WorldWideScience

Sample records for anisotropic lipid domains

  1. Ripples and the formation of anisotropic lipid domains: Imaging two-component double bilayers by atomic force microscopy_copy_03

    DEFF Research Database (Denmark)

    Leidy, C.; Kaasgaard, Thomas; Crowe, J.H.

    2002-01-01

    by atomic force microscopy, we investigated the origin of these anisotropic lipid domain patterns, and found that ripple phase formation is directly responsible for the anisotropic nature of these domains. The nucleation and growth of fluid-phase domains are found to be directed by the presence of ripples....... In particular, the fluid-phase domains elongate parallel to the ripples. The results show that ripple phase formation may have implications for domain formation in biological systems....

  2. Lipid-protein interaction induced domains: Kinetics and conformational changes in multicomponent vesicles

    Science.gov (United States)

    Sreeja, K. K.; Sunil Kumar, P. B.

    2018-04-01

    The spatio-temporal organization of proteins and the associated morphological changes in membranes are of importance in cell signaling. Several mechanisms that promote the aggregation of proteins at low cell surface concentrations have been investigated in the past. We show, using Monte Carlo simulations, that the affinity of proteins for specific lipids can hasten their aggregation kinetics. The lipid membrane is modeled as a dynamically triangulated surface with the proteins defined as in-plane fields at the vertices. We show that, even at low protein concentrations, strong lipid-protein interactions can result in large protein clusters indicating a route to lipid mediated signal amplification. At high protein concentrations, the domains form buds similar to that seen in lipid-lipid interaction induced phase separation. Protein interaction induced domain budding is suppressed when proteins act as anisotropic inclusions and exhibit nematic orientational order. The kinetics of protein clustering and resulting conformational changes are shown to be significantly different for the isotropic and anisotropic curvature inducing proteins.

  3. Texture of lipid bilayer domains

    DEFF Research Database (Denmark)

    Jensen, Uffe Bernchou; Brewer, Jonathan R.; Midtiby, Henrik Skov

    2009-01-01

    We investigate the texture of gel (g) domains in binary lipid membranes composed of the phospholipids DPPC and DOPC. Lateral organization of lipid bilayer membranes is a topic of fundamental and biological importance. Whereas questions related to size and composition of fluid membrane domain...... are well studied, the possibility of texture in gel domains has so far not been examined. When using polarized light for two-photon excitation of the fluorescent lipid probe Laurdan, the emission intensity is highly sensitive to the angle between the polarization and the tilt orientation of lipid acyl...... chains. By imaging the intensity variations as a function of the polarization angle, we map the lateral variations of the lipid tilt within domains. Results reveal that gel domains are composed of subdomains with different lipid tilt directions. We have applied a Fourier decomposition method...

  4. Anisotropic biodegradable lipid coated particles for spatially dynamic protein presentation.

    Science.gov (United States)

    Meyer, Randall A; Mathew, Mohit P; Ben-Akiva, Elana; Sunshine, Joel C; Shmueli, Ron B; Ren, Qiuyin; Yarema, Kevin J; Green, Jordan J

    2018-05-01

    There has been growing interest in the use of particles coated with lipids for applications ranging from drug delivery, gene delivery, and diagnostic imaging to immunoengineering. To date, almost all particles with lipid coatings have been spherical despite emerging evidence that non-spherical shapes can provide important advantages including reduced non-specific elimination and increased target-specific binding. We combine control of core particle geometry with control of particle surface functionality by developing anisotropic, biodegradable ellipsoidal particles with lipid coatings. We demonstrate that these lipid coated ellipsoidal particles maintain advantageous properties of lipid polymer hybrid particles, such as the ability for modular protein conjugation to the particle surface using versatile bioorthogonal ligation reactions. In addition, they exhibit biomimetic membrane fluidity and demonstrate lateral diffusive properties characteristic of natural membrane proteins. These ellipsoidal particles simultaneously provide benefits of non-spherical particles in terms of stability and resistance to non-specific phagocytosis by macrophages as well as enhanced targeted binding. These biomaterials provide a novel and flexible platform for numerous biomedical applications. The research reported here documents the ability of non-spherical polymeric particles to be coated with lipids to form anisotropic biomimetic particles. In addition, we demonstrate that these lipid-coated biodegradable polymeric particles can be conjugated to a wide variety of biological molecules in a "click-like" fashion. This is of interest due to the multiple types of cellular mimicry enabled by this biomaterial based technology. These features include mimicry of the highly anisotropic shape exhibited by cells, surface presentation of membrane bound protein mimetics, and lateral diffusivity of membrane bound substrates comparable to that of a plasma membrane. This platform is demonstrated to

  5. The Control of Anisotropic Transport in Manganites by Stripy Domains

    Science.gov (United States)

    Ju, Changcheng; Lu, Xiaomei; Chu, Yinghao

    2014-03-01

    Epitaxial thin film acts as a significant tool to investigate novel phenomena of complex oxide systems. Extrinsic constraint1 of uniform or certain designed buffer layer strain could be easily implanted to these materials. However, the strain distribution might be quite complicated by involving micro- or nano-lattice distortions which could partially relax the strain and determine the complex phase diagrams of thin film, meanwhile introducing structural and physical inhomogeneities. In this work , we report 71° striped ferroelectric domains created in BFO can also epitaxially lock the perovskite manganites leading to the emerge of ordered structural domain. LSMO/BFO hetero-epitaxial samples are deposited by PLD. The 71° periodic striped domains and coherent growth are demonstrated by PFM and X-ray analysis. Plan-view TEM and X-ray RSM have been used to confirm the epitaxial relationships of the functional layers and IP lattice constant. Both the simulation and structural analysis demonstrate we can create a periodic ordered stripe structural domain in LSMO. And this will leave an anisotropic distribution of structural domain walls which makes it possible to capture the anisotropic tunneling for strong electron-lattice coupling in manganites. Temperature-dependent resistivity measurements reveal a substantial anisotropic resistivities and a remarkable shift of the MI transition between the perpendicular and parallel to the stripe domain directions.

  6. Shape transitions in anisotropic multicomponent lipid tubules

    Directory of Open Access Journals (Sweden)

    Tim eAtherton

    2016-05-01

    Full Text Available Abstract Ternary mixtures of saturated and unsaturated lipids together with cholesterol can be induced to phase separate by photo-peroxidation into lipid-ordered Lo and lipid-disordered Ld domains. Because these have different mechanical properties, the phase separation is accompanied by dramatic changes in morphology. This work considers a tubule composed of Ld phase with Lo phase inclusions that possess greater rigidity; this system has been shown experimentally by Yuan and coworkers to spontaneously adopt either banded or disc configurations following phase separation. The static behaviour of inter-domain interactions is analyzed in each of these geometries by solving the linearized shape equations. These calculations suggest a possible mechanism by which the two structures form.

  7. Comparative structural analysis of lipid binding START domains.

    Directory of Open Access Journals (Sweden)

    Ann-Gerd Thorsell

    Full Text Available Steroidogenic acute regulatory (StAR protein related lipid transfer (START domains are small globular modules that form a cavity where lipids and lipid hormones bind. These domains can transport ligands to facilitate lipid exchange between biological membranes, and they have been postulated to modulate the activity of other domains of the protein in response to ligand binding. More than a dozen human genes encode START domains, and several of them are implicated in a disease.We report crystal structures of the human STARD1, STARD5, STARD13 and STARD14 lipid transfer domains. These represent four of the six functional classes of START domains.Sequence alignments based on these and previously reported crystal structures define the structural determinants of human START domains, both those related to structural framework and those involved in ligand specificity.This article can also be viewed as an enhanced version in which the text of the article is integrated with interactive 3D representations and animated transitions. Please note that a web plugin is required to access this enhanced functionality. Instructions for the installation and use of the web plugin are available in Text S1.

  8. Membrane-Sculpting BAR Domains Generate Stable Lipid Microdomains

    Science.gov (United States)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.; Tkach, Vadym; Stamou, Dimitrios; Drubin, David G.; Lappalainen, Pekka

    2014-01-01

    SUMMARY Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR domains can generate extremely stable lipid microdomains by “freezing” phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved role for BAR superfamily proteins in regulating lipid dynamics within membranes. Stable microdomains induced by BAR domain scaffolds and specific lipids can generate phase boundaries and diffusion barriers, which may have profound impacts on diverse cellular processes. PMID:24055060

  9. Yeast lipids can phase separate into micrometer-scale membrane domains

    DEFF Research Database (Denmark)

    Klose, Christian; Ejsing, Christer S; Garcia-Saez, Ana J

    2010-01-01

    The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although there is bioc......The lipid raft concept proposes that biological membranes have the potential to form functional domains based on a selective interaction between sphingolipids and sterols. These domains seem to be involved in signal transduction and vesicular sorting of proteins and lipids. Although...... there is biochemical evidence for lipid raft-dependent protein and lipid sorting in the yeast Saccharomyces cerevisiae, direct evidence for an interaction between yeast sphingolipids and the yeast sterol ergosterol, resulting in membrane domain formation, is lacking. Here we show that model membranes formed from yeast...... total lipid extracts possess an inherent self-organization potential resulting in Ld-Lo phase coexistence at physiologically relevant temperature. Analyses of lipid extracts from mutants defective in sphingolipid metabolism as well as reconstitution of purified yeast lipids in model membranes of defined...

  10. Membrane-sculpting BAR domains generate stable lipid microdomains

    DEFF Research Database (Denmark)

    Zhao, Hongxia; Michelot, Alphée; Koskela, Essi V.

    2013-01-01

    Bin-Amphiphysin-Rvs (BAR) domain proteins are central regulators of many cellular processes involving membrane dynamics. BAR domains sculpt phosphoinositide-rich membranes to generate membrane protrusions or invaginations. Here, we report that, in addition to regulating membrane geometry, BAR...... domains can generate extremely stable lipid microdomains by "freezing" phosphoinositide dynamics. This is a general feature of BAR domains, because the yeast endocytic BAR and Fes/CIP4 homology BAR (F-BAR) domains, the inverse BAR domain of Pinkbar, and the eisosomal BAR protein Lsp1 induced...... phosphoinositide clustering and halted lipid diffusion, despite differences in mechanisms of membrane interactions. Lsp1 displays comparable low diffusion rates in vitro and in vivo, suggesting that BAR domain proteins also generate stable phosphoinositide microdomains in cells. These results uncover a conserved...

  11. A lipid binding domain in sphingosine kinase 2

    International Nuclear Information System (INIS)

    Don, Anthony S.; Rosen, Hugh

    2009-01-01

    The lipid second messenger sphingosine 1-phosphate (S1P) is a critical mediator of cellular proliferation and survival signals, and is essential for vasculogenesis and neurogenesis. S1P formation is catalysed by sphingosine kinases 1 and 2 (Sphk1 and Sphk2). We have found that the endogenous glycolipid sulfatide (3-O-sulfogalactosylceramide) binds to and inhibits the activity of Sphk2 and the closely related ceramide kinase (Cerk), but not Sphk1. Using sulfatide as a probe, we mapped the lipid binding domain to the N-terminus of Sphk2 (residues 1-175), a region of sequence that is absent in Sphk1, but aligns with a pleckstrin homology domain in Cerk. Accordingly, Sphk2 bound to phosphatidylinositol monophosphates but not to abundant cellular phospholipids. Deleting the N-terminal domain reduced Sphk2 membrane localisation in cells. We have therefore identified a lipid binding domain in Sphk2 that is important for the enzyme's sub-cellular localisation.

  12. Size and mobility of lipid domains tuned by geometrical constraints.

    Science.gov (United States)

    Schütte, Ole M; Mey, Ingo; Enderlein, Jörg; Savić, Filip; Geil, Burkhard; Janshoff, Andreas; Steinem, Claudia

    2017-07-25

    In the plasma membrane of eukaryotic cells, proteins and lipids are organized in clusters, the latter ones often called lipid domains or "lipid rafts." Recent findings highlight the dynamic nature of such domains and the key role of membrane geometry and spatial boundaries. In this study, we used porous substrates with different pore radii to address precisely the extent of the geometric constraint, permitting us to modulate and investigate the size and mobility of lipid domains in phase-separated continuous pore-spanning membranes (PSMs). Fluorescence video microscopy revealed two types of liquid-ordered ( l o ) domains in the freestanding parts of the PSMs: ( i ) immobile domains that were attached to the pore rims and ( ii ) mobile, round-shaped l o domains within the center of the PSMs. Analysis of the diffusion of the mobile l o domains by video microscopy and particle tracking showed that the domains' mobility is slowed down by orders of magnitude compared with the unrestricted case. We attribute the reduced mobility to the geometric confinement of the PSM, because the drag force is increased substantially due to hydrodynamic effects generated by the presence of these boundaries. Our system can serve as an experimental test bed for diffusion of 2D objects in confined geometry. The impact of hydrodynamics on the mobility of enclosed lipid domains can have great implications for the formation and lateral transport of signaling platforms.

  13. Imaging lipid domains in cell membranes: the advent of super-resolution fluorescence microscopy

    Directory of Open Access Journals (Sweden)

    Dylan Myers Owen

    2013-12-01

    Full Text Available The lipid bilayer of model membranes, liposomes reconstituted from cell lipids, and plasma membrane vesicles and spheres can separate into two distinct liquid phases to yield lipid domains with liquid-ordered and liquid-disordered properties. These observations are the basis of the lipid raft hypothesis that postulates the existence of cholesterol-enriched ordered-phase lipid domains in cell membranes that could regulate protein mobility, localization and interaction. Here we review the evidence that nano-scaled lipid complexes and meso-scaled lipid domains exist in cell membranes and how new fluorescence microscopy techniques that overcome the diffraction limit provide new insights into lipid organization in cell membranes.

  14. SH2 Domains Serve as Lipid-Binding Modules for pTyr-Signaling Proteins.

    Science.gov (United States)

    Park, Mi-Jeong; Sheng, Ren; Silkov, Antonina; Jung, Da-Jung; Wang, Zhi-Gang; Xin, Yao; Kim, Hyunjin; Thiagarajan-Rosenkranz, Pallavi; Song, Seohyeon; Yoon, Youngdae; Nam, Wonhee; Kim, Ilshin; Kim, Eui; Lee, Dong-Gyu; Chen, Yong; Singaram, Indira; Wang, Li; Jang, Myoung Ho; Hwang, Cheol-Sang; Honig, Barry; Ryu, Sungho; Lorieau, Justin; Kim, You-Me; Cho, Wonhwa

    2016-04-07

    The Src-homology 2 (SH2) domain is a protein interaction domain that directs myriad phosphotyrosine (pY)-signaling pathways. Genome-wide screening of human SH2 domains reveals that ∼90% of SH2 domains bind plasma membrane lipids and many have high phosphoinositide specificity. They bind lipids using surface cationic patches separate from pY-binding pockets, thus binding lipids and the pY motif independently. The patches form grooves for specific lipid headgroup recognition or flat surfaces for non-specific membrane binding and both types of interaction are important for cellular function and regulation of SH2 domain-containing proteins. Cellular studies with ZAP70 showed that multiple lipids bind its C-terminal SH2 domain in a spatiotemporally specific manner and thereby exert exquisite spatiotemporal control over its protein binding and signaling activities in T cells. Collectively, this study reveals how lipids control SH2 domain-mediated cellular protein-protein interaction networks and suggest a new strategy for therapeutic modulation of pY-signaling pathways. Copyright © 2016 Elsevier Inc. All rights reserved.

  15. Structural interactions between lipids, water and S1-S4 voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Gawrisch, Klaus; Swartz, Kenton J

    2012-11-02

    Membrane proteins serve crucial signaling and transport functions, yet relatively little is known about their structures in membrane environments or how lipids interact with these proteins. For voltage-activated ion channels, X-ray structures suggest that the mobile voltage-sensing S4 helix would be exposed to the membrane, and functional studies reveal that lipid modification can profoundly alter channel activity. Here, we use solid-state NMR to investigate structural interactions of lipids and water with S1-S4 voltage-sensing domains and to explore whether lipids influence the structure of the protein. Our results demonstrate that S1-S4 domains exhibit extensive interactions with lipids and that these domains are heavily hydrated when embedded in a membrane. We also find evidence for preferential interactions of anionic lipids with S1-S4 domains and that these interactions have lifetimes on the timescale of ≤ 10(-3)s. Arg residues within S1-S4 domains are well hydrated and are positioned in close proximity to lipids, exhibiting local interactions with both lipid headgroups and acyl chains. Comparative studies with a positively charged lipid lacking a phosphodiester group reveal that this lipid modification has only modest effects on the structure and hydration of S1-S4 domains. Taken together, our results demonstrate that Arg residues in S1-S4 voltage-sensing domains reside in close proximity to the hydrophobic interior of the membrane yet are well hydrated, a requirement for carrying charge and driving protein motions in response to changes in membrane voltage. Published by Elsevier Ltd.

  16. Hydrophobic mismatch triggering texture defects in membrane gel domains

    DEFF Research Database (Denmark)

    Dreier, J.; Brewer, J.R.; Simonsen, Adam Cohen

    2013-01-01

    higher mismatch values correlate with a vortex-type texture. The defect pattern created during early growth persists in larger domains, and a minimal model incorporating the anisotropic line tension and the vortex energy can rationalize this finding. The results suggest that the lipid composition...

  17. Investigation on broadband propagation characteristic of terahertz electromagnetic wave in anisotropic magnetized plasma in frequency and time domain

    Energy Technology Data Exchange (ETDEWEB)

    Tian, Yuan; Han, Yiping, E-mail: yphan@xidian.edu.cn [School of Physics and Optoelectronic Engineering, Xidian University, Xi' an 710071 (China); Ai, Xia [National Key Laboratory of Science and Technology on Test physics and Numerical Mathematical, Beijing 100076 (China); Liu, Xiuxiang [Science and Technology on Space Physics Laboratory, Beijing 100076 (China)

    2014-12-15

    In this paper, we investigate the propagation of terahertz (THz) electromagnetic wave in an anisotropic magnetized plasma by JE convolution-finite difference time domain method. The anisotropic characteristic of the plasma, which leads to right-hand circularly polarized (RCP) and right-hand circularly polarized (LCP) waves, has been taken into account. The interaction between electromagnetic waves and magnetized plasma is illustrated by reflection and transmission coefficients for both RCP and LCP THz waves. The effects of both the magnetized plasma thickness and the external magnetized field are analyzed and numerical results demonstrate that the two factors could influence the THz wave greatly. It is worthy to note that besides the reflection and transmission coefficients in the frequency domain, the waveform of the electric field in the time domain varying with thicknesses and external magnetic fields for different polarized direction has been studied.

  18. Recent progress on lipid lateral heterogeneity in plasma membranes: from rafts to submicrometric domains

    Science.gov (United States)

    Carquin, Mélanie; D'Auria, Ludovic; Pollet, Hélène; Bongarzone, Ernesto R.; Tyteca, Donatienne

    2016-01-01

    The concept of transient nanometric domains known as lipid rafts has brought interest to reassess the validity of the Singer-Nicholson model of a fluid bilayer for cell membranes. However, this new view is still insufficient to explain the cellular control of surface lipid diversity or membrane deformability. During the past decade, the hypothesis that some lipids form large (submicrometric/mesoscale vs nanometric rafts) and stable (> min vs sec) membrane domains has emerged, largely based on indirect methods. Morphological evidence for stable submicrometric lipid domains, well-accepted for artificial and highly specialized biological membranes, was further reported for a variety of living cells from prokaryotes to yeast and mammalian cells. However, results remained questioned based on limitations of available fluorescent tools, use of poor lipid fixatives, and imaging artifacts due to non-resolved membrane projections. In this review, we will discuss recent evidence generated using powerful and innovative approaches such as lipid-specific toxin fragments that support the existence of submicrometric domains. We will integrate documented mechanisms involved in the formation and maintenance of these domains, and provide a perspective on their relevance on membrane deformability and regulation of membrane protein distribution. PMID:26738447

  19. Regulation of adhesion behavior of murine macrophage using supported lipid membranes displaying tunable mannose domains

    International Nuclear Information System (INIS)

    Kaindl, T; Oelke, J; Kaufmann, S; Tanaka, M; Pasc, A; Konovalov, O V; Funari, S S; Engel, U; Wixforth, A

    2010-01-01

    Highly uniform, strongly correlated domains of synthetically designed lipids can be incorporated into supported lipid membranes. The systematic characterization of membranes displaying a variety of domains revealed that the equilibrium size of domains significantly depends on the length of fluorocarbon chains, which can be quantitatively interpreted within the framework of an equivalent dipole model. A mono-dispersive, narrow size distribution of the domains enables us to treat the inter-domain correlations as two-dimensional colloidal crystallization and calculate the potentials of mean force. The obtained results demonstrated that both size and inter-domain correlation can precisely be controlled by the molecular structures. By coupling α-D-mannose to lipid head groups, we studied the adhesion behavior of the murine macrophage (J774A.1) on supported membranes. Specific adhesion and spreading of macrophages showed a clear dependence on the density of functional lipids. The obtained results suggest that such synthetic lipid domains can be used as a defined platform to study how cells sense the size and distribution of functional molecules during adhesion and spreading.

  20. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.

    Science.gov (United States)

    Lu, Stella M; Fairn, Gregory D

    2018-04-01

    The plasma membrane is compartmentalized into several distinct regions or domains, which show a broad diversity in both size and lifetime. The segregation of lipids and membrane proteins is thought to be driven by the lipid composition itself, lipid-protein interactions and diffusional barriers. With regards to the lipid composition, the immiscibility of certain classes of lipids underlies the "lipid raft" concept of plasmalemmal compartmentalization. Historically, lipid rafts have been described as cholesterol and (glyco)sphingolipid-rich regions of the plasma membrane that exist as a liquid-ordered phase that are resistant to extraction with non-ionic detergents. Over the years the interest in lipid rafts grew as did the challenges with studying these nanodomains. The term lipid raft has fallen out of favor with many scientists and instead the terms "membrane raft" or "membrane nanodomain" are preferred as they connote the heterogeneity and dynamic nature of the lipid-protein assemblies. In this article, we will discuss the classical lipid raft hypothesis and its limitations. This review will also discuss alternative models of lipid-protein interactions, annular lipid shells, and larger membrane clusters. We will also discuss the mesoscale organization of plasmalemmal domains including visible structures such as clathrin-coated pits and caveolae.

  1. Accumulation of raft lipids in T-cell plasma membrane domains engaged in TCR signalling

    DEFF Research Database (Denmark)

    Zech, Tobias; Ejsing, Christer S.; Gaus, Katharina

    2009-01-01

    Activating stimuli for T lymphocytes are transmitted through plasma membrane domains that form at T-cell antigen receptor (TCR) signalling foci. Here, we determined the molecular lipid composition of immunoisolated TCR activation domains. We observed that they accumulate cholesterol, sphingomyelin...... and saturated phosphatidylcholine species as compared with control plasma membrane fragments. This provides, for the first time, direct evidence that TCR activation domains comprise a distinct molecular lipid composition reminiscent of liquid-ordered raft phases in model membranes. Interestingly, TCR activation...... domains were also enriched in plasmenyl phosphatidylethanolamine and phosphatidylserine. Modulating the T-cell lipidome with polyunsaturated fatty acids impaired the plasma membrane condensation at TCR signalling foci and resulted in a perturbed molecular lipid composition. These results correlate...

  2. Saturation recovery EPR spin-labeling method for quantification of lipids in biological membrane domains.

    Science.gov (United States)

    Mainali, Laxman; Camenisch, Theodore G; Hyde, James S; Subczynski, Witold K

    2017-12-01

    The presence of integral membrane proteins induces the formation of distinct domains in the lipid bilayer portion of biological membranes. Qualitative application of both continuous wave (CW) and saturation recovery (SR) electron paramagnetic resonance (EPR) spin-labeling methods allowed discrimination of the bulk, boundary, and trapped lipid domains. A recently developed method, which is based on the CW EPR spectra of phospholipid (PL) and cholesterol (Chol) analog spin labels, allows evaluation of the relative amount of PLs (% of total PLs) in the boundary plus trapped lipid domain and the relative amount of Chol (% of total Chol) in the trapped lipid domain [ M. Raguz, L. Mainali, W. J. O'Brien, and W. K. Subczynski (2015), Exp. Eye Res., 140:179-186 ]. Here, a new method is presented that, based on SR EPR spin-labeling, allows quantitative evaluation of the relative amounts of PLs and Chol in the trapped lipid domain of intact membranes. This new method complements the existing one, allowing acquisition of more detailed information about the distribution of lipids between domains in intact membranes. The methodological transition of the SR EPR spin-labeling approach from qualitative to quantitative is demonstrated. The abilities of this method are illustrated for intact cortical and nuclear fiber cell plasma membranes from porcine eye lenses. Statistical analysis (Student's t -test) of the data allowed determination of the separations of mean values above which differences can be treated as statistically significant ( P ≤ 0.05) and can be attributed to sources other than preparation/technique.

  3. Diffusion mediated coagulation and fragmentation based study of domain formation in lipid bilayer membrane

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Laxminarsimha V., E-mail: laxman@iitk.ac.in [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India); Roy, Subhradeep [Department of Biomedical Engineering and Mechanics (MC 0219), Virginia Tech, 495 Old Turner Street, Blacksburg, VA 24061 (United States); Das, Sovan Lal [Mechanics and Applied Mathematics Group, Department of Mechanical Engineering, Indian Institute of Technology Kanpur, Kanpur 208016 (India)

    2017-01-15

    We estimate the equilibrium size distribution of cholesterol rich micro-domains on a lipid bilayer by solving Smoluchowski equation for coagulation and fragmentation. Towards this aim, we first derive the coagulation kernels based on the diffusion behaviour of domains moving in a two dimensional membrane sheet, as this represents the reality better. We incorporate three different diffusion scenarios of domain diffusion into our coagulation kernel. Subsequently, we investigate the influence of the parameters in our model on the coagulation and fragmentation behaviour. The observed behaviours of the coagulation and fragmentation kernels are also manifested in the equilibrium domain size distribution and its first moment. Finally, considering the liquid domains diffusing in a supported lipid bilayer, we fit the equilibrium domain size distribution to a benchmark solution.

  4. Finite-difference time-domain simulation of electromagnetic bandgap and bi-anisotropic metamaterials

    Science.gov (United States)

    Bray, Matthew G.

    The term "Metamaterial" has been introduced into the electromagnetic lexicon in recent years to describe new artificial materials with electromagnetic properties that are not found in naturally occurring materials. Metamaterials exhibit electromagnetic properties that are not observed in its constituent materials, and/or not observed in nature. This thesis will analyze two different classes of metamaterials through the use of the finite-difference time-domain (FDTD) technique. The first class of metamaterials are artificial magnetic conductors (AMC) which approximate the behavior of a perfect magnetic conductor (PMC) over a finite frequency range. The AMC metamaterials are created through the use of an electromagnetic bandgap (EBG) structure. A periodic FDTD code is used to simulate a full-wave model of the metallodielectric EBG structures. The AMCs developed with the aid of the FDTD tool are then used to create low-profile antenna systems consisting of a dipole antenna in close proximity to an AMC surface. Through the use of this FDTD tool, several original contributions were made to the electromagnetic community. These include the first dual-band independently tunable EBG AMC ground plane and the first linearly polarized single-band and dual-band tunable antenna/EBG systems. The second class of materials analyzed are bi-anisotropic metamaterials. Bi-anisotropic media are the largest class of linear media which is able to describe the macroscopic material properties of artificial dielectrics, artificial magnetics, artificial chiral materials, left-handed materials, and other composite materials. The dispersive properties of these materials can be approximated by the oscillator model. This model assumes a Lorentzian frequency profile for the permittivity and permeability and a Condon model for chirality. A new FDTD formulation is introduced which can simulate this type of bi-anisotropic media. This FDTD method incorporates the dispersive material properties through

  5. Requirement of transmembrane domain for CD154 association to lipid rafts and subsequent biological events.

    Directory of Open Access Journals (Sweden)

    Nadir Benslimane

    Full Text Available Interaction of CD40 with CD154 leads to recruitment of both molecules into lipid rafts, resulting in bi-directional cell activation. The precise mechanism by which CD154 is translocated into lipid rafts and its impact on CD154 signaling remain largely unknown. Our aim is to identify the domain of CD154 facilitating its association to lipid rafts and the impact of such association on signaling events and cytokine production. Thus, we generated Jurkat cell lines expressing truncated CD154 lacking the cytoplasmic domain or chimeric CD154 in which the transmembrane domain was replaced by that of transferrin receptor I, known to be excluded from lipid rafts. Our results show that cell stimulation with soluble CD40 leads to the association of CD154 wild-type and CD154-truncated, but not CD154-chimera, with lipid rafts. This is correlated with failure of CD154-chimera to activate Akt and p38 MAP kinases, known effectors of CD154 signaling. We also found that CD154-chimera lost the ability to promote IL-2 production upon T cell stimulation with anti-CD3/CD28 and soluble CD40. These results demonstrate the implication of the transmembrane domain of CD154 in lipid raft association, and that this association is necessary for CD154-mediated Akt and p38 activation with consequent enhancement of IL-2 production.

  6. Salt Bridge Formation between the I-BAR Domain and Lipids Increases Lipid Density and Membrane Curvature.

    Science.gov (United States)

    Takemura, Kazuhiro; Hanawa-Suetsugu, Kyoko; Suetsugu, Shiro; Kitao, Akio

    2017-07-28

    The BAR domain superfamily proteins sense or induce curvature in membranes. The inverse-BAR domain (I-BAR) is a BAR domain that forms a straight "zeppelin-shaped" dimer. The mechanisms by which IRSp53 I-BAR binds to and deforms a lipid membrane are investigated here by all-atom molecular dynamics simulation (MD), binding energy analysis, and the effects of mutation experiments on filopodia on HeLa cells. I-BAR adopts a curved structure when crystallized, but adopts a flatter shape in MD. The binding of I-BAR to membrane was stabilized by ~30 salt bridges, consistent with experiments showing that point mutations of the interface residues have little effect on the binding affinity whereas multiple mutations have considerable effect. Salt bridge formation increases the local density of lipids and deforms the membrane into a concave shape. In addition, the point mutations that break key intra-molecular salt bridges within I-BAR reduce the binding affinity; this was confirmed by expressing these mutants in HeLa cells and observing their effects. The results indicate that the stiffness of I-BAR is important for membrane deformation, although I-BAR does not act as a completely rigid template.

  7. Anisotropic, Mixed-Norm Lizorkin-Triebel Spaces and Diffeomorphic Maps

    DEFF Research Database (Denmark)

    Johnsen, Jon; Hansen, Sabrina Munch; Sickel, Winfried

    2014-01-01

    This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains.......This paper gives general results on invariance of anisotropic Lizorkin-Triebel spaces with mixed norms under coordinate transformations on Euclidean space, open sets, and cylindrical domains....

  8. Nonlinear wave equation in frequency domain: accurate modeling of ultrafast interaction in anisotropic nonlinear media

    DEFF Research Database (Denmark)

    Guo, Hairun; Zeng, Xianglong; Zhou, Binbin

    2013-01-01

    We interpret the purely spectral forward Maxwell equation with up to third-order induced polarizations for pulse propagation and interactions in quadratic nonlinear crystals. The interpreted equation, also named the nonlinear wave equation in the frequency domain, includes quadratic and cubic...... nonlinearities, delayed Raman effects, and anisotropic nonlinearities. The full potential of this wave equation is demonstrated by investigating simulations of solitons generated in the process of ultrafast cascaded second-harmonic generation. We show that a balance in the soliton delay can be achieved due...

  9. Linear diffraction of light waves on periodically poled domain structures in lithium niobate crystals: collinear, isotropic, and anisotropic geometries

    International Nuclear Information System (INIS)

    Shandarov, S M; Mandel, A E; Akylbaev, T M; Borodin, M V; Savchenkov, E N; Smirnov, S V; Akhmatkhanov, A R; Shur, V Ya

    2017-01-01

    The possible variants of experimental observation of light diffraction on periodically poled domain structures (PPDS) in the lithium niobate crystal with 180-degree domain Y-walls are considered. We experimentally investigated isotropic and anisotropic diffraction of coherent light (λ = 655nm) on the PPDS with spatial period Λ = 8.79 μm produced by poling method in a LiNbO 3 : 5% MgO crystal. The central wavelength of irradiation experiencing a collinear diffraction on these PPDS is estimated as λ c = 455 nm. (paper)

  10. Reorganization of plasma membrane lipid domains during conidial germination.

    Science.gov (United States)

    Santos, Filipa C; Fernandes, Andreia S; Antunes, Catarina A C; Moreira, Filipe P; Videira, Arnaldo; Marinho, H Susana; de Almeida, Rodrigo F M

    2017-02-01

    Neurospora crassa, a filamentous fungus, in the unicellular conidial stage has ideal features to study sphingolipid (SL)-enriched domains, which are implicated in fundamental cellular processes ranging from antifungal resistance to apoptosis. Several changes in lipid metabolism and in the membrane composition of N. crassa occur during spore germination. However, the biophysical impact of those changes is unknown. Thus, a biophysical study of N. crassa plasma membrane, particularly SL-enriched domains, and their dynamics along conidial germination is prompted. Two N. crassa strains, wild-type (WT) and slime, which is devoid of cell wall, were studied. Conidial growth of N. crassa WT from a dormancy state to an exponential phase was accompanied by membrane reorganization, namely an increase of membrane fluidity, occurring faster in a supplemented medium than in Vogel's minimal medium. Gel-like domains, likely enriched in SLs, were found in both N. crassa strains, but were particularly compact, rigid and abundant in the case of slime cells, even more than in budding yeast Saccharomyces cerevisiae. In N. crassa, our results suggest that the melting of SL-enriched domains occurs near growth temperature (30°C) for WT, but at higher temperatures for slime. Regarding biophysical properties strongly affected by ergosterol, the plasma membrane of slime conidia lays in between those of N. crassa WT and S. cerevisiae cells. The differences in biophysical properties found in this work, and the relationships established between membrane lipid composition and dynamics, give new insights about the plasma membrane organization and structure of N. crassa strains during conidial growth. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Finding a needle in a haystack: the role of electrostatics in target lipid recognition by PH domains.

    Directory of Open Access Journals (Sweden)

    Craig N Lumb

    Full Text Available Interactions between protein domains and lipid molecules play key roles in controlling cell membrane signalling and trafficking. The pleckstrin homology (PH domain is one of the most widespread, binding specifically to phosphatidylinositol phosphates (PIPs in cell membranes. PH domains must locate specific PIPs in the presence of a background of approximately 20% anionic lipids within the cytoplasmic leaflet of the plasma membrane. We investigate the mechanism of such recognition via a multiscale procedure combining Brownian dynamics (BD and molecular dynamics (MD simulations of the GRP1 PH domain interacting with phosphatidylinositol (3,4,5-trisphosphate (PI(3,4,5P₃. The interaction of GRP1-PH with PI(3,4,5P₃ in a zwitterionic bilayer is compared with the interaction in bilayers containing different levels of anionic 'decoy' lipids. BD simulations reveal both translational and orientational electrostatic steering of the PH domain towards the PI(3,4,5P₃-containing anionic bilayer surface. There is a payoff between non-PIP anionic lipids attracting the PH domain to the bilayer surface in a favourable orientation and their role as 'decoys', disrupting the interaction of GRP1-PH with the PI(3,4,5P₃ molecule. Significantly, approximately 20% anionic lipid in the cytoplasmic leaflet of the bilayer is nearly optimal to both enhance orientational steering and to localise GRP1-PH proximal to the surface of the membrane without sacrificing its ability to locate PI(3,4,5P₃ within the bilayer plane. Subsequent MD simulations reveal binding to PI(3,4,5P₃, forming protein-phosphate contacts comparable to those in X-ray structures. These studies demonstrate a computational framework which addresses lipid recognition within a cell membrane environment, offering a link between structural and cell biological characterisation.

  12. Angle-domain common-image gathers from anisotropic Gaussian ...

    Indian Academy of Sciences (India)

    3State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation, Chengdu University of Technology,. Chengdu ... studied the extraction scheme of ADCIGs by using. Kirchhoff ..... The effect of shale properties on anisotropic brittleness.

  13. Domain-induced activation of human phospholipase A2 type IIA: Local versus global lipid composition

    DEFF Research Database (Denmark)

    Leidy, C.; Linderoth, L.; Andresen, T.L.

    2006-01-01

    , we show that local enrichment of anionic lipids into fluid domains triggers PLA(2)-IIA activity. In addition, the compositional range of enzyme activity is shown to be related to the underlying lipid phase diagram. A comparison is done between PLA(2)-IIA and snake venom PLA(2), which in contrast...... to PLA(2)-IIA hydrolyzes both anionic and zwitterionic membranes. In general, this work shows that PLA(2)-IIA activation can be accomplished through local enrichment of anionic lipids into domains, indicating a mechanism for PLA(2)-IIA to target perturbed native membranes with low global anionic lipid...

  14. Lipid domains in giant unilamellar vesicles and their correspondence with equilibrium thermodynamic phases: A quantitative fluorescence microscopy imaging approach

    DEFF Research Database (Denmark)

    Fidorra, Matthias; Garcia, Alejandra; Ipsen, John Hjort

    2009-01-01

    We report a novel analytical procedure to measure the surface areas of coexisting lipid domains in giant unilamellar vesicles (GUVs) based on image processing of 3D fluorescence microscopy data. The procedure involves the segmentation of lipid domains from fluorescent image stacks...

  15. Cholesterol trafficking and raft-like membrane domain composition mediate scavenger receptor class B type 1-dependent lipid sensing in intestinal epithelial cells.

    Science.gov (United States)

    Morel, Etienne; Ghezzal, Sara; Lucchi, Géraldine; Truntzer, Caroline; Pais de Barros, Jean-Paul; Simon-Plas, Françoise; Demignot, Sylvie; Mineo, Chieko; Shaul, Philip W; Leturque, Armelle; Rousset, Monique; Carrière, Véronique

    2018-02-01

    Scavenger receptor Class B type 1 (SR-B1) is a lipid transporter and sensor. In intestinal epithelial cells, SR-B1-dependent lipid sensing is associated with SR-B1 recruitment in raft-like/ detergent-resistant membrane domains and interaction of its C-terminal transmembrane domain with plasma membrane cholesterol. To clarify the initiating events occurring during lipid sensing by SR-B1, we analyzed cholesterol trafficking and raft-like domain composition in intestinal epithelial cells expressing wild-type SR-B1 or the mutated form SR-B1-Q445A, defective in membrane cholesterol binding and signal initiation. These features of SR-B1 were found to influence both apical cholesterol efflux and intracellular cholesterol trafficking from plasma membrane to lipid droplets, and the lipid composition of raft-like domains. Lipidomic analysis revealed likely participation of d18:0/16:0 sphingomyelin and 16:0/0:0 lysophosphatidylethanolamine in lipid sensing by SR-B1. Proteomic analysis identified proteins, whose abundance changed in raft-like domains during lipid sensing, and these included molecules linked to lipid raft dynamics and signal transduction. These findings provide new insights into the role of SR-B1 in cellular cholesterol homeostasis and suggest molecular links between SR-B1-dependent lipid sensing and cell cholesterol and lipid droplet dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    Science.gov (United States)

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-05-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domain nucleates due to sudden pressure drop upon flow past a cylindrical obstacle within a microchannel. For an anisotropic fluid, the inception and growth of the cavitation domain ensued in the Stokes regime, while no cavitation was observed in isotropic liquids flowing under similar hydrodynamic parameters. Using simulations we identify a critical value of the Reynolds number for cavitation inception that scales inversely with the order parameter of the fluid. Strikingly, the critical Reynolds number for anisotropic fluids can be 50% lower than that of isotropic fluids.

  17. Synthesis of eukaryotic lipid biomarkers in the bacterial domain

    Science.gov (United States)

    Welander, P. V.; Banta, A. B.; Lee, A. K.; Wei, J. H.

    2017-12-01

    Lipid biomarkers are organic molecules preserved in sediments and sedimentary rocks that can function as geological proxies for certain microbial taxa or for specific environmental conditions. These molecular fossils provide a link between organisms and their environments in both modern and ancient settings and have afforded significant insight into ancient climatic events, mass extinctions, and various evolutionary transitions throughout Earth's history. However, the proper interpretation of lipid biomarkers is dependent on a broad understanding of their diagenetic precursors in modern systems. This includes understanding the taphonomic transformations that these molecules undergo, their biosynthetic pathways, and the ecological conditions that affect their cellular production. In this study, we focus on one group of lipid biomarkers - the sterols. These are polycyclic isoprenoidal lipids that have a high preservation potential and play a critical role in the physiology of most eukaryotes. However, the synthesis and function of these lipids in the bacterial domain has not been fully explored. Here we utilize a combination of bioinformatics, microbial genetics, and biochemistry to demonstrate that bacterial sterol producers are more prevalent in environmental metagenomic samples than in the genomic databases of cultured organisms and to identify novel proteins required to synthesize and modify sterols in bacteria. These proteins represent a distinct pathway for sterol synthesis exclusive to bacteria and indicate that sterol synthesis in bacteria may have evolved independently of eukaryotic sterol biosynthesis. Taken together, these results demonstrate how studies in extant bacteria can provide insight into the biological sources and the biosynthetic pathways of specific lipid biomarkers and in turn may allow for more robust interpretation of biomarker signatures.

  18. Membrane Restructuring by Phospholipase A2 Is Regulated by the Presence of Lipid Domains

    DEFF Research Database (Denmark)

    Leidy, Chad; Ocampo, Jackson; Duelund, Lars

    2011-01-01

    Secretory phospholipase A2 (sPLA2) catalyzes the hydrolysis of glycerophospholipids. This enzyme is sensitive to membrane structure, and its activity has been shown to increase in the presence of liquid-crystalline/gel (Lα/Lβ) lipid domains. In this work, we explore whether lipid domains can also...... without necessarily destroying the membrane. We confirm by high-performance liquid chromatography the preferential hydrolysis of DMPC within the phase coexistence region of the DMPC/DSPC phase diagram, showing that this preferential hydrolysis is accentuated close to the solidus phase boundary...

  19. Lipid domains in intact fiber-cell plasma membranes isolated from cortical and nuclear regions of human eye lenses of donors from different age groups.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2015-03-01

    The results reported here clearly document changes in the properties and the organization of fiber-cell membrane lipids that occur with age, based on electron paramagnetic resonance (EPR) analysis of lens membranes of clear lenses from donors of age groups from 0 to 20, 21 to 40, and 61 to 80 years. The physical properties, including profiles of the alkyl chain order, fluidity, hydrophobicity, and oxygen transport parameter, were investigated using EPR spin-labeling methods, which also provide an opportunity to discriminate coexisting lipid domains and to evaluate the relative amounts of lipids in these domains. Fiber-cell membranes were found to contain three distinct lipid environments: bulk lipid domain, which appears minimally affected by membrane proteins, and two domains that appear due to the presence of membrane proteins, namely boundary and trapped lipid domains. In nuclear membranes the amount of boundary and trapped phospholipids as well as the amount of cholesterol in trapped lipid domains increased with the donors' age and was greater than that in cortical membranes. The difference between the amounts of lipids in domains uniquely formed due to the presence of membrane proteins in nuclear and cortical membranes increased with the donors' age. It was also shown that cholesterol was to a large degree excluded from trapped lipid domains in cortical membranes. It is evident that the rigidity of nuclear membranes was greater than that of cortical membranes for all age groups. The amount of lipids in domains of low oxygen permeability, mainly in trapped lipid domains, were greater in nuclear than cortical membranes and increased with the age of donors. These results indicate that the nuclear fiber cell plasma membranes were less permeable to oxygen than cortical membranes and become less permeable to oxygen with age. In clear lenses, age-related changes in the lens lipid and protein composition and organization appear to occur in ways that increase fiber

  20. Domain size polydispersity effects on the structural and dynamical properties in lipid monolayers with phase coexistence

    Science.gov (United States)

    Rufeil-Fiori, Elena; Banchio, Adolfo J.

    Lipid monolayers with phase coexistence are a frequently used model for lipid membranes. In these systems, domains of the liquid-condensed phase always present size polydispersity. However, very few theoretical works consider size distribution effects on the monolayer properties. Because of the difference in surface densities, domains have excess dipolar density with respect to the surrounding liquid expanded phase, originating a dipolar inter-domain interaction. This interaction depends on the domain area, and hence the presence of a domain size distribution is associated with interaction polydispersity. Inter-domain interactions are fundamental to understanding the structure and dynamics of the monolayer. For this reason, it is expected that polydispersity significantly alters monolayer properties. By means of Brownian dynamics simulations, we study the radial distribution function (RDF), the average mean square displacement and the average time-dependent self-diffusion coefficient, D(t), of lipid monolayers with normal distributed size domains. It was found that polydispersity strongly affects the value of the interaction strength obtained, which is greatly underestimated if polydispersity is not considered. However, within a certain range of parameters, the RDF obtained from a polydisperse model can be well approximated by that of a monodisperse model, suitably fitting the interaction strength, even for 40% polydispersities. For small interaction strengths or small polydispersities, the polydisperse systems obtained from fitting the experimental RDF have an average mean square displacement and D(t) in good agreement with that of the monodisperse system.

  1. Protein sorting by lipid phase-like domains supports emergent signaling function in B lymphocyte plasma membranes.

    Science.gov (United States)

    Stone, Matthew B; Shelby, Sarah A; Núñez, Marcos F; Wisser, Kathleen; Veatch, Sarah L

    2017-02-01

    Diverse cellular signaling events, including B cell receptor (BCR) activation, are hypothesized to be facilitated by domains enriched in specific plasma membrane lipids and proteins that resemble liquid-ordered phase-separated domains in model membranes. This concept remains controversial and lacks direct experimental support in intact cells. Here, we visualize ordered and disordered domains in mouse B lymphoma cell membranes using super-resolution fluorescence localization microscopy, demonstrate that clustered BCR resides within ordered phase-like domains capable of sorting key regulators of BCR activation, and present a minimal, predictive model where clustering receptors leads to their collective activation by stabilizing an extended ordered domain. These results provide evidence for the role of membrane domains in BCR signaling and a plausible mechanism of BCR activation via receptor clustering that could be generalized to other signaling pathways. Overall, these studies demonstrate that lipid mediated forces can bias biochemical networks in ways that broadly impact signal transduction.

  2. Compartmentalized cAMP Signaling Associated With Lipid Raft and Non-raft Membrane Domains in Adult Ventricular Myocytes.

    Science.gov (United States)

    Agarwal, Shailesh R; Gratwohl, Jackson; Cozad, Mia; Yang, Pei-Chi; Clancy, Colleen E; Harvey, Robert D

    2018-01-01

    Aim: Confining cAMP production to discrete subcellular locations makes it possible for this ubiquitous second messenger to elicit unique functional responses. Yet, factors that determine how and where the production of this diffusible signaling molecule occurs are incompletely understood. The fluid mosaic model originally proposed that signal transduction occurs through random interactions between proteins diffusing freely throughout the plasma membrane. However, it is now known that the movement of membrane proteins is restricted, suggesting that the plasma membrane is segregated into distinct microdomains where different signaling proteins can be concentrated. In this study, we examined what role lipid raft and non-raft membrane domains play in compartmentation of cAMP signaling in adult ventricular myocytes. Methods and Results: The freely diffusible fluorescence resonance energy transfer-based biosensor Epac2-camps was used to measure global cytosolic cAMP responses, while versions of the probe targeted to lipid raft (Epac2-MyrPalm) and non-raft (Epac2-CAAX) domains were used to monitor local cAMP production near the plasma membrane. We found that β-adrenergic receptors, which are expressed in lipid raft and non-raft domains, produce cAMP responses near the plasma membrane that are distinctly different from those produced by E-type prostaglandin receptors, which are expressed exclusively in non-raft domains. We also found that there are differences in basal cAMP levels associated with lipid raft and non-raft domains, and that this can be explained by differences in basal adenylyl cyclase activity associated with each of these membrane environments. In addition, we found evidence that phosphodiesterases 2, 3, and 4 work together in regulating cAMP activity associated with both lipid raft and non-raft domains, while phosphodiesterase 3 plays a more prominent role in the bulk cytoplasmic compartment. Conclusion: These results suggest that different membrane

  3. Structure of lamellar lipid domains and corneocyte envelopes of murine stratum corneum. An X-ray diffraction study

    International Nuclear Information System (INIS)

    White, S.H.; Mirejovsky, D.; King, G.I.

    1988-01-01

    The lipid of the outermost layer of the skin is confined largely to the extracellular spaces surrounding the corneocytes of the stratum corneum where it forms a multilamellar adhesive matrix to act as the major permeability barrier of the skin. Knowledge of the molecular architecture of these intercellular domains is important for understanding various skin pathologies and their treatment, percutaneous drug delivery, and the cosmetic maintenance of the skin. The authors have surveyed by X-ray diffraction the structure of the intercellular domains and the extracted lipids of murine stratum corneum (SC) at 25, 45, and 70 0 C which are temperatures in the vicinity of known thermal phase transitions. The intercellular domains produce lamellar diffraction patterns with a Bragg spacing of 131 +/- 2 A. Lipid extracted from the SC and dispersed in excess water does not produce a simple lamellar diffraction pattern at any temperature studied, however. This and other facts suggest that another component, probably a protein, must be present to control the architecture of the intercellular lipid domains. They have also obtained diffraction patterns attributable to the protein envelopes of the corneocytes. The patterns suggest a β-pleated sheet organizational scheme. No diffraction patterns were observed that could be attributed to keratin

  4. Membrane docking geometry of GRP1 PH domain bound to a target lipid bilayer: an EPR site-directed spin-labeling and relaxation study.

    Directory of Open Access Journals (Sweden)

    Huai-Chun Chen

    Full Text Available The second messenger lipid PIP(3 (phosphatidylinositol-3,4,5-trisphosphate is generated by the lipid kinase PI3K (phosphoinositide-3-kinase in the inner leaflet of the plasma membrane, where it regulates a broad array of cell processes by recruiting multiple signaling proteins containing PIP(3-specific pleckstrin homology (PH domains to the membrane surface. Despite the broad importance of PIP(3-specific PH domains, the membrane docking geometry of a PH domain bound to its target PIP(3 lipid on a bilayer surface has not yet been experimentally determined. The present study employs EPR site-directed spin labeling and relaxation methods to elucidate the membrane docking geometry of GRP1 PH domain bound to bilayer-embedded PIP(3. The model target bilayer contains the neutral background lipid PC and both essential targeting lipids: (i PIP(3 target lipid that provides specificity and affinity, and (ii PS facilitator lipid that enhances the PIP(3 on-rate via an electrostatic search mechanism. The EPR approach measures membrane depth parameters for 18 function-retaining spin labels coupled to the PH domain, and for calibration spin labels coupled to phospholipids. The resulting depth parameters, together with the known high resolution structure of the co-complex between GRP1 PH domain and the PIP(3 headgroup, provide sufficient constraints to define an optimized, self-consistent membrane docking geometry. In this optimized geometry the PH domain engulfs the PIP(3 headgroup with minimal bilayer penetration, yielding the shallowest membrane position yet described for a lipid binding domain. This binding interaction displaces the PIP(3 headgroup from its lowest energy position and orientation in the bilayer, but the headgroup remains within its energetically accessible depth and angular ranges. Finally, the optimized docking geometry explains previous biophysical findings including mutations observed to disrupt membrane binding, and the rapid lateral

  5. Interactions between lipids and proteins are critical for organization of plasma membrane-ordered domains in tobacco BY-2 cells.

    Science.gov (United States)

    Grosjean, Kevin; Der, Christophe; Robert, Franck; Thomas, Dominique; Mongrand, Sébastien; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2018-06-27

    The laterally heterogeneous plant plasma membrane (PM) is organized into finely controlled specialized areas that include membrane-ordered domains. Recently, the spatial distribution of such domains within the PM has been identified as playing a key role in cell responses to environmental challenges. To examine membrane order at a local level, BY-2 tobacco suspension cell PMs were labelled with an environment-sensitive probe (di-4-ANEPPDHQ). Four experimental models were compared to identify mechanisms and cell components involved in short-term (1 h) maintenance of the ordered domain organization in steady-state cell PMs: modulation of the cytoskeleton or the cell wall integrity of tobacco BY-2 cells; and formation of giant vesicles using either a lipid mixture of tobacco BY-2 cell PMs or the original lipid and protein combinations of the tobacco BY-2 cell PM. Whilst inhibiting phosphorylation or disrupting either the cytoskeleton or the cell wall had no observable effects, we found that lipids and proteins significantly modified both the abundance and spatial distribution of ordered domains. This indicates the involvement of intrinsic membrane components in the local physical state of the plant PM. Our findings support a major role for the 'lipid raft' model, defined as the sterol-dependent ordered assemblies of specific lipids and proteins in plant PM organization.

  6. Chiral hierarchical self-assembly in Langmuir monolayers of diacetylenic lipids

    KAUST Repository

    Basnet, Prem B.

    2013-01-01

    When compressed in the intermediate temperature range below the chain-melting transition yet in the low-pressure liquid phase, Langmuir monolayers made of chiral lipid molecules form hierarchical structures. Using Brewster angle microscopy to reveal this structure, we found that as the liquid monolayer is compressed, an optically anisotropic condensed phase nucleates in the form of long, thin claws. These claws pack closely to form stripes. This appears to be a new mechanism for forming stripes in Langmuir monolayers. In the lower temperature range, these stripes arrange into spirals within overall circular domains, while near the chain-melting transition, the stripes arrange into target patterns. We attributed this transition to a change in boundary conditions at the core of the largest-scale circular domains. © 2013 The Royal Society of Chemistry.

  7. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    Science.gov (United States)

    Korenev, V. L.

    2014-03-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 104 A/cm2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  8. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    International Nuclear Information System (INIS)

    Korenev, V. L.

    2014-01-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10 4  A/cm 2 in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics

  9. SO-FDTD analysis of anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Yang Hongwei; Nanjing Univ. of Science and Technology, Nanjing; Yuan Hong; Chen Rushan; Yang Yang

    2007-01-01

    A novel finite-difference time-domain (FDTD) method, called shift operator FDTD (SO-FDTD) method is developed for anisotropic magnetized dispersive media. The recursive relation between operators is used. In this paper, some expressions containing the dielectric constants of magnetized dispersive media are written as rational polynomial function. The SO-FDTD formulation for anisotropic magnetized plasma is derived. The high efficiency and effectiveness of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer, with the direction of the propagation parallel to the direction of the biasing field. A comparison with frequency domain analytic results is included. The CPU time was several times shorter than that of the JEC method. (authors)

  10. Sex-specific nonlinear associations between serum lipids and different domains of cognitive function in middle to older age individuals.

    Science.gov (United States)

    Lu, Yanhui; An, Yu; Yu, Huanling; Che, Fengyuan; Zhang, Xiaona; Rong, Hongguo; Xi, Yuandi; Xiao, Rong

    2017-08-01

    To examine how serum lipids relates to specific cognitive ability domains between the men and women in Chinese middle to older age individuals. A complete lipid panel was obtained from 1444 individuals, ages 50-65, who also underwent a selection of cognitive tests. Participants were 584 men and 860 women from Linyi city, Shandong province. Multiple linear regression analyses examined serum lipids level as quadratic predictors of sex-specific measure of performance in different cognitive domains, which were adjusted for sociodemographic and lifestyle characteristics. In men, a significant quadratic effect of total cholesterol (TC) was identified for Digit Symbol (B = -0.081, P = 0.044) and also quadratic effect of low density lipoprotein-cholesterol (LDL-C) was identified for Trail Making Test B (B = -0.082, P = 0.045). Differently in women, there were significant quadratic associations between high density lipoprotein-cholesterol (HDL-C) and multiple neuropsychological tests. The nonlinear lipid-cognition associations differed between men and women and were specific to certain cognitive domains and might be of potential relevance for prevention and therapy of cognitive decline.

  11. Domain decomposition method for nonconforming finite element approximations of anisotropic elliptic problems on nonmatching grids

    Energy Technology Data Exchange (ETDEWEB)

    Maliassov, S.Y. [Texas A& M Univ., College Station, TX (United States)

    1996-12-31

    An approach to the construction of an iterative method for solving systems of linear algebraic equations arising from nonconforming finite element discretizations with nonmatching grids for second order elliptic boundary value problems with anisotropic coefficients is considered. The technique suggested is based on decomposition of the original domain into nonoverlapping subdomains. The elliptic problem is presented in the macro-hybrid form with Lagrange multipliers at the interfaces between subdomains. A block diagonal preconditioner is proposed which is spectrally equivalent to the original saddle point matrix and has the optimal order of arithmetical complexity. The preconditioner includes blocks for preconditioning subdomain and interface problems. It is shown that constants of spectral equivalence axe independent of values of coefficients and mesh step size.

  12. Giant spin torque in hybrids with anisotropic p-d exchange interaction

    Energy Technology Data Exchange (ETDEWEB)

    Korenev, V. L., E-mail: korenev@orient.ioffe.ru [A.F. Ioffe Physical-Technical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia and Experimentelle Physik 2, Technische Universitat Dortmund, D-44227 Dortmund (Germany)

    2014-03-03

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here, I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the domain wall motion by current density 10{sup 4} A/cm{sup 2} in ferromagnet/semiconductor hybrids. The experimental observation of the anisotropic torque will facilitate the integration of ferromagnetism into semiconductor electronics.

  13. Two-relaxation-time lattice Boltzmann method for the anisotropic dispersive Henry problem

    Science.gov (United States)

    Servan-Camas, Borja; Tsai, Frank T.-C.

    2010-02-01

    This study develops a lattice Boltzmann method (LBM) with a two-relaxation-time collision operator (TRT) to cope with anisotropic heterogeneous hydraulic conductivity and anisotropic velocity-dependent hydrodynamic dispersion in the saltwater intrusion problem. The directional-speed-of-sound technique is further developed to address anisotropic hydraulic conductivity and dispersion tensors. Forcing terms are introduced in the LBM to correct numerical errors that arise during the recovery procedure and to describe the sink/source terms in the flow and transport equations. In order to facilitate the LBM implementation, the forcing terms are combined with the equilibrium distribution functions (EDFs) to create pseudo-EDFs. This study performs linear stability analysis and derives LBM stability domains to solve the anisotropic advection-dispersion equation. The stability domains are used to select the time step at which the lattice Boltzmann method provides stable solutions to the numerical examples. The LBM was implemented for the anisotropic dispersive Henry problem with high ratios of longitudinal to transverse dispersivities, and the results compared well to the solutions in the work of Abarca et al. (2007).

  14. The phospholipase PNPLA7 functions as a lysophosphatidylcholine hydrolase and interacts with lipid droplets through its catalytic domain.

    Science.gov (United States)

    Heier, Christoph; Kien, Benedikt; Huang, Feifei; Eichmann, Thomas O; Xie, Hao; Zechner, Rudolf; Chang, Ping-An

    2017-11-17

    Mammalian patatin-like phospholipase domain-containing proteins (PNPLAs) are lipid-metabolizing enzymes with essential roles in energy metabolism, skin barrier development, and brain function. A detailed annotation of enzymatic activities and structure-function relationships remains an important prerequisite to understand PNPLA functions in (patho-)physiology, for example, in disorders such as neutral lipid storage disease, non-alcoholic fatty liver disease, and neurodegenerative syndromes. In this study, we characterized the structural features controlling the subcellular localization and enzymatic activity of PNPLA7, a poorly annotated phospholipase linked to insulin signaling and energy metabolism. We show that PNPLA7 is an endoplasmic reticulum (ER) transmembrane protein that specifically promotes hydrolysis of lysophosphatidylcholine in mammalian cells. We found that transmembrane and regulatory domains in the PNPLA7 N-terminal region cooperate to regulate ER targeting but are dispensable for substrate hydrolysis. Enzymatic activity is instead mediated by the C-terminal domain, which maintains full catalytic competence even in the absence of N-terminal regions. Upon elevated fatty acid flux, the catalytic domain targets cellular lipid droplets and promotes interactions of PNPLA7 with these organelles in response to increased cAMP levels. We conclude that PNPLA7 acts as an ER-anchored lysophosphatidylcholine hydrolase that is composed of specific functional domains mediating catalytic activity, subcellular positioning, and interactions with cellular organelles. Our study provides critical structural insights into an evolutionarily conserved class of phospholipid-metabolizing enzymes. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Prevalence, specificity and determinants of lipid-interacting PDZ domains from an in-cell screen and in vitro binding experiments.

    Directory of Open Access Journals (Sweden)

    Ylva Ivarsson

    Full Text Available BACKGROUND: PDZ domains are highly abundant protein-protein interaction modules involved in the wiring of protein networks. Emerging evidence indicates that some PDZ domains also interact with phosphoinositides (PtdInsPs, important regulators of cell polarization and signaling. Yet our knowledge on the prevalence, specificity, affinity, and molecular determinants of PDZ-PtdInsPs interactions and on their impact on PDZ-protein interactions is very limited. METHODOLOGY/PRINCIPAL FINDINGS: We screened the human proteome for PtdInsPs interacting PDZ domains by a combination of in vivo cell-localization studies and in vitro dot blot and Surface Plasmon Resonance (SPR experiments using synthetic lipids and recombinant proteins. We found that PtdInsPs interactions contribute to the cellular distribution of some PDZ domains, intriguingly also in nuclear organelles, and that a significant subgroup of PDZ domains interacts with PtdInsPs with affinities in the low-to-mid micromolar range. In vitro specificity for the head group is low, but with a trend of higher affinities for more phosphorylated PtdInsPs species. Other membrane lipids can assist PtdInsPs-interactions. PtdInsPs-interacting PDZ domains have generally high pI values and contain characteristic clusters of basic residues, hallmarks that may be used to predict additional PtdInsPs interacting PDZ domains. In tripartite binding experiments we established that peptide binding can either compete or cooperate with PtdInsPs binding depending on the combination of ligands. CONCLUSIONS/SIGNIFICANCE: Our screen substantially expands the set of PtdInsPs interacting PDZ domains, and shows that a full understanding of the biology of PDZ proteins will require a comprehensive insight into the intricate relationships between PDZ domains and their peptide and lipid ligands.

  16. Ballistic Anisotropic Magnetoresistance of Single-Atom Contacts.

    Science.gov (United States)

    Schöneberg, J; Otte, F; Néel, N; Weismann, A; Mokrousov, Y; Kröger, J; Berndt, R; Heinze, S

    2016-02-10

    Anisotropic magnetoresistance, that is, the sensitivity of the electrical resistance of magnetic materials on the magnetization direction, is expected to be strongly enhanced in ballistic transport through nanoscale junctions. However, unambiguous experimental evidence of this effect is difficult to achieve. We utilize single-atom junctions to measure this ballistic anisotropic magnetoresistance (AMR). Single Co and Ir atoms are deposited on domains and domain walls of ferromagnetic Fe layers on W(110) to control their magnetization directions. They are contacted with nonmagnetic tips in a low-temperature scanning tunneling microscope to measure the junction conductances. Large changes of the magnetoresistance occur from the tunneling to the ballistic regime due to the competition of localized and delocalized d-orbitals, which are differently affected by spin-orbit coupling. This work shows that engineering the AMR at the single atom level is feasible.

  17. Differential dynamic and structural behavior of lipid-cholesterol domains in model membranes.

    Directory of Open Access Journals (Sweden)

    Luis F Aguilar

    Full Text Available Changes in the cholesterol (Chol content of biological membranes are known to alter the physicochemical properties of the lipid lamella and consequently the function of membrane-associated enzymes. To characterize these changes, we used steady-state and time resolved fluorescence spectroscopy and two photon-excitation microscopy techniques. The membrane systems were chosen according to the techniques that were used: large unilamellar vesicles (LUVs for cuvette and giant unilamellar vesicles (GUVs for microscopy measurements; they were prepared from dipalmitoyl phosphatidylcholine (DPPC and dioctadecyl phosphatidylcholine (DOPC in mixtures that are well known to form lipid domains. Two fluorescent probes, which insert into different regions of the bilayer, were selected: 1,6-diphenyl-1,3,5-hexatriene (DPH was located at the deep hydrophobic core of the acyl chain regions and 2-dimethylamino-6-lauroylnaphthalene (Laurdan at the hydrophilic-hydrophobic membrane interface. Our spectroscopy results show that (i the changes induced by cholesterol in the deep hydrophobic phospholipid acyl chain domain are different from the ones observed in the superficial region of the hydrophilic-hydrophobic interface, and these changes depend on the state of the lamella and (ii the incorporation of cholesterol into the lamella induces an increase in the orientation dynamics in the deep region of the phospholipid acyl chains with a corresponding decrease in the orientation at the region close to the polar lipid headgroups. The microscopy data from DOPC/DPPC/Chol GUVs using Laurdan generalized polarization (Laurdan GP suggest that a high cholesterol content in the bilayer weakens the stability of the water hydrogen bond network and hence the stability of the liquid-ordered phase (Lo.

  18. Adaptive weighted anisotropic diffusion for computed tomography denoising

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Zhi; Silver, Michael D. [Toshiba Medical Research Institute USA, Inc., Vernon Hills, IL (United States); Noshi, Yasuhiro [Toshiba Medical System Corporation, Tokyo (Japan)

    2011-07-01

    With increasing awareness of radiation safety, dose reduction has become an important task of modern CT system development. This paper proposes an adaptive weighted anisotropic diffusion method and an adaptive weighted sharp source anisotropic diffusion method as image domain filters to potentially help dose reduction. Different from existing anisotropic diffusion methods, the proposed methods incorporate an edge-sensitive adaptive source term as part of the diffusion iteration. It provides better edge and detail preservation. Visual evaluation showed that the new methods can reduce noise substantially without apparent edge and detail loss. The quantitative evaluations also showed over 50% of noise reduction in terms of noise standard deviations, which is equivalent to over 75% of dose reduction for a normal dose image quality. (orig.)

  19. Serine 77 in the PDZ domain of PICK1 is a protein kinase Cα phosphorylation site regulated by lipid membrane binding

    DEFF Research Database (Denmark)

    Ammendrup-Johnsen, Ina; Thorsen, Thor Seneca; Gether, Ulrik

    2012-01-01

    PICK1 (protein interacting with C kinase 1) contains an N-terminal protein binding PDZ domain and a C-terminal lipid binding BAR domain. PICK1 plays a key role in several physiological processes, including synaptic plasticity. However, little is known about the cellular mechanisms governing the a...... lipid binding and/or polymerization capacity. We propose that PICK1 is phosphorylated at Ser77 by PKCα preferentially when bound to membrane vesicles and that this phosphorylation in turn modulates its cellular distribution....

  20. Giant spin torque in systems with anisotropic exchange interaction

    OpenAIRE

    Korenev, Vladimir L.

    2012-01-01

    Control of magnetic domain wall movement by the spin-polarized current looks promising for creation of a new generation of magnetic memory devices. A necessary condition for this is the domain wall shift by a low-density current. Here I show that a strongly anisotropic exchange interaction between mobile heavy holes and localized magnetic moments enormously increases the current-induced torque on the domain wall as compared to systems with isotropic exchange. This enables one to control the d...

  1. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Melby, Eric S.; Mensch, Arielle C.; Lohse, Samuel E.; Hu, Dehong; Orr, Galya; Murphy, Catherine J.; Hamers, Robert J.; Pedersen, Joel A.

    2016-01-01

    The cell membrane represents an important biological interface that nanoparticles may encounter after being released into the environment. Interaction of nanoparticles with cellular membranes may alter membrane structure and function, lead to their uptake into cells, and elicit adverse biological responses. Supported lipid bilayers have proven to be valuable ex vivo models for biological membranes, allowing investigation of their mechanisms of interaction with nanoparticles with a degree of control impossible in living cells. To date, the majority of research on nanoparticle interaction with supported lipid bilayers has employed membranes composed of single or binary mixtures of phospholipids. Cellular membranes contain a wide variety of lipids and exhibit lateral organization. Ordered membrane domains enriched in specific membrane components are referred to as lipid rafts and have not been explored with respect to their interaction with nanoparticles. Here we develop model lipid raft-containing membranes amenable to investigation by a variety of surface-sensitive analytical techniques and demonstrate that lipid rafts influence the extent of nanoparticle attachment to model membranes. We determined conditions that allow reliable formation of bilayers containing rafts enriched in sphingomyelin and cholesterol and confirmed their morphology by structured illumination and atomic force microscopies. We demonstrate that lipid rafts increase attachment of cationic gold nanoparticles to model membranes under near physiological ionic strength conditions (0.1 M NaCl) at pH 7.4. We anticipate that these results will serve as the foundation for and motivate further study of nanoparticle interaction with compositionally varied lipid rafts.

  2. Friction anisotropy-driven domain imaging on exfoliated monolayer graphene.

    Science.gov (United States)

    Choi, Jin Sik; Kim, Jin-Soo; Byun, Ik-Su; Lee, Duk Hyun; Lee, Mi Jung; Park, Bae Ho; Lee, Changgu; Yoon, Duhee; Cheong, Hyeonsik; Lee, Ki Ho; Son, Young-Woo; Park, Jeong Young; Salmeron, Miquel

    2011-07-29

    Graphene produced by exfoliation has not been able to provide an ideal graphene with performance comparable to that predicted by theory, and structural and/or electronic defects have been proposed as one cause of reduced performance. We report the observation of domains on exfoliated monolayer graphene that differ by their friction characteristics, as measured by friction force microscopy. Angle-dependent scanning revealed friction anisotropy with a periodicity of 180° on each friction domain. The friction anisotropy decreased as the applied load increased. We propose that the domains arise from ripple distortions that give rise to anisotropic friction in each domain as a result of the anisotropic puckering of the graphene.

  3. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  4. Vaccinia Virus Immunomodulator A46: A Lipid and Protein-Binding Scaffold for Sequestering Host TIR-Domain Proteins.

    Directory of Open Access Journals (Sweden)

    Sofiya Fedosyuk

    2016-12-01

    Full Text Available Vaccinia virus interferes with early events of the activation pathway of the transcriptional factor NF-kB by binding to numerous host TIR-domain containing adaptor proteins. We have previously determined the X-ray structure of the A46 C-terminal domain; however, the structure and function of the A46 N-terminal domain and its relationship to the C-terminal domain have remained unclear. Here, we biophysically characterize residues 1-83 of the N-terminal domain of A46 and present the X-ray structure at 1.55 Å. Crystallographic phases were obtained by a recently developed ab initio method entitled ARCIMBOLDO_BORGES that employs tertiary structure libraries extracted from the Protein Data Bank; data analysis revealed an all β-sheet structure. This is the first such structure solved by this method which should be applicable to any protein composed entirely of β-sheets. The A46(1-83 structure itself is a β-sandwich containing a co-purified molecule of myristic acid inside a hydrophobic pocket and represents a previously unknown lipid-binding fold. Mass spectrometry analysis confirmed the presence of long-chain fatty acids in both N-terminal and full-length A46; mutation of the hydrophobic pocket reduced the lipid content. Using a combination of high resolution X-ray structures of the N- and C-terminal domains and SAXS analysis of full-length protein A46(1-240, we present here a structural model of A46 in a tetrameric assembly. Integrating affinity measurements and structural data, we propose how A46 simultaneously interferes with several TIR-domain containing proteins to inhibit NF-κB activation and postulate that A46 employs a bipartite binding arrangement to sequester the host immune adaptors TRAM and MyD88.

  5. A method for analysis of lipid vesicle domain structure from confocal image data

    DEFF Research Database (Denmark)

    Husen, Peter Rasmussen; Fidorra, Matthias; Hartel, Steffen

    2012-01-01

    Quantitative characterization of the lateral structure of curved membranes based on fluorescence microscopy requires knowledge of the fluorophore distribution on the surface. We present an image analysis approach for extraction of the fluorophore distribution on a spherical lipid vesicle from...... confocal imaging stacks. The technique involves projection of volumetric image data onto a triangulated surface mesh representation of the membrane, correction of photoselection effects and global motion of the vesicle during image acquisition and segmentation of the surface into domains using histograms...

  6. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-04-30

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  7. Effective wavefield extrapolation in anisotropic media: Accounting for resolvable anisotropy

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-01-01

    Spectral methods provide artefact-free and generally dispersion-free wavefield extrapolation in anisotropic media. Their apparent weakness is in accessing the medium-inhomogeneity information in an efficient manner. This is usually handled through a velocity-weighted summation (interpolation) of representative constant-velocity extrapolated wavefields, with the number of these extrapolations controlled by the effective rank of the original mixed-domain operator or, more specifically, by the complexity of the velocity model. Conversely, with pseudo-spectral methods, because only the space derivatives are handled in the wavenumber domain, we obtain relatively efficient access to the inhomogeneity in isotropic media, but we often resort to weak approximations to handle the anisotropy efficiently. Utilizing perturbation theory, I isolate the contribution of anisotropy to the wavefield extrapolation process. This allows us to factorize as much of the inhomogeneity in the anisotropic parameters as possible out of the spectral implementation, yielding effectively a pseudo-spectral formulation. This is particularly true if the inhomogeneity of the dimensionless anisotropic parameters are mild compared with the velocity (i.e., factorized anisotropic media). I improve on the accuracy by using the Shanks transformation to incorporate a denominator in the expansion that predicts the higher-order omitted terms; thus, we deal with fewer terms for a high level of accuracy. In fact, when we use this new separation-based implementation, the anisotropy correction to the extrapolation can be applied separately as a residual operation, which provides a tool for anisotropic parameter sensitivity analysis. The accuracy of the approximation is high, as demonstrated in a complex tilted transversely isotropic model. © 2014 European Association of Geoscientists & Engineers.

  8. Single Lipid Molecule Dynamics on Supported Lipid Bilayers with Membrane Curvature

    Directory of Open Access Journals (Sweden)

    Philip P. Cheney

    2017-03-01

    Full Text Available The plasma membrane is a highly compartmentalized, dynamic material and this organization is essential for a wide variety of cellular processes. Nanoscale domains allow proteins to organize for cell signaling, endo- and exocytosis, and other essential processes. Even in the absence of proteins, lipids have the ability to organize into domains as a result of a variety of chemical and physical interactions. One feature of membranes that affects lipid domain formation is membrane curvature. To directly test the role of curvature in lipid sorting, we measured the accumulation of two similar lipids, 1,2-Dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE and hexadecanoic acid (HDA, using a supported lipid bilayer that was assembled over a nanopatterned surface to obtain regions of membrane curvature. Both lipids studied contain 16 carbon, saturated tails and a head group tag for fluorescence microscopy measurements. The accumulation of lipids at curvatures ranging from 28 nm to 55 nm radii was measured and fluorescein labeled DHPE accumulated more than fluorescein labeled HDA at regions of membrane curvature. We then tested whether single biotinylated DHPE molecules sense curvature using single particle tracking methods. Similar to groups of fluorescein labeled DHPE accumulating at curvature, the dynamics of single molecules of biotinylated DHPE was also affected by membrane curvature and highly confined motion was observed.

  9. Analysis and interpretation of diffraction data from complex, anisotropic materials

    Science.gov (United States)

    Tutuncu, Goknur

    Most materials are elastically anisotropic and exhibit additional anisotropy beyond elastic deformation. For instance, in ferroelectric materials the main inelastic deformation mode is via domains, which are highly anisotropic crystallographic features. To quantify this anisotropy of ferroelectrics, advanced X-ray and neutron diffraction methods were employed. Extensive sets of data were collected from tetragonal BaTiO3, PZT and other ferroelectric ceramics. Data analysis was challenging due to the complex constitutive behavior of these materials. To quantify the elastic strain and texture evolution in ferroelectrics under loading, a number of data analysis techniques such as the single peak and Rietveld methods were used and their advantages and disadvantages compared. It was observed that the single peak analysis fails at low peak intensities especially after domain switching while the Rietveld method does not account for lattice strain anisotropy although it overcomes the low intensity problem via whole pattern analysis. To better account for strain anisotropy the constant stress (Reuss) approximation was employed within the Rietveld method and new formulations to estimate lattice strain were proposed. Along the way, new approaches for handling highly anisotropic lattice strain data were also developed and applied. All of the ceramics studied exhibited significant changes in their crystallographic texture after loading indicating non-180° domain switching. For a full interpretation of domain switching the spherical harmonics method was employed in Rietveld. A procedure for simultaneous refinement of multiple data sets was established for a complete texture analysis. To further interpret diffraction data, a solid mechanics model based on the self-consistent approach was used in calculating lattice strain and texture evolution during the loading of a polycrystalline ferroelectric. The model estimates both the macroscopic average response of a specimen and its hkl

  10. FDTD analysis of 3-D conducting target coated by anisotropic magnetized plasma

    International Nuclear Information System (INIS)

    Xu Lijun; Liu Shaobin; Mo Jinjun; Yuan Naichang

    2006-01-01

    The JEC finite-difference time-domain (JEC-FDTD) method is extended to three dimensional anisotropic dispersive media- the magnetized plasma. The problem which incorporates both anisotropy and frequency dispersion at the same time is solved for the electromagnetic wave propagation. The three dimensional JEC-FDTD formulations for anisotropic magnetized plasma are derived. The method is applied to the electromagnetic scattering of dihedral corner reflector and sphere-cone coated with anisotropic magnetized plasma. By simulating the interaction of electromagnetic wave with magnetized plasma, some numerical results are obtained, which indicate that an appropriate plasma coating may efficiently reduce the RCS of a metallic target. (authors)

  11. Protein-lipid interactions: from membrane domains to cellular networks

    National Research Council Canada - National Science Library

    Tamm, Lukas K

    2005-01-01

    ... membranes is the lipid bilayer. Embedded in the fluid lipid bilayer are proteins of various shapes and traits. This volume illuminates from physical, chemical and biological angles the numerous - mostly quite weak - interactions between lipids, proteins, and proteins and lipids that define the delicate, highly dynamic and yet so stable fabri...

  12. Combined effects of headgroup charge and tail unsaturation of lipids on lateral organization and diffusion of lipids in model biomembranes

    International Nuclear Information System (INIS)

    Chen Xiao-Jie; Liang Qing

    2017-01-01

    Lateral organization and dynamics of lipids in plasma membranes are crucial for several cellular processes such as signal transduction across the membrane and still remain elusive. In this paper, using coarse-grained molecular dynamics simulation, we theoretically study the combined effects of headgroup charge and tail unsaturation of lipids on the lateral organization and diffusion of lipids in ternary lipid bilayers. In neutral ternary lipid bilayers composed of saturated lipids, unsaturated lipids, and cholesterols, under the conditions of given temperature and components, the main factor for the phase separation is the unsaturation of unsaturated lipids and the bilayers can be separated into liquid-ordered domains enriched in saturated lipids and cholesterols and liquid-disordered domains enriched in unsaturated lipids. Once the headgroup charge is introduced, the electrostatic repulsion between the negatively charged lipid headgroups will increase the distance between the charged lipids. We find that the lateral organization and diffusion of the lipids in the (partially) charged ternary lipid bilayers are determined by the competition between the headgroup charge and the unsaturation of the unsaturated lipids. In the bilayers containing unsaturated lipids with lower unsaturation, the headgroup charge plays a crucial role in the lateral organization and diffusion of lipids. The headgroup charge may make the lipid domains unstable and even can suppress phase separation of the lipids in some systems. However, in the bilayers containing highly unsaturated lipids, the lateral organization and diffusion of lipids are mainly dominated by the unsaturation of the unsaturated lipids. This work may provide some theoretical insights into understanding the formation of nanosized domains and lateral diffusion of lipids in plasma membranes. (paper)

  13. Lipid Raft Size and Lipid Mobility in Non-raft Domains Increase during Aging and Are Exacerbated in APP/PS1 Mice Model of Alzheimer's Disease. Predictions from an Agent-Based Mathematical Model

    Science.gov (United States)

    Santos, Guido; Díaz, Mario; Torres, Néstor V.

    2016-01-01

    A connection between lipid rafts and Alzheimer's disease has been studied during the last decades. Mathematical modeling approaches have recently been used to correlate the effects of lipid composition changes in the physicochemical properties of raft-like membranes. Here we propose an agent based model to assess the effect of lipid changes in lipid rafts on the evolution and progression of Alzheimer's disease using lipid profile data obtained in an established model of familial Alzheimer's disease. We have observed that lipid raft size and lipid mobility in non-raft domains are two main factors that increase during age and are accelerated in the transgenic Alzheimer's disease mouse model. The consequences of these changes are discussed in the context of neurotoxic amyloid β production. Our agent based model predicts that increasing sterols (mainly cholesterol) and long-chain polyunsaturated fatty acids (LCPUFA) (mainly DHA, docosahexaenoic acid) proportions in the membrane composition might delay the onset and progression of the disease. PMID:27014089

  14. Data-driven imaging in anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Volker, Arno; Hunter, Alan [TNO Stieltjes weg 1, 2600 AD, Delft (Netherlands)

    2012-05-17

    Anisotropic materials are being used increasingly in high performance industrial applications, particularly in the aeronautical and nuclear industries. Some important examples of these materials are composites, single-crystal and heavy-grained metals. Ultrasonic array imaging in these materials requires exact knowledge of the anisotropic material properties. Without this information, the images can be adversely affected, causing a reduction in defect detection and characterization performance. The imaging operation can be formulated in two consecutive and reciprocal focusing steps, i.e., focusing the sources and then focusing the receivers. Applying just one of these focusing steps yields an interesting intermediate domain. The resulting common focus point gather (CFP-gather) can be interpreted to determine the propagation operator. After focusing the sources, the observed travel-time in the CFP-gather describes the propagation from the focus point to the receivers. If the correct propagation operator is used, the measured travel-times should be the same as the time-reversed focusing operator due to reciprocity. This makes it possible to iteratively update the focusing operator using the data only and allows the material to be imaged without explicit knowledge of the anisotropic material parameters. Furthermore, the determined propagation operator can also be used to invert for the anisotropic medium parameters. This paper details the proposed technique and demonstrates its use on simulated array data from a specimen of Inconel single-crystal alloy commonly used in the aeronautical and nuclear industries.

  15. Colossal anisotropic resistivity and oriented magnetic domains in strained La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Tao; Yang, Shengwei; Liu, Yukuai; Zhao, Wenbo; Feng, Lei; Li, Xiaoguang, E-mail: lixg@ustc.edu.cn [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); Zhou, Haibiao; Lu, Qingyou [Hefei National Laboratory for Physical Sciences at Microscale, Department of Physics, University of Science and Technology of China, Hefei 230026 (China); High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China); Hou, Yubin [High Magnetic Field Laboratory, Chinese Academy of Sciences and University of Science and Technology of China, Hefei 230031 (China)

    2014-05-19

    Magnetic and resistive anisotropies have been studied for the La{sub 0.325}Pr{sub 0.3}Ca{sub 0.375}MnO{sub 3} films with different thicknesses grown on low symmetric (011)-oriented (LaAlO{sub 3}){sub 0.3}(SrAl{sub 0.5}Ta{sub 0.5}O{sub 3}){sub 0.7} substrates. In the magnetic and electronic phase separation region, a colossal anisotropic resistivity (AR) of ∼10{sup 5}% and an anomalous large anisotropic magnetoresistance can be observed for 30 nm film. However, for 120 nm film, the maximum AR decreases significantly (∼2 × 10{sup 3}%) due to strain relaxation. The colossal AR is strongly associated with the oriented formation of magnetic domains, and the features of the strain effects are believed to be useful for the design of artificial materials and devices.

  16. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....

  17. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  18. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  19. PICK1 regulates the trafficking of ASIC1a and acidotoxicity in a BAR domain lipid binding-dependent manner

    Directory of Open Access Journals (Sweden)

    Jin Wenying

    2010-12-01

    Full Text Available Abstract Background Acid-sensing ion channel 1a (ASIC1a is the major ASIC subunit determining acid-activated currents in brain neurons. Recent studies show that ASIC1a play critical roles in acid-induced cell toxicity. While these studies raise the importance of ASIC1a in diseases, mechanisms for ASIC1a trafficking are not well understood. Interestingly, ASIC1a interacts with PICK1 (protein interacting with C-kinase 1, an intracellular protein that regulates trafficking of several membrane proteins. However, whether PICK1 regulates ASIC1a surface expression remains unknown. Results Here, we show that PICK1 overexpression increases ASIC1a surface level. A BAR domain mutant of PICK1, which impairs its lipid binding capability, blocks this increase. Lipid binding of PICK1 is also required for PICK1-induced clustering of ASIC1a. Consistent with the effect on ASIC1a surface levels, PICK1 increases ASIC1a-mediated acidotoxicity and this effect requires both the PDZ and BAR domains of PICK1. Conclusions Taken together, our results indicate that PICK1 regulates trafficking and function of ASIC1a in a lipid binding-dependent manner.

  20. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  1. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi; Alkhalifah, Tariq Ali

    2013-01-01

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it's kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  2. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  3. Importance of the hexagonal lipid phase in biological membrane organisation

    Directory of Open Access Journals (Sweden)

    Juliette eJouhet

    2013-12-01

    Full Text Available Abstract:Domains are present in every natural membrane. They are characterised by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organisation are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  4. Importance of the hexagonal lipid phase in biological membrane organization.

    Science.gov (United States)

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particular local structures within membranes. Since biological membranes are composed of a mixture of lipids, each with distinctive biophysical properties, lateral and transversal sorting of lipids can promote creation of domains inside the membrane through local modulation of the lipid phase. Lipid biophysical properties have been characterized for long based on in vitro analyses using non-natural lipid molecules; their re-examinations using natural lipids might open interesting perspectives on membrane architecture occurring in vivo in various cellular and physiological contexts.

  5. FCS diffusion laws in two-phase lipid membranes: determination of domain mean size by experiments and Monte Carlo simulations.

    Science.gov (United States)

    Favard, Cyril; Wenger, Jérôme; Lenne, Pierre-François; Rigneault, Hervé

    2011-03-02

    Many efforts have been undertaken over the last few decades to characterize the diffusion process in model and cellular lipid membranes. One of the techniques developed for this purpose, fluorescence correlation spectroscopy (FCS), has proved to be a very efficient approach, especially if the analysis is extended to measurements on different spatial scales (referred to as FCS diffusion laws). In this work, we examine the relevance of FCS diffusion laws for probing the behavior of a pure lipid and a lipid mixture at temperatures below, within and above the phase transitions, both experimentally and numerically. The accuracy of the microscopic description of the lipid mixtures found here extends previous work to a more complex model in which the geometry is unknown and the molecular motion is driven only by the thermodynamic parameters of the system itself. For multilamellar vesicles of both pure lipid and lipid mixtures, the FCS diffusion laws recorded at different temperatures exhibit large deviations from pure Brownian motion and reveal the existence of nanodomains. The variation of the mean size of these domains with temperature is in perfect correlation with the enthalpy fluctuation. This study highlights the advantages of using FCS diffusion laws in complex lipid systems to describe their temporal and spatial structure. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  6. Co-existence of Gel and Fluid Lipid Domains in Single-component Phospholipid Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Armstrong, Clare L [McMaster University; Barrett, M [McMaster University; Toppozini, L [McMaster University; Yamani, Zahra [Canadian Neutron Beam Centre, National Research Council, Chalk River Laboratorie; Kucerka, Norbert [Canadian Neutron Beam Centre and Comelius University (Slovakia); Katsaras, John [ORNL; Fragneto, Giovanna [Institut Laue-Langevin (ILL); Rheinstadter, Maikel C [McMaster University

    2012-01-01

    Lateral nanostructures in membranes, so-called rafts, are believed to strongly influence membrane properties and functions. The experimental observation of rafts has proven difficult as they are thought to be dynamic structures that likely fluctuate on nano- to microsecond time scales. Using neutron diffraction we present direct experimental evidence for the co-existence of gel and fluid lipid domains in a single-component phospholipid membrane made of DPPC as it undergoes its main phase transition. The coherence length of the neutron beam sets a lower limit for the size of structures that can be observed. Neutron coherence lengths between 30 and 242A used in this study were obtained by varying the incident neutron energy and the resolution of the neutron spectrometer. We observe Bragg peaks corresponding to co-existing nanometer sized structures, both in out-of-plane and in-plane scans, by tuning the neutron coherence length. During the main phase transition, instead of a continuous transition that shows a pseudo-critical behavior, we observe the co-existence of gel and fluid domains.

  7. Simulation of ultrasonic wave propagation in anisotropic poroelastic bone plate using hybrid spectral/finite element method.

    Science.gov (United States)

    Nguyen, Vu-Hieu; Naili, Salah

    2012-08-01

    This paper deals with the modeling of guided waves propagation in in vivo cortical long bone, which is known to be anisotropic medium with functionally graded porosity. The bone is modeled as an anisotropic poroelastic material by using Biot's theory formulated in high frequency domain. A hybrid spectral/finite element formulation has been developed to find the time-domain solution of ultrasonic waves propagating in a poroelastic plate immersed in two fluid halfspaces. The numerical technique is based on a combined Laplace-Fourier transform, which allows to obtain a reduced dimension problem in the frequency-wavenumber domain. In the spectral domain, as radiation conditions representing infinite fluid halfspaces may be exactly introduced, only the heterogeneous solid layer needs to be analyzed by using finite element method. Several numerical tests are presented showing very good performance of the proposed procedure. A preliminary study on the first arrived signal velocities computed by using equivalent elastic and poroelastic models will be presented. Copyright © 2012 John Wiley & Sons, Ltd.

  8. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.

    2014-06-03

    This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow. 2014 Jie Chen et al.

  9. Coupling Two-Phase Fluid Flow with Two-Phase Darcy Flow in Anisotropic Porous Media

    Directory of Open Access Journals (Sweden)

    Jie Chen

    2014-06-01

    Full Text Available This paper reports a numerical study of coupling two-phase fluid flow in a free fluid region with two-phase Darcy flow in a homogeneous and anisotropic porous medium region. The model consists of coupled Cahn-Hilliard and Navier-Stokes equations in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition on the interface between the free flow and the porous media regions. Obtained results have shown the anisotropic properties effect on the velocity and pressure of the two-phase flow.

  10. Local mobility in lipid domains of supported bilayers characterized by atomic force microscopy and fluorescence correlation spectroscopy.

    Energy Technology Data Exchange (ETDEWEB)

    Frankel, Daniel J.; Buranda, T. (University of New Mexico, Albuquerque, NM); Burns, Alan Richard

    2005-01-01

    Fluorescence correlation spectroscopy (FCS) is used to examine mobility of labeled probes at specific sites in supported bilayers consisting of 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) lipid domains in 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). Those sites are mapped beforehand with simultaneous atomic force microscopy and submicron confocal fluorescence imaging, allowing characterization of probe partitioning between gel DPPC and disordered liquid DOPC domains with corresponding topography of domain structure. We thus examine the relative partitioning and mobility in gel and disordered liquid phases for headgroup- and tailgroup-labeled GM1 ganglioside probes and for headgroup- and tailgroup-labeled phospholipid probes. For the GM1 probes, large differences in mobility between fluid and gel domains are observed; whereas unexpected mobility is observed in submicron gel domains for the phospholipid probes. We attribute the latter to domain heterogeneities that could be induced by the probe. Furthermore, fits to the FCS data for the phospholipid probes in the DOPC fluid phase require two components (fast and slow). Although proximity to the glass substrate may be a factor, local distortion of the probe by the fluorophore could also be important. Overall, we observe nonideal aspects of phospholipid probe mobility and partitioning that may not be restricted to supported bilayers.

  11. Isothermal anisotropic magnetoresistance in antiferromagnetic metallic IrMn.

    Science.gov (United States)

    Galceran, R; Fina, I; Cisneros-Fernández, J; Bozzo, B; Frontera, C; López-Mir, L; Deniz, H; Park, K-W; Park, B-G; Balcells, Ll; Martí, X; Jungwirth, T; Martínez, B

    2016-10-20

    Antiferromagnetic spintronics is an emerging field; antiferromagnets can improve the functionalities of ferromagnets with higher response times, and having the information shielded against external magnetic field. Moreover, a large list of aniferromagnetic semiconductors and metals with Néel temperatures above room temperature exists. In the present manuscript, we persevere in the quest for the limits of how large can anisotropic magnetoresistance be in antiferromagnetic materials with very large spin-orbit coupling. We selected IrMn as a prime example of first-class moment (Mn) and spin-orbit (Ir) combination. Isothermal magnetotransport measurements in an antiferromagnetic-metal(IrMn)/ferromagnetic-insulator thin film bilayer have been performed. The metal/insulator structure with magnetic coupling between both layers allows the measurement of the modulation of the transport properties exclusively in the antiferromagnetic layer. Anisotropic magnetoresistance as large as 0.15% has been found, which is much larger than that for a bare IrMn layer. Interestingly, it has been observed that anisotropic magnetoresistance is strongly influenced by the field cooling conditions, signaling the dependence of the found response on the formation of domains at the magnetic ordering temperature.

  12. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Shiga toxin induces membrane reorganization and formation of long range lipid order

    DEFF Research Database (Denmark)

    Solovyeva, Vita; Johannes, Ludger; Simonsen, Adam Cohen

    2015-01-01

    membrane reordering. When Shiga toxin was added above the lipid chain melting temperature, the toxin interaction with the membrane induced rearrangement and clustering of Gb3 lipids that resulted in the long range order and alignment of lipids in gel domains. The toxin induced redistribution of Gb3 lipids...... inside gel domains is governed by the temperature at which Shiga toxin was added to the membrane: above or below the phase transition. The temperature is thus one of the critical factors controlling lipid organization and texture in the presence of Shiga toxin. Lipid chain ordering imposed by Shiga toxin...... binding can be another factor driving the reconstruction of lipid organization and crystallization of lipids inside gel domains....

  14. Fourier transform coupled tryptophan scanning mutagenesis identifies a bending point on the lipid-exposed δM3 transmembrane domain of the Torpedo californica nicotinic acetylcholine receptor

    Science.gov (United States)

    Caballero-Rivera, Daniel; Cruz-Nieves, Omar A; Oyola-Cintrón, Jessica; Torres-Núñez, David A; Otero-Cruz, José D

    2011-01-01

    The nicotinic acetylcholine receptor (nAChR) is a member of a family of ligand-gated ion channels that mediate diverse physiological functions, including fast synaptic transmission along the peripheral and central nervous systems. Several studies have made significant advances toward determining the structure and dynamics of the lipid-exposed domains of the nAChR. However, a high-resolution atomic structure of the nAChR still remains elusive. In this study, we extended the Fourier transform coupled tryptophan scanning mutagenesis (FT-TrpScanM) approach to gain insight into the secondary structure of the δM3 transmembrane domain of the Torpedo californica nAChR, to monitor conformational changes experienced by this domain during channel gating, and to identify which lipid-exposed positions are linked to the regulation of ion channel kinetics. The perturbations produced by periodic tryptophan substitutions along the δM3 transmembrane domain were characterized by two-electrode voltage clamp and 125I-labeled α-bungarotoxin binding assays. The periodicity profiles and Fourier transform spectra of this domain revealed similar helical structures for the closed- and open-channel states. However, changes in the oscillation patterns observed between positions Val-299 and Val-304 during transition between the closed- and open-channel states can be explained by the structural effects caused by the presence of a bending point introduced by a Thr-Gly motif at positions 300–301. The changes in periodicity and localization of residues between the closed-and open-channel states could indicate a structural transition between helix types in this segment of the domain. Overall, the data further demonstrate a functional link between the lipid-exposed transmembrane domain and the nAChR gating machinery. PMID:21785268

  15. Accumulation of macular xanthophylls in unsaturated membrane domains.

    Science.gov (United States)

    Wisniewska, Anna; Subczynski, Witold K

    2006-05-15

    The distribution of macular xanthophylls, lutein and zeaxanthin, between domains formed in membranes made from an equimolar ternary mixture of dioleoylphosphatidylcholine/sphingomyelin/cholesterol, called a raft-forming mixture, was investigated. In these membranes, two domains are formed: the raft domain enriched in saturated lipids and cholesterol (detergent-resistant membranes, DRM), and the bulk domain enriched in unsaturated lipids (detergent-soluble membranes, DSM). These membrane domains have been separated using cold Triton X-100 extraction from membranes containing 1 mol% of either lutein or zeaxanthin. The results indicated that xanthophylls are substantially excluded from DRM and remain concentrated in DSM. Concentrations of xanthophylls in DRM and DSM calculated as the mole ratio of either xanthophyll to phospholipid were 0.005 and 0.03, respectively, and calculated as the mole ratio of either xanthophyll to total lipid (phospholipid + cholesterol) were 0.003 and 0.025, respectively. Thus, xanthophylls are over eight times more concentrated in DSM than in DRM. No significant difference in the distribution of lutein and zeaxanthin was found. It was also demonstrated using saturation-recovery EPR that at 1 mol%, neither lutein nor zeaxanthin affect the formation of membrane domains. The location of xanthophylls in domains formed from unsaturated lipids is ideal if they are to act as a lipid antioxidant, which is the most accepted mechanism through which lutein and zeaxanthin protect the retina from age-related macular diseases.

  16. Steric Pressure among Membrane-Bound Polymers Opposes Lipid Phase Separation.

    Science.gov (United States)

    Imam, Zachary I; Kenyon, Laura E; Carrillo, Adelita; Espinoza, Isai; Nagib, Fatema; Stachowiak, Jeanne C

    2016-04-19

    Lipid rafts are thought to be key organizers of membrane-protein complexes in cells. Many proteins that interact with rafts have bulky polymeric components such as intrinsically disordered protein domains and polysaccharide chains. Therefore, understanding the interaction between membrane domains and membrane-bound polymers provides insights into the roles rafts play in cells. Multiple studies have demonstrated that high concentrations of membrane-bound polymeric domains create significant lateral steric pressure at membrane surfaces. Furthermore, our recent work has shown that lateral steric pressure at membrane surfaces opposes the assembly of membrane domains. Building on these findings, here we report that membrane-bound polymers are potent suppressors of membrane phase separation, which can destabilize lipid domains with substantially greater efficiency than globular domains such as membrane-bound proteins. Specifically, we created giant vesicles with a ternary lipid composition, which separated into coexisting liquid ordered and disordered phases. Lipids with saturated tails and poly(ethylene glycol) (PEG) chains conjugated to their head groups were included at increasing molar concentrations. When these lipids were sparse on the membrane surface they partitioned to the liquid ordered phase. However, as they became more concentrated, the fraction of GUVs that were phase-separated decreased dramatically, ultimately yielding a population of homogeneous membrane vesicles. Experiments and physical modeling using compositions of increasing PEG molecular weight and lipid miscibility phase transition temperature demonstrate that longer polymers are the most efficient suppressors of membrane phase separation when the energetic barrier to lipid mixing is low. In contrast, as the miscibility transition temperature increases, longer polymers are more readily driven out of domains by the increased steric pressure. Therefore, the concentration of shorter polymers required

  17. Novel duplication mutation in the patatin domain of adipose triglyceride lipase (PNPLA2) in neutral lipid storage disease with severe myopathy.

    Science.gov (United States)

    Akiyama, Masashi; Sakai, Kaori; Ogawa, Masaya; McMillan, James R; Sawamura, Daisuke; Shimizu, Hiroshi

    2007-12-01

    Recently, mutations in PNPLA2 encoding adipose triglyceride lipase (ATGL) were reported to underlie a neutral lipid storage disease (NLSD) subgroup characterized by mild myopathy and the absence of ichthyosis. In the present study a novel homozygous PNPLA2 mutation c.475_478dupCTCC (p.Gln160ProfsX19) in the patatin domain, the ATGL active site, was detected in a woman with NLSD and severe myopathy. The present results suggest that a premature truncation mutation in the patatin domain causes NLSD with severe myopathy.

  18. Sensing voltage across lipid membranes

    Science.gov (United States)

    Swartz, Kenton J.

    2009-01-01

    The detection of electrical potentials across lipid bilayers by specialized membrane proteins is required for many fundamental cellular processes such as the generation and propagation of nerve impulses. These membrane proteins possess modular voltage-sensing domains, a notable example being the S1-S4 domains of voltage-activated ion channels. Ground-breaking structural studies on these domains explain how voltage sensors are designed and reveal important interactions with the surrounding lipid membrane. Although further structures are needed to fully understand the conformational changes that occur during voltage sensing, the available data help to frame several key concepts that are fundamental to the mechanism of voltage sensing. PMID:19092925

  19. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad

    2015-07-13

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  20. Numerical investigation of nanoparticles transport in anisotropic porous media

    KAUST Repository

    Salama, Amgad; Negara, Ardiansyah; El Amin, Mohamed; Sun, Shuyu

    2015-01-01

    In this work the problem related to the transport of nanoparticles in anisotropic porous media is investigated numerically using the multipoint flux approximation. Anisotropy of porous media properties are an essential feature that exist almost everywhere in subsurface formations. In anisotropic media, the flux and the pressure gradient vectors are no longer collinear and therefore interesting patterns emerge. The transport of nanoparticles in subsurface formations is affected by several complex processes including surface charges, heterogeneity of nanoparticles and soil grain collectors, interfacial dynamics of double-layer and many others. We use the framework of the theory of filtration in this investigation. Processes like particles deposition, entrapment, as well as detachment are accounted for. From the numerical methods point of view, traditional two-point flux finite difference approximation cannot handle anisotropy of media properties. Therefore, in this work we use the multipoint flux approximation (MPFA). In this technique, the flux components are affected by more neighboring points as opposed to the mere two points that are usually used in traditional finite volume methods. We also use the experimenting pressure field approach which automatically constructs the global system of equations by solving multitude of local problems. This approach facilitates to a large extent the construction of the global system. A set of numerical examples is considered involving two-dimensional rectangular domain. A source of nanoparticles is inserted in the middle of the anisotropic layer. We investigate the effects of both anisotropy angle and anisotropy ratio on the transport of nanoparticles in saturated porous media. It is found that the concentration plume and porosity contours follow closely the principal direction of anisotropy of permeability of the central domain.

  1. Spectral element method for elastic and acoustic waves in frequency domain

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Linlin; Zhou, Yuanguo; Wang, Jia-Min; Zhuang, Mingwei [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Na, E-mail: liuna@xmu.edu.cn [Institute of Electromagnetics and Acoustics, and Department of Electronic Science, Xiamen, 361005 (China); Liu, Qing Huo, E-mail: qhliu@duke.edu [Department of Electrical and Computer Engineering, Duke University, Durham, NC, 27708 (United States)

    2016-12-15

    Numerical techniques in time domain are widespread in seismic and acoustic modeling. In some applications, however, frequency-domain techniques can be advantageous over the time-domain approach when narrow band results are desired, especially if multiple sources can be handled more conveniently in the frequency domain. Moreover, the medium attenuation effects can be more accurately and conveniently modeled in the frequency domain. In this paper, we present a spectral-element method (SEM) in frequency domain to simulate elastic and acoustic waves in anisotropic, heterogeneous, and lossy media. The SEM is based upon the finite-element framework and has exponential convergence because of the use of GLL basis functions. The anisotropic perfectly matched layer is employed to truncate the boundary for unbounded problems. Compared with the conventional finite-element method, the number of unknowns in the SEM is significantly reduced, and higher order accuracy is obtained due to its spectral accuracy. To account for the acoustic-solid interaction, the domain decomposition method (DDM) based upon the discontinuous Galerkin spectral-element method is proposed. Numerical experiments show the proposed method can be an efficient alternative for accurate calculation of elastic and acoustic waves in frequency domain.

  2. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.

    2004-12-01

    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  3. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He; Gao, Wenxiu; Wang, Junling; Wu, Tao; Yuan, Guoliang; Liu, Junming; Liu, Zhiguo

    2016-01-01

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular

  4. Coupling two-phase fluid flow with two-phase darcy flow in anisotropic porous media

    KAUST Repository

    Chen, J.; Sun, S.; Chen, Z.

    2014-01-01

    in the free fluid region and the two-phase Darcy law in the anisotropic porous medium region. A Robin-Robin domain decomposition method is used for the coupled Navier-Stokes and Darcy system with the generalized Beavers-Joseph-Saffman condition

  5. Coupled polaritonic band gaps in the anisotropic piezoelectric superlattices

    Science.gov (United States)

    Tang, Zheng-Hua; Jiang, Zheng-Sheng; Chen, Tao; Jiang, Chun-Zhi; Lei, Da-Jun; Huang, Jian-Quan; Qiu, Feng; Yao, Min; Huang, Xiao-Yi

    2018-01-01

    Anisotropic piezoelectric superlattices (APSs) with the periodic arrangement of polarized anisotropic piezoelectric domains in a certain direction are presented, in which the coupled polaritonic band gaps (CPBGs) can be obtained in the whole Brillouin Zone and the maximum relative bandwidth (band-gap sizes divided by their midgap frequencies) of 5.1% can be achieved. The general characteristics of the APSs are similar to those of the phononic crystals composed of two types of materials, with the main difference being the formation mechanism of the CPBGs, which originate from the couplings between lattice vibrations along two different directions and electromagnetic waves rather than from the periodical modulation of density and elastic constants. In addition, there are no lattice mismatches because the APSs are made of the same material. Thus, the APSs can also be extended to the construction of novel acousto-optic devices.

  6. Wavefield extrapolation in pseudodepth domain

    KAUST Repository

    Ma, Xuxin

    2013-02-01

    Wavefields are commonly computed in the Cartesian coordinate frame. Its efficiency is inherently limited due to spatial oversampling in deep layers, where the velocity is high and wavelengths are long. To alleviate this computational waste due to uneven wavelength sampling, we convert the vertical axis of the conventional domain from depth to vertical time or pseudodepth. This creates a nonorthognal Riemannian coordinate system. Isotropic and anisotropic wavefields can be extrapolated in the new coordinate frame with improved efficiency and good consistency with Cartesian domain extrapolation results. Prestack depth migrations are also evaluated based on the wavefield extrapolation in the pseudodepth domain.© 2013 Society of Exploration Geophysicists. All rights reserved.

  7. A Combined TEM/STEM and Micromagnetic Study of the Anisotropic Nature of Grain Boundaries and Coercivity in Nd-Fe-B Magnets

    Directory of Open Access Journals (Sweden)

    Gregor A. Zickler

    2017-01-01

    Full Text Available The nanoanalytical high resolution TEM/STEM investigation of the intergranular grain boundary phase of anisotropic sintered and rapidly quenched heavy rare earth-free Nd-Fe-B magnet materials revealed a difference in composition for grain boundaries parallel (large Fe-content and perpendicular (low Fe content to the alignment direction. This behaviour vanishes in magnets with a high degree of misorientation. The numerical finite element micromagnetic simulations are based on the anisotropic compositional behaviour of GBs and show a decrease of the coercive field with an increasing thickness of the grain boundary layer. The magnetization reversal and expansion of reversed magnetic domains primarily start as Bloch domain wall at grain boundaries parallel to the c-axis and secondly as Néel domain wall perpendicular to the c-axis into the adjacent hard magnetic grains. The increasing misalignment of grains leads to the loss of the anisotropic compositional behaviour and therefore to an averaged value of the grain boundary composition. In this case the simulations show an increase of the coercive field compared to the anisotropic magnet. The calculated coercive field values of the investigated magnet samples are in the order of μ0HcJ=1.8 T–2.1 T for a mean grain boundary thickness of 4 nm, which agrees perfectly with the experimental data.

  8. Lipid-protein interactions in plasma membranes of fiber cells isolated from the human eye lens.

    Science.gov (United States)

    Raguz, Marija; Mainali, Laxman; O'Brien, William J; Subczynski, Witold K

    2014-03-01

    The protein content in human lens membranes is extremely high, increases with age, and is higher in the nucleus as compared with the cortex, which should strongly affect the organization and properties of the lipid bilayer portion of intact membranes. To assess these effects, the intact cortical and nuclear fiber cell plasma membranes isolated from human lenses from 41- to 60-year-old donors were studied using electron paramagnetic resonance spin-labeling methods. Results were compared with those obtained for lens lipid membranes prepared from total lipid extracts from human eyes of the same age group [Mainali, L., Raguz, M., O'Brien, W. J., and Subczynski, W. K. (2013) Biochim. Biophys. Acta]. Differences were considered to be mainly due to the effect of membrane proteins. The lipid-bilayer portions of intact membranes were significantly less fluid than lipid bilayers of lens lipid membranes, prepared without proteins. The intact membranes were found to contain three distinct lipid environments termed the bulk lipid domain, boundary lipid domain, and trapped lipid domain. However, the cholesterol bilayer domain, which was detected in cortical and nuclear lens lipid membranes, was not detected in intact membranes. The relative amounts of bulk and trapped lipids were evaluated. The amount of lipids in domains uniquely formed due to the presence of membrane proteins was greater in nuclear membranes than in cortical membranes. Thus, it is evident that the rigidity of nuclear membranes is greater than that of cortical membranes. Also the permeability coefficients for oxygen measured in domains of nuclear membranes were significantly lower than appropriate coefficients measured in cortical membranes. Relationships between the organization of lipids into lipid domains in fiber cells plasma membranes and the organization of membrane proteins are discussed. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Anisotropic gravitational instability

    International Nuclear Information System (INIS)

    Polyachenko, V.L.; Fridman, A.M.

    1988-01-01

    Exact solutions of stability problems are obtained for two anisotropic gravitational systems of different geometries - a layer of finite thickness at rest and a rotating cylinder of finite radius. It is shown that the anisotropic gravitational instability which develops in both cases is of Jeans type. However, in contrast to the classical aperiodic Jeans instability, this instability is oscillatory. The physics of the anisotropic gravitational instability is investigated. It is shown that in a gravitating layer this instability is due, in particular, to excitation of previously unknown interchange-Jeans modes. In the cylinder, the oscillatory Jeans instability is associated with excitation of a rotational branch, this also being responsible for the beam gravitational instability. This is the reason why this instability and the anisotropic gravitational instability have so much in common

  10. Electroformation of Giant Unilamellar Vesicles from Native Membranes and Organic Lipid Mixtures for the Study of Lipid Domains under Physiological Ionic-Strength Conditions

    DEFF Research Database (Denmark)

    Montes, Ruth; Ahyayauch, Hasna; Ibarguren, Maitane

    2010-01-01

    Giant unilamellar vesicles (GUVs) constitute a cell-sized model membrane system that allows direct visualization of particular membrane-related phenomena, such as domain formation, at the level of single vesicles using fluorescence microscopy-related techniques. Currently available protocols...... for the preparation of GUVs work only at very low salt concentrations, thus precluding experimentation under physiological conditions. In addition, the GUVs thus obtained lack membrane compositional asymmetry. Here we show how to prepare GUVs using a new protocol based on the electroformation method either from...... native membranes or organic lipid mixtures at physiological ionic strength. Additionally, we describe methods to test whether membrane proteins and glycosphingolipids preserve their natural orientation after electroformation of GUVs composed of native membranes...

  11. Anisotropic constant-roll inflation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Asuka; Soda, Jiro [Kobe University, Department of Physics, Kobe (Japan)

    2018-01-15

    We study constant-roll inflation in the presence of a gauge field coupled to an inflaton. By imposing the constant anisotropy condition, we find new exact anisotropic constant-roll inflationary solutions which include anisotropic power-law inflation as a special case. We also numerically show that the new anisotropic solutions are attractors in the phase space. (orig.)

  12. Archaeal lipids in oral delivery of therapeutic peptides

    DEFF Research Database (Denmark)

    Jacobsen, Ann-Christin; Jensen, Sara M; Fricker, Gert

    2017-01-01

    Archaea contain membrane lipids that differ from those found in the other domains of life (Eukarya and Bacteria). These lipids consist of isoprenoid chains attached via ether bonds to the glycerol carbons at the sn-2,3 positions. Two types of ether lipids are known, polar diether lipids and bipolar...

  13. Lipid domain morphologies in phosphatidylcholine-ceramide monolayers

    DEFF Research Database (Denmark)

    Karttunen, Mikko; Haataja, Mikko P; Säily, Matti

    2009-01-01

    of ceramide from 2 to 24 carbon atoms (Cer2 to Cer24). Fluid Cer2, Cer6, and Cer8/DMPC mixtures were miscible at all surface pressures. Longer ceramides, however, formed surface pressure-dependent immiscible mixtures with DMPC. The domain morphology under fluorescence microscopy after including a trace amount...... of fluorescent NBD-phosphatidylcholine into DMPC/Cer mixtures was found to be very sensitive to the N-acyl chain length. Shorter ceramides (Cer10-Cer14) formed flower-like (seaweed) domains, whereas longer ceramides (N-acyl chain length>14 carbon atoms) formed round and regular domains. We attribute...

  14. Study on the lipid organization of stratum corneum lipid models by (cryo-) electron diffraction

    NARCIS (Netherlands)

    Pilgram, GSK; Pelt, AMEV; Oostergetel, GT; Koerten, HK; Bouwstra, JA

    The barrier function of the skin resides in the stratum corneum (SC), This outermost layer consists of protein-rich corneocytes and lipid-rich intercellular domains. These domains form the rate-limiting step for transepidermal water loss and the penetration of substances from the environment. To

  15. Anisotropic perturbations due to dark energy

    International Nuclear Information System (INIS)

    Battye, Richard A.; Moss, Adam

    2006-01-01

    A variety of observational tests seem to suggest that the Universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with P/ρ=-2/3, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model

  16. Lipid Microarray Biosensor for Biotoxin Detection.

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Anup K.; Throckmorton, Daniel J.; Moran-Mirabal, Jose C.; Edel, Joshua B.; Meyer, Grant D.; Craighead, Harold G.

    2006-05-01

    We present the use of micron-sized lipid domains, patterned onto planar substrates and within microfluidic channels, to assay the binding of bacterial toxins via total internal reflection fluorescence microscopy (TIRFM). The lipid domains were patterned using a polymer lift-off technique and consisted of ganglioside-populated DSPC:cholesterol supported lipid bilayers (SLBs). Lipid patterns were formed on the substrates by vesicle fusion followed by polymer lift-off, which revealed micron-sized SLBs containing either ganglioside GT1b or GM1. The ganglioside-populated SLB arrays were then exposed to either Cholera toxin subunit B (CTB) or Tetanus toxin fragment C (TTC). Binding was assayed on planar substrates by TIRFM down to 1 nM concentration for CTB and 100 nM for TTC. Apparent binding constants extracted from three different models applied to the binding curves suggest that binding of a protein to a lipid-based receptor is strongly affected by the lipid composition of the SLB and by the substrate on which the bilayer is formed. Patterning of SLBs inside microfluidic channels also allowed the preparation of lipid domains with different compositions on a single device. Arrays within microfluidic channels were used to achieve segregation and selective binding from a binary mixture of the toxin fragments in one device. The binding and segregation within the microfluidic channels was assayed with epifluorescence as proof of concept. We propose that the method used for patterning the lipid microarrays on planar substrates and within microfluidic channels can be easily adapted to proteins or nucleic acids and can be used for biosensor applications and cell stimulation assays under different flow conditions. KEYWORDS. Microarray, ganglioside, polymer lift-off, cholera toxin, tetanus toxin, TIRFM, binding constant.4

  17. Temperature-dependent anisotropic magnetoresistance inversion behaviors in Fe{sub 3}O{sub 4} films

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Kap Soo [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Hong, Jin Pyo, E-mail: jphong@hanyang.ac.kr [Novel Functional Materials and Devices Lab, The Research Institute for Natural Science, Department of Physics, Hanyang University, Seoul 133-791 (Korea, Republic of); Division of Nano-Scale Semiconductor Engineering, Hanyang University, Seoul 133-791 (Korea, Republic of)

    2017-02-01

    We address the abnormal anisotropic magnetoresistance (AMR) reversal feature of half-metallic polycrystalline Fe{sub 3}O{sub 4} films occurring at a specific temperature. Experimental results revealed a positive to negative MR transition in the Fe{sub 3}O{sub 4} films at 264 K, which reflect the influence of additional domain wall scattering. These features was described by a correlation between domain wall resistance and inversion behavior of AMR with additional domain wall scattering factors. We further describe a possible model based on systematic structural and electrical measurements that employs a temperature-dependent domain wall width and spin diffusion length of the conducting electrons. This model allows for spin-flipping scattering of spin polarized electrons inside a proper domain width.

  18. Differential Effect of Plant Lipids on Membrane Organization

    Science.gov (United States)

    Grosjean, Kevin; Mongrand, Sébastien; Beney, Laurent; Simon-Plas, Françoise; Gerbeau-Pissot, Patricia

    2015-01-01

    The high diversity of the plant lipid mixture raises the question of their respective involvement in the definition of membrane organization. This is particularly the case for plant plasma membrane, which is enriched in specific lipids, such as free and conjugated forms of phytosterols and typical phytosphingolipids, such as glycosylinositolphosphoceramides. This question was here addressed extensively by characterizing the order level of membrane from vesicles prepared using various plant lipid mixtures and labeled with an environment-sensitive probe. Fluorescence spectroscopy experiments showed that among major phytosterols, campesterol exhibits a stronger ability than β-sitosterol and stigmasterol to order model membranes. Multispectral confocal microscopy, allowing spatial analysis of membrane organization, demonstrated accordingly the strong ability of campesterol to promote ordered domain formation and to organize their spatial distribution at the membrane surface. Conjugated sterol forms, alone and in synergy with free sterols, exhibit a striking ability to order membrane. Plant sphingolipids, particularly glycosylinositolphosphoceramides, enhanced the sterol-induced ordering effect, emphasizing the formation and increasing the size of sterol-dependent ordered domains. Altogether, our results support a differential involvement of free and conjugated phytosterols in the formation of ordered domains and suggest that the diversity of plant lipids, allowing various local combinations of lipid species, could be a major contributor to membrane organization in particular through the formation of sphingolipid-sterol interacting domains. PMID:25575593

  19. An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media

    KAUST Repository

    Al-Jabr, A. A.; San Roman Alerigi, Damian; Ooi, Boon S.; Alsunaidi, M. A.

    2014-01-01

    Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.

  20. An FDTD algorithm for simulating light propagation in anisotropic dynamic gain media

    KAUST Repository

    Al-Jabr, A. A.

    2014-05-02

    Simulating light propagation in anisotropic dynamic gain media such as semiconductors and solid-state lasers using the finite difference time-domain FDTD technique is a tedious process, as many variables need to be evaluated in the same instant of time. The algorithm has to take care of the laser dynamic gain, rate equations, anisotropy and dispersion. In this paper, to the best of our knowledge, we present the first algorithm that solves this problem. The algorithm is based on separating calculations into independent layers and hence solving each problem in a layer of calculations. The anisotropic gain medium is presented and tested using a one-dimensional set-up. The algorithm is then used for the analysis of a two-dimensional problem.

  1. Extended synaptotagmins are Ca2+-dependent lipid transfer proteins at membrane contact sites.

    Science.gov (United States)

    Yu, Haijia; Liu, Yinghui; Gulbranson, Daniel R; Paine, Alex; Rathore, Shailendra S; Shen, Jingshi

    2016-04-19

    Organelles are in constant communication with each other through exchange of proteins (mediated by trafficking vesicles) and lipids [mediated by both trafficking vesicles and lipid transfer proteins (LTPs)]. It has long been known that vesicle trafficking can be tightly regulated by the second messenger Ca(2+), allowing membrane protein transport to be adjusted according to physiological demands. However, it remains unclear whether LTP-mediated lipid transport can also be regulated by Ca(2+) In this work, we show that extended synaptotagmins (E-Syts), poorly understood membrane proteins at endoplasmic reticulum-plasma membrane contact sites, are Ca(2+)-dependent LTPs. Using both recombinant and endogenous mammalian proteins, we discovered that E-Syts transfer glycerophospholipids between membrane bilayers in the presence of Ca(2+) E-Syts use their lipid-accommodating synaptotagmin-like mitochondrial lipid binding protein (SMP) domains to transfer lipids. However, the SMP domains themselves cannot transport lipids unless the two membranes are tightly tethered by Ca(2+)-bound C2 domains. Strikingly, the Ca(2+)-regulated lipid transfer activity of E-Syts was fully recapitulated when the SMP domain was fused to the cytosolic domain of synaptotagmin-1, the Ca(2+)sensor in synaptic vesicle fusion, indicating that a common mechanism of membrane tethering governs the Ca(2+)regulation of lipid transfer and vesicle fusion. Finally, we showed that microsomal vesicles isolated from mammalian cells contained robust Ca(2+)-dependent lipid transfer activities, which were mediated by E-Syts. These findings established E-Syts as a novel class of LTPs and showed that LTP-mediated lipid trafficking, like vesicular transport, can be subject to tight Ca(2+)regulation.

  2. Analysis of Crack Propagation Path on the Anisotropic Bi-Material Rock

    Directory of Open Access Journals (Sweden)

    Chao-Shi Chen

    2010-01-01

    Full Text Available This paper presents a single-domain boundary element method (SDBEM for linear elastic fracture mechanics analysis in the 2D anisotropic bimaterial. In this formulation, the displacement integral equation is collocated on the uncracked boundary only, and the traction integral equation is collocated on one side of the crack surface only. The complete fundamental solution (Green's function for anisotropic bi-materials was also derived and implemented into the boundary integral formulation so the discretization along the interface can be avoided except for the interfacial crack part. A special crack-tip element was introduced to capture exactly the crack-tip behavior. A computer program with the FORTRAN code has been developed to effectively calculate the stress intensity factors, crack initiation angle, and propagation path of an anisotropic bi-material. This SDBEM program has been verified having a good accuracy with the previous researches. In addition, a rock of type (1/(2 disk specimen with a central crack was made to conduct the Brazilian test under diametrical loading. The result shows that the numerical analysis can predict relatively well the direction of crack initiation and the path of crack propagation.

  3. Assessing the nature of lipid raft membranes

    DEFF Research Database (Denmark)

    Niemelä, Perttu S; Ollila, Samuli; Hyvönen, Marja T

    2007-01-01

    of highly ordered lateral domains rich in sphingomyelin and cholesterol (CHOL). These domains, called functional lipid rafts, have been suggested to take part in a variety of dynamic cellular processes such as membrane trafficking, signal transduction, and regulation of the activity of membrane proteins......-scale simulations to elucidate the properties of ternary raft mixtures with CHOL, palmitoylsphingomyelin (PSM), and palmitoyloleoylphosphatidylcholine. We simulate two bilayers of 1,024 lipids for 100 ns in the liquid-ordered phase and one system of the same size in the liquid-disordered phase. The studies provide...... heterogeneity more difficult. The findings reveal aspects of the role of favored (specific) lipid-lipid interactions within rafts and clarify the prominent role of CHOL in altering the properties of the membrane locally in its neighborhood. Also, we show that the presence of PSM and CHOL in rafts leads...

  4. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain.

    Science.gov (United States)

    Rabbani, Hossein; Sonka, Milan; Abramoff, Michael D

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  5. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    Directory of Open Access Journals (Sweden)

    Hossein Rabbani

    2013-01-01

    Full Text Available In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR.

  6. Structural and functional determinants of conserved lipid interaction domains of inward rectifying Kir6.2 channels.

    Science.gov (United States)

    Cukras, Catherine A; Jeliazkova, Iana; Nichols, Colin G

    2002-06-01

    All members of the inward rectifiier K(+) (Kir) channel family are activated by phosphoinositides and other amphiphilic lipids. To further elucidate the mechanistic basis, we examined the membrane association of Kir6.2 fragments of K(ATP) channels, and the effects of site-directed mutations of these fragments and full-length Kir6.2 on membrane association and K(ATP) channel activity, respectively. GFP-tagged Kir6.2 COOH terminus and GFP-tagged pleckstrin homology domain from phospholipase C delta1 both associate with isolated membranes, and association of each is specifically reduced by muscarinic m1 receptor-mediated phospholipid depletion. Kir COOH termini are predicted to contain multiple beta-strands and a conserved alpha-helix (residues approximately 306-311 in Kir6.2). Systematic mutagenesis of D307-F315 reveals a critical role of E308, I309, W311 and F315, consistent with residues lying on one side of a alpha-helix. Together with systematic mutation of conserved charges, the results define critical determinants of a conserved domain that underlies phospholipid interaction in Kir channels.

  7. Importance of the hexagonal lipid phase in biological membrane organization

    OpenAIRE

    Jouhet, Juliette

    2013-01-01

    Domains are present in every natural membrane. They are characterized by a distinctive protein and/or lipid composition. Their size is highly variable from the nano- to the micrometer scale. The domains confer specific properties to the membrane leading to original structure and function. The determinants leading to domain organization are therefore important but remain obscure. This review presents how the ability of lipids to organize into hexagonal II or lamellar phases can promote particu...

  8. An auxiliary differential equation FDTD method for anisotropic magnetized plasmas

    International Nuclear Information System (INIS)

    Liu Shaobin; Mo Jinjun; Yuan Naichang

    2004-01-01

    An auxiliary differential equation finite-difference time-domain (ADE-FDTD) methodology for anisotropic magnetized plasmas is derived. The method is based on a difference approximation of the auxiliary differential equation. A comparison with the JEC method is included. The CPU time saving by several times and accuracy of the method are confirmed by computing the reflection and transmission through a magnetized plasma layer with the direction of propagation parallel to the direction of the biasing field

  9. Wide-azimuth angle-domain imaging for anisotropic reverse-time migration

    KAUST Repository

    Sava, Paul C.; Alkhalifah, Tariq Ali

    2011-01-01

    Extended common-image-point gathers (CIP) constructed by wide-azimuth TI wave-equation migration contain all the necessary information for angle decomposition as a function of the reflection and azimuth angles at selected locations in the subsurface. The reflection and azimuth angles are derived from the extended images using analytic relations between the space-lag and time-lag extensions. This post-imaging decomposition requires only information which is already available at the time of migration, i.e. the model parameters and the tilt angles of the TI medium. The transformation amounts to a linear Radon transform applied to the CIPs obtained after the application of the extended imaging condition. If information about the reflector dip is available at the CIP locations, then only two components of the space-lag vectors are required, thus reducing computational cost and increasing the affordability of the method. This efficient angle decomposition method is suitable for wide-azimuth imaging in anisotropic media with arbitrary orientation of the symmetry plane. © 2011 Society of Exploration Geophysicists.

  10. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  11. Simple types of anisotropic inflation

    International Nuclear Information System (INIS)

    Barrow, John D.; Hervik, Sigbjoern

    2010-01-01

    We display some simple cosmological solutions of gravity theories with quadratic Ricci curvature terms added to the Einstein-Hilbert Lagrangian which exhibit anisotropic inflation. The Hubble expansion rates are constant and unequal in three orthogonal directions. We describe the evolution of the simplest of these homogeneous and anisotropic cosmological models from its natural initial state and evaluate the deviations they will create from statistical isotropy in the fluctuations produced during a period of anisotropic inflation. The anisotropic inflation is not a late-time attractor in these models but the rate of approach to a final isotropic de Sitter state is slow and is conducive to the creation of observable anisotropic statistical effects in the microwave background. The statistical anisotropy would not be scale invariant and the level of statistical anisotropy will grow with scale.

  12. Uranium nitride: a cubic antiferromagnet with anisotropic critical behavior

    International Nuclear Information System (INIS)

    Buyers, W.J.L.; Holden, T.M.; Svensson, E.C.; Lander, G.H.

    1977-11-01

    Highly anisotropic critical scattering associated with the transition at T/sub N/ = 49.5 K to the type-I antiferromagnetic structure has been observed in uranium nitride. The transverse susceptibility is found to be unobservably small. The longitudinal susceptibility diverges at T/sub N/ and its anisotropy shows that the spins within the (001) ferromagnetic sheets of the [001] domain are much more highly correlated than they are with the spins lying in adjacent (001) sheets. The correlation range within the sheets is much greater than that expected for a Heisenberg system with the same T/sub N/. The rod-like scattering extended along the spin and domain direction is reminiscent of two-dimensional behavior. The results are inconsistent with a simple localized model and may reflect the itinerant nature of the 5f electrons

  13. Structural basis of lipid-driven conformational transitions in the KvAP voltage-sensing domain.

    Science.gov (United States)

    Li, Qufei; Wanderling, Sherry; Sompornpisut, Pornthep; Perozo, Eduardo

    2014-02-01

    Voltage-gated ion channels respond to transmembrane electric fields through reorientations of the positively charged S4 helix within the voltage-sensing domain (VSD). Despite a wealth of structural and functional data, the details of this conformational change remain controversial. Recent electrophysiological evidence showed that equilibrium between the resting ('down') and activated ('up') conformations of the KvAP VSD from Aeropyrum pernix can be biased through reconstitution in lipids with or without phosphate groups. We investigated the structural transition between these functional states, using site-directed spin-labeling and EPR spectroscopic methods. Solvent accessibility and interhelical distance determinations suggest that KvAP gates through S4 movements involving an ∼3-Å upward tilt and simultaneous ∼2-Å axial shift. This motion leads to large accessibly changes in the intracellular water-filled crevice and supports a new model of gating that combines structural rearrangements and electric-field remodeling.

  14. The bacterial defensin resistance protein MprF consists of separable domains for lipid lysinylation and antimicrobial peptide repulsion.

    Directory of Open Access Journals (Sweden)

    Christoph M Ernst

    2009-11-01

    Full Text Available Many bacterial pathogens achieve resistance to defensin-like cationic antimicrobial peptides (CAMPs by the multiple peptide resistance factor (MprF protein. MprF plays a crucial role in Staphylococcus aureus virulence and it is involved in resistance to the CAMP-like antibiotic daptomycin. MprF is a large membrane protein that modifies the anionic phospholipid phosphatidylglycerol with l-lysine, thereby diminishing the bacterial affinity for CAMPs. Its widespread occurrence recommends MprF as a target for novel antimicrobials, although the mode of action of MprF has remained incompletely understood. We demonstrate that the hydrophilic C-terminal domain and six of the fourteen proposed trans-membrane segments of MprF are sufficient for full-level lysyl-phosphatidylglycerol (Lys-PG production and that several conserved amino acid positions in MprF are indispensable for Lys-PG production. Notably, Lys-PG production did not lead to efficient CAMP resistance and most of the Lys-PG remained in the inner leaflet of the cytoplasmic membrane when the large N-terminal hydrophobic domain of MprF was absent, indicating a crucial role of this protein part. The N-terminal domain alone did not confer CAMP resistance or repulsion of the cationic test protein cytochrome c. However, when the N-terminal domain was coexpressed with the Lys-PG synthase domain either in one protein or as two separate proteins, full-level CAMP resistance was achieved. Moreover, only coexpression of the two domains led to efficient Lys-PG translocation to the outer leaflet of the membrane and to full-level cytochrome c repulsion, indicating that the N-terminal domain facilitates the flipping of Lys-PG. Thus, MprF represents a new class of lipid-biosynthetic enzymes with two separable functional domains that synthesize Lys-PG and facilitate Lys-PG translocation. Our study unravels crucial details on the molecular basis of an important bacterial immune evasion mechanism and it may help

  15. A two-dimensional linear elasticity problem for anisotropic materials, solved with a parallelization code

    Directory of Open Access Journals (Sweden)

    Mihai-Victor PRICOP

    2010-09-01

    Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.

  16. Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings

    Science.gov (United States)

    Chen, X. W.; Zhao, C. Y.; Wang, B. X.

    2018-05-01

    Thermal barrier coatings are common porous materials coated on the surface of devices operating under high temperatures and designed for heat insulation. This study presents a comprehensive investigation on the microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. Based on the quartet structure generation set algorithm, the finite-difference-time-domain method is applied to calculate angular scattering intensity distribution of complicated random microstructure, which takes wave nature into account. Combining Monte Carlo method with Particle Swarm Optimization, asymmetry factor, scattering coefficient and absorption coefficient are retrieved simultaneously. The retrieved radiative properties are identified with the angular scattering intensity distribution under different pore shapes, which takes dependent scattering and anisotropic pore shape into account implicitly. It has been found that microstructure significantly affects the radiative properties in thermal barrier coatings. Compared with spherical shape, irregular anisotropic pore shape reduces the forward scattering peak. The method used in this paper can also be applied to other porous media, which designs a frame work for further quantitative study on porous media.

  17. Effects of biases in domain wall network evolution. II. Quantitative analysis

    Science.gov (United States)

    Correia, J. R. C. C. C.; Leite, I. S. C. R.; Martins, C. J. A. P.

    2018-04-01

    Domain walls form at phase transitions which break discrete symmetries. In a cosmological context, they often overclose the Universe (contrary to observational evidence), although one may prevent this by introducing biases or forcing anisotropic evolution of the walls. In a previous work [Correia et al., Phys. Rev. D 90, 023521 (2014), 10.1103/PhysRevD.90.023521], we numerically studied the evolution of various types of biased domain wall networks in the early Universe, confirming that anisotropic networks ultimately reach scaling while those with a biased potential or biased initial conditions decay. We also found that the analytic decay law obtained by Hindmarsh was in good agreement with simulations of biased potentials, but not of biased initial conditions, and suggested that the difference was related to the Gaussian approximation underlying the analytic law. Here, we extend our previous work in several ways. For the cases of biased potential and biased initial conditions, we study in detail the field distributions in the simulations, confirming that the validity (or not) of the Gaussian approximation is the key difference between the two cases. For anisotropic walls, we carry out a more extensive set of numerical simulations and compare them to the canonical velocity-dependent one-scale model for domain walls, finding that the model accurately predicts the linear scaling regime after isotropization. Overall, our analysis provides a quantitative description of the cosmological evolution of these networks.

  18. Reverse-mode thermoresponsive light attenuators produced by optical anisotropic composites of nematic liquid crystals and reactive mesogens

    Science.gov (United States)

    Kakiuchida, Hiroshi; Ogiwara, Akifumi

    2018-04-01

    Polymer network liquid crystals (PNLCs) whose optical transmittance state switches between transparence at low temperatures and haze at high temperatures were fabricated from mixtures of nematic liquid crystals (LCs) and reactive mesogens (RMs). This PNLC structure is simple but effective, namely, consists of micro-scale domains of orientation-ordered LCs and anisotropically polymerized RMs. The domains form through photopolymerization induced phase separation with inhomogeneous irradiation projected by laser speckling techniques. This irradiation method enables you to control the size and shape of phase-separation domains, and these PNLCs can be applied to novel thermoresponsive optical devices; optical isolators, thermometric sheets, and smart windows.

  19. Lipid dependence of ABC transporter localization and function

    NARCIS (Netherlands)

    Klappe, Karin; Hummel, Ina; Hoekstra, Dick; Kok, Jan Willem

    2009-01-01

    Lipid rafts have been implicated in many cellular functions, including protein and lipid transport and signal transduction. ATP-binding cassette (ABC) transporters have also been localized in these membrane domains. In this review the evidence for this specific localization will be evaluated and

  20. Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity

    OpenAIRE

    Cârstea, Cătălin I.; Honda, Naofumi; Nakamura, Gen

    2016-01-01

    Consider a three dimensional piecewise homogeneous anisotropic elastic medium $\\Omega$ which is a bounded domain consisting of a finite number of bounded subdomains $D_\\alpha$, with each $D_\\alpha$ a homogeneous elastic medium. One typical example is a finite element model with elements with curvilinear interfaces for an ansiotropic elastic medium. Assuming the $D_\\alpha$ are known and Lipschitz, we are concerned with the uniqueness in the inverse boundary value problem of identifying the ani...

  1. Direct visualization of lipid domains in human skin stratum corneum's lipid membranes

    DEFF Research Database (Denmark)

    Plasencia, I; Norlen, Lars; Bagatolli, Luis

    2007-01-01

    scanning calorimetry, fluorescence spectroscopy, and two-photon excitation and laser scanning confocal fluorescence microscopy. Here we show that hydrated bilayers of human skin stratum corneum lipids express a giant sponge-like morphology with dimensions corresponding to the global three......-dimensional morphology of the stratum corneum extracellular space. These structures can be directly visualized using the aforementioned fluorescence microscopy techniques. At skin physiological temperatures (28 degrees C-32 degrees C), the phase state of these hydrated bilayers correspond microscopically (radial...

  2. Cholesterol Bilayer Domains in the Eye Lens Health: A Review.

    Science.gov (United States)

    Widomska, Justyna; Subczynski, Witold K; Mainali, Laxman; Raguz, Marija

    2017-12-01

    The most unique biochemical characteristic of the eye lens fiber cell plasma membrane is its extremely high cholesterol content, the need for which is still unclear. It is evident, however, that the disturbance of Chol homeostasis may result in damages associated with cataracts. Electron paramagnetic resonance methods allow discrimination of two types of lipid domains in model membranes overloaded with Chol, namely, phospholipid-cholesterol domains and pure Chol bilayer domains. These domains are also detected in human lens lipid membranes prepared from the total lipids extracted from lens cortices and nuclei of donors from different age groups. Independent of the age-related changes in phospholipid composition, the physical properties of phospholipid-Chol domains remain the same for all age groups and are practically identical for cortical and nuclear membranes. The presence of Chol bilayer domains in these membranes provides a buffering capacity for cholesterol concentration in the surrounding phospholipid-Chol domains, keeping it at a constant saturating level and thus keeping the physical properties of the membrane consistent with and independent of changes in phospholipid composition. It seems that the presence of Chol bilayer domains plays an integral role in the regulation of cholesterol-dependent processes in fiber cell plasm membranes and in the maintenance of fiber cell membrane homeostasis.

  3. Inducing morphological changes in lipid bilayer membranes with microfabricated substrates

    Science.gov (United States)

    Liu, Fangjie; Collins, Liam F.; Ashkar, Rana; Heberle, Frederick A.; Srijanto, Bernadeta R.; Collier, C. Patrick

    2016-11-01

    Lateral organization of lipids and proteins into distinct domains and anchoring to a cytoskeleton are two important strategies employed by biological membranes to carry out many cellular functions. However, these interactions are difficult to emulate with model systems. Here we use the physical architecture of substrates consisting of arrays of micropillars to systematically control the behavior of supported lipid bilayers - an important step in engineering model lipid membrane systems with well-defined functionalities. Competition between attractive interactions of supported lipid bilayers with the underlying substrate versus the energy cost associated with membrane bending at pillar edges can be systematically investigated as functions of pillar height and pitch, chemical functionalization of the microstructured substrate, and the type of unilamellar vesicles used for assembling the supported bilayer. Confocal fluorescent imaging and AFM measurements highlight correlations that exist between topological and mechanical properties of lipid bilayers and lateral lipid mobility in these confined environments. This study provides a baseline for future investigations into lipid domain reorganization on structured solid surfaces and scaffolds for cell growth.

  4. Magnetic interactions in anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer magnets

    Science.gov (United States)

    Dai, Z. M.; Liu, W.; Zhao, X. T.; Han, Z.; Kim, D.; Choi, C. J.; Zhang, Z. D.

    2016-10-01

    The magnetic properties and the possible interaction mechanisms of anisotropic soft- and hard-magnetic multilayers have been investigated by altering the thickness of different kinds of spacer layers. The metal Ta and the insulating oxides MgO, Cr2O3 have been chosen as spacer layers to investigate the characteristics of the interactions between soft- and hard-magnetic layers in the anisotropic Nd-Dy-Fe-Co-B/α-Fe multilayer system. The dipolar and exchange interaction between hard and soft phases are evaluated with the help of the first order reversal curve method. The onset of the nucleation field and the magnetization reversal by domain wall movement are also evident from the first-order-reversal-curve measurements. Reversible/irreversible distributions reveal the natures of the soft- and hard-magnetic components. Incoherent switching fields are observed and the calculations show the semiquantitative contributions of hard and soft components to the system. An antiferromagnetic spacer layer will weaken the interaction between ferromagnetic layers and the effective interaction length decreases. As a consequence, the dipolar magnetostatic interaction may play an important role in the long-range interaction in anisotropic multilayer magnets.

  5. Probing Growth-Induced Anisotropic Thermal Transport in High-Quality CVD Diamond Membranes by Multifrequency and Multiple-Spot-Size Time-Domain Thermoreflectance.

    Science.gov (United States)

    Cheng, Zhe; Bougher, Thomas; Bai, Tingyu; Wang, Steven Y; Li, Chao; Yates, Luke; Foley, Brian M; Goorsky, Mark; Cola, Baratunde A; Faili, Firooz; Graham, Samuel

    2018-02-07

    The maximum output power of GaN-based high-electron mobility transistors is limited by high channel temperature induced by localized self-heating, which degrades device performance and reliability. Chemical vapor deposition (CVD) diamond is an attractive candidate to aid in the extraction of this heat and in minimizing the peak operating temperatures of high-power electronics. Owing to its inhomogeneous structure, the thermal conductivity of CVD diamond varies along the growth direction and can differ between the in-plane and out-of-plane directions, resulting in a complex three-dimensional (3D) distribution. Depending on the thickness of the diamond and size of the electronic device, this 3D distribution may impact the effectiveness of CVD diamond in device thermal management. In this work, time-domain thermoreflectance is used to measure the anisotropic thermal conductivity of an 11.8 μm-thick high-quality CVD diamond membrane from its nucleation side. Starting with a spot-size diameter larger than the thickness of the membrane, measurements are made at various modulation frequencies from 1.2 to 11.6 MHz to tune the heat penetration depth and sample the variation in thermal conductivity. We then analyze the data by creating a model with the membrane divided into ten sublayers and assume isotropic thermal conductivity in each sublayer. From this, we observe a two-dimensional gradient of the depth-dependent thermal conductivity for this membrane. The local thermal conductivity goes beyond 1000 W/(m K) when the distance from the nucleation interface only reaches 3 μm. Additionally, by measuring the same region with a smaller spot size at multiple frequencies, the in-plane and cross-plane thermal conductivities are extracted. Through this use of multiple spot sizes and modulation frequencies, the 3D anisotropic thermal conductivity of CVD diamond membrane is experimentally obtained by fitting the experimental data to a thermal model. This work provides an improved

  6. On the lamb wave propagation in anisotropic laminated composite plates

    International Nuclear Information System (INIS)

    Park, Soo Keun; Jeong, Hyun Jo; Kim, Moon Saeng

    1998-01-01

    This paper examines the propagation of Lamb (or plate) waves in anisotropic laminated composite plates. The dispersion relations are explicitly derived using the classical plate theory (CLT), the first-order shear deformation theory (FSDT) and the exact solution (ES), Attention is paid to the lowest antisymmetric (flexural) and lowest symmetric(extensional) modes in the low frequency, long wavelength limit. Different values of shear correction factor were tested in FSDT and comparisons between flexural wave dispersion curves were made with exact results to asses the range of validity of approximate plate theories in the frequency domain.

  7. Atomistic study of lipid membranes containing chloroform: looking for a lipid-mediated mechanism of anesthesia.

    Directory of Open Access Journals (Sweden)

    Ramon Reigada

    Full Text Available The molecular mechanism of general anesthesia is still a controversial issue. Direct effect by linking of anesthetics to proteins and indirect action on the lipid membrane properties are the two hypotheses in conflict. Atomistic simulations of different lipid membranes subjected to the effect of small volatile organohalogen compounds are used to explore plausible lipid-mediated mechanisms. Simulations of homogeneous membranes reveal that electrostatic potential and lateral pressure transversal profiles are affected differently by chloroform (anesthetic and carbon tetrachloride (non-anesthetic. Simulations of structured membranes that combine ordered and disordered regions show that chloroform molecules accumulate preferentially in highly disordered lipid domains, suggesting that the combination of both lateral and transversal partitioning of chloroform in the cell membrane could be responsible of its anesthetic action.

  8. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali; Alsunaidi, Mohammad A.; Ng, Tien Khee; Ooi, Boon S.

    2013-01-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  9. A Simple FDTD Algorithm for Simulating EM-Wave Propagation in General Dispersive Anisotropic Material

    KAUST Repository

    Al-Jabr, Ahmad Ali

    2013-03-01

    In this paper, an finite-difference time-domain (FDTD) algorithm for simulating propagation of EM waves in anisotropic material is presented. The algorithm is based on the auxiliary differential equation and the general polarization formulation. In anisotropic materials, electric fields are coupled and elements in the permittivity tensor are, in general, multiterm dispersive. The presented algorithm resolves the field coupling using a formulation based on electric polarizations. It also offers a simple procedure for the treatment of multiterm dispersion in the FDTD scheme. The algorithm is tested by simulating wave propagation in 1-D magnetized plasma showing excellent agreement with analytical solutions. Extension of the algorithm to multidimensional structures is straightforward. The presented algorithm is efficient and simple compared to other algorithms found in the literature. © 2012 IEEE.

  10. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers

    International Nuclear Information System (INIS)

    Mote, Kaustubh R.; Gopinath, T.; Traaseth, Nathaniel J.; Kitchen, Jason; Gor’kov, Peter L.; Brey, William W.; Veglia, Gianluigi

    2011-01-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring 1 H- 15 N dipolar couplings (DC) and 15 N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles’ heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([ 1 H, 15 N]-SE-PISEMA-PDSD). The incorporation of 2D 15 N/ 15 N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the 15 N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers.

  11. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  12. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  13. An ER protein functionally couples neutral lipid metabolism on lipid droplets to membrane lipid synthesis in the ER.

    Science.gov (United States)

    Markgraf, Daniel F; Klemm, Robin W; Junker, Mirco; Hannibal-Bach, Hans K; Ejsing, Christer S; Rapoport, Tom A

    2014-01-16

    Eukaryotic cells store neutral lipids such as triacylglycerol (TAG) in lipid droplets (LDs). Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER). We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG). During LD breakdown in early exponential phase, an ER membrane protein (Ice2p) facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  14. An ER Protein Functionally Couples Neutral Lipid Metabolism on Lipid Droplets to Membrane Lipid Synthesis in the ER

    Directory of Open Access Journals (Sweden)

    Daniel F. Markgraf

    2014-01-01

    Full Text Available Eukaryotic cells store neutral lipids such as triacylglycerol (TAG in lipid droplets (LDs. Here, we have addressed how LDs are functionally linked to the endoplasmic reticulum (ER. We show that, in S. cerevisiae, LD growth is sustained by LD-localized enzymes. When LDs grow in early stationary phase, the diacylglycerol acyl-transferase Dga1p moves from the ER to LDs and is responsible for all TAG synthesis from diacylglycerol (DAG. During LD breakdown in early exponential phase, an ER membrane protein (Ice2p facilitates TAG utilization for membrane-lipid synthesis. Ice2p has a cytosolic domain with affinity for LDs and is required for the efficient utilization of LD-derived DAG in the ER. Ice2p breaks a futile cycle on LDs between TAG degradation and synthesis, promoting the rapid relocalization of Dga1p to the ER. Our results show that Ice2p functionally links LDs with the ER and explain how cells switch neutral lipid metabolism from storage to consumption.

  15. Lipids in the cell: organisation regulates function.

    Science.gov (United States)

    Santos, Ana L; Preta, Giulio

    2018-06-01

    Lipids are fundamental building blocks of all cells and play important roles in the pathogenesis of different diseases, including inflammation, autoimmune disease, cancer, and neurodegeneration. The lipid composition of different organelles can vary substantially from cell to cell, but increasing evidence demonstrates that lipids become organised specifically in each compartment, and this organisation is essential for regulating cell function. For example, lipid microdomains in the plasma membrane, known as lipid rafts, are platforms for concentrating protein receptors and can influence intra-cellular signalling. Lipid organisation is tightly regulated and can be observed across different model organisms, including bacteria, yeast, Drosophila, and Caenorhabditis elegans, suggesting that lipid organisation is evolutionarily conserved. In this review, we summarise the importance and function of specific lipid domains in main cellular organelles and discuss recent advances that investigate how these specific and highly regulated structures contribute to diverse biological processes.

  16. Digital holographic microscopy of phase separation in multicomponent lipid membranes

    Science.gov (United States)

    Farzam Rad, Vahideh; Moradi, Ali-Reza; Darudi, Ahmad; Tayebi, Lobat

    2016-12-01

    Lateral in-homogeneities in lipid compositions cause microdomains formation and change in the physical properties of biological membranes. With the presence of cholesterol and mixed species of lipids, phospholipid membranes segregate into lateral domains of liquid-ordered and liquid-disordered phases. Coupling of two-dimensional intralayer phase separations and interlayer liquid-crystalline ordering in multicomponent membranes has been previously demonstrated. By the use of digital holographic microscopy (DHMicroscopy), we quantitatively analyzed the volumetric dynamical behavior of such membranes. The specimens are lipid mixtures composed of sphingomyelin, cholesterol, and unsaturated phospholipid, 1,2-dioleoyl-sn-glycero-3-phosphocholine. DHMicroscopy in a transmission mode is an effective tool for quantitative visualization of phase objects. By deriving the associated phase changes, three-dimensional information on the morphology variation of lipid stacks at arbitrary time scales is obtained. Moreover, the thickness distribution of the object at demanded axial planes can be obtained by numerical focusing. Our results show that the volume evolution of lipid domains follows approximately the same universal growth law of previously reported area evolution. However, the thickness of the domains does not alter significantly by time; therefore, the volume evolution is mostly attributed to the changes in area dynamics. These results might be useful in the field of membrane-based functional materials.

  17. Simulation of Anisotropic Rock Damage for Geologic Fracturing

    Science.gov (United States)

    Busetti, S.; Xu, H.; Arson, C. F.

    2014-12-01

    A continuum damage model for differential stress-induced anisotropic crack formation and stiffness degradation is used to study geologic fracturing in rocks. The finite element-based model solves for deformation in the quasi-linear elastic domain and determines the six component damage tensor at each deformation increment. The model permits an isotropic or anisotropic intact or pre-damaged reference state, and the elasticity tensor evolves depending on the stress path. The damage variable, similar to Oda's fabric tensor, grows when the surface energy dissipated by three-dimensional opened cracks exceeds a threshold defined at the appropriate scale of the representative elementary volume (REV). At the laboratory or wellbore scale (1000m) scales the damaged REV reflects early natural fracturing (background or tectonic fracturing) or shear strain localization (fault process zone, fault-tip damage, etc.). The numerical model was recently benchmarked against triaxial stress-strain data from laboratory rock mechanics tests. However, the utility of the model to predict geologic fabric such as natural fracturing in hydrocarbon reservoirs was not fully explored. To test the ability of the model to predict geological fracturing, finite element simulations (Abaqus) of common geologic scenarios with known fracture patterns (borehole pressurization, folding, faulting) are simulated and the modeled damage tensor is compared against physical fracture observations. Simulated damage anisotropy is similar to that derived using fractured rock-mass upscaling techniques for pre-determined fracture patterns. This suggests that if model parameters are constrained with local data (e.g., lab, wellbore, or reservoir domain), forward modeling could be used to predict mechanical fabric at the relevant REV scale. This reference fabric also can be used as the starting material property to pre-condition subsequent deformation or fluid flow. Continuing efforts are to expand the present damage

  18. Investigate the effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors

    International Nuclear Information System (INIS)

    Udomsamuthirun, P.; Peamsuwan, R.; Kumvongsa, C.

    2009-01-01

    The effect of anisotropic order parameter on the specific heat of anisotropic two-band superconductors in BCS weak-coupling limit is investigated. An analytical specific heat jump and the numerical specific heat are shown by using anisotropic order parameters, and the electron-phonon interaction and non-electron-phonon interaction. The two models of anisotropic order parameters are used for numerical calculation that we find little effect on the numerical results. The specific heat jump of MgB 2 , Lu 2 Fe 3 Si 5 and Nb 3 Sn superconductors can fit well with both of them. By comparing the experimental data with overall range of temperature, the best fit is Nb 3 Sn, MgB 2 , and Lu 2 Fe 3 Si 5 superconductors.

  19. Time-domain multiple-quantum NMR

    International Nuclear Information System (INIS)

    Weitekamp, D.P.

    1982-11-01

    The development of time-domain multiple-quantum nuclear magnetic resonance is reviewed through mid 1982 and some prospects for future development are indicated. Particular attention is given to the problem of obtaining resolved, interpretable, many-quantum spectra for anisotropic magnetically isolated systems of coupled spins. New results are presented on a number of topics including the optimization of multiple-quantum-line intensities, analysis of noise in two-dimensional spectroscopy, and the use of order-selective excitation for cross polarization between nuclear-spin species

  20. Structure of lipid kinase p110β/p85β elucidates an unusual SH2-domain-mediated inhibitory mechanism.

    Science.gov (United States)

    Zhang, Xuxiao; Vadas, Oscar; Perisic, Olga; Anderson, Karen E; Clark, Jonathan; Hawkins, Phillip T; Stephens, Len R; Williams, Roger L

    2011-03-04

    Phosphoinositide 3-kinases (PI3Ks) are essential for cell growth, migration, and survival. The structure of a p110β/p85β complex identifies an inhibitory function for the C-terminal SH2 domain (cSH2) of the p85 regulatory subunit. Mutagenesis of a cSH2 contact residue activates downstream signaling in cells. This inhibitory contact ties up the C-terminal region of the p110β catalytic subunit, which is essential for lipid kinase activity. In vitro, p110β basal activity is tightly restrained by contacts with three p85 domains: the cSH2, nSH2, and iSH2. RTK phosphopeptides relieve inhibition by nSH2 and cSH2 using completely different mechanisms. The binding site for the RTK's pYXXM motif is exposed on the cSH2, requiring an extended RTK motif to reach and disrupt the inhibitory contact with p110β. This contrasts with the nSH2 where the pY-binding site itself forms the inhibitory contact. This establishes an unusual mechanism by which p85 SH2 domains contribute to RTK signaling specificities. Copyright © 2011 Elsevier Inc. All rights reserved.

  1. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  2. Theoretical investigations on a class of double-focus planar lens on the anisotropic material

    Science.gov (United States)

    Bozorgi, Mahdieh; Atlasbaf, Zahra

    2017-05-01

    We study a double-focus lens constituted of V-shaped plasmonic nano-antennas (VSPNAs) on the anisotropic TiO2 thin film. The phase and amplitude variations of cross-polarized scattered wave from a unit cell are computed by the developed fast Method of Moments (MoM) in which the dyadic Green's function is evaluated with the transmission line model in the spectral domain. Using the calculated phase and amplitude diagrams, a double-focus lens on the anisotropic thin film is designed in 2 μm. To validate the numerical results, the designed lens is analysed using a full-wave EM-solver. The obtained results show a tunable asymmetric behavior in the focusing intensity of the focal spots for different incident polarizations. It is shown that changing the thickness of anisotropic thin film leads to the changing in such an asymmetric behavior and also the intensity ratio of two focal spots. In addition, the lens performance is examined in the broadband wavelength range from 1.76 to 2.86 μm. It is achieved that the increasing the wavelength leads to decreasing the focal distances of the designed lens and increasing its numerical aperture (NA).

  3. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  4. Anisotropic magnetotelluric inversion using a mutual information constraint

    Science.gov (United States)

    Mandolesi, E.; Jones, A. G.

    2012-12-01

    In recent years, several authors pointed that the electrical conductivity of many subsurface structures cannot be described properly by a scalar field. With the development of field devices and techniques, data quality improved to the point that the anisotropy in conductivity of rocks (microscopic anisotropy) and tectonic structures (macroscopic anisotropy) cannot be neglected. Therefore a correct use of high quality data has to include electrical anisotropy and a correct interpretation of anisotropic data characterizes directly a non-negligible part of the subsurface. In this work we test an inversion routine that takes advantage of the classic Levenberg-Marquardt (LM) algorithm to invert magnetotelluric (MT) data generated from a bi-dimensional (2D) anisotropic domain. The LM method is routinely used in inverse problems due its performance and robustness. In non-linear inverse problems -such the MT problem- the LM method provides a spectacular compromise betwee quick and secure convergence at the price of the explicit computation and storage of the sensitivity matrix. Regularization in inverse MT problems has been used extensively, due to the necessity to constrain model space and to reduce the ill-posedness of the anisotropic MT problem, which makes MT inversions extremely challenging. In order to reduce non-uniqueness of the MT problem and to reach a model compatible with other different tomographic results from the same target region, we used a mutual information (MI) based constraint. MI is a basic quantity in information theory that can be used to define a metric between images, and it is routinely used in fields as computer vision, image registration and medical tomography, to cite some applications. We -thus- inverted for the model that best fits the anisotropic data and that is the closest -in a MI sense- to a tomographic model of the target area. The advantage of this technique is that the tomographic model of the studied region may be produced by any

  5. Micromagnetic simulation of anisotropic grain boundary diffusion for sintered Nd-Fe-B magnets

    Science.gov (United States)

    Li, W.; Zhou, Q.; Zhao, L. Z.; Wang, Q. X.; Zhong, X. C.; Liu, Z. W.

    2018-04-01

    A systematic investigation on the anisotropic grain boundary diffusion in sintered Nd-Fe-B magnets is carried out by micromagnetic simulation. The results indicate that the critical reason for the anisotropic diffusion effect is not the difference in the amount of Dy diffused along different directions but the macroscopic demagnetizing field. The diffusion parallel to the easy axis from both pole surfaces of the magnet can increase the nucleation fields in the two major regions with large macroscopic demagnetizing fields, where the reverse domains can nucleate easily. As a consequence, the grain boundary diffusion along the directions parallel to the easy axis from two pole surfaces is more effective to improve the coercivity of the magnets than that along other directions. It is also found that, to enhance the coercivity, only a limited diffusion depth is required. The present result is in good agreement with the recent experimental findings.

  6. Cracking on anisotropic neutron stars

    Science.gov (United States)

    Setiawan, A. M.; Sulaksono, A.

    2017-07-01

    We study the effect of cracking of a local anisotropic neutron star (NS) due to small density fluctuations. It is assumed that the neutron star core consists of leptons, nucleons and hyperons. The relativistic mean field model is used to describe the core of equation of state (EOS). For the crust, we use the EOS introduced by Miyatsu et al. [1]. Furthermore, two models are used to describe pressure anisotropic in neutron star matter. One is proposed by Doneva-Yazadjiev (DY) [2] and the other is proposed by Herrera-Barreto (HB) [3]. The anisotropic parameter of DY and HB models are adjusted in order the predicted maximum mass compatible to the mass of PSR J1614-2230 [4] and PSR J0348+0432 [5]. We have found that cracking can potentially present in the region close to the neutron star surface. The instability due cracking is quite sensitive to the NS mass and anisotropic parameter used.

  7. Full waveform inversion using oriented time-domain imaging method for vertical transverse isotropic media

    KAUST Repository

    Zhang, Zhendong

    2017-07-11

    Full waveform inversion for reection events is limited by its linearized update re-quirements given by a process equivalent to migration. Unless the background velocity model is reasonably accurate, the resulting gradient can have an inaccurate update direction leading the inversion to converge what we refer to as local minima of the objective function. In our approach, we consider mild lateral variation in the model, and thus, use a gradient given by the oriented time-domain imaging method. Specifically, we apply the oriented time-domain imaging on the data residual to obtain the geometrical features of the velocity perturbation. After updating the model in the time domain, we convert the perturbation from the time domain to depth using the average velocity. Considering density is constant, we can expand the conventional 1D impedance inversion method to 2D or 3D velocity inversion within the process of full waveform inversion. This method is not only capable of inverting for velocity, but it is also capable of retrieving anisotropic parameters relying on linearized representations of the reection response. To eliminate the cross-talk artifacts between different parameters, we utilize what we consider being an optimal parametrization for this step. To do so, we extend the prestack time-domain migration image in incident angle dimension to incorporate angular dependence needed by the multiparameter inversion. For simple models, this approach provides an efficient and stable way to do full waveform inversion or modified seismic inversion and makes the anisotropic inversion more practicable. The proposed method still needs kinematically accurate initial models since it only recovers the high-wavenumber part as conventional full waveform inversion method does. Results on synthetic data of isotropic and anisotropic cases illustrate the benefits and limitations of this method.

  8. Lipid packing drives the segregation of transmembrane helices into disordered lipid domains in model membranes

    NARCIS (Netherlands)

    Schaefer, Lars V.; de Jong, Djurre H.; Holt, Andrea; Rzepiela, Andrzej J.; de Vries, Alex H.; Poolman, Bert; Killian, J. Antoinette; Marrink, Siewert J.

    2011-01-01

    Cell membranes are comprised of multicomponent lipid and protein mixtures that exhibit a complex partitioning behavior. Regions of structural and compositional heterogeneity play a major role in the sorting and self-assembly of proteins, and their clustering into higher-order oligomers. Here, we use

  9. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  10. Temperature dependence of the domain wall magneto-Seebeck effect: avoiding artifacts of lead contributions

    Science.gov (United States)

    Fernández Scarioni, Alexander; Krzysteczko, Patryk; Sievers, Sibylle; Hu, Xiukun; Schumacher, Hans W.

    2018-06-01

    We study the resistive and thermopower signatures of a single domain wall in a magnetic nanowire in the temperature range from 4 K to 204 K. The results are compared to the anisotropic magnetoresistance (AMR) and anisotropic magneto-Seebeck (AMS) data of the whole permalloy nanowire. The AMS ratio of the nanowire reveals a sign change at a temperature of 98 K, while the AMR ratio is positive over the complete temperature range. This behavior is also observed for the domain wall, allowing an attribution of the measured signatures to the domain wall magneto-Seebeck and domain wall magnetoresistive contributions. However, the observed zero crossing of the AMS ratio, in both types of measurements is not expected for permalloy, since the Mott formula predicts a temperature dependency of the AMS identical to the AMR. We discuss the origin of this behavior and can attribute it to the contributions of the lead and the protective platinum layer used in our devices. A correction scheme is presented and applied. Such contributions could also play a role in the analysis of magneto-Seebeck effects in other nanoscale devices, such as the tunnel magneto-Seebeck effect of magnetic tunnel junctions.

  11. The evolution of lipids

    Science.gov (United States)

    Itoh, Y. H.; Sugai, A.; Uda, I.; Itoh, T.

    2001-01-01

    Living organisms on the Earth which are divided into three major domains - Archaea, Bacteria, and Eucarya, probably came from a common ancestral cell. Because there are many thermophilic microorganisms near the root of the universal phylogenetic tree, the common ancestral cell should be considered to be a thermophilic microorganism. The existence of a cell is necessary for the living organisms; the cell membrane is the essential structural component of a cell, so its amphiphilic property is vital for the molecule of lipids for cell membranes. Tetraether type glycerophospholipids with C 40 isoprenoid chains are major membrane lipids widely distributed in archaeal cells. Cyclization number of C 40 isoprenoid chains in thermophilic archaea influences the fluidity of lipids whereas the number of carbons and degree of unsaturation in fatty acids do so in bacteria and eucarya. In addition to the cyclization of the tetraether lipids, covalent bonding of two C 40 isoprenoid chains was found in hyperthermophiles. These characteristic structures of the lipids seem to contribute to their fundamental physiological roles in hyperthermophiles. Stereochemical differences between G-1-P archaeal lipids and G-3-P bacterial and eucaryal lipids might have occured by the function of some proteins long after the first cell was developed by the reactions of small organic molecules. We propose that the structure of lipids of the common ancestral cell may have been similar to those of hyperthermophilic archaea.

  12. Phase Behavior and Domain Size in Sphingomyelin-Containing Lipid Bilayers

    Science.gov (United States)

    Petruzielo, Robin S.; Heberle, Frederick A.; Drazba, Paul; Katsaras, John; Feigenson, Gerald W.

    2013-01-01

    Membrane raft size measurements are crucial to understanding the stability and functionality of rafts in cells. The challenge of accurately measuring raft size is evidenced by the disparate reports of domain sizes, which range from nanometers to microns for the ternary model membrane system sphingomyelin (SM)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/cholesterol (Chol). Using Förster resonance energy transfer (FRET) and differential scanning calorimetry (DSC), we established phase diagrams for porcine brain SM (bSM)/dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Chol and bSM/POPC/Chol at 15 and 25°C. By combining two techniques with different spatial sensitivities, namely FRET and small-angle neutron scattering (SANS), we have significantly narrowed the uncertainty in domain size estimates for bSM/POPC/Chol mixtures. Compositional trends in FRET data revealed coexisting domains at 15 and 25°C for both mixtures, while SANS measurements detected no domain formation for bSM/POPC/Chol. Together these results indicate that liquid domains in bSM/POPC/Chol are between 2 and 7 nm in radius at 25°C: that is, domains must be on the order of the 2–6 nm Förster distance of the FRET probes, but smaller than the ~7 nm minimum cluster size detectable with SANS. However, for palmitoyl SM (PSM)/POPC/Chol at a similar composition, SANS detected coexisting liquid domains. This increase in domain size upon replacing the natural SM component (which consists of a mixture of chain lengths) with synthetic PSM, suggests a role for SM chain length in modulating raft size in vivo. PMID:23337475

  13. Probing Anisotropic Thermal Conductivity of Transition Metal Dichalcogenides MX2 (M = Mo, W and X = S, Se) using Time-Domain Thermoreflectance.

    Science.gov (United States)

    Jiang, Puqing; Qian, Xin; Gu, Xiaokun; Yang, Ronggui

    2017-09-01

    Transition metal dichalcogenides (TMDs) are a group of layered 2D semiconductors that have shown many intriguing electrical and optical properties. However, the thermal transport properties in TMDs are not well understood due to the challenges in characterizing anisotropic thermal conductivity. Here, a variable-spot-size time-domain thermoreflectance approach is developed to simultaneously measure both the in-plane and the through-plane thermal conductivity of four kinds of layered TMDs (MoS 2 , WS 2 , MoSe 2 , and WSe 2 ) over a wide temperature range, 80-300 K. Interestingly, it is found that both the through-plane thermal conductivity and the Al/TMD interface conductance depend on the modulation frequency of the pump beam for all these four compounds. The frequency-dependent thermal properties are attributed to the nonequilibrium thermal resistance between the different groups of phonons in the substrate. A two-channel thermal model is used to analyze the nonequilibrium phonon transport and to derive the intrinsic thermal conductivity at the thermal equilibrium limit. The measurements of the thermal conductivities of bulk TMDs serve as an important benchmark for understanding the thermal conductivity of single- and few-layer TMDs. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  15. A theory for the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in dilute magnetic alloys

    International Nuclear Information System (INIS)

    Satter, M.A.

    1990-08-01

    In this paper, a formalism for studying the anisotropic interaction between two substitutional magnetic impurities and the magnetic anisotropic effect in a dilute noble metal- transition metal magnetic alloy has been developed from relativistic scattering theory. The theoretical development and the computational techniques of this formalism are based on relativistic spin-polarized scattering theory and relativistic band structure frameworks. For studying the magnetic anisotropic effect a convenient ''working'' frame of reference with its axes oriented along the fcc crystal axes is set up. This formalism is applied to study the situation for two Fe impurities in paramagnetic Au hosts. For AuFe dilute alloy, the two impurity site interaction as a function of separation is not oscillatory and the anisotropic effect is found to be less than the two site interaction itself only by an order of magnitude. Apart from the anisotropic coupling of the two impurity spins to the separation vector, for the first time, another weak anisotropic coupling to the crystal axes is also contained in the two site interaction. These anisotropic effects are the results of the relativistic spin-orbit interaction which are incorporated into the formalism. (author). 22 refs, 5 figs

  16. Structure and performance of anisotropic nanocrystalline Nd-Fe-B magnets fabricated by high-velocity compaction followed by deformation

    Science.gov (United States)

    Zhao, L. Z.; Deng, X. X.; Yu, H. Y.; Guan, H. J.; Li, X. Q.; Xiao, Z. Y.; Liu, Z. W.; Greneche, J. M.

    2017-12-01

    High-velocity compaction (HVC) has been proposed as an effective approach for the fabrication of nanocrystalline Nd-Fe-B magnets. In this work, the effect of powder size on the density of HVCed magnets has been studied and the anisotropic nanocrystalline Nd-Fe-B magnets were prepared by HVC followed by hot deformation (HD). It is found that a proper particle size range is beneficial to high density. The investigations on the microstructure, magnetic domain structure, and hyperfine structure, indicate that the deformed grain structure and the magnetic domain structure with uniform paramagnetic grain boundary phase give good magnetic properties of HVC + HDed magnets. These magnets also have good mechanical and anti-corrosion properties. The results indicate that HVC is not only a near-net-shape, room temperature and binder-free process but is also able to maintain uniform nanostructure and to achieve good magnetic properties in both isotropic and anisotropic magnets. As a result, HVC can be employed as an ideal alternative process for bonding or hot pressing for the conventional MQI, MQII and MQIII magnets.

  17. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  18. Dynamics of anisotropic tissue growth

    Energy Technology Data Exchange (ETDEWEB)

    Bittig, Thomas; Juelicher, Frank [Max Planck Institute for the Physics of Complex Systems, Noethnitzer Strasse 38, 01187 Dresden (Germany); Wartlick, Ortrud; Kicheva, Anna; Gonzalez-Gaitan, Marcos [Department of Biochemistry and Department of Molecular Biology, Geneva University, Sciences II, Quai Ernest-Ansermet 30, 1211 Geneva 4 (Switzerland)], E-mail: Marcos.Gonzalez@biochem.unige.ch, E-mail: julicher@pks.mpg.de

    2008-06-15

    We study the mechanics of tissue growth via cell division and cell death (apoptosis). The rearrangements of cells can on large scales and times be captured by a continuum theory which describes the tissue as an effective viscous material with active stresses generated by cell division. We study the effects of anisotropies of cell division on cell rearrangements and show that average cellular trajectories exhibit anisotropic scaling behaviors. If cell division and apoptosis balance, there is no net growth, but for anisotropic cell division the tissue undergoes spontaneous shear deformations. Our description is relevant for the study of developing tissues such as the imaginal disks of the fruit fly Drosophila melanogaster, which grow anisotropically.

  19. Kv7.1 ion channels require a lipid to couple voltage sensing to pore opening.

    Science.gov (United States)

    Zaydman, Mark A; Silva, Jonathan R; Delaloye, Kelli; Li, Yang; Liang, Hongwu; Larsson, H Peter; Shi, Jingyi; Cui, Jianmin

    2013-08-06

    Voltage-gated ion channels generate dynamic ionic currents that are vital to the physiological functions of many tissues. These proteins contain separate voltage-sensing domains, which detect changes in transmembrane voltage, and pore domains, which conduct ions. Coupling of voltage sensing and pore opening is critical to the channel function and has been modeled as a protein-protein interaction between the two domains. Here, we show that coupling in Kv7.1 channels requires the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). We found that voltage-sensing domain activation failed to open the pore in the absence of PIP2. This result is due to loss of coupling because PIP2 was also required for pore opening to affect voltage-sensing domain activation. We identified a critical site for PIP2-dependent coupling at the interface between the voltage-sensing domain and the pore domain. This site is actually a conserved lipid-binding site among different K(+) channels, suggesting that lipids play an important role in coupling in many ion channels.

  20. Fusion of raft-like lipid bilayers operated by a membranotropic domain of the HSV-type I glycoprotein gH occurs through a cholesterol-dependent mechanism.

    Science.gov (United States)

    Vitiello, Giuseppe; Falanga, Annarita; Petruk, Ariel Alcides; Merlino, Antonello; Fragneto, Giovanna; Paduano, Luigi; Galdiero, Stefania; D'Errico, Gerardino

    2015-04-21

    A wealth of evidence indicates that lipid rafts are involved in the fusion of the viral lipid envelope with the target cell membrane. However, the interplay between these sterol- and sphingolipid-enriched ordered domains and viral fusion glycoproteins has not yet been clarified. In this work we investigate the molecular mechanism by which a membranotropic fragment of the glycoprotein gH of the Herpes Simplex Virus (HSV) type I (gH625) drives fusion of lipid bilayers formed by palmitoyl oleoyl phosphatidylcholine (POPC)-sphingomyelin (SM)-cholesterol (CHOL) (1 : 1 : 1 wt/wt/wt), focusing on the role played by each component. The comparative analysis of the liposome fusion assays, Dynamic Light Scattering (DLS), spectrofluorimetry, Neutron Reflectivity (NR) and Electron Spin Resonance (ESR) experiments, and Molecular Dynamics (MD) simulations shows that CHOL is fundamental for liposome fusion to occur. In detail, CHOL stabilizes the gH625-bilayer association by specific interactions with the peptide Trp residue. The interaction with gH625 causes an increased order of the lipid acyl chains, whose local rotational motion is significantly hampered. SM plays only a minor role in the process, favoring the propagation of lipid perturbation to the bilayer inner core. The stiffening of the peptide-interacting bilayer leaflet results in an asymmetric perturbation of the membrane, which is locally destabilized thus favoring fusion events. Our results show that viral fusion glycoproteins are optimally suited to exert a high fusogenic activity on lipid rafts and support the relevance of cholesterol as a key player of membrane-related processes.

  1. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  2. Characterization of Anisotropic Behavior for High Grade Pipes

    Science.gov (United States)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  3. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy.

    Science.gov (United States)

    Domingo, N; Farokhipoor, S; Santiso, J; Noheda, B; Catalan, G

    2017-08-23

    We measure the magnetotransport properties of individual 71° domain walls in multiferroic BiFeO 3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of the magnetoresistance depending on the relative orientation between the magnetic field and the domain wall plane. A consequence of this finding is that macroscopically averaged magnetoresistance measurements for domain wall bunches are likely to underestimate the magnetoresistance of each individual domain wall.

  4. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  5. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we...... show that n-term nonlinear approximation with the orthonormal bases in certain anisotropic α-modulation spaces can be completely characterized....

  6. Finite-volume scheme for anisotropic diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Es, Bram van, E-mail: bramiozo@gmail.com [Centrum Wiskunde & Informatica, P.O. Box 94079, 1090GB Amsterdam (Netherlands); FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands); Koren, Barry [Eindhoven University of Technology (Netherlands); Blank, Hugo J. de [FOM Institute DIFFER, Dutch Institute for Fundamental Energy Research, The Netherlands" 1 (Netherlands)

    2016-02-01

    In this paper, we apply a special finite-volume scheme, limited to smooth temperature distributions and Cartesian grids, to test the importance of connectivity of the finite volumes. The area of application is nuclear fusion plasma with field line aligned temperature gradients and extreme anisotropy. We apply the scheme to the anisotropic heat-conduction equation, and compare its results with those of existing finite-volume schemes for anisotropic diffusion. Also, we introduce a general model adaptation of the steady diffusion equation for extremely anisotropic diffusion problems with closed field lines.

  7. The role of polyglutamine expansion and protein context in disease-related huntingtin/lipid interactions

    Science.gov (United States)

    Burke, Kathleen Anne

    Huntington's Disease (HD) is a neurodegenerative disorder that is defined by the accumulation of nanoscale aggregates comprised of the huntingtin (htt) protein. Aggregation is directly caused by an expanded polyglutamine (polyQ) domain in htt, leading to a diverse population of aggregate species, such as oligomers, fibrils, and annular aggregates. Furthermore, the length of this polyQ domain is directly related to onset and severity of disease. The first 17 amino acids on the N-terminus (N17) and the polyproline domain on the C-terminal side of the polyQ domain have been shown to further modulate the aggregation process. Additionally, N17 appears to have lipid binding properties as htt interacts with a variety of membrane-containing structures present in cells, such as organelles, and interactions with these membrane surfaces may further modulate htt aggregation. To investigate the interaction between htt exon1 and lipid bilayers, in situ atomic force microscopy (AFM) was used to directly monitor the aggregation of htt exon1 constructs with varying Q-length (35Q, 46Q, 51Q, and myc- 53Q) or synthetic peptides with different polyQ domain flanking sequences (KK-Q35-KK, KK-Q 35-P10-KK, N17-Q35-KK, and N 17-Q35-P10-KK) on supported lipid membranes comprised of total brain lipid extract. The exon1 fragments accumulated on the lipid membranes, causing disruption of the membrane, in a polyQ dependent manner. By adding N-terminal tags to the htt exon1 fragments, the interaction with the lipid bilayer was impeded. The KK-Q35-KK and KK-Q 35-P10-KK peptides had no appreciable interaction with lipid bilayers. Interestingly, polyQ peptides with the N17 flanking sequence interacted with the bilayer. N17-Q35-KK formed discrete aggregates on the bilayer, but there was minimal membrane disruption. The N17-Q35-P10-KK peptide interacted more aggressively with the lipid bilayer in a manner reminiscent of the htt exon1 proteins.

  8. Multidimensional oriented solid-state NMR experiments enable the sequential assignment of uniformly 15N labeled integral membrane proteins in magnetically aligned lipid bilayers.

    Science.gov (United States)

    Mote, Kaustubh R; Gopinath, T; Traaseth, Nathaniel J; Kitchen, Jason; Gor'kov, Peter L; Brey, William W; Veglia, Gianluigi

    2011-11-01

    Oriented solid-state NMR is the most direct methodology to obtain the orientation of membrane proteins with respect to the lipid bilayer. The method consists of measuring (1)H-(15)N dipolar couplings (DC) and (15)N anisotropic chemical shifts (CSA) for membrane proteins that are uniformly aligned with respect to the membrane bilayer. A significant advantage of this approach is that tilt and azimuthal (rotational) angles of the protein domains can be directly derived from analytical expression of DC and CSA values, or, alternatively, obtained by refining protein structures using these values as harmonic restraints in simulated annealing calculations. The Achilles' heel of this approach is the lack of suitable experiments for sequential assignment of the amide resonances. In this Article, we present a new pulse sequence that integrates proton driven spin diffusion (PDSD) with sensitivity-enhanced PISEMA in a 3D experiment ([(1)H,(15)N]-SE-PISEMA-PDSD). The incorporation of 2D (15)N/(15)N spin diffusion experiments into this new 3D experiment leads to the complete and unambiguous assignment of the (15)N resonances. The feasibility of this approach is demonstrated for the membrane protein sarcolipin reconstituted in magnetically aligned lipid bicelles. Taken with low electric field probe technology, this approach will propel the determination of sequential assignment as well as structure and topology of larger integral membrane proteins in aligned lipid bilayers. © Springer Science+Business Media B.V. 2011

  9. Theory of Kinetics of Registration and Anti-Registration in Lipid Bilayers

    Science.gov (United States)

    Olmsted, Peter; Williamson, John

    Lipid bilayer leaflets are often treated as if they are coupled; i.e., that the two leaflets undergo simultaneous transitions between phases, and that domains involve both leaflets together in a registered fashion. We present theory and simulation showing how interleaflet couplings and hydrophobic mismatch can lead to a complex phase diagram with multiple metastable two-phase and three-phase states. Many of these states can be discerned in the experimental literature, and are expected in the early stages of coarsening when domains are sub-micron (and thus perhaps of significance to lipid rafts). We present different kinetic scenarios for transitions between these state, and show how lipid flip flop can surprisingly lead to non-symmetric anti-registered patterns.

  10. Anisotropy of domain switching in prepoled lead titanate zirconate ceramics under multiaxial electrical loading

    Science.gov (United States)

    Liu, Yuan-Ming; Li, Fa-Xin; Fang, Dai-Ning

    2007-01-01

    The authors report an observation of anisotropic domain switching process in prepoled lead titanate zirconate (PZT) ceramics under multiaxial electrical loading. Prepoled PZT blocks were obliquely cut to apply an electric field at discrete angles θ (0°-180°) to the initial poling direction. Both the coercive field and switchable polarization are found to decrease significantly when sinθ increases from zero to unity. The measured strain curves show that most domains that accomplished 180° domain switching actually experienced two successive 90° switching. The oriented domain texture after poling plus the induced nonuniform stress are used to explain the observed domain switching anisotropy.

  11. Domain walls in single-chain magnets

    Science.gov (United States)

    Pianet, Vivien; Urdampilleta, Matias; Colin, Thierry; Clérac, Rodolphe; Coulon, Claude

    2017-12-01

    The topology and creation energy of domain walls in different magnetic chains (called Single-Chain Magnets or SCMs) are discussed. As these domain walls, that can be seen as "defects", are known to control both static and dynamic properties of these one-dimensional systems, their study and understanding are necessary first steps before a deeper discussion of the SCM properties at finite temperature. The starting point of the paper is the simple regular ferromagnetic chain for which the characteristics of the domain walls are well known. Then two cases will be discussed (i) the "mixed chains" in which isotropic and anisotropic classical spins alternate, and (ii) the so-called "canted chains" where two different easy axis directions are present. In particular, we show that "strictly narrow" domain walls no longer exist in these more complex cases, while a cascade of phase transitions is found for canted chains as the canting angle approaches 45∘. The consequence for thermodynamic properties is briefly discussed in the last part of the paper.

  12. Analysis of electromagnetic scattering by uniaxial anisotropic bispheres.

    Science.gov (United States)

    Li, Zheng-Jun; Wu, Zhen-Sen; Li, Hai-Ying

    2011-02-01

    Based on the generalized multiparticle Mie theory and the Fourier transformation approach, electromagnetic (EM) scattering of two interacting homogeneous uniaxial anisotropic spheres with parallel primary optical axes is investigated. By introducing the Fourier transformation, the EM fields in the uniaxial anisotropic spheres are expanded in terms of the spherical vector wave functions. The interactive scattering coefficients and the expansion coefficients of the internal fields are derived through the continuous boundary conditions on which the interaction of the bispheres is considered. Some selected calculations on the effects of the size parameter, the uniaxial anisotropic absorbing dielectric, and the sphere separation distance are described. The backward radar cross section of two uniaxial anisotropic spheres with a complex permittivity tensor changing with the sphere separation distance is numerically studied. The authors are hopeful that the work in this paper will help provide an effective calibration for further research on the scattering characteristic of an aggregate of anisotropic spheres or other shaped anisotropic particles.

  13. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  14. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  15. Dynamical scaling, domain-growth kinetics, and domain-wall shapes of quenched two-dimensional anisotropic XY models

    DEFF Research Database (Denmark)

    Mouritsen, Ole G.; Praestgaard, Eigil

    1988-01-01

    obeys dynamical scaling and the shape of the dynamical scaling function pertaining to the structure factor is found to depend on P. Specifically, this function is described by a Porod-law behavior, q-ω, where ω increases with the wall softness. The kinetic exponent, which describes how the linear domain...... infinite to zero temperature as well as to nonzero temperatures below the ordering transition. The continuous nature of the spin variables causes the domain walls to be ‘‘soft’’ and characterized by a finite thickness. The steady-state thickness of the walls can be varied by a model parameter, P. At zero...... size varies with time, R(t)∼tn, is for both models at zero temperature determined to be n≃0.25, independent of P. At finite temperatures, the growth kinetics is found to cross over to the Lifshitz-Allen-Cahn law characterized by n≃0.50. The results support the idea of two separate zero...

  16. A combined fluorescence spectroscopy, confocal and 2-photon microscopy approach to re-evaluate the properties of sphingolipid domains.

    Science.gov (United States)

    Pinto, Sandra N; Fernandes, Fábio; Fedorov, Alexander; Futerman, Anthony H; Silva, Liana C; Prieto, Manuel

    2013-09-01

    The aim of this study is to provide further insight about the interplay between important signaling lipids and to characterize the properties of the lipid domains formed by those lipids in membranes containing distinct composition. To this end, we have used a combination of fluorescence spectroscopy, confocal and two-photon microscopy and a stepwise approach to re-evaluate the biophysical properties of sphingolipid domains, particularly lipid rafts and ceramide (Cer)-platforms. By using this strategy we were able to show that, in binary mixtures, sphingolipids (Cer and sphingomyelin, SM) form more tightly packed gel domains than those formed by phospholipids with similar acyl chain length. In more complex lipid mixtures, the interaction between the different lipids is intricate and is strongly dictated by the Cer-to-Chol ratio. The results show that in quaternary phospholipid/SM/Chol/Cer mixtures, Cer forms gel domains that become less packed as Chol is increased. Moreover, the extent of gel phase formation is strongly reduced in these mixtures, even though Cer molar fraction is increased. These results suggest that in biological membranes, lipid domains such as rafts and ceramide platforms, might display distinctive biophysical properties depending on the local lipid composition at the site of the membrane where they are formed, further highlighting the potential role of membrane biophysical properties as an underlying mechanism for mediating specific biological processes. Copyright © 2013 Elsevier B.V. All rights reserved.

  17. Lipid self-assembly and lectin-induced reorganization of the plasma membrane.

    Science.gov (United States)

    Sych, Taras; Mély, Yves; Römer, Winfried

    2018-05-26

    The plasma membrane represents an outstanding example of self-organization in biology. It plays a vital role in protecting the integrity of the cell interior and regulates meticulously the import and export of diverse substances. Its major building blocks are proteins and lipids, which self-assemble to a fluid lipid bilayer driven mainly by hydrophobic forces. Even if the plasma membrane appears-globally speaking-homogeneous at physiological temperatures, the existence of specialized nano- to micrometre-sized domains of raft-type character within cellular and synthetic membrane systems has been reported. It is hypothesized that these domains are the origin of a plethora of cellular processes, such as signalling or vesicular trafficking. This review intends to highlight the driving forces of lipid self-assembly into a bilayer membrane and the formation of small, transient domains within the plasma membrane. The mechanisms of self-assembly depend on several factors, such as the lipid composition of the membrane and the geometry of lipids. Moreover, the dynamics and organization of glycosphingolipids into nanometre-sized clusters will be discussed, also in the context of multivalent lectins, which cluster several glycosphingolipid receptor molecules and thus create an asymmetric stress between the two membrane leaflets, leading to tubular plasma membrane invaginations.This article is part of the theme issue 'Self-organization in cell biology'. © 2018 The Author(s).

  18. Refurbishing the plasmodesmal chamber: a role for lipid bodies?

    Directory of Open Access Journals (Sweden)

    Laju K Paul

    2014-02-01

    Full Text Available Lipid bodies (LBs are universal constituents of both animal and plant cells. They are produced by specialised membrane domains at the tubular endoplasmic reticulum (ER, and consist of a core of neutral lipids and a surrounding monolayer of phospholipid with embedded amphipathic proteins. Although originally regarded as simple depots for lipids, they have recently emerged as organelles that interact with other cellular constituents, exchanging lipids, proteins and signalling molecules, and shuttling them between various intracellular destinations, including the plasmamembrane (PM. Recent data showed that in plants LBs can deliver a subset of 1,3-β-glucanases to the plasmodesmal (PD channel. We hypothesise that this may represent a more general mechanism, which complements the delivery of GPI-anchored proteins to the PD exterior via the secretory pathway. We propose that LBs may contribute to the maintenance of the PD chamber and the delivery of regulatory molecules as well as proteins destined for transport to adjacent cells. In addition, we speculate that LBs deliver their cargo through interaction with membrane domains in the cytofacial side of the PM.

  19. A Neutron View of Proteins in Lipid Bilayers

    Science.gov (United States)

    White, Stephen

    2012-02-01

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly-charged S1-S4 voltage- sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated potassium channels. We have used neutron diffraction, solid-state nuclear magnetic resonance spectroscopy, and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations, cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings reveal that voltage sensors have evolved to interact with the lipid membrane while keeping the energetic and structural perturbations to a minimum, and that water penetrates into the membrane to hydrate charged residues and shape the transmembrane electric field.

  20. Dominant portion of thyrotropin-releasing hormone receptor is excluded from lipid domains. Detergent-resistant and detergent-sensitive pools of TRH receptor and Gq alpha/G11 alpha protein

    Czech Academy of Sciences Publication Activity Database

    Rudajev, Vladimír; Novotný, Jiří; Hejnová, Lucie; Milligan, G.; Svoboda, Petr

    2005-01-01

    Roč. 138, č. 2 (2005), s. 111-125 ISSN 0021-924X R&D Projects: GA MŠk(CZ) LC554 Grant - others:GA-(GB) Wellcome Trust Institutional research plan: CEZ:AV0Z50110509 Keywords : TRH receptor * lipid domains * trimeric G proteins Subject RIV: CE - Biochemistry Impact factor: 1.827, year: 2005

  1. Inverse anisotropic conductivity from internal current densities

    International Nuclear Information System (INIS)

    Bal, Guillaume; Guo, Chenxi; Monard, François

    2014-01-01

    This paper concerns the reconstruction of a fully anisotropic conductivity tensor γ from internal current densities of the form J = γ∇u, where u solves a second-order elliptic equation ∇ · (γ∇u) = 0 on a bounded domain X with prescribed boundary conditions. A minimum number of n + 2 such functionals known on Y⊂X, where n is the spatial dimension, is sufficient to guarantee a unique and explicit reconstruction of γ locally on Y. Moreover, we show that γ is reconstructed with a loss of one derivative compared to errors in the measurement of J in the general case and no loss of derivatives in the special case where γ is scalar. We also describe linear combinations of mixed partial derivatives of γ that exhibit better stability properties and hence can be reconstructed with better resolution in practice. (paper)

  2. Views on the Anisotropic Nature of Ilva Valley Region

    Directory of Open Access Journals (Sweden)

    GABRIELA-ALINA MUREŞAN

    2012-01-01

    Full Text Available There are two concepts important for the authors of this article: anisotropic region and anisotropic space. Anisotropic region is defined by A. Dauphiné, the geographer (-mathematician, as a territorial unit whose structure results from the organisation of space along one or more axes. From the point of view of a territorial system, this type of region has some characteristics which differentiate it both from the homogeneous region and from the polarised one. These specificities have been analysed for Ilva Valley. The region of Ilva Valley is formed along the morphological axis represented by the Ilva River. The aim is to identify these specificities or their absence within this region. In this way we can determine whether this region is an anisotropic one or just an anisotropic space, namely whether it can be considered as evolving towards an anisotropic region, not yet complying with all characteristics of anisotropic regions.

  3. Nonideal mixing in multicomponent lipid/detergent systems

    International Nuclear Information System (INIS)

    Tsamaloukas, Alekos; Szadkowska, Halina; Heerklotz, Heiko

    2006-01-01

    A detailed understanding of the mixing properties of membranes to which detergents are added is mandatory for improving the application and interpretation of detergent based protein or lipid extraction assays. For Triton X-100 (TX-100), a nonionic detergent frequently used in the process of solubilizing and purifying membrane proteins and lipids, we present here a detailed study of the mixing properties of binary and ternary lipid mixtures by means of high-sensitivity isothermal titration calorimetry (ITC). To this end the partitioning thermodynamics of TX-100 molecules from the aqueous phase to lipid bilayers composed of various mixtures of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), egg-sphingomyelin (SM), and cholesterol (cho) are characterized. Composition-dependent partition coefficients K are analysed within the frame of a thermodynamic model developed to describe nonideal mixing in multicomponent lipid/detergent systems. The results imply that POPC, fluid SM, and TX-100 mix almost ideally (nonideality parameters ρ α/β SM/cho ≤-6RT) and unfavourable PC/cho interactions (ρ PC/cho = 2RT) may under certain conditions cause POPC/TX-100-enriched domains to segregate from SM/cho-enriched ones. TX-100/cho contacts are unfavourable (ρ cho/TX = 4RT), so the system tends to avoid them. That means, addition of TX-100 promotes the separation of SM/cho-rich from PC/TX-100-rich domains. It appears that cho/detergent interactions are crucial governing the abundance and composition of detergent-resistant membrane patches

  4. Solid-State Nuclear Magnetic Resonance Investigation of the Structural Topology and Lipid Interactions of a Viral Fusion Protein Chimera Containing the Fusion Peptide and Transmembrane Domain.

    Science.gov (United States)

    Yao, Hongwei; Lee, Myungwoon; Liao, Shu-Yu; Hong, Mei

    2016-12-13

    The fusion peptide (FP) and transmembrane domain (TMD) of viral fusion proteins play important roles during virus-cell membrane fusion, by inducing membrane curvature and transient dehydration. The structure of the water-soluble ectodomain of viral fusion proteins has been extensively studied crystallographically, but the structures of the FP and TMD bound to phospholipid membranes are not well understood. We recently investigated the conformations and lipid interactions of the separate FP and TMD peptides of parainfluenza virus 5 (PIV5) fusion protein F using solid-state nuclear magnetic resonance. These studies provide structural information about the two domains when they are spatially well separated in the fusion process. To investigate how these two domains are structured relative to each other in the postfusion state, when the ectodomain forms a six-helix bundle that is thought to force the FP and TMD together in the membrane, we have now expressed and purified a chimera of the FP and TMD, connected by a Gly-Lys linker, and measured the chemical shifts and interdomain contacts of the protein in several lipid membranes. The FP-TMD chimera exhibits α-helical chemical shifts in all the membranes examined and does not cause strong curvature of lamellar membranes or membranes with negative spontaneous curvature. These properties differ qualitatively from those of the separate peptides, indicating that the FP and TMD interact with each other in the lipid membrane. However, no 13 C- 13 C cross peaks are observed in two-dimensional correlation spectra, suggesting that the two helices are not tightly associated. These results suggest that the ectodomain six-helix bundle does not propagate into the membrane to the two hydrophobic termini. However, the loosely associated FP and TMD helices are found to generate significant negative Gaussian curvature to membranes that possess spontaneous positive curvature, consistent with the notion that the FP-TMD assembly may

  5. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2015-01-20

    Materials with anisotropic material parameters can be utilized to fabricate many fascinating devices, such as hyperlenses, metasolids, and one-way waveguides. In this study, we analyze the effects of geometric anisotropy on a two-dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided the aspect ratio of the lattice and the eccentricity of the elliptic cylinder satisfy certain conditions. The derived effective medium theory not only recovers the well-known Maxwell-Garnett results in the quasi-static regime, but is also valid beyond the long-wavelength limit, where the wavelength in the host medium is comparable to the size of the lattice so that previous anisotropic effective medium theories fail. Such an advance greatly broadens the applicable realm of the effective medium theory and introduces many possibilities in the design of structures with desired anisotropic material characteristics. A real sample of a recently theoretically proposed anisotropic medium, with a near-zero index to control the flux, is achieved using the derived effective medium theory, and control of the electromagnetic waves in the sample is clearly demonstrated.

  6. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  7. A Variational Approach to Perturbed Discrete Anisotropic Equations

    Directory of Open Access Journals (Sweden)

    Amjad Salari

    2016-01-01

    Full Text Available We continue the study of discrete anisotropic equations and we will provide new multiplicity results of the solutions for a discrete anisotropic equation. We investigate the existence of infinitely many solutions for a perturbed discrete anisotropic boundary value problem. The approach is based on variational methods and critical point theory.

  8. Improved cellular activity of antisense peptide nucleic acids by conjugation to a cationic peptide-lipid (CatLip) domain

    DEFF Research Database (Denmark)

    Koppelhus, Uffe; Shiraishi, Takehiko; Zachar, Vladimir

    2008-01-01

    Conjugation to cationic cell penetrating peptides (such as Tat, Penetratin, or oligo arginines) efficiently improves the cellular uptake of large hydrophilic molecules such as oligonucleotides and peptide nucleic acids, but the cellular uptake is predominantly via an unproductive endosomal pathway...... for future in vivo applications. We find that simply conjugating a lipid domain (fatty acid) to the cationic peptide (a CatLip conjugate) increases the biological effect of the corresponding PNA (CatLip) conjugates in a luciferase cellular antisense assay up to 2 orders of magnitude. The effect increases...... with increasing length of the fatty acid (C8-C16) but in parallel also results in increased cellular toxicity, with decanoic acid being optimal. Furthermore, the relative enhancement is significantly higher for Tat peptide compared to oligoarginine. Confocal microscopy and chloroquine enhancement indicates...

  9. Regulation of AMPA receptor localization in lipid rafts

    Science.gov (United States)

    Hou, Qingming; Huang, Yunfei; Amato, Stephen; Snyder, Solomon H.; Huganir, Richard L.; Man, Heng-Ye

    2009-01-01

    Lipid rafts are special microdomains enriched in cholesterol, sphingolipids and certain proteins, and play important roles in a variety of cellular functions including signal transduction and protein trafficking. We report that in cultured cortical and hippocampal neurons the distribution of lipid rafts is development-dependent. Lipid rafts in mature neurons exist on the entire cell-surface and display a high degree of mobility. AMPA receptors co-localize and associate with lipid rafts in the plasma membrane. The association of AMPARs with rafts is under regulation; through the NOS–NO pathway, NMDA receptor activity increases AMPAR localization in rafts. During membrane targeting, AMPARs insert into or at close proximity of the surface raft domains. Perturbation of lipid rafts dramatically suppresses AMPA receptor exocytosis, resulting in significant reduction in AMPAR cell-surface expression. PMID:18411055

  10. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  11. A localized interaction surface for voltage-sensing domains on the pore domain of a K+ channel.

    Science.gov (United States)

    Li-Smerin, Y; Hackos, D H; Swartz, K J

    2000-02-01

    Voltage-gated K+ channels contain a central pore domain and four surrounding voltage-sensing domains. How and where changes in the structure of the voltage-sensing domains couple to the pore domain so as to gate ion conduction is not understood. The crystal structure of KcsA, a bacterial K+ channel homologous to the pore domain of voltage-gated K+ channels, provides a starting point for addressing this question. Guided by this structure, we used tryptophan-scanning mutagenesis on the transmembrane shell of the pore domain in the Shaker voltage-gated K+ channel to localize potential protein-protein and protein-lipid interfaces. Some mutants cause only minor changes in gating and when mapped onto the KcsA structure cluster away from the interface between pore domain subunits. In contrast, mutants producing large changes in gating tend to cluster near this interface. These results imply that voltage-sensing domains interact with localized regions near the interface between adjacent pore domain subunits.

  12. Theoretical and numerical study of highly anisotropic turbulent flows

    NARCIS (Netherlands)

    Biferale, L.; Daumont, I.; Lanotte, A.; Toschi, F.

    2004-01-01

    We present a detailed numerical study of anisotropic statistical fluctuations in stationary, homogeneous turbulent flows. We address both problems of intermittency in anisotropic sectors, and the relative importance of isotropic and anisotropic fluctuations at different scales on a direct numerical

  13. Numerical simulation of anisotropic polymeric foams

    Directory of Open Access Journals (Sweden)

    Volnei Tita

    Full Text Available This paper shows in detail the modelling of anisotropic polymeric foam under compression and tension loadings, including discussions on isotropic material models and the entire procedure to calibrate the parameters involved. First, specimens of poly(vinyl chloride (PVC foam were investigated through experimental analyses in order to understand the mechanical behavior of this anisotropic material. Then, isotropic material models available in the commercial software AbaqusTM were investigated in order to verify their ability to model anisotropic foams and how the parameters involved can influence the results. Due to anisotropy, it is possible to obtain different values for the same parameter in the calibration process. The obtained set of parameters are used to calibrate the model according to the application of the structure. The models investigated showed minor and major limitations to simulate the mechanical behavior of anisotropic PVC foams under compression, tension and multi-axial loadings. Results show that the calibration process and the choice of the material model applied to the polymeric foam can provide good quantitative results and save project time. Results also indicate what kind and order of error one will get if certain choices are made throughout the modelling process. Finally, even though the developed calibration procedure is applied to specific PVC foam, it still outlines a very broad drill to analyze other anisotropic cellular materials.

  14. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily

    Directory of Open Access Journals (Sweden)

    Marc Lenoir

    2015-10-01

    Full Text Available The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH and Tec homology (TH domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  15. Membrane and Protein Interactions of the Pleckstrin Homology Domain Superfamily.

    Science.gov (United States)

    Lenoir, Marc; Kufareva, Irina; Abagyan, Ruben; Overduin, Michael

    2015-10-23

    The human genome encodes about 285 proteins that contain at least one annotated pleckstrin homology (PH) domain. As the first phosphoinositide binding module domain to be discovered, the PH domain recruits diverse protein architectures to cellular membranes. PH domains constitute one of the largest protein superfamilies, and have diverged to regulate many different signaling proteins and modules such as Dbl homology (DH) and Tec homology (TH) domains. The ligands of approximately 70 PH domains have been validated by binding assays and complexed structures, allowing meaningful extrapolation across the entire superfamily. Here the Membrane Optimal Docking Area (MODA) program is used at a genome-wide level to identify all membrane docking PH structures and map their lipid-binding determinants. In addition to the linear sequence motifs which are employed for phosphoinositide recognition, the three dimensional structural features that allow peripheral membrane domains to approach and insert into the bilayer are pinpointed and can be predicted ab initio. The analysis shows that conserved structural surfaces distinguish which PH domains associate with membrane from those that do not. Moreover, the results indicate that lipid-binding PH domains can be classified into different functional subgroups based on the type of membrane insertion elements they project towards the bilayer.

  16. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang; Schuster, Gerard T.

    2016-01-01

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially

  17. Inverse anisotropic diffusion from power density measurements in two dimensions

    International Nuclear Information System (INIS)

    Monard, François; Bal, Guillaume

    2012-01-01

    This paper concerns the reconstruction of an anisotropic diffusion tensor γ = (γ ij ) 1⩽i,j⩽2 from knowledge of internal functionals of the form γ∇u i · ∇u j with u i for 1 ⩽ i ⩽ I solutions of the elliptic equation ∇ · γ∇u i = 0 on a two-dimensional bounded domain with appropriate boundary conditions. We show that for I = 4 and appropriately chosen boundary conditions, γ may uniquely and stably be reconstructed from such internal functionals, which appear in coupled-physics inverse problems involving the ultrasound modulation of electrical or optical coefficients. Explicit reconstruction procedures for the diffusion tensor are presented and implemented numerically. (paper)

  18. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng; Choi, Yi King; Wang, Wen Ping; Yan, Dongming; Liu, Yang; Lé vy, Bruno L.

    2011-01-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  19. Obtuse triangle suppression in anisotropic meshes

    KAUST Repository

    Sun, Feng

    2011-12-01

    Anisotropic triangle meshes are used for efficient approximation of surfaces and flow data in finite element analysis, and in these applications it is desirable to have as few obtuse triangles as possible to reduce the discretization error. We present a variational approach to suppressing obtuse triangles in anisotropic meshes. Specifically, we introduce a hexagonal Minkowski metric, which is sensitive to triangle orientation, to give a new formulation of the centroidal Voronoi tessellation (CVT) method. Furthermore, we prove several relevant properties of the CVT method with the newly introduced metric. Experiments show that our algorithm produces anisotropic meshes with much fewer obtuse triangles than using existing methods while maintaining mesh anisotropy. © 2011 Elsevier B.V. All rights reserved.

  20. Nonequilibrium current-carrying steady states in the anisotropic X Y spin chain

    Science.gov (United States)

    Lancaster, Jarrett L.

    2016-05-01

    Out-of-equilibrium behavior is explored in the one-dimensional anisotropic X Y model. Initially preparing the system in the isotropic X X model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.

  1. The PH Domain of PDK1 Exhibits a Novel, Phospho-Regulated Monomer-Dimer Equilibrium With Important Implications for Kinase Domain Activation: Single Molecule and Ensemble Studies†

    Science.gov (United States)

    Ziemba, Brian P.; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J.

    2013-01-01

    Phosphoinositide-Dependent Kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4-5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric state(s) of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. The present study investigates the binding of purified WT and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single molecule and ensemble measurements. Single molecule analysis of the brightness of fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric, while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single molecule analysis of 2-D diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little protein penetration into the bilayer as observed for other PH domains. The 2-D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that enables greater protein insertion into

  2. Band gaps in periodically magnetized homogeneous anisotropic media

    Science.gov (United States)

    Merzlikin, A. M.; Levy, M.; Vinogradov, A. P.; Wu, Z.; Jalali, A. A.

    2010-11-01

    In [A. M. Merzlikin, A. P. Vinogradov, A. V. Dorofeenko, M. Inoue, M. Levy, A. B. Granovsky, Physica B 394 (2007) 277] it is shown that in anisotropic magnetophotonic crystal made of anisotropic dielectric layers and isotropic magneto-optical layers the magnetization leads to formation of additional band gaps (BG) inside the Brillouin zones. Due to the weakness of the magneto-optical effects the width of these BG is much smaller than that of usual BG forming on the boundaries of Brillouin zones. In the present communication we show that though the anisotropy suppresses magneto-optical effects. An anisotropic magnetophotonic crystal made of anisotropic dielectric layers and anisotropic magneto-optical; the width of additional BG may be much greater than the width of the usual Brillouin BG. Anisotropy tends to suppress Brillouin zone boundary band gap formation because the anisotropy suppresses magneto-optical properties, while degenerate band gap formation occurs around points of effective isotropy and is not suppressed.

  3. Membrane Curvature and Lipid Composition Synergize To Regulate N-Ras Anchor Recruitment

    DEFF Research Database (Denmark)

    Larsen, Jannik B.; Kennard, Celeste; Pedersen, Søren L.

    2017-01-01

    Proteins anchored to membranes through covalently linked fatty acids and/or isoprenoid groups play crucial roles in all forms of life. Sorting and trafficking of lipidated proteins has traditionally been discussed in the context of partitioning to membrane domains of different lipid composition. We...

  4. Effect of Dialkyl Ammonium Cationic Surfactants on the Microfluidity of Membranes Containing Raft Domains.

    Science.gov (United States)

    Uyama, Makoto; Inoue, Kaori; Kinoshita, Koichi; Miyahara, Reiji; Yokoyama, Hirokazu; Nakano, Minoru

    2018-01-01

    It has been reported that a lot of receptors localize in lipid raft domains and that the microfluidity of these domains regulates the activation of these receptors. In this study, we focused on the lipid raft and in order to evaluate the physicochemical effects of surfactants on microfluidity of lipid membranes, we used liposomes comprising of egg-yolk L-α-phosphatidylcholine, egg-yolk sphingomyelin, and cholesterol as a model of cell membranes containing raft domains. The microfluidity of the domains was characterized by fluorescence spectrometry using 1,6-diphenyl-1,3,5-hexatriene and 2-dimethylamino-6-lauroylnaphthalene. Among several surfactants, dialkylammonium-type cationic surfactants most efficiently increased the microfluidity. It is therefore concluded that (1) the electrostatic interaction between the cationic surfactant and eggPC/eggSM/cholesterol liposome could be important, (2) surfactants with alkyl chains more effectively inserted into membranes than those with acyl chains, and (3) cationic surfactants with lower T m values have a greater ability to increase the fluidity.

  5. Magnetostatics of anisotropic superconducting ellipsoid

    International Nuclear Information System (INIS)

    Saif, A.G.

    1987-09-01

    The magnetization and the magnetic field distribution inside (outside) an anisotropic type II superconducting ellipsoid, with filamentary structure, is formulated. We have shown that the magnetic field in this case is different from that of the general anisotropic one. The nucleations of the flux lines for specimens with large demagnetization factors are theoretically studied. We have shown that the nucleations of the flux lines, for specimens with large demagnetization factor, appears at a field larger than that of ellipsoidal shape. (author). 15 refs

  6. Apicobasal domain identities of expanding tubular membranes depend on glycosphingolipid biosynthesis.

    Science.gov (United States)

    Zhang, Hongjie; Abraham, Nessy; Khan, Liakot A; Hall, David H; Fleming, John T; Göbel, Verena

    2011-09-18

    Metazoan internal organs are assembled from polarized tubular epithelia that must set aside an apical membrane domain as a lumenal surface. In a global Caenorhabditis elegans tubulogenesis screen, interference with several distinct fatty-acid-biosynthetic enzymes transformed a contiguous central intestinal lumen into multiple ectopic lumens. We show that multiple-lumen formation is caused by apicobasal polarity conversion, and demonstrate that in situ modulation of lipid biosynthesis is sufficient to reversibly switch apical domain identities on growing membranes of single post-mitotic cells, shifting lumen positions. Follow-on targeted lipid-biosynthesis pathway screens and functional genetic assays were designed to identify a putative single causative lipid species. They demonstrate that fatty-acid biosynthesis affects polarity through sphingolipid synthesis, and reveal ceramide glucosyltransferases (CGTs) as end-point biosynthetic enzymes in this pathway. Our findings identify glycosphingolipids, CGT products and obligate membrane lipids, as critical determinants of in vivo polarity and indicate that they sort new components to the expanding apical membrane.

  7. Structure-transfection activity relationships in a series of novel cationic lipids with heterocyclic head-groups.

    Science.gov (United States)

    Ivanova, Ekaterina A; Maslov, Mikhail A; Kabilova, Tatyana O; Puchkov, Pavel A; Alekseeva, Anna S; Boldyrev, Ivan A; Vlassov, Valentin V; Serebrennikova, Galina A; Morozova, Nina G; Zenkova, Marina A

    2013-11-07

    Cationic liposomes are promising candidates for the delivery of various therapeutic nucleic acids. Here, we report a convenient synthesis of carbamate-type cationic lipids with various hydrophobic domains (tetradecanol, dialkylglycerol, cholesterol) and positively charged head-groups (pyridinium, N-methylimidazolium, N-methylmorpholinium) and data on the structure-transfection activity relationships. It was found that single-chain lipids possess high surface activity, which correlates with high cytotoxicity due to their ability to disrupt the cellular membrane by combined hydrophobic and electrostatic interactions. Liposomes containing these lipids also display high cytotoxicity with respect to all cell lines. Irrespective of chemical structures, all cationic lipids form liposomes with similar sizes and surface potentials. The characteristics of complexes composed of cationic liposomes and nucleic acids depend mostly on the type of nucleic acid and P/N ratios. In the case of oligodeoxyribonucleotide delivery, the transfection activity depends on the type of cationic head-group regardless of the type of hydrophobic domain: all types of cationic liposomes mediate efficient oligonucleotide transfer into 80-90% of the eukaryotic cells, and liposomes based on lipids with N-methylmorpholinium cationic head-group display the highest transfection activity. In the case of plasmid DNA and siRNA, the type of hydrophobic domain determines the transfection activity: liposomes composed of cholesterol-based lipids were the most efficient in DNA transfer, while liposomes containing glycerol-based lipids exhibited reasonable activity in siRNA delivery under serum-free conditions.

  8. Jet quenching in a strongly coupled anisotropic plasma

    Science.gov (United States)

    Chernicoff, Mariano; Fernández, Daniel; Mateos, David; Trancanelli, Diego

    2012-08-01

    The jet quenching parameter of an anisotropic plasma depends on the relative orientation between the anisotropic direction, the direction of motion of the parton, and the direction along which the momentum broadening is measured. We calculate the jet quenching parameter of an anisotropic, strongly coupled {N} = 4 plasma by means of its gravity dual. We present the results for arbitrary orientations and arbitrary values of the anisotropy. The anisotropic value can be larger or smaller than the isotropic one, and this depends on whether the comparison is made at equal temperatures or at equal entropy densities. We compare our results to analogous calculations for the real-world quark-gluon plasma and find agreement in some cases and disagreement in others.

  9. Anisotropic solutions by gravitational decoupling

    Science.gov (United States)

    Ovalle, J.; Casadio, R.; da Rocha, R.; Sotomayor, A.

    2018-02-01

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent.

  10. Anisotropic solutions by gravitational decoupling

    Energy Technology Data Exchange (ETDEWEB)

    Ovalle, J. [Silesian University in Opava, Institute of Physics and Research Centre of Theoretical Physics and Astrophysics, Faculty of Philosophy and Science, Opava (Czech Republic); Universidad Simon Bolivar, Departamento de Fisica, Caracas (Venezuela, Bolivarian Republic of); Casadio, R. [Alma Mater Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Rocha, R. da [Universidade Federal do ABC (UFABC), Centro de Matematica, Computacao e Cognicao, Santo Andre, SP (Brazil); Sotomayor, A. [Universidad de Antofagasta, Departamento de Matematicas, Antofagasta (Chile)

    2018-02-15

    We investigate the extension of isotropic interior solutions for static self-gravitating systems to include the effects of anisotropic spherically symmetric gravitational sources by means of the gravitational decoupling realised via the minimal geometric deformation approach. In particular, the matching conditions at the surface of the star with the outer Schwarzschild space-time are studied in great detail, and we describe how to generate, from a single physically acceptable isotropic solution, new families of anisotropic solutions whose physical acceptability is also inherited from their isotropic parent. (orig.)

  11. Jets in a strongly coupled anisotropic plasma

    Energy Technology Data Exchange (ETDEWEB)

    Fadafan, Kazem Bitaghsir [Shahrood University of Technology, Faculty of Physics, Shahrood (Iran, Islamic Republic of); University of Southampton, STAG Research Centre Physics and Astronomy, Southampton (United Kingdom); Morad, Razieh [University of Cape Town, Department of Physics, Rondebosch (South Africa)

    2018-01-15

    In this paper, we study the dynamics of the light quark jet moving through the static, strongly coupled N = 4, anisotropic plasma with and without charge. The light quark is presented by a 2-parameters point-like initial condition falling string in the context of the AdS/CFT. We calculate the stopping distance of the light quark in the anisotropic medium and compare it with its isotropic value. We study the dependency of the stopping distance to the both string initial conditions and background parameters such as anisotropy parameter or chemical potential. Although the typical behavior of the string in the anisotropic medium is similar to the one in the isotropic AdS-Sch background, the string falls faster to the horizon depending on the direction of moving. Particularly, the enhancement of quenching is larger in the beam direction. We find that the suppression of stopping distance is more prominent when the anisotropic plasma have the same temperature as the isotropic plasma. (orig.)

  12. New methodology for mechanical characterization of human superficial facial tissue anisotropic behaviour in vivo.

    Science.gov (United States)

    Then, C; Stassen, B; Depta, K; Silber, G

    2017-07-01

    Mechanical characterization of human superficial facial tissue has important applications in biomedical science, computer assisted forensics, graphics, and consumer goods development. Specifically, the latter may include facial hair removal devices. Predictive accuracy of numerical models and their ability to elucidate biomechanically relevant questions depends on the acquisition of experimental data and mechanical tissue behavior representation. Anisotropic viscoelastic behavioral characterization of human facial tissue, deformed in vivo with finite strain, however, is sparse. Employing an experimental-numerical approach, a procedure is presented to evaluate multidirectional tensile properties of superficial tissue layers of the face in vivo. Specifically, in addition to stress relaxation, displacement-controlled multi-step ramp-and-hold protocols were performed to separate elastic from inelastic properties. For numerical representation, an anisotropic hyperelastic material model in conjunction with a time domain linear viscoelasticity formulation with Prony series was employed. Model parameters were inversely derived, employing finite element models, using multi-criteria optimization. The methodology provides insight into mechanical superficial facial tissue properties. Experimental data shows pronounced anisotropy, especially with large strain. The stress relaxation rate does not depend on the loading direction, but is strain-dependent. Preconditioning eliminates equilibrium hysteresis effects and leads to stress-strain repeatability. In the preconditioned state tissue stiffness and hysteresis insensitivity to strain rate in the applied range is evident. The employed material model fits the nonlinear anisotropic elastic results and the viscoelasticity model reasonably reproduces time-dependent results. Inversely deduced maximum anisotropic long-term shear modulus of linear elasticity is G ∞,max aniso =2.43kPa and instantaneous initial shear modulus at an

  13. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    Energy Technology Data Exchange (ETDEWEB)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca [Department of Radiology, Stanford University, Stanford, California 94305 (United States); Department of Radiology, Stanford University, Stanford, California 94305 (United States) and Center for Medical Image Science and Visualization, Linkoeping University, Linkoeping (Sweden); Pattern Recognition Laboratory, Department of Computer Science, Friedrich-Alexander University of Erlangen-Nuremberg, 91054, Erlangen (Germany); Nuclear and Radiological Engineering and Medical Physics Programs, George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States); Siemens AG Healthcare, Forchheim 91301 (Germany); Department of Radiology, Stanford University, Stanford, California 94305 (United States)

    2011-11-15

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8

  14. Three-dimensional anisotropic adaptive filtering of projection data for noise reduction in cone beam CT

    International Nuclear Information System (INIS)

    Maier, Andreas; Wigstroem, Lars; Hofmann, Hannes G.; Hornegger, Joachim; Zhu Lei; Strobel, Norbert; Fahrig, Rebecca

    2011-01-01

    Purpose: The combination of quickly rotating C-arm gantry with digital flat panel has enabled the acquisition of three-dimensional data (3D) in the interventional suite. However, image quality is still somewhat limited since the hardware has not been optimized for CT imaging. Adaptive anisotropic filtering has the ability to improve image quality by reducing the noise level and therewith the radiation dose without introducing noticeable blurring. By applying the filtering prior to 3D reconstruction, noise-induced streak artifacts are reduced as compared to processing in the image domain. Methods: 3D anisotropic adaptive filtering was used to process an ensemble of 2D x-ray views acquired along a circular trajectory around an object. After arranging the input data into a 3D space (2D projections + angle), the orientation of structures was estimated using a set of differently oriented filters. The resulting tensor representation of local orientation was utilized to control the anisotropic filtering. Low-pass filtering is applied only along structures to maintain high spatial frequency components perpendicular to these. The evaluation of the proposed algorithm includes numerical simulations, phantom experiments, and in-vivo data which were acquired using an AXIOM Artis dTA C-arm system (Siemens AG, Healthcare Sector, Forchheim, Germany). Spatial resolution and noise levels were compared with and without adaptive filtering. A human observer study was carried out to evaluate low-contrast detectability. Results: The adaptive anisotropic filtering algorithm was found to significantly improve low-contrast detectability by reducing the noise level by half (reduction of the standard deviation in certain areas from 74 to 30 HU). Virtually no degradation of high contrast spatial resolution was observed in the modulation transfer function (MTF) analysis. Although the algorithm is computationally intensive, hardware acceleration using Nvidia's CUDA Interface provided an 8.9-fold

  15. Randomly organized lipids and marginally stable proteins: a coupling of weak interactions to optimize membrane signaling.

    Science.gov (United States)

    Rice, Anne M; Mahling, Ryan; Fealey, Michael E; Rannikko, Anika; Dunleavy, Katie; Hendrickson, Troy; Lohese, K Jean; Kruggel, Spencer; Heiling, Hillary; Harren, Daniel; Sutton, R Bryan; Pastor, John; Hinderliter, Anne

    2014-09-01

    Eukaryotic lipids in a bilayer are dominated by weak cooperative interactions. These interactions impart highly dynamic and pliable properties to the membrane. C2 domain-containing proteins in the membrane also interact weakly and cooperatively giving rise to a high degree of conformational plasticity. We propose that this feature of weak energetics and plasticity shared by lipids and C2 domain-containing proteins enhance a cell's ability to transduce information across the membrane. We explored this hypothesis using information theory to assess the information storage capacity of model and mast cell membranes, as well as differential scanning calorimetry, carboxyfluorescein release assays, and tryptophan fluorescence to assess protein and membrane stability. The distribution of lipids in mast cell membranes encoded 5.6-5.8bits of information. More information resided in the acyl chains than the head groups and in the inner leaflet of the plasma membrane than the outer leaflet. When the lipid composition and information content of model membranes were varied, the associated C2 domains underwent large changes in stability and denaturation profile. The C2 domain-containing proteins are therefore acutely sensitive to the composition and information content of their associated lipids. Together, these findings suggest that the maximum flow of signaling information through the membrane and into the cell is optimized by the cooperation of near-random distributions of membrane lipids and proteins. This article is part of a Special Issue entitled: Interfacially Active Peptides and Proteins. Guest Editors: William C. Wimley and Kalina Hristova. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. A fast pointwise strategy for anisotropic wave-mode separation in TI media

    KAUST Repository

    Liu, Qiancheng

    2017-08-17

    The multi-component wavefield contains both compressional and shear waves. Separating wave-modes has many applications in seismic workflows. Conventionally, anisotropic wave-mode separation is implemented by either directly filtering in the wavenumber domain or nonstationary filtering in the space domain, which are computationally expensive. These methods could be categorized into the pseudo-derivative family and only work well within Finite Difference (FD) methods. In this paper, we establish a relationship between group-velocity direction and polarity direction and propose a method, which could go beyond modeling by FD. In particular, we are interested in performing wave-mode separation in a Spectral Element Method (SEM), which is widely used for seismic wave propagation on various scales. The separation is implemented pointwise, independent of its neighbor points, suitable for running in parallel. Moreover, no correction for amplitude and phase changes caused by the derivative operator is required. We have verified our scheme using numerical examples.

  17. A fast pointwise strategy for anisotropic wave-mode separation in TI media

    KAUST Repository

    Liu, Qiancheng; Peter, Daniel; Lu, Yongming

    2017-01-01

    The multi-component wavefield contains both compressional and shear waves. Separating wave-modes has many applications in seismic workflows. Conventionally, anisotropic wave-mode separation is implemented by either directly filtering in the wavenumber domain or nonstationary filtering in the space domain, which are computationally expensive. These methods could be categorized into the pseudo-derivative family and only work well within Finite Difference (FD) methods. In this paper, we establish a relationship between group-velocity direction and polarity direction and propose a method, which could go beyond modeling by FD. In particular, we are interested in performing wave-mode separation in a Spectral Element Method (SEM), which is widely used for seismic wave propagation on various scales. The separation is implemented pointwise, independent of its neighbor points, suitable for running in parallel. Moreover, no correction for amplitude and phase changes caused by the derivative operator is required. We have verified our scheme using numerical examples.

  18. A fast algorithm for 3D azimuthally anisotropic velocity scan

    KAUST Repository

    Hu, Jingwei; Fomel, Sergey; Ying, Lexing

    2014-01-01

    © 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.

  19. A fast algorithm for 3D azimuthally anisotropic velocity scan

    KAUST Repository

    Hu, Jingwei

    2014-11-11

    © 2014 European Association of Geoscientists & Engineers. The conventional velocity scan can be computationally expensive for large-scale seismic data sets, particularly when the presence of anisotropy requires multiparameter scanning. We introduce a fast algorithm for 3D azimuthally anisotropic velocity scan by generalizing the previously proposed 2D butterfly algorithm for hyperbolic Radon transforms. To compute semblance in a two-parameter residual moveout domain, the numerical complexity of our algorithm is roughly O(N3logN) as opposed to O(N5) of the straightforward velocity scan, with N being the representative of the number of points in a particular dimension of either data space or parameter space. Synthetic and field data examples demonstrate the superior efficiency of the proposed algorithm.

  20. The PH domain of phosphoinositide-dependent kinase-1 exhibits a novel, phospho-regulated monomer-dimer equilibrium with important implications for kinase domain activation: single-molecule and ensemble studies.

    Science.gov (United States)

    Ziemba, Brian P; Pilling, Carissa; Calleja, Véronique; Larijani, Banafshé; Falke, Joseph J

    2013-07-16

    Phosphoinositide-dependent kinase-1 (PDK1) is an essential master kinase recruited to the plasma membrane by the binding of its C-terminal PH domain to the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3). Membrane binding leads to PDK1 phospho-activation, but despite the central role of PDK1 in signaling and cancer biology, this activation mechanism remains poorly understood. PDK1 has been shown to exist as a dimer in cells, and one crystal structure of its isolated PH domain exhibits a putative dimer interface. It has been proposed that phosphorylation of PH domain residue T513 (or the phospho-mimetic T513E mutation) may regulate a novel PH domain dimer-monomer equilibrium, thereby converting an inactive PDK1 dimer to an active monomer. However, the oligomeric states of the PH domain on the membrane have not yet been determined, nor whether a negative charge at position 513 is sufficient to regulate its oligomeric state. This study investigates the binding of purified wild-type (WT) and T513E PDK1 PH domains to lipid bilayers containing the PIP3 target lipid, using both single-molecule and ensemble measurements. Single-molecule analysis of the brightness of the fluorescent PH domain shows that the PIP3-bound WT PH domain on membranes is predominantly dimeric while the PIP3-bound T513E PH domain is monomeric, demonstrating that negative charge at the T513 position is sufficient to dissociate the PH domain dimer and is thus likely to play a central role in PDK1 monomerization and activation. Single-molecule analysis of two-dimensional (2D) diffusion of PH domain-PIP3 complexes reveals that the dimeric WT PH domain diffuses at the same rate as a single lipid molecule, indicating that only one of its two PIP3 binding sites is occupied and there is little penetration of the protein into the bilayer as observed for other PH domains. The 2D diffusion of T513E PH domain is slower, suggesting the negative charge disrupts local structure in a way that allows

  1. Orientation dependent size effects in single crystalline anisotropic nanoplates with regard to surface energy

    International Nuclear Information System (INIS)

    Assadi, Abbas; Salehi, Manouchehr; Akhlaghi, Mehdi

    2015-01-01

    In this work, size dependent behavior of single crystalline normal and auxetic anisotropic nanoplates is discussed with consideration of material surface stresses via a generalized model. Bending of pressurized nanoplates and their fundamental resonant frequency are discussed for different crystallographic directions and anisotropy degrees. It is explained that the orientation effects are considerable when the nanoplates' edges are pinned but for clamped nanoplates, the anisotropy effect may be ignored. The size effects are the highest when the simply supported nanoplates are parallel to [110] direction but as the anisotropy gets higher, the size effects are reduced. The orientation effect is also discussed for possibility of self-instability occurrence in nanoplates. The results in simpler cases are compared with previous experiments for nanowires but with a correction factor. There are still some open questions for future studies. - Highlights: • Size effects in single crystalline anisotropic nanoplates are discussed. • A generalized model is established containing some physical assumptions. • Orientation dependent size effects due to material anisotropy are explained. • Bending, instability and frequencies are studied at normal/auxetic domain

  2. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  3. Models for randomly distributed nanoscopic domains on spherical vesicles

    Science.gov (United States)

    Anghel, Vinicius N. P.; Bolmatov, Dima; Katsaras, John

    2018-06-01

    The existence of lipid domains in the plasma membrane of biological systems has proven controversial, primarily due to their nanoscopic size—a length scale difficult to interrogate with most commonly used experimental techniques. Scattering techniques have recently proven capable of studying nanoscopic lipid domains populating spherical vesicles. However, the development of analytical methods able of predicting and analyzing domain pair correlations from such experiments has not kept pace. Here, we developed models for the random distribution of monodisperse, circular nanoscopic domains averaged on the surface of a spherical vesicle. Specifically, the models take into account (i) intradomain correlations corresponding to form factors and interdomain correlations corresponding to pair distribution functions, and (ii) the analytical computation of interdomain correlations for cases of two and three domains on a spherical vesicle. In the case of more than three domains, these correlations are treated either by Monte Carlo simulations or by spherical analogs of the Ornstein-Zernike and Percus-Yevick (PY) equations. Importantly, the spherical analog of the PY equation works best in the case of nanoscopic size domains, a length scale that is mostly inaccessible by experimental approaches such as, for example, fluorescent techniques and optical microscopies. The analytical form factors and structure factors of nanoscopic domains populating a spherical vesicle provide a new and important framework for the quantitative analysis of experimental data from commonly studied phase-separated vesicles used in a wide range of biophysical studies.

  4. Supported Lipid Bilayers with Phosphatidylethanolamine as the Major Component.

    Science.gov (United States)

    Sendecki, Anne M; Poyton, Matthew F; Baxter, Alexis J; Yang, Tinglu; Cremer, Paul S

    2017-11-21

    Phosphatidylethanolamine (PE) is notoriously difficult to incorporate into model membrane systems, such as fluid supported lipid bilayers (SLBs), at high concentrations because of its intrinsic negative curvature. Using fluorescence-based techniques, we demonstrate that having fewer sites of unsaturation in the lipid tails leads to high-quality SLBs because these lipids help to minimize the curvature. Moreover, shorter saturated chains can help maintain the membranes in the fluid phase. Using these two guidelines, we find that up to 70 mol % PE can be incorporated into SLBs at room temperature and up to 90 mol % PE can be incorporated at 37 °C. Curiously, conditions under which three-dimensional tubules project outward from the planar surface as well as conditions under which domain formation occurs can be found. We have employed these model membrane systems to explore the ability of Ni 2+ to bind to PE. It was found that this transition metal ion binds 1000-fold tighter to PE than to phosphatidylcholine lipids. In the future, this platform could be exploited to monitor the binding of other transition metal ions or the binding of antimicrobial peptides. It could also be employed to explore the physical properties of PE-containing membranes, such as phase domain behavior and intermolecular hydrogen bonding.

  5. Targeting the motor regulator Klar to lipid droplets

    Directory of Open Access Journals (Sweden)

    Einstein Jenifer

    2011-02-01

    Full Text Available Abstract Background In Drosophila, the transport regulator Klar displays tissue-specific localization: In photoreceptors, it is abundant on the nuclear envelope; in early embryos, it is absent from nuclei, but instead present on lipid droplets. Differential targeting of Klar appears to be due to isoform variation. Droplet targeting, in particular, has been suggested to occur via a variant C-terminal region, the LD domain. Although the LD domain is necessary and sufficient for droplet targeting in cultured cells, lack of specific reagents had made it previously impossible to analyze its role in vivo. Results Here we describe a new mutant allele of klar with a lesion specifically in the LD domain; this lesion abolishes both droplet localization of Klar and the ability of Klar to regulate droplet motion. It does not disrupt Klar's function for nuclear migration in photoreceptors. Using a GFP-LD fusion, we show that the LD domain is not only necessary but also sufficient for droplet targeting in vivo; it mediates droplet targeting in embryos, in ovaries, and in a number of somatic tissues. Conclusions Our analysis demonstrates that droplet targeting of Klar occurs via a cis-acting sequence and generates a new tool for monitoring lipid droplets in living tissues of Drosophila.

  6. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; El-Amin, M. F.

    2013-01-01

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  7. A multipoint flux approximation of the steady-state heat conduction equation in anisotropic media

    KAUST Repository

    Salama, Amgad

    2013-03-20

    In this work, we introduce multipoint flux (MF) approximation method to the problem of conduction heat transfer in anisotropic media. In such media, the heat flux vector is no longer coincident with the temperature gradient vector. In this case, thermal conductivity is described as a second order tensor that usually requires, at least, six quantities to be fully defined in general three-dimensional problems. The two-point flux finite differences approximation may not handle such anisotropy and essentially more points need to be involved to describe the heat flux vector. In the framework of mixed finite element method (MFE), the MFMFE methods are locally conservative with continuous normal fluxes. We consider the lowest order Brezzi-Douglas-Marini (BDM) mixed finite element method with a special quadrature rule that allows for nodal velocity elimination resulting in a cell-centered system for the temperature. We show comparisons with some analytical solution of the problem of conduction heat transfer in anisotropic long strip. We also consider the problem of heat conduction in a bounded, rectangular domain with different anisotropy scenarios. It is noticed that the temperature field is significantly affected by such anisotropy scenarios. Also, the technique used in this work has shown that it is possible to use the finite difference settings to handle heat transfer in anisotropic media. In this case, heat flux vectors, for the case of rectangular mesh, generally require six points to be described. Copyright © 2013 by ASME.

  8. Improved cellular uptake of antisense Peptide nucleic acids by conjugation to a cell-penetrating Peptide and a lipid domain

    DEFF Research Database (Denmark)

    Shiraishi, Takehiko; Nielsen, Peter E

    2011-01-01

    based on a splicing correction of a mutated luciferase gene in HeLa pLuc705 cells by targeting antisense oligonucleotides to a cryptic splice site. Further improvement in the delivery of CatLip-PNA conjugates is achieved by using auxiliary agents/treatments (e.g., chloroquine, calcium ions......Unaided cellular uptake of RNA interference agents such as antisense oligonucleotides and siRNA is extremely poor, and in vivo bioavailability is also limited. Thus, effective delivery strategies for such potential drugs are in high demand. Recently, a novel approach using a class of short cationic....... We have found, however, that this low -bioavailability can be significantly improved by chemical conjugation to a lipid domain ("Lip," such as a fatty acid), thereby creating "CatLip"-conjugates. The cellular uptake of these conjugates is conveniently evaluated using a sensitive cellular assay system...

  9. Domain wall magnetoresistance in BiFeO3 thin films measured by scanning probe microscopy

    NARCIS (Netherlands)

    Domingo, N.; Farokhipoor, S.; Santiso, J.; Noheda, B.; Catalan, G.

    2017-01-01

    We measure the magnetotransport properties of individual 71 degrees domain walls in multiferroic BiFeO3 by means of conductive-atomic force microscopy (C-AFM) in the presence of magnetic fields up to one Tesla. The results suggest anisotropic magnetoresistance at room temperature, with the sign of

  10. Lipid lateral organization on giant unilamellar vesicles containing lipopolysaccharides

    DEFF Research Database (Denmark)

    Kubiak, Jakub; Brewer, Jonathan R.; Hansen, Søren

    2011-01-01

    15 mol % for LPS-smooth and LPS-Ra, and up to 25 mol % for LPS-Rc and LPS-Rd (with respect to total lipids). We used the GUVs to evaluate the impact of different LPS species on the lateral structure of the host membrane (i.e., E. coli polar lipid extract). Rhodamine-DPPE-labeled GUVs show...... model membranes, and that the size of these domains depends on the chemical structure and concentration of the LPSs....

  11. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  12. Lipid raft involvement in yeast cell growth and death

    Energy Technology Data Exchange (ETDEWEB)

    Mollinedo, Faustino, E-mail: fmollin@usal.es [Instituto de Biología Molecular y Celular del Cáncer, Centro de Investigación del Cáncer, Consejo Superior de Investigaciones Científicas - Universidad de Salamanca, Salamanca (Spain)

    2012-10-10

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na{sup +}, K{sup +}, and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  13. Lipid raft involvement in yeast cell growth and death

    International Nuclear Information System (INIS)

    Mollinedo, Faustino

    2012-01-01

    The notion that cellular membranes contain distinct microdomains, acting as scaffolds for signal transduction processes, has gained considerable momentum. In particular, a class of such domains that is rich in sphingolipids and cholesterol, termed as lipid rafts, is thought to compartmentalize the plasma membrane, and to have important roles in survival and cell death signaling in mammalian cells. Likewise, yeast lipid rafts are membrane domains enriched in sphingolipids and ergosterol, the yeast counterpart of mammalian cholesterol. Sterol-rich membrane domains have been identified in several fungal species, including the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe as well as the pathogens Candida albicans and Cryptococcus neoformans. Yeast rafts have been mainly involved in membrane trafficking, but increasing evidence implicates rafts in a wide range of additional cellular processes. Yeast lipid rafts house biologically important proteins involved in the proper function of yeast, such as proteins that control Na + , K + , and pH homeostasis, which influence many cellular processes, including cell growth and death. Membrane raft constituents affect drug susceptibility, and drugs interacting with sterols alter raft composition and membrane integrity, leading to yeast cell death. Because of the genetic tractability of yeast, analysis of yeast rafts could be an excellent model to approach unanswered questions of mammalian raft biology, and to understand the role of lipid rafts in the regulation of cell death and survival in human cells. A better insight in raft biology might lead to envisage new raft-mediated approaches to the treatment of human diseases where regulation of cell death and survival is critical, such as cancer and neurodegenerative diseases.

  14. Waves and discontinuities in relativistic and anisotropic magnetohydrodynamics

    International Nuclear Information System (INIS)

    Cissoko, Mahdy

    1975-01-01

    This work is devoted to the relativistic study of a non-dissipative anisotropic fluid diagram of infinite conductivity. Such a fluid diagram is constructed in part one. Starting from a macroscopic viewpoint a hydrothermodynamic study of the fluid diagram considered is carried out and the fundamental differential system of anisotropic magnetohydrodynamics is deduced. Part two concerns the study of characteristic varieties and propagation of waves for a polytropic anisotropic fluid diagram. Three types of characteristic varieties are revealed: entropy waves (or material waves), magnetosonic waves and Alfven waves. The propagation rates of Alfven and magnetosonic waves are situated with respect to each other. The study of wave cones showed up on the one hand certain special features of wave propagation in anisotropic magnetohydrodynamics and on the other hand the hyperbolic nature of differential operators associated with the various waves [fr

  15. Anisotropic interpolation theorems of Musielak-Orlicz type

    Directory of Open Access Journals (Sweden)

    Jinxia Li

    2016-10-01

    Full Text Available Abstract Anisotropy is a common attribute of Nature, which shows different characterizations in different directions of all or part of the physical or chemical properties of an object. The anisotropic property, in mathematics, can be expressed by a fairly general discrete group of dilations { A k : k ∈ Z } $\\{A^{k}: k\\in\\mathbb{Z}\\}$ , where A is a real n × n $n\\times n$ matrix with all its eigenvalues λ satisfy | λ | > 1 $|\\lambda|>1$ . Let φ : R n × [ 0 , ∞ → [ 0 , ∞ $\\varphi: \\mathbb{R}^{n}\\times[0, \\infty\\to[0,\\infty$ be an anisotropic Musielak-Orlicz function such that φ ( x , ⋅ $\\varphi(x,\\cdot$ is an Orlicz function and φ ( ⋅ , t $\\varphi(\\cdot,t$ is a Muckenhoupt A ∞ ( A $\\mathbb {A}_{\\infty}(A$ weight. The aim of this article is to obtain two anisotropic interpolation theorems of Musielak-Orlicz type, which are weighted anisotropic extension of Marcinkiewicz interpolation theorems. The above results are new even for the isotropic weighted settings.

  16. Anisotropic conductivity imaging with MREIT using equipotential projection algorithm

    Energy Technology Data Exchange (ETDEWEB)

    Degirmenci, Evren [Department of Electrical and Electronics Engineering, Mersin University, Mersin (Turkey); Eyueboglu, B Murat [Department of Electrical and Electronics Engineering, Middle East Technical University, 06531, Ankara (Turkey)

    2007-12-21

    Magnetic resonance electrical impedance tomography (MREIT) combines magnetic flux or current density measurements obtained by magnetic resonance imaging (MRI) and surface potential measurements to reconstruct images of true conductivity with high spatial resolution. Most of the biological tissues have anisotropic conductivity; therefore, anisotropy should be taken into account in conductivity image reconstruction. Almost all of the MREIT reconstruction algorithms proposed to date assume isotropic conductivity distribution. In this study, a novel MREIT image reconstruction algorithm is proposed to image anisotropic conductivity. Relative anisotropic conductivity values are reconstructed iteratively, using only current density measurements without any potential measurement. In order to obtain true conductivity values, only either one potential or conductivity measurement is sufficient to determine a scaling factor. The proposed technique is evaluated on simulated data for isotropic and anisotropic conductivity distributions, with and without measurement noise. Simulation results show that the images of both anisotropic and isotropic conductivity distributions can be reconstructed successfully.

  17. Biosynthesis of archaeal membrane ether lipids

    Directory of Open Access Journals (Sweden)

    Samta eJain

    2014-11-01

    Full Text Available A vital function of the cell membrane in all living organism is to maintain the membrane permeability barrier and fluidity. The composition of the phospholipid bilayer is distinct in archaea when compared to bacteria and eukarya. In archaea, isoprenoid hydrocarbon side chains are linked via an ether bond to the sn-glycerol-1-phosphate backbone. In bacteria and eukarya on the other hand, fatty acid side chains are linked via an ester bond to the sn-glycerol-3-phosphate backbone. The polar head groups are globally shared in the three domains of life. The unique membrane lipids of archaea have been implicated not only in the survival and adaptation of the organisms to extreme environments but also to form the basis of the membrane composition of the last universal common ancestor (LUCA. In nature, a diverse range of archaeal lipids is found, the most common are the diether (or archaeol and the tetraether (or caldarchaeol lipids that form a monolayer. Variations in chain length, cyclization and other modifications lead to diversification of these lipids. The biosynthesis of these lipids is not yet well understood however progress in the last decade has led to a comprehensive understanding of the biosynthesis of archaeol. This review describes the current knowledge of the biosynthetic pathway of archaeal ether lipids; insights on the stability and robustness of archaeal lipid membranes; and evolutionary aspects of the lipid divide and the last universal common ancestor LUCA. It examines recent advances made in the field of pathway reconstruction in bacteria.

  18. Stability conditions for the Bianchi type II anisotropically inflating universes

    International Nuclear Information System (INIS)

    Kao, W.F.; Lin, Ing-Chen

    2009-01-01

    Stability conditions for a class of anisotropically inflating solutions in the Bianchi type II background space are shown explicitly in this paper. These inflating solutions were known to break the cosmic no-hair theorem such that they do not approach the de Sitter universe at large times. It can be shown that unstable modes of the anisotropic perturbations always exist for this class of expanding solutions. As a result, we show that these set of anisotropically expanding solutions are unstable against anisotropic perturbations in the Bianchi type II space

  19. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  20. Transfer of C-terminal residues of human apolipoprotein A-I to insect apolipophorin III creates a two-domain chimeric protein with enhanced lipid binding activity.

    Science.gov (United States)

    Horn, James V C; Ellena, Rachel A; Tran, Jesse J; Beck, Wendy H J; Narayanaswami, Vasanthy; Weers, Paul M M

    2017-08-01

    Apolipophorin III (apoLp-III) is an insect apolipoprotein (18kDa) that comprises a single five-helix bundle domain. In contrast, human apolipoprotein A-I (apoA-I) is a 28kDa two-domain protein: an α-helical N-terminal domain (residues 1-189) and a less structured C-terminal domain (residues 190-243). To better understand the apolipoprotein domain organization, a novel chimeric protein was engineered by attaching residues 179 to 243 of apoA-I to the C-terminal end of apoLp-III. The apoLp-III/apoA-I chimera was successfully expressed and purified in E. coli. Western blot analysis and mass spectrometry confirmed the presence of the C-terminal domain of apoA-I within the chimera. While parent apoLp-III did not self-associate, the chimera formed oligomers similar to apoA-I. The chimera displayed a lower α-helical content, but the stability remained similar compared to apoLp-III, consistent with the addition of a less structured domain. The chimera was able to solubilize phospholipid vesicles at a significantly higher rate compared to apoLp-III, approaching that of apoA-I. The chimera was more effective in protecting phospholipase C-treated low density lipoprotein from aggregation compared to apoLp-III. In addition, binding interaction of the chimera with phosphatidylglycerol vesicles and lipopolysaccharides was considerably improved compared to apoLp-III. Thus, addition of the C-terminal domain of apoA-I to apoLp-III created a two-domain protein, with self-association, lipid and lipopolysaccharide binding properties similar to apoA-I. The apoA-I like behavior of the chimera indicate that these properties are independent from residues residing in the N-terminal domain of apoA-I, and that they can be transferred from apoA-I to apoLp-III. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Inhibition of Akt signaling by exclusion from lipid rafts in normal and transformed epidermal keratinocytes

    DEFF Research Database (Denmark)

    Calay, Damien; Vind-Kezunovic, Dina; Frankart, Aurelie

    2010-01-01

    Lipid rafts are cholesterol-rich plasma membrane domains that regulate signal transduction. Because our earlier work indicated that raft disruption inhibited proliferation and caused cell death, we investigated here the role of membrane cholesterol, the crucial raft constituent, in the regulation...... of the phosphatidylinositol-3 kinase (PI3K)/Akt pathway. Raft disruption was achieved in normal human keratinocytes and precancerous (HaCaT) or transformed (A431) keratinocytes by cholesterol extraction or inactivation with methyl-beta-cyclodextrin, filipin III, or 5-cholestene-5-beta-ol. Lipid raft disruption did not affect...... in deactivation of mammalian target of rapamycin, activation of FoxO3a, and increased sensitivity to apoptosis stimuli. Lipid raft disruption abrogated the binding of Akt and the major Akt kinase, phosphatidylinositol-dependent kinase 1, to the membrane by pleckstrin-homology domains. Thus, the integrity of lipid...

  2. Membrane domains and polarized trafficking of sphingolipids

    NARCIS (Netherlands)

    Maier, O; Slimane, TA; Hoekstra, D

    The plasma membrane of polarized cells consists of distinct domains, the apical and basolateral membrane that are characterized by a distinct lipid and protein content. Apical protein transport is largely mediated by (glyco)sphingolipid-cholesterol enriched membrane microdomains, so called rafts. In

  3. Learning the lipid language of plant signalling.

    NARCIS (Netherlands)

    van Leeuwen, W.; Okresz, L.; Bogre, L.; Munnik, T.

    2004-01-01

    Plant cells respond to different biotic and abiotic stresses by producing various uncommon phospholipids that are believed to play key roles in cell signalling. We can predict how they work because animal and yeast proteins have been shown to have specific lipid-binding domains, which act as docking

  4. Anisotropic modulation of magnetic properties and the memory effect in a wide-band (011)-Pr0.7Sr0.3MnO3/PMN-PT heterostructure

    KAUST Repository

    Zhao, Ying-Ying

    2015-04-24

    Memory effect of electric-field control on magnetic behavior in magnetoelectric composite heterostructures has been a topic of interest for a long time. Although the piezostrain and its transfer across the interface of ferroelectric/ferromagnetic films are known to be important in realizing magnetoelectric coupling, the underlying mechanism for nonvolatile modulation of magnetic behaviors remains a challenge. Here, we report on the electric-field control of magnetic properties in wide-band (011)-Pr0.7Sr0.3MnO3/0.7Pb(Mg1/3Nb2/3)O3-0.3PbTiO3 heterostructures. By introducing an electric-field-induced in-plane anisotropic strain field during the cooling process from room temperature, we observe an in-plane anisotropic, nonvolatile modulation of magnetic properties in a wide-band Pr0.7Sr0.3MnO3 film at low temperatures. We attribute this anisotropic memory effect to the preferential seeding and growth of ferromagnetic (FM) domains under the anisotropic strain field. In addition, we find that the anisotropic, nonvolatile modulation of magnetic properties gradually diminishes as the temperature approaches FM transition, indicating that the nonvolatile memory effect is temperature dependent. By taking into account the competition between thermal energy and the potential barrier of the metastable magnetic state induced by the anisotropic strain field, this distinct memory effect is well explained, which provides a promising approach for designing novel electric-writing magnetic memories.

  5. Structure and hydration of membranes embedded with voltage-sensing domains.

    Science.gov (United States)

    Krepkiy, Dmitriy; Mihailescu, Mihaela; Freites, J Alfredo; Schow, Eric V; Worcester, David L; Gawrisch, Klaus; Tobias, Douglas J; White, Stephen H; Swartz, Kenton J

    2009-11-26

    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field.

  6. A Morphing framework to couple non-local and local anisotropic continua

    KAUST Repository

    Azdoud, Yan

    2013-05-01

    In this article, we develop a method to couple anisotropic local continua with anisotropic non-local continua with central long-range forces. First, we describe anisotropic non-local models based on spherical harmonic descriptions. We then derive compatible classic continuum models. Finally, we apply the morphing method to these anisotropic non-local models and present three-dimensional numerical examples to validate the efficiency of the technique. © 2013 Elsevier Ltd. All rights reserved.

  7. Efficient anisotropic quasi-P wavefield extrapolation using an isotropic low-rank approximation

    KAUST Repository

    Zhang, Zhendong

    2017-12-17

    The computational cost of quasi-P wave extrapolation depends on the complexity of the medium, and specifically the anisotropy. Our effective-model method splits the anisotropic dispersion relation into an isotropic background and a correction factor to handle this dependency. The correction term depends on the slope (measured using the gradient) of current wavefields and the anisotropy. As a result, the computational cost is independent of the nature of anisotropy, which makes the extrapolation efficient. A dynamic implementation of this approach decomposes the original pseudo-differential operator into a Laplacian, handled using the low-rank approximation of the spectral operator, plus an angular dependent correction factor applied in the space domain to correct for anisotropy. We analyze the role played by the correction factor and propose a new spherical decomposition of the dispersion relation. The proposed method provides accurate wavefields in phase and more balanced amplitudes than a previous spherical decomposition. Also, it is free of SV-wave artifacts. Applications to a simple homogeneous transverse isotropic medium with a vertical symmetry axis (VTI) and a modified Hess VTI model demonstrate the effectiveness of the approach. The Reverse Time Migration (RTM) applied to a modified BP VTI model reveals that the anisotropic migration using the proposed modeling engine performs better than an isotropic migration.

  8. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  9. Analysis of anisotropic crack problems using coupled meshless and fractal finite element method

    International Nuclear Information System (INIS)

    Rao, B N; Rajesh, K N

    2010-01-01

    This paper presents a coupling technique for integrating the element-free Galerkin method (EFGM) with fractal the finite element method (FFEM) for analyzing homogeneous, anisotropic, and two dimensional linear-elastic cracked structures subjected to mixed-mode (modes I and II) loading conditions. FFEM is adopted for discretization of domain close to the crack tip and EFGM is adopted in the rest of the domain. In the transition region interface elements are employed. The proposed method combines the best features of EFGM and FFEM, in the sense that no structured mesh or special enriched basis functions are necessary and no post-processing (employing any path independent integrals) is needed to determine fracture parameters such as stress intensity factors (SIFs) and T-stress. The numerical results based on all four orthotropic cases show that SIFs and T-stress obtained using the proposed method are in excellent agreement with the reference solutions for the structural and crack geometries considered in the present study.

  10. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo

    2017-11-02

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  11. Acoustic frequency filter based on anisotropic topological phononic crystals

    KAUST Repository

    Chen, Zeguo; Zhao, Jiajun; Mei, Jun; Wu, Ying

    2017-01-01

    We present a design of acoustic frequency filter based on a two-dimensional anisotropic phononic crystal. The anisotropic band structure exhibits either a directional or a combined (global + directional) bandgap at certain frequency regions, depending on the geometry. When the time-reversal symmetry is broken, it may introduce a topologically nontrivial bandgap. The induced nontrivial bandgap and the original directional bandgap result in various interesting wave propagation behaviors, such as frequency filter. We develop a tight-binding model to characterize the effective Hamiltonian of the system, from which the contribution of anisotropy is explicitly shown. Different from the isotropic cases, the Zeeman-type splitting is not linear and the anisotropic bandgap makes it possible to achieve anisotropic propagation characteristics along different directions and at different frequencies.

  12. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  13. Plane-wave diffraction by periodic structures with artificial anisotropic dielectrics

    International Nuclear Information System (INIS)

    Kazerooni, Azadeh Semsar; Shahabadi, Mahmoud

    2010-01-01

    Periodic structures with artificial anisotropic dielectrics are studied. The artificial anisotropic dielectric material in this work is made of two alternating isotropic dielectric layers. By a proper choice of the dielectric constant of the layers, we can realize a uniaxial anisotropic medium with controllable anisotropy. The artificial anisotropic dielectric is then used in periodic structures. For these structures, the optical axis of the artificial dielectric is assumed to be parallel or perpendicular to the period of the structure. Diffraction of plane waves by these structures is analyzed by a fully vectorial rigorous matrix method based on a generalized transmission line (TL) formulation. The propagation constants and field distributions are computed and diffraction properties of such structures are studied to show that, by a proper choice of structural parameters, these periodic structures with artificial anisotropic dielectrics can be used as polarizers or polarizing mirrors

  14. Two-Phase Contiguous Supported Lipid Bilayer Model for Membrane Rafts via Polymer Blotting and Stenciling.

    Science.gov (United States)

    Richards, Mark J; Daniel, Susan

    2017-02-07

    The supported lipid bilayer has been portrayed as a useful model of the cell membrane compatible with many biophysical tools and techniques that demonstrate its appeal in learning about the basic features of the plasma membrane. However, some of its potential has yet to be realized, particularly in the area of bilayer patterning and phase/composition heterogeneity. In this work, we generate contiguous bilayer patterns as a model system that captures the general features of membrane domains and lipid rafts. Micropatterned polymer templates of two types are investigated for generating patterned bilayer formation: polymer blotting and polymer lift-off stenciling. While these approaches have been used previously to create bilayer arrays by corralling bilayers patches with various types of boundaries impenetrable to bilayer diffusion, unique to the methods presented here, there are no physical barriers to diffusion. In this work, interfaces between contiguous lipid phases define the pattern shapes, with continuity between them allowing transfer of membrane-bound biomolecules between the phases. We examine effectors of membrane domain stability including temperature and cholesterol content to investigate domain dynamics. Contiguous patterning of supported bilayers as a model of lipid rafts expands the application of the SLB to an area with current appeal and brings with it a useful toolset for characterization and analysis. These combined tools should be helpful to researchers investigating lipid raft dynamics and function and biomolecule partitioning studies. Additionally, this patterning technique may be useful for applications such as bioseparations that exploit differences in lipid phase partitioning or creation of membranes that bind species like viruses preferentially at lipid phase boundaries, to name a few.

  15. Engineering lipid structure for recognition of the liquid ordered membrane phase

    International Nuclear Information System (INIS)

    Bordovsky, Stefan S.; Wong, Christopher S.; Bachand, George D.; Stachowiak, Jeanne C.; Sasaki, Darryl Y.

    2016-01-01

    The selective partitioning of lipid components in phase-separated membranes is essential for domain formation involved in cellular processes. Identifying and tracking the movement of lipids in cellular systems would be improved if we understood how to achieve selective affinity between fluorophore-labeled lipids and membrane assemblies. Furthermore, we investigated the structure and chemistry of membrane lipids to evaluate lipid designs that partition to the liquid ordered (L_o) phase. A range of fluorophores at the headgroup position and lengths of PEG spacer between the lipid backbone and fluorophore were examined. On a lipid body with saturated palmityl or palmitoyl tails, we found that although the lipid tails can direct selective partitioning to the L_o phase through favorable packing interactions, headgroup hydrophobicity can override the partitioning behavior and direct the lipid to the disordered membrane phase (L_d). The PEG spacer can serve as a buffer to mute headgroup–membrane interactions and thus improve L_o phase partitioning, but its effect is limited with strongly hydrophobic fluorophore headgroups. We present a series of lipid designs leading to the development of novel fluorescently labeled lipids with selective affinity for the L_o phase.

  16. Anisotropic Intervalley Plasmon Excitations in Graphene

    International Nuclear Information System (INIS)

    Chen Jian; Xu Huai-Zhe

    2015-01-01

    We investigate theoretically the intervalley plasmon excitations (IPEs) in graphene monolayer within the random-phase approximation. We derive an analytical expression of the real part of the dielectric function. We find a low-energy plasmon mode with a linear anisotropic dispersion which depends on the Fermi energy and the dielectric constant of substrate. The IPEs show strongly anisotropic behavior, which becomes significant around the zigzag crystallographic direction. More interestingly, the group velocity of IPE varies from negative to positive, and vanishes at special energy. (paper)

  17. Modelling of CMUTs with Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Jensen, Jørgen Arendt

    2012-01-01

    Traditionally, CMUTs are modelled using the isotropic plate equation and this leads to deviations between analytical calculations and FEM simulations. In this paper, the deflection profile and material parameters are calculated using the anisotropic plate equation. It is shown that the anisotropic...... calculations match perfectly with FEM while an isotropic approach causes up to 10% deviations in deflection profile. Furthermore, we show how commonly used analytic modelling methods such as static calculations of the pull-in voltage and dynamic modelling through an equivalent circuit representation can...

  18. Comparison of S. cerevisiae F-BAR domain structures reveals a conserved inositol phosphate binding site

    Science.gov (United States)

    Moravcevic, Katarina; Alvarado, Diego; Schmitz, Karl R.; Kenniston, Jon A.; Mendrola, Jeannine M.; Ferguson, Kathryn M.; Lemmon, Mark A.

    2015-01-01

    SUMMARY F-BAR domains control membrane interactions in endocytosis, cytokinesis, and cell signaling. Although generally thought to bind curved membranes containing negatively charged phospholipids, numerous functional studies argue that differences in lipid-binding selectivities of F-BAR domains are functionally important. Here, we compare membrane-binding properties of the S. cerevisiae F-BAR domains in vitro and in vivo. Whereas some F-BAR domains (such as Bzz1p and Hof1p F-BARs) bind equally well to all phospholipids, the F-BAR domain from the RhoGAP Rgd1p preferentially binds phosphoinositides. We determined X-ray crystal structures of F-BAR domains from Hof1p and Rgd1p, the latter bound to an inositol phosphate. The structures explain phospholipid-binding selectivity differences, and reveal an F-BAR phosphoinositide binding site that is fully conserved in a mammalian RhoGAP called Gmip, and is partly retained in certain other F-BAR domains. Our findings reveal previously unappreciated determinants of F-BAR domain lipid-binding specificity, and provide a basis for its prediction from sequence. PMID:25620000

  19. Maximally asymmetric transbilayer distribution of anionic lipids alters the structure and interaction with lipids of an amyloidogenic protein dimer bound to the membrane surface.

    Science.gov (United States)

    Cheng, Sara Y; Chou, George; Buie, Creighton; Vaughn, Mark W; Compton, Campbell; Cheng, Kwan H

    2016-03-01

    We used molecular dynamics simulations to explore the effects of asymmetric transbilayer distribution of anionic phosphatidylserine (PS) lipids on the structure of a protein on the membrane surface and subsequent protein-lipid interactions. Our simulation systems consisted of an amyloidogenic, beta-sheet rich dimeric protein (D42) absorbed to the phosphatidylcholine (PC) leaflet, or protein-contact PC leaflet, of two membrane systems: a single-component PC bilayer and double PC/PS bilayers. The latter comprised of a stable but asymmetric transbilayer distribution of PS in the presence of counterions, with a 1-component PC leaflet coupled to a 1-component PS leaflet in each bilayer. The maximally asymmetric PC/PS bilayer had a non-zero transmembrane potential (TMP) difference and higher lipid order packing, whereas the symmetric PC bilayer had a zero TMP difference and lower lipid order packing under physiologically relevant conditions. Analysis of the adsorbed protein structures revealed weaker protein binding, more folding in the N-terminal domain, more aggregation of the N- and C-terminal domains and larger tilt angle of D42 on the PC leaflet surface of the PC/PS bilayer versus the PC bilayer. Also, analysis of protein-induced membrane structural disruption revealed more localized bilayer thinning in the PC/PS versus PC bilayer. Although the electric field profile in the non-protein-contact PS leaflet of the PC/PS bilayer differed significantly from that in the non-protein-contact PC leaflet of the PC bilayer, no significant difference in the electric field profile in the protein-contact PC leaflet of either bilayer was evident. We speculate that lipid packing has a larger effect on the surface adsorbed protein structure than the electric field for a maximally asymmetric PC/PS bilayer. Our results support the mechanism that the higher lipid packing in a lipid leaflet promotes stronger protein-protein but weaker protein-lipid interactions for a dimeric protein on

  20. Microstructure within domains of melt-processed YBa2Cu3O7-x superconductors

    International Nuclear Information System (INIS)

    Alexander, K.B.; Goyal, A.; Kroeger, D.M.; Selvamanickam, V.; Salama, K.

    1992-01-01

    The microstructure within single domains of melt-processed YBa 2 Cu 3 O 7-x (1:2:3) material has been examined. Rather than composing a ''brick-wall'' structure, the stacked, parallel platelets within the domains are actually portions of a single crystal. A growth mechanism is proposed that is consistent with the observed microstructural features. The anisotropic nature of the growth of 1:2:3 results in gaps separating the platelets. The gaps, however, terminate within domains, resulting in interconnected single-crystalline material. The absence of weak-link behavior for current flow along the c axis and the high critical-current densities observed within domains of melt-processed 1:2:3 material are readily explained by the fact that current flow is solely through single-crystalline material

  1. On Pokrovskii's anisotropic gap equations in superconductivity theory

    Science.gov (United States)

    Yang, Yisong

    2003-11-01

    An existence and uniqueness theorem for Pokrovskii's zero-temperature anisotropic gap equation is proved. Furthermore, it is shown that Pokrovskii's finite-temperature equation is inconsistent with the Bardeen-Cooper-Schrieffer (BCS) theory. A reformulation of the anisotropic gap equation is presented along the line of Pokrovskii and it is shown that the new equation is consistent with the BCS theory for the whole temperature range. As an application, the Markowitz-Kadanoff model for anisotropic superconductivity is considered and a rigorous proof of the half-integer-exponent isotope effect is obtained. Furthermore, a sharp estimate of the gap solution near the transition temperature is established.

  2. Proteomic Analysis of Lipid Raft-Like Detergent-Resistant Membranes of Lens Fiber Cells.

    Science.gov (United States)

    Wang, Zhen; Schey, Kevin L

    2015-12-01

    Plasma membranes of lens fiber cells have high levels of long-chain saturated fatty acids, cholesterol, and sphingolipids-key components of lipid rafts. Thus, lipid rafts are expected to constitute a significant portion of fiber cell membranes and play important roles in lens biology. The purpose of this study was to characterize the lens lipid raft proteome. Quantitative proteomics, both label-free and iTRAQ methods, were used to characterize lens fiber cell lipid raft proteins. Detergent-resistant, lipid raft membrane (DRM) fractions were isolated by sucrose gradient centrifugation. To confirm protein localization to lipid rafts, protein sensitivity to cholesterol removal by methyl-β-cyclodextrin was quantified by iTRAQ analysis. A total of 506 proteins were identified in raft-like detergent-resistant membranes. Proteins identified support important functions of raft domains in fiber cells, including trafficking, signal transduction, and cytoskeletal organization. In cholesterol-sensitivity studies, 200 proteins were quantified and 71 proteins were strongly affected by cholesterol removal. Lipid raft markers flotillin-1 and flotillin-2 and a significant fraction of AQP0, MP20, and AQP5 were found in the DRM fraction and were highly sensitive to cholesterol removal. Connexins 46 and 50 were more abundant in nonraft fractions, but a small fraction of each was found in the DRM fraction and was strongly affected by cholesterol removal. Quantification of modified AQP0 confirmed that fatty acylation targeted this protein to membrane raft domains. These data represent the first comprehensive profile of the lipid raft proteome of lens fiber cells and provide information on membrane protein organization in these cells.

  3. Lipid composition of membrane rafts, isolated with and without detergent, from the spleen of a mouse model of Gaucher disease.

    Science.gov (United States)

    Hattersley, Kathryn J; Hein, Leanne K; Fuller, Maria

    2013-12-06

    Biological membranes are composed of functionally relevant liquid-ordered and liquid-disordered domains that coexist. Within the liquid-ordered domains are low-density microdomains known as rafts with a unique lipid composition that is crucial for their structure and function. Lipid raft composition is altered in sphingolipid storage disorders, and here we determined the lipid composition using a detergent and detergent-free method in spleen tissue, the primary site of pathology, in a mouse model of the sphingolipid storage disorder, Gaucher disease. The accumulating lipid, glucosylceramide, was 30- and 50-fold elevated in the rafts with the detergent and detergent-free method, respectively. Secondary accumulation of di- and trihexosylceramide resided primarily in the rafts with both methods. The phospholipids distributed differently with more than half residing in the rafts with the detergent-free method and less than 10% with the detergent method, with the exception of the fully saturated species that were primarily in the rafts. Individual isoforms of sphingomyelin correlated with detergent-free extraction and more than half resided in the raft fractions. However, this correlation was not seen with the detergent extraction method as sphingomyelin species were spread across both the raft and non-raft domains. Therefore caution must be exercised when interpreting phospholipid distribution in raft domains as it differs considerably depending on the method of isolation. Importantly, both methods revealed the same lipid alterations in the raft domains in the spleen of the Gaucher disease mouse model highlighting that either method is appropriate to determine membrane lipid changes in the diseased state. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. BAR domain proteins regulate Rho GTPase signaling.

    Science.gov (United States)

    Aspenström, Pontus

    2014-01-01

    BAR proteins comprise a heterogeneous group of multi-domain proteins with diverse biological functions. The common denominator is the Bin-Amphiphysin-Rvs (BAR) domain that not only confers targeting to lipid bilayers, but also provides scaffolding to mold lipid membranes into concave or convex surfaces. This function of BAR proteins is an important determinant in the dynamic reconstruction of membrane vesicles, as well as of the plasma membrane. Several BAR proteins function as linkers between cytoskeletal regulation and membrane dynamics. These links are provided by direct interactions between BAR proteins and actin-nucleation-promoting factors of the Wiskott-Aldrich syndrome protein family and the Diaphanous-related formins. The Rho GTPases are key factors for orchestration of this intricate interplay. This review describes how BAR proteins regulate the activity of Rho GTPases, as well as how Rho GTPases regulate the function of BAR proteins. This mutual collaboration is a central factor in the regulation of vital cellular processes, such as cell migration, cytokinesis, intracellular transport, endocytosis, and exocytosis.

  5. Capturing suboptical dynamic structures in lipid bilayer patches formed from free-standing giant unilamellar vesicles

    DEFF Research Database (Denmark)

    Bhatia, Tripta; Cornelius, Flemming; Ipsen, John H.

    2017-01-01

    . The method has been applied to classical lipid raft mixtures in which suboptical domain fluctuations have been imaged in both the liquid-ordered and liquid-disordered membrane phases. High-resolution scanning by atomic force microscopy (AFM) of membranes composed of binary and ternary lipid mixtures...

  6. Anisotropic characterization of magnetorheological materials

    Energy Technology Data Exchange (ETDEWEB)

    Dohmen, E., E-mail: eike.dohmen@tu-dresden.de; Modler, N.; Gude, M.

    2017-06-01

    For the development of energy efficient lightweight parts novel function integrating materials are needed. Concerning this field of application magnetorheological (MR) fluids, MR elastomers and MR composites are promising materials allowing the adjustment of mechanical properties by an external magnetic field. A key issue for operating such structures in praxis is the magneto-mechanical description. Most rheological properties are gathered at laboratory conditions for high magnetic flux densities and a single field direction, which does not correspond to real praxis conditions. Although anisotropic formation of superstructures can be observed in MR suspensions (Fig. 1) or experimenters intentionally polymerize MR elastomers with anisotropic superstructures these MR materials are usually described in an external magnetic field as uniform, isotropic materials. This is due to missing possibilities for experimentally measuring field angle dependent properties and ways of distinguishing between material properties and frictional effects. Just a few scientific works experimentally investigated the influence of different field angles (Ambacher et al., 1992; Grants et al., 1990; Kuzhir et al., 2003) or the influence of surface roughness on the shear behaviour of magnetic fluids (Tang and Conrad, 1996) . The aim of this work is the introduction of a novel field angle cell allowing the determination of anisotropic mechanical properties for various MR materials depending on the applied magnetic field angle. - Highlights: • Novel magnetic field angle testing device (MFATD) presented. • Determination of magnetic field dependent anisotropic mechanical properties. • Experimental data for different field directions shown for a commercial MR fluid. • Material description of MR fluids as transversal-isotropic solids. • Magnetic field angle dependent variations in shear stresses experimentally measured. • Determination of frictional coefficients between the MR fluid and

  7. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  8. Anisotropic magnetoresistance and piezoelectric effect in GaAs Hall samples

    Science.gov (United States)

    Ciftja, Orion

    2017-02-01

    Application of a strong magnetic field perpendicular to a two-dimensional electron system leads to a variety of quantum phases ranging from incompressible quantum Hall liquid to Wigner solid, charge density wave, and exotic non-Abelian states. A few quantum phases seen in past experiments on GaAs Hall samples of electrons show pronounced anisotropic magnetoresistance values at certain weak magnetic fields. We argue that this might be due to the piezoelectric effect that is inherent in a semiconductor host such as GaAs. Such an effect has the potential to create a sufficient in-plane internal strain that will be felt by electrons and will determine the direction of high and low resistance. When Wigner solid, charge density wave, and isotropic liquid phases are very close in energy, the overall stability of the system is very sensitive to local order and, thus, can be strongly influenced even by a weak perturbation such as the piezoelectric-induced effective electron-electron interaction, which is anisotropic. In this work, we argue that an anisotropic interaction potential may stabilize anisotropic liquid phases of electrons even in a strong magnetic field regime where normally one expects to see only isotropic quantum Hall or isotropic Fermi liquid states. We use this approach to support a theoretical framework that envisions the possibility of an anisotropic liquid crystalline state of electrons in the lowest Landau level. In particular, we argue that an anisotropic liquid state of electrons may stabilize in the lowest Landau level close to the liquid-solid transition region at filling factor ν =1 /6 for a given anisotropic Coulomb interaction potential. Quantum Monte Carlo simulations for a liquid crystalline state with broken rotational symmetry indicate stability of liquid crystalline order consistent with the existence of an anisotropic liquid state of electrons stabilized by anisotropy at filling factor ν =1 /6 of the lowest Landau level.

  9. Development of laser ablation plasma by anisotropic self-radiation

    Directory of Open Access Journals (Sweden)

    Ohnishi Naofumi

    2013-11-01

    Full Text Available We have proposed a method for reproducing an accurate solution of low-density ablation plasma by properly treating anisotropic radiation. Monte-Carlo method is employed for estimating Eddington tensor with limited number of photon samples in each fluid time step. Radiation field from ablation plasma is significantly affected by the anisotropic Eddington tensor. Electron temperature around the ablation surface changes with the radiation field and is responsible for the observed emission. An accurate prediction of the light emission from the laser ablation plasma requires a careful estimation of the anisotropic radiation field.

  10. Anisotropic inflation with derivative couplings

    Science.gov (United States)

    Holland, Jonathan; Kanno, Sugumi; Zavala, Ivonne

    2018-05-01

    We study anisotropic power-law inflationary solutions when the inflaton and its derivative couple to a vector field. This type of coupling is motivated by D-brane inflationary models, in which the inflaton, and a vector field living on the D-brane, couple disformally (derivatively). We start by studying a phenomenological model where we show the existence of anisotropic solutions and demonstrate their stability via a dynamical system analysis. Compared to the case without a derivative coupling, the anisotropy is reduced and thus can be made consistent with current limits, while the value of the slow-roll parameter remains almost unchanged. We also discuss solutions for more general cases, including D-brane-like couplings.

  11. Anisotropic charged generalized polytropic models

    Science.gov (United States)

    Nasim, A.; Azam, M.

    2018-06-01

    In this paper, we found some new anisotropic charged models admitting generalized polytropic equation of state with spherically symmetry. An analytic solution of the Einstein-Maxwell field equations is obtained through the transformation introduced by Durgapal and Banerji (Phys. Rev. D 27:328, 1983). The physical viability of solutions corresponding to polytropic index η =1/2, 2/3, 1, 2 is analyzed graphically. For this, we plot physical quantities such as radial and tangential pressure, anisotropy, speed of sound which demonstrated that these models achieve all the considerable physical conditions required for a relativistic star. Further, it is mentioned here that previous results for anisotropic charged matter with linear, quadratic and polytropic equation of state can be retrieved.

  12. Oscillatory phase separation in giant lipid vesicles induced by transmembrane osmotic differentials

    Science.gov (United States)

    Oglęcka, Kamila; Rangamani, Padmini; Liedberg, Bo; Kraut, Rachel S; Parikh, Atul N

    2014-01-01

    Giant lipid vesicles are closed compartments consisting of semi-permeable shells, which isolate femto- to pico-liter quantities of aqueous core from the bulk. Although water permeates readily across vesicular walls, passive permeation of solutes is hindered. In this study, we show that, when subject to a hypotonic bath, giant vesicles consisting of phase separating lipid mixtures undergo osmotic relaxation exhibiting damped oscillations in phase behavior, which is synchronized with swell–burst lytic cycles: in the swelled state, osmotic pressure and elevated membrane tension due to the influx of water promote domain formation. During bursting, solute leakage through transient pores relaxes the pressure and tension, replacing the domain texture by a uniform one. This isothermal phase transition—resulting from a well-coordinated sequence of mechanochemical events—suggests a complex emergent behavior allowing synthetic vesicles produced from simple components, namely, water, osmolytes, and lipids to sense and regulate their micro-environment. DOI: http://dx.doi.org/10.7554/eLife.03695.001 PMID:25318069

  13. Macroscopic domain formation in the platelet plasma membrane

    DEFF Research Database (Denmark)

    Bali, Rachna; Savino, Laura; Ramirez, Diego A.

    2009-01-01

    There has been ample debate on whether cell membranes can present macroscopic lipid domains as predicted by three-component phase diagrams obtained by fluorescence microscopy. Several groups have argued that membrane proteins and interactions with the cytoskeleton inhibit the formation of large d...

  14. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...

  15. LipidPedia: a comprehensive lipid knowledgebase.

    Science.gov (United States)

    Kuo, Tien-Chueh; Tseng, Yufeng Jane

    2018-04-10

    Lipids are divided into fatty acyls, glycerolipids, glycerophospholipids, sphingolipids, saccharolipids, sterols, prenol lipids and polyketides. Fatty acyls and glycerolipids are commonly used as energy storage, whereas glycerophospholipids, sphingolipids, sterols and saccharolipids are common used as components of cell membranes. Lipids in fatty acyls, glycerophospholipids, sphingolipids and sterols classes play important roles in signaling. Although more than 36 million lipids can be identified or computationally generated, no single lipid database provides comprehensive information on lipids. Furthermore, the complex systematic or common names of lipids make the discovery of related information challenging. Here, we present LipidPedia, a comprehensive lipid knowledgebase. The content of this database is derived from integrating annotation data with full-text mining of 3,923 lipids and more than 400,000 annotations of associated diseases, pathways, functions, and locations that are essential for interpreting lipid functions and mechanisms from over 1,400,000 scientific publications. Each lipid in LipidPedia also has its own entry containing a text summary curated from the most frequently cited diseases, pathways, genes, locations, functions, lipids and experimental models in the biomedical literature. LipidPedia aims to provide an overall synopsis of lipids to summarize lipid annotations and provide a detailed listing of references for understanding complex lipid functions and mechanisms. LipidPedia is available at http://lipidpedia.cmdm.tw. yjtseng@csie.ntu.edu.tw. Supplementary data are available at Bioinformatics online.

  16. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand

    2013-06-18

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  17. Anisotropic rectangular metric for polygonal surface remeshing

    KAUST Repository

    Pellenard, Bertrand; Morvan, Jean-Marie; Alliez, Pierre

    2013-01-01

    We propose a new method for anisotropic polygonal surface remeshing. Our algorithm takes as input a surface triangle mesh. An anisotropic rectangular metric, defined at each triangle facet of the input mesh, is derived from both a user-specified normal-based tolerance error and the requirement to favor rectangle-shaped polygons. Our algorithm uses a greedy optimization procedure that adds, deletes and relocates generators so as to match two criteria related to partitioning and conformity.

  18. Temperature-Responsive Anisotropic Slippery Surface for Smart Control of the Droplet Motion.

    Science.gov (United States)

    Wang, By Lili; Heng, Liping; Jiang, Lei

    2018-02-28

    Development of stimulus-responsive anisotropic slippery surfaces is important because of the high demand for such materials in the field of liquid directional-driven systems. However, current studies in the field of slippery surfaces are mainly conducted to prepare isotropic slippery surfaces. Although we have developed electric-responsive anisotropic slippery surfaces that enable smart control of the droplet motion, there remain challenges for designing temperature-responsive anisotropic slippery surfaces to control the liquid droplet motion on the surface and in the tube. In this work, temperature-responsive anisotropic slippery surfaces have been prepared by using paraffin, a thermo-responsive phase-transition material, as a lubricating fluid and directional porous polystyrene (PS) films as the substrate. The smart regulation of the droplet motion of several liquids on this surface was accomplished by tuning the substrate temperature. The uniqueness of this surface lies in the use of an anisotropic structure and temperature-responsive lubricating fluids to achieve temperature-driven smart control of the anisotropic motion of the droplets. Furthermore, this surface was used to design temperature-driven anisotropic microreactors and to manipulate liquid transfer in tubes. This work advances the understanding of the principles underlying anisotropic slippery surfaces and provides a promising material for applications in the biochip and microreactor system.

  19. Superstrate loading effects on the resonant characteristics of high Tc superconducting circular patch printed on anisotropic materials

    Science.gov (United States)

    Bedra, Sami; Bedra, Randa; Benkouda, Siham; Fortaki, Tarek

    2017-12-01

    In this paper, the effects of both anisotropies in the substrate and superstrate loading on the resonant frequency and bandwidth of high-Tc superconducting circular microstrip patch in a substrate-superstrate configuration are investigated. A rigorous analysis is performed using a dyadic Galerkin's method in the vector Hankel transform domain. Galerkin's procedure is employed in the spectral domain where the TM and TE modes of the cylindrical cavity with magnetic side walls are used in the expansion of the disk current. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. London's equations and the two-fluid model of Gorter and Casimir are used in the calculation of the complex surface impedance of the superconducting circular disc. The accuracy of the analysis is tested by comparing the computed results with previously published data for several anisotropic substrate-superstrate materials. Good agreement is found among all sets of results. The numerical results obtained show that important errors can be made in the computation of the resonant frequencies and bandwidths of the superconducting resonators when substrate dielectric anisotropy, and/or superstrate anisotropy are ignored. Other theoretical results obtained show that the superconducting circular microstrip patch on anisotropic substrate-superstrate with properly selected permittivity values along the optical and the non-optical axes combined with optimally chosen structural parameters is more advantageous than the one on isotropic substrate-superstrate by exhibiting wider bandwidth characteristic.

  20. Lipid rafts generate digital-like signal transduction in cell plasma membranes.

    Science.gov (United States)

    Suzuki, Kenichi G N

    2012-06-01

    Lipid rafts are meso-scale (5-200 nm) cell membrane domains where signaling molecules assemble and function. However, due to their dynamic nature, it has been difficult to unravel the mechanism of signal transduction in lipid rafts. Recent advanced imaging techniques have revealed that signaling molecules are frequently, but transiently, recruited to rafts with the aid of protein-protein, protein-lipid, and/or lipid-lipid interactions. Individual signaling molecules within the raft are activated only for a short period of time. Immobilization of signaling molecules by cytoskeletal actin filaments and scaffold proteins may facilitate more efficient signal transmission from rafts. In this review, current opinions of how the transient nature of molecular interactions in rafts generates digital-like signal transduction in cell membranes, and the benefits this phenomenon provides, are discussed. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Bile acids modulate signaling by functional perturbation of plasma membrane domains.

    Science.gov (United States)

    Zhou, Yong; Maxwell, Kelsey N; Sezgin, Erdinc; Lu, Maryia; Liang, Hong; Hancock, John F; Dial, Elizabeth J; Lichtenberger, Lenard M; Levental, Ilya

    2013-12-13

    Eukaryotic cell membranes are organized into functional lipid and protein domains, the most widely studied being membrane rafts. Although rafts have been associated with numerous plasma membrane functions, the mechanisms by which these domains themselves are regulated remain undefined. Bile acids (BAs), whose primary function is the solubilization of dietary lipids for digestion and absorption, can affect cells by interacting directly with membranes. To investigate whether these interactions affected domain organization in biological membranes, we assayed the effects of BAs on biomimetic synthetic liposomes, isolated plasma membranes, and live cells. At cytotoxic concentrations, BAs dissolved synthetic and cell-derived membranes and disrupted live cell plasma membranes, implicating plasma membrane damage as the mechanism for BA cellular toxicity. At subtoxic concentrations, BAs dramatically stabilized domain separation in Giant Plasma Membrane Vesicles without affecting protein partitioning between coexisting domains. Domain stabilization was the result of BA binding to and disordering the nonraft domain, thus promoting separation by enhancing domain immiscibility. Consistent with the physical changes observed in synthetic and isolated biological membranes, BAs reorganized intact cell membranes, as evaluated by the spatial distribution of membrane-anchored Ras isoforms. Nanoclustering of K-Ras, related to nonraft membrane domains, was enhanced in intact plasma membranes, whereas the organization of H-Ras was unaffected. BA-induced changes in Ras lateral segregation potentiated EGF-induced signaling through MAPK, confirming the ability of BAs to influence cell signal transduction by altering the physical properties of the plasma membrane. These observations suggest general, membrane-mediated mechanisms by which biological amphiphiles can produce their cellular effects.

  2. Life as a matter of fat : lipids in a membrane biophysics perspective

    CERN Document Server

    Mouritsen, Ole G

    2016-01-01

    The present book gives a multi-disciplinary perspective on the physics of life and the particular role played by lipids (fats) and the lipid-bilayer component of cell membranes. The emphasis is on the physical properties of lipid membranes seen as soft and molecularly structured interfaces. By combining and synthesizing insights obtained from a variety of recent studies, an attempt is made to clarify what membrane structure is and how it can be quantitatively described. Furthermore, it is shown how biological function mediated by membranes is controlled by lipid membrane structure and organization on length scales ranging from the size of the individual molecule, across molecular assemblies of proteins and lipid domains in the range of nanometers, to the size of whole cells. Applications of lipids in nanotechnology and biomedicine are also described.   The first edition of the present book was published in 2005 when lipidomics was still very much an emerging science and lipids about to be recognized as being...

  3. Anisotropic wave-equation traveltime and waveform inversion

    KAUST Repository

    Feng, Shihang

    2016-09-06

    The wave-equation traveltime and waveform inversion (WTW) methodology is developed to invert for anisotropic parameters in a vertical transverse isotropic (VTI) meidum. The simultaneous inversion of anisotropic parameters v0, ε and δ is initially performed using the wave-equation traveltime inversion (WT) method. The WT tomograms are then used as starting background models for VTI full waveform inversion. Preliminary numerical tests on synthetic data demonstrate the feasibility of this method for multi-parameter inversion.

  4. Anisotropic microporous supports impregnated with polymeric ion-exchange materials

    Science.gov (United States)

    Friesen, Dwayne; Babcock, Walter C.; Tuttle, Mark

    1985-05-07

    Novel ion-exchange media are disclosed, the media comprising polymeric anisotropic microporous supports containing polymeric ion-exchange or ion-complexing materials. The supports are anisotropic, having small exterior pores and larger interior pores, and are preferably in the form of beads, fibers and sheets.

  5. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  6. Fast and non-destructive pore structure analysis using terahertz time-domain spectroscopy.

    OpenAIRE

    Markl, Daniel; Bawuah, Prince; Ridgway, Cathy; van den Ban, Sander; Goodwin, Daniel J; Ketolainen, Jarkko; Gane, Patrick; Peiponen, Kai-Erik; Zeitler, Jochen Axel

    2018-01-01

    Pharmaceutical tablets are typically manufactured by the uni-axial compaction of powder that is confined radially by a rigid die. The directional nature of the compaction process yields not only anisotropic mechanical properties (e.g. tensile strength) but also directional properties of the pore structure in the porous compact. This study derives a new quantitative parameter, $S_a$, to describe the anisotropy in pore structure of pharmaceutical tablets based on terahertz time-domain spectrosc...

  7. Analysis of High Tc Superconducting Rectangular Microstrip Patches over Ground Planes with Rectangular Apertures in Substrates Containing Anisotropic Materials

    Directory of Open Access Journals (Sweden)

    Abderraouf Messai

    2013-01-01

    Full Text Available A rigorous full-wave analysis of high Tc superconducting rectangular microstrip patch over ground plane with rectangular aperture in the case where the patch is printed on a uniaxially anisotropic substrate material is presented. The dyadic Green’s functions of the considered structure are efficiently determined in the vector Fourier transform domain. The effect of the superconductivity of the patch is taken into account using the concept of the complex resistive boundary condition. The accuracy of the analysis is tested by comparing the computed results with measurements and previously published data for several anisotropic substrate materials. Numerical results showing variation of the resonant frequency and the quality factor of the superconducting antenna with regard to operating temperature are given. Finally, the effects of uniaxial anisotropy in the substrate on the resonant frequencies of different TM modes of the superconducting microstrip antenna with rectangular aperture in the ground plane are presented.

  8. A model of lipid-free apolipoprotein A-I revealed by iterative molecular dynamics simulation.

    Directory of Open Access Journals (Sweden)

    Xing Zhang

    Full Text Available Apolipoprotein A-I (apo A-I, the major protein component of high-density lipoprotein, has been proven inversely correlated to cardiovascular risk in past decades. The lipid-free state of apo A-I is the initial stage which binds to lipids forming high-density lipoprotein. Molecular models of lipid-free apo A-I have been reported by methods like X-ray crystallography and chemical cross-linking/mass spectrometry (CCL/MS. Through structural analysis we found that those current models had limited consistency with other experimental results, such as those from hydrogen exchange with mass spectrometry. Through molecular dynamics simulations, we also found those models could not reach a stable equilibrium state. Therefore, by integrating various experimental results, we proposed a new structural model for lipid-free apo A-I, which contains a bundled four-helix N-terminal domain (1-192 that forms a variable hydrophobic groove and a mobile short hairpin C-terminal domain (193-243. This model exhibits an equilibrium state through molecular dynamics simulation and is consistent with most of the experimental results known from CCL/MS on lysine pairs, fluorescence resonance energy transfer and hydrogen exchange. This solution-state lipid-free apo A-I model may elucidate the possible conformational transitions of apo A-I binding with lipids in high-density lipoprotein formation.

  9. Chiral magnetic effect in the anisotropic quark-gluon plasma

    International Nuclear Information System (INIS)

    Ali-Akbari, Mohammad; Taghavi, Seyed Farid

    2015-01-01

    An anisotropic thermal plasma phase of a strongly coupled gauge theory can be holographically modelled by an anisotropic AdS black hole. The temperature and anisotropy parameter of the AdS black hole background of interest http://dx.doi.org/10.1007/JHEP07(2011)054 is specified by the location of the horizon and the value of the Dilaton field at the horizon. Interestingly, for the first time, we obtain two functions for the values of the horizon and Dilaton field in terms of the temperature and anisotropy parameter. Then by introducing a number of spinning probe D7-branes in the anisotropic background, we compute the value of the chiral magnetic effect (CME). We observe that in the isotropic and anisotropic plasma the value of the CME is equal for the massless quarks. However, at fixed temperature, raising the anisotropy in the system will increase the value of the CME for the massive quarks.

  10. Modelling of anisotropic compact stars of embedding class one

    Energy Technology Data Exchange (ETDEWEB)

    Bhar, Piyali [Government General Degree College, Department of Mathematics, Singur, Hooghly, West Bengal (India); Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, U.P. (India); Manna, Tuhina [St. Xavier' s College, Department of Commerce (Evening), Kolkata, West Bengal (India)

    2016-10-15

    In the present article, we have constructed static anisotropic compact star models of Einstein field equations for the spherical symmetric metric of embedding class one. By assuming the particular form of the metric function ν, we have solved the Einstein field equations for anisotropic matter distribution. The anisotropic models represent the realistic compact objects such as SAX J 1808.4-3658 (SS1), Her X-1, Vela X-12, PSR J1614-2230 and Cen X-3. We have reported our results in details for the compact star Her X-1 on the ground of physical properties such as pressure, density, velocity of sound, energy conditions, TOV equation and red-shift etc. Along with these, we have also discussed about the stability of the compact star models. Finally we made a comparison between our anisotropic stars with the realistic objects on the key aspects as central density, central pressure, compactness and surface red-shift. (orig.)

  11. Juvenile-onset loss of lipid-raft domains in attractin-deficient mice

    International Nuclear Information System (INIS)

    Azouz, Abdallah; Gunn, Teresa M.; Duke-Cohan, Jonathan S.

    2007-01-01

    Mutations at the attractin (Atrn) locus in mice result in altered pigmentation on an agouti background, higher basal metabolic rate and juvenile-onset hypomyelination leading to neurodegeneration, while studies on human immune cells indicate a chemotaxis regulatory function. The underlying biochemical defect remains elusive. In this report we identify a role for attractin in plasma membrane maintenance. In attractin's absence there is a decline in plasma membrane glycolipid-enriched rafts from normal levels at 8 weeks to a complete absence by 24 weeks. The structural integrity of lipid rafts depends upon cholesterol and sphingomyelin, and can be identified by partitioning within of ganglioside GM 1 . Despite a significant fall in cellular cholesterol with maturity, and a lesser fall in both membrane and total cellular GM 1 , these parameters lag behind raft loss, and are normal when hypomyelination/neurodegeneration has already begun thus supporting consequence rather than cause. These findings can be recapitulated in Atrn-deficient cell lines propagated in vitro. Further, signal transduction through complex membrane receptor assemblies is not grossly disturbed despite the complete absence of lipid rafts. We find these results compatible with a role for attractin in plasma membrane maintenance and consistent with the proposal that the juvenile-onset hypomyelination and neurodegeneration represent a defect in attractin-mediated raft-dependent myelin biogenesis

  12. Microseismic Full Waveform Modeling in Anisotropic Media with Moment Tensor Implementation

    Science.gov (United States)

    Shi, Peidong; Angus, Doug; Nowacki, Andy; Yuan, Sanyi; Wang, Yanyan

    2018-03-01

    Seismic anisotropy which is common in shale and fractured rocks will cause travel-time and amplitude discrepancy in different propagation directions. For microseismic monitoring which is often implemented in shale or fractured rocks, seismic anisotropy needs to be carefully accounted for in source location and mechanism determination. We have developed an efficient finite-difference full waveform modeling tool with an arbitrary moment tensor source. The modeling tool is suitable for simulating wave propagation in anisotropic media for microseismic monitoring. As both dislocation and non-double-couple source are often observed in microseismic monitoring, an arbitrary moment tensor source is implemented in our forward modeling tool. The increments of shear stress are equally distributed on the staggered grid to implement an accurate and symmetric moment tensor source. Our modeling tool provides an efficient way to obtain the Green's function in anisotropic media, which is the key of anisotropic moment tensor inversion and source mechanism characterization in microseismic monitoring. In our research, wavefields in anisotropic media have been carefully simulated and analyzed in both surface array and downhole array. The variation characteristics of travel-time and amplitude of direct P- and S-wave in vertical transverse isotropic media and horizontal transverse isotropic media are distinct, thus providing a feasible way to distinguish and identify the anisotropic type of the subsurface. Analyzing the travel-times and amplitudes of the microseismic data is a feasible way to estimate the orientation and density of the induced cracks in hydraulic fracturing. Our anisotropic modeling tool can be used to generate and analyze microseismic full wavefield with full moment tensor source in anisotropic media, which can help promote the anisotropic interpretation and inversion of field data.

  13. Anisotropic resonator analysis using the Fourier-Bessel mode solver

    Science.gov (United States)

    Gauthier, Robert C.

    2018-03-01

    A numerical mode solver for optical structures that conform to cylindrical symmetry using Faraday's and Ampere's laws as starting expressions is developed when electric or magnetic anisotropy is present. The technique builds on the existing Fourier-Bessel mode solver which allows resonator states to be computed exploiting the symmetry properties of the resonator and states to reduce the matrix system. The introduction of anisotropy into the theoretical frame work facilitates the inclusion of PML borders permitting the computation of open ended structures and a better estimation of the resonator state quality factor. Matrix populating expressions are provided that can accommodate any material anisotropy with arbitrary orientation in the computation domain. Several example of electrical anisotropic computations are provided for rationally symmetric structures such as standard optical fibers, axial Bragg-ring fibers and bottle resonators. The anisotropy present in the materials introduces off diagonal matrix elements in the permittivity tensor when expressed in cylindrical coordinates. The effects of the anisotropy of computed states are presented and discussed.

  14. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Jieliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Su, Zhengliang [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China); Department of Automotive Engineering, Tsinghua University, Beijing 100084 (China); Yan, Shaoze, E-mail: yansz@mail.tsinghua.edu.cn [Division of Intelligent and Biomechanical Systems, State Key Laboratory of Tribology, Tsinghua University, Room 3407, Building 9003, 100084 Beijing (China)

    2015-12-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  15. Thermodynamic analysis on an anisotropically superhydrophobic surface with a hierarchical structure

    International Nuclear Information System (INIS)

    Zhao, Jieliang; Su, Zhengliang; Yan, Shaoze

    2015-01-01

    Graphical abstract: - Highlights: • We model the superhydrophobic surface with anisotropic and hierarchical structure. • Anisotropic wetting only shows in noncomposite state (not in composite state). • Transition from noncomposite to composite state on dual-scale structure is hard. • Droplets tend to roll in the particular direction. • Droplets tend to stably remain in one preferred thermodynamic state. - Abstract: Superhydrophobic surfaces, which refer to the surfaces with contact angle higher than 150° and hysteresis less than 10°, have been reported in various studies. However, studies on the superhydrophobicity of anisotropic, hierarchical surfaces are limited and the corresponding thermodynamic mechanisms could not be explained thoroughly. Here we propose a simplified surface model of anisotropic patterned surface with dual scale roughness. Based on the thermodynamic method, we calculate the equilibrium contact angle (ECA) and the contact angle hysteresis (CAH) on the given surface. We show here that the hierarchical structure has much better anisotropic wetting properties than the single-scale one, and the results shed light on the potential application in controllable micro-/nano-fluidic systems. Our studies can be potentially applied for the fabrication of anisotropically superhydrophobic surfaces.

  16. Edge Probability and Pixel Relativity-Based Speckle Reducing Anisotropic Diffusion.

    Science.gov (United States)

    Mishra, Deepak; Chaudhury, Santanu; Sarkar, Mukul; Soin, Arvinder Singh; Sharma, Vivek

    2018-02-01

    Anisotropic diffusion filters are one of the best choices for speckle reduction in the ultrasound images. These filters control the diffusion flux flow using local image statistics and provide the desired speckle suppression. However, inefficient use of edge characteristics results in either oversmooth image or an image containing misinterpreted spurious edges. As a result, the diagnostic quality of the images becomes a concern. To alleviate such problems, a novel anisotropic diffusion-based speckle reducing filter is proposed in this paper. A probability density function of the edges along with pixel relativity information is used to control the diffusion flux flow. The probability density function helps in removing the spurious edges and the pixel relativity reduces the oversmoothing effects. Furthermore, the filtering is performed in superpixel domain to reduce the execution time, wherein a minimum of 15% of the total number of image pixels can be used. For performance evaluation, 31 frames of three synthetic images and 40 real ultrasound images are used. In most of the experiments, the proposed filter shows a better performance as compared to the state-of-the-art filters in terms of the speckle region's signal-to-noise ratio and mean square error. It also shows a comparative performance for figure of merit and structural similarity measure index. Furthermore, in the subjective evaluation, performed by the expert radiologists, the proposed filter's outputs are preferred for the improved contrast and sharpness of the object boundaries. Hence, the proposed filtering framework is suitable to reduce the unwanted speckle and improve the quality of the ultrasound images.

  17. Wavefield Extrapolation in Pseudo-depth Domain

    KAUST Repository

    Ma, Xuxin

    2011-12-11

    Wave-equation based seismic migration and inversion tools are widely used by the energy industry to explore hydrocarbon and mineral resources. By design, most of these techniques simulate wave propagation in a space domain with the vertical axis being depth measured from the surface. Vertical depth is popular because it is a straightforward mapping of the subsurface space. It is, however, not computationally cost-effective because the wavelength changes with local elastic wave velocity, which in general increases with depth in the Earth. As a result, the sampling per wavelength also increases with depth. To avoid spatial aliasing in deep fast media, the seismic wave is oversampled in shallow slow media and therefore increase the total computation cost. This issue is effectively tackled by using the vertical time axis instead of vertical depth. This is because in a vertical time representation, the "wavelength" is essentially time period for vertical rays. This thesis extends the vertical time axis to the pseudo-depth axis, which features distance unit while preserving the properties of the vertical time representation. To explore the potentials of doing wave-equation based imaging in the pseudo-depth domain, a Partial Differential Equation (PDE) is derived to describe acoustic wave in this new domain. This new PDE is inherently anisotropic because the use of a constant vertical velocity to convert between depth and vertical time. Such anisotropy results in lower reflection coefficients compared with conventional space domain modeling results. This feature is helpful to suppress the low wavenumber artifacts in reverse-time migration images, which are caused by the widely used cross-correlation imaging condition. This thesis illustrates modeling acoustic waves in both conventional space domain and pseudo-depth domain. The numerical tool used to model acoustic waves is built based on the lowrank approximation of Fourier integral operators. To investigate the potential

  18. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  19. Extended Linear Embedding via Green's Operators for Analyzing Wave Scattering from Anisotropic Bodies

    Directory of Open Access Journals (Sweden)

    V. Lancellotti

    2014-01-01

    Full Text Available Linear embedding via Green’s operators (LEGO is a domain decomposition method particularly well suited for the solution of scattering and radiation problems comprised of many objects. The latter are enclosed in simple-shaped subdomains (electromagnetic bricks which are in turn described by means of scattering operators. In this paper we outline the extension of the LEGO approach to the case of penetrable objects with dyadic permittivity or permeability. Since a volume integral equation is only required to solve the scattering problem inside a brick and the scattering operators are inherently surface operators, the LEGO procedure per se can afford a reduction of the number of unknowns in the numerical solution with the Method of Moments and subsectional basis functions. Further substantial reduction is achieved with the eigencurrents expansion method (EEM which employs the eigenvectors of the scattering operator as local entire-domain basis functions over a brick’s surface. Through a few selected numerical examples we discuss the validation and the efficiency of the LEGO-EEM technique applied to clusters of anisotropic bodies.

  20. Hydrodynamic cavitation in Stokes flow of anisotropic fluids

    OpenAIRE

    Stieger, Tillmann; Agha, Hakam; Schoen, Martin; Mazza, Marco G.; Sengupta, Anupam

    2017-01-01

    Cavitation, the nucleation of vapour in liquids, is ubiquitous in fluid dynamics, and is often implicated in a myriad of industrial and biomedical applications. Although extensively studied in isotropic liquids, corresponding investigations in anisotropic liquids are largely lacking. Here, by combining liquid crystal microfluidic experiments, nonequilibrium molecular dynamics simulations and theoretical arguments, we report flow-induced cavitation in an anisotropic fluid. The cavitation domai...

  1. Structural Determinants of Specific Lipid Binding to Potassium Channels

    NARCIS (Netherlands)

    Weingarth, M.H.|info:eu-repo/dai/nl/330985655; Prokofyev, A.; van der Cruijsen, E.A.W.|info:eu-repo/dai/nl/330826743; Nand, D.|info:eu-repo/dai/nl/337731403; Bonvin, A.M.J.J.|info:eu-repo/dai/nl/113691238; Pongs, O.; Baldus, M.|info:eu-repo/dai/nl/314410864

    2013-01-01

    We have investigated specific lipid binding to the pore domain of potassium channels KcsA and chimeric KcsAKv1.3 on the structural and functional level using extensive coarse-grained and atomistic molecular dynamics simulations, solid-state NMR, and single channel measurements. We show that, while

  2. General PFG signal attenuation expressions for anisotropic anomalous diffusion by modified-Bloch equations

    Science.gov (United States)

    Lin, Guoxing

    2018-05-01

    Anomalous diffusion exists widely in polymer and biological systems. Pulsed-field gradient (PFG) anomalous diffusion is complicated, especially in the anisotropic case where limited research has been reported. A general PFG signal attenuation expression, including the finite gradient pulse (FGPW) effect for free general anisotropic fractional diffusion { 0 integral modified-Bloch equation, were extended to obtain general PFG signal attenuation expressions for anisotropic anomalous diffusion. Various cases of PFG anisotropic anomalous diffusion were investigated, including coupled and uncoupled anisotropic anomalous diffusion. The continuous-time random walk (CTRW) simulation was also carried out to support the theoretical results. The theory and the CTRW simulation agree with each other. The obtained signal attenuation expressions and the three-dimensional fractional modified-Bloch equations are important for analyzing PFG anisotropic anomalous diffusion in NMR and MRI.

  3. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  5. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  6. Anisotropic hydrodynamics for conformal Gubser flow

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael; Nopoush, Mohammad [Kent State University, Kent OH 44242 (United States); Ryblewski, Radoslaw [The H. Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, PL-31342 Kraków (Poland)

    2016-12-15

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3){sub q} symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  7. Anisotropic hydrodynamics for conformal Gubser flow

    International Nuclear Information System (INIS)

    Strickland, Michael; Nopoush, Mohammad; Ryblewski, Radoslaw

    2016-01-01

    In this proceedings contribution, we review the exact solution of the anisotropic hydrodynamics equations for a system subject to Gubser flow. For this purpose, we use the leading-order anisotropic hydrodynamics equations which assume that the distribution function is ellipsoidally symmetric in local-rest-frame momentum. We then prove that the SO(3)_q symmetry in de Sitter space constrains the anisotropy tensor to be of spheroidal form with only one independent anisotropy parameter remaining. As a consequence, the exact solution reduces to the problem of solving two coupled non-linear differential equations. We show that, in the limit that the relaxation time goes to zero, one obtains Gubser's ideal hydrodynamic solution and, in the limit that the relaxation time goes to infinity, one obtains the exact free streaming solution obtained originally by Denicol et al. For finite relaxation time, we solve the equations numerically and compare to the exact solution of the relaxation-time-approximation Boltzmann equation subject to Gubser flow. Using this as our standard, we find that anisotropic hydrodynamics describes the spatio-temporal evolution of the system better than all currently known dissipative hydrodynamics approaches.

  8. Terahertz spectroscopic polarimetry of generalized anisotropic media composed of Archimedean spiral arrays: Experiments and simulations.

    Science.gov (United States)

    Aschaffenburg, Daniel J; Williams, Michael R C; Schmuttenmaer, Charles A

    2016-05-07

    Terahertz time-domain spectroscopic polarimetry has been used to measure the polarization state of all spectral components in a broadband THz pulse upon transmission through generalized anisotropic media consisting of two-dimensional arrays of lithographically defined Archimedean spirals. The technique allows a full determination of the frequency-dependent, complex-valued transmission matrix and eigenpolarizations of the spiral arrays. Measurements were made on a series of spiral array orientations. The frequency-dependent transmission matrix elements as well as the eigenpolarizations were determined, and the eigenpolarizations were found be to elliptically corotating, as expected from their symmetry. Numerical simulations are in quantitative agreement with measured spectra.

  9. The homeodomain derived peptide Penetratin induces curvature of fluid membrane domains.

    Directory of Open Access Journals (Sweden)

    Antonin Lamazière

    Full Text Available BACKGROUND: Protein membrane transduction domains that are able to cross the plasma membrane are present in several transcription factors, such as the homeodomain proteins and the viral proteins such as Tat of HIV-1. Their discovery resulted in both new concepts on the cell communication during development, and the conception of cell penetrating peptide vectors for internalisation of active molecules into cells. A promising cell penetrating peptide is Penetratin, which crosses the cell membranes by a receptor and metabolic energy-independent mechanism. Recent works have claimed that Penetratin and similar peptides are internalized by endocytosis, but other endocytosis-independent mechanisms have been proposed. Endosomes or plasma membranes crossing mechanisms are not well understood. Previously, we have shown that basic peptides induce membrane invaginations suggesting a new mechanism for uptake, "physical endocytosis". METHODOLOGY/PRINCIPAL FINDINGS: Herein, we investigate the role of membrane lipid phases on Penetratin induced membrane deformations (liquid ordered such as in "raft" microdomains versus disordered fluid "non-raft" domains in membrane models. Experimental data show that zwitterionic lipid headgroups take part in the interaction with Penetratin suggesting that the external leaflet lipids of cells plasma membrane are competent for peptide interaction in the absence of net negative charges. NMR and X-ray diffraction data show that the membrane perturbations (tubulation and vesiculation are associated with an increase in membrane negative curvature. These effects on curvature were observed in the liquid disordered but not in the liquid ordered (raft-like membrane domains. CONCLUSIONS/SIGNIFICANCE: The better understanding of the internalisation mechanisms of protein transduction domains will help both the understanding of the mechanisms of cell communication and the development of potential therapeutic molecular vectors. Here we

  10. Textile-templated electrospun anisotropic scaffolds for regenerative cardiac tissue engineering.

    Science.gov (United States)

    Şenel Ayaz, H Gözde; Perets, Anat; Ayaz, Hasan; Gilroy, Kyle D; Govindaraj, Muthu; Brookstein, David; Lelkes, Peter I

    2014-10-01

    For patients with end-stage heart disease, the access to heart transplantation is limited due to the shortage of donor organs and to the potential for rejection of the donated organ. Therefore, current studies focus on bioengineering approaches for creating biomimetic cardiac patches that will assist in restoring cardiac function, by repairing and/or regenerating the intrinsically anisotropic myocardium. In this paper we present a simplified, straightforward approach for creating bioactive anisotropic cardiac patches, based on a combination of bioengineering and textile-manufacturing techniques in concert with nano-biotechnology based tissue-engineering stratagems. Using knitted conventional textiles, made of cotton or polyester yarns as template targets, we successfully electrospun anisotropic three-dimensional scaffolds from poly(lactic-co-glycolic) acid (PLGA), and thermoplastic polycarbonate-urethane (PCU, Bionate(®)). The surface topography and mechanical properties of textile-templated anisotropic scaffolds significantly differed from those of scaffolds electrospun from the same materials onto conventional 2-D flat-target electrospun scaffolds. Anisotropic textile-templated scaffolds electrospun from both PLGA and PCU, supported the adhesion and proliferation of H9C2 cardiac myoblasts cell line, and guided the cardiac tissue-like anisotropic organization of these cells in vitro. All cell-seeded PCU scaffolds exhibited mechanical properties comparable to those of a human heart, but only the cells on the polyester-templated scaffolds exhibited prolonged spontaneous synchronous contractility on the entire engineered construct for 10 days in vitro at a near physiologic frequency of ∼120 bpm. Taken together, the methods described here take advantage of straightforward established textile manufacturing strategies as an efficient and cost-effective approach to engineering 3D anisotropic, elastomeric PCU scaffolds that can serve as a cardiac patch. Copyright

  11. Investigation of lipid membrane macro- and micro-structure using calorimetry and computer simulation: structural and functional relationships

    DEFF Research Database (Denmark)

    Jørgensen, Kent; Mouritsen, Ole G.

    1999-01-01

    lead to the formation of a heterogeneous lateral bilayer structure composed of dynamic lipid domains and differentiated bilayer regions. In addition, the non-equilibrium dynamic ordering process of coexisting phases can give rise to the formation of local lipid structures on various length- and time...

  12. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernà ndez-Altable, Ví ctor; Dalmases, Mariona; Falqui, Andrea; Casu, Alberto; Torruella, Pau; Estradé , Sò nia; Peiró , Francesca; Figuerola, Albert

    2015-01-01

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  13. Au-assisted growth of anisotropic and epitaxial cdse colloidal nanocrystals via in situ dismantling of quantum dots

    KAUST Repository

    Fernàndez-Altable, Víctor

    2015-03-10

    Metallic nanocrystals have been revealed in the past years as valuable materials for the catalytic growth of semiconductor nanowires. Yet, only low melting point metals like Bi have been reported to successfully assist the growth of elongated CdX (X = S, Se, Te) systems in solution, and the possibility to use plasmonic noble metals has become a challenging task. In this work we show that the growth of anisotropic CdSe nanostructures in solution can also be efficiently catalyzed by colloidal Au nanoparticles, following a preferential crystallographic alignment between the metallic and semiconductor domains. Noteworthy, we report the heterodox use of semiconductor quantum dots as a homogeneous and tunable source of reactive monomer species to the solution. The mechanistic studies reveal that the in situ delivery of these cadmium and chalcogen monomer species and the formation of AuxCdy alloy seeds are both key factors for the epitaxial growth of elongated CdSe domains. The implementation of this method suggests an alternative synthetic approach for the assembly of different semiconductor domains into more complex heterostructures.

  14. Anisotropically Swelling Gels Attained through Axis-Dependent Crosslinking of MOF Crystals.

    Science.gov (United States)

    Ishiwata, Takumi; Kokado, Kenta; Sada, Kazuki

    2017-03-01

    Anisotropically deforming objects have attracted considerable interest for use in molecular machines and artificial muscles. Herein, we focus on a new approach based on the crystal crosslinking of organic ligands in a pillared-layer metal-organic framework (PLMOF). The approach involves the transformation from crosslinked PLMOF to polymer gels through hydrolysis of the coordination bonds between the organic ligands and metal ions, giving a network polymer that exhibits anisotropic swelling. The anisotropic monomer arrangement in the PLMOF underwent axis-dependent crosslinking to yield anisotropically swelling gels. Therefore, the crystal crosslinking of MOFs should be a useful method for creating actuators with designable deformation properties. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. The anisotropic Ising correlations as elliptic integrals: duality and differential equations

    International Nuclear Information System (INIS)

    McCoy, B M; Maillard, J-M

    2016-01-01

    We present the reduction of the correlation functions of the Ising model on the anisotropic square lattice to complete elliptic integrals of the first, second and third kind, the extension of Kramers–Wannier duality to anisotropic correlation functions, and the linear differential equations for these anisotropic correlations. More precisely, we show that the anisotropic correlation functions are homogeneous polynomials of the complete elliptic integrals of the first, second and third kind. We give the exact dual transformation matching the correlation functions and the dual correlation functions. We show that the linear differential operators annihilating the general two-point correlation functions are factorized in a very simple way, in operators of decreasing orders. (paper)

  16. Hybrid localized waves supported by resonant anisotropic metasurfaces

    DEFF Research Database (Denmark)

    Bogdanov, A. A.; Yermakov, O. Y.; Ovcharenko, A. I.

    2016-01-01

    We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime.......We study both theoretically and experimentally a new class of surface electromagnetic waves supported by resonant anisotropic metasurface. At certain frequency this type of metasurface demonstrates the topological transition from elliptical to hyperbolic regime....

  17. A new model for spherically symmetric anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2016-05-15

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star. (orig.)

  18. Prestack exploding reflector modelling and migration for anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-09

    The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.

  19. Dynamical anisotropic response of black phosphorus under magnetic field

    Science.gov (United States)

    Liu, Xuefeng; Lu, Wei; Zhou, Xiaoying; Zhou, Yang; Zhang, Chenglong; Lai, Jiawei; Ge, Shaofeng; Sekhar, M. Chandra; Jia, Shuang; Chang, Kai; Sun, Dong

    2018-04-01

    Black phosphorus (BP) has emerged as a promising material candidate for next generation electronic and optoelectronic devices due to its high mobility, tunable band gap and highly anisotropic properties. In this work, polarization resolved ultrafast mid-infrared transient reflection spectroscopy measurements are performed to study the dynamical anisotropic optical properties of BP under magnetic fields up to 9 T. The relaxation dynamics of photoexcited carrier is found to be insensitive to the applied magnetic field due to the broadening of the Landau levels and large effective mass of carriers. While the anisotropic optical response of BP decreases with increasing magnetic field, its enhancement due to the excitation of hot carriers is similar to that without magnetic field. These experimental results can be well interpreted by the magneto-optical conductivity of the Landau levels of BP thin film, based on an effective k · p Hamiltonian and linear response theory. These findings suggest attractive possibilities of multi-dimensional control of anisotropic response (AR) of BP with light, electric and magnetic field, which further introduces BP to the fantastic magnetic field sensitive applications.

  20. P-glycoprotein ATPase activity requires lipids to activate a switch at the first transmission interface.

    Science.gov (United States)

    Loo, Tip W; Clarke, David M

    2016-04-01

    P-glycoprotein (P-gp) is an ABC (ATP-Binding Cassette) drug pump. A common feature of ABC proteins is that they are organized into two wings. Each wing contains a transmembrane domain (TMD) and a nucleotide-binding domain (NBD). Drug substrates and ATP bind at the interface between the TMDs and NBDs, respectively. Drug transport involves ATP-dependent conformational changes between inward- (open, NBDs far apart) and outward-facing (closed, NBDs close together) conformations. P-gps crystallized in the presence of detergent show an open structure. Human P-gp is inactive in detergent but basal ATPase activity is restored upon addition of lipids. The lipids might cause closure of the wings to bring the NBDs close together to allow ATP hydrolysis. We show however, that cross-linking the wings together did not activate ATPase activity when lipids were absent suggesting that lipids may induce other structural changes required for ATPase activity. We then tested the effect of lipids on disulfide cross-linking of mutants at the first transmission interface between intracellular loop 4 (TMD2) and NBD1. Mutants L443C/S909C and L443C/R905C but not G471C/S909C and V472C/S909C were cross-linked with oxidant when in membranes. The mutants were then purified and cross-linked with or without lipids. Mutants G471C/S909C and V472C/S909C cross-linked only in the absence of lipids whereas mutants L443C/S909C and L443C/R905C were cross-linked only in the presence of lipids. The results suggest that lipids activate a switch at the first transmission interface and that the structure of P-gp is different in detergents and lipids. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Anisotropic light scattering of individual sickle red blood cells.

    Science.gov (United States)

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  2. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  3. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    International Nuclear Information System (INIS)

    Fan, B.B.; Yang, X.B.; Zhang, R.

    2010-01-01

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp 2 hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  4. An anisotropic elasto-viscoplastic model for short-fiber reinforced polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2017-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  5. An Anisotropic Elasto-Viscoplastic Model for Short-Fiber Reinforced Polymers

    NARCIS (Netherlands)

    Amiri Rad, A.; Govaert, L.E.; van Dommelen, J.A.W.

    2018-01-01

    The influence of flow on the fiber orientation in injection molding of short-fiber composites leads to both anisotropy and inhomogeneity of the mechanical response. An anisotropic elasto-viscoplastic constitutive model is developed to capture the anisotropic and time-dependent behavior and

  6. The TULIP superfamily of eukaryotic lipid-binding proteins as a mediator of lipid sensing and transport.

    Science.gov (United States)

    Alva, Vikram; Lupas, Andrei N

    2016-08-01

    The tubular lipid-binding (TULIP) superfamily has emerged in recent years as a major mediator of lipid sensing and transport in eukaryotes. It currently encompasses three protein families, SMP-like, BPI-like, and Takeout-like, which share a common fold. This fold consists of a long helix wrapped in a highly curved anti-parallel β-sheet, enclosing a central, lipophilic cavity. The SMP-like proteins, which include subunits of the ERMES complex and the extended synaptotagmins (E-Syts), appear to be mainly located at membrane contacts sites (MCSs) between organelles, mediating inter-organelle lipid exchange. The BPI-like proteins, which include the bactericidal/permeability-increasing protein (BPI), the LPS (lipopolysaccharide)-binding protein (LBP), the cholesteryl ester transfer protein (CETP), and the phospholipid transfer protein (PLTP), are either involved in innate immunity against bacteria through their ability to sense lipopolysaccharides, as is the case for BPI and LBP, or in lipid exchange between lipoprotein particles, as is the case for CETP and PLTP. The Takeout-like proteins, which are comprised of insect juvenile hormone-binding proteins and arthropod allergens, transport, where known, lipid hormones to target tissues during insect development. In all cases, the activity of these proteins is underpinned by their ability to bind large, hydrophobic ligands in their central cavity and segregate them away from the aqueous environment. Furthermore, where they are involved in lipid exchange, recent structural studies have highlighted their ability to establish lipophilic, tubular channels, either between organelles in the case of SMP domains or between lipoprotein particles in the case of CETP. Here, we review the current knowledge on the structure, versatile functions, and evolution of the TULIP superfamily. We propose a deep evolutionary split in this superfamily, predating the Last Eukaryotic Common Ancestor, between the SMP-like proteins, which act on

  7. Bianchi-type II spacetime and anisotropic brane-world cosmology

    International Nuclear Information System (INIS)

    Sevinc, O.

    2010-01-01

    Anisotropic generalization of Randall and Sundrum brane-world model is considered. I studied a bulk with an anisotropic space of motion of the brane, depending on both time and extra coordinate. Then I discussed possibility of obtaining the fine-tuning condition of Randall and Sundrum following the method of Andrei V. Frolov (Phys. Lett. B, 514,213).

  8. Remarks on the relativistic magnetohydrodynamics of an anisotropic fluid

    International Nuclear Information System (INIS)

    Ignat, M.

    1980-01-01

    Considering a pressure tensor of a general form, a relativistic rarefied, anisotropic, infinite electrically conducting and nondissipative plasma is studied. For this purpose, the method of the orthonormal frame of reference is used. The choice of the frame of reference is made adequately to the problem. Some thermodynamical properties of such a relativistic, anisotropic plasma are also given. (author)

  9. Anisotropic wetting characteristics versus roughness on machined surfaces of hydrophilic and hydrophobic materials

    International Nuclear Information System (INIS)

    Liang, Yande; Shu, Liming; Natsu, Wataru; He, Fuben

    2015-01-01

    Graphical abstract: - Highlights: • The aim is to investigate the influence of roughness on anisotropic wetting on machined surfaces. • The relationship between roughness and anisotropic wetting is modeled by thermodynamical analysis. • The effect of roughness on anisotropic wetting on hydrophilic materials is stronger than that on hydrophobic materials. • The energy barrier existing in the direction perpendicular to the lay is one of the main reasons for the anisotropic wetting. • The contact angle in the parallel direction is larger than that in the perpendicular direction. - Abstract: Anisotropic wetting of machined surfaces is widely applied in industries which can be greatly affected by roughness and solid's chemical properties. However, there has not been much work on it. A free-energy thermodynamic model is presented by analyzing geometry morphology of machined surfaces (2-D model surfaces), which demonstrates the influence of roughness on anisotropic wetting. It can be concluded that the energy barrier is one of the main reasons for the anisotropic wetting existing in the direction perpendicular to the lay. In addition, experiments in investigating anisotropic wetting, which was characterized by the static contact angle and droplet's distortion, were performed on machined surfaces with different roughness on hydrophilic and hydrophobic materials. The droplet's anisotropy found on machined surfaces increased with mean slope of roughness profile Kr. It indicates that roughness on anisotropic wetting on hydrophilic materials has a stronger effect than that on hydrophobic materials. Furthermore, the contact angles predicted by the model are basically consistent with the experimentally ones

  10. Anisotropic plasma with flows in tokamak: Steady state and stability

    International Nuclear Information System (INIS)

    Ilgisonis, V.I.

    1996-01-01

    An adequate description of equilibrium and stability of anisotropic plasma with macroscopic flows in tokamaks is presented. The Chew-Goldberger-Low (CGL) approximation is consistently used to analyze anisotropic plasma dynamics. The admissible structure of a stationary flow is found to be the same as in the ideal magnetohydrodynamics with isotropic pressure (MHD), which means an allowance for the same relabeling symmetry as in ideal MHD systems with toroidally nested magnetic surfaces. A generalization of the Grad-Shafranov equation for the case of anisotropic plasma with flows confined in the axisymmetric magnetic field is derived. A variational principle was obtained, which allows for a stability analysis of anisotropic pressure plasma with flows, and takes into account the conservation laws resulting from the relabeling symmetry. This principle covers the previous stability criteria for static CGL plasma and for ideal MHD flows in isotropic plasma as well. copyright 1996 American Institute of Physics

  11. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  12. On cracking of charged anisotropic polytropes

    Energy Technology Data Exchange (ETDEWEB)

    Azam, M. [Division of Science and Technology, University of Education, Township Campus, Lahore-54590 (Pakistan); Mardan, S.A., E-mail: azam.math@ue.edu.pk, E-mail: syedalimardanazmi@yahoo.com [Department of Mathematics, University of the Management and Technology, C-II, Johar Town, Lahore-54590 (Pakistan)

    2017-01-01

    Recently in [1], the role of electromagnetic field on the cracking of spherical polytropes has been investigated without perturbing charge parameter explicitly. In this study, we have examined the occurrence of cracking of anisotropic spherical polytropes through perturbing parameters like anisotropic pressure, energy density and charge. We consider two different types of polytropes in this study. We discuss the occurrence of cracking in two different ways ( i ) by perturbing polytropic constant, anisotropy and charge parameter ( ii ) by perturbing polytropic index, anisotropy and charge parameter for each case. We conclude that cracking appears for a wide range of parameters in both cases. Also, our results are reduced to [2] in the absence of charge.

  13. GRP1 PH Domain, Like AKT1 PH Domain, Possesses a Sentry Glutamate Residue Essential for Specific Targeting to Plasma Membrane PI(3,4,5)P3

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E.; Falke, Joseph J.

    2011-01-01

    During the appearance of the signaling lipid PI(3,4,5)P3, an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P3-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P2 and bind the rare PI(3,4,5)P3 target lipid with sufficiently high affinity. Our previous study of the E17K mutant of protein kinase B (AKT1) PH domain, together with evidence from Carpten et al (1), revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P2, thereby playing an essential role in specific PI(3,4,5)P3 targeting (2). The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P3-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P2 affinity and constitutive plasma membrane targeting. To test this hypothesis the present study investigates the E345 residue, a putative sentry glutamate, of General Receptor for Phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into GRP1 PH domain enhances PI(4,5)P2 affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P2 releases E345K GRP1 PH domain into the cytoplasm and the efficiency of this release increases when target Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K (1, 3). Analysis of available PH domain structures suggests that a lone glutamate residue (or, in some cases an aspartate) is a common, perhaps ubiquitous, feature of PI(3,4,5)P3-specific binding

  14. Skin lipid structure controls water permeability in snake molts.

    Science.gov (United States)

    Torri, Cristian; Mangoni, Alfonso; Teta, Roberta; Fattorusso, Ernesto; Alibardi, Lorenzo; Fermani, Simona; Bonacini, Irene; Gazzano, Massimo; Burghammer, Manfred; Fabbri, Daniele; Falini, Giuseppe

    2014-01-01

    The role of lipids in controlling water exchange is fundamentally a matter of molecular organization. In the present study we have observed that in snake molt the water permeability drastically varies among species living in different climates and habitats. The analysis of molts from four snake species: tiger snake, Notechis scutatus, gabon viper, Bitis gabonica, rattle snake, Crotalus atrox, and grass snake, Natrix natrix, revealed correlations between the molecular composition and the structural organization of the lipid-rich mesos layer with control in water exchange as a function of temperature. It was discovered, merging data from micro-diffraction and micro-spectroscopy with those from thermal, NMR and chromatographic analyses, that this control is generated from a sophisticated structural organization that changes size and phase distribution of crystalline domains of specific lipid molecules as a function of temperature. Thus, the results of this research on four snake species suggest that in snake skins different structured lipid layers have evolved and adapted to different climates. Moreover, these lipid structures can protect, "safety", the snakes from water lost even at temperatures higher than those of their usual habitat. Copyright © 2013 Elsevier Inc. All rights reserved.

  15. Black Holes with Anisotropic Fluid in Lyra Scalar-Tensor Theory

    Directory of Open Access Journals (Sweden)

    Melis ULU DOĞRU

    2018-02-01

    Full Text Available In this paper, we investigate distribution of anisotropic fluid which is a resource of black holes in regard to Lyra scalar-tensor theory. As part of the theory, we obtain field equations of spherically symmetric space-time with anisotropic fluid. By using field equations, we suggest distribution of anisotropic fluid, responsible for space-time geometries such as Schwarzschild, Reissner-Nordström, Minkowski type, de Sitter type, Anti-de Sitter type, BTZ and charged BTZ black holes. Finally, we discuss obtained pressures and density of the fluid for different values of arbitrary constants, geometrically and physically.

  16. Veselago focusing of anisotropic massless Dirac fermions

    Science.gov (United States)

    Zhang, Shu-Hui; Yang, Wen; Peeters, F. M.

    2018-05-01

    Massless Dirac fermions (MDFs) emerge as quasiparticles in various novel materials such as graphene and topological insulators, and they exhibit several intriguing properties, of which Veselago focusing is an outstanding example with a lot of possible applications. However, up to now Veselago focusing merely occurred in p-n junction devices based on the isotropic MDF, which lacks the tunability needed for realistic applications. Here, motivated by the emergence of novel Dirac materials, we investigate the propagation behaviors of anisotropic MDFs in such a p-n junction structure. By projecting the Hamiltonian of the anisotropic MDF to that of the isotropic MDF and deriving an exact analytical expression for the propagator, precise Veselago focusing is demonstrated without the need for mirror symmetry of the electron source and its focusing image. We show a tunable focusing position that can be used in a device to probe masked atom-scale defects. This study provides an innovative concept to realize Veselago focusing relevant for potential applications, and it paves the way for the design of novel electron optics devices by exploiting the anisotropic MDF.

  17. Biosynthesis and structure-activity relationships of the lipid a family of glycolipids.

    Science.gov (United States)

    Xiao, Xirui; Sankaranarayanan, Karthik; Khosla, Chaitan

    2017-10-01

    Lipopolysaccharide (LPS), a glycolipid found in the outer membrane of Gram-negative bacteria, is a potent elicitor of innate immune responses in mammals. A typical LPS molecule is composed of three different structural domains: a polysaccharide called the O-antigen, a core oligosaccharide, and Lipid A. Lipid A is the amphipathic glycolipid moiety of LPS. It stimulates the immune system by tightly binding to Toll-like receptor 4. More recently, Lipid A has also been shown to activate intracellular caspase-4 and caspase-5. An impressive diversity is observed in Lipid A structures from different Gram-negative bacteria, and it is well established that subtle changes in chemical structure can result in dramatically different immune activities. For example, Lipid A from Escherichia coli is highly toxic to humans, whereas a biosynthetic precursor called Lipid IV A blocks this toxic activity, and monophosphoryl Lipid A from Salmonella minnesota is a vaccine adjuvant. Thus, an understanding of structure-activity relationships in this glycolipid family could be used to design useful immunomodulatory agents. Here we review the biosynthesis, modification, and structure-activity relationships of Lipid A. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Replication of simulated prebiotic amphiphile vesicles controlled by experimental lipid physicochemical properties

    International Nuclear Information System (INIS)

    Armstrong, Don L; Zidovetzki, Raphael; Markovitch, Omer; Lancet, Doron

    2011-01-01

    We present a new embodiment of the graded autocatalysis replication domain (GARD) for the growth, replication and evolution of lipid vesicles based on a semi-empirical foundation using experimentally measured kinetic values of selected extant lipid species. Extensive simulations using this formalism elucidated the details of the dependence of the replication and properties of the vesicles on the physicochemical properties and concentrations of the lipids, both in the environment and in the vesicle. As expected, the overall concentration and number of amphiphilic components strongly affect average replication time. Furthermore, variations in acyl chain length and unsaturation of vesicles also influence replication rate, as do the relative concentrations of individual lipid types. Understanding of the dependence of replication rates on physicochemical parameters opens a new direction in the study of prebiotic vesicles and lays the groundwork for future studies involving the competition between lipid vesicles for available amphiphilic monomers

  19. Multi-Stacked Supported Lipid Bilayer Micropatterning through Polymer Stencil Lift-Off

    Directory of Open Access Journals (Sweden)

    Yujie Zhu

    2015-08-01

    Full Text Available Complex multi-lamellar structures play a critical role in biological systems, where they are present as lamellar bodies, and as part of biological assemblies that control energy transduction processes. Multi-lamellar lipid layers not only provide interesting systems for fundamental research on membrane structure and bilayer-associated polypeptides, but can also serve as components in bioinspired materials or devices. Although the ability to pattern stacked lipid bilayers at the micron scale is of importance for these purposes, limited work has been done in developing such patterning techniques. Here, we present a simple and direct approach to pattern stacked supported lipid bilayers (SLBs using polymer stencil lift-off and the electrostatic interactions between cationic and anionic lipids. Both homogeneous and phase-segregated stacked SLB patterns were produced, demonstrating that the stacked lipid bilayers retain lateral diffusivity. We demonstrate patterned SLB stacks of up to four bilayers, where fluorescence resonance energy transfer (FRET and quenching was used to probe the interactions between lipid bilayers. Furthermore, the study of lipid phase behaviour showed that gel phase domains align between adjacent layers. The proposed stacked SLB pattern platform provides a robust model for studying lipid behaviour with a controlled number of bilayers, and an attractive means towards building functional bioinspired materials or devices.

  20. The properties of the outer membrane localized Lipid A transporter LptD

    International Nuclear Information System (INIS)

    Haarmann, Raimund; Ibrahim, Mohamed; Stevanovic, Mara; Bredemeier, Rolf; Schleiff, Enrico

    2010-01-01

    Gram-negative bacteria are surrounded by a cell wall including the outer membrane. The outer membrane is composed of two distinct monolayers where the outer layer contains lipopolysaccharides (LPS) with the non-phospholipid Lipid A as the core. The synthesis of Lipid A is initiated in the cytosol and thereby the molecule has to be transported across the inner and outer membranes. The β-barrel lipopolysaccharide-assembly protein D (LptD) was discovered to be involved in the transfer of Lipid A into the outer membrane of Gram-negative bacteria. At present the molecular procedure of lipid transfer across the outer membrane remains unknown. Here we approached the functionality of the transfer system by an electrophysiological analysis of the outer membrane protein from Escherichia coli named ecLptD. In vitro the protein shows cation selectivity and has an estimated pore diameter of about 1.8 nm. Addition of Lipid A induces a transition of the open state to a sub-conductance state with two independent off-rates, which might suggest that LptD is able to bind and transport the molecule in vitro. To generalize our findings with respect to the Lipid A transport system of other Gram-negative bacteria we have explored the existence of the proteins involved in this pathway by bioinformatic means. We were able to identify the membrane-inserted components of the Lipid A transport system in all Gram-negative bacteria, whereas the periplasmic components appear to be species-specific. The LptD proteins of different bacteria are characterized by their periplasmic N-terminal domain and a C-terminal barrel region. The latter shows distinct sequence properties, particularly in LptD proteins of cyanobacteria, and this specific domain can be found in plant proteins as well. By electrophysiological experiments on LptD from Anabaena sp. PCC 7120 we are able to confirm the functional relation of anaLptD to Lipid A transport.

  1. Insertion of anisotropic particles in lamellar surfactant phases

    International Nuclear Information System (INIS)

    Grillo, Isabelle

    1998-01-01

    We search for the interactions governing the possibility to mix organic and inorganic colloids. We use laponite, a synthetic anionic clay, made of 30 nm diameter and 1 nm thickness anisotropic disks. Three surfactant Systems, an anionic one (AOT), a cationic one (DDAB) and a nonionic one (C_1_2E_5) investigate three different cases of interaction forces. We establish experimentally the equilibrium phase diagrams and characterise the structure of these ternary Systems by SANS and SAXS experiments. We quantify the adsorption. An AOT bilayer surround the particle edges; an almost complete bilayer of DDAB and C_1_2E_5 is formed on the basal faces. SANS contrast variation experiments under controlled conditions along the adsorption isotherm of C_1_2E_5 allow to determine the average thickness of the adsorbed surfactant layer. In the monophasic lamellar domain, the particles stay between the membranes, when the spacing is larger than the particle thickness. In the biphasic domain, dense clay aggregates are in equilibrium with a lamellar phase, containing few amount of particles. They enter in the AOT bilayers when the space between the bilayers are smaller than 8 A. From the phase diagram and interaction forces study, three conditions of stability emerge: - an osmotic one: the osmotic lamellar pressure is higher or equal to the colloidal one. - an energetic one: the interaction energy between a particle and the surfactant bilayer is close to the particle energy in aqueous suspension. - an entropic one: particles should not inhibit the stabilising fluctuations of the lamellar phase. (author) [fr

  2. Atomic force microscopy on domains in biological model membranes

    NARCIS (Netherlands)

    Rinia, H.A.

    2001-01-01

    This thesis describes the preparation and imaging of supported lipid bilayers, which can be regarded as biological modelmembranes, in the light of the formation of domains. The bilayers were prepared with either the Langmuir-Blodgett method, or with vesicle fusion. They were imaged with Atomic Force

  3. Dispersive elastic properties of Dzyaloshinskii domain walls

    Science.gov (United States)

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  4. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  5. Solving global problem by considering multitude of local problems: Application to fluid flow in anisotropic porous media using the multipoint flux approximation

    KAUST Repository

    Salama, Amgad; Sun, Shuyu; Wheeler, Mary Fanett

    2014-01-01

    In this work we apply the experimenting pressure field approach to the numerical solution of the single phase flow problem in anisotropic porous media using the multipoint flux approximation. We apply this method to the problem of flow in saturated anisotropic porous media. In anisotropic media the component flux representation requires, generally multiple pressure values in neighboring cells (e.g., six pressure values of the neighboring cells is required in two-dimensional rectangular meshes). This apparently results in the need for a nine points stencil for the discretized pressure equation (27 points stencil in three-dimensional rectangular mesh). The coefficients associated with the discretized pressure equation are complex and require longer expressions which make their implementation prone to errors. In the experimenting pressure field technique, the matrix of coefficients is generated automatically within the solver. A set of predefined pressure fields is operated on the domain through which the velocity field is obtained. Apparently such velocity fields do not satisfy the mass conservation equations entailed by the source/sink term and boundary conditions from which the residual is calculated. In this method the experimenting pressure fields are designed such that the residual reduces to the coefficients of the pressure equation matrix. © 2014 Elsevier B.V. All rights reserved.

  6. Solving global problem by considering multitude of local problems: Application to fluid flow in anisotropic porous media using the multipoint flux approximation

    KAUST Repository

    Salama, Amgad

    2014-09-01

    In this work we apply the experimenting pressure field approach to the numerical solution of the single phase flow problem in anisotropic porous media using the multipoint flux approximation. We apply this method to the problem of flow in saturated anisotropic porous media. In anisotropic media the component flux representation requires, generally multiple pressure values in neighboring cells (e.g., six pressure values of the neighboring cells is required in two-dimensional rectangular meshes). This apparently results in the need for a nine points stencil for the discretized pressure equation (27 points stencil in three-dimensional rectangular mesh). The coefficients associated with the discretized pressure equation are complex and require longer expressions which make their implementation prone to errors. In the experimenting pressure field technique, the matrix of coefficients is generated automatically within the solver. A set of predefined pressure fields is operated on the domain through which the velocity field is obtained. Apparently such velocity fields do not satisfy the mass conservation equations entailed by the source/sink term and boundary conditions from which the residual is calculated. In this method the experimenting pressure fields are designed such that the residual reduces to the coefficients of the pressure equation matrix. © 2014 Elsevier B.V. All rights reserved.

  7. Sign rules for anisotropic quantum spin systems

    International Nuclear Information System (INIS)

    Bishop, R. F.; Farnell, D. J. J.; Parkinson, J. B.

    2000-01-01

    We present exact ''sign rules'' for various spin-s anisotropic spin-lattice models. It is shown that, after a simple transformation which utilizes these sign rules, the ground-state wave function of the transformed Hamiltonian is positive definite. Using these results exact statements for various expectation values of off-diagonal operators are presented, and transitions in the behavior of these expectation values are observed at particular values of the anisotropy. Furthermore, the importance of such sign rules in variational calculations and quantum Monte Carlo calculations is emphasized. This is illustrated by a simple variational treatment of a one-dimensional anisotropic spin model

  8. Anisotropic Flow Measurements in ALICE at the Large Hadron Collider

    NARCIS (Netherlands)

    Bilandzic, A.

    2012-01-01

    Anisotropic flow is one of the observables which is sensitive to the properties of the created hot and dense system in heavy-ion collisions. In noncentral heavy-ion collisions the initial volume of the interacting system is anisotropic in coordinate space. Due to multiple interactions this anisotropy

  9. Double anisotropic electrically conductive flexible Janus-typed membranes.

    Science.gov (United States)

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  10. Holographic models with anisotropic scaling

    Science.gov (United States)

    Brynjolfsson, E. J.; Danielsson, U. H.; Thorlacius, L.; Zingg, T.

    2013-12-01

    We consider gravity duals to d+1 dimensional quantum critical points with anisotropic scaling. The primary motivation comes from strongly correlated electron systems in condensed matter theory but the main focus of the present paper is on the gravity models in their own right. Physics at finite temperature and fixed charge density is described in terms of charged black branes. Some exact solutions are known and can be used to obtain a maximally extended spacetime geometry, which has a null curvature singularity inside a single non-degenerate horizon, but generic black brane solutions in the model can only be obtained numerically. Charged matter gives rise to black branes with hair that are dual to the superconducting phase of a holographic superconductor. Our numerical results indicate that holographic superconductors with anisotropic scaling have vanishing zero temperature entropy when the back reaction of the hair on the brane geometry is taken into account.

  11. Anisotropic models for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Jaypee Institute of Information Technology University, Department of Mathematics, Noida, Uttar Pradesh (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2015-05-15

    In the present paper we obtain an anisotropic analog of the Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) perfect fluid solution. The methodology consists of contraction of the anisotropic factor Δ with the help of both metric potentials e{sup ν} and e{sup λ}. Here we consider e{sup λ} the same as Durgapal and Fuloria (Gen Relativ Gravit 17:671, 1985) did, whereas e{sup ν} is as given by Lake (Phys Rev D 67:104015, 2003). The field equations are solved by the change of dependent variable method. The solutions set mathematically thus obtained are compared with the physical properties of some of the compact stars, strange star as well as white dwarf. It is observed that all the expected physical features are available related to the stellar fluid distribution, which clearly indicates the validity of the model. (orig.)

  12. Generalization of Asaoka method to linearly anisotropic scattering: benchmark data in cylindrical geometry

    International Nuclear Information System (INIS)

    Sanchez, Richard.

    1975-11-01

    The Integral Transform Method for the neutron transport equation has been developed in last years by Asaoka and others. The method uses Fourier transform techniques in solving isotropic one-dimensional transport problems in homogeneous media. The method has been extended to linearly anisotropic transport in one-dimensional homogeneous media. Series expansions were also obtained using Hembd techniques for the new anisotropic matrix elements in cylindrical geometry. Carlvik spatial-spherical harmonics method was generalized to solve the same problem. By applying a relation between the isotropic and anisotropic one-dimensional kernels, it was demonstrated that anisotropic matrix elements can be calculated by a linear combination of a few isotropic matrix elements. This means in practice that the anisotropic problem of order N with the N+2 isotropic matrix for the plane and spherical geometries, and N+1 isotropic matrix for cylindrical geometries can be solved. A method of solving linearly anisotropic one-dimensional transport problems in homogeneous media was defined by applying Mika and Stankiewicz observations: isotropic matrix elements were computed by Hembd series and anisotropic matrix elements then calculated from recursive relations. The method has been applied to albedo and critical problems in cylindrical geometries. Finally, a number of results were computed with 12-digit accuracy for use as benchmarks [fr

  13. Hybrid anisotropic materials for wind power turbine blades

    CERN Document Server

    Golfman, Yosif

    2012-01-01

    Based on rapid technological developments in wind power, governments and energy corporations are aggressively investing in this natural resource. Illustrating some of the crucial new breakthroughs in structural design and application of wind energy generation machinery, Hybrid Anisotropic Materials for Wind Power Turbine Blades explores new automated, repeatable production techniques that expand the use of robotics and process controls. These practices are intended to ensure cheaper fabrication of less-defective anisotropic material composites used to manufacture power turbine blades. This boo

  14. Anisotropic behavior of quantum transport in graphene superlattices

    DEFF Research Database (Denmark)

    Pedersen, Jesper Goor; Cummings, Aron W.; Roche, Stephan

    2014-01-01

    We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength of multi......We report on the possibility to generate highly anisotropic quantum conductivity in disordered graphene-based superlattices. Our quantum simulations, based on an efficient real-space implementation of the Kubo-Greenwood formula, show that in disordered graphene superlattices the strength...

  15. Electroporation-Induced Cell Modifications Detected with THz Time-Domain Spectroscopy

    Science.gov (United States)

    Romeo, Stefania; Vernier, P. Thomas; Zeni, Olga

    2018-04-01

    Electroporation (electropermeabilization) increases the electrical conductivity of biological cell membranes and lowers transport barriers for normally impermeant materials. Molecular simulations suggest that electroporation begins with the reorganization of water and lipid head group dipoles in the phospholipid bilayer interface, driven by an externally applied electric field, and the evolution of the resulting defects into water-filled, lipid pores. The interior of the electroporated membrane thus contains water, which should provide a signature for detection of the electropermeabilized state. In this feasibility study, we use THz time-domain spectroscopy, a powerful tool for investigating biomolecular systems and their interactions with water, to detect electroporation in human cells subjected to permeabilizing pulsed electric fields (PEFs). The time-domain response of electroporated human monocytes was acquired with a commercial THz, time-domain spectrometer. For each sample, frequency spectra were calculated, and the absorption coefficient and refractive index were extracted in the frequency range between 0.2 and 1.5 THz. This analysis reveals a higher absorption of THz radiation by PEF-exposed cells, with respect to sham-exposed ones, consistent with the intrusion of water into the cell through the permeabilized membrane that is presumed to be associated with electroporation.

  16. Anisotropic Rabi model

    OpenAIRE

    Xie, Qiong-Tao; Cui, Shuai; Cao, Jun-Peng; Amico, Luigi; Fan, Heng

    2014-01-01

    We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of th...

  17. Exploiting lipopolysaccharide-induced deformation of lipid bilayers to modify membrane composition and generate two-dimensional geometric membrane array patterns

    Energy Technology Data Exchange (ETDEWEB)

    Adams, Peter G. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Swingle, Kirstie L. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Univ. of New Mexico, Albuquerque, NM (United States); Paxton, Walter F. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Nogan, John J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Stromberg, Loreen R. [Univ. of New Mexico, Albuquerque, NM (United States); Firestone, Millicent A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Mukundan, Harshini [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); New Mexico Consortium, Los Alamos, NM (United States); Montaño, Gabriel A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2015-05-27

    Supported lipid bilayers have proven effective as model membranes for investigating biophysical processes and in development of sensor and array technologies. The ability to modify lipid bilayers after their formation and in situ could greatly advance membrane technologies, but is difficult via current state-of-the-art technologies. Here we demonstrate a novel method that allows the controlled post-formation processing and modification of complex supported lipid bilayer arrangements, under aqueous conditions. We exploit the destabilization effect of lipopolysaccharide, an amphiphilic biomolecule, interacting with lipid bilayers to generate voids that can be backfilled to introduce desired membrane components. We further demonstrate that when used in combination with a single, traditional soft lithography process, it is possible to generate hierarchically-organized membrane domains and microscale 2-D array patterns of domains. Significantly, this technique can be used to repeatedly modify membranes allowing iterative control over membrane composition. This approach expands our toolkit for functional membrane design, with potential applications for enhanced materials templating, biosensing and investigating lipid-membrane processes.

  18. Polyene-lipids: a new tool to image lipids

    DEFF Research Database (Denmark)

    Kuerschner, Lars; Ejsing, Christer S.; Ekroos, Kim

    2005-01-01

    conjugated double bonds as a new type of lipid tag. Polyene-lipids exhibit a unique structural similarity to natural lipids, which results in minimal effects on the lipid properties. Analyzing membrane phase partitioning, an important biophysical and biological property of lipids, we demonstrated......Microscopy of lipids in living cells is currently hampered by a lack of adequate fluorescent tags. The most frequently used tags, NBD and BODIPY, strongly influence the properties of lipids, yielding analogs with quite different characteristics. Here, we introduce polyene-lipids containing five...... the superiority of polyene-lipids to both NBD- and BODIPY-tagged lipids. Cells readily take up various polyene-lipid precursors and generate the expected end products with no apparent disturbance by the tag. Applying two-photon excitation microscopy, we imaged the distribution of polyene-lipids in living...

  19. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  20. Speckle Suppression by Weighted Euclidean Distance Anisotropic Diffusion

    Directory of Open Access Journals (Sweden)

    Fengcheng Guo

    2018-05-01

    Full Text Available To better reduce image speckle noise while also maintaining edge information in synthetic aperture radar (SAR images, we propose a novel anisotropic diffusion algorithm using weighted Euclidean distance (WEDAD. Presented here is a modified speckle reducing anisotropic diffusion (SRAD method, which constructs a new edge detection operator using weighted Euclidean distances. The new edge detection operator can adaptively distinguish between homogenous and heterogeneous image regions, effectively generate anisotropic diffusion coefficients for each image pixel, and filter each pixel at different scales. Additionally, the effects of two different weighting methods (Gaussian weighting and non-linear weighting of de-noising were analyzed. The effect of different adjustment coefficient settings on speckle suppression was also explored. A series of experiments were conducted using an added noise image, GF-3 SAR image, and YG-29 SAR image. The experimental results demonstrate that the proposed method can not only significantly suppress speckle, thus improving the visual effects, but also better preserve the edge information of images.

  1. Self-force on dislocation segments in anisotropic crystals

    International Nuclear Information System (INIS)

    Fitzgerald, S P; Aubry, S

    2010-01-01

    A dislocation segment in a crystal experiences a 'self-force', by virtue of the orientation dependence of its elastic energy. If the crystal is elastically isotropic, this force is manifested as a couple acting to rotate the segment toward the lower energy of the pure screw orientation (i.e. acting to align the dislocation line with its Burgers vector). If the crystal is anisotropic, there are additional contributions to the couple, arising from the more complex energy landscape of the lattice itself. These effects can strongly influence the dynamic evolution of dislocation networks, and via their governing role in dislocation multiplication phenomena, control plastic flow in metals. In this paper we develop a model for dislocation self-forces in a general anisotropic crystal, and briefly consider the technologically important example of α-iron, which becomes increasingly anisotropic as the temperature approaches that of the α-γ phase transition at 912 0 C.

  2. Preconditioned conjugate gradient technique for the analysis of symmetric anisotropic structures

    Science.gov (United States)

    Noor, Ahmed K.; Peters, Jeanne M.

    1987-01-01

    An efficient preconditioned conjugate gradient (PCG) technique and a computational procedure are presented for the analysis of symmetric anisotropic structures. The technique is based on selecting the preconditioning matrix as the orthotropic part of the global stiffness matrix of the structure, with all the nonorthotropic terms set equal to zero. This particular choice of the preconditioning matrix results in reducing the size of the analysis model of the anisotropic structure to that of the corresponding orthotropic structure. The similarities between the proposed PCG technique and a reduction technique previously presented by the authors are identified and exploited to generate from the PCG technique direct measures for the sensitivity of the different response quantities to the nonorthotropic (anisotropic) material coefficients of the structure. The effectiveness of the PCG technique is demonstrated by means of a numerical example of an anisotropic cylindrical panel.

  3. Magnetotransport in (Ga,Mn)As on the verge of the single domain model

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, Christoph; Dreher, Lukas; Daeubler, Joachim; Donhauser, Daniela; Glunk, Michael; Schoch, Wladimir; Schwaiger, Stephan; Sauer, Rolf; Limmer, Wolfgang [Institut fuer Halbleiterphysik, Universitaet Ulm (Germany)

    2009-07-01

    We investigate the limits of the single-domain model in (Ga,Mn)As by performing detailed angle- and field-dependent magnetotransport measurements in samples with differing magnetic anisotropies. For this purpose, a series of (Ga,Mn)As layers with Mn concentrations of {proportional_to}5% was grown by low-temperature molecular-beam epitaxy on relaxed (In,Ga)As/GaAs templates with different In-concentrations, realizing different strain conditions from compressive to tensile. In past investigations we have elucidated the strain dependence of the magnetic anisotropy and of the anisotropic magnetoresistance employing a single-domain model. In order to analyze the break-down of the single-domain model, we now study in detail magnetization reversal processes by sweeping an external magnetic field along selected axes. The magnetic-field sweeps are compared with a series of angle-dependent magnetotransport measurements, carried out at weak external magnetic fields.

  4. Existence of solutions to Burgers equations in domains that can be transformed into rectangles

    Directory of Open Access Journals (Sweden)

    Yassine Benia

    2016-06-01

    Full Text Available This work is concerned with Burgers equation $\\partial _{t}u+u\\partial_x u-\\partial _x^2u=f$ (with Dirichlet boundary conditions in the non rectangular domain $\\Omega =\\{(t,x\\in R^2;\\ 0domain will be transformed into a rectangle by a regular change of variables. The right-hand side lies in the Lebesgue space $L^2(\\Omega $, and the initial condition is in the usual Sobolev space $H_0^{1}$. Our goal is to establish the existence, uniqueness and the optimal regularity of the solution in the anisotropic Sobolev space.

  5. Dynamics of wave packets in two-dimensional random systems with anisotropic disorder.

    Science.gov (United States)

    Samelsohn, Gregory; Gruzdev, Eugene

    2008-09-01

    A theoretical model is proposed to describe narrowband pulse dynamics in two-dimensional systems with arbitrary correlated disorder. In anisotropic systems with elongated cigarlike inhomogeneities, fast propagation is predicted in the direction across the structure where the wave is exponentially localized and tunneling of evanescent modes plays a dominant role in typical realizations. Along the structure, where the wave is channeled as in a waveguide, the motion of the wave energy is relatively slow. Numerical simulations performed for ultra-wide-band pulses show that even at the initial stage of wave evolution, the radiation diffuses predominantly in the direction along the major axis of the correlation ellipse. Spectral analysis of the results relates the long tail of the wave observed in the transverse direction to a number of frequency domain "lucky shots" associated with the long-living resonant modes localized inside the sample.

  6. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1992-01-01

    The diffusion synthetic acceleration (DSA) algorithm effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analysis that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented. (author). 10 refs., 7 figs., 5 tabs

  7. Synthetic acceleration methods for linear transport problems with highly anisotropic scattering

    International Nuclear Information System (INIS)

    Khattab, K.M.; Larsen, E.W.

    1991-01-01

    This paper reports on the diffusion synthetic acceleration (DSA) algorithm that effectively accelerates the iterative solution of transport problems with isotropic or mildly anisotropic scattering. However, DSA loses its effectiveness for transport problems that have strongly anisotropic scattering. Two generalizations of DSA are proposed, which, for highly anisotropic scattering problems, converge at least an order of magnitude (clock time) faster than the DSA method. These two methods are developed, the results of Fourier analyses that theoretically predict their efficiency are described, and numerical results that verify the theoretical predictions are presented

  8. Membrane re-modelling by BAR domain superfamily proteins via molecular and non-molecular factors.

    Science.gov (United States)

    Nishimura, Tamako; Morone, Nobuhiro; Suetsugu, Shiro

    2018-04-17

    Lipid membranes are structural components of cell surfaces and intracellular organelles. Alterations in lipid membrane shape are accompanied by numerous cellular functions, including endocytosis, intracellular transport, and cell migration. Proteins containing Bin-Amphiphysin-Rvs (BAR) domains (BAR proteins) are unique, because their structures correspond to the membrane curvature, that is, the shape of the lipid membrane. BAR proteins present at high concentration determine the shape of the membrane, because BAR domain oligomers function as scaffolds that mould the membrane. BAR proteins co-operate with various molecular and non-molecular factors. The molecular factors include cytoskeletal proteins such as the regulators of actin filaments and the membrane scission protein dynamin. Lipid composition, including saturated or unsaturated fatty acid tails of phospholipids, also affects the ability of BAR proteins to mould the membrane. Non-molecular factors include the external physical forces applied to the membrane, such as tension and friction. In this mini-review, we will discuss how the BAR proteins orchestrate membrane dynamics together with various molecular and non-molecular factors. © 2018 The Author(s). Published by Portland Press Limited on behalf of the Biochemical Society.

  9. The role of blood cell membrane lipids on the mode of action of HIV-1 fusion inhibitor sifuvirtide

    International Nuclear Information System (INIS)

    Matos, Pedro M.; Freitas, Teresa; Castanho, Miguel A.R.B.; Santos, Nuno C.

    2010-01-01

    Research highlights: → Sifuvirtide interacts with erythrocyte and lymphocyte membrane in a concentration dependent manner by decreasing its dipole potential. → Dipole potential variations in lipid vesicles show sifuvirtide's lipid selectivity towards saturated phosphatidylcholines. → This peptide-membrane interaction may direct the drug towards raft-like membrane domains where the receptors used by HIV are located, facilitating its inhibitory action. -- Abstract: Sifuvirtide is a gp41 based peptide that inhibits HIV-1 fusion with the host cells and is currently under clinical trials. Previous studies showed that sifuvirtide partitions preferably to saturated phosphatidylcholine lipid membranes, instead of fluid-phase lipid vesicles. We extended the study to the interaction of the peptide with circulating blood cells, by using the dipole potential sensitive probe di-8-ANEPPS. Sifuvirtide decreased the dipole potential of erythrocyte and lymphocyte membranes in a concentration dependent manner, demonstrating its interaction. Also, the lipid selectivity of the peptide towards more rigid phosphatidylcholines was confirmed based on the dipole potential variations. Overall, the interaction of the peptide with the cell membranes is a contribution of different lipid preferences that presumably directs the peptide towards raft-like domains where the receptors are located, facilitating the reach of the peptide to its molecular target, the gp41 in its pre-fusion conformation.

  10. On the influence of lipid-induced optical anisotropy for the bioimaging of exo- or endocytosis with interference microscopic imaging.

    Science.gov (United States)

    Marques, D; Miranda, A; Silva, A G; Munro, P R T; DE Beule, P A A

    2018-05-01

    Some implementations of interference microscopy imaging use digital holographic measurements of complex scattered fields to reconstruct three-dimensional refractive index maps of weakly scattering, semi-transparent objects, frequently encountered in biological investigations. Reconstruction occurs through application of the object scattering potential which assumes an isotropic refractive index throughout the object. Here, we demonstrate that this assumption can in some circumstances be invalid for biological imaging due to the presence of lipid-induced optical anisotropy. We show that the nanoscale organization of lipids in the observation of cellular endocytosis with polarized light induces a significant change in far-field scattering. We obtain this result by presenting a general solution to Maxwell's equations describing light scattering of core-shell particles near an isotropic substrate covered with an anisotropic thin film. This solution is based on an extension of the Bobbert-Vlieger solution for particle scattering near a substrate delivering an exact solution to the scattering problem in the near field as well as far field. By applying this solution to study light scattering by a lipid vesicle near a lipid bilayer, whereby the lipids are represented through a biaxial optical model, we conclude through ellipsometry concepts that effective amounts of lipid-induced optical anisotropy significantly alter far-field optical scattering in respect to an equivalent optical model that neglects the presence of optical anisotropy. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  11. ANALYSIS OF DEFORMABILITY OF ANISOTROPIC AGRILLITE CLAYSTONES

    Directory of Open Access Journals (Sweden)

    Ponomaryov Andrey Budimirovicn

    2017-08-01

    Full Text Available In the paper, the results of deformability study of agrillite claystones are used for determination of the Jointed rock model parameters. The number of stamp, pressuremeter and compressive tests allowed to research anisotropic deformability of argillite claystone in vertical and horizontal direction. The following problems were solved during the study: 1 the in-place and laboratory experiments to calculate the anisotropy coefficient were done for anisotropic agrillite claystones with both natural moisture and total water saturation; 2 the deformation parameters were determined and the numerical simulation of the stress-strain state of claystone in field tests was carried out with the use of Plaxis 2D software application; 3 the comparative analysis was done for calculated claystone deformation and the values obtained during the in-place tests. The authors proved that agrillite claystones shows two times less deformation under loading in the horizontal direction than vertically. The ratio is obtained to determine the parameters for numerical simulation of the Jointed Rock model used as a practical tool for analysis of stress-strain behavior of anisotropic soils. The authors provided a recommended practice for consideration of specific properties of argillite claystones when carrying out foundation works.

  12. Inhomogeneous nucleation and domain wall motion with Barkhausen avalanches in epitaxial PbZr0.4Ti0.6O3 thin films

    International Nuclear Information System (INIS)

    Yang, Sang Mo; Kim, Hun Ho; Kim, Tae Heon; Kim, Ik Joo; Yoon, Jong Gul

    2012-01-01

    We investigated the ferroelectric (FE) domain nucleation and domain wall motion in epitaxial PbZr 0.4 Ti 0.6 O 3 capacitors by using modified piezoresponse force microscopy with the domain-tracing method. From time-dependent FE domain evolution images, we observed that defect-mediated inhomogeneous nucleation occurred with a stochastic nature. In addition, we found that the number of nuclei N(t) was linearly proportional to log t, where t is the accumulated time of the applied pulse fields. The time-dependence of N(t) suggests a distribution of energy barriers for nucleation, which may determine the stochastic nature of domain nucleation. We also observed that the domain grew with consecutive Barkhausen avalanches and that the growth direction became anisotropic when the domain radius was larger than a critical radius of about 100 nm.

  13. 3-D direct current resistivity anisotropic modelling by goal-oriented adaptive finite element methods

    Science.gov (United States)

    Ren, Zhengyong; Qiu, Lewen; Tang, Jingtian; Wu, Xiaoping; Xiao, Xiao; Zhou, Zilong

    2018-01-01

    Although accurate numerical solvers for 3-D direct current (DC) isotropic resistivity models are current available even for complicated models with topography, reliable numerical solvers for the anisotropic case are still an open question. This study aims to develop a novel and optimal numerical solver for accurately calculating the DC potentials for complicated models with arbitrary anisotropic conductivity structures in the Earth. First, a secondary potential boundary value problem is derived by considering the topography and the anisotropic conductivity. Then, two a posteriori error estimators with one using the gradient-recovery technique and one measuring the discontinuity of the normal component of current density are developed for the anisotropic cases. Combing the goal-oriented and non-goal-oriented mesh refinements and these two error estimators, four different solving strategies are developed for complicated DC anisotropic forward modelling problems. A synthetic anisotropic two-layer model with analytic solutions verified the accuracy of our algorithms. A half-space model with a buried anisotropic cube and a mountain-valley model are adopted to test the convergence rates of these four solving strategies. We found that the error estimator based on the discontinuity of current density shows better performance than the gradient-recovery based a posteriori error estimator for anisotropic models with conductivity contrasts. Both error estimators working together with goal-oriented concepts can offer optimal mesh density distributions and highly accurate solutions.

  14. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  15. Field theoretic approach to structure formation in an anisotropic medium

    International Nuclear Information System (INIS)

    Joy, Minu; Kuriakose, V.C.

    2003-01-01

    Considering a real scalar field distribution which is assumed to be locally anisotropic and coupled to a Bianchi type-I background spacetime, the energy density and pressure associated with the anisotropic matter field distribution are evaluated. The vanishing of the expectation values of the nondiagonal components of T μν allows us to treat the scalar field in complete analogy with the distribution of fluid. The primeval density perturbations produced by the vacuum fluctuations of the scalar field are considered and the Jeans criterion for structure formation is obtained. The metric and matter field perturbations are considered and it is found that for the present anisotropic case the perturbations of the pressure in the radial and tangential directions are different. The Jeans instability is discussed and the Jeans wave number for the present case is evaluated. It is found that for the anisotropic case the Jeans length depends on the velocity of the fluctuations in the radial and transverse directions and thus on the direction of propagation of the perturbations

  16. Understanding crumpling lipid vesicles at the gel phase transition

    Science.gov (United States)

    Hirst, Linda; Ossowski, Adam; Fraser, Matthew

    2011-03-01

    Wrinkling and crumpling transitions in different membrane types have been studied extensively in recent years both theoretically and computationally. There has also been very interesting recent work on defects in liquid crystalline shells. Lipid bilayer vesicles, widely used in biophysical research can be considered as a single layer smectic shell in the liquid crystalline phase. On cooling the lipid vesicle a transition to the gel phase may take place in which the lipid chains tilt and assume a more ordered packing arrangement. We observe large scale morphological changes in vesicles close to this transition point using fluorescence microscopy and investigate the possible mechanisms for this transition. Confocal microscopy is used to map 3D vesicle shape and crumpling length-scales. We also employ the molecular tilt sensitive dye, Laurdan to investigate the role of tilt domain formation on macroscopic structure. Funded by NSF CAREER award (DMR - BMAT #0852791).

  17. Corrugation of Phase-Separated Lipid Bilayers Supported by Nanoporous Silica Xerogel Surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Goksu, E I; Nellis, B A; Lin, W; Satcher Jr., J H; Groves, J T; Risbud, S H; Longo, M L

    2008-10-30

    Lipid bilayers supported by substrates with nanometer-scale surface corrugations holds interest in understanding both nanoparticle-membrane interactions and the challenges of constructing models of cell membranes on surfaces with desirable properties, e.g. porosity. Here, we successfully form a two-phase (gel-fluid) lipid bilayer supported by nanoporous silica xerogel. Surface topology, diffusion, and lipid density in comparison to mica-supported lipid bilayers were characterized by AFM, FRAP, FCS, and quantitative fluorescence microscopy, respectively. We found that the two-phase lipid bilayer follows the xerogel surface contours. The corrugation imparted on the lipid bilayer results in a lipid density that is twice that on a flat mica surface. In direct agreement with the doubling of actual bilayer area in a projected area, we find that the lateral diffusion coefficient (D) of lipids on xerogel ({approx}1.7 {micro}m{sup 2}/s) is predictably lower than on mica ({approx}4.1 {micro}m{sup 2}/s) by both FRAP and FCS techniques. Furthermore, the gel-phase domains on xerogel compared to mica were larger and less numerous. Overall, our results suggest the presence of a relatively defect-free continuous two-phase bilayer that penetrates approximately midway into the first layer of {approx}50 nm xerogel beads.

  18. Effective Medium Theory for Anisotropic Metamaterials

    KAUST Repository

    Zhang, Xiujuan

    2017-11-12

    This dissertation includes the study of effective medium theories (EMTs) and their applications in describing wave propagation in anisotropic metamaterials, which can guide the design of metamaterials. An EMT based on field averaging is proposed to describe a peculiar anisotropic dispersion relation that is linear along the symmetry line but quadratic in the perpendicular direction. This dispersion relation is associated with the topological transition of the iso-frequency contours (IFCs), suggesting interesting wave propagation behaviors from beam shaping to beam splitting. In the framework of coherent potential approximation, an analytical EMT is further developed, with the ability to build a direct connection between the microscopic structure and the macroscopic material properties, which overcomes the requirement of prior knowledge of the field distributions. The derived EMT is valid beyond the long-wavelength limit. Using the EMT, an anisotropic zero-index metamaterial is designed. Moreover, the derived EMT imposes a condition that no scattered wave is generated in the ambient medium, which suggests the input signal cannot detect any object that might exist, making it invisible. Such correspondence between the EMT and the invisibilityinspires us to explore the wave cloaking in the same framework of coherent potential approximation. To further broaden the application realm of EMT, an EMT using the parameter retrieval method is studied in the regimes where the previously-developed EMTs are no longer accurate. Based on this study, in conjunction with the EMT mentioned above, a general scheme to realize coherent perfect absorption (CPA) in anisotropic metamaterials is proposed. As an exciting area in metamaterials, the field of metasurfaces has drawn great attention recently. As an easily attainable device, a grating may be the simplest version of metasurfaces. Here, an analytical EMT for gratings made of cylinders is developed by using the multiple scattering

  19. The nonsteroidal anti-inflammatory drug indomethacin induces heterogeneity in lipid membranes: potential implication for its diverse biological action.

    Directory of Open Access Journals (Sweden)

    Yong Zhou

    2010-01-01

    Full Text Available The nonsteroidal anti-inflammatory drug (NSAID, indomethacin (Indo, has a large number of divergent biological effects, the molecular mechanism(s for which have yet to be fully elucidated. Interestingly, Indo is highly amphiphilic and associates strongly with lipid membranes, which influence localization, structure and function of membrane-associating proteins and actively regulate cell signaling events. Thus, it is possible that Indo regulates diverse cell functions by altering micro-environments within the membrane. Here we explored the effect of Indo on the nature of the segregated domains in a mixed model membrane composed of dipalmitoyl phosphatidyl-choline (di16:0 PC, or DPPC and dioleoyl phosphatidyl-choline (di18:1 PC or DOPC and cholesterol that mimics biomembranes.Using a series of fluorescent probes in a fluorescence resonance energy transfer (FRET study, we found that Indo induced separation between gel domains and fluid domains in the mixed model membrane, possibly by enhancing the formation of gel-phase domains. This effect originated from the ability of Indo to specifically target the ordered domains in the mixed membrane. These findings were further confirmed by measuring the ability of Indo to affect the fluidity-dependent fluorescence quenching and the level of detergent resistance of membranes.Because the tested lipids are the main lipid constituents in cell membranes, the observed formation of gel phase domains induced by Indo potentially occurs in biomembranes. This marked Indo-induced change in phase behavior potentially alters membrane protein functions, which contribute to the wide variety of biological activities of Indo and other NSAIDs.

  20. An anisotropic standing wave braneworld and associated Sturm-Liouville problem

    International Nuclear Information System (INIS)

    Gogberashvili, Merab; Herrera-Aguilar, Alfredo; Malagón-Morejón, Dagoberto

    2012-01-01

    We present a consistent derivation of the recently proposed 5D anisotropic standing wave braneworld generated by gravity coupled to a phantom-like scalar field. We explicitly solve the corresponding junction conditions, a fact that enables us to give a physical interpretation to the anisotropic energy-momentum tensor components of the brane. So matter on the brane represents an oscillating fluid which emits anisotropic waves into the bulk. We also analyze the Sturm-Liouville problem associated with the correct localization condition of the transverse to the brane metric and scalar fields. It is shown that this condition restricts the physically meaningful space of solutions for the localization of the fluctuations of the model. (paper)

  1. Experimental evidence for anisotropic double exchange interaction driven anisotropic transport in manganite heterostructures

    NARCIS (Netherlands)

    Liao, Zhaoliang; Koster, Gertjan; Huijben, Mark; Rijnders, A.J.H.M.

    2017-01-01

    An anisotropic double exchange interaction driven giant transport anisotropy is demonstrated in a canonic double exchange system of La2/3Sr1/3MnO3 ultrathin films epitaxially grown on NdGaO3 (110) substrates. The oxygen octahedral coupling at the La2/3Sr1/3MnO3/NdGaO3 interface induces a planar

  2. Characterization of highly anisotropic three-dimensionally nanostructured surfaces

    International Nuclear Information System (INIS)

    Schmidt, Daniel

    2014-01-01

    Generalized ellipsometry, a non-destructive optical characterization technique, is employed to determine geometrical structure parameters and anisotropic dielectric properties of highly spatially coherent three-dimensionally nanostructured thin films grown by glancing angle deposition. The (piecewise) homogeneous biaxial layer model approach is discussed, which can be universally applied to model the optical response of sculptured thin films with different geometries and from diverse materials, and structural parameters as well as effective optical properties of the nanostructured thin films are obtained. Alternative model approaches for slanted columnar thin films, anisotropic effective medium approximations based on the Bruggeman formalism, are presented, which deliver results comparable to the homogeneous biaxial layer approach and in addition provide film constituent volume fraction parameters as well as depolarization or shape factors. Advantages of these ellipsometry models are discussed on the example of metal slanted columnar thin films, which have been conformally coated with a thin passivating oxide layer by atomic layer deposition. Furthermore, the application of an effective medium approximation approach to in-situ growth monitoring of this anisotropic thin film functionalization process is presented. It was found that structural parameters determined with the presented optical model equivalents for slanted columnar thin films agree very well with scanning electron microscope image estimates. - Highlights: • Summary of optical model strategies for sculptured thin films with arbitrary geometries • Application of the rigorous anisotropic Bruggeman effective medium applications • In-situ growth monitoring of atomic layer deposition on biaxial metal slanted columnar thin film

  3. On a hierarchical construction of the anisotropic LTSN solution from the isotropic LTSN solution

    International Nuclear Information System (INIS)

    Foletto, Taline; Segatto, Cynthia F.; Bodmann, Bardo E.; Vilhena, Marco T.

    2015-01-01

    In this work, we present a recursive scheme targeting the hierarchical construction of anisotropic LTS N solution from the isotropic LTS N solution. The main idea relies in the decomposition of the associated LTS N anisotropic matrix as a sum of two matrices in which one matrix contains the isotropic and the other anisotropic part of the problem. The matrix containing the anisotropic part is considered as the source of the isotropic problem. The solution of this problem is made by the decomposition of the angular flux as a truncated series of intermediate functions and replace in the isotropic equation. After the replacement of these into the split isotropic equation, we construct a set of isotropic recursive problems, that are readily solved by the classic LTS N isotropic method. We apply this methodology to solve problems considering homogeneous and heterogeneous anisotropic regions. Numerical results are presented and compared with the classical LTS N anisotropic solution. (author)

  4. Phosphatidylserine Lateral Organization Influences the Interaction of Influenza Virus Matrix Protein 1 with Lipid Membranes.

    Science.gov (United States)

    Bobone, Sara; Hilsch, Malte; Storm, Julian; Dunsing, Valentin; Herrmann, Andreas; Chiantia, Salvatore

    2017-06-15

    Influenza A virus matrix protein 1 (M1) is an essential component involved in the structural stability of the virus and in the budding of new virions from infected cells. A deeper understanding of the molecular basis of virion formation and the budding process is required in order to devise new therapeutic approaches. We performed a detailed investigation of the interaction between M1 and phosphatidylserine (PS) (i.e., its main binding target at the plasma membrane [PM]), as well as the distribution of PS itself, both in model membranes and in living cells. To this end, we used a combination of techniques, including Förster resonance energy transfer (FRET), confocal microscopy imaging, raster image correlation spectroscopy, and number and brightness (N&B) analysis. Our results show that PS can cluster in segregated regions in the plane of the lipid bilayer, both in model bilayers constituted of PS and phosphatidylcholine and in living cells. The viral protein M1 interacts specifically with PS-enriched domains, and such interaction in turn affects its oligomerization process. Furthermore, M1 can stabilize PS domains, as observed in model membranes. For living cells, the presence of PS clusters is suggested by N&B experiments monitoring the clustering of the PS sensor lactadherin. Also, colocalization between M1 and a fluorescent PS probe suggest that, in infected cells, the matrix protein can specifically bind to the regions of PM in which PS is clustered. Taken together, our observations provide novel evidence regarding the role of PS-rich domains in tuning M1-lipid and M1-M1 interactions at the PM of infected cells. IMPORTANCE Influenza virus particles assemble at the plasma membranes (PM) of infected cells. This process is orchestrated by the matrix protein M1, which interacts with membrane lipids while binding to the other proteins and genetic material of the virus. Despite its importance, the initial step in virus assembly (i.e., M1-lipid interaction) is still

  5. Brazilian Tensile Strength of Anisotropic Rocks: Review and New Insights

    Directory of Open Access Journals (Sweden)

    Tianshou Ma

    2018-01-01

    Full Text Available Strength anisotropy is one of the most distinct features of anisotropic rocks, and it also normally reveals strong anisotropy in Brazilian test Strength (“BtS”. Theoretical research on the “BtS” of anisotropic rocks is seldom performed, and in particular some significant factors, such as the anisotropic tensile strength of anisotropic rocks, the initial Brazilian disc fracture points, and the stress distribution on the Brazilian disc, are often ignored. The aim of the present paper is to review the state of the art in the experimental studies on the “BtS” of anisotropic rocks since the pioneering work was introduced in 1964, and to propose a novel theoretical method to underpin the failure mechanisms and predict the “BtS” of anisotropic rocks under Brazilian test conditions. The experimental data of Longmaxi Shale-I and Jixi Coal were utilized to verify the proposed method. The results show the predicted “BtS” results show strong agreement with experimental data, the maximum error is only ~6.55% for Longmaxi Shale-I and ~7.50% for Jixi Coal, and the simulated failure patterns of the Longmaxi Shale-I are also consistent with the test results. For the Longmaxi Shale-I, the Brazilian disc experiences tensile failure of the intact rock when 0° ≤ βw ≤ 24°, shear failure along the weakness planes when 24° ≤ βw ≤ 76°, and tensile failure along the weakness planes when 76° ≤ βw ≤ 90°. For the Jixi Coal, the Brazilian disc experiences tensile failure when 0° ≤ βw ≤ 23° or 76° ≤ βw ≤ 90°, shear failure along the butt cleats when 23° ≤ βw ≤ 32°, and shear failure along the face cleats when 32° ≤ βw ≤ 76°. The proposed method can not only be used to predict the “BtS” and underpin the failure mechanisms of anisotropic rocks containing a single group of weakness planes, but can also be generalized for fractured rocks containing multi-groups of weakness planes.

  6. Debonding analyses in anisotropic materials with strain- gradient effects

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2012-01-01

    A unit cell approach is adopted to numerically analyze the effect of plastic anisotropy on damage evolution in a micro-reinforced composite. The matrix material exhibit size effects and a visco-plastic anisotropic strain gradient plasticity model accounting for such size effects is adopted....... A conventional cohesive law is extended such that both the average as well as the jump in plastic strain across the fiber-matrix interface are accounted for. Results are shown for both conventional isotropic and anisotropic materials as well as for higher order isotropic and anisotropic materials...... with and without debonding. Generally, the strain gradient enhanced material exhibits higher load carry capacity compared to the corresponding conventional material. A sudden stress drop occurs in the macroscopic stress-strain response curve due to fiber-matrix debonding and the results show that a change in yield...

  7. Computational Study of Subdural Cortical Stimulation: Effects of Simulating Anisotropic Conductivity on Activation of Cortical Neurons.

    Directory of Open Access Journals (Sweden)

    Hyeon Seo

    Full Text Available Subdural cortical stimulation (SuCS is an appealing method in the treatment of neurological disorders, and computational modeling studies of SuCS have been applied to determine the optimal design for electrotherapy. To achieve a better understanding of computational modeling on the stimulation effects of SuCS, the influence of anisotropic white matter conductivity on the activation of cortical neurons was investigated in a realistic head model. In this paper, we constructed pyramidal neuronal models (layers 3 and 5 that showed primary excitation of the corticospinal tract, and an anatomically realistic head model reflecting complex brain geometry. The anisotropic information was acquired from diffusion tensor magnetic resonance imaging (DT-MRI and then applied to the white matter at various ratios of anisotropic conductivity. First, we compared the isotropic and anisotropic models; compared to the isotropic model, the anisotropic model showed that neurons were activated in the deeper bank during cathodal stimulation and in the wider crown during anodal stimulation. Second, several popular anisotropic principles were adapted to investigate the effects of variations in anisotropic information. We observed that excitation thresholds varied with anisotropic principles, especially with anodal stimulation. Overall, incorporating anisotropic conductivity into the anatomically realistic head model is critical for accurate estimation of neuronal responses; however, caution should be used in the selection of anisotropic information.

  8. Structural basis of sterol recognition and nonvesicular transport by lipid transfer proteins anchored at membrane contact sites.

    Science.gov (United States)

    Tong, Junsen; Manik, Mohammad Kawsar; Im, Young Jun

    2018-01-30

    Membrane contact sites (MCSs) in eukaryotic cells are hotspots for lipid exchange, which is essential for many biological functions, including regulation of membrane properties and protein trafficking. Lipid transfer proteins anchored at membrane contact sites (LAMs) contain sterol-specific lipid transfer domains [StARkin domain (SD)] and multiple targeting modules to specific membrane organelles. Elucidating the structural mechanisms of targeting and ligand recognition by LAMs is important for understanding the interorganelle communication and exchange at MCSs. Here, we determined the crystal structures of the yeast Lam6 pleckstrin homology (PH)-like domain and the SDs of Lam2 and Lam4 in the apo form and in complex with ergosterol. The Lam6 PH-like domain displays a unique PH domain fold with a conserved N-terminal α-helix. The Lam6 PH-like domain lacks the basic surface for phosphoinositide binding, but contains hydrophobic patches on its surface, which are critical for targeting to endoplasmic reticulum (ER)-mitochondrial contacts. Structures of the LAM SDs display a helix-grip fold with a hydrophobic cavity and a flexible Ω1-loop as a lid. Ergosterol is bound to the pocket in a head-down orientation, with its hydrophobic acyl group located in the tunnel entrance. The Ω1-loop in an open conformation is essential for ergosterol binding by direct hydrophobic interaction. Structural comparison suggested that the sterol binding mode of the Lam2 SD2 is likely conserved among the sterol transfer proteins of the StARkin superfamily. Structural models of full-length Lam2 correlated with the sterol transport function at the membrane contact sites.

  9. Fabrication of an Anisotropic Superhydrophobic Polymer Surface Using Compression Molding and Dip Coating

    Directory of Open Access Journals (Sweden)

    Kyong-Min Lee

    2017-11-01

    Full Text Available Many studies of anisotropic wetting surfaces with directional structures inspired from rice leaves, bamboo leaves, and butterfly wings have been carried out because of their unique liquid shape control and transportation. In this study, a precision mechanical cutting process, ultra-precision machining using a single crystal diamond tool, was used to fabricate a mold with microscale directional patterns of triangular cross-sectional shape for good moldability, and the patterns were duplicated on a flat thermoplastic polymer plate by compression molding for the mass production of an anisotropic wetting polymer surface. Anisotropic wetting was observed only with microscale patterns, but the sliding of water could not be achieved because of the pinning effect of the micro-structure. Therefore, an additional dip coating process with 1H, 1H, 2H, 2H-perfluorodecythricholosilanes, and TiO2 nanoparticles was applied for a small sliding angle with nanoscale patterns and a low surface energy. The anisotropic superhydrophobic surface was fabricated and the surface morphology and anisotropic wetting behaviors were investigated. The suggested fabrication method can be used to mass produce an anisotropic superhydrophobic polymer surface, demonstrating the feasibility of liquid shape control and transportation.

  10. Structural characterization of ether lipids from the archaeon Sulfolobus islandicus by high-resolution shotgun lipidomics

    DEFF Research Database (Denmark)

    Jensen, Sara Munk; Brandl, Martin; Treusch, Alexander H

    2015-01-01

    The molecular structures, biosynthetic pathways and physiological functions of membrane lipids produced by organisms in the domain Archaea are poorly characterized as compared with that of counterparts in Bacteria and Eukaryota. Here we report on the use of high-resolution shotgun lipidomics......-resolution Fourier transform mass spectrometry using an ion trap-orbitrap mass spectrometer. This analysis identified five clusters of molecular ions that matched ether lipids in the database with sub-ppm mass accuracy. To structurally characterize and validate the identities of the potential lipid species, we...... performed structural analysis using multistage activation on the ion trap-orbitrap instrument as well as tandem mass analysis using a quadrupole time-of-flight machine. Our analysis identified four ether lipid species previously reported in Archaea, and one ether lipid species that had not been described...

  11. Anisotropic spin motive force in multi-layered Dirac fermion system, α-(BEDT-TTF)2I3

    International Nuclear Information System (INIS)

    Kubo, K; Morinari, T

    2015-01-01

    We investigate the anisotropic spin motive force in α-(BEDT-TTF) 2 I 3 , which is a multi-layered massless Dirac fermion system under pressure. Assuming the interlayer antiferromagnetic interaction and the interlayer anisotropic ferromagnetic interaction, we numerically examine the spin ordered state of the ground state using the steepest descent method. The anisotropic interaction leads to the anisotropic spin ordered state. We calculate the spin motive force produced by the anisotropic spin texture. The result quantitatively agrees with the experiment. (paper)

  12. Selective association of outer surface lipoproteins with the lipid rafts of Borrelia burgdorferi.

    Science.gov (United States)

    Toledo, Alvaro; Crowley, Jameson T; Coleman, James L; LaRocca, Timothy J; Chiantia, Salvatore; London, Erwin; Benach, Jorge L

    2014-03-11

    Borrelia burgdorferi contains unique cholesterol-glycolipid-rich lipid rafts that are associated with lipoproteins. These complexes suggest the existence of macromolecular structures that have not been reported for prokaryotes. Outer surface lipoproteins OspA, OspB, and OspC were studied for their participation in the formation of lipid rafts. Single-gene deletion mutants with deletions of ospA, ospB, and ospC and a spontaneous gene mutant, strain B313, which does not express OspA and OspB, were used to establish their structural roles in the lipid rafts. All mutant strains used in this study produced detergent-resistant membranes, a common characteristic of lipid rafts, and had similar lipid and protein slot blot profiles. Lipoproteins OspA and OspB but not OspC were shown to be associated with lipid rafts by transmission electron microscopy. When the ability to form lipid rafts in live B. burgdorferi spirochetes was measured by fluorescence resonance energy transfer (FRET), strain B313 showed a statistically significant lower level of segregation into ordered and disordered membrane domains than did the wild-type and the other single-deletion mutants. The transformation of a B313 strain with a shuttle plasmid containing ospA restored the phenotype shared by the wild type and the single-deletion mutants, demonstrating that OspA and OspB have redundant functions. In contrast, a transformed B313 overexpressing OspC neither rescued the FRET nor colocalized with the lipid rafts. Because these lipoproteins are expressed at different stages of the life cycle of B. burgdorferi, their selective association is likely to have an important role in the structure of prokaryotic lipid rafts and in the organism's adaptation to changing environments. IMPORTANCE Lipid rafts are cholesterol-rich clusters within the membranes of cells. Lipid rafts contain proteins that have functions in sensing the cell environment and transmitting signals. Although selective proteins are present in

  13. Amphipathic motifs in BAR domains are essential for membrane curvature sensing

    DEFF Research Database (Denmark)

    Bhatia, Vikram K; Madsen, Kenneth L; Bolinger, Pierre-Yves

    2009-01-01

    BAR (Bin/Amphiphysin/Rvs) domains and amphipathic alpha-helices (AHs) are believed to be sensors of membrane curvature thus facilitating the assembly of protein complexes on curved membranes. Here, we used quantitative fluorescence microscopy to compare the binding of both motifs on single...... nanosized liposomes of different diameters and therefore membrane curvature. Characterization of members of the three BAR domain families showed surprisingly that the crescent-shaped BAR dimer with its positively charged concave face is not able to sense membrane curvature. Mutagenesis on BAR domains showed...... that membrane curvature sensing critically depends on the N-terminal AH and furthermore that BAR domains sense membrane curvature through hydrophobic insertion in lipid packing defects and not through electrostatics. Consequently, amphipathic motifs, such as AHs, that are often associated with BAR domains...

  14. 3D anisotropic modeling and identification for airborne EM systems based on the spectral-element method

    Science.gov (United States)

    Huang, Xin; Yin, Chang-Chun; Cao, Xiao-Yue; Liu, Yun-He; Zhang, Bo; Cai, Jing

    2017-09-01

    The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic

  15. Functional Implications of Domain Organization Within Prokaryotic Rhomboid Proteases.

    Science.gov (United States)

    Panigrahi, Rashmi; Lemieux, M Joanne

    2015-01-01

    Intramembrane proteases are membrane embedded enzymes that cleave transmembrane substrates. This interesting class of enzyme and its water mediated substrate cleavage mechanism occurring within the hydrophobic lipid bilayer has drawn the attention of researchers. Rhomboids are a family of ubiquitous serine intramembrane proteases. Bacterial forms of rhomboid proteases are mainly composed of six transmembrane helices that are preceded by a soluble N-terminal domain. Several crystal structures of the membrane domain of the E. coli rhomboid protease ecGlpG have been solved. Independently, the ecGlpG N-terminal cytoplasmic domain structure was solved using both NMR and protein crystallography. Despite these structures, we still do not know the structure of the full-length protein, nor do we know the functional role of these domains in the cell. This chapter will review the structural and functional roles of the different domains associated with prokaryotic rhomboid proteases. Lastly, we will address questions remaining in the field.

  16. Analytical theory and method for longitudinal magneto-optical Kerr effect of optically anisotropic magnetic film

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Xiao, E-mail: sps_wangx@ujn.edu.cn [School of Physics and Technology, University of Jinan, Jinan 250022 (China); School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Lian, Jie [School of Information Science and Engineering, Shandong University, Jinan 250100 (China); Li, Ping; Xu, XiJin [School of Physics and Technology, University of Jinan, Jinan 250022 (China); Li, MengMeng [School of Information Science and Engineering, Shandong University, Jinan 250100 (China)

    2017-01-15

    The Fresnel equations are solved to analyze the reflection and propagation properties of the ordinary and extraordinary light of the optically anisotropic magnetic film. Using the boundary and propagation matrix, the longitudinal magneto-optical Kerr rotation expression is derived. After that, simulations are performed on optically anisotropic and isotropic Co/SiO{sub 2} film. Results show that for Co material in the thin-film limit, the anisotropic Co can provide larger max rotations than the isotropic Co in the visible region. This is because that the refractive index discrepancy of optically anisotropic Co film reduces the Fresnel reflective coefficient r{sub pp,} which improves the Kerr rotation. This makes the optically anisotropic Co film more effective in magneto optical sensor design and device fabrication. - Highlights: • In this work, using the boundary matrix and media propagation matrix developed by Zak and S.D.Bader,we get the analytical solution of the magneto-optical Kerr rotation of the optical anisotropic magnetic film. • Results show that for film in the thin-film limit, the anisotropic Co can provide larger maximum rotations than the isotropic Co. • The improvement of Kerr rotation can be attributed to the refractive index discrepancy of optically anisotropic Co film which reduce the Fresnel reflective coefficient rpp.

  17. Anisotropic cosmological solutions in massive vector theories

    Energy Technology Data Exchange (ETDEWEB)

    Heisenberg, Lavinia [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji, E-mail: Lavinia.heisenberg@googlemail.com, E-mail: r.kase@rs.tus.ac.jp, E-mail: shinji@rs.kagu.tus.ac.jp [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)

    2016-11-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v {sup 2} || φ{sup 2} are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w {sub DE} in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w {sub DE}{sup (iso)} typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  18. Anisotropic cosmological solutions in massive vector theories

    International Nuclear Information System (INIS)

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component v of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate Σ and the isotropic expansion rate H remains nearly constant in the radiation-dominated epoch. In the regime where Σ/ H is constant, the spatial vector component v works as a dark radiation with the equation of state close to 1/3. During the matter era, the ratio Σ/ H decreases with the decrease of v . As long as the conditions |Σ| || H and v 2 || φ 2 are satisfied around the onset of late-time cosmic acceleration, where φ is the temporal vector component, we find that the solutions approach the isotropic de Sitter fixed point (Σ = 0 = v ) in accordance with the cosmic no-hair conjecture. In the presence of v and Σ the early evolution of the dark energy equation of state w DE in the radiation era is different from that in the isotropic case, but the approach to the isotropic value w DE (iso) typically occurs at redshifts z much larger than 1. Thus, apart from the existence of dark radiation, the anisotropic cosmological dynamics at low redshifts is similar to that in isotropic generalized Proca theories. In beyond-generalized Proca theories the only consistent solution to avoid the divergence of a determinant of the dynamical system corresponds to v = 0, so Σ always decreases in time.

  19. A simple strategy to realize biomimetic surfaces with controlled anisotropic wetting

    Science.gov (United States)

    Wu, Dong; Chen, Qi-Dai; Yao, Jia; Guan, Yong-Chao; Wang, Jian-Nan; Niu, Li-Gang; Fang, Hong-Hua; Sun, Hong-Bo

    2010-02-01

    The study of anisotropic wetting has become one of the most important research areas in biomimicry. However, realization of controlled anisotropic surfaces remains challenging. Here we investigated anisotropic wetting on grooves with different linewidth, period, and height fabricated by laser interference lithography and found that the anisotropy strongly depended on the height. The anisotropy significantly increased from 9° to 48° when the height was changed from 100 nm to 1.3 μm. This was interpreted by a thermodynamic model as a consequence of the increase of free energy barriers versus the height increase. According to the relationship, controlled anisotropic surfaces were rapidly realized by adjusting the grooves' height that was simply accomplished by changing the resin thickness. Finally, the perpendicular contact angle was further enhanced to 131°±2° by surface modification, which was very close to 135°±3° of a common grass leaf.

  20. Plant lipid environment and membrane enzymes: the case of the plasma membrane H+-ATPase.

    Science.gov (United States)

    Morales-Cedillo, Francisco; González-Solís, Ariadna; Gutiérrez-Angoa, Lizbeth; Cano-Ramírez, Dora Luz; Gavilanes-Ruiz, Marina

    2015-04-01

    Several lipid classes constitute the universal matrix of the biological membranes. With their amphipathic nature, lipids not only build the continuous barrier that confers identity to every cell and organelle, but they are also active actors that modulate the activity of the proteins immersed in the lipid bilayer. The plasma membrane H(+)-ATPase, an enzyme from plant cells, is an excellent example of a transmembrane protein whose activity is influenced by the hydrophilic compartments at both sides of the membrane and by the hydrophobic domains of the lipid bilayer. As a result, an extensive documentation of the effect of numerous amphiphiles in the enzyme activity can be found. Detergents, membrane glycerolipids, and sterols can produce activation or inhibition of the enzyme activity. In some cases, these effects are associated with the lipids of the membrane bulk, but in others, a direct interaction of the lipid with the protein is involved. This review gives an account of reports related to the action of the membrane lipids on the H(+)-ATPase activity.

  1. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin

    2017-11-24

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  2. Pattern formation of a nonlocal, anisotropic interaction model

    KAUST Repository

    Burger, Martin; Dü ring, Bertram; Kreusser, Lisa Maria; Markowich, Peter A.; Schö nlieb, Carola-Bibiane

    2017-01-01

    We consider a class of interacting particle models with anisotropic, repulsive–attractive interaction forces whose orientations depend on an underlying tensor field. An example of this class of models is the so-called Kücken–Champod model describing the formation of fingerprint patterns. This class of models can be regarded as a generalization of a gradient flow of a nonlocal interaction potential which has a local repulsion and a long-range attraction structure. In contrast to isotropic interaction models the anisotropic forces in our class of models cannot be derived from a potential. The underlying tensor field introduces an anisotropy leading to complex patterns which do not occur in isotropic models. This anisotropy is characterized by one parameter in the model. We study the variation of this parameter, describing the transition between the isotropic and the anisotropic model, analytically and numerically. We analyze the equilibria of the corresponding mean-field partial differential equation and investigate pattern formation numerically in two dimensions by studying the dependence of the parameters in the model on the resulting patterns.

  3. DNA-nanoparticle superlattices formed from anisotropic building blocks

    Science.gov (United States)

    Jones, Matthew R.; Macfarlane, Robert J.; Lee, Byeongdu; Zhang, Jian; Young, Kaylie L.; Senesi, Andrew J.; Mirkin, Chad A.

    2010-11-01

    Directional bonding interactions in solid-state atomic lattices dictate the unique symmetries of atomic crystals, resulting in a diverse and complex assortment of three-dimensional structures that exhibit a wide variety of material properties. Methods to create analogous nanoparticle superlattices are beginning to be realized, but the concept of anisotropy is still largely underdeveloped in most particle assembly schemes. Some examples provide interesting methods to take advantage of anisotropic effects, but most are able to make only small clusters or lattices that are limited in crystallinity and especially in lattice parameter programmability. Anisotropic nanoparticles can be used to impart directional bonding interactions on the nanoscale, both through face-selective functionalization of the particle with recognition elements to introduce the concept of valency, and through anisotropic interactions resulting from particle shape. In this work, we examine the concept of inherent shape-directed crystallization in the context of DNA-mediated nanoparticle assembly. Importantly, we show how the anisotropy of these particles can be used to synthesize one-, two- and three-dimensional structures that cannot be made through the assembly of spherical particles.

  4. Surface Waves Propagating on Grounded Anisotropic Dielectric Slab

    Directory of Open Access Journals (Sweden)

    Zhuozhu Chen

    2018-01-01

    Full Text Available This paper investigates the characteristics of surface waves propagating on a grounded anisotropic dielectric slab. Distinct from the existing analyses that generally assume that the fields of surface wave uniformly distribute along the transverse direction of the infinitely large grounded slab, our method takes into account the field variations along the transverse direction of a finite-width slab. By solving Maxwell’s equations in closed-form, it is revealed that no pure transverse magnetic (TM or transverse electric (TE mode exists if the fields are non-uniformly distributed along the transverse direction of the grounded slab. Instead, two hybrid modes, namely quasi-TM and quasi-TE modes, are supported. In addition, the propagation characteristics of two hybrid modes supported by the grounded anisotropic slab are analyzed in terms of the slab thickness, slab width, as well as the relative permittivity tensor of the anisotropic slab. Furthermore, different methods are employed to compare the analyses, as well as to validate our derivations. The proposed method is very suitable for practical engineering applications.

  5. Newton–Hooke-type symmetry of anisotropic oscillators

    International Nuclear Information System (INIS)

    Zhang, P.M.; Horvathy, P.A.; Andrzejewski, K.; Gonera, J.; Kosiński, P.

    2013-01-01

    Rotation-less Newton–Hooke-type symmetry, found recently in the Hill problem, and instrumental for explaining the center-of-mass decomposition, is generalized to an arbitrary anisotropic oscillator in the plane. Conversely, the latter system is shown, by the orbit method, to be the most general one with such a symmetry. Full Newton–Hooke symmetry is recovered in the isotropic case. Star escape from a galaxy is studied as an application. -- Highlights: ► Rotation-less Newton–Hooke (NH) symmetry is generalized to an arbitrary anisotropic oscillator. ► The orbit method is used to find the most general case for rotation-less NH symmetry. ► The NH symmetry is decomposed into Heisenberg algebras based on chiral decomposition

  6. Inflationary perturbations in anisotropic, shear-free universes

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Carneiro, Saulo; Marugan, Guillermo A. Mena

    2012-01-01

    In this work, the linear and gauge-invariant theory of cosmological perturbations in a class of anisotropic and shear-free spacetimes is developed. After constructing an explicit set of complete eigenfunctions in terms of which perturbations can be expanded, we identify the effective degrees of freedom during a generic slow-roll inflationary phase. These correspond to the anisotropic equivalent of the standard Mukhanov-Sasaki variables. The associated equations of motion present a remarkable resemblance to those found in perturbed Friedmann-Robertson-Walker spacetimes with curvature, apart from the spectrum of the Laplacian, which exhibits the characteristic frequencies of the underlying geometry. In particular, it is found that the perturbations cannot develop arbitrarily large super-Hubble modes

  7. Generalized analytic solutions and response characteristics of magnetotelluric fields on anisotropic infinite faults

    Science.gov (United States)

    Bing, Xue; Yicai, Ji

    2018-06-01

    In order to understand directly and analyze accurately the detected magnetotelluric (MT) data on anisotropic infinite faults, two-dimensional partial differential equations of MT fields are used to establish a model of anisotropic infinite faults using the Fourier transform method. A multi-fault model is developed to expand the one-fault model. The transverse electric mode and transverse magnetic mode analytic solutions are derived using two-infinite-fault models. The infinite integral terms of the quasi-analytic solutions are discussed. The dual-fault model is computed using the finite element method to verify the correctness of the solutions. The MT responses of isotropic and anisotropic media are calculated to analyze the response functions by different anisotropic conductivity structures. The thickness and conductivity of the media, influencing MT responses, are discussed. The analytic principles are also given. The analysis results are significant to how MT responses are perceived and to the data interpretation of the complex anisotropic infinite faults.

  8. Structural basis for different phosphoinositide specificities of the PX domains of sorting nexins regulating G-protein signaling.

    Science.gov (United States)

    Mas, Caroline; Norwood, Suzanne J; Bugarcic, Andrea; Kinna, Genevieve; Leneva, Natalya; Kovtun, Oleksiy; Ghai, Rajesh; Ona Yanez, Lorena E; Davis, Jasmine L; Teasdale, Rohan D; Collins, Brett M

    2014-10-10

    Sorting nexins (SNXs) or phox homology (PX) domain containing proteins are central regulators of cell trafficking and signaling. A subfamily of PX domain proteins possesses two unique PX-associated domains, as well as a regulator of G protein-coupled receptor signaling (RGS) domain that attenuates Gαs-coupled G protein-coupled receptor signaling. Here we delineate the structural organization of these RGS-PX proteins, revealing a protein family with a modular architecture that is conserved in all eukaryotes. The one exception to this is mammalian SNX19, which lacks the typical RGS structure but preserves all other domains. The PX domain is a sensor of membrane phosphoinositide lipids and we find that specific sequence alterations in the PX domains of the mammalian RGS-PX proteins, SNX13, SNX14, SNX19, and SNX25, confer differential phosphoinositide binding preferences. Although SNX13 and SNX19 PX domains bind the early endosomal lipid phosphatidylinositol 3-phosphate, SNX14 shows no membrane binding at all. Crystal structures of the SNX19 and SNX14 PX domains reveal key differences, with alterations in SNX14 leading to closure of the binding pocket to prevent phosphoinositide association. Our findings suggest a role for alternative membrane interactions in spatial control of RGS-PX proteins in cell signaling and trafficking. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  9. A magnetic relaxation study on anisotropic reorientation in aqueous polyelectrolyte solutions

    International Nuclear Information System (INIS)

    Mulder, C.W.R.

    1984-01-01

    The present thesis proposes a study on anisotropic reorientation of aqueous polyelectrolyte solutions. In particular, it is directed to the question to what extent information may be obtained on anisotropic reorientation by nuclear magnetic relaxation experiments. The polymethacrylic acid/water system has been chosen as probe system. (Auth.)

  10. Anisotropic magnetoresistance in a Fermi glass

    International Nuclear Information System (INIS)

    Ovadyahu, Z.; Physics Department, Ben-Gurion University of the Negev, Beer-Sheva, Israel 84120)

    1986-01-01

    Insulating thin films of indium oxide exhibit negative, anisotropic magnetoresistance. The systematics of these results imply that the magnetoresistance mechanism may give different weight to the distribution of the localization lengths than that given by the hopping conductivity

  11. Adaptive anisotropic diffusion filtering of Monte Carlo dose distributions

    International Nuclear Information System (INIS)

    Miao Binhe; Jeraj, Robert; Bao Shanglian; Mackie, Thomas R

    2003-01-01

    The Monte Carlo method is the most accurate method for radiotherapy dose calculations, if used correctly. However, any Monte Carlo dose calculation is burdened with statistical noise. In this paper, denoising of Monte Carlo dose distributions with a three-dimensional adaptive anisotropic diffusion method was investigated. The standard anisotropic diffusion method was extended by changing the filtering parameters adaptively according to the local statistical noise. Smoothing of dose distributions with different noise levels in an inhomogeneous phantom, a conventional and an IMRT treatment case is shown. The resultant dose distributions were analysed using several evaluating criteria. It is shown that the adaptive anisotropic diffusion method can reduce statistical noise significantly (two to five times, corresponding to the reduction of simulation time by a factor of up to 20), while preserving important gradients of the dose distribution well. The choice of free parameters of the method was found to be fairly robust

  12. Cosmological signatures of anisotropic spatial curvature

    International Nuclear Information System (INIS)

    Pereira, Thiago S.; Marugán, Guillermo A. Mena; Carneiro, Saulo

    2015-01-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature

  13. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  14. Inhomogeneous anisotropic cosmology

    International Nuclear Information System (INIS)

    Kleban, Matthew; Senatore, Leonardo

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with “flat” (including toroidal) and “open” (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are “flat” or “open”. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with “flat” or “open” topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  15. Longitudinal fluctuations and decorrelation of anisotropic flow

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Long-Gang [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Petersen, Hannah [Frankfurt Institute for Advanced Studies, Ruth-Moufang-Strasse 1, 60438 Frankfurt am Main (Germany); Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); GSI Helmholtzzentrum für Schwerionenforschung, Planckstr. 1, 64291 Darmstadt (Germany); Qin, Guang-You [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Roy, Victor [Institute for Theoretical Physics, Goethe University, Max-von-Laue-Strasse 1, 60438 Frankfurt am Main (Germany); Wang, Xin-Nian [Key Laboratory of Quark & Lepton Physics (MOE) and Institute of Particle Physics, Central China Normal University, Wuhan 430079 (China); Nuclear Science Division MS70R0319, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    We investigate the decorrelation of 2nd and 3rd order anisotropic flow for charged particles in two different pseudo rapidity (η) windows by varying the pseudo rapidity gap, in an event-by-event (3+1)D ideal hydrodynamic model, with fluctuating initial conditions from A Multi-Phase Transport (AMPT) model. We visualize the parton distribution at initial state for Pb+Pb collisions at LHC and Au+Au collisions at RHIC, and demonstrate the longitudinal fluctuations originating from the asymmetry between forward and backward going participants, the fluctuations of the string length and the fluctuations due to finite number of partons at different beam energies. The decorrelation of anisotropic flow of final hadrons with large η gaps is found to originate from the spatial decorrelation along the longitudinal direction in the AMPT initial conditions through hydrodynamic evolution. The agreement between our results and recent CMS data in most centralities suggests that the string-like mechanism of initial parton production in AMPT model captures the initial longitudinal fluctuation that is responsible for the measured decorrelation of anisotropic flow in Pb+Pb collisions at LHC. Our predictions for Au+Au collisions at the highest RHIC energy show stronger longitudinal decorrelation than at LHC, indicating larger longitudinal fluctuations at lower beam energies.

  16. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...... or longitudinal relaxation function depending on the sign of the axial anisotropy....

  17. Multiscale Simulations Suggest a Mechanism for the Association of the Dok7 PH Domain with PIP-Containing Membranes.

    Directory of Open Access Journals (Sweden)

    Amanda Buyan

    2016-07-01

    Full Text Available Dok7 is a peripheral membrane protein that is associated with the MuSK receptor tyrosine kinase. Formation of the Dok7/MuSK/membrane complex is required for the activation of MuSK. This is a key step in the complex exchange of signals between neuron and muscle, which lead to neuromuscular junction formation, dysfunction of which is associated with congenital myasthenic syndromes. The Dok7 structure consists of a Pleckstrin Homology (PH domain and a Phosphotyrosine Binding (PTB domain. The mechanism of the Dok7 association with the membrane remains largely unknown. Using multi-scale molecular dynamics simulations we have explored the formation of the Dok7 PH/membrane complex. Our simulations indicate that the PH domain of Dok7 associates with membranes containing phosphatidylinositol phosphates (PIPs via interactions of the β1/β2, β3/β4, and β5/β6 loops, which together form a positively charged surface on the PH domain and interact with the negatively charged headgroups of PIP molecules. The initial encounter of the Dok7 PH domain is followed by formation of additional interactions with the lipid bilayer, and especially with PIP molecules, which stabilizes the Dok7 PH/membrane complex. We have quantified the binding of the PH domain to the model bilayers by calculating a density landscape for protein/membrane interactions. Detailed analysis of the PH/PIP interactions reveal both a canonical and an atypical site to be occupied by the anionic lipid. PH domain binding leads to local clustering of PIP molecules in the bilayer. Association of the Dok7 PH domain with PIP lipids is therefore seen as a key step in localization of Dok7 to the membrane and formation of a complex with MuSK.

  18. Anisotropic stress as a signature of nonstandard propagation of gravitational waves.

    Science.gov (United States)

    Saltas, Ippocratis D; Sawicki, Ignacy; Amendola, Luca; Kunz, Martin

    2014-11-07

    We make precise the heretofore ambiguous statement that anisotropic stress is a sign of a modification of gravity. We show that in cosmological solutions of very general classes of models extending gravity-all scalar-tensor theories (Horndeski), Einstein-aether models, and bimetric massive gravity-a direct correspondence exists between perfect fluids apparently carrying anisotropic stress and a modification in the propagation of gravitational waves. Since the anisotropic stress can be measured in a model-independent manner, a comparison of the behavior of gravitational waves from cosmological sources with large-scale-structure formation could, in principle, lead to new constraints on the theory of gravity.

  19. Anisotropic Failure Strength of Shale with Increasing Confinement: Behaviors, Factors and Mechanism.

    Science.gov (United States)

    Cheng, Cheng; Li, Xiao; Qian, Haitao

    2017-11-15

    Some studies reported that the anisotropic failure strength of shale will be weakened by increasing confinement. In this paper, it is found that there are various types of anisotropic strength behaviors. Four types of anisotropic strength ratio ( S A 1 ) behaviors and three types of anisotropic strength difference ( S A 2 ) behaviors have been classified based on laboratory experiments on nine groups of different shale samples. The cohesion c w and friction angle ϕ w of the weak planes are proven to be two dominant factors according to a series of bonded-particle discrete element modelling analyses. It is observed that shale is more prone to a slight increase of S A 1 and significant increase of S A 2 with increasing confinement for higher cohesion c w and lower to medium friction angle ϕ w . This study also investigated the mechanism of the anisotropic strength behaviors with increasing confinement. Owing to different contributions of c w and ϕ w under different confinements, different combinations of c w and ϕ w may have various types of influences on the minimum failure strength with the increasing confinement; therefore, different types of anisotropic behaviors occur for different shale specimens as the confinement increases. These findings are very important to understand the stability of wellbore and underground tunneling in the shale rock mass, and should be helpful for further studies on hydraulic fracture propagations in the shale reservoir.

  20. Cooperative phosphoinositide and peptide binding by PSD-95/discs large/ZO-1 (PDZ) domain of polychaetoid, Drosophila zonulin.

    Science.gov (United States)

    Ivarsson, Ylva; Wawrzyniak, Anna Maria; Wuytens, Gunther; Kosloff, Mickey; Vermeiren, Elke; Raport, Marie; Zimmermann, Pascale

    2011-12-30

    PDZ domains are well known protein-protein interaction modules that, as part of multidomain proteins, assemble molecular complexes. Some PDZ domains have been reported to interact with membrane lipids, in particular phosphatidylinositol phosphates, but few studies have been aimed at elucidating the prevalence or the molecular details of such interactions. We screened 46 Drosophila PDZ domains for phosphoinositide-dependent cellular localization and discovered that the second PDZ domain of polychaetoid (Pyd PDZ2) interacts with phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)) at the plasma membrane. Surface plasmon resonance binding experiments with recombinant protein established that Pyd PDZ2 interacts with phosphatidylinositol phosphates with apparent affinities in the micromolar range. Electrostatic interactions involving an extended positively charged surface of Pyd PDZ2 are crucial for the PtdIns(4,5)P(2)-dependent membrane interactions as shown by a combination of three-dimensional modeling, mutagenesis, binding, and localization studies. In vivo localization studies further suggested that both lipid and peptide binding contribute to membrane localization. We identified the transmembrane protein Crumbs as a Pyd PDZ2 ligand and probed the relation between peptide and PtdIns(4,5)P(2) binding. Contrary to the prevalent view on PDZ/peptide/lipid binding, we did not find competition between peptide and lipid ligands. Instead, preloading the protein with the 10-mer Crb3 peptide increased the apparent affinity of Pyd PDZ2 for PtdIns(4,5)P(2) 6-fold. Our results suggest that membrane localization of Pyd PDZ2 may be driven by a combination of peptide and PtdIns(4,5)P(2) binding, which raises the intriguing possibility that the domain may coordinate protein- and phospholipid-mediated signals.

  1. An optimization-based framework for anisotropic simplex mesh adaptation

    Science.gov (United States)

    Yano, Masayuki; Darmofal, David L.

    2012-09-01

    We present a general framework for anisotropic h-adaptation of simplex meshes. Given a discretization and any element-wise, localizable error estimate, our adaptive method iterates toward a mesh that minimizes error for a given degrees of freedom. Utilizing mesh-metric duality, we consider a continuous optimization problem of the Riemannian metric tensor field that provides an anisotropic description of element sizes. First, our method performs a series of local solves to survey the behavior of the local error function. This information is then synthesized using an affine-invariant tensor manipulation framework to reconstruct an approximate gradient of the error function with respect to the metric tensor field. Finally, we perform gradient descent in the metric space to drive the mesh toward optimality. The method is first demonstrated to produce optimal anisotropic meshes minimizing the L2 projection error for a pair of canonical problems containing a singularity and a singular perturbation. The effectiveness of the framework is then demonstrated in the context of output-based adaptation for the advection-diffusion equation using a high-order discontinuous Galerkin discretization and the dual-weighted residual (DWR) error estimate. The method presented provides a unified framework for optimizing both the element size and anisotropy distribution using an a posteriori error estimate and enables efficient adaptation of anisotropic simplex meshes for high-order discretizations.

  2. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  3. Understanding nanoparticle-mediated nucleation pathways of anisotropic nanoparticles

    Science.gov (United States)

    Laramy, Christine R.; Fong, Lam-Kiu; Jones, Matthew R.; O'Brien, Matthew N.; Schatz, George C.; Mirkin, Chad A.

    2017-09-01

    Several seed-mediated syntheses of low symmetry anisotropic nanoparticles yield broad product distributions with multiple defect structures. This observation challenges the role of the nanoparticle precursor as a seed for certain syntheses and suggests the possibility of alternate nucleation pathways. Herein, we report a method to probe the role of the nanoparticle precursor in anisotropic nanoparticle nucleation with compositional and structural 'labels' to track their fate. We use the synthesis of gold triangular nanoprisms (Au TPs) as a model system. We propose a mechanism in which, rather than acting as a template, the nanoparticle precursor catalyzes homogenous nucleation of Au TPs.

  4. MHz gravitational waves from short-term anisotropic inflation

    International Nuclear Information System (INIS)

    Ito, Asuka; Soda, Jiro

    2016-01-01

    We reveal the universality of short-term anisotropic inflation. As a demonstration, we study inflation with an exponential type gauge kinetic function which is ubiquitous in models obtained by dimensional reduction from higher dimensional fundamental theory. It turns out that an anisotropic inflation universally takes place in the later stage of conventional inflation. Remarkably, we find that primordial gravitational waves with a peak amplitude around 10 −26 ∼10 −27 are copiously produced in high-frequency bands 10 MHz∼100 MHz. If we could detect such gravitational waves in future, we would be able to probe higher dimensional fundamental theory.

  5. The local domain wall position in ferromagnetic thin wires: simultaneous measurement of resistive and transverse voltages at multiple points

    International Nuclear Information System (INIS)

    Hanada, R.; Sugawara, H.; Aoki, Y.; Sato, H.; Shigeto, K.; Shinjo, T.; Ono, T.; Miyajima, H.

    2002-01-01

    We have simultaneously measured the field dependences of voltages at multiple pairs of resistance and transverse voltage probes in ferromagnetic wires (with either magnetic or non-magnetic voltage probes). Both the resistive (through the giant magnetoresistance and anisotropic magnetoresistance) and transverse voltages (through the planar Hall effect) exhibit abrupt jumps, reflecting discrete motion of domain walls or rotations of magnetization. Voltage probes, even if non-magnetic, are found to affect the jump fields depending on the sample conditions. We demonstrate that the specific information on the domain (wall) motion along a thin ferromagnetic wire could be obtained from the jump fields. (author)

  6. Thermal fluctuations and critical behavior in a magnetized, anisotropic plasma

    International Nuclear Information System (INIS)

    Hazeltine, R. D.; Mahajan, S. M.

    2013-01-01

    Thermal fluctuations in a magnetized, anisotropic plasma are studied by applying standard methods, based on the Einstein rule, to the known thermodynamic potential of the system. It is found in particular that magnetic fluctuations become critical when the anisotropy p ∥ −p ⊥ changes sign. By examining the critical region, additional insight on the equations of state for near-critical anisotropic plasma is obtained

  7. Neutron scattering to study membrane systems: from lipid vesicles to living cells.

    Energy Technology Data Exchange (ETDEWEB)

    Nickels, Jonathan D. [ORNL; Chatterjee, Sneha [ORNL; Stanley, Christopher B. [ORNL; Qian, Shuo [ORNL; Cheng, Xiaolin [ORNL; Myles, Dean A A [ORNL; Standaert, Robert F. [ORNL; Elkins, James G. [ORNL; Katsaras, John [ORNL

    2017-03-01

    The existence and role of lateral lipid organization in biological membranes has been studied and contested for more than 30 years. Lipid domains, or rafts, are hypothesized as scalable compartments in biological membranes, providing appropriate physical environments to their resident membrane proteins. This implies that lateral lipid organization is associated with a range of biological functions, such as protein co-localization, membrane trafficking, and cell signaling, to name just a few. Neutron scattering techniques have proven to be an excellent tool to investigate these structural features in model lipids, and more recently, in living cells. I will discuss our recent work using neutrons to probe the structure and mechanical properties in model lipid systems and our current efforts in using neutrons to probe the structure and organization of the bilayer in a living cell. These efforts in living cells have used genetic and biochemical strategies to generate a large neutron scattering contrast, making the membrane visible. I will present our results showing in vivo bilayer structure and discuss the outlook for this approach.

  8. Effective medium theory for anisotropic metamaterials

    KAUST Repository

    Zhang, Xiujuan; Wu, Ying

    2015-01-01

    -dimensional metamaterial composed of a rectangular array of elliptic cylinders and derive an effective medium theory for such a metamaterial. We find that it is possible to obtain a closed-form analytical solution for the anisotropic effective medium parameters, provided

  9. Casimir interactions for anisotropic magnetodielectric metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Da Rosa, Felipe S [Los Alamos National Laboratory; Dalvit, Diego A [Los Alamos National Laboratory; Milonni, Peter W [Los Alamos National Laboratory

    2008-01-01

    We extend our previous work on the generalization of the Casimir-Lifshitz theory to treat anisotropic magnetodielectric media, focusing on the forces between metals and magnetodielectric metamaterials and on the possibility of inferring magnetic effects by measurements of these forces.

  10. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-01-01

    these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing

  11. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Directory of Open Access Journals (Sweden)

    Mônica S Freitas

    Full Text Available The Ebola fusion peptide (EBO₁₆ is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM, a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs, but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  12. Measuring the strength of interaction between the Ebola fusion peptide and lipid rafts: implications for membrane fusion and virus infection.

    Science.gov (United States)

    Freitas, Mônica S; Follmer, Cristian; Costa, Lilian T; Vilani, Cecília; Bianconi, M Lucia; Achete, Carlos Alberto; Silva, Jerson L

    2011-01-13

    The Ebola fusion peptide (EBO₁₆) is a hydrophobic domain that belongs to the GP2 membrane fusion protein of the Ebola virus. It adopts a helical structure in the presence of mimetic membranes that is stabilized by the presence of an aromatic-aromatic interaction established by Trp8 and Phe12. In spite of its infectious cycle becoming better understood recently, several steps still remain unclear, a lacuna that makes it difficult to develop strategies to block infection. In order to gain insight into the mechanism of membrane fusion, we probed the structure, function and energetics of EBO₁₆ and its mutant W8A, in the absence or presence of different lipid membranes, including isolated domain-resistant membranes (DRM), a good experimental model for lipid rafts. The depletion of cholesterol from living mammalian cells reduced the ability of EBO₁₆ to induce lipid mixing. On the other hand, EBO₁₆ was structurally sensitive to interaction with lipid rafts (DRMs), but the same was not observed for W8A mutant. In agreement with these data, W8A showed a poor ability to promote membrane aggregation in comparison to EBO₁₆. Single molecule AFM experiments showed a high affinity force pattern for the interaction of EBO₁₆ and DRM, which seems to be a complex energetic event as observed by the calorimetric profile. Our study is the first to show a strong correlation between the initial step of Ebola virus infection and cholesterol, thus providing a rationale for Ebola virus proteins being co-localized with lipid-raft domains. In all, the results show how small fusion peptide sequences have evolved to adopt highly specific and strong interactions with membrane domains. Such features suggest these processes are excellent targets for therapeutic and vaccine approaches to viral diseases.

  13. Membrane curvature enables N-Ras lipid anchor sorting to liquid-ordered membrane phases

    DEFF Research Database (Denmark)

    Larsen, Jannik Bruun; Jensen, Martin Borch; Bhatia, Vikram Kjøller

    2015-01-01

    Trafficking and sorting of membrane-anchored Ras GTPases are regulated by partitioning between distinct membrane domains. Here, in vitro experiments and microscopic molecular theory reveal membrane curvature as a new modulator of N-Ras lipid anchor and palmitoyl chain partitioning. Membrane...

  14. Anisotropic modelling of the electrical conductivity of fractured bedrock

    International Nuclear Information System (INIS)

    Flykt, M.J.; Sihvola, A.H.; Eloranta, E.H.

    1995-01-01

    The electromagnetic characterization of fractured bedrock is of importance when studying the final disposal of nuclear waste. The different types of discontinuities at all scales in rocks can be viewed as an inhomogeneity. In some cases there are reasons to assume the influence of the discontinuities on electrical conductivity is anisotropic in character. The effort has been made to use electromagnetic mixing rules in the definition of an equivalent homogeneous anisotropic conductivity tensor for such fractured rock mass. (author) (16 refs., 6 figs.)

  15. Fourier Multipliers on Anisotropic Mixed-Norm Spaces of Distributions

    DEFF Research Database (Denmark)

    Cleanthous, Galatia; Georgiadis, Athanasios; Nielsen, Morten

    2018-01-01

    A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity of such operat......A new general Hormander type condition involving anisotropies and mixed norms is introduced, and boundedness results for Fourier multi- pliers on anisotropic Besov and Triebel-Lizorkin spaces of distributions with mixed Lebesgue norms are obtained. As an application, the continuity...

  16. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    International Nuclear Information System (INIS)

    Filippov, V. V.; Bormontov, E. N.

    2013-01-01

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material’s anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors

  17. Features of the electric-field distribution in anisotropic semiconductor wafers in a transverse magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Filippov, V. V., E-mail: wwfilippow@mail.ru [Lipetsk State Pedagogical University (Russian Federation); Bormontov, E. N. [Voronezh State University (Russian Federation)

    2013-07-15

    A macroscopic model of the Hall effects and magnetoresistance in anisotropic semiconductor wafers is developed. The results obtained by solving the electrodynamic boundary problem allow the potential and eddy currents in anisotropic semiconductors to be calculated at different current-contact locations, depending on the parameters of the sample material's anisotropy. The results of this study are of great practical importance for investigating the physical properties of anisotropic semiconductors and simulating the electron-transport phenomena in devices based on anisotropic semiconductors.

  18. 1-D DC Resistivity Modeling and Interpretation in Anisotropic Media Using Particle Swarm Optimization

    Science.gov (United States)

    Pekşen, Ertan; Yas, Türker; Kıyak, Alper

    2014-09-01

    We examine the one-dimensional direct current method in anisotropic earth formation. We derive an analytic expression of a simple, two-layered anisotropic earth model. Further, we also consider a horizontally layered anisotropic earth response with respect to the digital filter method, which yields a quasi-analytic solution over anisotropic media. These analytic and quasi-analytic solutions are useful tests for numerical codes. A two-dimensional finite difference earth model in anisotropic media is presented in order to generate a synthetic data set for a simple one-dimensional earth. Further, we propose a particle swarm optimization method for estimating the model parameters of a layered anisotropic earth model such as horizontal and vertical resistivities, and thickness. The particle swarm optimization is a naturally inspired meta-heuristic algorithm. The proposed method finds model parameters quite successfully based on synthetic and field data. However, adding 5 % Gaussian noise to the synthetic data increases the ambiguity of the value of the model parameters. For this reason, the results should be controlled by a number of statistical tests. In this study, we use probability density function within 95 % confidence interval, parameter variation of each iteration and frequency distribution of the model parameters to reduce the ambiguity. The result is promising and the proposed method can be used for evaluating one-dimensional direct current data in anisotropic media.

  19. Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-01-01

    We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.

  20. Dynamics of coarsening in multicomponent lipid vesicles with non-uniform mechanical properties

    Science.gov (United States)

    Funkhouser, Chloe M.; Solis, Francisco J.; Thornton, K.

    2014-04-01

    Multicomponent lipid vesicles are commonly used as a model system for the complex plasma membrane. One phenomenon that is studied using such model systems is phase separation. Vesicles composed of simple lipid mixtures can phase-separate into liquid-ordered and liquid-disordered phases, and since these phases can have different mechanical properties, this separation can lead to changes in the shape of the vesicle. In this work, we investigate the dynamics of phase separation in multicomponent lipid vesicles, using a model that couples composition to mechanical properties such as bending rigidity and spontaneous curvature. The model allows the vesicle surface to deform while conserving surface area and composition. For vesicles initialized as spheres, we study the effects of phase fraction and spontaneous curvature. We additionally initialize two systems with elongated, spheroidal shapes. Dynamic behavior is contrasted in systems where only one phase has a spontaneous curvature similar to the overall vesicle surface curvature and systems where the spontaneous curvatures of both phases are similar to the overall curvature. The bending energy contribution is typically found to slow the dynamics by stabilizing configurations with multiple domains. Such multiple-domain configurations are found more often in vesicles with spheroidal shapes than in nearly spherical vesicles.

  1. 3-D waveform tomography sensitivity kernels for anisotropic media

    KAUST Repository

    Djebbi, Ramzi

    2014-01-01

    The complications in anisotropic multi-parameter inversion lie in the trade-off between the different anisotropy parameters. We compute the tomographic waveform sensitivity kernels for a VTI acoustic medium perturbation as a tool to investigate this ambiguity between the different parameters. We use dynamic ray tracing to efficiently handle the expensive computational cost for 3-D anisotropic models. Ray tracing provides also the ray direction information necessary for conditioning the sensitivity kernels to handle anisotropy. The NMO velocity and η parameter kernels showed a maximum sensitivity for diving waves which results in a relevant choice of those parameters in wave equation tomography. The δ parameter kernel showed zero sensitivity; therefore it can serve as a secondary parameter to fit the amplitude in the acoustic anisotropic inversion. Considering the limited penetration depth of diving waves, migration velocity analysis based kernels are introduced to fix the depth ambiguity with reflections and compute sensitivity maps in the deeper parts of the model.

  2. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  3. FDTD modeling of anisotropic nonlinear optical phenomena in silicon waveguides.

    Science.gov (United States)

    Dissanayake, Chethiya M; Premaratne, Malin; Rukhlenko, Ivan D; Agrawal, Govind P

    2010-09-27

    A deep insight into the inherent anisotropic optical properties of silicon is required to improve the performance of silicon-waveguide-based photonic devices. It may also lead to novel device concepts and substantially extend the capabilities of silicon photonics in the future. In this paper, for the first time to the best of our knowledge, we present a three-dimensional finite-difference time-domain (FDTD) method for modeling optical phenomena in silicon waveguides, which takes into account fully the anisotropy of the third-order electronic and Raman susceptibilities. We show that, under certain realistic conditions that prevent generation of the longitudinal optical field inside the waveguide, this model is considerably simplified and can be represented by a computationally efficient algorithm, suitable for numerical analysis of complex polarization effects. To demonstrate the versatility of our model, we study polarization dependence for several nonlinear effects, including self-phase modulation, cross-phase modulation, and stimulated Raman scattering. Our FDTD model provides a basis for a full-blown numerical simulator that is restricted neither by the single-mode assumption nor by the slowly varying envelope approximation.

  4. A robust absorbing layer method for anisotropic seismic wave modeling

    International Nuclear Information System (INIS)

    Métivier, L.; Brossier, R.; Labbé, S.; Operto, S.; Virieux, J.

    2014-01-01

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped

  5. 'Elaioplasts' identified as lipotubuloids in Althaea rosea, Funkia sieboldiana and Vanilla planifolia contain lipid bodies connected with microtubules

    Directory of Open Access Journals (Sweden)

    Maria Kwiatkowska

    2011-09-01

    Full Text Available "Elaioplasts" observed in Vanilla planifolia, Funkia Sieboldiana and Althaea rosea exhibit all the features characteristic of lipotubuloids earlier described in Ornithogalum umbellatum. They are cytoplasmic domains containing aggregates of lipid bodies connected with microtubules. The immunogold technique confirmed the presence of tubulin in this domain. These structures do not have their own membranes but they are surrounded by a tonoplast at the side of a vacuole since they invaginate into it. In cytoplasm of this domain among lipid bodies there are numerous ribosomes, ER cisternae and vesicles as well as few mitochondria, Golgi structures and microbodies while at older developmental stages there are also autolytic vacuoles. The fact that they are so similar to O. umbellatum lipotubuloids suggest that "elaioplasts" of V. planifolia, F. Sieboldiana and A. rosea can also be named lipotubuloids.

  6. Avanti lipid tools: connecting lipids, technology, and cell biology.

    Science.gov (United States)

    Sims, Kacee H; Tytler, Ewan M; Tipton, John; Hill, Kasey L; Burgess, Stephen W; Shaw, Walter A

    2014-08-01

    Lipid research is challenging owing to the complexity and diversity of the lipidome. Here we review a set of experimental tools developed for the seasoned lipid researcher, as well as, those who are new to the field of lipid research. Novel tools for probing protein-lipid interactions, applications for lipid binding antibodies, enhanced systems for the cellular delivery of lipids, improved visualization of lipid membranes using gold-labeled lipids, and advances in mass spectrometric analysis techniques will be discussed. Because lipid mediators are known to participate in a host of signal transduction and trafficking pathways within the cell, a comprehensive lipid toolbox that aids the science of lipidomics research is essential to better understand the molecular mechanisms of interactions between cellular components. This article is part of a Special Issue entitled Tools to study lipid functions. Copyright © 2014. Published by Elsevier B.V.

  7. The GRP1 PH domain, like the AKT1 PH domain, possesses a sentry glutamate residue essential for specific targeting to plasma membrane PI(3,4,5)P(3).

    Science.gov (United States)

    Pilling, Carissa; Landgraf, Kyle E; Falke, Joseph J

    2011-11-15

    During the appearance of the signaling lipid PI(3,4,5)P(3), an important subset of pleckstrin homology (PH) domains target signaling proteins to the plasma membrane. To ensure proper pathway regulation, such PI(3,4,5)P(3)-specific PH domains must exclude the more prevalant, constitutive plasma membrane lipid PI(4,5)P(2) and bind the rare PI(3,4,5)P(3) target lipid with sufficiently high affinity. Our previous study of the E17K mutant of the protein kinase B (AKT1) PH domain, together with evidence from Carpten et al. [Carpten, J. D., et al. (2007) Nature 448, 439-444], revealed that the native AKT1 E17 residue serves as a sentry glutamate that excludes PI(4,5)P(2), thereby playing an essential role in specific PI(3,4,5)P(3) targeting [Landgraf, K. E., et al. (2008) Biochemistry 47, 12260-12269]. The sentry glutamate hypothesis proposes that an analogous sentry glutamate residue is a widespread feature of PI(3,4,5)P(3)-specific PH domains, and that charge reversal mutation at the sentry glutamate position will yield both increased PI(4,5)P(2) affinity and constitutive plasma membrane targeting. To test this hypothesis, we investigated the E345 residue, a putative sentry glutamate, of the general receptor for phosphoinositides 1 (GRP1) PH domain. The results show that incorporation of the E345K charge reversal mutation into the GRP1 PH domain enhances PI(4,5)P(2) affinity 8-fold and yields constitutive plasma membrane targeting in cells, reminiscent of the effects of the E17K mutation in the AKT1 PH domain. Hydrolysis of plasma membrane PI(4,5)P(2) releases the E345K GRP1 PH domain into the cytoplasm, and the efficiency of this release increases when Arf6 binding is disrupted. Overall, the findings provide strong support for the sentry glutamate hypothesis and suggest that the GRP1 E345K mutation will be linked to changes in cell physiology and human pathologies, as demonstrated for AKT1 E17K [Carpten, J. D., et al. (2007) Nature 448, 439-444; Lindhurst, M. J., et al

  8. Low-loss single-mode hollow-core fiber with anisotropic anti-resonant elements

    DEFF Research Database (Denmark)

    Habib, Selim; Bang, Ole; Bache, Morten

    2016-01-01

    A hollow-core fiber using anisotropic anti-resonant tubes in thecladding is proposed for low loss and effectively single-mode guidance. We show that the loss performance and higher-order mode suppression is significantly improved by using symmetrically distributed anisotropic antiresonant tubes i...

  9. Algebraic collapsing acceleration of the characteristics method with anisotropic scattering

    International Nuclear Information System (INIS)

    Le Tellier, R.; Hebert, A.; Roy, R.

    2004-01-01

    In this paper, the characteristics solvers implemented in the lattice code Dragon are extended to allow a complete anisotropic treatment of the collision operator. An efficient synthetic acceleration method, called Algebraic Collapsing Acceleration (ACA), is presented. Tests show that this method can substantially speed up the convergence of scattering source iterations. The effect of boundary conditions, either specular or white reflections, on anisotropic scattering lattice-cell problems is also considered. (author)

  10. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  11. Analytical Method and Semianalytical Method for Analysis of Scattering by Anisotropic Sphere: A Review

    Directory of Open Access Journals (Sweden)

    Chao Wan

    2012-01-01

    Full Text Available The history of methods for the electromagnetic scattering by an anisotropic sphere has been reviewed. Two main methods, angular expansion method and T-matrix method, which are widely used for the anisotropic sphere, are expressed in Cartesian coordinate firstly. The comparison of those and the further exploration on the scattering field are illustrated afterwards. Based on the most general form concluded by variable separation method, the coupled electric field and magnetic field of radial anisotropic sphere can be derived. By simplifying the condition, simpler case of uniaxial anisotropic media is expressed with confirmed coefficients for the internal and external field. Details of significant phenomenon are presented.

  12. Odd number of coupled antiferromagnetic anisotropic Heisenberg chains: Spin wave theory

    International Nuclear Information System (INIS)

    Benyoussef, A.

    1996-10-01

    The effect of the chain and perpendicular anisotropies on the energy gap for odd number of coupled quantum spin-1/2 antiferromagnetic anisotropic Heisenberg chains is investigated using a spin wave theory. The energy gap opens above a critical anisotropic value. The known results of the isotropic case have been obtained. (author). 11 refs, 4 figs

  13. Van der Waals Attraction of Vortices in Anisotropic and Layered Superconductors

    International Nuclear Information System (INIS)

    Blatter, G.; Geshkenbein, V.

    1996-01-01

    We show that in anisotropic and layered superconductors the fluctuations of vortex lines produce an attractive long-range vortex-vortex interaction of the van der Waals type. This attraction follows from the anisotropic screening properties of the material and has profound consequences for the low-field phase diagram of these materials. copyright 1996 The American Physical Society

  14. Spontaneous charged lipid transfer between lipid vesicles.

    Science.gov (United States)

    Richens, Joanna L; Tyler, Arwen I I; Barriga, Hanna M G; Bramble, Jonathan P; Law, Robert V; Brooks, Nicholas J; Seddon, John M; Ces, Oscar; O'Shea, Paul

    2017-10-03

    An assay to study the spontaneous charged lipid transfer between lipid vesicles is described. A donor/acceptor vesicle system is employed, where neutrally charged acceptor vesicles are fluorescently labelled with the electrostatic membrane probe Fluoresceinphosphatidylethanolamine (FPE). Upon addition of charged donor vesicles, transfer of negatively charged lipid occurs, resulting in a fluorescently detectable change in the membrane potential of the acceptor vesicles. Using this approach we have studied the transfer properties of a range of lipids, varying both the headgroup and the chain length. At the low vesicle concentrations chosen, the transfer follows a first-order process where lipid monomers are transferred presumably through the aqueous solution phase from donor to acceptor vesicle. The rate of transfer decreases with increasing chain length which is consistent with energy models previously reported for lipid monomer vesicle interactions. Our assay improves on existing methods allowing the study of a range of unmodified lipids, continuous monitoring of transfer and simplified experimental procedures.

  15. Anisotropic silk fibroin/gelatin scaffolds from unidirectional freezing

    Energy Technology Data Exchange (ETDEWEB)

    Asuncion, Maria Christine Tankeh, E-mail: christine.asuncion@u.nus.edu [National University of Singapore, Department of Biomedical Engineering (Singapore); Goh, James Cho-Hong [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Orthopedic Surgery (Singapore); Toh, Siew-Lok [National University of Singapore, Department of Biomedical Engineering (Singapore); National University of Singapore, Department of Mechanical Engineering (Singapore)

    2016-10-01

    Recent studies have underlined the importance of matching scaffold properties to the biological milieu. Tissue, and thus scaffold, anisotropy is one such property that is important yet sometimes overlooked. Methods that have been used to achieve anisotropic scaffolds present challenges such as complicated fabrication steps, harsh processing conditions and toxic chemicals involved. In this study, unidirectional freezing was employed to fabricate anisotropic silk fibroin/gelatin scaffolds in a simple and mild manner. Morphological, mechanical, chemical and cellular compatibility properties were investigated, as well as the effect of the addition of gelatin to certain properties of the scaffold. It was shown that scaffold properties were suitable for cell proliferation and that mesenchymal stem cells were able to align themselves along the directed fibers. The fabricated scaffolds present a platform that can be used for anisotropic tissue engineering applications such as cardiac patches. - Highlights: • Silk/gelatin scaffolds with unidirectional alignment were fabricated using a simple and scalable process • Presence of gelatin in silk resulted to lesser shrinkage, better water retention and improved cell proliferation. • Mesenchymal stem cells were shown to align themselves according to the fiber alignment.

  16. Double-grooved nanofibre surfaces with enhanced anisotropic hydrophobicity.

    Science.gov (United States)

    Liang, Meimei; Chen, Xin; Xu, Yang; Zhu, Lei; Jin, Xiangyu; Huang, Chen

    2017-11-02

    This study reports a facile method for fabricating double-grooved fibrous surfaces. The primary grooves of the surface are formed by aligned fibres, while the secondary grooves are achieved by oriented nanogrooves on the fibre surface. Investigation into the formation mechanism reveals that the nanogrooves can be readily tailored through adjusting the solvent ratio and relative humidity. With this understanding, a variety of polymers have been successfully electrospun into fibres having the same nanogrooved feature. These fibres show high resemblance to natural hierarchical structures, and thereby endowing the corresponding double-grooved surface with enhanced anisotropic hydrophobicity. A water droplet at a parallel direction to the grooves exhibits a much higher contact angle and a lower roll-off angle than the droplet at a perpendicular direction. The application potential of such anisotropic hydrophobicity has been demonstrated via a fog collection experiment, in which the double-grooved surface can harvest the largest amount of water. Moreover, the fabrication method requires neither post-treatment nor sophisticated equipment, making us anticipate that the double-grooved surface would be competitive in areas where a highly ordered surface, a large surface area and an anisotropic hydrophobicity are preferred.

  17. Longitudinal disordering of vortex lattices in anisotropic superconductors

    International Nuclear Information System (INIS)

    Harshman, D.R.; Brandt, E.H.; Fiory, A.T.; Inui, M.; Mitzi, D.B.; Schneemeyer, L.F.; Waszczak, J.V.

    1993-01-01

    Vortex disordering in superconducting crystals is shown to be markedly sensitive to penetration-depth anisotropy. At low temperature and high magnetic field, the muon-spin-rotation spectra for the highly anisotropic Bi 2 Sr 2 CaCu 2 O 8+δ material are found to be anomalously narrow and symmetric about the applied field, in a manner consistent with a layered vortex sublattice structure with pinning-induced misalignment between layers. In contrast, spectra for the less-anisotropic YBa 2 Cu 3 O 7-δ compounds taken at comparable fields are broader and asymmetric, showing that the vortex lattices are aligned parallel to the applied-field direction

  18. An anisotropic diffusion approximation to thermal radiative transfer

    International Nuclear Information System (INIS)

    Johnson, Seth R.; Larsen, Edward W.

    2011-01-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  19. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian; Chen, Ze-guo; Ming, Yang; Wu, Ying; Lu, Yan-qing

    2016-01-01

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  20. Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs

    Energy Technology Data Exchange (ETDEWEB)

    Mannix, A. J.; Zhou, X. -F.; Kiraly, B.; Wood, J. D.; Alducin, D.; Myers, B. D.; Liu, X.; Fisher, B. L.; Santiago, U.; Guest, J. R.; Yacaman, M. J.; Ponce, A.; Oganov, A. R.; Hersam, M. C.; Guisinger, N. P.

    2015-12-17

    At the atomic-cluster scale, pure boron is markedly similar to carbon, forming simple planar molecules and cage-like fullerenes. Theoretical studies predict that two-dimensional (2D) boron sheets will adopt an atomic configuration similar to that of boron atomic clusters. We synthesized atomically thin, crystalline 2D boron sheets (i.e., borophene) on silver surfaces under ultrahigh-vacuum conditions. Atomic-scale characterization, supported by theoretical calculations, revealed structures reminiscent of fused boron clusters with multiple scales of anisotropic, out-of-plane buckling. Unlike bulk boron allotropes, borophene shows metallic characteristics that are consistent with predictions of a highly anisotropic, 2D metal.

  1. Tunable waveguide bends with graphene-based anisotropic metamaterials

    KAUST Repository

    Chen, Zhao-xian

    2016-01-15

    We design tunable waveguide bends filled with graphene-based anisotropic metamaterials to achieve a nearly perfect bending effect. The anisotropic properties of the metamaterials can be described by the effective medium theory. The nearly perfect bending effect is demonstrated by finite element simulations of various structures with different bending curvatures and shapes. This effect is attributed to zero effective permittivity along the direction of propagation and matched effective impedance at the interfaces between the bending part and the dielectric waveguides. We envisage that the design will be applicable in the far-infrared and terahertz frequency ranges owing to the tunable dielectric responses of graphene.

  2. Anisotropic and Hierarchical Porosity in Multifunctional Ceramics

    Science.gov (United States)

    Lichtner, Aaron Zev

    The performance of multifunctional porous ceramics is often hindered by the seemingly contradictory effects of porosity on both mechanical and non-structural properties and yet a sufficient body of knowledge linking microstructure to these properties does not exist. Using a combination of tailored anisotropic and hierarchical materials, these disparate effects may be reconciled. In this project, a systematic investigation of the processing, characterization and properties of anisotropic and isotropic hierarchically porous ceramics was conducted. The system chosen was a composite ceramic intended as the cathode for a solid oxide fuel cell (SOFC). Comprehensive processing investigations led to the development of approaches to make hierarchical, anisotropic porous microstructures using directional freeze-casting of well dispersed slurries. The effect of all the important processing parameters was investigated. This resulted in an ability to tailor and control the important microstructural features including the scale of the microstructure, the macropore size and total porosity. Comparable isotropic porous ceramics were also processed using fugitive pore formers. A suite of characterization techniques including x-ray tomography and 3-D sectional scanning electron micrographs (FIB-SEM) was used to characterize and quantify the green and partially sintered microstructures. The effect of sintering temperature on the microstructure was quantified and discrete element simulations (DEM) were used to explain the experimental observations. Finally, the comprehensive mechanical properties, at room temperature, were investigated, experimentally and using DEM, for the different microstructures.

  3. Anisotropic swim stress in active matter with nematic order

    Science.gov (United States)

    Yan, Wen; Brady, John F.

    2018-05-01

    Active Brownian particles (ABPs) transmit a swim pressure {{{\\Pi }}}{{swim}}=n\\zeta {D}{{swim}} to the container boundaries, where ζ is the drag coefficient, D swim is the swim diffusivity and n is the uniform bulk number density far from the container walls. In this work we extend the notion of the isotropic swim pressure to the anisotropic tensorial swim stress {{\\boldsymbol{σ }}}{{swim}}=-n\\zeta {{\\boldsymbol{D}}}{{swim}}, which is related to the anisotropic swim diffusivity {{\\boldsymbol{D}}}{{swim}}. We demonstrate this relationship with ABPs that achieve nematic orientational order via a bulk external field. The anisotropic swim stress is obtained analytically for dilute ABPs in both 2D and 3D systems. The anisotropy, defined as the ratio of the maximum to the minimum of the three principal stresses, is shown to grow exponentially with the strength of the external field. We verify that the normal component of the anisotropic swim stress applies a pressure {{{\\Pi }}}{{swim}}=-({{\\boldsymbol{σ }}}{{swim}}\\cdot {\\boldsymbol{n}})\\cdot {\\boldsymbol{n}} on a wall with normal vector {\\boldsymbol{n}}, and, through Brownian dynamics simulations, this pressure is shown to be the force per unit area transmitted by the active particles. Since ABPs have no friction with a wall, the difference between the normal and tangential stress components—the normal stress difference—generates a net flow of ABPs along the wall, which is a generic property of active matter systems.

  4. Nonpolar ZnO film growth and mechanism for anisotropic in-plane strain relaxation

    International Nuclear Information System (INIS)

    Pant, P.; Budai, J.D.; Narayan, J.

    2010-01-01

    Using high-resolution transmission electron microscopy (HRTEM) and X-ray diffraction, we investigated the strain relaxation mechanisms for nonpolar (1 1 -2 0) a-plane ZnO epitaxy on (1 -1 0 2) r-plane sapphire, where the in-plane misfit ranges from -1.5% for the [0 0 0 1]ZnO-parallel [1 -1 0 -1]sapphire to -18.3% for the [-1 1 0 0]ZnO-parallel [-1 -1 2 0]sapphire direction. For the large misfit [-1 1 0 0]ZnO direction the misfit strains are fully relaxed at the growth temperature, and only thermal misfit and defect strains, which cannot be relaxed fully by slip dislocations, remain on cooling. For the small misfit direction, lattice misfit is not fully relaxed at the growth temperature. As a result, additive unrelaxed lattice and thermal misfit and defect strains contribute to the measured strain. Our X-ray diffraction measurements of lattice parameters show that the anisotropic in-plane biaxial strain leads to a distortion of the hexagonal symmetry of the ZnO basal plane. Based on the anisotropic strain relaxation observed along the orthogonal in-plane [-1 1 0 0] and [0 0 0 1]ZnO stress directions and our HRTEM investigations of the interface, we show that the plastic relaxation occurring in the small misfit direction [0 0 0 1]ZnO by dislocation nucleation is incomplete. These results are consistent with the domain-matching paradigm of a complete strain relaxation for large misfits and a difficulty in relaxing the film strain for small misfits.

  5. Anisotropic temperature relaxation of plasmas in an external magnetic field

    International Nuclear Information System (INIS)

    Hassan, M.H.A.

    1977-01-01

    The magnetized kinetic equation derived in an earlier paper (Hassan and Watson, 1977) is used to study the problem of relaxation of anisotropic electron and ion temperatures in a magnetized plasma. In the case of anisotropic electron temperature relaxation, it is shown that for small anisotropies the exchange of energy within the electrons between the components parallel and perpendicular to the magnetic field direction determine the relaxation rate. For anisotropic ion temperature relaxation it is shown that the essential mechanism for relaxation is provided by energy transfer between ions and electrons, and that the expression for the relaxation rate perpendicular to the magnetic field contains a significant term proportional to ln eta 0 ln (msub(e)/msub(i)) (where eta 0 = Ωsub(e)/ksub(D)Vsub(e perpendicular to)), in addition to the term proportional to the Coulomb logarithm. (author)

  6. Anisotropic magnetoelectric characteristics in five-layer magnetization-graded multiferroic composites

    Directory of Open Access Journals (Sweden)

    Lei Chen

    2017-05-01

    Full Text Available We investigate the anisotropic magnetoelectric(ME characteristics for the five-layer magnetization-graded multiferroic composites(MGMC. The magnetic anisotropy and corresponding anisotropic magnetomechanical effect, demagnetization effect and magneto-mechanical damping’s dependence on magnetic field direction result in an obvious anisotropic ME coupling effect. The experimental results show that ME voltage coefficient in H33 mode is remarkably larger than the other ones (H11, H31 and H13 over the whole Hdc range. Correspondingly, ∂VME/∂Hdc arrives about 420mV/Oe at an optimum bias magnetic field of 46Oe, which is approximately 40 times larger than that of the previous reported composite. Furthermore, it also demonstrates an obvious angular dependence on dc magnetic field. Taking advantage of these specifications, the MGMC can be used to detect weak dc magnetic field and its spatial orientation.

  7. δ M formalism and anisotropic chaotic inflation power spectrum

    Science.gov (United States)

    Talebian-Ashkezari, A.; Ahmadi, N.

    2018-05-01

    A new analytical approach to linear perturbations in anisotropic inflation has been introduced in [A. Talebian-Ashkezari, N. Ahmadi and A.A. Abolhasani, JCAP 03 (2018) 001] under the name of δ M formalism. In this paper we apply the mentioned approach to a model of anisotropic inflation driven by a scalar field, coupled to the kinetic term of a vector field with a U(1) symmetry. The δ M formalism provides an efficient way of computing tensor-tensor, tensor-scalar as well as scalar-scalar 2-point correlations that are needed for the analysis of the observational features of an anisotropic model on the CMB. A comparison between δ M results and the tedious calculations using in-in formalism shows the aptitude of the δ M formalism in calculating accurate two point correlation functions between physical modes of the system.

  8. Human ClC-6 is a late endosomal glycoprotein that associates with detergent-resistant lipid domains.

    Directory of Open Access Journals (Sweden)

    Sofie Ignoul

    and ClC-7 when cotransfected in COS-1 cells. CONCLUSIONS: We conclude that human ClC-6 is an endosomal glycoprotein that partitions in detergent resistant lipid domains. The differential sorting of endogenous (late endosomal versus overexpressed (early and recycling endosomal ClC-6 is reminiscent of that of other late endosomal/lysosomal membrane proteins (e.g. LIMP II, and is consistent with a rate-limiting sorting step for ClC-6 between early endosomes and its final destination in late endosomes.

  9. Interaction of lipid nanoparticles with human epidermis and an organotypic cell culture model

    DEFF Research Database (Denmark)

    Kuntsche, Judith; Bunjes, Heike; Fahr, Alfred

    2008-01-01

    Various lipid nanoparticle formulations were investigated with respect to (trans)dermal drug delivery with special regard to the mechanism of their effects on human and an organotypic cell culture epidermis. Potential alterations of stratum corneum lipid domains were studied using fluorescence...... assays with labeled liposomes and thermal analysis of isolated stratum corneum. Influences on the permeation of corticosterone were investigated and the occlusive properties of the nanoparticles were determined by measurements of the transepidermal water loss (TEWL). The penetration of a fluorescence dye...... studies and thermal analysis of human and cell culture epidermis indicate that surface lipids, which are not present to the same extent in the cell culture model than in human epidermis, seem to play an important role....

  10. Radiation of planar electromagnetic waves by a line source in anisotropic metamaterials

    International Nuclear Information System (INIS)

    Cheng Qiang; Jiang Weixiang; Cui Tiejun

    2010-01-01

    We show experimentally that a line source in an anisotropic metamaterial directly radiates planar electromagnetic waves instead of cylindrical waves, when one component of the permeability tensor approaches zero. The impedance of this material can be perfectly matched to that of free space, which can significantly reduce the reflections between the source and the superstrate, as in traditional highly directive antennas based on zero index metamaterials. Such a unique property determines the two-way propagation of electromagnetic waves excited by a line source, instead of all-way propagation. From this feature, a highly directive emission of electromagnetic waves is achieved using the anisotropic metamaterial with arbitrary shape. We have designed and fabricated the anisotropic metamaterial in the microwave region, and observed the generation of plane waves and their highly directive emission. The proposed plane-wave emission is independent of the shape variance of the anisotropic metamaterial, which can be utilized in the design of conformal antennas.

  11. Interaction pathways between soft lipid nanodiscs and plasma membranes: A molecular modeling study.

    Science.gov (United States)

    Li, Shixin; Luo, Zhen; Xu, Yan; Ren, Hao; Deng, Li; Zhang, Xianren; Huang, Fang; Yue, Tongtao

    2017-10-01

    Lipid nanodisc, a model membrane platform originally synthesized for study of membrane proteins, has recently been used as the carrier to deliver amphiphilic drugs into target tumor cells. However, the central question of how cells interact with such emerging nanomaterials remains unclear and deserves our research for both improving the delivery efficiency and reducing the side effect. In this work, a binary lipid nanodisc is designed as the minimum model to investigate its interactions with plasma membranes by using the dissipative particle dynamics method. Three typical interaction pathways, including the membrane attachment with lipid domain exchange of nanodiscs, the partial membrane wrapping with nanodisc vesiculation, and the receptor-mediated endocytosis, are discovered. For the first pathway, the boundary normal lipids acting as ligands diffuse along the nanodisc rim to gather at the membrane interface, repelling the central bola lipids to reach a stable membrane attachment. If bola lipids are positioned at the periphery and act as ligands, they diffuse to form a large aggregate being wrapped by the membrane, leaving the normal lipids exposed on the membrane exterior by assembling into a vesicle. Finally, by setting both central normal lipids and boundary bola lipids as ligands, the receptor-mediated endocytosis occurs via both deformation and self-rotation of the nanodiscs. All above pathways for soft lipid nanodiscs are quite different from those for rigid nanoparticles, which may provide useful guidelines for design of soft lipid nanodiscs in widespread biomedical applications. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Antitumor Lipids--Structure, Functions, and Medical Applications.

    Science.gov (United States)

    Kostadinova, Aneliya; Topouzova-Hristova, Tanya; Momchilova, Albena; Tzoneva, Rumiana; Berger, Martin R

    2015-01-01

    Cell proliferation and metastasis are considered hallmarks of tumor progression. Therefore, efforts have been made to develop novel anticancer drugs that inhibit both the proliferation and the motility of tumor cells. Synthetic antitumor lipids (ATLs), which are chemically divided into two main classes, comprise (i) alkylphospholipids (APLs) and (ii) alkylphosphocholines (APCs). They represent a new entity of drugs with distinct antiproliferative properties in tumor cells. These compounds do not interfere with the DNA or mitotic spindle apparatus of the cell, instead, they incorporate into cell membranes, where they accumulate and interfere with lipid metabolism and lipid-dependent signaling pathways. Recently, it has been shown that the most commonly studied APLs inhibit proliferation by inducing apoptosis in malignant cells while leaving normal cells unaffected and are potent sensitizers of conventional chemo- and radiotherapy, as well as of electrical field therapy. APLs resist catabolic degradation to a large extent, therefore accumulate in the cell and interfere with lipid-dependent survival signaling pathways, notably PI3K-Akt and Raf-Erk1/2, and de novo phospholipid biosynthesis. They are internalized in the cell membrane via raft domains and cause downstream reactions as inhibition of cell growth and migration, cell cycle arrest, actin stress fibers collapse, and apoptosis. This review summarizes the in vitro, in vivo, and clinical trials of most common ATLs and their mode of action at molecular and biochemical levels. © 2015 Elsevier Inc. All rights reserved.

  13. Anisotropic Interactions between Cold Rydberg Atoms

    Science.gov (United States)

    2015-09-28

    AFRL-AFOSR-CL-TR-2015-0002 Anisotropic interactions between cold Rydberg atoms Luis Marcassa INSTITUTO DE FISICA DE SAO CARLOS Final Report 09/28...problem with the report +551633739806 Organization / Institution name Instituto de Fisica de Sao Carlos Grant/Contract Title The full title of the

  14. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  15. Ultraviolet laser-induced voltage in anisotropic shale

    Science.gov (United States)

    Miao, Xinyang; Zhu, Jing; Li, Yizhang; Zhao, Kun; Zhan, Honglei; Yue, Wenzheng

    2018-01-01

    The anisotropy of shales plays a significant role in oil and gas exploration and engineering. Owing to various problems and limitations, anisotropic properties were seldom investigated by direct current resistivity methods. Here in this work, a 248 nm ultraviolet laser was employed to assess the anisotropic electrical response of a dielectric shale. Angular dependence of laser-induced voltages (V p) were obtained, with a data symmetry at the location of 180° and a ~62.2% V p anisotropy of the sample. The double-exponential functions have provided an explanation for the electrical field controlled carrier transportation process in horizontal and vertical directions. The results demonstrate that the combination of optics and electrical logging analysis (Opti-electrical Logging) is a promising technology for the investigation of unconventional reservoirs.

  16. Swapping the N- and C-terminal domains of human apolipoprotein E3 and AI reveals insights into their structure/activity relationship.

    Directory of Open Access Journals (Sweden)

    Mark T Lek

    Full Text Available Apolipoprotein (apo E3 and apoAI are exchangeable apolipoproteins that play a dominant role in regulating plasma lipoprotein metabolism. ApoE3 (299 residues is composed of an N-terminal (NT domain bearing a 4-helix bundle and a C-terminal (CT domain bearing a series of amphipathic α-helices. ApoAI (243 residues also comprises a highly helical NT domain and a less structured CT tail. The objective of this study was to understand their structural and functional role by generating domain swapped chimeras: apoE3-NT/apoAI-CT and apoAI-NT/apoE-CT. The bacterially overexpressed chimeras were purified by affinity chromatography and their identity confirmed by immunoblotting and mass spectrometry. Their α-helical content was comparable to that of the parent proteins. ApoE3-NT/apoAI-CT retained the denaturation profile of apoE3 NT domain, with apoAI CT tail eliciting a relatively unstructured state; its lipid binding ability improved dramatically compared to apoE3 indicative of a significant role of apoAI CT tail in lipid binding interaction. The LDL receptor interaction and ability to promote ABCA1-mediated cholesterol efflux of apoE3-NT/apoAI-CT was comparable to that of apoE3. In contrast, apoAI-NT/apoE-CT elicited an unfolding pattern and lipid binding ability that were similar to that of apoAI. As expected, DMPC/apoAI-NT/apoE-CT discoidal particles did not elicit LDLr binding ability, and promoted SR-B1 mediated cellular uptake of lipids to a limited extent. However, apoAI-NT/apoE-CT displayed an enhanced ability to promote cholesterol efflux compared to apoAI, indicative of a significant role for apoE CT domain in mediating this function. Together, these results indicate that the functional attributes of apoAI and apoE3 can be conferred on each other and that NT-CT domain interactions significantly modulate their structure and function.

  17. Transient electromagnetic scattering on anisotropic media

    International Nuclear Information System (INIS)

    Stewart, R.D.

    1990-01-01

    This dissertation treats the problem of transient scattering of obliquely incident electromagnetic plane waves on a stratified anisotropic dielectric slab. Scattering operators are derived for the reflective response of the medium. The internal fields are calculated. Wave splitting and invariant imbedding techniques are used. These techniques are first presented for fields normally incident on a stratified, isotropic dielectric medium. The techniques of wave splitting and invariant imbedding are applied to normally incident plane waves on an anisotropic medium. An integro-differential equation is derived for the reflective response and the direct and inverse scattering problems are discussed. These techniques are applied to the case of obliquely incident plane waves. The reflective response is derived and the direct and inverse problems discussed and compared to those for the normal incidence case. The internal fields are investigated for the oblique incidence via a Green's function approach. A numerical scheme is presented to calculate the Green's function. Finally, symmetry relations of the reflective response are discussed

  18. Critical composition fluctuations in artificial and cell-derived lipid membranes

    Science.gov (United States)

    Honerkamp-Smith, Aurelia

    2014-03-01

    Cell plasma membranes contain a mixture of lipid types which can segregate into coexisting liquids, a thermodynamic phenomenon which may contribute to biological functions. Simplified, artificial three-component lipid vesicles can be prepared which display a critical miscibility transition near room temperature. We found that such vesicles exhibit concentration fluctuations whose size, composition, and timescales vary consistently with critical exponents for two-dimensional conserved order parameter systems. However, the critical miscibility transition is also observed in vesicles formed directly from the membranes of living cells, despite their more complex composition and the presence of membrane proteins. I will describe our critical fluctuation measurements and also review a variety of more recent work by other researchers. Proximity to a critical point alters the spatial distribution and aggregation tendencies of proteins, and makes lipid mixtures more susceptible to domain formation by protein-mediated interactions, such as adhesion zones. Recent work suggests that critical temperature depression may also be relevant to the mechanism of anaesthetic action.

  19. EIT forward problem parallel simulation environment with anisotropic tissue and realistic electrode models.

    Science.gov (United States)

    De Marco, Tommaso; Ries, Florian; Guermandi, Marco; Guerrieri, Roberto

    2012-05-01

    Electrical impedance tomography (EIT) is an imaging technology based on impedance measurements. To retrieve meaningful insights from these measurements, EIT relies on detailed knowledge of the underlying electrical properties of the body. This is obtained from numerical models of current flows therein. The nonhomogeneous and anisotropic electric properties of human tissues make accurate modeling and simulation very challenging, leading to a tradeoff between physical accuracy and technical feasibility, which at present severely limits the capabilities of EIT. This work presents a complete algorithmic flow for an accurate EIT modeling environment featuring high anatomical fidelity with a spatial resolution equal to that provided by an MRI and a novel realistic complete electrode model implementation. At the same time, we demonstrate that current graphics processing unit (GPU)-based platforms provide enough computational power that a domain discretized with five million voxels can be numerically modeled in about 30 s.

  20. Building a patchwork - The yeast plasma membrane as model to study lateral domain formation.

    Science.gov (United States)

    Schuberth, Christian; Wedlich-Söldner, Roland

    2015-04-01

    The plasma membrane (PM) has to fulfill a wide range of biological functions including selective uptake of substances, signal transduction and modulation of cell polarity and cell shape. To allow efficient regulation of these processes many resident proteins and lipids of the PM are laterally segregated into different functional domains. A particularly striking example of lateral segregation has been described for the budding yeast PM, where integral membrane proteins as well as lipids exhibit very slow translational mobility and form a patchwork of many overlapping micron-sized domains. Here we discuss the molecular and physical mechanisms contributing to the formation of a multi-domain membrane and review our current understanding of yeast PM organization. Many of the fundamental principles underlying membrane self-assembly and organization identified in yeast are expected to equally hold true in other organisms, even for the more transient and elusive organization of the PM in mammalian cells. This article is part of a Special Issue entitled: Nanoscale membrane organisation and signalling. Copyright © 2014 Elsevier B.V. All rights reserved.