive 3, National University of Singapore, Singapore 117542, Singapore. (Singapore)

    2011-04-15

    We have studied the effect of Fe substitution on magnetic and magnetocaloric properties in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3} (x=0.05, 0.07, 0.10, 0.15, and 0.20) over a wide temperature range (T=10-400 K). It is shown that substitution by Fe gradually decreases the ferromagnetic Curie temperature (T{sub C}) and saturation magnetization up to x=0.15 but a dramatic change occurs for x=0.2. The x=0.2 sample can be considered as a phase separated compound in which both short-range ordered ferromagnetic and antiferromagnetic phases coexist. The magnetic entropy change (-{Delta}S{sub m}) was estimated from isothermal magnetization curves and it decreases with increase of Fe content from 4.4 J kg{sup -1} K{sup -1} at 343 K (x=0.05) to 1.3 J kg{sup -1} K{sup -1} at 105 K (x=0.2), under {Delta}H=5 T. The La{sub 0.7}Sr{sub 0.3}Mn{sub 0.93}Fe{sub 0.07}O{sub 3} sample shows negligible hysteresis loss, operating temperature range over 60 K around room temperature with refrigerant capacity of 225 J kg{sup -1}, and magnetic entropy of 4 J kg{sup -1} K{sup -1} which will be an interesting compound for application in room temperature refrigeration. - Research highlights: > We report magnetocaloric effect in La{sub 0.7}Sr{sub 0.3}Mn{sub 1-x}Fe{sub x}O{sub 3} (x=0-0.2). > Magnetic entropy change ({Delta}S{sub m}) decreases with increasing x. > A large {Delta}S{sub m} and refrigeration capacity are found around 300 K in x=0.07.

  13. Yarkovsky-O'Keefe-Radzievskii-Paddack effect with anisotropic radiation

    Science.gov (United States)

    Breiter, S.; Vokrouhlický, D.

    2011-02-01

    In this paper, we study the influence of optical scattering and thermal radiation models on the Yarkovsky-O'Keefe-Radzievskii-Paddack (YORP) effect. The Lambertian formulation is compared with the scattering and emission laws and Lommel-Seeliger reflection. Although the form of the reflectivity function strongly influences the mean torques because of scattering or thermal radiation alone, their combined contribution to the rotation period YORP effect is not very different from the standard Lambertian values. For higher albedo values, the differences between the Hapke and Lambert models become significant for the YORP effect in attitude.

  14. Effective field theory of thermal Casimir interactions between anisotropic particles.

    Science.gov (United States)

    Haussman, Robert C; Deserno, Markus

    2014-06-01

    We employ an effective field theory (EFT) approach to study thermal Casimir interactions between objects bound to a fluctuating fluid surface or interface dominated by surface tension, with a focus on the effects of particle anisotropy. The EFT prescription disentangles the constraints imposed by the particles' boundaries from the calculation of the interaction free energy by constructing an equivalent point particle description. The finite-size information is captured in a derivative expansion that encodes the particles' response to external fields. The coefficients of the expansion terms correspond to generalized tensorial polarizabilities and are found by matching the results of a linear response boundary value problem computed in both the full and effective theories. We demonstrate the versatility of the EFT approach by constructing the general effective Hamiltonian for a collection of particles of arbitrary shapes. Taking advantage of the conformal symmetry of the Hamiltonian, we discuss a straightforward conformal mapping procedure to systematically determine the polarizabilities and derive a complete description for elliptical particles. We compute the pairwise interaction energies to several orders for nonidentical ellipses as well as their leading-order triplet interactions and discuss the resulting preferred pair and multibody configurations. Furthermore, we elaborate on the complications that arise with pinned particle boundary conditions and show that the powerlike corrections expected from dimensional analysis are exponentially suppressed by the leading-order interaction energies.

  15. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  16. Local fields and effective conductivity tensor of ellipsoidal particle composite with anisotropic constituents

    Science.gov (United States)

    Kushch, Volodymyr I.; Sevostianov, Igor; Giraud, Albert

    2017-11-01

    An accurate semi-analytical solution of the conductivity problem for a composite with anisotropic matrix and arbitrarily oriented anisotropic ellipsoidal inhomogeneities has been obtained. The developed approach combines the superposition principle with the multipole expansion of perturbation fields of inhomogeneities in terms of ellipsoidal harmonics and reduces the boundary value problem to an infinite system of linear algebraic equations for the induced multipole moments of inhomogeneities. A complete full-field solution is obtained for the multi-particle models comprising inhomogeneities of diverse shape, size, orientation and properties which enables an adequate account for the microstructure parameters. The solution is valid for the general-type anisotropy of constituents and arbitrary orientation of the orthotropy axes. The effective conductivity tensor of the particulate composite with anisotropic constituents is evaluated in the framework of the generalized Maxwell homogenization scheme. Application of the developed method to composites with imperfect ellipsoidal interfaces is straightforward. Their incorporation yields probably the most general model of a composite that may be considered in the framework of analytical approach.

  17. On the bending of structural materials with plastic anisotropic effect

    Science.gov (United States)

    Lachugin, D. V.; Pavilaynen, G. V.

    2018-05-01

    The study of a deformation features of metal alloys which are sensitive to tension or compression loading is an important technical challenge in the design and creation of a new shipbuilding and aircraft constructions. We use a mathematical model for the elastic-plastic bending of such material where SD(strength-different) parameter is taken into account. The problem is solved analytically and numerically. As an example of the material with the SD-effect the steel alloy is considered.

  18. Magnetic field dependence of Griffith phase and magnetocaloric effect in Ca0.85Dy0.15MnO3

    Science.gov (United States)

    Nag, Ripan; Sarkar, Bidyut; Pal, Sudipta

    2018-03-01

    Temperature and Magnetic field dependent magnetization properties of electron doped polycrystalline sample Ca0.85Dy0.15MnO3 (CDMO) prepared by solid state reaction method have been studied. The sample undergoes ferromagnetic to paramagnetic phase transition at about 111k. From the study of magnetic properties in terms of Arrot plots it is observed that the phase transition is of 2nd order. The Griffith phase behavior of the sample is suppressed with the increase of the applied magnetic field strength H. We have estimated the magnetic entropy change from experimental magnetization and temperature data. For a magnetic field change of 8000 Oe, the maximum value of magnetic entropy change arrives at a value of 1.126 J-kg-1 k-1 in this magnetocaloric material.

  19. VDT microplane model with anisotropic effectiveness and plasticity

    Science.gov (United States)

    Benelfellah, Abdelkibir; Gratton, Michel; Caliez, Michael; Frachon, Arnaud; Picart, Didier

    2018-03-01

    The opening-closing state of the microcracks is a kinematic phenomenon usually modeled using a set of damage effectiveness variables, which results in different elastic responses for the same damage level. In this work, the microplane model with volumetric, deviatoric and tangential decomposition denoted V-D-T is modified. The influence of the confining pressure is taken into account in the damage variables evolution laws. For a better understanding of the mechanisms introduced into the model, the damage rosettes are presented for a strain given level. The model is confirmed through comparisons of the simulations with the experimental results of monotonic, and cyclic tensile and compressive testing with different levels of confining pressure.

  20. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    Energy Technology Data Exchange (ETDEWEB)

    Imamura, W., E-mail: williamimamura@yahoo.com.br [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Coelho, A.A. [State University of Campinas (Unicamp)/Department of Applied Physics (DFA-IFGW), 13083-859 Campinas, SP (Brazil); Kupfer, V.L. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Carvalho, A.M.G. [Brazilian Synchrotron Light Laboratory (LNLS)/Brazilian Center for Research in Energy and Materials (CNPEM), C. P. 6192, 13083-970 Campinas, SP (Brazil); Zago, J.G. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil); Rinaldi, A.W. [State University of Maringá (UEM)/Department of Chemistry (DQI-LMSen), 87020-900 Maringá, PR (Brazil); Favaro, S.L.; Alves, C.S. [State University of Maringá (UEM)/Department of Mechanical Engineering (DEM-PEM), 87020-900 Maringá, PR (Brazil)

    2017-03-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd{sub 5.09}Ge{sub 2.03}Si{sub 1.88} and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  1. A new type of magnetocaloric composite based on conductive polymer and magnetocaloric compound

    International Nuclear Information System (INIS)

    Imamura, W.; Coelho, A.A.; Kupfer, V.L.; Carvalho, A.M.G.; Zago, J.G.; Rinaldi, A.W.; Favaro, S.L.; Alves, C.S.

    2017-01-01

    We introduce a processing route of the first magnetocaloric composite with conductive polymer – wherein the magnetocaloric reinforcement is a compound Gd_5_._0_9Ge_2_._0_3Si_1_._8_8 and the ductile matrix is a conductive polymer polyaniline doped by camphorsulfonic acid (PAni-CSA). This new type of composite combines mechanical, electrical and magnetocaloric properties that can be applied in thermomagnetic machines. - Highlights: • We developed a new type of magnetocaloric composite: PAni-CSA/Gd5.09Ge2.03Si1.88. • We presented a processing route which use a conductive polymer instead of epoxy resins or thermoplastic polymers. • We varied the concentration of PAni-CSA (numerical type) and sintering (categorical type). • We analyzed the matrix (PAni-CSA), the magnetocaloric reinforcement (Gd5.09Ge2.03Si1.88) and the composites. • We presented and discussed mechanical, electrical and magnetocaloric properties.

  2. Magnetic structure and phase formation of magnetocaloric Mn-Fe-P-X compounds

    NARCIS (Netherlands)

    Ou, Z.Q.

    2013-01-01

    This thesis presents a study of the crystal and magnetic structure, the magnetocaloric effect and related physical properties in Mn-Fe-P-X compounds. The influences of boron addition in (Mn,Fe)2(P,As) compounds have been studied. It is found that boron atoms occupy interstitial sites within the

  3. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  4. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang

    2017-12-26

    The effect of interfacial scattering on anisotropic magnetoresistance (AMR) and anomalous Hall effect (AHE) was studied in the (Ta12n/Fe36n)n multilayers, where the numbers give the thickness in nanometer and n is an integer from 1 to 12. The multilayer structure has been confirmed by the XRR spectra and STEM images of cross-sections. The magneto-transport properties were measured by four-point probe method in Hall bar shaped samples in the temperature range of 5 - 300 K. The AMR increases with n, which could be ascribed to the interfacial spin-orbit scattering. At 5 K, the longitudinal resistivity (ρ) increases by 6.4 times and the anomalous Hall resistivity (ρ) increases by 49.4 times from n =1 to n =12, indicative of the interfacial scattering effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic contribution dominated the AHE for all samples. The side jump changes from negative to positive because the interfacial scattering and intralayer scattering in Fe layers both contribute to side jump in the AHE but with opposite sign.

  5. Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy

    International Nuclear Information System (INIS)

    Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi

    2015-01-01

    In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain

  6. Effect of substitution of Fe for Mn on the structural, magnetic properties and magnetocaloric effect of LaNdSrCaMnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Dhahri, Ja. [Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir (Tunisia); Dhahri, A., E-mail: abdessalem_dhahri@yahoo.fr [Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir (Tunisia); Center for Scientific Research, Department of Physics, Al-Qunfudah University College, Umm Al-Qura University (Saudi Arabia); Oummezzine, M. [Laboratory of Physical Chemistry of Materials, Faculty of Sciences of Monastir, University of Monastir (Tunisia); Hlil, E.K. [Institut Ne´el, CNRS–Université J. Fourier, BP166, 38042 Grenoble (France)

    2015-03-15

    We have studied the structural, magnetic and magnetocaloric properties of La{sub 0.6}Nd{sub 0.1}Sr{sub 0.15}Ca{sub 0.15}Mn{sub 1−x}Fe{sub x}O{sub 3} (LNSCMFe{sub x}) perovskite samples. The samples were synthesized using the solid-state reaction at high temperature and were analyzed by XRD data based on the Rietveld refinement technique. LNSCMFe{sub x} samples crystallized in orthorhombic symmetry with Pnma space group. Besides, the curves of magnetization reveals that all samples exhibit a magnetic transition from the paramagnetic to ferromagnetic phase at the Curie temperature T{sub C}, which decreases from 327 K to 296 K with the increase of the Fe doping level from x=0 to x=0.1. The thermal evolution of magnetization in the ferromagnetic phase at low temperature varies as T{sup 3/2} in accordance with Bloch's law. The magnitude of the isothermal magnetic entropy, (−ΔS{sub M}{sup max}), at the FM Curie temperature increases from 3.79 J/kg K for x=0 composition to 5.8 J/kg K for x=0.1, under a magnetic field of 5 T. For an applied magnetic field of 5 T, the relative cooling power (RCP) values are found to vary between 173.66 and 231.76 J/kg. These results suggest that these materials could be used as an active magnetic refrigerant around room temperature. - Highlights: • La{sub 0.6}Nd{sub 0.1}Sr{sub 0.15}Ca{sub 0.15}Mn{sub 1−x}Fe{sub x}O{sub 3} samples were prepared using solid-state reaction. • The manganite phase crystallizes in an orthorhombic (Pnma) structure. • The samples exhibit a second order PM–FM phase transition at T{sub C}. • LNSCMFe{sub 0.05} and LNSCMFe{sub 0.1} are potential candidates for room-temperature magnetic refrigeration.

  7. Developing a Magnetocaloric Domestic Heat Pump

    DEFF Research Database (Denmark)

    Bahl, Christian R.H.

    2014-01-01

    beverage coolers, A/Cs for cars and electronics cooling. Devices for heating have not been extensively demonstrated. Here we consider a promising application of magnetocaloric heat pumps for domestic heating. The task of designing and building such a device is a multidisciplinary one encompassing materials...

  8. High performance magnetocaloric perovskites for magnetic refrigeration

    DEFF Research Database (Denmark)

    Bahl, Christian R. H.; Velazquez, David; Nielsen, Kaspar K.

    2012-01-01

    We have applied mixed valance manganite perovskites as magnetocaloric materials in a magnetic refrigeration device. Relying on exact control of the composition and a technique to process the materials into single adjoined pieces, we have observed temperature spans above 9 K with two materials...

  9. Operational test of bonded magnetocaloric plates

    DEFF Research Database (Denmark)

    Bahl, Christian; Navickaité, Kristina; Neves Bez, Henrique

    2017-01-01

    Bonded plates made by hot pressing La0.85Ce0.15Fe11.25Mn0.25Si1.5Hy particles and resin have been tested as active magnetic regenerators in a small scale magnetocaloric device. Firstly the plates were carefully characterised magnetically and thermally. The plates were prepared with 5 wt% resin...

  10. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles

    International Nuclear Information System (INIS)

    Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao

    2015-01-01

    Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)

  11. Effective-field treatment of an anisotropic Ising ferromagnet: thermodynamical properties

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Honmura, R.; Tsallis, C.

    1982-01-01

    The anisotropic square lattice spin -1/2 Ising ferromagnet is discussed. Through this system it is illustrated how all relevant thermodynamical quantities (phase diagram, magnetization, short range order parameter, specific heat and susceptibility) can be approximatively calculated within an effective-field unified procedure (which substantially improves the Mean Field Approximation). Two slightly different approximations for the susceptibility (whose exact computation is still lacking) are presented. The (square lattice) - (linear chain) crossover is exhibited. The present (mathematically simple) procedures could be useful in the study of complex Ising problems. (Author) [pt

  12. Effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions

    Science.gov (United States)

    Jaiswal, Amaresh; Bhaduri, Partha Pratim

    2018-04-01

    We study the effect of an anisotropic escape mechanism on elliptic flow in relativistic heavy-ion collisions. We use the Glauber model to generate initial conditions and ignore hydrodynamic expansion in the transverse direction. We employ the Beer-Lambert law to allow for the transmittance of produced hadrons in the medium and calculate the anisotropy generated due to the suppression of particles traversing through the medium. To separate non-flow contribution due to surface bias effects, we ignore hydrodynamic expansion in the transverse direction and consider purely longitudinal boost-invariant expansion. We calculate the transverse momentum dependence of elliptic flow, generated from an anisotropic escape mechanism due to surface bias effects, for various centralities in √{sN N}=200 GeV Au +Au collisions at the Relativistic Heavy Ion Collider and √{sN N}=2.76 TeV Pb +Pb collisions at the Large Hadron Collider. We find that the surface bias effects make a sizable contribution to the total elliptic flow observed in heavy-ion collisions, indicating that the viscosity of the QCD matter extracted from hydrodynamic simulations may be underestimated.

  13. Understanding the anisotropic strain effects on lithium diffusion in graphite anodes: A first-principles study

    Science.gov (United States)

    Ji, Xiang; Wang, Yang; Zhang, Junqian

    2018-06-01

    The lithium diffusion in graphite anode, which is the most widely used commercial electrode material today, affects the charge/discharge performance of lithium-ion batteries. In this study, the anisotropic strain effects on lithium diffusion in graphite anodes are systematically investigated using first-principles calculations based on density functional theory (DFT) with van der Waals corrections. It is found that the effects of external applied strains along various directions of LixC6 (i.e., perpendicular or parallel to the basal planes of the graphite host) on lithium diffusivity are different. Along the direction perpendicular to the graphite planes, the tensile strain facilitates in-plane Li diffusion by reducing the energy barrier, and the compressive strain hinders in-plane Li diffusion by raising the energy barrier. In contrast, the in-plane biaxial tensile strain (parallel to the graphite planes) hinders in-plane Li diffusion, and the in-plane biaxial compressive strain facilitates in-plane Li diffusion. Furthermore, both in-plane and transverse shear strains slightly influence Li diffusion in graphite anodes. A discussion is presented to explain the anisotropic strain dependence of lithium diffusion. This research provides data for the continuum modelling of the electrodes in the lithium-ion batteries.

  14. Effect of Bi substitution on the magnetic and magnetocaloric properties of Ni50Mn35In15-xBix Heusler alloys

    Science.gov (United States)

    Aryal, Anil; Quetz, Abdiel; Pandey, Sudip; Dubenko, Igor; Stadler, Shane; Ali, Naushad

    2018-05-01

    The structural, magnetic, magnetocaloric, and transport properties of Ni50Mn35In15-xBix (x = 0, 0.25, 0.5, 1, 1.5) compounds has been studied through X-ray diffraction (XRD), differential scanning calorimetry, and magnetization measurements. A mixture of high temperature austenite phase (AP) and low temperature martensitic phase (MP) was observed from the XRD at room temperature. The saturation magnetization MS at 10 K was found to decrease with increasing Bi content. A shift in the martensitic transition temperature (TM) relative to the parent compound was observed with a maximum shift of ˜ 36 K for x = 1.5. Abnormal shifts in TC and TM to higher temperatures were observed at high field for x ≥ 0.5. Large magnetic entropy changes (ΔSM) of about 40 J/kg K (x = 0) and 34 J/kg K (x = 0.25) were observed at TM with H = 5 T, which reduced significantly for higher Bi concentrations. The doping of small amounts of Bi in the In sites increased the peak width of the ΔSM curves at the second order transition, leading to larger values of relative cooling power. A significant magnetoresistance (-30%) was observed near TM with ΔH = 5T for x = 0.5.

  15. Magnetic properties and low-temperature large magnetocaloric effect in the antiferromagnetic HoCu{sub 0.33}Ge{sub 2} and ErCu{sub 0.25}Ge{sub 2} compounds

    Energy Technology Data Exchange (ETDEWEB)

    Gao, R.L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Xu, Z.Y., E-mail: zhyxu@nim.ac.cn [National Institute of Metrology, Beijing 100029 (China); Wang, L.C. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Dong, Q.Y.; Zhang, Y. [Department of Physics, Capital Normal University, Beijing 100048 (China); Liu, F.H. [National Space Science Center, Beijing 100190 (China); Mo, Z.J. [School of material Science and Engineering, Hebei University of Technology, Tianjin 300401 (China); Niu, E. [State Key Laboratory for Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190 (China); Fu, C.L.; Cai, W.; Chen, G.; Deng, X.L. [School of Metallurgy and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China)

    2015-05-15

    Highlights: • Antiferromagnetic material RCu{sub x}Ge{sub 2} of high purity was prepared. • Large MCE as −10.2 J/kg K and −10.5 J/kg K for RCu{sub x}Ge{sub 2} (Ho, Er) was obtained for field change of 0–50 kOe. • The RCu{sub x}Ge{sub 2} compounds with variable x had different transition temperature which made them suitable for ‘table-like’ magnetocaloric refrigerant. - Abstract: Magnetic properties and magnetocaloric effect (MCE) of HoCu{sub 0.33}Ge{sub 2} and ErCu{sub 0.25}Ge{sub 2} compounds have been investigated. The compounds were determined to be antiferromagnetic with the Néel temperatures T{sub N} = 9 K and 3.9 K, respectively. The critical transition magnetic fields for the metamagnetic transition from antiferromagnetic to ferromagnetic state below T{sub N} were determined to be 10 kOe for HoCu{sub 0.33}Ge{sub 2} at 5 K and 6 kOe for ErCu{sub 0.25}Ge{sub 2} at 2 K. Large MCE with the maximal values of magnetic entropy changes (ΔS{sub M}) as −10.2 J/kg K at 10.5 K were found in HoCu{sub 0.33}Ge{sub 2} for field changes of 0–70 kOe and −10.5 J/kg K at 5.5 K in ErCu{sub 0.25}Ge{sub 2} for field changes of 0–50 kOe, respectively. The large ΔS{sub M} around T{sub N} as well as no hysteresis loss made RCu{sub x}Ge{sub 2} competitive candidates as low temperature magnetic refrigerant.

  16. Integrated Sachs-Wolfe effect in a quintessence cosmological model: Including anisotropic stress of dark energy

    International Nuclear Information System (INIS)

    Wang, Y. T.; Xu, L. X.; Gui, Y. X.

    2010-01-01

    In this paper, we investigate the integrated Sachs-Wolfe effect in the quintessence cold dark matter model with constant equation of state and constant speed of sound in dark energy rest frame, including dark energy perturbation and its anisotropic stress. Comparing with the ΛCDM model, we find that the integrated Sachs-Wolfe (ISW)-power spectrums are affected by different background evolutions and dark energy perturbation. As we change the speed of sound from 1 to 0 in the quintessence cold dark matter model with given state parameters, it is found that the inclusion of dark energy anisotropic stress makes the variation of magnitude of the ISW source uncertain due to the anticorrelation between the speed of sound and the ratio of dark energy density perturbation contrast to dark matter density perturbation contrast in the ISW-source term. Thus, the magnitude of the ISW-source term is governed by the competition between the alterant multiple of (1+3/2xc-circumflex s 2 ) and that of δ de /δ m with the variation of c-circumflex s 2 .

  17. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    Science.gov (United States)

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  18. Waveguide effect under 'antiguiding' conditions in graded anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Kozlov, A V; Mozhaev, V G; Zyryanova, A V, E-mail: av_kozlov@inbox.r, E-mail: vgmozhaev@mail.r, E-mail: annazyr@mail.r [Faculty of Physics, Moscow State University, Moscow, 119991 GSP-1 (Russian Federation)

    2010-02-24

    A new wave confinement effect is predicted in graded crystals with a concave slowness surface under conditions of growth of the phase velocity with decreasing distance from the waveguide axis. This finding overturns the common notion about the guiding and 'antiguiding' profiles of wave velocity in inhomogeneous media. The waveguide effect found is elucidated by means of ray analysis and particular exact wave solutions. The exact solution obtained for localized flexural waves in thin plates of graded cubic and tetragonal crystals confirms the predicted effect. Since this solution is substantially different with respect to the existence conditions from all others yet reported, and it cannot be deduced from the previously known results, the predicted waves can be classified as a new type of waveguide mode in graded anisotropic media. Although the concrete calculations are given in the article for acoustic waves, its general predictions are expected to be valid for waves of various natures, including spin, plasma, and optical waves.

  19. Controlling competing orders via nonequilibrium acoustic phonons: Emergence of anisotropic effective electronic temperature

    Science.gov (United States)

    Schütt, Michael; Orth, Peter P.; Levchenko, Alex; Fernandes, Rafael M.

    2018-01-01

    Ultrafast perturbations offer a unique tool to manipulate correlated systems due to their ability to promote transient behaviors with no equilibrium counterpart. A widely employed strategy is the excitation of coherent optical phonons, as they can cause significant changes in the electronic structure and interactions on short time scales. One of the issues, however, is the inevitable heating that accompanies these resonant excitations. Here, we explore a promising alternative route: the nonequilibrium excitation of acoustic phonons, which, due to their low excitation energies, generally lead to less heating. We demonstrate that driving acoustic phonons leads to the remarkable phenomenon of a momentum-dependent effective temperature, by which electronic states at different regions of the Fermi surface are subject to distinct local temperatures. Such an anisotropic effective electronic temperature can have a profound effect on the delicate balance between competing ordered states in unconventional superconductors, opening a so far unexplored avenue to control correlated phases.

  20. Martensitic transition, inverse magnetocaloric effect and shape memory characteristics in Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} Heusler alloys

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Changqin [Department of Physics, Shanghai University, Shanghai 200444 (China); Li, Zhe [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Zhang, Yuanlei [Department of Physics, Shanghai University, Shanghai 200444 (China); Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Liu, Yang; Sun, Junkun; Huang, Yinsheng; Kang, Baojuan [Department of Physics, Shanghai University, Shanghai 200444 (China); Xu, Kun [Reasearch center for magnetic materials and devices & Key Laboratory for Advanced Functional and Low Dimensional Materials of Yunnan Higher Education Institute, Qujing Normal University, Qujing 655011 (China); Deng, Dongmei [Department of Physics, Shanghai University, Shanghai 200444 (China); Jing, Chao, E-mail: cjing@staff.shu.edu.cn [Department of Physics, Shanghai University, Shanghai 200444 (China)

    2017-03-01

    In this paper, we have systematically prepared a serials of polycrystalline Mn{sub 48−x}Cu{sub x}Ni{sub 42}Sn{sub 10} alloys (x=0, 1, 3, 5, 6, 8, 10 and 12) and investigated the influence of the Cu doping on martensitic transition (MT) as well as magnetic properties. Experimental results indicate that the MT temperature and the martensite Curie temperature (T{sub c}{sup M}) shift to high temperature with increasing the substitution of Cu (from Mn rich alloy to Ni rich alloy), while the austenite Curie temperature (T{sub c}{sup A}) is almost unchanged. It was found that the structures undergo L2{sub 1} and 4O with the increasing of Cu concentration near room temperature. Therefore, the magnetostructural transition can be tuned by appropriate Cu doping in these alloys. Moreover, we mainly studied the multiple functional properties for inverse magnetocaloric effect and shape memory characteristics associated with the martensitic transition. A large positive isothermal entropy change of Mn{sub 48}Ni{sub 42}Sn{sub 10} was obtained, and the maximum transition entropy change achieves about 48 J/kg K as x=8. In addition, a considerable temperature-induced spontaneous strain with the value of 0.16% was obtained for Mn{sub 48}Ni{sub 42}Sn{sub 10} alloys.

  1. Effect of normal impurities on anisotropic superconductors with variable density of states

    Science.gov (United States)

    Whitmore, M. D.; Carbotte, J. P.

    1982-06-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron-electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(ɛ), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T c by both the anisotropy and the peak in N(ɛ) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak.

  2. Effect of normal impurities on anisotropic superconductors with variable density of states

    International Nuclear Information System (INIS)

    Whitmore, M.D.; Carbotte, J.P.

    1982-01-01

    We develop a generalized BCS theory of impure superconductors with an anisotropic electron--electron interaction represented by the factorizable model introduced by Markowitz and Kadanoff, and a variable electronic density of states N(epsilon-c), assumed to peak at the Fermi energy, which is modeled by a Lorentzian superimposed on a uniform background. As the impurity scattering is increased, the enhancement of T/sub c/ by both the anisotropy and the peak in N(epsilon-c) is washed out. The reduction is investigated for different values of the anisotropy and different peak heights and widths. It is concluded that the effects of anisotropy and the peak are reduced together in such a way that any effect due to anisotropy is not easily distinguishable from that due to the peak

  3. Magnetocaloric effect and negative thermal expansion in hexagonal Fe doped MnNiGe compounds with a magnetoelastic AFM-FM-like transition.

    Science.gov (United States)

    Xu, Kun; Li, Zhe; Liu, Enke; Zhou, Haichun; Zhang, Yuanlei; Jing, Chao

    2017-01-30

    We report a detailed study of two successive first-order transitions, including a martensitic transition (MT) and an antiferromagnetic (AFM)-ferromagnetic (FM)-like transition, in Mn 1-x Fe x NiGe (x = 0, 0.06, 0.11) alloys by X-ray diffraction, differential scanning calorimetry, magnetization and linear thermal expansion measurements. Such an AFM-FM-like transition occurring in the martensitic state has seldom been observed in the M(T) curves. The results of Arrott plot and linear relationship of the critical temperature with M 2 provide explicit evidence of its first-order magnetoelastic nature. On the other hand, their performances as magnetocaloric and negative thermal expansion materials were characterized. The isothermal entropy change for a field change of 30 kOe reaches an impressive value of -25.8 J/kg K at 203 K for x = 0.11 compared to the other two samples. It demonstrates that the magneto-responsive ability has been significantly promoted since an appropriate amount of Fe doping can break the local Ni-6Mn AFM configuration. Moreover, the Fe-doped samples reveal both the giant negative thermal expansion and near-zero thermal expansion for different temperature ranges. For instance, the average thermal expansion coefficient ā of x = 0.06 reaches -60.7 × 10 -6 /K over T = 231-338 K and 0.6 × 10 -6 /K over T = 175-231 K during cooling.

  4. Magnetostructural transformation and magnetocaloric effect in Mn48‑x V x Ni42Sn10 ferromagnetic shape memory alloys

    Science.gov (United States)

    Hassan, Najam ul; Shah, Ishfaq Ahmad; Khan, Tahira; Liu, Jun; Gong, Yuanyuan; Miao, Xuefei; Xu, Feng

    2018-03-01

    In this work, we tuned the magnetostructural transformation and the coupled magnetocaloric properties of Mn48‑x V x Ni42Sn10 (x = 0, 1, 2, and 3) ferromagnetic shape memory alloys prepared by means of partial replacement of Mn by V. It is observed that the martensitic transformation temperatures decrease with the increase of V content. The shift of the transition temperatures to lower temperatures driven by the applied field, the metamagnetic behavior, and the thermal hysteresis indicates the first-order nature for the magnetostructural transformation. The entropy changes with a magnetic field variation of 0–5 T are 15.2, 18.8, and 24.3 {{J}}\\cdot {kg}}-1\\cdot {{{K}}}-1 for the x = 0, 1, and 2 samples, respectively. The tunable martensitic transformation temperature, enhanced field driving capacity, and large entropy change suggest that Mn48‑x V x Ni42Sn10 alloys have a potential for applications in magnetic cooling refrigeration. Project supported by the National Natural Science Foundation of China (Grant Nos. 51601092, 51571121, and 11604148), the Fundamental Research Funds for the Central Universities, China (Grant Nos. 30916011344 and 30916011345), the Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China, the Postdoctoral Science Foundation Funded Project (Grant No. 2016M591851), the Natural Science Foundation of Jiangsu Province, China (Grant Nos. BK20160833, 20160829, and 20140035), the Qing Lan Project of Jiangsu Province, the Priority Academic Program Development of Jiangsu Higher Education Institutions, and Shanxi Scholarship Council of China (Grant No. 2016-092).

  5. Study of Magnetocaloric Cooling for Thermal Management

    Science.gov (United States)

    2012-11-12

    The AMR bed, made of stainless steel 304, encloses the magnetocaloric working substance. Each part of the refrigerator is controlled by the...prototype is composed of magnetic field, hydraulic circuit, stainless steel AMR bed and control system. There are various sensors for measuring...DSC and VSM results show that the martensitic transition temperatures of Ni-Co-Mn-Sn decreased with increasing Co content. Co substitution resulted in

  6. Magnetocaloric materials and first order phase transitions

    DEFF Research Database (Denmark)

    Neves Bez, Henrique

    and magnetocaloric regenerative tests. The magnetic, thermal and structural properties obtained from such measurements are then evaluated through different models, i.e. the Curie-Weiss law, the Bean-Rodbell model, the free electron model and the Debye model.The measured magnetocaloric properties of La0.67Ca0.33MnO3...... heat capacity, magnetization and entropy change measurements. By measuring bulky particles (with a particle size in the range of 5001000 μm) of La(Fe,Mn,Si)13Hz with first order phase transition, it was possible to observe very sharp transitions. This is not the case for finer ground particles which......This thesis studies the first order phase transitions of the magnetocaloric materials La0.67Ca0.33MnO3 and La(Fe,Mn,Si)13Hz trying to overcome challenges that these materials face when applied in active magnetic regenerators. The study is done through experimental characterization and modelling...

  7. Effect of mechanical boundary conditions on the dynamic and static properties of a strongly anisotropic ferromagnet

    International Nuclear Information System (INIS)

    Gorelikov, G. A.; Fridman, Yu. A.

    2013-01-01

    The spectra of coupled magnetoelastic waves in a semi-infinite strongly anisotropic easy-plane ferromagnet with a rigidly fixed face are analyzed for two variants of fixation (in the basal plane and perpendicularly to it). The phase states of the system are determined. Differences in the phase diagrams and elementary excitation spectra depending on the choice of the sample fixation plane are considered. When rotational invariance is taken into account, the nonreciprocity effect for the velocities of sound in a crystal appears. It is shown that the velocity of sound in the sample considerably depends on the symmetry of the imposed mechanical boundary conditions. The phase diagrams of the system under investigation are presented

  8. Anisotropic surroundings effects on photo absorption of partially embedded Au nanospheroids in silica glass substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meng, Xuan; Shibayama, Tamaki, E-mail: shiba@qe.eng.hokudai.ac.jp; Watanabe, Seiichi [Center for Advanced Research of Energy and Materials, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan); Yu, Ruixuan; Ishioka, Junya [Graduate School of Engineering, Hokkaido University, Sapporo, Hokkaido 060–8628 (Japan)

    2015-02-15

    The influence of a directly adjacent or an anisotropic surrounding medium alters the plasmonic properties of a nanoparticle because it provides a mechanism for symmetry breaking of the scattering. Given the success of ion irradiation induced embedment of rigid metallic nanospheroids into amorphous substrate, it is possible to examine the effect of the silica glass substrate on the plasmonic properties of these embedded nanospheroids. In this work presented here, discrete dipole approximation (DDA) calculations for the Au nanospheroids’ optical properties were performed based on 3–dimensional (3D) configuration extracted from planar SEM micrographs and cross–sectional TEM micrographs of the Au nanospheroids partially embedded in the silica glass, and the well–matched simulations with respect to the experimental measurements could demonstrate the dielectric constant at the near surface of silica glass decreased after Ar–ion irradiation.

  9. Effects of anisotropic diffusion and finite island sizes in homoepitaxial growth Pt on Pt(100)-hex

    DEFF Research Database (Denmark)

    Mortensen, Jens Jørgen; Linderoth, T.R.; Jacobsen, Karsten Wedel

    1998-01-01

    coverage regime. have been determined for substrate temperatures in the range T = 318-497 K and adatom deposition rates from R=4 x 10(-5) to 7 x 10(-3) site(-1) s(-1). The measurements are compared to the results of kinetic Monte Carlo (KMC) simulations and rate equation theory. The Pt(100)-hex surface...... exhibits a height modulation caused by the misfit between the topmost quasi-hexagonal layer and the quadratic substrate. resulting in a highly anisotropic large scale surface morphology with six-atom wide channels running along the [1(1) over bar0$] direction. From an autocorrelation analysis...... channels. Rate equations incorporating this effect are solved, and a scaling exponent of chi=1/3 is derived in contrast to the chi=1/4 obtained for a 1-D point-island model. (C) 1998 Elsevier Science B.V....

  10. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  11. A continuum anisotropic damage model with unilateral effect

    Directory of Open Access Journals (Sweden)

    A. Alliche

    2016-02-01

    Full Text Available A continuum damage mechanics model has been derived within the framework of irreversible thermodynamics with internal variables in order to describe the behaviour of quasi-brittle materials under various loading paths. The anisotropic character induced by the progressive material degradation is explicitly taken into account, and the Helmholtz free energy is a scalar function of the basic invariants of the second order strain and damage tensors. The elastic response varies depending on the closed or open configuration of defects. The constitutive laws derived within the framework of irreversible thermodynamics theory display a dissymmetry as well as unilateral effects under tensile and compressive loading conditions. This approach verifies continuity and uniqueness of the potential energy. An application to uniaxial tension-compression loading shows a good adequacy with experimental results when available, and realistic evolutions for computed stresses and strains otherwise.

  12. Anisotropic turbulence and zonal jets in rotating flows with a β-effect

    Directory of Open Access Journals (Sweden)

    B. Galperin

    2006-01-01

    Full Text Available Numerical studies of small-scale forced, two-dimensional turbulent flows on the surface of a rotating sphere have revealed strong large-scale anisotropization that culminates in the emergence of quasi-steady sets of alternating zonal jets, or zonation. The kinetic energy spectrum of such flows also becomes strongly anisotropic. For the zonal modes, a steep spectral distribution, E(n=CZ (Ω/R2 n-5, is established, where CZ=O(1 is a non-dimensional coefficient, Ω is the angular velocity, and R is the radius of the sphere, respectively. For other, non-zonal modes, the classical, Kolmogorov-Batchelor-Kraichnan, spectral law is preserved. This flow regime, referred to as a zonostrophic regime, appears to have wide applicability to large-scale planetary and terrestrial circulations as long as those are characterized by strong rotation, vertically stable stratification and small Burger numbers. The well-known manifestations of this regime are the banded disks of the outer planets of our Solar System. Relatively less known examples are systems of narrow, subsurface, alternating zonal jets throughout all major oceans discovered in state-of-the-art, eddy-permitting simulations of the general oceanic circulation. Furthermore, laboratory experiments recently conducted using the Coriolis turntable have basically confirmed that the lateral gradient of ''planetary vorticity'' (emulated via the topographic β-effect is the primary cause of the zonation and that the latter is entwined with the development of the strongly anisotropic kinetic energy spectrum that tends to attain the same zonal and non-zonal distributions, −5 and , respectively, in both the slope and the magnitude, as the corresponding spectra in other environmental conditions. The non-dimensional coefficient CZ in the −5 spectral law appears to be invariant, , in a variety of simulated and natural flows. This paper provides a brief review of the zonostrophic regime. The review includes the

  13. Magnetocaloric effect and the influence of pressure on magnetic properties of La-excess pseudo-binary alloys La{sub 1+δ}(Fe{sub 0.85}Si{sub 0.15}){sub 13}

    Energy Technology Data Exchange (ETDEWEB)

    Vuong, Van Hiep; Do Thi, Kim Anh [Faculty of Physics, VNU-University of Science, 334 Nguyen Trai, Ha Noi (Viet Nam); Thuan Nguyen, Khac; Nhat Hoang, Nam, E-mail: namnhat@gmail.com, E-mail: nhathn@vnu.edu.vn [Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, 144 Xuan Thuy, Ha Noi (Viet Nam); Le, Van Hong [Duy Tan University, 25 Quang Trung str., Da Nang (Viet Nam)

    2016-10-14

    The La-excess alloys La{sub 1+δ}(Fe{sub 0.85}Si{sub 0.15}){sub 13} (δ = 0.06 and 0.09) exhibit large magnetocaloric effect which has been attributed to the occurrence of itinerant-electron metamagnetic transition near the Curie temperature T{sub C}. The maximum entropy change −ΔS{sub m} was shown to be from 4.5 to 11.5 J/kg K for the applied field variation ΔH from 20 to 70 kOe, respectively. The estimated relative cooling power for ΔH = 70 kOe was 418 J/kg. The alloys show a typical NaZn{sub 13}-type cubic structure, featuring a doping-induced magnetovolume effect with the increase in T{sub C}. Under the applied pressure up to 2 GPa, the T{sub C} as deduced from resistance measurements decreased linearly, ΔT{sub C} = 113 (for δ = 0.06) and 111 K (for δ = 0.09), together with a corresponding decrease of resistivity, Δρ = 6.1 μΩ m at room temperature for both samples. At a low pressure, the effect of spontaneous magnetostriction on T{sub C} caused by applying the pressure appeared to have a similar magnitude to that of the negative magnetovolume effect caused by La-excess doping. In comparison with other stoichiometric La(Fe{sub 1−x}Si{sub x}){sub 13} compounds, the pressure in our case was shown to have a smaller influence on T{sub C}.

  14. Slope stability of bioreactor landfills during leachate injection: effects of heterogeneous and anisotropic municipal solid waste conditions.

    Science.gov (United States)

    Giri, Rajiv K; Reddy, Krishna R

    2014-03-01

    In bioreactor landfills, leachate recirculation can significantly affect the stability of landfill slope due to generation and distribution of excessive pore fluid pressures near side slope. The current design and operation of leachate recirculation systems do not consider the effects of heterogeneous and anisotropic nature of municipal solid waste (MSW) and the increased pore gas pressures in landfilled waste caused due to leachate recirculation on the physical stability of landfill slope. In this study, a numerical two-phase flow model (landfill leachate and gas as immiscible phases) was used to investigate the effects of heterogeneous and anisotropic nature of MSW on moisture distribution and pore-water and capillary pressures and their resulting impacts on the stability of a simplified bioreactor landfill during leachate recirculation using horizontal trench system. The unsaturated hydraulic properties of MSW were considered based on the van Genuchten model. The strength reduction technique was used for slope stability analyses as it takes into account of the transient and spatially varying pore-water and gas pressures. It was concluded that heterogeneous and anisotropic MSW with varied unit weight and saturated hydraulic conductivity significantly influenced the moisture distribution and generation and distribution of pore fluid pressures in landfill and considerably reduced the stability of bioreactor landfill slope. It is recommended that heterogeneous and anisotropic MSW must be considered as it provides a more reliable approach for the design and leachate operations in bioreactor landfills.

  15. Effect of excess Ni on martensitic transition, exchange bias and inverse magnetocaloric effect in Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} alloy

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Mayukh K., E-mail: mayukh.ray@saha.ac.in; Bagani, K.; Banerjee, S., E-mail: sangam.banerjee@saha.ac.in

    2014-07-05

    Highlights: • Excess Ni causes an increase in the martensite transition temperature. • The system Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} exhibit multifunctional properties. • The RCP and EB increases continuously with excess Ni concentration in the system. • Antiferromagnetic interaction increases with excess Ni concentration. - Abstract: The martensitic transition, exchange bias (EB) and inverse magnetocaloric effect (IMCE) of bulk Ni{sub 2+x}Mn{sub 1.4−x}Sn{sub 0.6} (x = 0, 0.06, 0.12, 0.18) Heusler alloy is investigated in this paper. Substitution of Mn by Ni causes an increase in the martensite transition temperature (T{sub M}), decrease in Curie temperature of austenite phase (T{sub C}{sup A}) and also a decrease in the saturation magnetic moment (M{sub sat}). While the decrease in T{sub C}{sup A} and M{sub sat} is explained by the dilution of the magnetic subsystems and on the other hand the increase in T{sub M} is due to the increase of valence electron concentration per atom (e/a). All the alloys shows EB effect below a certain temperature (T{sup ∗}) and EB field (H{sub EB}) value is almost thrice in magnitude for x = 0.18 sample compared to x = 0 sample at 5 K. In these alloys, Ni/Mn atoms at regular site couples antiferromagnetically (AFM) with the excess Ni atoms at Mn or Sn sites and this AFM coupling plays the key role in the observation of EB. For the IMCE, the change in magnetic entropy (ΔS{sub M}) initially increased with excess Ni concentration upto x = 0.12 but then a drastic fall in ΔS{sub M} value is observed for the sample x = 0.18 but the relative cooling power (RCP) value is increased continuously with the excess Ni concentration.

  16. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    anisotropic ray tracing. x. Chapter 4 presents the data reduction of the P matrix of a crystal waveplate. The diattenuation is embedded in the singular values of P. The retardance is divided into two parts: (A) The physical retardance induced by OPLs and surface interactions, and (B) the geometrical transformation induced by geometry of a ray path, which is calculated by the geometrical transform Q matrix. The Q matrix of an anisotropic intercept is derived from the generalization of s- and p-bases at the anisotropic intercept; the p basis is not confined to the plane of incidence due to the anisotropic refraction or reflection. Chapter 5 shows how the multiple P matrices associated with the eigenmodes resulting from propagation through multiple anisotropic surfaces can be combined into one P matrix when the multiple modes interfere in their overlapping regions. The resultant P matrix contains diattenuation induced at each surface interaction as well as the retardance due to ray propagation and total internal reflections. The polarization aberrations of crystal waveplates and crystal polarizers are studied in Chapter 6 and Chapter 7. A wavefront simulated by a grid of rays is traced through the anisotropic system and the resultant grid of rays is analyzed. The analysis is complicated by the ray doubling effects and the partially overlapping eigen-wavefronts propagating in various directions. The wavefront and polarization aberrations of each eigenmode can be evaluated from the electric field distributions. The overall polarization at the plane of interest or the image quality at the image plane are affected by each of these eigen-wavefronts. Isotropic materials become anisotropic due to stress, strain, or applied electric or magnetic fields. In Chapter 8, the P matrix for anisotropic materials is extended to ray tracing in stress birefringent materials which are treated as spatially varying anisotropic materials. Such simulations can predict the spatial retardance variation

  17. The influence of non-magnetocaloric properties on the AMR performance

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian; Smith, Anders

    2012-01-01

    The performance of Active Magnetic Regenerators (AMR) does not depend solely on the magnetocaloric effect of their constituents. Rather, it depends on several additional parameters, including, magnetic field, geometry (hydraulic diameter, cross-sectional area, regenerator length etc.), thermal pr...... a strong dependence on the orientation of the applied field and the regenerator geometry. Finally, the flow maldistribution of non-uniform regenerator geometries is found to degrade the AMR performance even at minor deviations from perfectly homogeneous regenerator matrices.......The performance of Active Magnetic Regenerators (AMR) does not depend solely on the magnetocaloric effect of their constituents. Rather, it depends on several additional parameters, including, magnetic field, geometry (hydraulic diameter, cross-sectional area, regenerator length etc.), thermal...... properties (conductivity, specific heat and mass density) and operating parameters (utilization, frequency, number of transfer units etc.). In this paper we focus on the influence of three parameters on regenerator performance: 1) Solid thermal conductivity, 2) magnetostatic demagnetization and 3) flow...

  18. Effects of Hall current and electrical resistivity on the stability of gravitating anisotropic quantum plasma

    Science.gov (United States)

    Bhakta, S.; Prajapati, R. P.

    2018-02-01

    The effects of Hall current and finite electrical resistivity are studied on the stability of uniformly rotating and self-gravitating anisotropic quantum plasma. The generalized Ohm's law modified by Hall current and electrical resistivity is used along with the quantum magnetohydrodynamic fluid equations. The general dispersion relation is derived using normal mode analysis and discussed in the parallel and perpendicular propagations. In the parallel propagation, the Jeans instability criterion, expression of critical Jeans wavenumber, and Jeans length are found to be independent of non-ideal effects and uniform rotation but in perpendicular propagation only rotation affects the Jeans instability criterion. The unstable gravitating mode modified by Bohm potential and the stable Alfven mode modified by non-ideal effects are obtained separately. The criterion of firehose instability remains unaffected due to the presence of non-ideal effects. In the perpendicular propagation, finite electrical resistivity and quantum pressure anisotropy modify the dispersion relation, whereas no effect of Hall current was observed in the dispersion characteristics. The Hall current, finite electrical resistivity, rotation, and quantum corrections stabilize the growth rate. The stability of the dynamical system is analyzed using the Routh-Hurwitz criterion.

  19. Some Aspects of Scaling and Universality in Magnetocaloric Materials

    DEFF Research Database (Denmark)

    Smith, Anders; Nielsen, Kaspar Kirstein; Bahl, Christian R.H.

    2014-01-01

    The magnetocaloric effect of a magnetic material is characterized by two quantities, the isothermal entropy change and the adiabatic temperature change, both of which are functions of temperature and applied magnetic field. We discuss the scaling properties of these quantities close to a second...... order phase transition within the context of critical scaling theory. In the critical region the isothermal entropy change will exhibit universal scaling exponents. However, this is only true close to Tc and for small fields; we show that for finite fields the scaling exponents in general become field...... dependent, even at Tc. Furthermore, the scaling exponents at finite fields are not universal: Two models with the same critical exponents can exhibit markedly different scaling behaviour even at relatively low fields. Turning to the adiabatic temperature change, we argue that it is not determined...

  20. Magnetocaloric properties of Gd in fields up to 14 T

    Energy Technology Data Exchange (ETDEWEB)

    Koshkid' ko, Yu.S. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Ćwik, J., E-mail: jacek.cwik@ml.pan.wroc.pl [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Ivanova, T.I.; Nikitin, S.A. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Lomonosov Moscow State University, Faculty of Physics, 119991 Moscow (Russian Federation); Miller, M. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Rogacki, K. [International Laboratory of High Magnetic Fields and Low Temperatures, PAS, 53-421 Wroclaw (Poland); Institute of Low Temperatures and Structure Research, PAS, 50-950 Wroclaw (Poland)

    2017-07-01

    Highlights: • MCE of Gd in fields up to 14 T. • Extraction. • MCE described in terms of the Landau theory. - Abstract: The magnetocaloric effect (MCE) of polycrystalline gadolinium was studied in high steady magnetic fields up to 14 T by direct measurements of the adiabatic temperature change (ΔT) using an “extraction method”. Large MCE was observed at the ferromagnetic phase transition resulting in ΔT of 19.5 K at a field change of 14 T. The direct measurements of MCE were performed using the measuring system designed and constructed by the authors. It was shown that near the Curie temperature, the magnetic field dependence of the adiabatic temperature change is far from saturation even in a 14 T field and is adequately described by the thermodynamic Landau theory for magnetic second-order phase transitions.

  1. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-01-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth's subsurface requires

  2. Co and In doped Ni-Mn-Ga magnetic shape memory alloys: a thorough structural, magnetic and magnetocaloric study

    Czech Academy of Sciences Publication Activity Database

    Fabbrici, S.; Porcari, G.; Cugini, F.; Solzi, M.; Kamarád, Jiří; Arnold, Zdeněk; Cabassi, R.; Albertini, F.

    2014-01-01

    Roč. 16, č. 4 (2014), s. 2204-2222 ISSN 1099-4300 Institutional support: RVO:68378271 Keywords : magnetic shape memory materials * magnetocaloric effect * multifunctional Heusler alloys Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.502, year: 2014

  3. Effects of anisotropic turbulent thermal diffusion on spherical magnetoconvection in the Earth's core

    Science.gov (United States)

    Ivers, D. J.; Phillips, C. G.

    2018-03-01

    We re-consider the plate-like model of turbulence in the Earth's core, proposed by Braginsky and Meytlis (1990), and show that it is plausible for core parameters not only in polar regions but extends to mid- and low-latitudes where rotation and gravity are not parallel, except in a very thin equatorial layer. In this model the turbulence is highly anisotropic with preferred directions imposed by the Earth's rotation and the magnetic field. Current geodynamo computations effectively model sub-grid scale turbulence by using isotropic viscous and thermal diffusion values significantly greater than the molecular values of the Earth's core. We consider a local turbulent dynamo model for the Earth's core in which the mean magnetic field, velocity and temperature satisfy the Boussinesq induction, momentum and heat equations with an isotropic turbulent Ekman number and Roberts number. The anisotropy is modelled only in the thermal diffusion tensor with the Earth's rotation and magnetic field as preferred directions. Nonlocal organising effects of gravity and rotation (but not aspect ratio in the Earth's core) such as an inverse cascade and nonlocal transport are assumed to occur at longer length scales, which computations may accurately capture with sufficient resolution. To investigate the implications of this anisotropy for the proposed turbulent dynamo model we investigate the linear instability of turbulent magnetoconvection on length scales longer than the background turbulence in a rotating sphere with electrically insulating exterior for no-slip and isothermal boundary conditions. The equations are linearised about an axisymmetric basic state with a conductive temperature, azimuthal magnetic field and differential rotation. The basic state temperature is a function of the anisotropy and the spherical radius. Elsasser numbers in the range 1-20 and turbulent Roberts numbers 0.01-1 are considered for both equatorial symmetries of the magnetic basic state. It is found

  4. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    DEFF Research Database (Denmark)

    Kuhn, Luise Theil; Pryds, Nini; Bahl, Christian Robert Haffenden

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype...... refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric...... materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project...

  5. Magnetic refrigeration at room temperature - from magnetocaloric materials to a prototype

    International Nuclear Information System (INIS)

    Kuhn, L Theil; Pryds, N; Bahl, C R H; Smith, A

    2011-01-01

    Based on the magnetocaloric effect, magnetic refrigeration at room temperature has for the past decade been a promising, environmentally friendly new energy technology predicted to have a significantly higher efficiency than the present conventional methods. However, so far only a few prototype refrigeration machines have been presented worldwide and there are still many scientific and technological challenges to be overcome. We report here on the MagCool project, which spans all the way from basic materials studies to the construction of a prototype. Emphasis has been on ceramic magnetocaloric materials, their shaping and graded composition for technological use. Modelling the performance of a permanent magnet with optimum use of the flux and relatively low weight, and designing and constructing a prototype continuous magnetic refrigeration device have also been major tasks in the project.

  6. Two-point anchoring of a lanthanide-binding peptide to a target protein enhances the paramagnetic anisotropic effect

    International Nuclear Information System (INIS)

    Saio, Tomohide; Ogura, Kenji; Yokochi, Masashi; Kobashigawa, Yoshihiro; Inagaki, Fuyuhiko

    2009-01-01

    Paramagnetic lanthanide ions fixed in a protein frame induce several paramagnetic effects such as pseudo-contact shifts and residual dipolar couplings. These effects provide long-range distance and angular information for proteins and, therefore, are valuable in protein structural analysis. However, until recently this approach had been restricted to metal-binding proteins, but now it has become applicable to non-metalloproteins through the use of a lanthanide-binding tag. Here we report a lanthanide-binding peptide tag anchored via two points to the target proteins. Compared to conventional single-point attached tags, the two-point linked tag provides two to threefold stronger anisotropic effects. Though there is slight residual mobility of the lanthanide-binding tag, the present tag provides a higher anisotropic paramagnetic effect

  7. Structural flexibility in magnetocaloric RE5T4 (RE=rare-earth; T=Si,Ge,Ga) materials: Effect of chemical substitution on structure, bonding and properties

    Energy Technology Data Exchange (ETDEWEB)

    Misra, Sumohan [Iowa State Univ., Ames, IA (United States)

    2008-01-01

    The binary, ternary and multicomponent intermetallic compounds of rare-earth metals (RE) with group 14 elements (Tt) at the RE5Tt4 stoichiometry have been known for over 30 years, but only in the past decade have these materials become a gold mine for solid-state chemistry, materials science and condensed matter physics. It all started with the discovery of a giant magnetocaloric effect in Gd5Si2Ge2, along with other extraordinary magnetic properties, such as a colossal magnetostriction and giant magnetoresistance. The distinctiveness of this series is in the remarkable flexibility of the chemical bonding between well-defined, subnanometer-thick slabs and the resultant magnetic, transport, and thermodynamic properties of these materials. This can be controlled by varying either or both RE and Tt elements, including mixed rare-earth elements on the RE sites and different group 14 (or T = group 13 or 15) elements occupying the Tt sites. In addition to chemical means, the interslab interactions are also tunable by temperature, pressure, and magnetic field. Thus, this system provides a splendid 'playground' to investigate the interrelationships among composition, structure, physical properties, and chemical bonding. The work presented in this dissertation involving RE5T4 materials has resulted in the successful synthesis, characterization, property measurements, and theoretical analyses of various new intermetallic compounds. The results provide significant insight into the fundamental magnetic and structural behavior of these materials and help us better understand the complex link between a compound's composition, its observed structure, and its properties.

  8. Tuning of normal and inverse magnetocaloric effect in Sm{sub 0.35}Pr{sub 0.15}Sr{sub 0.5}MnO{sub 3} phase separated manganites

    Energy Technology Data Exchange (ETDEWEB)

    Giri, S.K. [Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India); Dasgupta, Papri; Poddar, A. [Experimental Condensed Matter Physics Division, Saha Institute of Nuclear Physics, West Bengal (India); Nath, T.K., E-mail: tnath@phy.iitkgp.ernet.in [Department of Physics, Indian Institute of Technology, Kharagpur, West Bengal 721302 (India)

    2015-05-15

    Graphical abstract: ΔS{sub M} vs. T plots of nano (left) and bulk (right) samples at different magnetic fields. - Highlights: • Bulk to nano show first order FM → PM phase transition at low magnetic field. • Bulk sample exhibits normal and inverse MCE around T{sub C} and after T{sub g}, respectively. • The value of ΔS{sub M} at T{sub C} is almost three times larger than at T{sub g}. • The value of ΔS{sub M} also decreases with reduction of particles sizes. • The bulk sample also exhibits a large RCP of 43.5 J/kg for a magnetic field of 1 T. - Abstract: Magnetic and magnetocaloric properties of Sm{sub 0.35}Pr{sub 0.15}Sr{sub 0.5}MnO{sub 3} polycrystalline manganite (bulk and nanometric samples) are investigated in detail. It has been observed that all the particle sizes (bulk to nano) show first order ferromagnetic → paramagnetic phase transition at low magnetic field. Ferromagnetic transition temperature also decreases with decreasing the particle size. This suggests that ferromagnetism is weakened and the first order magnetic phase transition is softened. We have investigated the magnetocaloric effect (MCE) of both bulk and nanometric samples around their spin glass-like transition temperature, T{sub g} and Curie temperature, T{sub C}. It has been found that bulk sample exhibits both normal (i.e., negative ΔS{sub M}) and inverse (i.e., positive ΔS{sub M}) MCE around T{sub C} and after T{sub g}, respectively. The value of ΔS{sub M} (+3.17 J kg{sup −1} K{sup −1}) at T{sub C} is almost three times larger than at T{sub g} (ΔS{sub M} = −0.52 J kg{sup −1} K{sup −1}) for a magnetic field change of 7 T. The bulk sample also exhibits a large relative cooling power (RCP) of 43.5 J/kg for a magnetic field of 1 T. The corresponding adiabatic temperature change of bulk sample is observed to be ∼1.5 K for a magnetic field change of 3 T. The value of ΔS{sub M} also decreases with reduction of particles sizes. The temperature width of ΔS{sub M

  9. Multiphase flow simulation with gravity effect in anisotropic porous media using multipoint flux approximation

    KAUST Repository

    Negara, Ardiansyah

    2015-03-04

    Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.

  10. Multiphase flow simulation with gravity effect in anisotropic porous media using multipoint flux approximation

    KAUST Repository

    Negara, Ardiansyah; Salama, Amgad; Sun, Shuyu

    2015-01-01

    Numerical investigations of two-phase flows in anisotropic porous media have been conducted. In the flow model, the permeability has been considered as a full tensor and is implemented in the numerical scheme using the multipoint flux approximation within the framework of finite difference method. In addition, the experimenting pressure field approach is used to obtain the solution of the pressure field, which makes the matrix of coefficient of the global system easily constructed. A number of numerical experiments on the flow of two-phase system in two-dimensional porous medium domain are presented. In this work, the gravity is included in the model to capture the possible buoyancy-driven effects due to density differences between the two phases. Different anisotropy scenarios have been considered. From the numerical results, interesting patterns of the flow, pressure, and saturation fields emerge, which are significantly influenced by the anisotropy of the absolute permeability field. It is found that the two-phase system moves along the principal direction of anisotropy. Furthermore, the effects of anisotropy orientation on the flow rates and the cross flow index are also discussed in the paper.

  11. Collision-induced absorption with exchange effects and anisotropic interactions: theory and application to H2 - H2.

    Science.gov (United States)

    Karman, Tijs; van der Avoird, Ad; Groenenboom, Gerrit C

    2015-02-28

    We discuss three quantum mechanical formalisms for calculating collision-induced absorption spectra. First, we revisit the established theory of collision-induced absorption, assuming distinguishable molecules which interact isotropically. Then, the theory is rederived incorporating exchange effects between indistinguishable molecules. It is shown that the spectrum can no longer be written as an incoherent sum of the contributions of the different spherical components of the dipole moment. Finally, we derive an efficient method to include the effects of anisotropic interactions in the computation of the absorption spectrum. This method calculates the dipole coupling on-the-fly, which allows for the uncoupled treatment of the initial and final states without the explicit reconstruction of the many-component wave functions. The three formalisms are applied to the collision-induced rotation-translation spectra of hydrogen molecules in the far-infrared. Good agreement with experimental data is obtained. Significant effects of anisotropic interactions are observed in the far wing.

  12. DEM Simulation of Biaxial Compression Experiments of Inherently Anisotropic Granular Materials and the Boundary Effects

    Directory of Open Access Journals (Sweden)

    Zhao-Xia Tong

    2013-01-01

    Full Text Available The reliability of discrete element method (DEM numerical simulations is significantly dependent on the particle-scale parameters and boundary conditions. To verify the DEM models, two series of biaxial compression tests on ellipse-shaped steel rods are used. The comparisons on the stress-strain relationship, strength, and deformation pattern of experiments and simulations indicate that the DEM models are able to capture the key macro- and micromechanical behavior of inherently anisotropic granular materials with high fidelity. By using the validated DEM models, the boundary effects on the macrodeformation, strain localization, and nonuniformity of stress distribution inside the specimens are investigated using two rigid boundaries and one flexible boundary. The results demonstrate that the boundary condition plays a significant role on the stress-strain relationship and strength of granular materials with inherent fabric anisotropy if the stresses are calculated by the force applied on the wall. However, the responses of the particle assembly measured inside the specimens are almost the same with little influence from the boundary conditions. The peak friction angle obtained from the compression tests with flexible boundary represents the real friction angle of particle assembly. Due to the weak lateral constraints, the degree of stress nonuniformity under flexible boundary is higher than that under rigid boundary.

  13. Development of a theoretical model for polycrystalline superconducting anisotropic using the effective medium approximation

    International Nuclear Information System (INIS)

    Cruz-García, A.; Muné, P; Govea-Alcaide, E.

    2008-01-01

    Full text: In this paper, is a study of the transport properties in anisotropic polycrystalline superconducting. The presence of certain order of orientation of grains in polycrystalline superconducting (Bi,Pb) 2 Sr 2 Ca 2 Cu 3 O 10+delta , is modeled by introducing a probability of orientation, gamma factor. In addition, is included in the model the concentration c, which characterize the contribution of porosity to the decrease in the conductivity of the Crystal, transparent. Assumes that pores and pimples are ellipsoid flattened with similar dimensions and takes into account the values of conductivity of beads in each direction. The calculation is based on the application of a generalization of the approximation of the effective way to the study of heterogeneous media, which is called coherent potential approximation (APC). The results are compared with an empirical model developed recently for samples of YBa 2 Cu 3 O 7 -delta (YBCO) which enriches its employment and applied to ceramic superconducting in general. (author)

  14. Magnetic Field Effects on Pure-state and Thermal Entanglement of Anisotropic Magnetic Nanodots

    Science.gov (United States)

    Istomin, Andrei Y.

    2005-05-01

    Anisotropic magnetic nanodots have recently been proposed as promising candidates for qubits for scalable quantum computing [1,2]. The main advantages of such magnetic qubits are their well-separated energy levels (which may allow operation at temperature of the order of a few K), nanometer size (which simplifies fabrication), and large spin values (which facilitates measurement of qubit states). The entanglement properties of eigenstates of a pair of Heisenberg-interacting nanodots have been analyzed in [2], where we have shown that ferromagnetic (FM) coupling produces two significantly entangled excited states. Here we investigate the magnetic field effects on the entanglement of these and other states. We show that entanglement of excited FM eigenstates of two non-identical nanodots can be tuned to its maximum value by applying a relatively weak non-uniform magnetic field. [1] J. Tejada, E.M. Chudnovsky, E. del Barco, J.M. Hernandez, and T.P. Spiller, Nanotechnology 12, 181 (2001). [2] R. Skomski, A.Y. Istomin, A.F. Starace, and D.J. Sellmyer, Phys. Rev. A 70, 062307 (2004).

  15. Analytical Solution for the Anisotropic Rabi Model: Effects of Counter-Rotating Terms

    Science.gov (United States)

    Zhang, Guofeng; Zhu, Hanjie

    2015-03-01

    The anisotropic Rabi model, which was proposed recently, differs from the original Rabi model: the rotating and counter-rotating terms are governed by two different coupling constants. This feature allows us to vary the counter-rotating interaction independently and explore the effects of it on some quantum properties. In this paper, we eliminate the counter-rotating terms approximately and obtain the analytical energy spectrums and wavefunctions. These analytical results agree well with the numerical calculations in a wide range of the parameters including the ultrastrong coupling regime. In the weak counter-rotating coupling limit we find out that the counter-rotating terms can be considered as the shifts to the parameters of the Jaynes-Cummings model. This modification shows the validness of the rotating-wave approximation on the assumption of near-resonance and relatively weak coupling. Moreover, the analytical expressions of several physics quantities are also derived, and the results show the break-down of the U(1)-symmetry and the deviation from the Jaynes-Cummings model.

  16. Critical behavior of the anisotropic Heisenberg model by effective-field renormalization group

    Science.gov (United States)

    de Sousa, J. Ricardo; Fittipaldi, I. P.

    1994-05-01

    A real-space effective-field renormalization-group method (ERFG) recently derived for computing critical properties of Ising spins is extended to treat the quantum spin-1/2 anisotropic Heisenberg model. The formalism is based on a generalized but approximate Callen-Suzuki spin relation and utilizes a convenient differential operator expansion technique. The method is illustrated in several lattice structures by employing its simplest approximation version in which clusters with one (N'=1) and two (N=2) spins are used. The results are compared with those obtained from the standard mean-field (MFRG) and Migdal-Kadanoff (MKRG) renormalization-group treatments and it is shown that this technique leads to rather accurate results. It is shown that, in contrast with the MFRG and MKRG predictions, the EFRG, besides correctly distinguishing the geometries of different lattice structures, also provides a vanishing critical temperature for all two-dimensional lattices in the isotropic Heisenberg limit. For the simple cubic lattice, the dependence of the transition temperature Tc with the exchange anisotropy parameter Δ [i.e., Tc(Δ)], and the resulting value for the critical thermal crossover exponent φ [i.e., Tc≂Tc(0)+AΔ1/φ ] are in quite good agreement with results available in the literature in which more sophisticated treatments are used.

  17. Enhancement of Magnetocaloric Effect in ({ {La}}_{0.67}{ {Ca}}_{0.33}{ {MnO}}_{3})/({ {La}}_{0.7}{ {Ba}}_{0.3}{ {MnO}}_{3}) ( La 0.67 Ca 0.33 MnO 3 ) / ( La 0.7 Ba 0.3 MnO 3 ) Composite

    Science.gov (United States)

    Khelifi, J.; Dhahri, E.; Hlil, E. K.

    2018-03-01

    The composite (La_{0.67}Ca_{0.33}MnO3)/La_{0.7}Ba_{0.3}MnO3) sample was prepared using the conventional solid-state reaction method, and their crystallographic structure was achieved by X-ray diffraction pattern analysis. The magnetic and magnetocaloric effect has been studied by magnetization measurements. Based on the relation: χ ^{-1}(T)∝ (T-T_C^Rand )^{1-λ }, the inverse of susceptibility shows a downturn before T_C indicating the existence of Griffiths phase for the temperature range T_C^Randphase has been obtained from detailed magnetization studies. Furthermore, a large magnetic entropy change is observed in (La_{0.67}Ca_{0.33}MnO3)/(La_{0.7}Ba_{0.3}MnO3) composite which possesses a large MCE characterized by two Δ S_M(T) peaks. It has revealed that the combination of manganite materials with different Curie temperatures is a possible method for enhancement of magnetocaloric effect. To determine the field dependence of the experimental Δ S_M(T), a local exponent n( T, H) can be calculated from the logarithmic derivative of the magnetic entropy change versus field; it is shown that for a multiphase system n evolves with field both at the Curie temperature of the system and at the Curie temperatures of the constituent phases.

  18. Magnetocaloric piezoelectric composites for energy harvesting

    International Nuclear Information System (INIS)

    Cleveland, Michael; Liang, Hong

    2012-01-01

    Magnetocaloric alloy, Gd 5 Si 2 Ge 2 , was developed into a composite with the poly(vinylidene fluoride) (PVDF) piezoelectric polymer. This multifunctional material possesses unique properties that are suitable for energy conversion and harvesting. Experimental approaches include using an arc melting technique to synthesize the Gd 5 Si 2 Ge 2 (GSG) alloy and the spinning casting method to fabricate the composite. The materials were characterized using various techniques at different length scales. These include atomic force microscopy (AFM), optical microscopy, scanning electron microscopy (SEM) with energy dispersive spectroscopy (EDS), x-ray diffraction (XRD), and x-ray photoelectron spectroscopy (XPS). The results indicated that the phase transformation of the magnetocaloric material close to its Curie temperature induced a significant increase in power generation in the piezoelectric polymer. The power output of a laminated structure was 1.1 mW, more than 200 thousand times higher than the piezoelectric materials alone (5.1 nW). (technical note)

  19. Magnetic and magnetocaloric properties of amorphous Y{sub 3}Fe{sub 5}O{sub 12} compound

    Energy Technology Data Exchange (ETDEWEB)

    Nóbrega, E.P., E-mail: pilad@cbpf.br; Costa, S.S.; Alvarenga, T.S.T.; Alho, B.P.; Caldas, A.; Ribeiro, P.O.; Sousa, V.S.R de; Oliveira, N.A. de; Ranke, P.J. von

    2017-01-15

    We report a theoretical model formed by two coupled magnetic sublattices of localized spins in the presence of an applied magnetic field to investigate the magnetic characteristics and magnetocaloric properties of amorphous yttrium iron garnet. The magnetic state equation is based on Handrich–Kobe´s theory, where the amorphization is taken into account by introducing fluctuations in the exchange parameters. Experimental results report that Y{sub 3}Fe{sub 5}O{sub 12} presents a structural phase transition from crystalline to amorphous caused by a variation of external pressure. This phase transition on Y{sub 3}Fe{sub 5}O{sub 12} leads to interesting results in the magnetic properties and magnetocaloric quantities. - Highlights: • Study of magnetic and magnetocaloric properties of amorphous Y{sub 3}Fe{sub 5}O{sub 12} compound. • Theoretical model formed by two coupled magnetic sublattices of localized spins in the presence of an applied magnetic field. • The influence of crystalline/amorphous transition on the magnetocaloric effect.

  20. Effects of the molecular rotational dynamics on dielectric and far-infra-red spectra of anisotropic liquids

    International Nuclear Information System (INIS)

    Nordio, P.L.; Segre, U.

    1981-01-01

    Dielectric and far-infra-red spectra of uniaxial liquid-crystal phase are analysed in terms of correlation functions calculated by a memory function formalism. SAIL (strong anisotropic interaction limit) conditions are always found to apply, resulting in diffusional regime at low working frequencies. Dipole friction has been also included in the calculations to consider many-particle interactions, its effect being analogous to the introduction of slowly relaxing local structures. (author)

  1. The effect of twist angle on anisotropic mobility of {1 1 0} hexagonal dislocation networks in α-iron

    International Nuclear Information System (INIS)

    Yang, J.B.; Osetsky, Y.N.; Stoller, R.E.; Nagai, Y.; Hasegawa, M.

    2012-01-01

    The anisotropic mobility of hexagonal dislocation networks (HDNs) in a series of (1 1 ¯ 0) twist boundaries under applied shear stress has been studied at the atomic scale in α-iron. A strong angular effect on the HDN mobility is found to be correlated with the dislocation core structure. The vector form of the Orowan equation and differential displacement maps of dislocation cores are used to account for the HDN behavior under loading.

  2. Anisotropic pressure effects on the Kagome Cu3Bi(SeO3)2O2Cl metamagnet

    Science.gov (United States)

    Wu, H. C.; Tseng, W. J.; Yang, P. Y.; Chandrasekhar, K. D.; Berger, H.; Yang, H. D.

    2017-07-01

    The anisotropic spin-flip-induced multiferroic property of the Kagome single-crystal Cu3Bi(SeO3)2O2Cl was recently investigated. The doping effects on the structural and magnetic properties of Cu3Bi(Se1-x Te x O3)2O2Cl (0 ≤slant x≤slant 0.6) polycrystalline samples were studied to further explore and manipulate the metamagnetic spin-flip transition. With higher Te concentration, the lattice constants a and b exhibit a linear increase, whereas the lattice constant c gradually decreases, which indicates that the anisotropic expansion and compression effect is induced by Te substitution in the Se site. Subsequently, the antiferromagnetic transition (T N) shifts to a higher temperature, the critical field ({{H}\\text{c}} ) of the metamagnetic spin-flip transition increases, and the value of the saturation magnetisation ({{M}\\text{s}} ) diminishes. Meanwhile, the effects of isotropic expansion (with Br doping) and compression (with external pressure) do not show a clear influence on the spin-flip phenomena. Our results emphasise the introduction of anisotropic pressure in Cu3Bi(SeO3)2O2Cl, which modulates the magnetic interaction of Cu (I)-O1-Cu (I) and Cu (I)-O1-Cu (II) and, consequently, enhances the {{H}\\text{c}} of the spin-flip transition.

  3. Magnetic properties and tunable magneto-caloric effect in La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 (x = 0.3, 0.5, and 0.7) compounds

    Science.gov (United States)

    Wu, Qiming; Wang, Xiangjie; Ding, Zan; Li, Lingwei

    2018-05-01

    The magnetic and magneto-caloric properties in the ternary elementals doped La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 (x = 0.3, 0.5, and 0.7) compounds were studied. With the increases of Co content x, the Curie temperature TC increases and the thermal hysteresis decreases. All the compounds undergo a second-order magnetic phase transition and exhibit a considerable reversible tunable magneto-caloric effect. The values of maximum magnetic entropy change (-ΔSMmax) and the Relative Cooling Power (RCP) are kept at same high level with different Co content. Under a magnetic field change of 0-5 T, the values of -ΔSMmax for La0.8Ce0.2Fe11.5-xCoxSi1.5C0.2 are 10.5, 10.7, and 9.8 J/kg K for x = 0.3, 0.5, and 0.7, respectively. The corresponding values of RCP are 267.1, 289.9, and 290.2 J/kg.

  4. Determination of effective dose in anisotropic gamma radiation fields: application of dosimeters calibrated in terms of Hp(10)

    International Nuclear Information System (INIS)

    Chumak, V. V.; Bakhanova, E. V.

    2003-01-01

    In this presentation authors deals with determination of effective dose in anisotropic gamma radiation fields. It was conclude that: - Straightforward application of Hp(10) as surrogate for E may not work under certain conditions; - Partial data on behavior of E and Hp(10) for different dosimeters allow to estimate E/Hp(10) conversion coefficients for any particular composite source; - In practical situations, anisotropy of workplace fields may be measured by six- collimator device assessing contribution to a dose from six orthogonal directions; - Reasonably conservative conversion coefficients may be assessed for given energy spectrum and degree of anisotropy of workplace fields; - For strongly anisotropic fields multiple dosimetry approach gives the best estimate of E comparing to plain Hp(10) readouts or integral conversion coefficients

  5. Effective Floquet Hamiltonian theory of multiple-quantum NMR in anisotropic solids involving quadrupolar spins: Challenges and Perspectives

    Science.gov (United States)

    Ganapathy, Vinay; Ramachandran, Ramesh

    2017-10-01

    The response of a quadrupolar nucleus (nuclear spin with I > 1/2) to an oscillating radio-frequency pulse/field is delicately dependent on the ratio of the quadrupolar coupling constant to the amplitude of the pulse in addition to its duration and oscillating frequency. Consequently, analytic description of the excitation process in the density operator formalism has remained less transparent within existing theoretical frameworks. As an alternative, the utility of the "concept of effective Floquet Hamiltonians" is explored in the present study to explicate the nuances of the excitation process in multilevel systems. Employing spin I = 3/2 as a case study, a unified theoretical framework for describing the excitation of multiple-quantum transitions in static isotropic and anisotropic solids is proposed within the framework of perturbation theory. The challenges resulting from the anisotropic nature of the quadrupolar interactions are addressed within the effective Hamiltonian framework. The possible role of the various interaction frames on the convergence of the perturbation corrections is discussed along with a proposal for a "hybrid method" for describing the excitation process in anisotropic solids. Employing suitable model systems, the validity of the proposed hybrid method is substantiated through a rigorous comparison between simulations emerging from exact numerical and analytic methods.

  6. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  7. Performance-oriented Analysis of a Hybrid magnetic Assembly for a Heat-pump Magnetocaloric Device

    DEFF Research Database (Denmark)

    Insinga, Andrea Roberto; Smith, Anders; Bahl, Christian R.H.

    2014-01-01

    Conventional active-regenerator magnetocaloric devices include moving parts, with the purpose of generating an oscillating magnetic field in the magneto-caloric material, placed inside the regenerator. In this work a different design is analyzed, for application in a magnetocaloric heat pump...

  8. Critical behavior of Y-doped Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} manganites exhibiting the tricritical point and large magnetocaloric effect

    Energy Technology Data Exchange (ETDEWEB)

    Phan, The-Long; Ho, T.A. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Thang, P.D. [Faculty of Engineering Physics and Nanotechnology, VNU-University of Engineering and Technology, Xuan Thuy, Cau Giay, Hanoi (Viet Nam); Tran, Q.T. [Center for Science and Technology Communication, Ministry of Science and Technology, 113 Tran Duy Hung, Hanoi (Viet Nam); Thanh, T.D.; Phuc, N.X. [Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Hanoi (Viet Nam); Phan, M.H. [Department of Physics, University of South Florida, Tampa, FL 33620 (United States); Huy, B.T. [Department of Chemistry, Changwon National University, Changwon 641-773 (Korea, Republic of); Yu, S.C., E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2014-12-05

    Highlights: • Tricritical point in Y-doped Nd{sub 0.7}Sr{sub 0.3}MnO{sub 3} manganites. • A large magnetic-entropy change. • Magnetic inhomogeneity and phase separation. - Abstract: We have determined the values of critical exponents of two polycrystalline samples (Nd{sub 1−x}Y{sub x}){sub 0.7}Sr{sub 0.3}MnO{sub 3} (x = 0 and 0.07) from the magnetization data versus temperature and magnetic field, M(H, T), to learn about their magnetic and magnetocaloric (MC) properties. The results reveal the samples exhibiting the crossover of first-order and second-order phase transitions, where the exponent values β = 0.271 and γ = 0.922 for x = 0, and β = 0.234–0.236 and γ = 1.044–1.063 for x = 0.07 determined by using modified Arrott plots and static-scaling hypothesis are close to those expected for the tricritical mean-field theory (β = 0.25 and γ = 1.0). Particularly, the T{sub C} of x = 0 and 0.07 can be any value in the temperature ranges of 240–255 K and 170–278 K, respectively, depending on the magnitude of applied magnetic field and determination techniques. Around the T{sub C}, studying the MC effect of the samples has revealed a large magnetic-entropy change (ΔS{sub m}) up to ∼8 J/kg K for the applied field interval ΔH = 50 kOe, corresponding to refrigerant capacity values of 200–245 J/kg. These phenomena are related to the crossover nature and the persisting of FM/anti-FM interactions even above the T{sub C}, as further confirmed by electron-spin-resonance data, Curie–Weiss law-based analyses, and an exponential parameter characteristic of magnetic order n = dLn|ΔS{sub m}|/dLnH.

  9. The right circular polarized waves in the three-dimensional anisotropic dispersive photonic crystals consisting of the magnetized plasma and uniaxial material as the Faraday effects considered

    International Nuclear Information System (INIS)

    Zhang, Hai-Feng; Liu, Shao-Bin; Tang, Yi-Jun; Zhen, Jian-Ping

    2014-01-01

    In this paper, the properties of the right circular polarized (RCP) waves in the three-dimensional (3D) dispersive photonic crystals (PCs) consisting of the magnetized plasma and uniaxial material with face-centered-cubic (fcc) lattices are theoretically investigated by the plane wave expansion method, which the homogeneous anisotropic dielectric spheres (the uniaxial material) immersed in the magnetized plasma background, as the Faraday effects of magnetized plasma are considered (the incidence electromagnetic wave vector is parallel to the external magnetic field at any time). The equations for calculating the anisotropic photonic band gaps (PBGs) for the RCP waves in the first irreducible Brillouin zone are theoretically deduced. The anisotropic PBGs and a flatbands region can be obtained. The effects of the ordinary-refractive index, extraordinary-refractive index, anisotropic dielectric filling factor, plasma frequency, and plasma cyclotron frequency (the external magnetic field) on the properties of first two anisotropic PBGs for the RCP waves are investigated in detail, respectively. The numerical results show that the anisotropy can open partial band gaps in fcc lattices at U and W points, and the complete PBGs for the RCP waves can be achieved compared to the conventional 3D dispersive PCs composed of the magnetized plasma and isotropic material. It is also shown that the first two anisotropic PBGs can be tuned by those parameters as mentioned above. Those PBGs can be enlarged by introducing the uniaxial material into such 3D PCs as the Faraday effects are considered

  10. Identifying the Experimental and Theoretical Effective Characteristics of Nonaligned Anisotropic Metamaterials

    Science.gov (United States)

    2015-06-18

    highly anisotropic. Jones matrix calculus and Generalized Ellipsometry ratios. In simple, isotropic samples, there is no way for one polarization state...better model to describe the data. A gradient - based approach is often used, analyzing each variable to determine what change will bring about a better...is a scaled version of the original vector. Going back to basic calculus , this means that over some infinitesimally small distance, the new vector will

  11. Coulomb Blockade Anisotropic Magnetoresistance Effect in a (Ga,Mn)As Single-Electron Transistor

    Czech Academy of Sciences Publication Activity Database

    Wunderlich, J.; Jungwirth, Tomáš; Kaestner, B.; Irvine, A.C.; Shick, Alexander; Stone, N.; Wang, K. Y.; Rana, U.; Giddings, A.D.; Foxon, C. T.; Campion, R. P.; Williams, D.A.; Gallagher, B. L.

    2006-01-01

    Roč. 97, č. 7 (2006), 077201/1-077201/4 ISSN 0031-9007 R&D Projects: GA ČR GA202/05/0575; GA MŠk LC510 Grant - others:EPSRC(GB) GR/S81407/01 Institutional research plan: CEZ:AV0Z10100521 Keywords : anisotropic magnetoresistance * Coulomb blockade * single electron transistor Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.072, year: 2006

  12. Anisotropic magnetoresistance and anomalous Nernst effect in exchange biased permalloy/(1 0 0) NiO single-crystal

    Energy Technology Data Exchange (ETDEWEB)

    Holanda, J., E-mail: joseholanda@df.ufpe.br; Maior, D.S.; Azevedo, A.; Rezende, S.M.

    2017-06-15

    Highlights: • We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer Py/(100) NiO single-Crystal. • The shift of the hysteresis loop, measured with the different techniques, yield approximately the same value of H{sub EB}. • In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. • The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films. - Abstract: We have investigated the anisotropic magnetoresistance (AMR) and the anomalous Nernst effect (ANE) in an exchange-biased bilayer consisting of a thin film of permalloy deposited on a single crystal antiferromagnetic NiO (1 0 0). The exchange bias field (H{sub EB}) value was obtained by means of AMR, ANE and magnetization hysteresis measurements. The shift of the hysteresis loop, measured with the three different techniques, yield approximately the same value of H{sub EB.} In spite of the measurement techniques be based in different physical phenomena, our results confirm the robustness of the exchange anisotropy at the Py/NiO interface. The strength of the anomalous Nernst effect for the exchange-biased permalloy film is compared to values measured in non biased films.

  13. Magnetocaloric properties of Nd.sub.5./sub.Si.sub.1.45./sub.Ge.sub.2.55./sub. compound under high hydrostatic pressure

    Czech Academy of Sciences Publication Activity Database

    Skorokhod, Yuriy; Arnold, Zdeněk; Kamarád, Jiří; Morellon, L.; Magen, C.

    2006-01-01

    Roč. 26, č. 4 (2006), s. 495-498 ISSN 0895-7959 R&D Projects: GA ČR(CZ) GA106/06/0368 Institutional research plan: CEZ:AV0Z10100521 Keywords : magnetocaloric effect * magnetic properties * pressure effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.228, year: 2006

  14. Materials Challenges for High Performance Magnetocaloric Refrigeration Devices

    DEFF Research Database (Denmark)

    Smith, Anders; Bahl, Christian; Bjørk, Rasmus

    2012-01-01

    Magnetocaloric materials with a Curie temperature near room temperature have attracted signifi cant interest for some time due to their possible application for high-effi ciency refrigeration devices. This review focuses on a number of key issues of relevance for the characterization, performance....... The question of how to evaluate the suitability of a given material for use in a magnetocaloric device is covered in some detail, including a critical assessment of a number of common performance metrics. Of particular interest is which non-magnetocaloric properties need to be considered in this connection....... An overview of several important materials classes is given before considering the performance of materials in actual devices. Finally, an outlook on further developments is presented....

  15. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    Energy Technology Data Exchange (ETDEWEB)

    Gogberashvili, Merab, E-mail: gogber@gmail.com [Andronikashvili Institute of Physics, 6 Tamarashvili St., Tbilisi 0177, Georgia (United States); Javakhishvili State University, 3 Chavchavadze Ave., Tbilisi 0128, Georgia (United States); Herrera-Aguilar, Alfredo, E-mail: aha@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Malagón-Morejón, Dagoberto, E-mail: malagon@fis.unam.mx [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Apdo. Postal 48-3, 62251 Cuernavaca, Morelos (Mexico); Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico); Mora-Luna, Refugio Rigel, E-mail: rigel@ifm.umich.mx [Instituto de Física y Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio C-3, Ciudad Universitaria, CP 58040, Morelia, Michoacán (Mexico)

    2013-10-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time.

  16. Anisotropic inflation in a 5D standing wave braneworld and effective dimensional reduction

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto; Mora-Luna, Refugio Rigel

    2013-01-01

    We investigate a cosmological solution within the framework of a 5D standing wave braneworld model generated by gravity coupled to a massless scalar phantom-like field. By obtaining a full exact solution of the model we found a novel dynamical mechanism in which the anisotropic nature of the primordial metric gives rise to (i) inflation along certain spatial dimensions, and (ii) deflation and a shrinking reduction of the number of spatial dimensions along other directions. This dynamical mechanism can be relevant for dimensional reduction in string and other higher-dimensional theories in the attempt of getting a 4D isotropic expanding space–time

  17. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    International Nuclear Information System (INIS)

    Aiello, Matias; Bengochea, Gabriel R.; Ferraro, Rafael

    2007-01-01

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory

  18. Anisotropic effects of background fields on Born-Infeld electromagnetic waves

    Energy Technology Data Exchange (ETDEWEB)

    Aiello, Matias [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: aiello@iafe.uba.ar; Bengochea, Gabriel R. [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: gabriel@iafe.uba.ar; Ferraro, Rafael [Instituto de Astronomia y Fisica del Espacio, Casilla de Correo 67, Sucursal 28, 1428 Buenos Aires (Argentina) and Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellon I, 1428 Buenos Aires (Argentina)]. E-mail: ferraro@iafe.uba.ar

    2007-01-22

    We show exact solutions of the Born-Infeld theory for electromagnetic plane waves propagating in the presence of static background fields. The non-linear character of the Born-Infeld equations generates an interaction between the background and the wave that changes the speed of propagation and adds a longitudinal component to the wave. As a consequence, in a magnetic background the ray direction differs from the propagation direction-a behavior resembling the one of a wave in an anisotropic medium. This feature could open up a way to experimental tests of the Born-Infeld theory.

  19. Anisotropic scattering effect in calculations of nuclear reactor cells by the surface preseudosource method

    International Nuclear Information System (INIS)

    Laletin, N.I.; Sultanov, N.V.; Boyarinov, V.F.

    1992-01-01

    Estimation is fulfilled of an influence of scattering anisotropy on K ef the TRX and BAPL assemblies by the WIMS-D4 program in the transport (TA) and linear-anisotropic (LAA) approximations. It is shown that account for the scattering anisotropy in the LAA in comparison with TA decreases K ef by 0.8% for TRX assemblies and by 0.5-0.6% for BAPL ones. For more detailed account for the scattering anisotropy in calculations of cylindrical and cluster cells in the one-velocity approximation is developed a technique for account for the anisotropy in the methods of surface pseudosources

  20. Design, fabrication and thermal characterization of a magnetocaloric microcooler

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S.; Ghirlanda, S.; Adams, C.; Bethala, B.; Sambandam, S.N.; Bhansali, S. [BioMEMS and Microsystems Laboratory, Department of Electrical Engineering, University of South Florida, 4202 E. Fowler Ave., ENB118, Tampa, FL 33620, (United States)

    2006-12-11

    Magnetocaloric cooling is an alternative, high-efficiency cooling technology. In this paper, we present the design and fabrication of a micromachined magnetocaloric cooler and demonstrate its ability to work in a small magnetic field (<1.2 T) with a cooling test. The cooler was built by fabricating Si microfluidic channels, and it was integrated with a Gd{sub 5}(Si{sub 2}Ge{sub 2}) magnetocaloric refrigeration element. The magnetic properties of the Gd{sub 5}(Si{sub 2}Ge{sub 2}) material were characterized to calculate the magnetic entropy change at different ambient temperatures. Three different methods to integrate the channel layer and the magnetocaloric element were evaluated to test sealing and cooling performance. The cooling tests were performed by providing a magnetic field using an electromagnet. A test jig was constructed between the poles of an electromagnet to maintain a steady temperature during the test. Cooling tests were performed on the magnetocaloric element at ambient temperatures ranging from 258 to 280 K using a magnetic field of 1.2 T. Experimental results showed a maximum temperature change of 7 K on the magnetocaloric element alone at an ambient temperature of 258 K. Cooling tests of the fully integrated coolers were also performed. A solution of anti-freeze fluid (propylene glycol) and water was used as the coolant. The temperature of the working fluid decreased by 4.6 and 9 K for the glass and Si intermediate layers, respectively, confirming that the thermal conductivity of the materials is also an important factor in cooler performance. (Author)

  1. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  2. Magnetic Grüneisen parameter and magnetocaloric properties of a coupled spin–electron double-tetrahedral chain

    International Nuclear Information System (INIS)

    Gálisová, Lucia; Strečka, Jozef

    2015-01-01

    Magnetocaloric effect in a double-tetrahedral chain, in which nodal lattice sites occupied by the localized Ising spins regularly alternate with three equivalent lattice sites available for mobile electrons, is exactly investigated by considering the one-third electron filling and the ferromagnetic Ising exchange interaction between the mobile electrons and their nearest Ising neighbours. The entropy and the magnetic Grüneisen parameter, which closely relate to the magnetocaloric effect, are exactly calculated in order to investigate the relation between the ground-state degeneracy and the cooling efficiency of the hybrid spin–electron system during the adiabatic demagnetization. - Highlights: • A double-tetrahedral chain of mobile electrons and localized Ising spins is studied. • Magnetic Grüneisen parameter for the system is exactly derived. • Macroscopically degenerate phases FRU and FM constitute the ground state. • MCE is three times higher nearby FRU–FM transition than in FRU phase at small fields

  3. Magnetic and magnetocaloric properties of martensitic Ni2Mn1.4Sn0.6 Heusler alloy

    International Nuclear Information System (INIS)

    Chernenko, Volodymyr A.; Barandiarán, Jose M.; Rodriguez Fernández, Jesus; Rojas, Daniel P.; Gutiérrez, Jon; Lázpita, Patricia; Orue, Iñaki

    2012-01-01

    The evolutions of magnetic properties at low temperatures and the influence of magnetic field on the temperature dependence of specific heat in martensitic Ni 2 Mn 1.4 Sn 0.6 Heusler alloy are studied. The frequency-dependent blocking temperature and considerable exchange bias below it are measured in the martensitic phase. From the analysis of the specific heat curves under magnetic field, a large inverse magnetocaloric effect manifested as the magnetic field induced rise of isothermal magnetic entropy and/or magnetic field induced adiabatic temperature decrease in the vicinity of the reverse magnetostructural transformation and a significant value of the conventional magnetocaloric effect at the Curie temperature are obtained. The Debye temperature and electronic coefficient equal to Θ D =310±2 K and γ= 16.6±0.3 mJ/K 2 mol, respectively, do not depend on the magnetic field.

  4. Interfacial scattering effect on anisotropic magnetoresistance and anomalous Hall effect in Ta/Fe multilayers

    KAUST Repository

    Zhang, Qiang; Zhang, Junwei; Zhao, Yuelei; Wen, Yan; Li, Peng; Zhang, Senfu; He, Xin; Zhang, Junli; Zhang, Xixiang

    2017-01-01

    effect. The skew-scattering, side-jump and intrinsic contributions to the AHE were separated successfully. As n increases from 1 to 12, the intrinsic contribution decreases because of the decaying crystallinity or finite size effect and the intrinsic

  5. Finite temperature effects on anisotropic pressure and equation of state of dense neutron matter in an ultrastrong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A. A.; Yang, J.

    2011-01-01

    Spin-polarized states in dense neutron matter with the recently developed Skyrme effective interaction (BSk20 parametrization) are considered in the magnetic fields H up to 10 20 G at finite temperature. In a strong magnetic field, the total pressure in neutron matter is anisotropic, and the difference between the pressures parallel and perpendicular to the field direction becomes significant at H>H th ∼10 18 G. The longitudinal pressure decreases with the magnetic field and vanishes in the critical field 10 18 c 19 G, resulting in the longitudinal instability of neutron matter. With increasing temperature, the threshold H th and critical H c magnetic fields also increase. The appearance of the longitudinal instability prevents the formation of a fully spin-polarized state in neutron matter and only the states with moderate spin polarization are accessible. The anisotropic equation of state is determined at densities and temperatures relevant to the interiors of magnetars. The entropy of strongly magnetized neutron matter turns out to be larger than the entropy of nonpolarized matter. This is caused by some specific details in the dependence of the entropy on the effective masses of neutrons with spin up and spin down in a polarized state.

  6. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  7. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    International Nuclear Information System (INIS)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy; Nikutta, Robert

    2017-01-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  8. Modeling the Infrared Reverberation Response of the Circumnuclear Dusty Torus in AGNs: The Effects of Cloud Orientation and Anisotropic Illumination

    Energy Technology Data Exchange (ETDEWEB)

    Almeyda, Triana; Robinson, Andrew; Richmond, Michael; Vazquez, Billy [School of Physics and Astronomy, Rochester Institute of Technology, Rochester, NY 14623 (United States); Nikutta, Robert, E-mail: tra3595@rit.edu [National Optical Astronomy Observatory, 950 N Cherry Ave, Tucson, AZ 85719 (United States)

    2017-07-01

    The obscuring circumnuclear torus of dusty molecular gas is one of the major components of active galactic nuclei (AGN). The torus can be studied by analyzing the time response of its infrared (IR) dust emission to variations in the AGN continuum luminosity, a technique known as reverberation mapping. The IR response is the convolution of the AGN ultraviolet/optical light curve with a transfer function that contains information about the size, geometry, and structure of the torus. Here, we describe a new computer model that simulates the reverberation response of a clumpy torus. Given an input optical light curve, the code computes the emission of a 3D ensemble of dust clouds as a function of time at selected IR wavelengths, taking into account light travel delays. We present simulated dust emission responses at 3.6, 4.5, and 30 μ m that explore the effects of various geometrical and structural properties, dust cloud orientation, and anisotropy of the illuminating radiation field. We also briefly explore the effects of cloud shadowing (clouds are shielded from the AGN continuum source). Example synthetic light curves have also been generated, using the observed optical light curve of the Seyfert 1 galaxy NGC 6418 as input. The torus response is strongly wavelength-dependent, due to the gradient in cloud surface temperature within the torus, and because the cloud emission is strongly anisotropic at shorter wavelengths. Anisotropic illumination of the torus also significantly modifies the torus response, reducing the lag between the IR and optical variations.

  9. Effect of reflecting modes on combined heat transfer within an anisotropic scattering slab

    International Nuclear Information System (INIS)

    Yi Hongliang; Tan Heping; Lu Yiping

    2005-01-01

    Under various interface reflecting modes, different transient thermal responses will occur in the media. Combined radiative-conductive heat transfer is investigated within a participating, anisotropic scattering gray planar slab. The two interfaces of the slab are considered to be diffuse and semitransparent. Using the ray tracing method, an anisotropic scattering radiative transfer model for diffuse reflection at boundaries is set up, and with the help of direct radiative transfer coefficients, corresponding radiative transfer coefficients (RTCs) are deduced. RTCs are used to calculate the radiative source term in energy equation. Transient energy equation is solved by the full implicit control-volume method under the external radiative-convective boundary conditions. The influences of two reflecting modes including both specular reflection and diffuse reflection on transient temperature fields and steady heat flux are examined. According to numerical results obtained in this paper, it is found that there exits great difference in thermal behavior between slabs with diffuse interfaces and that with specular interfaces for slabs with big refractive index

  10. The opposing effects of isotropic and anisotropic attraction on association kinetics of proteins and colloids

    Science.gov (United States)

    Newton, Arthur C.; Kools, Ramses; Swenson, David W. H.; Bolhuis, Peter G.

    2017-10-01

    The association and dissociation of particles via specific anisotropic interactions is a fundamental process, both in biology (proteins) and in soft matter (colloidal patchy particles). The presence of alternative binding sites can lead to multiple productive states and also to non-productive "decoy" or intermediate states. Besides anisotropic interactions, particles can experience non-specific isotropic interactions. We employ single replica transition interface sampling to investigate how adding a non-productive binding site or a nonspecific isotropic interaction alters the dimerization kinetics of a generic patchy particle model. The addition of a decoy binding site reduces the association rate constant, independent of the site's position, while adding an isotropic interaction increases it due to an increased rebinding probability. Surprisingly, the association kinetics becomes non-monotonic for a tetramer complex formed by multivalent patchy particles. While seemingly identical to two-particle binding with a decoy state, the cooperativity of binding multiple particles leads to a kinetic optimum. Our results are relevant for the understanding and modeling of biochemical networks and self-assembly processes.

  11. Structure and magnetocaloric properties of La1-xKxMnO3 manganites

    International Nuclear Information System (INIS)

    Aliev, A.M.; Gamzatov, A.G.; Batdalov, A.B.; Mankevich, A.S.; Korsakov, I.E.

    2011-01-01

    A technology of obtaining the single-phase ceramic samples of La 1-x K x MnO 3 manganites and the dependence of their structural parameters on the content of potassium has been described. Magnetocaloric effect (MCE) in the obtained samples has been measured by two independent methods: classical direct methodic and a method of magnetic field modulation. The values of MCE obtained by both methods substantially differ. The explanation of the observed divergences is given. The correlation between the level of doping and MCE value has been defined. The value of T C determined by the MCE maximum conforms with the literature data obtained by other methods.

  12. Toward a better understanding of the magnetocaloric effect: An experimental and theoretical study of MnFe.sub.4./sub.Si.sub.3./sub..

    Czech Academy of Sciences Publication Activity Database

    Gourdon, O.; Gottschlich, G.; Persson, J.; de la Cruz, C.; Petříček, Václav; McGuire, M.A.; Bruckel, T.

    2014-01-01

    Roč. 216, AUG (2014), s. 56-64 ISSN 0022-4596 Grant - others:AV ČR(CZ) Praemium Academiae Institutional support: RVO:68378271 Keywords : magneto caloric effect materials * intermetallic * silicide * magnetism * neutron diffraction * density functional theory Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 2.133, year: 2014

  13. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  14. Influence of Si and Ge on the magnetic phase transition and magnetocaloric properties of MnFe(P, Si, Ge)

    International Nuclear Information System (INIS)

    Cam Thanh, D.T.; Brueck, E.; Tegus, O.; Klaasse, J.C.P.; Buschow, K.H.J.

    2007-01-01

    Recently, we found a large magnetocaloric effect (MCE) and favourable magnetic properties in low cost and nontoxic MnFe(P, Si, Ge) compounds [D.T. Cam Thanh, E. Brueck, O. Tegus, J.C.P. Klaasse, T.J. Gortenmulder, K.H.J. Buschow, J. Appl. Phys. 99 (2006) 08Q107]. These compounds are promising for magnetic refrigeration applications. One of the interesting points in these compounds is a nonlinear dependence of the Curie temperature (T C ) on Si concentration. This dependence is associated with the change in the lattice parameters a and c, and their ratio c/a. Compounds with larger a parameter and smaller c/a ratio have higher T C . It is clear that Si and Ge atoms play an important role in the magnetic and magnetocaloric properties in the MnFe(P, Si, Ge) compounds. In this paper, we study the effect of Si and Ge on the magnetic phase transition in these materials. Our study shows that the temperature of the phase transition, from paramagnetic to ferromagnetic, can be tuned in the room temperature range without losing giant magnetocaloric properties

  15. A novel magnetic valve using room temperature magnetocaloric materials

    DEFF Research Database (Denmark)

    Eriksen, Dan; Bahl, Christian; Pryds, Nini

    2012-01-01

    changes. This is made possible by the strong temperature dependence of the magnetization close to the Curie temperature of the magnetocaloric materials. Different compositions of both La0.67(Ca,Sr)0.33MnO3 and La(Fe,Co,Si)13 have been considered for use in prototype valves. Based on measured magnetization...

  16. Phase control studies in Gd5Si2Ge2 giant magnetocaloric compound

    International Nuclear Information System (INIS)

    Belo, J.H.; Pereira, A.M.; Ventura, J.; Oliveira, G.N.P.; Araújo, J.P.; Tavares, P.B.; Fernandes, L.; Algarabel, P.A.; Magen, C.; Morellon, L.

    2012-01-01

    Highlights: ► Study of time dependence of O(I) to M phase. ► Determination of the optimal annealing time. ► New method for phase amount estimation (O(I) and M). ► Effect of annealing on the MCE. ► Analysis of the nature of the magnetic transition through the Arrot plot representation. - Abstract: A systematic set of annealings on arc-melted synthesized Gd 5 Si 2 Ge 2 sample was performed. Through powder X-ray diffraction (XRD) and magnetometry measurements we monitored the effect of varying the annealing time with constant temperature (T = 1473 K) on the formation of the monoclinic (M) crystallographic phase fraction, which is the one responsible for the giant magnetocaloric effect (GMCE) in this compound. The conversion of the orthorhombic O(I) crystallographic phase into M was achieved, resulting in a significant increase of the M mass fraction. Such conversion led to a change in the magnetic transition nature, evolving from a second to a first order transition for the as-cast and annealed samples, respectively. An optimal annealing time range for the M phase conversion was identified to be within 80–120 min at T = 1473 K followed by a rapid quenching to liquid N 2 . Furthermore, an increase up to ∼50% of the magnetocaloric effect was obtained for the sample annealed during 120 min.

  17. Studies on magnetocaloric and magnetic coupling effects =

    Science.gov (United States)

    Amaral, Joao Cunha de Sequeira

    O presente trabalho apresenta novas metodologias desenvolvidas para a analise das propriedades magneticas e magnetocaloricas de materiais, sustentadas em consideracoes teoricas a partir de modelos, nomeadamente a teoria de transicoes de fase de Landau, o modelo de campo medio molecular e a teoria de fenomeno critico. Sao propostos novos metodos de escala, permitindo a interpretacao de dados de magnetizacao de materiais numa perspectiva de campo medio molecular ou teoria de fenomeno critico. E apresentado um metodo de estimar a magnetizacao espontanea de um material ferromagnetico a partir de relacoes entropia/magnetizacao estabelecidas pelo modelo de campo medio molecular. A termodinamica das transicoes de fase magneticas de primeira ordem e estudada usando a teoria de Landau e de campo medio molecular (modelo de Bean-Rodbell), avaliando os efeitos de fenomenos fora de equilibrio e de condicoes de mistura de fase em estimativas do efeito magnetocalorico a partir de medidas magneticas. Efeitos de desordem, interpretados como uma distribuicao na interaccao magnetica entre ioes, estabelecem os efeitos de distribuicoes quimicas/estruturais nas propriedades magneticas e magnetocaloricas de materiais com transicoes de fase de segunda e de primeira ordem. O uso das metodologias apresentadas na interpretacao das propriedades magneticas de variados materiais ferromagneticos permitiu obter: 1) uma analise quantitativa da variacao de spin por iao Gadolinio devido a transicao estrutural do composto Gd5Si2Ge2, 2) a descricao da configuracao de cluster magnetico de ioes Mn na fase ferromagnetica em manganites da familia La-Sr e La-Ca, 3) a determinacao dos expoentes criticos β e δ do Niquel por metodos de escala, 4) a descricao do efeito da pressao nas propriedades magneticas e magnetocaloricas do composto LaFe11.5Si1.5 atraves do modelo de Bean-Rodbell, 5) uma estimativa da desordem em manganites ferromagneticas com transicoes de segunda e primeira ordem, 6) uma descricao de campo medio das propriedades magneticas da liga Fe23Cu77, 7) o estudo de efeitos de separacao de fase na familia de compostos La0.70-xErxSr0.30MnO3 e 8) a determinacao realista da variacao de entropia magnetica na familia de compostos de efeito magnetocalorico colossal Mn1-x-yFexCryAs.

  18. Magnetocaloric effect across the coupled structural and ...

    Indian Academy of Sciences (India)

    Wintec

    measurements for a magnetic field change of 2 T is around 1⋅3 J/kg K. A similar ... 250 K, the amount of tetragonal phase was 12% and ... method. Stoichiometric proportion of the starting materials Mn2O3 (99% Aldrich), SrCO3 (99⋅9% Al-.

  19. Magnetocaloric effect in rare-earth intermetallics

    Indian Academy of Sciences (India)

    2015-05-27

    and adiabatic temperature (ad) that accompany magnetic transitions in materials during the application or the removal of magnetic field under adiabatic conditions. The physics of MCE gets enriched by correlated ...

  20. Near room temperature magnetocaloric properties and the universal curve of MnCoGe1-xCux

    Science.gov (United States)

    Si, Xiaodong; Liu, Yongsheng; Lu, Xiaofei; Shen, Yulong; Wang, Wenli; Yu, Wenying; Zhou, Tao; Gao, Tian

    2017-05-01

    Intermetallic compounds based on MnCoGe have drawn attention due to the coupled magnetic and structural transformations and the large magnetocaloric entropy. Here, we provide a systematic comparison of experimental data under different magnetic fields with magnetic and the magnetocaloric properties. The ferromagnetic transition temperature (TC) increases from 353.4(6) K for x = 0.01 to 363.4(4) K for x = 0.04 with increasing nominal copper content. The maximum magnetic entropy change |ΔSM| in a magnetic field change of 5 T is found to be 18.3(2) J/(kg K) with a large relative cooling power (RCP) value of 292.5(4) J/kg for x = 0.01, revealing that the present system can provide an acceptable magnetocaloric effect at a cheaper price for magnetic refrigeration materials. Making attempt to contrast a master curve for the present system, we find the experimental values of magnetic field dependence of the magnetic entropy change are consistent with a phenomenological universal curve.

  1. Anisotropic stress in narrow sGe fin field-effect transistor channels measured using nano-focused Raman spectroscopy

    Science.gov (United States)

    Nuytten, T.; Bogdanowicz, J.; Witters, L.; Eneman, G.; Hantschel, T.; Schulze, A.; Favia, P.; Bender, H.; De Wolf, I.; Vandervorst, W.

    2018-05-01

    The continued importance of strain engineering in semiconductor technology demands fast and reliable stress metrology that is non-destructive and process line-compatible. Raman spectroscopy meets these requirements but the diffraction limit prevents its application in current and future technology nodes. We show that nano-focused Raman scattering overcomes these limitations and can be combined with oil-immersion to obtain quantitative anisotropic stress measurements. We demonstrate accurate stress characterization in strained Ge fin field-effect transistor channels without sample preparation or advanced microscopy. The detailed analysis of the enhanced Raman response from a periodic array of 20 nm-wide Ge fins provides direct access to the stress levels inside the nanoscale channel, and the results are validated using nano-beam diffraction measurements.

  2. Magnetic refrigeration capabilities of magnetocaloric Ni2Mn:75Cu:25Ga

    Science.gov (United States)

    Mishra, S. K.; Jenkins, C. A.; Dubenko, I.; Samanta, T.; Ali, N.; Roy, S.

    2013-03-01

    Doping-driven competition between energetically similar ground states leads to many exciting materials phenomena such as the emergence of high-Tc superconductivity, diluted magnetic semiconductors, and colossal magnetoresistance. Doped Ni2MnGa Heusler alloy, which is a multifunctional ferromagnetic alloy with various exotic physical properties demonstrates this notion of rich phenomenology via modified ground spin states. Adopting this generic concept, here we will present a novel doped Ni2Mn.75Cu.25Ga alloy that offers unprecedented co-existence of the magnetocaloric effect and fully controlled ferromagnetism at room temperature. Application of site engineering enables us to manipulate the ground spin state that leads to the decrease in magnetic transition temperature and also increases the delocalization of the Mn magnetism. SQUID magnetometery suggests that Cu doping enhances the saturation magnetization, coercive field and clarity of magnetic hysteresis loops. By exploiting x-ray absorption techniques and measuring element specific magnetic hysteresis loops, here we will describe the microscopic origin of enhnaced magnetocaloric properties and d-d interaction driven charge transfer effects in Ni2Mn.75Cu.25Ga This work was supported by DOE Grant No. DE-FG02-06ER46291

  3. A 23Na Multiple-Quantum-Filtered NMR Study of the Effect of the Cytoskeleton Conformation on the Anisotropic Motion of Sodium Ions in Red Blood Cells

    Science.gov (United States)

    Knubovets, Tatyana; Shinar, Hadassah; Eliav, Uzi; Navon, Gil

    1996-01-01

    Recently, it has been shown that23Na double-quantum-filtered NMR spectroscopy can be used to detect anisotropic motion of bound sodium ions in biological systems. The technique is based on the formation of the second-rank tensor when the quadrupolar interaction is not averaged to zero. Using this method, anisotropic motion of bound sodium in human and dog red blood cells was detected, and the effect was shown to depend on the integrity of the membrane cytoskeleton. In the present study, multiple-quantum-filtered techniques were applied in combination with a quadrupolar echo to measure the transverse-relaxation times,T2fandT2s. Line fitting was performed to obtain the values of the residual quadrupolar interaction, which was measured for sodium in a variety of mammalian erythrocytes of different size, shape, rheological properties, and sodium concentrations. Human unsealed white ghosts were used to study sodium bound at the anisotropic sites on the inner side of the RBC membrane. Modulations of the conformation of the cytoskeleton by the variation of either the ionic strength or pH of the suspending medium caused drastic changes in both the residual quadrupolar interaction andT2fdue to changes in the fraction of bound sodium ions as well as changes in the structure of the binding sites. By combining the two spectroscopic parameters, structural change can be followed. The changes in the structure of the sodium anisotropic binding sites deduced by this method were found to correlate with known conformational changes of the membrane cytoskeleton. Variations of the medium pH affected both the fraction of bound sodium ions and the structure of the anisotropic binding sites. Sodium and potassium were shown to bind to the anisotropic binding sites with the same affinity.

  4. Effect of quasiparticles on interlayer transport in highly anisotropic layered superconductors

    International Nuclear Information System (INIS)

    Artemenko, S.N.; Bulaevskii, L.N.; Maley, M.P.; Vinokur, V.M.

    1999-01-01

    We have performed a microscopic calculation of the dielectric response function in highly anisotropic layered superconductors and used the developed approach to obtain the frequency-dependent London penetration length and conductivity in the case of d-wave pairing for currents perpendicular to the layers. We consider a BCS model with coherent interlayer tunneling of electrons and take into account contributions from both superconducting electrons and quasiparticles to the dielectric response. We show that quasiparticles change the low-temperature behavior of the penetration length in the intermediate frequency range where the frequency is smaller than the superconducting order parameter but larger than the inverse quasiparticle scattering time. The obtained results are used to describe the low-temperature behavior of the Josephson plasma resonance, in particular the temperature dependence of the resonance frequency and the resonance linewidth in zero external magnetic field. We compare our results with the available experimental data for Tl 2 Ba 2 CuO 6 and Bi 2 Sr 2 CaCu 2 O 8+δ (Bi-2212) and show that results of a BCS model with coherent interlayer tunneling for the dc c-axis resistivity in the superconducting state are inconsistent with experimental data for underdoped and optimally doped Bi-2212 crystals. copyright 1999 The American Physical Society

  5. Tuning the effects of Landau level mixing on anisotropic transport in quantum Hall systems

    International Nuclear Information System (INIS)

    Smith, Peter M; Kennett, Malcolm P

    2012-01-01

    Electron-electron interactions in half-filled high Landau levels in two-dimensional electron gases in a strong perpendicular magnetic field can lead to states with anisotropic longitudinal resistance. This longitudinal resistance is generally believed to arise from broken rotational invariance, which is indicated by charge density wave order in Hartree-Fock calculations. We use the Hartree-Fock approximation to study the influence of externally tuned Landau level mixing on the formation of interaction-induced states that break rotational invariance in two-dimensional electron and hole systems. We focus on the situation when there are two non-interacting states in the vicinity of the Fermi level and construct a Landau theory to study coupled charge density wave order that can occur as interactions are tuned and the filling or mixing are varied. We consider numerically a specific example where mixing is tuned externally through Rashba spin-orbit coupling. We calculate the phase diagram and find the possibility of ordering involving coupled striped or triangular charge density waves in the two levels. Our results may be relevant to recent transport experiments on quantum Hall nematics in which Landau level mixing plays an important role. (paper)

  6. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  7. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  8. Effective modeling and reverse-time migration for novel pure acoustic wave in arbitrary orthorhombic anisotropic media

    Science.gov (United States)

    Xu, Shigang; Liu, Yang

    2018-03-01

    The conventional pseudo-acoustic wave equations (PWEs) in arbitrary orthorhombic anisotropic (OA) media usually have coupled P- and SV-wave modes. These coupled equations may introduce strong SV-wave artifacts and numerical instabilities in P-wave simulation results and reverse-time migration (RTM) profiles. However, pure acoustic wave equations (PAWEs) completely decouple the P-wave component from the full elastic wavefield and naturally solve all the aforementioned problems. In this article, we present a novel PAWE in arbitrary OA media and compare it with the conventional coupled PWEs. Through decomposing the solution of the corresponding eigenvalue equation for the original PWE into an ellipsoidal differential operator (EDO) and an ellipsoidal scalar operator (ESO), the new PAWE in time-space domain is constructed by applying the combination of these two solvable operators and can effectively describe P-wave features in arbitrary OA media. Furthermore, we adopt the optimal finite-difference method (FDM) to solve the newly derived PAWE. In addition, the three-dimensional (3D) hybrid absorbing boundary condition (HABC) with some reasonable modifications is developed for reducing artificial edge reflections in anisotropic media. To improve computational efficiency in 3D case, we adopt graphic processing unit (GPU) with Compute Unified Device Architecture (CUDA) instead of traditional central processing unit (CPU) architecture. Several numerical experiments for arbitrary OA models confirm that the proposed schemes can produce pure, stable and accurate P-wave modeling results and RTM images with higher computational efficiency. Moreover, the 3D numerical simulations can provide us with a comprehensive and real description of wave propagation.

  9. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  10. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  11. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  12. Properties of magnetocaloric materials with a distribution of Curie temperatures

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Bjørk, Rasmus; Smith, Anders

    2012-01-01

    The magnetocaloric properties of inhomogeneous ferromagnets that contain distributions of Curie temperatures are considered as a function of the width of such a distribution. Assuming a normal distribution of the Curie temperature, the average adiabatic temperature change, ΔTad, the isothermal...... of the distribution, explaining the observed mismatch of peak temperatures reported in experiments. Also, the field dependence of ΔTad and Δs is found to depend on the width of the distribution....

  13. Magnetocaloric properties of manganese(III) porphyrins bearing 2,6-di-tert-butylphenol groups

    Energy Technology Data Exchange (ETDEWEB)

    Korolev, V.V., E-mail: vvk@isc-ras.ru [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo 153045 (Russian Federation); Lomova, T.N.; Maslennikova, A.N.; Korolev, D.V. [G. A. Krestov Institute of Solution Chemistry of the Russian Academy of Sciences, Akademicheskaya str., 1, Ivanovo 153045 (Russian Federation); Shpakovsky, D.B.; Zhang, Jianwei; Milaeva, E.R. [Lomonosov Moscow State University, Department of Medicinal Chemistry and Fine Organic Synthesis, Moscow 119991 (Russian Federation)

    2016-03-01

    Magnetocaloric effect (MCE) and heat capacity during the magnetization of (5,10,15,20-tetrakis(3,5-di-tert-butyl-4-hydroxyphenyl)porphynato) manganese (III) chloride (1), (5-(4-hydroxyphenyl)-10,15,20-tris(3,5-di-tert-butyl-4-hydroxyphenyl) porphynato) manganese (III) chloride (2), and (5-(4-palmitoyloxyphenyl)-10,15,20-tris(3,5-di-tert-butyl-4-hydroxyphenyl) porphynato) manganese (III) chloride (3) in their aqueous suspensions were determined by the microcalorimetric method over the temperature range of 278–320 K and in magnetic fields from 0 to 1 T. MCE was positive for all complexes studied, i.e. the magnetic field impression under adiabatic conditions led to an increase in temperature of the complexes suspensions. MCE increased with an increase in the magnetic field induction at all temperatures studied. Dependences of MCE on temperature had weak maxima at 298 K at all magnetic induction values. The disturbance of the intermolecular hydrogen-bonding of hydroxyl groups is one of probable reasons for such dependences type. MCE values increased under the palmitoyl substituent incorporation into one of the phenol groups at all temperatures. The heat capacity of the studied complexes rose slightly with temperature growth. Dependences of the heat capacity on temperature showed that the magnetic component of the heat capacity did not appear due to the presence of the manganese atom acting as a paramagnetic center in complexes 1, 2, and 3. The relation between the complexes structure and their magnetothermal properties was analyzed. It was justified that the changes of magnetothermal properties were caused by electronic substitution effects and, to an even greater degree, by the conditions of intermolecular hydrogen bonds formation in the paramagnetic materials. - Highlights: • The magnetocaloric effect and heat capacity of 3 manganese porphyrin were determined. • Temperature dependences of magnetocaloric effect has been studied. • The relation between the

  14. Anisotropic stars obeying Chaplygin equation of state

    Indian Academy of Sciences (India)

    P Bhar

    2017-12-14

    Dec 14, 2017 ... Anisotropic effects may also originate from slow rotation of the core ... to include the effects of pressure anisotropy, electric charge, scalar field, dark energy and the cosmological constant in .... Generating solutions. In order to ...

  15. Transverse anisotropic magnetoresistance effects in pseudo-single-crystal γ′-Fe4N thin films

    Directory of Open Access Journals (Sweden)

    Kazuki Kabara

    2016-05-01

    Full Text Available Transverse anisotropic magnetoresistance (AMR effects, for which magnetization is rotated in an orthogonal plane to the current direction, were investigated at various temperatures, in order to clarify the structural transformation from a cubic to a tetragonal symmetry in a pseudo-single-crystal Fe4N film, which is predicted from the usual in-plane AMR measurements by the theory taking into account the spin-orbit interaction and crystal field splitting of 3d bands. According to a phenomenological theory of AMR, which derives only from the crystal symmetry, a cos 2θ component ( C 2 tr exists in transverse AMR curves for a tetragonal system but does not for a cubic system. In the Fe4N film, the C 2 tr shows a positive small value (0.12% from 300 K to 50 K. However, the C 2 t r increases to negative value below 50 K and reaches to -2% at 5 K. The drastic increasing of the C 2 tr demonstrates the structural transformation from a cubic to a tetragonal symmetry below 50 K in the Fe4N film. In addition, the out-of-plane and in-plane lattice constants (c and a were precisely determined with X-ray diffraction at room temperature using the Nelson-Riely function. As a result, the positive small C 2 t r above 50 K is attributed to a slightly distorted Fe4N lattice (c/a = 1.002.

  16. The effect of strongly anisotropic scattering on the critical size of a slab in one-speed neutron transport theory: Modified UN method

    International Nuclear Information System (INIS)

    Öztürk, Hakan

    2014-01-01

    Highlights: • The criticality problem for one-speed neutrons in homogeneous slab is investigated. • A combination of forward–backward and linear anisotropy is used. • The effect of the strongly anisotropic scattering on the critical size is analyzed. - Abstract: The criticality problem for one-speed neutrons in a uniform finite slab is studied in the case of a combination of forward and backward scattering with linearly anisotropic scattering using U N method based on the Chebyshev polynomials of second kind. The effect of the linear anisotropy on the critical thickness of the slab is investigated. The critical slab thicknesses are calculated by using Marshak boundary condition for various values of the anisotropy parameters and they are presented in the tables. In comparison to the results obtained by other methods, the results of this study are in compatible with the former ones

  17. Modelling and simulation of regenerators with complex flow arrangements for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Nielsen, Kaspar Kirstein; Engelbrecht, Kurt

    2014-01-01

    Compared to a conventional vapor compression refrigera-tion system, a magnetocaloric refrigerator has many advantages, such as potentially high efficiency, low vibration and avoidance of refrigerants that deplete the ozone layer and cause the green-house effect. As a main component of the active...... magnetic re-generative refrigerator, the regenerator plays an important role in the cooling performance and efficiency of the whole system. However, the regenerator design is constrained by several exter-nal factors, such as the geometry of the magnetic field source and flow resistance. In this work, novel...... regenerators with complex flow arrange-ments, providing high performance at lower pressure drop, are investigated. Correspondingly a one dimensional model is pre-sented and comparative studies between novel and conventional regenerators are carried out by simulation. The effect of regen-erator geometries...

  18. Evaluation of anisotropic effective stress-strain criteria for the biaxial yield and flow of 2024 aluminum tubes

    International Nuclear Information System (INIS)

    Stout, M.G.; Hecker, S.S.; Bourcier, R.

    1983-01-01

    2024 aluminum tubes, heat treated to a T6 and T8 temper, were tested in combinations of tension-internal pressure and tension-torsion loading. Yield loci and flow behavior were determined for both modes of loading and compared to theoretical predictions. Both tempers of 2024 aluminum exhibited crystallographic textures and anisotropic yield and flow. Hill's quadratic yield criterion and the associated flow rule under-estimate balanced biaxial yield and flow, which is consistent with hydraulic bulge data on other face-centered cubic metals. Hill's nonquadratic criterion, which adds one additional parameter, and Bassani's criterion, which adds two parameters, predict the anisotropic yield behavior much more accurately. Predictions of the complete flow behavior, including strain paths, with these anisotropic criteria could be improved markedly by including provisions for planar anisotropy

  19. Calculations of the magnetic entropy change in amorphous through a microscopic anisotropic model: Applications to Dy{sub 70}Zr{sub 30} and DyCo{sub 3.4} alloys

    Energy Technology Data Exchange (ETDEWEB)

    Ranke, P. J. von, E-mail: von.ranke@uol.com.br; Nóbrega, E. P.; Ribeiro, P. O.; Alvarenga, T. S. T.; Lopes, P. H. O.; Sousa, V. S. R. de; Oliveira, N. A. de [Instituto de Física, Universidade do Estado do Rio de Janeiro—UERJ, Rua São Francisco Xavier, 524, 20550-013 Rio de Janeiro (Brazil); Caldas, A. [Sociedade Unificada de Ensino Superior e Cultura, SUESC, 20211-351 Rio de Janeiro (Brazil); Alho, B. P. [Instituto de Aplicação Fernando Rodrigues da Silveira, Universidade do Estado do Rio de Janeiro, Rua Santa Alexandrina, 288, 20260-232 Rio de Janeiro (Brazil); Carvalho, G. [Laboratório Nacional de Luz Sincroton—LNLS, 13083-970 Campinas, São Paulo (Brazil); Magnus, A.

    2014-10-14

    We report theoretical investigations on the magnetocaloric effect, described by the magnetic entropy change in rare earth—transition metal amorphous systems. The model includes the local anisotropy on the rare earth ions in Harris-Plischke-Zuckermann assumptions. The transition metals ions are treated in terms of itinerant electron ferromagnetism and the magnetic moment of rare earth ions is coupled to the polarized d-band by a local exchange interaction. The magnetocaloric effect was calculated in DyCo{sub 3.4} system, which presents amorphous sperimagnetic configuration. The calculations predict higher refrigerant capacity in the amorphous DyCo{sub 3.4} than in DyCo{sub 2} crystal, highlighting the importance of amorphous magnetocaloric materials. Our calculation of the magnetocaloric effect in Dy{sub 70}Zr{sub 30}, which presents amorphous asperomagnetic configuration, is in good agreement with the experimental result. Furthermore, magnetic entropy changes associated with crystal-amorphous configurations change are estimated.

  20. Tunable magnetocaloric effect in Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Shanmugapriya, K.; Palanivel, Balan [Pondicherry Engineering College, Department of Physics, Puducherry (India); Radheep, D.M.; Murugan, Ramaswamy [Pondicherry University, Department of Physics, Puducherry (India)

    2017-07-15

    Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.25, 0.5 and 0.75) polycrystalline samples were synthesized by conventional solid-state reaction. Magnetic characterizations of Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} revealed signature of antiferromagnetic ordering at temperatures (T{sub N}) ∝ 19, 25 and 29.5 K for x = 0.25, x = 0.5 and for x = 0.75, respectively. Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.75) exhibits field-induced antiferromagnetic to ferromagnetic transition at ∝ 30 K with applied magnetic field of 4 and 5 T. Magnetocaloric change (ΔS{sub M}) increases from 3.5 to 19 J/kg K by increasing calcium concentration in the A-site. Those ΔS{sub M} values are relatively very high in these classes of antiferromagnetic perovskite systems and equal to the magnetisation values of the ferromagnetic perovskite manganites. This is the first report for the Sr{sub 1-x}Ca{sub x}Mn{sub 0.5}Ti{sub 0.5}O{sub 3} (x = 0.75) having large magnetic entropy changes induced by the low magnetic field. (orig.)

  1. The room-temperature synthesis of anisotropic CdHgTe quantum dot alloys: a "molecular welding" effect.

    Science.gov (United States)

    Taniguchi, Shohei; Green, Mark; Lim, Teck

    2011-03-16

    The room-temperature chemical transformation of spherical CdTe nanoparticles into anisotropic alloyed CdHgTe particles using mercury bromide in a toluene/methanol system at room temperature has been investigated. The resulting materials readily dissolved in toluene and exhibited a significant red-shift in the optical properties toward the infrared region. Structural transformations were observed, with electron microscopy showing that the CdTe nanoparticles were chemically attached ('welded') to other CdTe nanoparticles, creating highly complex anisotropic heterostructures which also incorporated mercury.

  2. Magnetic, transport and magnetocaloric properties in the Laves phase intermetallic Ho (Co1−xAlx)2 compounds

    International Nuclear Information System (INIS)

    Ivanova, T.I.; Nikitin, S.A.; Tskhadadze, G.A.; Koshkid’ko, Yu.S.; Suski, W.; Iwasieczko, W.; Badurski, D.

    2014-01-01

    Highlights: • The Al influence on magnetic properties of the Ho (Co 1-x Al x ) 2 compounds is analyzed. • The first-order magnetic transition appears in sample with Al concentrations x ≤ 0.06. • The MCE and Curie temperature TC demonstrate complex Al concentration dependences. • The magnetoresistance for sample with Al concentration x = 0.06 (58%) is maximum. • High magnetic fields changes the Curie temperature T c of the Ho (Co 1−x Al x ) 2 compounds. - Abstract: The magnetization, magnetoresistivity and magnetocaloric effect (MCE) of the Ho (Co 1−x Al x ) 2 Laves phase intermetallic compounds for x ⩽ 0.2 have been investigated. Complex measurements have been carried out in order to determine the influence of substitution in the Co sublattice by Al on the Co moment, type of the magnetic transition and related properties of these compounds. A comparative analysis of the magnetic, transport and magnetocaloric properties of Ho (Co 1−x Al x ) 2 alloys under various Al concentration is represented. Substitutions at the Co site by Al are found to result in the appearance of itinerant electron metamagnetism (IEM) at the small Al concentrations and in positive magnetovolume effect, leading to an initial increase in the ordering temperature; on the other hand the magnetic phase transition temperature as well as ΔT (MCE) do not depend in direct way on the Al concentration. The 16% increase of magnetocaloric effect for the alloy with x = 0.02 is detected in relation to maternal HoCo 2 . A giant value of magnetoresistivity (58%) is observed for the alloy with the same Al concentration

  3. An effective anisotropic poroelastic model for elastic wave propagation in finely layered media

    NARCIS (Netherlands)

    Kudarova, A.; van Dalen, K.N.; Drijkoningen, G.G.

    2016-01-01

    Mesoscopic-scale heterogeneities in porous media cause attenuation and dispersion at seismic frequencies. Effective models are often used to account for this. We have developed a new effective poroelastic model for finely layered media, and we evaluated its impact focusing on the angledependent

  4. Magnetic and magnetocaloric properties of the exactly solvable mixed-spin Ising model on a decorated triangular lattice in a magnetic field

    Science.gov (United States)

    Gálisová, Lucia; Strečka, Jozef

    2018-05-01

    The ground state, zero-temperature magnetization process, critical behaviour and isothermal entropy change of the mixed-spin Ising model on a decorated triangular lattice in a magnetic field are exactly studied after performing the generalized decoration-iteration mapping transformation. It is shown that both the inverse and conventional magnetocaloric effect can be found near the absolute zero temperature. The former phenomenon can be found in a vicinity of the discontinuous phase transitions and their crossing points, while the latter one occurs in some paramagnetic phases due to a spin frustration to be present at zero magnetic field. The inverse magnetocaloric effect can also be detected slightly above continuous phase transitions following the power-law dependence | - ΔSisomin | ∝hn, where n depends basically on the ground-state spin ordering.

  5. Anisotropic dynamic mass density for fluidsolid composites

    KAUST Repository

    Wu, Ying; Mei, Jun; Sheng, Ping

    2012-01-01

    By taking the low frequency limit of multiple-scattering theory, we obtain the dynamic effective mass density of fluidsolid composites with a two-dimensional rectangular lattice structure. The anisotropic mass density can be described by an angle

  6. The influence of non-magnetocaloric properties on the performance in parallel-plate AMRs

    DEFF Research Database (Denmark)

    Nielsen, Kaspar Kirstein; Bahl, Christian R.H.; Smith, Anders

    2014-01-01

    a strong dependence on the orientation of the applied field and the regenerator geometry. Finally, the flow maldistribution of non-uniform regenerator geometries is found to degrade the AMR performance even at minor deviations from perfectly homogeneous regenerator matrices. This paper reflects a summary......The performance of Active Magnetic Regenerators (AMR) does not depend solely on the magnetocaloric effect of their constituents. Rather, it depends on several additional parameters, including, magnetic field, geometry (hydraulic diameter, cross-sectional area, regenerator length etc.), thermal...... properties (conductivity, specific heat and mass density) and operating parameters (utilization, frequency, number of transfer units etc.). In this paper we focus on the influence of three parameters on regenerator performance: 1) Solid thermal conductivity, 2) magnetostatic demagnetization and 3) flow...

  7. Estimation of magnetocaloric properties by using Monte Carlo method for AMRR cycle

    International Nuclear Information System (INIS)

    Arai, R; Fukuda, H; Numazawa, T; Tamura, R; Li, J; Saito, A T; Nakagome, H; Kaji, S

    2015-01-01

    In order to achieve a wide refrigerating temperature range in magnetic refrigeration, it is effective to layer multiple materials with different Curie temperatures. It is crucial to have a detailed understanding of physical properties of materials to optimize the material selection and the layered structure. In the present study, we discuss methods for estimating a change in physical properties, particularly the Curie temperature when some of the Gd atoms are substituted for non-magnetic elements for material design, based on Gd as a ferromagnetic material which is a typical magnetocaloric material. For this purpose, whilst making calculations using the S=7/2 Ising model and the Monte Carlo method, we made a specific heat measurement and a magnetization measurement of Gd-R alloy (R = Y, Zr) to compare experimental values and calculated ones. The results showed that the magnetic entropy change, specific heat, and Curie temperature can be estimated with good accuracy using the Monte Carlo method. (paper)

  8. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Bong, Victor N-S; Wong, Basil T. [Swinburne Sarawak Research Centre for Sustainable Technologies, Faculty of Engineering, Computing & Science, Swinburne University of Technology Sarawak Campus, 93350 Kuching, Sarawak (Malaysia)

    2015-08-28

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering.

  9. A study of phonon anisotropic scattering effect on silicon thermal conductivity at nanoscale

    International Nuclear Information System (INIS)

    Bong, Victor N-S; Wong, Basil T.

    2015-01-01

    Previous studies have shown that anisotropy in phonon transport exist because of the difference in phonon dispersion relation due to different lattice direction, as observed by a difference in in-plane and cross-plane thermal conductivity. The directional preference (such as forward or backward scattering) in phonon propagation however, remains a relatively unexplored frontier. Our current work adopts a simple scattering probability in radiative transfer, which is called Henyey and Greenstein probability density function, and incorporates it into the phonon Monte Carlo simulation to investigate the effect of directional scattering in phonon transport. In this work, the effect of applying the anisotropy scattering is discussed, as well as its impact on the simulated thermal conductivity of silicon thin films. While the forward and backward scattering will increase and decrease thermal conductivity respectively, the extent of the effect is non-linear such that forward scattering has a more obvious effect than backward scattering

  10. Pressure-induced three-dimensional ferromagnetic correlations in the giant magnetocaloric compound Gd.sub.5./sub.Ge.sub.4./sub..

    Czech Academy of Sciences Publication Activity Database

    Magen, C.; Arnold, Zdeněk; Morellon, L.; Skorokhod, Yuriy; Algarabel, P. A.; Ibarra, M. R.; Kamarád, Jiří

    2003-01-01

    Roč. 91, č. 20 (2003), s. 207202-1 - 207202-4 ISSN 0031-9007 R&D Projects: GA ČR GA106/02/0943 Grant - others:CICYT(ES) MAT2000-1756 Institutional research plan: CEZ:AV0Z1010914 Keywords : magneto-caloric compounds * pressure effect * magnetism Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 7.035, year: 2003

  11. Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach

    Science.gov (United States)

    Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine

    2017-02-01

    This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.

  12. Extension of anisotropic effective medium theory to account for an arbitrary number of inclusion types

    Science.gov (United States)

    Myles, Timothy D.; Peracchio, Aldo A.; Chiu, Wilson K. S.

    2015-01-01

    The purpose of this work is to extend, to multi-components, a previously reported theory for calculating the effective conductivity of a two component mixture. The previously reported theory involved preferentially oriented spheroidal inclusions contained in a continuous matrix, with inclusions oriented relative to a principle axis. This approach was based on Bruggeman's unsymmetrical theory, and is extended to account for an arbitrary number of different inclusion types. The development begins from two well-known starting points; the Maxwell approach and the Maxwell-Garnett approach for dilute mixtures. It is shown that despite these two different starting points, the final Bruggeman type equation is the same. As a means of validating the developed expression, comparisons are made to several existing effective medium theories. It is shown that these existing theories coincide with the developed equations for the appropriate parameter set. Finally, a few example mixtures are considered to demonstrate the effect of multiple inclusions on the calculated effective property. Inclusion types of different conductivities, shapes, and orientations are considered and each of the aforementioned properties is shown to have a potentially significant impact on the calculated mixture property.

  13. Magnetic and magnetocaloric properties of itinerant-electron system Hf.sub.1-x./sub.Ta.sub.x./sub.Fe.sub.2./sub. (x = 0.125 and 0.175)

    Czech Academy of Sciences Publication Activity Database

    Diop, L.V.B.; Kaštil, Jiří; Isnard, O.; Arnold, Zdeněk; Kamarád, Jiří

    2015-01-01

    Roč. 627, Apr (2015), s. 446-450 ISSN 0925-8388 R&D Projects: GA ČR GAP204/12/0692 Institutional support: RVO:68378271 Keywords : itinerant-electron compounds * magnetic properties * magnetocaloric effect Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.014, year: 2015

  14. Study of magnetic, structural and magnetocaloric properties of La.sub.0.6./sub.Pr.sub.0.4./sub.Mn.sub.2./sub.Si.sub.2./sub. under high pressures and magnetic field

    Czech Academy of Sciences Publication Activity Database

    Kaštil, Jiří; Arnold, Zdeněk; Isnard, O.; Skourski, Y.; Kamarád, Jiří; Itié, J.P.

    2017-01-01

    Roč. 424, Feb (2017), s. 416-420 ISSN 0304-8853 R&D Projects: GA ČR GA15-03777S Institutional support: RVO:68378271 Keywords : magnetization * compressibility * magnetocaloric effect * high pressure Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 2.630, year: 2016

  15. Effects of Anisotropic Thermal Conductivity and Lorentz Force on the Flow and Heat Transfer of a Ferro-Nanofluid in a Magnetic Field

    Directory of Open Access Journals (Sweden)

    Yubai Li

    2017-07-01

    Full Text Available In this paper, we study the effects of the Lorentz force and the induced anisotropic thermal conductivity due to a magnetic field on the flow and the heat transfer of a ferro-nanofluid. The ferro-nanofluid is modeled as a single-phase fluid, where the viscosity depends on the concentration of nanoparticles; the thermal conductivity shows anisotropy due to the presence of the nanoparticles and the external magnetic field. The anisotropic thermal conductivity tensor, which depends on the angle of the applied magnetic field, is suggested considering the principle of material frame indifference according to Continuum Mechanics. We study two benchmark problems: the heat conduction between two concentric cylinders as well as the unsteady flow and heat transfer in a rectangular channel with three heated inner cylinders. The governing equations are made dimensionless, and the flow and the heat transfer characteristics of the ferro-nanofluid with different angles of the magnetic field, Hartmann number, Reynolds number and nanoparticles concentration are investigated systematically. The results indicate that the temperature field is strongly influenced by the anisotropic behavior of the nanofluids. In addition, the magnetic field may enhance or deteriorate the heat transfer performance (i.e., the time-spatially averaged Nusselt number in the rectangular channel depending on the situations.

  16. Effect of Current Density on Optical Properties of Anisotropic Photoelectrochemical Etched Silicon (110)

    Science.gov (United States)

    Amirhoseiny, M.; Hassan, Z.; Ng, S. S.

    2012-08-01

    Photoelectrochemical etched Si layers were prepared on n-type (110) oriented silicon wafer. The photoluminescence (PL), Fourier transformed infrared (FTIR) absorption and Raman spectroscopies of etched Si (110) at two different current densities were studied. Both samples showed PL peak in the visible spectral range situated from 650 nm to 750 nm. The corresponding changes in Raman spectra at different current density are discussed. The blue shift in the PL and Raman peaks is consequent of the quantum confinement effect and defect states of surface Si nanocrystallites complexes and hydrogen atoms of the photoelectrochemical etched Si (110) samples. The attenuated total reflection (ATR) results show both hydrogen and oxygen related IR modes in the samples which can be used to explain the PL effect.

  17. Test Particle Energization and the Anisotropic Effects of Dynamical MHD Turbulence

    Science.gov (United States)

    González, C. A.; Dmitruk, P.; Mininni, P. D.; Matthaeus, W. H.

    2017-11-01

    In this paper, we analyze the effect of dynamical three-dimensional magnetohydrodynamic (MHD) turbulence on test particle acceleration and compare how this evolving system affects particle energization by current sheet interaction, as opposed to frozen-in-time fields. To do this, we analyze the ensemble particle acceleration for static electromagnetic fields extracted from direct numerical simulations of the MHD equations, and compare it with the dynamical fields. We show that a reduction in particle acceleration in the dynamical model results from particle trapping in field lines, which forces the particles to be advected by the flow and suppresses long exposures to the strong electric field gradients that take place between structures and generate (among other effects) an efficient particle acceleration in the static case. In addition, we analyze the effect of anisotropy caused by the mean magnetic field. It is well known that for sufficiently strong external fields, the system experiences a transition toward a two-dimensional flow. This causes an increment in the size of the coherent structures, resulting in a magnetized state of the particles and a reduction in particle energization.

  18. Comparison of Effective Medium Schemes For Seismic Velocities in Cracked Anisotropic Rock

    Science.gov (United States)

    Morshed, S.; Chesnokov, E.

    2017-12-01

    Understanding of elastic properties of reservoir rock is necessary for meaningful interpretation and analysis of seismic measurements. The elastic properties of a rock are controlled by the microstructural properties such as mineralogical composition, pore and crack distribution, texture and pore connectivity. However, seismic scale is much larger than microstructure scale. Understanding of macroscopic properties at relevant seismic scale (e.g. borehole sonic data) comes from effective medium theory (EMT). However, most of the effective medium theories fail at high crack density as the interactions of strain fields of the cracks can't be ignored. We compare major EMT schemes from low to high crack density. While at low crack density all method gives similar results, at high crack density they differ significantly. Then, we focus on generalized singular approximation (GSA) and effective field (EF) method as they allow cracks beyond the limit of dilute concentrations. Additionally, we use grain contact (GC) method to examine the stiffness constants of the rock matrix. We prepare simple models of a multiphase media containing low to high concentrations of isolated pores. Randomly oriented spherical pores and horizontally oriented ellipsoidal (aspect ratio =0.1) pores have been considered. For isolated spherical pores, all the three methods show exactly same or similar results. However, inclusion interactions are different in different directions in case of horizontal ellipsoidal pores and individual stiffness constants differ greatly from one method to another at different crack density. Stiffness constants remain consistent in GSA method whereas some components become unusual in EF method at a higher crack density (>0.15). Finally, we applied GSA method to interpret ultrasonic velocities of core samples. Mineralogical composition from X-ray diffraction (XRD) data and lab measured porosity data have been utilized. Both compressional and shear wave velocities from GSA

  19. Interface crack growth for anisotropic plasticity with non-normality effects

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    A plasticity model with a non-normality plastic flow rule is used to analyze crack growth along an interface between a solid with plastic anisotropy and an elastic substrate. The fracture process is represented in terms of a traction-separation law specified on the crack plane. A phenomenological...... an oscillating stress singularity, and with conditions of small scale yielding this solution is applied as boundary conditions on the outer edge of the region analyzed. Crack growth resistance curves are calculated numerically, and the effect of the near-tip mode mixity on the steady-state fracture toughness...

  20. Nonmonotonic and anisotropic magnetoresistance effect in antiferromagnet CaMn2Bi2

    Science.gov (United States)

    Kawaguchi, N.; Urata, T.; Hatano, T.; Iida, K.; Ikuta, H.

    2018-04-01

    We found a large and unique magnetoresistance (MR) effect for CaMn2Bi2 . When the magnetic field was applied along the crystallographic c axis at low temperatures, the resistivity increased with the magnetic field and the MR ratio reached several hundred percent, but then it decreased with further increasing the applied field. In addition, the angle dependence measurement revealed a strong anisotropy. This compound is an antiferromagnetic semiconductor with a narrow band gap, and Mn atoms form a corrugated honeycomb lattice. Therefore, a frustration among the magnetic moments is expected, and we propose that our observations can be understood by a nonmonotonic modulation of magnetic fluctuation under the magnetic field.

  1. Transport theory for disordered multiple-band systems: Anomalous Hall effect and anisotropic magnetoresistance

    Czech Academy of Sciences Publication Activity Database

    Kovalev, A.A.; Tserkovnyak, Y.; Výborný, Karel; Sinova, J.

    2009-01-01

    Roč. 79, č. 19 (2009), 19529/1-19529/19 ISSN 1098-0121 R&D Projects: GA MŠk LC510; GA AV ČR KJB100100802 Institutional research plan: CEZ:AV0Z10100521 Keywords : ferromagnetic materials * Hall effect * magnetoresistance * quasiparticles * spin-orbit interactions * two-dimensional electro n gas Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.475, year: 2009 http://link.aps.org/doi/10.1103/PhysRevB.79.195129

  2. Quantitative feasibility study of magnetocaloric energy conversion utilizing industrial waste heat

    International Nuclear Information System (INIS)

    Vuarnoz, D.; Kitanovski, A.; Gonin, C.; Borgeaud, Y.; Delessert, M.; Meinen, M.; Egolf, P.W.

    2012-01-01

    Highlights: ► We model magnetic energy conversion machine for the use of industrial waste heat. ► Efficiencies and masses of the system are evaluated by a numerical model. ► Excellent potential of profitability is expected with large low-exergy heat sources. -- Abstract: The main objective of this theoretical study was to investigate under which conditions a magnetic energy conversion device (MECD) – utilizing industrial waste heat – is economically feasible. Furthermore, it was evaluated if magnetic energy conversion (MCE) has the potential of being a serious concurrent to already existing conventional energy conversion technologies. Up-today the availability of magnetocaloric materials with a high Curie temperature and a high magnetocaloric effect is rather limited. Therefore, this study was mainly focused on applications with heat sources of low to medium temperature levels. Magnetic energy conversion machines, containing permanent magnets, are numerically investigated for operation conditions with different temperature levels, defined by industrial waste heat sources and environmental heat sinks, different magnetic field intensities and different frequencies of operation (number of thermodynamic cycles per unit of time). Theoretical modeling and numerical simulations were performed in order to determine thermodynamic efficiencies and the exergy efficiencies as function of different operation conditions. From extracted data of our numerical results, approximate values of the total mass and total volume of magnetic energy conversion machines could be determined. These important results are presented dependent on the produced electric power. An economic feasibility study supplements the scientific study. It shows an excellent potential of profitability for certain machines. The most important result of this article is that the magnetic energy conversion technology can be economically and technically competitive to or even beat conventional energy

  3. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    International Nuclear Information System (INIS)

    Alekseev, P. S.

    2015-01-01

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T d crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  4. Anisotropic spin–orbit stark effect in cubic semiconductors without an inversion center

    Energy Technology Data Exchange (ETDEWEB)

    Alekseev, P. S., E-mail: pavel.alekseev@mail.ioffe.ru [Russian Academy of Sciences, Ioffe Physicotechnical Institute (Russian Federation)

    2015-09-15

    The effect of external electric and magnetic fields on shallow donor levels in a semiconductor of the T{sub d} crystallographic class is analyzed. Application of an electric field eliminates the symmetry of the donor potential with respect to space inversion; as a result, corrections from the momentum-odd spin–orbit Dresselhaus term appear in the donor levels. In a strong electric field, such corrections determine the anisotropy of spin splitting of the donor levels relative to the directions of the external fields in the crystallographic coordinate system. Analytic expressions are derived for the spin splitting anisotropy for various relations between the magnitudes of the magnetic and electric fields. The results of this study can be used to determine the Dresselhaus spin–orbit interaction constant by a new method (in experiments on spin splitting of donor levels)

  5. Effect of hydrostatic pressure on magnetic and magnetocaloric properties in La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Thiyagarajan, R. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Esakki Muthu, S. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Univ. Grenoble Alpes and CEA, INAC-SPSMS, F-38000 Grenoble (France); Manikandan, K. [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India); Arumugam, S., E-mail: sarumugam1963@yahoo.com [Centre for High Pressure Research, School of Physics, Bharathidasan University, Tiruchirapalli 620024, Tamil Nadu (India)

    2016-01-15

    Magnetization of polycrystalline La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3} sample has been measured as a function of temperature (T) and magnetic field (H) under various external hydrostatic pressures (P) up to ~1 GPa. At ambient P, the sample exhibits paramagnetic (PM)–ferromagnetic (FM) transition (T{sub C}) at 167 K and 173 K in cooling and warming cycles respectively under the magnetic field (µ{sub 0}.H) of 0.1 T. It also shows a hysteresis during both temperature- and field- dependence of magnetization measurements at ambient P, suggests the presence of a first-order transition. Moreover, the field dependence of magnetization shows S type field-induced metamagnetic transition (FIMMT) over a temperature range below T{sub C} in the FM state. The application of P in M(T) increases T{sub C} at a rate [dT{sub C}/dP] of 13.9 K/GPa, but the thermally-driven first-order transition is not affected by P. However, the applied P suppresses FIMMT and reduces field-driven first-order transition in the magnetization isotherms [M(H)]below T{sub C}. H increases both magnetic entropy change (∆S{sub m}) and Relative Cooling Power (RCP), whereas the P slightly increases ∆S{sub m}{sup max} and no appreciable change in RCP. These results suggest that H and P can be used as a tool to enhance magnetocaloric values in the phase separated manganites. - Highlights: • At ambient P, La{sub 0.35}Pr{sub 0.35}Ca{sub 0.3}MnO{sub 3} sample shows first-order PM–FM transition. • P increases the T{sub C} at a rate of 13.9 K/GPa, thermal hysteresis is not affected. • P diminishes the field-driven first-order PM–FM transition, suppresses FIMMMT. • H increases ∆S{sub m} and RCP. P slightly increases ∆S{sub m}{sup max}, but no change in RCP by P.

  6. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    Energy Technology Data Exchange (ETDEWEB)

    Boudissa, M. [Universite Ferhat Abbas, Faculte des Sciences de l' Ingenieur, Setif (Algeria); Halimi, R. [Universite Mentouri, Unite de Recherche de Physique des Materiaux, Constantine (Algeria); Senoussi, S. [Universite Paris-Sud, Laboratoire de Physique des Solides, Orsay (France)

    2006-09-15

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 {mu}m and 40 {mu}m, for values of the angle {theta} between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M{sub irr}, allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  7. Anisotropic effects in a powder oriented YBCO sample using a three axes magnetometer

    International Nuclear Information System (INIS)

    Boudissa, M.; Halimi, R.; Senoussi, S.

    2006-01-01

    To measure the components of the magnetization vector along the XYZ directions of a reference frame, in the superconducting materials, we have conceived a three axes magnetometer, with a detection system equipped with three series of pick-up coils with axes parallel to the three directions X,Y, and Z. We describe in this paper the details of the design and the method of measurement, with some results obtained by magnetic measurements on samples of oriented YBCO powder, with size of the grains between 20 μm and 40 μm, for values of the angle θ between the magnetic field H and the c-axis, between 0 and 90 and for values of fields up to 12 T. The direct measurement of the Z and the XY components of the irreversible magnetization vector, M irr , allowed us to observe the twin effect (channeling) on the vortex pinning observed by many authors, the evolution of the magnetization vector and to measure with a high accuracy the anisotropy factor of our samples. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  8. Mechanics of layered anisotropic poroelastic media with applications to effective stress for fluid permeability

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2010-06-01

    The mechanics of vertically layered porous media has some similarities to and some differences from the more typical layered analysis for purely elastic media. Assuming welded solid contact at the solid-solid interfaces implies the usual continuity conditions, which are continuity of the vertical (layering direction) stress components and the horizontal strain components. These conditions are valid for both elastic and poroelastic media. Differences arise through the conditions for the pore pressure and the increment of fluid content in the context of fluid-saturated porous media. The two distinct conditions most often considered between any pair of contiguous layers are: (1) an undrained fluid condition at the interface, meaning that the increment of fluid content is zero (i.e., {delta}{zeta} = 0), or (2) fluid pressure continuity at the interface, implying that the change in fluid pressure is zero across the interface (i.e., {delta}p{sub f} = 0). Depending on the types of measurements being made on the system and the pertinent boundary conditions for these measurements, either (or neither) of these two conditions might be directly pertinent. But these conditions are sufficient nevertheless to be used as thought experiments to determine the expected values of all the poroelastic coefficients. For quasi-static mechanical changes over long time periods, we expect drained conditions to hold, so the pressure must then be continuous. For high frequency wave propagation, the pore-fluid typically acts as if it were undrained (or very nearly so), with vanishing of the fluid increment at the boundaries being appropriate. Poroelastic analysis of both these end-member cases is discussed, and the general equations for a variety of applications to heterogeneous porous media are developed. In particular, effective stress for the fluid permeability of such poroelastic systems is considered; fluid permeabilities characteristic of granular media or tubular pore shapes are treated

  9. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  10. Magneto-caloric and magneto-resistive properties of La0.67Ca0.33-xSrxMnO3

    International Nuclear Information System (INIS)

    Reves Dinesen, Anders

    2004-08-01

    This thesis presents results of an experimental investigation of magneto-caloric and magneto-resistive properties of a series of polycrystalline Ca- and Sr-doped lanthanum manganites, La 0.67 Ca 0.33-x Sr x MnO 3 (0≤ x ≤ 0.33), with the perovskite structure. The samples consisted of sintered oxide powders prepared the glycine-nitrate combustion technique. The compounds were ferromagnetic and showed a Curie transition in the temperature range 267370 K (T C increased with increasing x). An analysis of the structural properties was carried out by means of x-ray diffraction and the Rietveld technique. The variation of the Ca/Sr ratio was found to cause a transition from orthorhombic to rhombohedral symmetry in the composition range 0.110 0.67 Ca 0.33-x Sr x MnO 3 samples was measured directly and indirectly (by means of magnetization measurements). All the samples showed a magnetocaloric effect in the vicinity of T C . A model for the mag-netocaloric effect based on Weiss mean field theory and classical theories for heat capacities was developed. The model provided reasonable predictions of the magneto-caloric properties of the samples. The compounds with low Sr content showed a magnetocaloric effect comparable to that of Gadolinium, the prototypical working material for magnetic refrigeration at room temperature. A less comprehensive part of the investigation regarded the magneto-resistive properties of the La 0.67 Ca 0.33-x Sr x MnO 3 system. It was found that th polycrystalline nature of the compounds played a decisive role for the magnetotransport properties. Characteristic grain boundary effects, such as a low-field magnetoresistance, which is absent in single-crystalline perovskites, were observed. The low-field effect is usually ascribed to spin-dependent scattering in grain boundaries. Qualitatively the results obtained for the La 0.67 Ca 0.33-x Sr x MnO 3 samples were consistent with this model. The resistivity contribution arising from the presence of

  11. The effects of different expansions of the exit distribution on the extrapolation length for linearly anisotropic scattering

    International Nuclear Information System (INIS)

    Bulut, S.; Guelecyuez, M.C.; Kaskas, A.; Tezcan, C.

    2007-01-01

    H N and singular eigenfunction methods are used to determine the neutron distribution everywhere in a source-free half space with zero incident flux for a linearly anisotropic scattering kernel. The singular eigenfunction expansion of the method of elementary solutions is used. The orthogonality relations of the discrete and continuous eigenfunctions for linearly anisotropic scattering provides the determination of the expansion coefficients. Different expansions of the exit distribution are used: the expansion in powers of μ, the expansion in terms of Legendre polynomials and the expansion in powers of 1/(1+μ). The results are compared to each other. In the second part of our work, the transport equation and the infinite medium Green function are used. The numerical results of the extrapolation length obtained for the different expansions is discussed. (orig.)

  12. Order-disorder transition of vortex matter in Mg{sub 0.9}B{sub 2}: anisotropic effects

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, A A M; Ortiz, W A [Grupo de Supercondutividade e Magnetismo, Departamento de Fisica, Universidade Federal de Sao Carlos, SP (Brazil); Sharma, P A; Hur, N; Cheong, S-W, E-mail: ana@df.ufscar.b, E-mail: ana@df.ufscar.b [Rutgers Center for Emergent Materials and Department of Physics and Astronomy, Rutgers, NJ (United States)

    2009-03-01

    Third-harmonic susceptibility studies have been employed to probe the order-disorder transition of Vortex Matter of a magnesium-deficient sample of MgB{sub 2}. Our results reveal that the measured threshold is anisotropic for different orientations of the applied magnetic field, suggesting that the pinning efficiency of the magnesium-deficient regions depend on the orientation of the penetrated vortices.

  13. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    Science.gov (United States)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  14. A Note on Unified Statistics Including Fermi-Dirac, Bose-Einstein, and Tsallis Statistics, and Plausible Extension to Anisotropic Effect

    Directory of Open Access Journals (Sweden)

    Christianto V.

    2007-04-01

    Full Text Available In the light of some recent hypotheses suggesting plausible unification of thermostatistics where Fermi-Dirac, Bose-Einstein and Tsallis statistics become its special subsets, we consider further plausible extension to include non-integer Hausdorff dimension, which becomes realization of fractal entropy concept. In the subsequent section, we also discuss plausible extension of this unified statistics to include anisotropic effect by using quaternion oscillator, which may be observed in the context of Cosmic Microwave Background Radiation. Further observation is of course recommended in order to refute or verify this proposition.

  15. Anisotropic characterization of magnetorheological materials

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and

  16. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    Science.gov (United States)

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  17. Structural and magnetocaloric properties of (Mn,Fe){sub 2}(P,Si) materials with added nitrogen

    Energy Technology Data Exchange (ETDEWEB)

    Thang, N.V., E-mail: v.t.nguyen-1@tudelft.nl; Miao, X.F., E-mail: X.F.Miao@tudelft.nl; Dijk, N.H. van, E-mail: N.H.vanDijk@tudelft.nl; Brück, E., E-mail: E.H.Bruck@tudelft.nl

    2016-06-15

    Amongst magnetic materials that exhibit a giant magnetocaloric effect near room temperature, the (Mn,Fe){sub 2}(P,Si) system is one of the most promising candidates for magnetic refrigeration. Although the (Mn,Fe){sub 2}(P,Si) materials hold many advantages, controlling the magnetic entropy change ΔS{sub m}, the adiabatic temperature change ΔT{sub ad}, the thermal hysteresis and the mechanical stability across the ferromagnetic transition requires a delicate tuning of the composition. This work investigates the addition of nitrogen, as an interstitial or substitutional element, as a new parameter to tune the properties of (Mn,Fe){sub 2}(P,Si) materials. We found that the nitrogen addition results in a decrease of the Curie temperature, consistent with the observed increase in the c/a ratio. The introduction of nitrogen in (Mn,Fe){sub 2}(P,Si) materials also results in a strong enhancement of the mechanical stability. - Highlights: • N-doped materials were synthesized by high-energy ball milling and solid-state reactions. • Nitrogen atoms enter the structure both as substitutional and as interstitial element in (Mn,Fe){sub 2}(P,Si) materials. • Nitrogen addition leads to a decrease in the Curie temperature, while improving the mechanical stability and preserving the magnetocaloric properties. • The origin of the increase in the thermal hysteresis by increasing the N content has been investigated by analyzing the XRD data.

  18. Magnetocaloric and magnetoresistive properties of La0.67Ca0.33-xSrxMnO3

    DEFF Research Database (Denmark)

    Dinesen, Anders Reves

    This thesis presents results of an experimental investigation of magneto-caloric and magnetoresistive properties of a series of polycrystalline Ca- and Sr-doped lanthanum manganites, La0.67Ca0.33-xSrxMnO3 (0=x=0.33 ), with the perovskite structure. The samples consisted of sintered oxide powders...... prepared the glycine-nitrate combustion technique. The compounds were ferromagnetic and showed a Curie transition in the temperature range 267–370 K (TC increased with increasing x). An analysis of the structural properties was carried out by means of x-ray diffraction and the Rietveld technique...... and the Curie temperature. The Mn–O–Mn bonds mediate ferromagnetism and electrical transport in these materials via the double-exchange mechanism. The magnetocaloric effect of the La0.67Ca0.33-xSrxMnO3 samples was measured directly and indirectly (by means of magnetization measurements). All the samples showed...

  19. The influence of quench atomic disorder on the magnetocaloric properties of Ni–Co–Mn–In alloys

    International Nuclear Information System (INIS)

    Singh, Sandeep; Glavatskyy, Illya; Biswas, C.

    2014-01-01

    Highlights: • Large magnetic entropy change (ΔS m = 11 J/Kg K) at 1.5 Tesla above 300 K is obtained. • The peak value of ΔS m is higher in disordered system. • Refrigeration capacity (RC) is unaffected by the quenched atomic disorder. - Abstract: The magnetocaloric effect in Ni–Co–Mn–In alloys is studied at low magnetic field, across the first order magnetostructural transition. The Co doping at Ni site induces the large magnetic entropy change (ΔS m ) above room temperature. The large ΔS m of 11 J/Kg K has been observed for disordered Ni 1.81 Co 0.22 Mn 1.46 In 0.51 alloy at 337 K at an applied field of 1.5 Tesla. The influence of quench atomic disorder on the magnetocaloric properties of Ni–Co–Mn–In alloys has been studied. The atomic disorder significantly increases the peak value of ΔS m and decreases the peak width. The refrigeration capacity (RC) is almost unchanged with atomic disorder

  20. Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu Ying, E-mail: Liuying5536@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China) and Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065 (China); Ma Yilong [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2012-07-15

    Bulk anisotropic NdFeB/{alpha}-Fe nano-composites were obtained directly from alloys of Nd{sub 11}Dy{sub 0.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd{sub 11}Dy{sub 0.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nb has great influence on the microstructure and magnetic properties of (NdDy){sub 11.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0-2.0) nanocomposites. Black-Right-Pointing-Pointer Most of Nb atoms gather in the grain boundary to form Nb-rich amorphous intergranular phase, not NbFeB boride. Black-Right-Pointing-Pointer Furthermore, grain alignment can be prompt by the Nb-rich solid intergranular phase during deform. Black-Right-Pointing-Pointer Remanence, coercivity and (BH){sub m} of deformed (NdDy){sub 11.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposite is 1.04T, 563 kA/m and 146 kJ/m{sup 3} respectively. Black-Right-Pointing-Pointer This study provides an alternative method for prepare anisotropic nanocomposite direct from Nd-lean alloys with low cost.

  1. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  2. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  3. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  4. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  5. STUDY OF THE EFFECT OF ENDFACES POLISHING ANGLE FOR ANISOTROPIC WAVEGUIDES ON STATE CONVERSION OF LIGHT POLARIZATION

    Directory of Open Access Journals (Sweden)

    V. A. Shulepov

    2016-05-01

    Full Text Available The paper deals with optical scheme for research of polarization state transformation at the junction of anisotropic waveguides. It consists of a light source, polarization controller, multifunctional integrated optical scheme (MIOS, single-mode fiber for input and output of optical radiation in MIOS and the polarization scanning Michelson interferometer. Optical radiation from the source of the plant comes through the polarization controller in one of the MIOS ports. Further, in one of the opposite ports the radiation is received by different fibers, polished at the angles of 19.5˚, 10.5˚ and 0˚. After that, the optical radiation gets into polarization Michelson interferometer. With that, the picture visibility is analyzed at different displacement of one arm upon which the value has been determined in the polarization conversion point connections. At the course of work it was obtained that the polarization state conversion at a splicing point rises with the slant angle deviation from its optimal value. Anisotropic waveguides splicing is one of the main tasks during fabrication of any fiber-optic sensor with integrated optical elements. The results of this work are of great interest for the wide range of specialists in the optical waveguides application field.

  6. Magnetocaloric properties of a frustrated Blume-Capel antiferromagnet

    Directory of Open Access Journals (Sweden)

    Žukovič Milan

    2014-07-01

    Full Text Available Low-temperature magnetization processes and magnetocaloric properties of a geometrically frustrated spin-1 Blume-Capel model on a triangular lattice are studied by Monte Carlo simulations. The model is found to display qualitatively different behavior depending on the sign of the single-ion anisotropy D. For positive values of D we observe two magnetization plateaus, similar to the spin-1/2 Ising antiferromagnet, and negative isothermal entropy changes for any field intensity. For a range of small negative values of D there are four magnetization plateaus and the entropy changes can be either negative or positive, depending on the field. If D is negative but large in absolute value then the entropy changes are solely positive.

  7. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  8. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  9. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    KAUST Repository

    Zhao, Ying-Ying

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  10. Effect of Cd doping on magnetocaloric effect and critical behavior analysis on perovskite Nd1-xCdxMnO3 (x = 0, 0.1, 0.2, 0.3, and 0.4) manganite polycrystals

    Science.gov (United States)

    Saravanan, C.; Thiyagarajan, R.; Manikandan, K.; Sathiskumar, M.; Kanjariya, P. V.; Bhalodia, J. A.; Arumugam, S.

    2017-12-01

    We report the doping effect of divalent cation Cd2+ at Nd-site of intermediate bandwidth manganite system NdMnO3 through the temperature- and magnetic field-dependent magnetization measurements. The parent compound shows paramagnetic-antiferromagnetic transition at 56 K, whereas Cd doped samples show the paramagnetic-ferromagnetic transition with fluctuating TC. During this transition, Nd1-xCdxMnO3 (x = 0.1 and 0.2) samples exhibit first order nature, whereas Nd1-xCdxMnO3 (x = 0.3 and 0.4) samples exhibit second order nature. It confirms a crossover from first order transition to second order transition while x = 0.2 to x = 0.3. By having first order transition, x = 0.2 sample exhibits high magnetic entropy change of 3.62 J kg-1 K-1 for the magnetic field change of 5 T out of all compositions. By having second order transitions, x = 0.4 sample exhibits a high relative cooling power of 319.71 J kg-1 for the magnetic field change of 5 T out of all the compositions. The critical behavior of second order transition of x = 0.3 and 0.4 samples has been analyzed using Arrott and Kouvel-Fisher plots. The estimated critical exponents of these samples are nearly matched with the mean free model, which can be explained by the existence of dipole-dipole interaction by the Cd doping which strengthens long range ferromagnetic interactions between the spins.

  11. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  12. Rotating disk atomization of Gd and Gd-Y for hydrogen liquefaction via magnetocaloric cooling

    Energy Technology Data Exchange (ETDEWEB)

    Slinger, Tyler [Iowa State Univ., Ames, IA (United States)

    2016-12-17

    In order to enable liquid hydrogen fuel cell technologies for vehicles the cost of hydrogen liquefaction should be lowered. The current method of hydrogen liquefaction is the Claude cycle that has a figure of merit (FOM) of 0.3-0.35. New magnetocaloric hydrogen liquefaction devices have been proposed with a FOM>0.5, which is a significant improvement. A significant hurdle to realizing these devices is the synthesis of spherical rare earth based alloy powders of 200μm in diameter. In this study a centrifugal atomization method that used a rotating disk with a rotating oil quench bath was developed to make gadolinium and gadolinium-yttrium spheres. The composition of the spherical powders included pure Gd and Gd0.91Y0.09. The effect of atomization parameters, such as superheat, melt properties, disk shape, disk speed, and melt system materials and design, were investigated on the size distribution and morphology of the resulting spheres. The carbon, nitrogen, and oxygen impurity levels also were analyzed and compared with the magnetic performance of the alloys. The magnetic properties of the charge material as well as the resulting powders were measured using a vibrating sample magnetometer. The saturation magnetization and Curie temperature were the target properties for the resulting spheres. These values were compared with measurements taken on the charge material in order to investigate the effect of atomization processing on the alloys.

  13. Numerical analysis of a magnetocaloric heat pump implementation into a residential building

    DEFF Research Database (Denmark)

    Johra, Hicham

    of the magneto-caloric heat pump in a single hydronic loop coupling directly the heat source and the heat sink without additional heat exchangers. Moreover, several parameters can be controlled in order to perform efficient part load power generation. The objective of this work is to understand how to integrate...... a magneto-caloric heat pump into a residential building and establish a control strategy for such device. A numerical model of a single family house with water based under-floor heating and horizontal ground source heat exchanger is created. It is used to demonstrate the feasibility and the advantages...... of the integrated magneto-caloric heat pump system is compared with conventional heat pumps one....

  14. Influence of magnetic field, chemical pressure and hydrostatic pressure on the structural and magnetocaloric properties of the Mn-Ni-Ge system

    Science.gov (United States)

    Taubel, Andreas; Gottschall, Tino; Fries, Maximilian; Faske, Tom; Skokov, Konstantin P.; Gutfleisch, Oliver

    2017-11-01

    The magnetic, structural and thermomagnetic properties of the MM’X material system of MnNiGe are evaluated with respect to their utilization in magnetocaloric refrigeration. The effects of separate and simultaneous substitution of Fe for Mn and Si on the Ge site are analysed in detail to highlight the benefits of the isostructural alloying method. A large range of compounds with precisely tunable structural and magnetic properties and the tuning of the phase transition by chemical pressure are compared to the effect of hydrostatic pressure on the martensitic transition. We obtained very large isothermal entropy changes Δ S_iso of up to -37.8 J kg-1 K-1 based on magnetic measurements for (Mn,Fe)NiGe in moderate fields of 2 T. The enhanced magnetocaloric properties for transitions around room temperature are demonstrated for samples with reduced Ge, a resource critical element. An adiabatic temperature change of 1.3 K in a magnetic field change of 1.93 T is observed upon direct measurement for a sample with Fe and Si substitution. However, the high volume change of 2.8% results in an embrittlement of large particles into several smaller fragments and leads to a sensitivity of the magnetocaloric properties towards sample shape and size. On the other hand, this large volume change enables to induce the phase transition with a large shift of the transition temperature by application of hydrostatic pressure (72 K GPa-1 ). Thus, the effect of 1.88 GPa is equivalent to a substitution of 10% Fe for Mn and can act as an additional stimulus to induce the phase transition and support the low magnetic field dependence of the phase transition temperature for multicaloric applications.

  15. Determination of the magnetocaloric entropy change in the presence of phase separation and metastability: The case of Eu0.58Sr0.42MnO3

    International Nuclear Information System (INIS)

    Guillou, F.; Hardy, V.; Fruchart, D.; Zawilski, B.

    2014-01-01

    The magnetocaloric effect (MCE) in the manganite Eu 0.58 Sr 0.42 MnO 3 was derived by different methods, in a field range very sensitive to the phenomenon of phase separation. It turns out that a strong scatter in the MCE features was observed. When the applied field is less than the field required to complete the transition, it is found that the MCE can be strongly overestimated by “standard” indirect measurements. A way to properly estimate the MCE around a first order transition in the presence of phase separation and metastability is proposed. - Highlights: • The entropy change was investigated in an oxide with pronounced metastable effects. • A strong scatter is observed among results derived from several indirect methods. • It is found that even the calorimetric approach can be proned to artefacts. • A method is proposed to evaluate a “real” magnetocaloric entropy change

  16. Experimental results for a magnetic refrigerator using three different types of magnetocaloric material regenerators

    DEFF Research Database (Denmark)

    Engelbrecht, Kurt; Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2011-01-01

    in an experimental device. This paper compares the performance of three magnetocaloric material candidates for AMRs, La(Fe,Co,Si)13, (La,Ca,Sr)MnO3 and Gd, in an experimental active magnetic regenerator with a parallel plate geometry. The performance of single-material regenerators of each magnetocaloric material...... family were compared. In an attempt to improve system performance, graded two-material regenerators were made from two different combinations of La(Fe,Co,Si)13 compounds having different magnetic transition temperatures. One combination of the La(Fe,Co,Si)13 materials yielded a higher performance, while...

  17. Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Ali, N. [Department of Physics, Southern Illinois University, Carbondale, Illinois 62902 (United States); Rodionov, I. D.; Blinov, M. I.; Titov, I. S.; Prudnikov, V. N.; Granovsky, A. B. [Faculty of Physics, Lomonosov Moscow State University, Moscow 119991 (Russian Federation); Stadler, S. [Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803 (United States)

    2015-05-14

    The impact of B substitution in Ni{sub 50}Mn{sub 35}In{sub 15−x}B{sub x} Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5–400 K). Direct adiabatic temperature change (ΔT{sub AD}) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni{sub 50}Mn{sub 34.8}In{sub 14.2}B and Ni{sub 50}Mn{sub 35}In{sub 14}X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of ΔT{sub AD} = 2.5 K was observed at the magnetostructural transition for Ni{sub 50}Mn{sub 35}In{sub 14.5}B{sub 0.5}.

  18. Magnetic, transport, and magnetocaloric properties of boron doped Ni-Mn-In alloys

    International Nuclear Information System (INIS)

    Pandey, S.; Quetz, A.; Aryal, A.; Dubenko, I.; Ali, N.; Rodionov, I. D.; Blinov, M. I.; Titov, I. S.; Prudnikov, V. N.; Granovsky, A. B.; Stadler, S.

    2015-01-01

    The impact of B substitution in Ni 50 Mn 35 In 15−x B x Heusler alloys on the structural, magnetic, transport, and parameters of the magnetocaloric effect (MCE) has been studied by means of room-temperature X-ray diffraction and thermomagnetic measurements (in magnetic fields (H) up to 5 T, and in the temperature interval 5–400 K). Direct adiabatic temperature change (ΔT AD ) measurements have been carried out for an applied magnetic field change of 1.8 T. The transition temperatures (T-x) phase diagram has been constructed for H = 0.005 T. The MCE parameters were found to be comparable to those observed in other MCE materials such as Ni 50 Mn 34.8 In 14.2 B and Ni 50 Mn 35 In 14 X (X=In, Al, and Ge) Heusler alloys. The maximum absolute value of ΔT AD  = 2.5 K was observed at the magnetostructural transition for Ni 50 Mn 35 In 14.5 B 0.5

  19. Thermopower and magnetocaloric properties in NdSrMnO/CrO3 composites

    Science.gov (United States)

    Ahmed, A. M.; Mohamed, H. F.; Paixão, J. A.; Mohamed, Sara A.

    2018-06-01

    The thermoelectric power (TEP) and magnetocaloric effect (MCE) for (Nd0.6Sr0.4MnO3)1-x/(CrO3)x composites have been measured. The TEP measurements show a negative sign value of the Seebeck coefficient (S), in microvolts. TEP data construe in the low range of temperature by the magnon and phonon drag model, whereas at high temperature by small polaron conduction mechanism. Magnetic measurements exhibit that all composites show a paramagnetic-ferromagnetic transition with decreasing temperature. The Arrott plots of composites reveal the occurrence of a second order phase transition. The maximum value of magnetic entropy change (ΔS) is 2.37 J kg-1 K-1, achieved fore the composite with x = 0.015. Moreover, the maximum value of relative cooling power (RCP) is 122.1 J kg-1, achieved for the composite with x = 0.020. These composites may be appropriate for magnetic application near room temperature.

  20. Electromagnetism on anisotropic fractal media

    Science.gov (United States)

    Ostoja-Starzewski, Martin

    2013-04-01

    Basic equations of electromagnetic fields in anisotropic fractal media are obtained using a dimensional regularization approach. First, a formulation based on product measures is shown to satisfy the four basic identities of the vector calculus. This allows a generalization of the Green-Gauss and Stokes theorems as well as the charge conservation equation on anisotropic fractals. Then, pursuing the conceptual approach, we derive the Faraday and Ampère laws for such fractal media, which, along with two auxiliary null-divergence conditions, effectively give the modified Maxwell equations. Proceeding on a separate track, we employ a variational principle for electromagnetic fields, appropriately adapted to fractal media, so as to independently derive the same forms of these two laws. It is next found that the parabolic (for a conducting medium) and the hyperbolic (for a dielectric medium) equations involve modified gradient operators, while the Poynting vector has the same form as in the non-fractal case. Finally, Maxwell's electromagnetic stress tensor is reformulated for fractal systems. In all the cases, the derived equations for fractal media depend explicitly on fractal dimensions in three different directions and reduce to conventional forms for continuous media with Euclidean geometries upon setting these each of dimensions equal to unity.

  1. Anisotropic non-Fermi liquids

    Science.gov (United States)

    Sur, Shouvik; Lee, Sung-Sik

    2016-11-01

    We study non-Fermi-liquid states that arise at the quantum critical points associated with the spin density wave (SDW) and charge density wave (CDW) transitions in metals with twofold rotational symmetry. We use the dimensional regularization scheme, where a one-dimensional Fermi surface is embedded in (3 -ɛ ) -dimensional momentum space. In three dimensions, quasilocal marginal Fermi liquids arise both at the SDW and CDW critical points: the speed of the collective mode along the ordering wave vector is logarithmically renormalized to zero compared to that of Fermi velocity. Below three dimensions, however, the SDW and CDW critical points exhibit drastically different behaviors. At the SDW critical point, a stable anisotropic non-Fermi-liquid state is realized for small ɛ , where not only time but also different spatial coordinates develop distinct anomalous dimensions. The non-Fermi liquid exhibits an emergent algebraic nesting as the patches of Fermi surface are deformed into a universal power-law shape near the hot spots. Due to the anisotropic scaling, the energy of incoherent spin fluctuations disperse with different power laws in different momentum directions. At the CDW critical point, on the other hand, the perturbative expansion breaks down immediately below three dimensions as the interaction renormalizes the speed of charge fluctuations to zero within a finite renormalization group scale through a two-loop effect. The difference originates from the fact that the vertex correction antiscreens the coupling at the SDW critical point whereas it screens at the CDW critical point.

  2. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  3. Spin Wave Theory of Strongly Anisotropic Magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1977-01-01

    A strong anisotropy gives rise to a non-spherical precession of the spins with different amplitudes in the x and y directions. The highly anharmonic exchange interaction thereby becomes effectively anisotropic. The possibility of detecting a genuine two-ion anisotropy is discussed, and comments...

  4. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  5. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  6. Modeling of anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene metal-oxide semiconductor field effect transistors

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Jiwon [SEMATECH, 257 Fuller Rd #2200, Albany, New York 12203 (United States)

    2015-06-07

    Ballistic transport characteristics of metal-oxide semiconductor field effect transistors (MOSFETs) based on anisotropic two-dimensional materials monolayer HfS{sub 2} and phosphorene are explored through quantum transport simulations. We focus on the effects of the channel crystal orientation and the channel length scaling on device performances. Especially, the role of degenerate conduction band (CB) valleys in monolayer HfS{sub 2} is comprehensively analyzed. Benchmarking monolayer HfS{sub 2} with phosphorene MOSFETs, we predict that the effect of channel orientation on device performances is much weaker in monolayer HfS{sub 2} than in phosphorene due to the degenerate CB valleys of monolayer HfS{sub 2}. Our simulations also reveal that at 10 nm channel length scale, phosphorene MOSFETs outperform monolayer HfS{sub 2} MOSFETs in terms of the on-state current. However, it is observed that monolayer HfS{sub 2} MOSFETs may offer comparable, but a little bit degraded, device performances as compared with phosphorene MOSFETs at 5 nm channel length.

  7. Influence of Fe doped on the magnetocaloric behavior of La_{{2}/{3}} Ca_{{1}/{3}} Mn1-x Fe x O3 compounds: a Monte Carlo simulation

    Science.gov (United States)

    Alzate-Cardona, J. D.; Barco-Rios, H.; Restrepo-Parra, E.

    2018-02-01

    The magnetocaloric behavior of La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 for x  =  0.00, 0.02, 0.03, 0.05, 0.07, 0.08 and 0.10 under the influence of an external magnetic field was simulated and analyzed. Simulations were carried out using the Monte Carlo method and the classical Heisenberg model under the Metropolis algorithm. These mixed valence manganites are characterized by having three types of magnetic ions corresponding to Mn4+≤ft(S=\\frac{3}{2}\\right) , which are bonded with Ca2+ , and Mneg3+ and Mneg\\prime3+ (S=2) , related to La3+ . The Fe ions were randomly included, replacing Mn ions. With this model, the magnetic entropy change, Δ S , in an isothermal process was determined. -Δ Sm showed maximum peaks around the paramagnetic-ferromagnetic transition temperature, which depends on Fe doping. Relative cooling power was computed for different Fe concentrations varying the magnetic applied field. Our model and results show that the Fe doping decreases the magnetocaloric effect in the La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3, making this a bad candidate for magnetic refrigeration. The strong dependence of the magnetocaloric behavior on Fe doping and the external magnetic field in La{2/{3}} Ca{1/{3}} Mn1-x Fe x O3 can boost these materials for the future technological applications.

  8. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    3State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology,. Chengdu ... studied the extraction scheme of ADCIGs by using. Kirchhoff ..... The effect of shale properties on anisotropic brittleness.

  9. Tuning the magnetocaloric response of Er-based metallic glasses by varying structural order in disorder

    Energy Technology Data Exchange (ETDEWEB)

    Luo, Qiang [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China); Tang, Meibo [Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050 (China); Shen, Jun, E-mail: junshen@tongji.edu.cn [School of Materials Science and Engineering, Tongji University, Shanghai 201804 (China)

    2016-03-01

    The effects of structural order on magnetocaloric response have been explored in Er{sub 60}Al{sub 16}Co{sub 20}Ni{sub 4} metallic glass (MG). Compared with the fully amorphous structure of the as-spun ribbon (cooling rate ∼10{sup 6} K/s), the rod sample fabricated with a lower cooling rate (∼10{sup 3} K/s) contains a few crystalline phases embedded in the amorphous matrix. Annealing the ribbon in the supercooled liquid region results in formation of a large amount of nanocrystalline phase. Both the as-spun ribbon and rod samples show a single spin-glass-like transition behavior, while the annealed sample exhibits double-freezing processes. It is found that the sparsely distributed micro-sized crystalline phases (content fraction of 13%) exert a slight effect on the magnetic entropy change (MEC). However, densely distributed nanocrystallization phase (∼50%) in amorphous matrix leads to an obvious reduction of the MEC and refrigerant capacity (RC). The exponent n of field dependence of MEC is found to related to exchange frustration, random anisotropy, and structure ordering degrees. - Highlights: • We determined the significant role of the size and distribution of the crystalline phases on the magnetic structure and magnetic performance of metallic glass composite. • It is found that the sparsely distributed micro-sized crystalline phases (content fraction of 13%) exert a slight effect on the MEC. • Densely distributed nanocrystalline phase (~50%) leads to an obvious reduction of the MEC.

  10. Anisotropic Rabi model

    Science.gov (United States)

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-04-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i) quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii) solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii) mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  11. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  12. On Pokrovskii's anisotropic gap equations in superconductivity theory

    Science.gov (United States)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  13. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability

    International Nuclear Information System (INIS)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-01-01

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p < 0.05) for VMAT AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy −1.5 Gy; p < 0.05). An apparent difference in TCP of between 1.2% and 3.1% was found depending on the choice of TCP model. OAR mean dose was lower in the AXB recalculated plan than the AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans

  14. Comparison of Acuros (AXB) and Anisotropic Analytical Algorithm (AAA) for dose calculation in treatment of oesophageal cancer: effects on modelling tumour control probability.

    Science.gov (United States)

    Padmanaban, Sriram; Warren, Samantha; Walsh, Anthony; Partridge, Mike; Hawkins, Maria A

    2014-12-23

    To investigate systematic changes in dose arising when treatment plans optimised using the Anisotropic Analytical Algorithm (AAA) are recalculated using Acuros XB (AXB) in patients treated with definitive chemoradiotherapy (dCRT) for locally advanced oesophageal cancers. We have compared treatment plans created using AAA with those recalculated using AXB. Although the Anisotropic Analytical Algorithm (AAA) is currently more widely used in clinical routine, Acuros XB (AXB) has been shown to more accurately calculate the dose distribution, particularly in heterogeneous regions. Studies to predict clinical outcome should be based on modelling the dose delivered to the patient as accurately as possible. CT datasets from ten patients were selected for this retrospective study. VMAT (Volumetric modulated arc therapy) plans with 2 arcs, collimator rotation ± 5-10° and dose prescription 50 Gy / 25 fractions were created using Varian Eclipse (v10.0). The initial dose calculation was performed with AAA, and AXB plans were created by re-calculating the dose distribution using the same number of monitor units (MU) and multileaf collimator (MLC) files as the original plan. The difference in calculated dose to organs at risk (OAR) was compared using dose-volume histogram (DVH) statistics and p values were calculated using the Wilcoxon signed rank test. The potential clinical effect of dosimetric differences in the gross tumour volume (GTV) was evaluated using three different TCP models from the literature. PTV Median dose was apparently 0.9 Gy lower (range: 0.5 Gy - 1.3 Gy; p AAA plans re-calculated with AXB and GTV mean dose was reduced by on average 1.0 Gy (0.3 Gy -1.5 Gy; p AAA plan (on average, dose reduction: lung 1.7%, heart 2.4%). Similar trends were seen for CRT plans. Differences in dose distribution are observed with VMAT and CRT plans recalculated with AXB particularly within soft tissue at the tumour/lung interface, where AXB has been shown to more

  15. Anisotropic diffusion tensor applied to temporal mammograms

    DEFF Research Database (Denmark)

    Karemore, Gopal; Brandt, Sami; Sporring, Jon

    2010-01-01

    changes related to  specific  effects  like  Hormonal  Replacement  Therapy  (HRT) and aging. Given effect-grouped patient data, we demonstrated how  anisotropic  diffusion  tensor  and  its  coherence  features computed in an anatomically oriented breast coordinate system followed by statistical learning...

  16. Heat flux measurements of Tb{sub 3}M series (M=Co, Rh and Ru): Specific heat and magnetocaloric properties

    Energy Technology Data Exchange (ETDEWEB)

    Monteiro, J.C.B., E-mail: jolmiui@gmail.com [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil); Lombardi, G.A. [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil); Reis, R.D. dos [Max-Planck Institute for Chemical Physics of Solids, Nöthnitzer Str. 40, 01187 Dresden (Germany); Freitas, H.E.; Cardoso, L.P.; Mansanares, A.M.; Gandra, F.G. [Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin, Campinas, SP 13083-859 (Brazil)

    2016-12-15

    We report on the magnetic properties and magnetocaloric effect (MCE) for the Tb{sub 3}M series, with M=Co, Rh and Ru, obtained using a heat flux technique. The specific heat of Tb{sub 3}Co and Tb{sub 3}Rh are very similar, with a first order type transition occurring around 6 K below the magnetic ordering temperature without any corresponding feature on the magnetization. The slightly enhanced electronic specific heat, the Debye temperature around 150 K and the presence of the magnetic specific heat well above the ordering temperature are also characteristic of many other compounds of the R{sub 3}M family (R=Rare Earth). The specific heat for Tb{sub 3}Ru, however, presents two peaks at 37 K and 74 K. The magnetization shows that below the first peak the system presents an antiferromagnetic behavior and is paramagnetic above 74 K. We obtained a magnetocaloric effect for M=Co and Rh, −∆S=12 J/kg K, but for Tb{sub 3}Ru it is less than 3 J/kg K (μ{sub 0}∆H=5 T). We believe that the experimental results show that the MCE is directly related with the process of hybridization of the (R)5d-(M)d electrons that occurs in the R{sub 3}M materials.

  17. Intra-Wellbore Head Losses in a Horizontal Well with both Kinematic and Frictional Effects in an Anisotropic Confined Aquifer between Two Streams

    Science.gov (United States)

    Wang, Q.; Zhan, H.

    2017-12-01

    Horizontal drilling becomes an appealing technology for water exploration or aquifer remediation in recent decades, due to the decreasing operational cost and many technical advantages over the vertical wells. However, many previous studies on the flow into horizontal wells were based on the uniform flux boundary condition (UFBC) for treating horizontal wells, which could not reflect the physical processes of flow inside the well accurately. In this study, we investigated transient flow into a horizontal well in an anisotropic confined aquifer between two streams for three types of boundary conditions of treating the horizontal well, including UFBC, uniform head boundary condition (UHBC), and mixed-type boundary condition (MTBC). The MTBC model considered both kinematic and frictional effects inside the horizontal well, in which the kinematic effect referred to the accelerational and fluid inflow effects. The new solution of UFBC was derived by superimposing the point sink/source solutions along the axis of the horizontal well with a uniform strength. The solutions of UHBC and MTBC were obtained by a hybrid analytical-numerical method, and an iterative method was proposed to determine the minimum well segment number required to yield sufficiently accurate answer. The results showed that the differences among the UFBC, UHBC, MTBCFriction and MTBC solutions were obvious, in which MTBCFriction represented the solutions considering the frictional effect but ignoring the kinematic effect. The MTBCFriction and MTBC solutions were sensitive to the flow rate, and the difference of these two solutions increases with the flow rate, suggesting that the kinematic effect could not be ignored for studying flow to a horizontal well, especially when the flow rate is great. The well specific inflow (WSI) (which is the inflow per unit screen length at a specified location of the horizontal well) increased with the distance along the wellbore for the MTBC model at early stage, while

  18. The anisotropic Ising superantiferromagnet on a simple cubic lattice in the presence of a magnetic field: Effective-field theory analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A., E-mail: minos@pq.cnpq.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Padilha, Igor T.; Salmon, Octavio D.R.; Viana, J. Roberto [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil)

    2013-12-15

    We have studied the anisotropic three-dimensional nearest-neighbor Ising model with competitive interactions in an uniform longitudinal magnetic field H. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnet). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the H−T plane, using the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). It was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point and a reentrant behavior is observed at low temperature. The critical curve in the classical approach is also obtained and the results are compared.

  19. Effect of the As-Forged and Heat-Treated Microstructure on the Room Temperature Anisotropic Ductile Fracture of Inconel 718

    Science.gov (United States)

    Teimouri, Javad; Hosseini, Seyed Rahman; Farmanesh, Khosro

    2018-05-01

    The purpose of the present work was to investigate the effect of primary carbides and the δ-phase on the anisotropic ductile fracture of Inconel 718 in the forging process. Inconel 718 alloys were prepared by VIM + VAR processes with various carbon contents (0.009 and 0.027 wt.%). Then, the alloys were forged and annealed at temperatures of 980 and 1030 °C. The room temperature mechanical anisotropy of the alloys was evaluated at the longitudinal direction (LD) and transverse direction (TD). Tensile and impact tests were used to characterize the mechanical properties of the specimens. The microstructural characterization and the fractography of the alloys were carried out by FE-SEM. The obtained results showed that the fracture strain and the impact energy in the TD were 30-50% lower than the LD. The fracture was accelerated by the δ-phase, leading to the reduction of impact energy in the longitudinal and the lateral directions up to 50%. The low-carbon alloy indicated similar characteristics in both the LD and the TD. Aligned carbides changed the fracture path from a zigzag path in the LD to a fibrous path in the TD, while the δ-phase created a flat fracture path. The shear lip area ratio in the tensile fracture cross section was decreased by reducing ductility.

  20. Effects of MR parameter changes on the quantification of diffusion anisotropy and apparent diffusion coefficient in diffusion tensor imaging: Evaluation using a diffusional anisotropic phantom

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sang Joon; Choi, Choong Gon; Kim, Jeong Kon [Dept. of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Yun, Sung Cheol [Dept. of Biostatistics, University of Ulsan College of Medicine, Seoul (Korea, Republic of); Jeong, Ha Kyu [Dept. of Radiology, East-West Neomedical Center, Kyung Hee University College of Medicine, Seoul (Korea, Republic of); Kim, Eun Ju [Clinical Scientist, MR, Philips Healthcare, Seoul (Korea, Republic of)

    2015-04-15

    To validate the usefulness of a diffusional anisotropic capillary array phantom and to investigate the effects of diffusion tensor imaging (DTI) parameter changes on diffusion fractional anisotropy (FA) and apparent diffusion coefficient (ADC) using the phantom. Diffusion tensor imaging of a capillary array phantom was performed with imaging parameter changes, including voxel size, number of sensitivity encoding (SENSE) factor, echo time (TE), number of signal acquisitions, b-value, and number of diffusion gradient directions (NDGD), one-at-a-time in a stepwise-incremental fashion. We repeated the entire series of DTI scans thrice. The coefficients of variation (CoV) were evaluated for FA and ADC, and the correlation between each MR imaging parameter and the corresponding FA and ADC was evaluated using Spearman's correlation analysis. The capillary array phantom CoVs of FA and ADC were 7.1% and 2.4%, respectively. There were significant correlations between FA and SENSE factor, TE, b-value, and NDGD, as well as significant correlations between ADC and SENSE factor, TE, and b-value. A capillary array phantom enables repeated measurements of FA and ADC. Both FA and ADC can vary when certain parameters are changed during diffusion experiments. We suggest that the capillary array phantom can be used for quality control in longitudinal or multicenter clinical studies.

  1. Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids

    Energy Technology Data Exchange (ETDEWEB)

    Abd-Alla, A. M.; Abo-Dahab, S. M. [Taif University, Taif (Egypt); Khan, Aftab [COMSATS, Chakshahzad (Pakistan)

    2015-10-15

    In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.

  2. Rotational effect on Rayleigh, Love and Stoneley waves in fibre-reinforced anisotropic general viscoelastic media of higher and fraction orders with voids

    International Nuclear Information System (INIS)

    Abd-Alla, A. M.; Abo-Dahab, S. M.; Khan, Aftab

    2015-01-01

    In this paper, we investigated the propagation of surface waves in a rotating fibre-reinforced viscoelastic anisotropic media of a higher order and fraction orders of nth order including time rate of strain with voids. The general surface wave speed is derived to study the effect of rotation and voids on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. In order zero our results are well agreeing with classical results. Also by neglecting the reinforced elastic parameters and voids the results reduce to well known isotropic medium. Comparison was made with the results obtained in the presence and absence of rotation and parameters for fibre-reinforced of the material medium. It is observed that Love wave remains unaffected with respect to rotation and voids. It is also observed that, surface waves cannot propagate in a fast rotating medium. Numerical results are given and illustrated graphically.

  3. Tunable magnetostructural coupling and large magnetocaloric effect in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, C.L., E-mail: zhangcl@jiangnan.edu.cn [School of Science, Jiangnan University, WuXi 214122 (China); Nie, Y.G.; Shi, H.F.; Ye, E.J.; Zhao, J.Q. [School of Science, Jiangnan University, WuXi 214122 (China); Han, Z.D. [Jiangsu Laboratory of Advanced Functional Materials, Department of Physics, Changshu Institute of Technology, Changshu 215500 (China); Xuan, H.C. [College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024 (China); Wang, D.H. [National Laboratory of Solid State Microstructures, Department of Physics, Nanjing University, Nanjing 210093 (China)

    2017-06-15

    Highlights: • Realizing FM/PM-type magnetostructural transition by co-substitution at both three atomic sites of MnNiSi. • Magnetostructural transition temperature is tunable in a broad temperature window of 285 K spanning room temperature. • Relatively high M{sub S} for the orthorhombic phase and large ΔM across the magnetostructural transition. • Relatively large magnetic entropy changes and broad working temperature span. - Abstract: A common method of realizing a magnetostructural coupling for MnNiSi is chemically alloying it with a ternary compound possessing a stable Ni{sub 2}In-type structure. In this way, the substituting elements and levels are determined by the stoichiometry of counterpart compounds. In this work, chemical co-substitutions of Fe and Ga at three different atomic sites of MnNiSi were performed. The selections of substitution elements and levels were based on the site occupation rule and an analysis of the site-dependent substitutional effects on structural stability, Curie temperatures, and magnetic moment of MnNiSi. A broad Curie temperatures window of 285 K spanning room temperature was established in Mn{sub 1−x}Ni{sub 1−x}Fe{sub 2x}Si{sub 1−x}Ga{sub x}. Strong magnetostructural transformations with large magnetization difference were realized in this window. A relatively large magnetic entropy change of −38.1 J/kg K was observed for a field change of 5 T near room temperature in the alloy with x = 0.15.

  4. Thermomagnetic and magnetocaloric properties of metamagnetic Ni-Mn-In-Co Heusler alloy in magnetic fields up to 140 kOe

    Directory of Open Access Journals (Sweden)

    Kamantsev Alexander

    2014-07-01

    Full Text Available High cooling power of magnetocaloric refrigeration can be achieved only at large amounts of heat, which can be transferred in one cycle from cold end hot end at quasi-isothermal conditions. The simple and robust experimental method of direct measuring of the transferred heat of materials with magnetocaloric effect (MCE in thermal contact with massive copper block with definite heat capacity in quasi-isothermal regime was proposed. The vacuum calorimeter for the specific transferred heat ΔQ and adiabatic temperature change ΔT measurements of MCE materials in the fields of Bitter coil magnet up to H = 140 kOe was designed and tested on samples of Ni43Mn37.9In12.1Co7 Heusler alloy with inverse MCE in the vicinity of meta-magnetostructural phase transition (PT. It was found, that the magnetic field H = 80 kOe produces complete PT from martensite to austenite with ΔQ = - 1600 J/kg at initial temperature 273 K.

  5. Magnetic and magnetocaloric properties of spin-glass material DyNi{sub 0.67}Si{sub 1.34}

    Energy Technology Data Exchange (ETDEWEB)

    Chen, X. [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); College of Physics and Electronic Information Engineering, Neijiang Normal University, Neijiang 641100 (China); Mudryk, Y., E-mail: slavkomk@ameslab.gov [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Pathak, A.K.; Feng, W. [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Pecharsky, V.K. [The Ames Laboratory, U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020 (United States); Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300 (United States)

    2017-08-15

    Highlights: • Spin-glass state is observed in the DyNi{sub 0.67}Si{sub 1.4} compound. • Random Ni/Si distribution in the AlB{sub 2}-type structure leads to magnetic frustration. • Magnetic frustration affects magnetic field dependence of magnetocaloric effect. - Abstract: Structural, magnetic, and magnetocaloric properties of DyNi{sub 0.67}Si{sub 1.34} were investigated using X-ray powder diffraction, magnetic susceptibility, and magnetization measurements. X-ray powder diffraction pattern shows that DyNi{sub 0.67}Si{sub 1.34} crystallizes in the AlB{sub 2}-type hexagonal structure (space group: P6/mmm, No. 191, a = b = 3.9873(9) Å, and c = 3.9733(1) Å). The compound is a spin-glass with the freezing temperature T{sub G} = 6.2 K. The ac magnetic susceptibility measurements confirm magnetic frustration in DyNi{sub 0.67}Si{sub 1.34}. The maximum value of the magnetic entropy change determined from M(H) data is −16.1 J/kg K at 10.5 K for a field change of 70 kOe.

  6. Structural, magnetic, magnetocaloric effect and critical behavior of La{sub 0.7}Sr{sub 0.3−x}□{sub x}MnO{sub 3}(0 ≤ x ≤ 0.05)

    Energy Technology Data Exchange (ETDEWEB)

    Makni-Chakroun, J., E-mail: makni.jihed@yahoo.fr [LT2S Lab, Digital Research Centre of Sfax, Sfax Technopark, BP 275, 3021 Sakiet-Ezzit (Tunisia); Sfifir, I.; Cheikhrouhou-Koubaa, W.; Koubaa, M. [LT2S Lab, Digital Research Centre of Sfax, Sfax Technopark, BP 275, 3021 Sakiet-Ezzit (Tunisia); Cheikhrouhou, A. [Material Physics Laboratory, Faculty of Sciences of Sfax, B.P. 1171, Sfax University, 3000 Sfax (Tunisia)

    2017-06-15

    Highlights: • The samples crystallize in the rhombohedral structure with R-3C space group. • Curie temperature T{sub C} decreases with lacuna. • (1/χ) versus temperature indicates Griffiths phase occurrence. • Result show that the paramagnetic-ferromagnetic transition is of second order. • Widom scaling relation confirms the critical exponent value. - Abstract: In this paper, we present the effect of Strontium vacancies on the structure and magnetic properties of La{sub 0.7}Sr{sub 0.3−x}□{sub x}MnO{sub 3} nano-sized compounds (x = 0; 0.01; 0.03 and 0.05), synthesized using the sol-gel method. X-ray diffraction revealed that these manganites crystallized in the rhombohedral structure with space group R3-C. From magnetization measurements as function of temperature and magnetic applied field, we have noticed a large magnetic entropy change (∆S{sub M}) around Curie temperature. ∆S{sub M} is found to decrease with the deficiency content (2.30 J/kg·K for x = 0–1.33 J/kg·K for x = 0.05 under magnetic field change µ{sub 0}∆H = 5 T). This behavior is accompanied by a slight reduction of the Curie temperature (T{sub C} = 338 and 328 K for x = 0 and 0.05, respectively). These results show that our materials are potential candidates for magnetic refrigerants working in above room temperature. The refined values of the critical exponents β, γ and δ obtained from the modified Arrott plots and Kouvel-Fisher method indicated that the behavior of the parent sample and the samples with 1and 3% of strontium-deficient are characterized by long-range mean-field behavior (with β = 0.50; γ = 1). However, for 5% lacuna, the magnetic behavior is close to the theoretical 3D-Heisemberg prediction with short-range exchange coupling.

  7. Universal behavior of magnetocaloric effect in a layered perovskite La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} single crystal

    Energy Technology Data Exchange (ETDEWEB)

    Thanh, Tran Dang, E-mail: thanhxraylab@yahoo.com [Institute of Materials Science, Vietnam Academy of Science and Technology, 18-Hoang Quoc Viet, Hanoi (Viet Nam); Manh, T.V.; Ho, T.A. [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of); Telegin, Andrey [Department of Magnetic Semiconductors, Institute of Metal Physics, RAS (Russian Federation); Phan, T.L. [Department of Physics and Oxide Research Center, Hankuk University of Foreign Studies, Yongin 449-791 (Korea, Republic of); Yu, S.C., E-mail: scyu@chungbuk.ac.kr [Department of Physics, Chungbuk National University, Cheongju 361-763 (Korea, Republic of)

    2016-04-01

    In this paper, we present a detailed analysis on temperature and magnetic field dependences of the magnetic entropy change (ΔS{sub m}) near the ferromagnetic (FM)–paramagnetic (PM) phase transition of a La{sub 1.2}Sr{sub 1.8}Mn{sub 2}O{sub 7} single crystal. Experimental results reveal the material exhibiting a FM–PM phase transition at T{sub C}=85 K, and belongs to a second-order phase transition (SOPT). Around T{sub C}, −ΔS{sub m} reaches the maximum value (|ΔS{sub max}|), which increases with increasing an applied magnetic field change, ΔH. The |ΔS{sub max}| values found are about 0.93, 1.73, 2.38, 2.91, and 3.33 J kg{sup −1} K{sup −1} for ΔH=10, 20, 30, 40, and 50 kOe, respectively. However, the peak position of the −ΔS{sub m}(T) curves is effectively shifted to higher temperatures when ΔH increases. Additionally, the ΔS{sub m}(T) curves measured at different ΔH values do not collapse into a universal curve when they are normalized to their respective ΔS{sub max} value, and Prod. Type: rescaled the temperature axis with θ{sub 1}=(T−T{sub C})/(T{sub r}−T{sub C}) for a reference temperature T{sub r}>T{sub C} or T{sub r}T{sub C}.

  8. About the mechanical stability of MnFe(P,Si,B) giant-magnetocaloric materials

    Energy Technology Data Exchange (ETDEWEB)

    Guillou, F., E-mail: f.guillou@tudelft.nl [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Yibole, H.; Dijk, N.H. van [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands); Zhang, L. [BASF Netherlands B.V., Strijkviertel 67, 3454 PK De Meern (Netherlands); Hardy, V. [CRISMAT, Ensicaen, UMR 6508 CNRS, 6 B" d Maréchal Juin, 14050 Caen Cedex (France); Brück, E. [FAME, Faculty of Applied Sciences, TU Delft, Mekelweg 15, 2629 JB Delft (Netherlands)

    2014-12-25

    Highlights: • Electrical resistivity and hardness show an evolution at T{sub C} with thermal cycling. • Degradation depends on the (c/a) lattice discontinuity at the transition. • Boron substituted materials present an improved mechanical stability. - Abstract: Due to its ability to control the latent heat and the hysteresis (thermal or magnetic) at the first-order transition (FOT) without deteriorating the saturation magnetisation, boron substitution in MnFe(P,Si) materials has recently been reported to be an ideal parameter to reach promising magnetocaloric performances: ΔS ≈ 10 Jkg{sup −1} K{sup −1} and cyclic ΔT of 2.6 K (and more) at a moderate magnetic field of ΔB = 1 T. Additionally, an interesting aspect for applications is the improvement of the mechanical stability in B doped materials compared to the pristine MnFe(P,Si) compounds. These improved mechanical properties were initially supported by naked-eye inspection and the observation of a constant ΔT during a few thousands of magnetic cycles. (Guillou et al., 2014) Here, the evolution upon cycling of MnFe(P,Si,B) materials is studied in a more quantitative and systematic manner. For that purpose transformation temperatures, electrical resistivity, micro-hardness and the microstructure are tracked as a function of the thermal cycling across the FOT for three prototypical compositions in the MnFe(P,Si,B) system. It turns out this set of data confirms the initial finding that B substitution has a positive effect on the mechanical stability. The origin of this improvement is discussed, in particular in respect to the lattice parameter discontinuities at the phase transition.

  9. Magnetocaloric properties of rapidly solidified Dy{sub 3}Co alloy ribbons

    Energy Technology Data Exchange (ETDEWEB)

    Sánchez Llamazares, J. L., E-mail: jose.sanchez@ipicyt.edu.mx; Flores-Zúñiga, H.; Sánchez-Valdés, C. F. [Instituto Potosino de Investigación Científica y Tecnológica A.C., Camino a la Presa San José 2055 Col. Lomas 4" a, San Luis Potosí, S.L.P. 78216 (Mexico); Álvarez-Alonso, Pablo [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); Lara Rodríguez, G. A. [Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior s/n, Ciudad Universitaria, México, D. F. 04510 (Mexico); Fernández-Gubieda, M. L. [Departamento de Electricidad y Electrónica, UPV/EHU, 48940 Leioa (Spain); BC Materials, Camino de Ibaizabal, Edificio 500, Planta 1, Parque Científico y Tecnológico de Zamudio, 48160 Derio (Spain)

    2015-05-07

    The magnetic and magnetocaloric (MC) properties of melt-spun ribbons of the Dy{sub 3}Co intermetallic compound were investigated. Samples were fabricated in an Ar environment using a homemade melt spinner system at a linear speed of the rotating copper wheel of 40 ms{sup −1}. X-ray diffraction analysis shows that ribbons crystallize into a single-phase with the Fe{sub 3}C-type orthorhombic crystal structure. The M(T) curve measured at 5 mT reveals the occurrence of a transition at 32 K from a first to a second antiferromagnetic (AFM) state and an AFM-to-paramagnetic transition at T{sub N} = 43 K. Furthermore, a metamagnetic transition is observed below T{sub N}, but the magnetization change ΔM is well below the one reported for bulk alloys. Below 12 K, large inverse MC effect and hysteresis losses are observed. This behavior is related to the metamagnetic transition. For a magnetic field change of 5 T (2 T) applied along the ribbon length, the produced ribbons show a peak value of the magnetic entropy change ΔS{sub M}{sup peak} of −6.5 (− 2.1) Jkg{sup −1}K{sup −1} occurring close to T{sub N} with a full-width at half-maximum δT{sub FWHM} of 53 (37) K, and refrigerant capacity RC = 364 (83) Jkg{sup −1} (estimated from the product |ΔS{sub M}{sup peak}| × δT{sub FWHM})

  10. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  11. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  12. Algebraic collapsing acceleration of the characteristics method with anisotropic scattering

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.; Roy, R.

    2004-01-01

    In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)

  13. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  14. Theoretical approach to the magnetocaloric effect with hysteresis

    International Nuclear Information System (INIS)

    Basso, V.; Bertotti, G.; LoBue, M.; Sasso, C.P.

    2005-01-01

    In this paper a thermodynamic model with internal variables is presented and applied to ferromagnetic hysteresis. The out-of-equilibrium Gibbs free energy of a magnetic system is expressed as a function of the internal state of the Preisach model. Expressions for the system entropy and the entropy production are derived. By this approach it is possible to reproduce the characteristic features of the experimentally observed temperature changes (of the order of 10 -4 K around room temperature) induced by the magnetic field along the hysteresis loop performed in iron under adiabatic condition

  15. Magnetocaloric effect in rare-earth intermetallics: Recent trends

    Indian Academy of Sciences (India)

    ... intermetallic hydrides, manganite oxides, Ni–Mn–Sb-type shape memory ... With the help of temperature-dependent heat capacity information in various applied .... for relative cooling power and a wide working temperature range of about ...

  16. The effect of demagnetization on the magnetocaloric properties of gadolinium

    DEFF Research Database (Denmark)

    Bahl, Christian Robert Haffenden; Nielsen, Kaspar Kirstein

    2009-01-01

    of gadolinium. The adiabatic temperature change DeltaTad of gadolinium sheets upon application of a magnetic field has been measured at a range of applied magnetic fields and sample orientations. A significant dependence of DeltaTad on the sample orientation is observed. This can be accounted...... for by the demagnetization factor. Also, the temperature dependence of DeltaTad has been measured experimentally and modeled by mean field theory. Corrections to mean field theory modeling due to the demagnetization field are proposed and discussed. ©2009 American Institute of Physics...

  17. Isostructural magnetic phase transition and magnetocaloric effect in Ising antiferromagnet

    International Nuclear Information System (INIS)

    Lavanov, G.Yu; Kalita, V.M.; Loktev, V.M.

    2014-01-01

    It is shown that the external magnetic field induced isostructural I st order magnetic phase transition between antiferromagnetic phases with different antiferromagnetic vector values is associated with entropy. It is found, that depending on temperature the entropy jump and the related heat release change their sign at this transition point. In the low-temperature region of metamagnetic I st order phase tensition the entropy jump is positive, and in the triple point region this jump for isostructural magnetic transition is negative

  18. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  19. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  20. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-01-01

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  1. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  2. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  3. Mechanics of anisotropic spring networks.

    Science.gov (United States)

    Zhang, T; Schwarz, J M; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  4. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, K. K.

    2011-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  5. Modelling and comparison studies of packed screen regenerators for active magnetocaloric refrigeration

    DEFF Research Database (Denmark)

    Lei, Tian; Engelbrecht, Kurt; Nielsen, Kaspar Kirstein

    2014-01-01

    In active magnetic regeneration (AMR) systems, not only the magnetocaloric properties of materials, but also the regenerator geometry plays an important role in the system performance. Packed sphere regenerators are often employed in existing prototypes, however, the characteristics such as relat...... is improved and applied to simulate the regenerators. The performance of the new regenerators is studied and compared with that of the packed sphere regenerators. Possible fabrication methods of the packed screen regenerators are also discussed....

  6. Fermi Surface of Sr_{2}RuO_{4}: Spin-Orbit and Anisotropic Coulomb Interaction Effects.

    Science.gov (United States)

    Zhang, Guoren; Gorelov, Evgeny; Sarvestani, Esmaeel; Pavarini, Eva

    2016-03-11

    The topology of the Fermi surface of Sr_{2}RuO_{4} is well described by local-density approximation calculations with spin-orbit interaction, but the relative size of its different sheets is not. By accounting for many-body effects via dynamical mean-field theory, we show that the standard isotropic Coulomb interaction alone worsens or does not correct this discrepancy. In order to reproduce experiments, it is essential to account for the Coulomb anisotropy. The latter is small but has strong effects; it competes with the Coulomb-enhanced spin-orbit coupling and the isotropic Coulomb term in determining the Fermi surface shape. Its effects are likely sizable in other correlated multiorbital systems. In addition, we find that the low-energy self-energy matrix-responsible for the reshaping of the Fermi surface-sizably differs from the static Hartree-Fock limit. Finally, we find a strong spin-orbital entanglement; this supports the view that the conventional description of Cooper pairs via factorized spin and orbital part might not apply to Sr_{2}RuO_{4}.

  7. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    Energy Technology Data Exchange (ETDEWEB)

    Abo-Dahab, S. M. [Taif University, Taif (Saudi Arabia); Abd-Alla, A. M. [SVU, Qena (Egypt); Khan, Aftab [Sohag University, Sohag (Egypt)

    2015-08-15

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  8. Magnetism and rotation effect on surface waves in fibre-reinforced anisotropic general viscoelastic media of higher order

    International Nuclear Information System (INIS)

    Abo-Dahab, S. M.; Abd-Alla, A. M.; Khan, Aftab

    2015-01-01

    The aim of this paper is to study the propagation of surface waves in a rotating fibre-reinforced viscoelastic media of higher order under the influence of magnetic field. The general surface wave speeds derived to study the effects of rotation and magnetic field on surface waves. Particular cases for Stoneley, Love and Rayleigh waves are also discussed and dispersion relation for the waves has been deduced. The results obtained in this investigation are more general in the sense that some earlier published results are obtained from our result as special cases. For order zero our results are well agreement to fibre-reinforced materials. Also by neglecting the reinforced elastic parameters, the results reduce to well known isotropic medium. It is observed that in a rotating medium the surface waves are dispersive. Also magnetic effects play a significant roll. It is observed that Love wave remain unaffected in a rotating medium but remain under the influence of magnetic field. Rayleigh waves are affected by rotation and magnetic field whereas Stoneley waves are independent of Maxwell stresses. It is also observed that, surface waves cannot propagate in a fast rotating medium or in the presence of magnetic field of high intensity. Numerical results for particular materials are given and illustrated graphically. The results indicate that the effect of rotation and magnetic field are very pronounced.

  9. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  10. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-01-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  11. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  12. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  13. Modeling of anisotropic wound healing

    Science.gov (United States)

    Valero, C.; Javierre, E.; García-Aznar, J. M.; Gómez-Benito, M. J.; Menzel, A.

    2015-06-01

    Biological soft tissues exhibit non-linear complex properties, the quantification of which presents a challenge. Nevertheless, these properties, such as skin anisotropy, highly influence different processes that occur in soft tissues, for instance wound healing, and thus its correct identification and quantification is crucial to understand them. Experimental and computational works are required in order to find the most precise model to replicate the tissues' properties. In this work, we present a wound healing model focused on the proliferative stage that includes angiogenesis and wound contraction in three dimensions and which relies on the accurate representation of the mechanical behavior of the skin. Thus, an anisotropic hyperelastic model has been considered to analyze the effect of collagen fibers on the healing evolution of an ellipsoidal wound. The implemented model accounts for the contribution of the ground matrix and two mechanically equivalent families of fibers. Simulation results show the evolution of the cellular and chemical species in the wound and the wound volume evolution. Moreover, the local strain directions depend on the relative wound orientation with respect to the fibers.

  14. Anisotropic effective permittivity of an ultrathin gold coating on optical fiber in air, water and saline solutions.

    Science.gov (United States)

    Zhou, Wenjun; Mandia, David J; Barry, Seán T; Albert, Jacques

    2014-12-29

    The optical properties of an ultrathin discontinuous gold film in different dielectric surroundings are investigated experimentally by measuring the polarization-dependent wavelength shifts and amplitudes of the cladding mode resonances of a tilted fiber Bragg grating. The gold film was prepared by electron-beam evaporation and had an average thickness of 5.5 nm ( ± 1 nm). Scanning electron imaging was used to determine that the film is actually formed of individual particles with average lateral dimensions of 28 nm ( ± 8 nm). The complex refractive indices of the equivalent uniform film in air at a wavelength of 1570 nm were calculated from the measurements to be 4.84-i0.74 and 3.97-i0.85 for TM and TE polarizations respectively (compared to the value for bulk gold: 0.54-i10.9). Additionally, changes in the birefringence and dichroism of the films were measured as a function of the surrounding medium, in air, water and a saturated NaCl (salt) solution. These results show that the film has stronger dielectric behavior for TM light than for TE, a trend that increases with increasing surrounding index. Finally, the experimental results are compared to predictions from two widely used effective medium approximations, the generalized Maxwell-Garnett and Bruggeman theories for gold particles in a surrounding matrix. It is found that both of these methods fail to predict the observed behavior for the film considered.

  15. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  16. Magneto-caloric and magneto-resistive properties of La{sub 0.67}Ca{sub 0.33-x}Sr{sub x}MnO{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Reves Dinesen, Anders

    2004-08-01

    This thesis presents results of an experimental investigation of magneto-caloric and magneto-resistive properties of a series of polycrystalline Ca- and Sr-doped lanthanum manganites, La{sub 0.67}Ca{sub 0.33-x}Sr{sub x}MnO{sub 3} (0{<=} x {<=} 0.33), with the perovskite structure. The samples consisted of sintered oxide powders prepared the glycine-nitrate combustion technique. The compounds were ferromagnetic and showed a Curie transition in the temperature range 267370 K (T{sub C} increased with increasing x). An analysis of the structural properties was carried out by means of x-ray diffraction and the Rietveld technique. The variation of the Ca/Sr ratio was found to cause a transition from orthorhombic to rhombohedral symmetry in the composition range 0.110 < x < 0.165. The analysis suggested a strong correlation between structural properties and magnetism, for instance a relationship between the mean MnOMn bond angle and the Curie temperature. The MnOMn bonds mediate ferromagnetism and electrical transport in these materials via the double-exchange mechanism. The magnetocaloric effect of the La{sub 0.67}Ca{sub 0.33-x}Sr{sub x}MnO{sub 3} samples was measured directly and indirectly (by means of magnetization measurements). All the samples showed a magnetocaloric effect in the vicinity of T{sub C}. A model for the mag-netocaloric effect based on Weiss mean field theory and classical theories for heat capacities was developed. The model provided reasonable predictions of the magneto-caloric properties of the samples. The compounds with low Sr content showed a magnetocaloric effect comparable to that of Gadolinium, the prototypical working material for magnetic refrigeration at room temperature. A less comprehensive part of the investigation regarded the magneto-resistive properties of the La{sub 0.67}Ca{sub 0.33-x}Sr{sub x}MnO{sub 3} system. It was found that th polycrystalline nature of the compounds played a decisive role for the magnetotransport properties

  17. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  18. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  19. Silicon as an anisotropic mechanical material

    DEFF Research Database (Denmark)

    Thomsen, Erik Vilain; Reck, Kasper; Skands, Gustav Erik

    2014-01-01

    While silicon is an anisotropic material it is often in literature treated as an isotropic material when it comes to plate calculations. This leads to considerable errors in the calculated deflection. To overcome this problem, we present an in-depth analysis of the bending behavior of thin crysta...... analytical models involving crystalline plates, such as those often found in the field of micro electro mechanical systems. The effect of elastic boundary conditions is taken into account by using an effective radius of the plate....

  20. Investigations in MnAs{sub 1−x}Sb{sub x}: Experimental validation of a new magnetocaloric composite

    Energy Technology Data Exchange (ETDEWEB)

    Campos, A. de, E-mail: acampos@icte.uftm.edu.br [Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro (UFTM), 38066-200 Uberaba (Brazil); Luz, M.S. da; Campos, Adriana de [Instituto de Ciências Tecnológicas e Exatas, Universidade Federal do Triângulo Mineiro (UFTM), 38066-200 Uberaba (Brazil); Coelho, A.A.; Cardoso, L.P. [Instituto deFísica Gleb Wataghin, Universidade Estadual de Campinas (UNICAMP), 13083-970 Campinas (Brazil); Santos, A.O. dos [Centro de Ciências Sociais, Saúde e Tecnologia, Universidade Federal do Maranhão – (UFMA), 65900-000 Imperatriz, MA (Brazil); Gama, S. [Departamento de Ciências Exatas e da Terra, Universidade Federal de São Paulo (UNIFESP), Diadema, 09971-270 SP (Brazil)

    2015-01-15

    An overview of the magnetocaloric properties of the MnAs{sub 1−x}Sb{sub x} is presented. The temperature dependence of the isothermal magnetic entropy, ΔS{sub mag}, and the refrigerant capacity, RC, have been investigated theoretically and experimentally in a composite based on second order MnAs{sub 1−x}Sb{sub x} phases. This work demonstrates the outstanding agreement between the experimental results and the continuous curves predicted by numerical calculations, indicating that this approach can be used to design magnetic refrigerant materials with enhanced magnetocaloric response in magnetic refrigerator performing an Ericsson cycle near room temperature. - Highlights: • This is the first report showing the magnetocaloric properties of the MnAs{sub 1−x}Sb{sub x} composite. • This work demonstrates a good agreement between experimental and the predicted by numerical calculations. The results indicating that this approach can be used to design magnetic refrigerant materials.