Spectral functions from anisotropic lattice QCD
Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.
2016-12-01
The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.
International Nuclear Information System (INIS)
Mackenzie, Paul
2007-01-01
Modern lattice gauge theory calculations are making it possible for lattice QCD to play an increasingly important role in the quantitative investigation of the Standard Model. The fact that QCD is strongly coupled at large distances has required the development of nonperturbative methods and large-scale computer simulations to solve the theory. The development of successful numerical methods for QCD calculations puts us in a good position to be ready for the possible discovery of new strongly coupled forces beyond the Standard Model in the era of the Large Hadron Collider. (author)
Energy Technology Data Exchange (ETDEWEB)
Shindler, A. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2007-07-15
I review the theoretical foundations, properties as well as the simulation results obtained so far of a variant of the Wilson lattice QCD formulation: Wilson twisted mass lattice QCD. Emphasis is put on the discretization errors and on the effects of these discretization errors on the phase structure for Wilson-like fermions in the chiral limit. The possibility to use in lattice simulations different lattice actions for sea and valence quarks to ease the renormalization patterns of phenomenologically relevant local operators, is also discussed. (orig.)
International Nuclear Information System (INIS)
Borsanyi, Sz.; Kampert, K.H.; Fodor, Z.; Forschungszentrum Juelich; Eoetvoes Univ., Budapest
2016-06-01
We present a full result for the equation of state (EoS) in 2+1+1 (up/down, strange and charm quarks are present) flavour lattice QCD. We extend this analysis and give the equation of state in 2+1+1+1 flavour QCD. In order to describe the evolution of the universe from temperatures several hundreds of GeV to the MeV scale we also include the known effects of the electroweak theory and give the effective degree of freedoms. As another application of lattice QCD we calculate the topological susceptibility (χ) up to the few GeV temperature region. These two results, EoS and χ, can be used to predict the dark matter axion's mass in the post-inflation scenario and/or give the relationship between the axion's mass and the universal axionic angle, which acts as a initial condition of our universe.
Cascade Baryon Spectrum from Lattice QCD
International Nuclear Information System (INIS)
Mathur, Nilmani; Bulava, John; Edwards, Robert; Engelson, Eric; Joo, Balint; Lichtl, Adam; Lin, Huey-Wen; Morningstar, Colin; Richards, David; Wallace, Stephen
2008-01-01
A comprehensive study of the cascade baryon spectrum using lattice QCD affords the prospect of predicting the masses of states not yet discovered experimentally, and determining the spin and parity of those states for which the quantum numbers are not yet known. The study of the cascades, containing two strange quarks, is particularly attractive for lattice QCD in that the chiral effects are reduced compared to states composed only of u/d quarks, and the states are typically narrow. We report preliminary results for the cascade spectrum obtained by using anisotropic Nf = 2 Wilson lattices with temporal lattice spacing 5.56 GeV?1.
Energy Technology Data Exchange (ETDEWEB)
Gupta, R.
1998-12-31
The goal of the lectures on lattice QCD (LQCD) is to provide an overview of both the technical issues and the progress made so far in obtaining phenomenologically useful numbers. The lectures consist of three parts. The author`s charter is to provide an introduction to LQCD and outline the scope of LQCD calculations. In the second set of lectures, Guido Martinelli will discuss the progress they have made so far in obtaining results, and their impact on Standard Model phenomenology. Finally, Martin Luescher will discuss the topical subjects of chiral symmetry, improved formulation of lattice QCD, and the impact these improvements will have on the quality of results expected from the next generation of simulations.
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [DESY (Germany). Neumann Inst. for Computing
2016-11-01
These configurations are currently in use in many on-going projects carried out by researchers throughout Europe. In particular this data will serve as an essential input into the computation of the coupling constant of QCD, where some of the simulations are still on-going. But also projects computing the masses of hadrons and investigating their structure are underway as well as activities in the physics of heavy quarks. As this initial project of gauge field generation has been successful, it is worthwhile to extend the currently available ensembles with further points in parameter space. These will allow to further study and control systematic effects like the ones introduced by the finite volume, the non-physical quark masses and the finite lattice spacing. In particular certain compromises have still been made in the region where pion masses and lattice spacing are both small. This is because physical pion masses require larger lattices to keep the effects of the finite volume under control. At light pion masses, a precise control of the continuum extrapolation is therefore difficult, but certainly a main goal of future simulations. To reach this goal, algorithmic developments as well as faster hardware will be needed.
Energy Technology Data Exchange (ETDEWEB)
Buechner, O. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Ernst, M. [Deutsches Elektronen-Synchrotron DESY, 22603 Hamburg (Germany); Jansen, K. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany); Lippert, Th. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Melkumyan, D. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Orth, B. [Zentralinstitut fuer Angewandte Mathematik ZAM, 52425 Juelich (Germany); Pleiter, D. [John von Neumann-Institut fuer Computing NIC/DESY, 15738 Zeuthen (Germany)]. E-mail: dirk.pleiter@desy.de; Stueben, H. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany); Wegner, P. [Deutsches Elektronen-Synchrotron DESY, 15738 Zeuthen (Germany); Wollny, S. [Konrad-Zuse-Institut fuer Informationstechnik ZIB, 14195 Berlin (Germany)
2006-04-01
As the need for computing resources to carry out numerical simulations of Quantum Chromodynamics (QCD) formulated on a lattice has increased significantly, efficient use of the generated data has become a major concern. To improve on this, groups plan to share their configurations on a worldwide level within the International Lattice DataGrid (ILDG). Doing so requires standardized description of the configurations, standards on binary file formats and common middleware interfaces. We describe the requirements and problems, and discuss solutions. Furthermore, an overview is given on the implementation of the LatFor DataGrid [http://www-zeuthen.desy.de/latfor/ldg], a France/German/Italian grid that will be one of the regional grids within the ILDG grid-of-grids concept.
Bottomonium above Deconfinement in Lattice Nonrelativistic QCD
International Nuclear Information System (INIS)
Aarts, G.; Kim, S.; Lombardo, M. P.; Oktay, M. B.; Ryan, S. M.; Sinclair, D. K.; Skullerud, J.-I.
2011-01-01
We study the temperature dependence of bottomonium for temperatures in the range 0.4T c c , using nonrelativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for N f =2 light flavors on a highly anisotropic lattice. We find that the Υ is insensitive to the temperature in this range, while the χ b propagators show a crossover from the exponential decay characterizing the hadronic phase to a power-law behavior consistent with nearly free dynamics at T≅2T c .
International Nuclear Information System (INIS)
Kronfeld, Andreas
2005-01-01
Quantum chromodynamics (QCD) is the quantum field theory describing the strong interactions of quarks bound inside hadrons. It is marvelous theory, which works (mathematically) at all distance scales. Indeed, for thirty years, theorists have known how to calculate short-distance properties of QCD, thanks to the (Nobel-worthy) idea of asymptotic freedom. More recently, numerical techniques applied to the strong-coupling regime of QCD have enabled us to compute long-distance bound-state properties. In this colloquium, we review these achievements and show how the new-found methods of calculation will influence high-energy physics.
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States). Dept. of Physics
1997-06-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and {alpha}{sub s} (M{sub z}), and B-{anti B} mixing. 67 refs., 36 figs.
International Nuclear Information System (INIS)
DeGrand, T.
1997-01-01
These lectures provide an introduction to lattice methods for nonperturbative studies of Quantum Chromodynamics. Lecture 1: Basic techniques for QCD and results for hadron spectroscopy using the simplest discretizations; lecture 2: Improved actions--what they are and how well they work; lecture 3: SLAC physics from the lattice-structure functions, the mass of the glueball, heavy quarks and α s (M z ), and B-anti B mixing. 67 refs., 36 figs
Nucleon structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Dinter, Simon
2012-11-13
In this thesis we compute within lattice QCD observables related to the structure of the nucleon. One part of this thesis is concerned with moments of parton distribution functions (PDFs). Those moments are essential elements for the understanding of nucleon structure and can be extracted from a global analysis of deep inelastic scattering experiments. On the theoretical side they can be computed non-perturbatively by means of lattice QCD. However, since the time lattice calculations of moments of PDFs are available, there is a tension between these lattice calculations and the results from a global analysis of experimental data. We examine whether systematic effects are responsible for this tension, and study particularly intensively the effects of excited states by a dedicated high precision computation. Moreover, we carry out a first computation with four dynamical flavors. Another aspect of this thesis is a feasibility study of a lattice QCD computation of the scalar quark content of the nucleon, which is an important element in the cross-section of a heavy particle with the nucleon mediated by a scalar particle (e.g. Higgs particle) and can therefore have an impact on Dark Matter searches. Existing lattice QCD calculations of this quantity usually have a large error and thus a low significance for phenomenological applications. We use a variance-reduction technique for quark-disconnected diagrams to obtain a precise result. Furthermore, we introduce a new stochastic method for the calculation of connected 3-point correlation functions, which are needed to compute nucleon structure observables, as an alternative to the usual sequential propagator method. In an explorative study we check whether this new method is competitive to the standard one. We use Wilson twisted mass fermions at maximal twist in all our calculations, such that all observables considered here have only O(a{sup 2}) discretization effects.
(3+1)-dimensional anisotropic fluid dynamics with a lattice QCD equation of state arXiv
McNelis, M.; Heinz, U.
Anisotropic hydrodynamics improves upon standard dissipative fluid dynamics by treating certain large dissipative corrections non-perturbatively. Relativistic heavy-ion collisions feature two such large dissipative effects: (i) Strongly anisotropic expansion generates a large shear stress component which manifests itself in very different longitudinal and transverse pressures, especially at early times. (ii) Critical fluctuations near the quark-hadron phase transition lead to a large bulk viscous pressure on the conversion surface between hydrodynamics and a microscopic hadronic cascade description of the final collision stage. We present a new dissipative hydrodynamic formulation for non-conformal fluids where both of these effects are treated nonperturbatively. The evolution equations are derived from the Boltzmann equation in the 14-moment approximation, using an expansion around an anisotropic leading-order distribution function with two momentum-space deformation parameters, accounting for the longitudin...
Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun [College of William and Mary, Williamsburg, VA (United States)
2017-08-01
In this work, we present state-of-the-art numerical methods and their applications for computing a particular class of observables using lattice quantum chromodynamics (Lattice QCD), a discretized version of the fundamental theory of quarks and gluons. These observables require calculating so called \\disconnected diagrams" and are important for understanding many aspects of hadron structure, such as the strange content of the proton. We begin by introducing the reader to the key concepts of Lattice QCD and rigorously define the meaning of disconnected diagrams through an example of the Wick contractions of the nucleon. Subsequently, the calculation of observables requiring disconnected diagrams is posed as the computationally challenging problem of finding the trace of the inverse of an incredibly large, sparse matrix. This is followed by a brief primer of numerical sparse matrix techniques that overviews broadly used methods in Lattice QCD and builds the background for the novel algorithm presented in this work. We then introduce singular value deflation as a method to improve convergence of trace estimation and analyze its effects on matrices from a variety of fields, including chemical transport modeling, magnetohydrodynamics, and QCD. Finally, we apply this method to compute observables such as the strange axial charge of the proton and strange sigma terms in light nuclei. The work in this thesis is innovative for four reasons. First, we analyze the effects of deflation with a model that makes qualitative predictions about its effectiveness, taking only the singular value spectrum as input, and compare deflated variance with different types of trace estimator noise. Second, the synergy between probing methods and deflation is investigated both experimentally and theoretically. Third, we use the synergistic combination of deflation and a graph coloring algorithm known as hierarchical probing to conduct a lattice calculation of light disconnected matrix elements
Innovations in Lattice QCD Algorithms
Energy Technology Data Exchange (ETDEWEB)
Konstantinos Orginos
2006-06-25
Lattice QCD calculations demand a substantial amount of computing power in order to achieve the high precision results needed to better understand the nature of strong interactions, assist experiment to discover new physics, and predict the behavior of a diverse set of physical systems ranging from the proton itself to astrophysical objects such as neutron stars. However, computer power alone is clearly not enough to tackle the calculations we need to be doing today. A steady stream of recent algorithmic developments has made an important impact on the kinds of calculations we can currently perform. In this talk I am reviewing these algorithms and their impact on the nature of lattice QCD calculations performed today.
Energy Technology Data Exchange (ETDEWEB)
Sommer, Rainer [DESY, Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2014-02-15
The principles of scale setting in lattice QCD as well as the advantages and disadvantages of various commonly used scales are discussed. After listing criteria for good scales, I concentrate on the main presently used ones with an emphasis on scales derived from the Yang-Mills gradient flow. For these I discuss discretisation errors, statistical precision and mass effects. A short review on numerical results also brings me to an unpleasant disagreement which remains to be explained.
Nuclear Physics from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
William Detmold, Silas Beane, Konstantinos Orginos, Martin Savage
2011-01-01
We review recent progress toward establishing lattice Quantum Chromodynamics as a predictive calculational framework for nuclear physics. A survey of the current techniques that are used to extract low-energy hadronic scattering amplitudes and interactions is followed by a review of recent two-body and few-body calculations by the NPLQCD collaboration and others. An outline of the nuclear physics that is expected to be accomplished with Lattice QCD in the next decade, along with estimates of the required computational resources, is presented.
Lattice QCD. A critical status report
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl
2008-10-15
The substantial progress that has been achieved in lattice QCD in the last years is pointed out. I compare the simulation cost and systematic effects of several lattice QCD formulations and discuss a number of topics such as lattice spacing scaling, applications of chiral perturbation theory, non-perturbative renormalization and finite volume effects. Additionally, the importance of demonstrating universality is emphasized. (orig.)
Lattice QCD without topology barriers
Lüscher, Martin
2011-01-01
As the continuum limit is approached, lattice QCD simulations tend to get trapped in the topological charge sectors of field space and may consequently give biased results in practice. We propose to bypass this problem by imposing open (Neumann) boundary conditions on the gauge field in the time direction. The topological charge can then flow in and out of the lattice, while many properties of the theory (the hadron spectrum, for example) are not affected. Extensive simulations of the SU(3) gauge theory, using the HMC and the closely related SMD algorithm, confirm the absence of topology barriers if these boundary conditions are chosen. Moreover, the calculated autocorrelation times are found to scale approximately like the square of the inverse lattice spacing, thus supporting the conjecture that the HMC algorithm is in the universality class of the Langevin equation.
Lattice QCD for nuclear physics
Meyer, Harvey
2015-01-01
With ever increasing computational resources and improvements in algorithms, new opportunities are emerging for lattice gauge theory to address key questions in strongly interacting systems, such as nuclear matter. Calculations today use dynamical gauge-field ensembles with degenerate light up/down quarks and the strange quark and it is possible now to consider including charm-quark degrees of freedom in the QCD vacuum. Pion masses and other sources of systematic error, such as finite-volume and discretization effects, are beginning to be quantified systematically. Altogether, an era of precision calculation has begun, and many new observables will be calculated at the new computational facilities. The aim of this set of lectures is to provide graduate students with a grounding in the application of lattice gauge theory methods to strongly interacting systems, and in particular to nuclear physics. A wide variety of topics are covered, including continuum field theory, lattice discretizations, hadron spect...
The lattice QCD grand challenge
International Nuclear Information System (INIS)
Kilcup, G.
1991-01-01
Until relatively recently, a taxonomist of science would divide most areas of physics into two types: theoretical and experimental. With the advent of large scale computing, however, there is now another recognized field: computational physics. For there is now another recognized field: computational physics. For High Energy Physics one of the most prominent manifestations of this phenomenon is the emergence of the discipline known as lattice Quantum Chromodynamics, or lattice QCD. Problems which a decade ago seemed intractable are not succumbing to large scale numerical simulations. These simulations are consuming vast amounts of computer time these days, and promise to do so for at least the next decade. To take but one example, in each of the last three years, the Department of Energy has allocated several thousand Cray-2 hours at NERSC for the computation of certain weak interaction matrix elements. In the following pages the author will give a brief overview of this and some other projects
Shear Viscosity from Lattice QCD
Mages, Simon W; Fodor, Zoltán; Schäfer, Andreas; Szabó, Kálmán
2015-01-01
Understanding of the transport properties of the the quark-gluon plasma is becoming increasingly important to describe current measurements at heavy ion collisions. This work reports on recent efforts to determine the shear viscosity h in the deconfined phase from lattice QCD. The main focus is on the integration of the Wilson flow in the analysis to get a better handle on the infrared behaviour of the spectral function which is relevant for transport. It is carried out at finite Wilson flow time, which eliminates the dependence on the lattice spacing. Eventually, a new continuum limit has to be carried out which sends the new regulator introduced by finite flow time to zero. Also the non-perturbative renormalization strategy applied for the energy momentum tensor is discussed. At the end some quenched results for temperatures up to 4 : 5 T c are presented
Flavor extrapolation in lattice QCD
International Nuclear Information System (INIS)
Duffy, W.C.
1984-01-01
Explicit calculation of the effect of virtual quark-antiquark pairs in lattice QCD has eluded researchers. To include their effect explicitly one must calculate the determinant of the fermion-fermion coupling matrix. Owing to the large number of sites in a continuum limit size lattice, direct evaluation of this term requires an unrealistic amount of computer time. The effect of the virtual pairs can be approximated by ignoring this term and adjusting lattice couplings to reproduce experimental results. This procedure is called the valence approximation since it ignores all but the minimal number of quarks needed to describe hadrons. In this work the effect of the quark-antiquark pairs has been incorporated in a theory with an effective negative number of quark flavors contributing to the closed loops. Various particle masses and decay constants have been calculated for this theory and for one with no virtual pairs. The author attempts to extrapolate results towards positive numbers of quark flavors. The results show approximate agreement with experimental measurements and demonstrate the smoothness of lattice expectations in the number of quark flavors
Hadron physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Andreas [Regensburg Univ. (Germany). Inst. for Theoretical Physics
2016-11-01
Particle physics experiments at modern high luminosity particle accelerators achieve orders of magnitude higher count rates than what was possible ten or twenty years ago. This extremely large statistics allows to draw far reaching conclusions even from minute signals, provided that these signals are well understood by theory. This is, however, ever more difficult to achieve. Presently, technical and scientific progress in general and experimental progress in particle physics in particular, shows typically an exponential growth rate. For example, data acquisition and analysis are, among many other factor, driven by the development of ever more efficient computers and thus by Moore's law. Theory has to keep up with this development by also achieving an exponential increase in precision, which is only possible using powerful computers. This is true for both types of calculations, analytic ones as, e.g., in quantum field perturbation theory, and purely numerical ones as in Lattice QCD. As stated above such calculations are absolutely indispensable to make best use of the extremely costly large particle physics experiments. Thus, it is economically reasonable to invest a certain percentage of the cost of accelerators and experiments in related theory efforts. The basic ideas behind Lattice QCD simulations are the following: Because quarks and gluons can never be observed individually but are always ''confined'' into colorless hadrons, like the proton, all quark-gluon states can be expressed in two different systems of basis states, namely in a quark-gluon basis and the basis of hadron states. The proton, e.g., is an eigenstate of the latter, a specific quark-gluon configuration is part of the former. In the quark-gluon basis a physical hadron, like a proton, is given by an extremely complicated multi-particle wave function containing all effects of quantum fluctuations. This state is so complicated that it is basically impossible to model it
Pion structure from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Javadi Motaghi, Narjes
2015-05-12
In this thesis we use lattice QCD to compute the second Mellin moments of pion generalized parton distributions and pion electromagnetic form factors. For our calculations we are able to analyze a large set of gauge configurations with 2 dynamical flavours using non-perturbatively the improved Wilson-Sheikholeslami-Wohlert fermionic action pion masses ranging down to 151 MeV. By employing improved smearing we were able to suppress excited state contamination. However, our data in the physical quark mass limit show that some excited state contamination remains. We show the non-zero sink momentum is optimal for the computation of the electromagnetic form factors and generalized form factors at finite momenta.
Particle states of lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kapoyannis, A.S.; Panagiotou, A.D. [University of Athens, Nuclear and Particle Physics Section, Faculty of Physics, Athens (Greece)
2017-11-15
We determine the degeneracy factor and the average particle mass of particles that produce the lattice QCD pressure and specific entropy at zero baryon chemical potential. The number of states of the gluons and the quarks are found to converge above T = 230 MeV to almost constant values, close to the number of states of an ideal quark-gluon phase, while their assigned masses retain high values. The number of states and the average mass of a system containing quarks in interaction with gluons are found to decrease steeply with increase of temperature between T ∝ 150 and 160 MeV, a region contained within the region of the chiral transition. The minimum value of the number of states within this temperature interval indicates that the states are of hadronic nature. (orig.)
Topology in dynamical lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Gruber, Florian
2012-08-20
Lattice simulations of Quantum Chromodynamics (QCD), the quantum field theory which describes the interaction between quarks and gluons, have reached a point were contact to experimental data can be made. The underlying mechanisms, like chiral symmetry breaking or the confinement of quarks, are however still not understood. This thesis focuses on topological structures in the QCD vacuum. Those are not only mathematically interesting but also closely related to chiral symmetry and confinement. We consider methods to identify these objects in lattice QCD simulations. Based on this, we explore the structures resulting from different discretizations and investigate the effect of a very strong electromagnetic field on the QCD vacuum.
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Wegner, P.; Wettig, T.
2003-09-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E, Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC. (orig.)
Benchmarking computer platforms for lattice QCD applications
International Nuclear Information System (INIS)
Hasenbusch, M.; Jansen, K.; Pleiter, D.; Stueben, H.; Wegner, P.; Wettig, T.; Wittig, H.
2004-01-01
We define a benchmark suite for lattice QCD and report on benchmark results from several computer platforms. The platforms considered are apeNEXT, CRAY T3E; Hitachi SR8000, IBM p690, PC-Clusters, and QCDOC
Lattice QCD and the Jefferson Laboratory Program
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek, Robert Edwards, David Richards, Konstantinos Orginos
2011-06-01
Lattice gauge theory provides our only means of performing \\textit{ab initio} calculations in the non-perturbative regime. It has thus become an increasing important component of the Jefferson Laboratory physics program. In this paper, we describe the contributions of lattice QCD to our understanding of hadronic and nuclear physics, focusing on the structure of hadrons, the calculation of the spectrum and properties of resonances, and finally on deriving an understanding of the QCD origin of nuclear forces.
Scattering processes and resonances from lattice QCD
Briceño, Raúl A.; Dudek, Jozef J.; Young, Ross D.
2018-04-01
The vast majority of hadrons observed in nature are not stable under the strong interaction; rather they are resonances whose existence is deduced from enhancements in the energy dependence of scattering amplitudes. The study of hadron resonances offers a window into the workings of quantum chromodynamics (QCD) in the low-energy nonperturbative region, and in addition many probes of the limits of the electroweak sector of the standard model consider processes which feature hadron resonances. From a theoretical standpoint, this is a challenging field: the same dynamics that binds quarks and gluons into hadron resonances also controls their decay into lighter hadrons, so a complete approach to QCD is required. Presently, lattice QCD is the only available tool that provides the required nonperturbative evaluation of hadron observables. This article reviews progress in the study of few-hadron reactions in which resonances and bound states appear using lattice QCD techniques. The leading approach is described that takes advantage of the periodic finite spatial volume used in lattice QCD calculations to extract scattering amplitudes from the discrete spectrum of QCD eigenstates in a box. An explanation is given of how from explicit lattice QCD calculations one can rigorously garner information about a variety of resonance properties, including their masses, widths, decay couplings, and form factors. The challenges which currently limit the field are discussed along with the steps being taken to resolve them.
Chiral perturbation theory for lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baer, Oliver
2010-07-21
The formulation of chiral perturbation theory (ChPT) for lattice Quantum Chromodynamics (QCD) is reviewed. We start with brief summaries of ChPT for continuum QCD as well as the Symanzik effective theory for lattice QCD. We then review the formulation of ChPT for lattice QCD. After an additional chapter on partial quenching and mixed action theories various concrete applications are discussed: Wilson ChPT, staggered ChPT and Wilson ChPT with a twisted mass term. The remaining chapters deal with the epsilon regime with Wilson fermions and selected results in mixed action ChPT. Finally, the formulation of heavy vector meson ChPT with Wilson fermions is discussed. (orig.)
The Chroma Software System for Lattice QCD
International Nuclear Information System (INIS)
Edwards, Robert G.; Joo, Balint
2005-01-01
We describe aspects of the Chroma software for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimised lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer
The Chroma Software System for Lattice QCD
International Nuclear Information System (INIS)
Robert Edwards; Balint Joo
2004-01-01
We describe aspects of the Chroma software system for lattice QCD calculations. Chroma is an open source C++ based software system developed using the software infrastructure of the US SciDAC initiative. Chroma interfaces with output from the BAGEL assembly generator for optimized lattice fermion kernels on some architectures. It can be run on workstations, clusters and the QCDOC supercomputer
International Nuclear Information System (INIS)
Jansen, K.; Michael, C.; Urbach, C.
2008-04-01
We study the flavour singlet pseudoscalar mesons from first principles using lattice QCD. With N f =2 flavours of light quark, this is the so-called η 2 meson and we discuss the phenomenological status of this. Using maximally twisted-mass lattice QCD, we extract the mass of the η 2 meson at two values of the lattice spacing for lighter quarks than previously discussed in the literature. We are able to estimate the mass value in the limit of light quarks with their physical masses. (orig.)
Cold quarks stars from hot lattice QCD
International Nuclear Information System (INIS)
Schulze, R.; Kaempfer, B.
2010-01-01
At small net baryon densities ab initio lattice QCD provides valuable information on the finite-temperature equation of state of strongly interacting matter. Our phenomenological quasiparticle model provides a means to map such lattice results to regions relevant for future heavy-ion experiments at large baryon density; even the cool equation of state can be inferred to address the issue of quark stars. We report on (i) the side conditions (charge neutrality, beta equilibrium) in mapping latest lattice QCD results to large baryon density and (ii) scaling properties of emerging strange quark stars. (author)
Lattice QCD at finite temperature
International Nuclear Information System (INIS)
DeTar, C.
1988-01-01
Recent progress in the numerical simulation of QCD at finite temperature is reviewed. Eight topics are treated briefly: (1) T c scaling, (2) Equation of state, (3) Baryon susceptibility, (4) The QCD Phase Diagram, (5) J/Ψ Binding in the Plasma, (6) The Screening Spectrum of the Plasma, (7) Gauge Symmetry Breaking at High T, (8) Progress in Computing Power. (author)
Lattice QCD on a beowulf cluster
International Nuclear Information System (INIS)
Kima, Seyong
2000-01-01
Using commodity component personal computers based on Alpha processor and commodity network devices and a switch, we built an 8-node parallel computer. GNU/Linux is chosen as an operating system and message passing libraries such as PVM, LAM, and MPICH have been tested as a parallel programming environment. We discuss our lattice QCD project for a heavy quark system on this computer
Probing hadron wave functions in Lattice QCD
Alexandrou, C; Tsapalis, A; Forcrand, Ph. de
2002-01-01
Gauge-invariant equal-time correlation functions are calculated in lattice QCD within the quenched approximation and with two dynamical quark species. These correlators provide information on the shape and multipole moments of the pion, the rho, the nucleon and the $\\Delta$.
Marking up lattice QCD configurations and ensembles
Energy Technology Data Exchange (ETDEWEB)
P.Coddington; B.Joo; C.M.Maynard; D.Pleiter; T.Yoshie
2007-10-01
QCDml is an XML-based markup language designed for sharing QCD configurations and ensembles world-wide via the International Lattice Data Grid (ILDG). Based on the latest release, we present key ingredients of the QCDml in order to provide some starting points for colleagues in this community to markup valuable configurations and submit them to the ILDG.
Phase transitions: the lattice QCD approach
International Nuclear Information System (INIS)
Gavai, R.V.
1986-01-01
Recent results in the field of finite temperature lattice quantum chromodynamics (QCD) are presented with special emphasis on comparison of the different methods used to incorporate the dynamical fermions. Attempts to obtain a nonperturbative estimate of the velocity of sound in both the hadronic and quark-gluon phase are summarized along with the results. 15 refs., 7 figs
Full CKM matrix with lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Okamoto, Masataka; /Fermilab
2004-12-01
The authors show that it is now possible to fully determine the CKM matrix, for the first time, using lattice QCD. |V{sub cd}|, |V{sub cs}|, |V{sub ub}|, |V{sub cb}| and |V{sub us}| are, respectively, directly determined with the lattice results for form factors of semileptonic D {yields} {pi}lv, D {yields} Klv, B {yields} {pi}lv, B {yields} Dlv and K {yields} {pi}lv decays. The error from the quenched approximation is removed by using the MILC unquenced lattice gauge configurations, where the effect of u, d and s quarks is included. The error from the ''chiral'' extrapolation (m{sub l} {yields} m{sub ud}) is greatly reduced by using improved staggered quarks. The accuracy is comparable to that of the Particle Data Group averages. In addition, |V{sub ud}|, |V{sub ts}|, |V{sub ts}| and |V{sub td}| are determined by using unitarity of the CKM matrix and the experimental result for sin (2{beta}). In this way, they obtain all 9 CKM matrix elements, where the only theoretical input is lattice QCD. They also obtain all the Wolfenstein parameters, for the first time, using lattice QCD.
Lattice QCD with mixed actions
International Nuclear Information System (INIS)
Bowler, Ken C.; Joo, Balint; Kenway, Richard D.; Maynard, Chris M.; Tweedie, Robert J.
2005-01-01
We discuss some of the implications of simulating QCD when the action used for the sea quarks is different from that used for the valence quarks. We present exploratory results for the hadron mass spectrum and pseudoscalar meson decay constants using improved staggered sea quarks and HYP-smeared overlap valence quarks. We propose a method for matching the valence quark mass to the sea quark mass and demonstrate it on UKQCD clover data in the simpler case where the sea and valence actions are the same
Lattice investigations of the QCD phase diagram
Energy Technology Data Exchange (ETDEWEB)
Guenther, Jana
2016-12-15
To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.
Lattice investigations of the QCD phase diagram
International Nuclear Information System (INIS)
Guenther, Jana
2016-01-01
To understand the physics in the early universe as well as in heavy ion collisions a throughout understanding of the theory of strong interaction, quantum chromodynamics (QCD), is important. Lattice QCD provides a tool to study it from first principles. However due to the sign problem direct simulations with physical conditions are at the moment limited to zero chemical potential. In this thesis I present a circumvention of this problem. We can gain information on the QCD phase diagram and the equation of state from analytical continuation of results extracted from simulations at imaginary chemical potential. The topological susceptibility is very expensive to compute in Lattice QCD. However it provides an important ingredient for the estimation of the axion mass. The axion is a possible candidate for a dark matter, which plays in important role in the understanding of our universe. In this thesis I discuss two techniques that make it possible to determine the topological susceptibility and allow for an estimation of the axion mass. I then use this mass restrain to analyze the idea of an experiment to detect axions with a dielectric mirror.
New Noise Subtraction Methods in Lattice QCD
Baral, Suman; Wilcox, Walter; Morgan, Ronald B.
2016-01-01
Noise subtraction techniques can help reduce the statistical uncertainty in the extraction of hard to detect signals. We describe new noise subtraction methods in Lattice QCD which apply to disconnected diagram evaluations. Some of the noise suppression techniques include polynomial quark matrix methods, eigenspectrum deflation methods, and combination methods. Our most promising technique combines polynomial and Hermitian deflation subtraction methods. The overall goal is to improve the effi...
Ab initio Hadron structure from lattice QCD
International Nuclear Information System (INIS)
Bratt, J D; Edwards, R G; Engelhardt, M; Fleming, G T; Haegler, Ph; Musch, B; Negele, J W; Orginos, K; Pochinsky, A V; Renner, D B; Richards, D G; Schroers, W
2007-01-01
Early scattering experiments revealed that the proton was not a point particle but a bound state of many quarks and gluons. Deep inelastic scattering (DIS) experiments have accurately determined the probability of struck quarks carrying a fraction of the proton's momentum. The current generation of experiments and Lattice QCD calculations will provide detailed multi-dimensional pictures of the distributions of quarks and gluons inside the proton
Lattice QCD and the Schwarz alternating procedure
Lüscher, Martin
2003-01-01
A numerical simulation algorithm for lattice QCD is described, in which the short- and long-distance effects of the sea quarks are treated separately. The algorithm can be regarded, to some extent, as an implementation at the quantum level of the classical Schwarz alternating procedure for the solution of elliptic partial differential equations. No numerical tests are reported here, but theoretical arguments suggest that the algorithm should work well also at small quark masses.
Meson Correlators in Finite Temperature Lattice QCD
De Forcrand, Philippe; Hashimoto, T; Hioki, S; Matsufuru, H; Miyamura, O; Nakamura, A; Takaishi, T; Umeda, T; Stamatescu, I O; CERN. Geneva; Forcrand, Ph. de
2001-01-01
We analyze temporal and spatial meson correlators in quenched lattice QCD at T>0. Below T_c we observe little change in the meson properties as compared with T=0. Above T_c we observe new features: chiral symmetry restoration and signals of plasma formation, but also indication of persisting mesonic (metastable) states and different temporal and spatial masses in the mesonic channels. This suggests a complex picture of QGP in the region 1 - 1.5 T_c.
Deflation acceleration of lattice QCD simulations
International Nuclear Information System (INIS)
Luescher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved
Deflation acceleration of lattice QCD simulations
Lüscher, Martin
2007-01-01
Close to the chiral limit, many calculations in numerical lattice QCD can potentially be accelerated using low-mode deflation techniques. In this paper it is shown that the recently introduced domain-decomposed deflation subspaces can be propagated along the field trajectories generated by the Hybrid Monte Carlo (HMC) algorithm with a modest effort. The quark forces that drive the simulation may then be computed using a deflation-accelerated solver for the lattice Dirac equation. As a consequence, the computer time required for the simulations is significantly reduced and an improved scaling behaviour of the simulation algorithm with respect to the quark mass is achieved.
Beautiful baryons from lattice QCD
Alexandrou, C; Güsken, S; Jegerlehner, F; Schilling, K; Siegert, G; Sommer, Rainer
1994-01-01
We perform a lattice study of heavy baryons, containing one (\\Lambda_b) or two b-quarks (\\Xi_b). Using the quenched approximation we obtain for the mass of \\Lambda_b M_{\\Lambda_b}= 5.728 \\pm 0.144 \\pm 0.018 {\\rm GeV}. The mass splitting between the \\Lambda_b and the B-meson is found to increase by about 20\\% if the light quark mass is varied from the chiral limit to the strange quark mass. ------- Figures obtained upon request from borrelli@psiclu.cern.ch.
Weak transitions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Maturana, G.
1984-01-01
Some techniques to calculate the effects of the strong interactions on the matrix elements of weak processes are described. The lattice formulation of Quantum Chromodynamics is used to account for the low energy gluons, and the corresponding numerical methods are explained. The high energy contributions are included in effective lagrangians and the problem of matching the different scales related to the renormalization of the operators and wavefunctions is also discussed. The ..delta..l = 1/2 enhancement rule and the K/sup 0/-anti-K/sup 0/ are used to illustrate these techniques and the results of a numerical calculation is reported. The values obtained are very encouraging and they certainly show good qualitative agreement with the experimental values. The emphasis is on general techniques, and in particular, several improvements to this particular calculation are proposed.
Spin-2 NΩ dibaryon from lattice QCD
International Nuclear Information System (INIS)
Etminan, Faisal; Nemura, Hidekatsu; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Ikeda, Yoichi; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Sasaki, Kenji
2014-01-01
We investigate properties of the N(nucleon)–Ω(Omega) interaction in lattice QCD to seek for possible dibaryon states in the strangeness −3 channel. We calculate the NΩ potential through the equal-time Nambu–Bethe–Salpeter wave function in 2+1 flavor lattice QCD with the renormalization group improved Iwasaki gauge action and the nonperturbatively O(a) improved Wilson quark action at the lattice spacing a≃0.12 fm on a (1.9 fm) 3 × 3.8 fm lattice. The ud and s quark masses in our study correspond to m π =875(1) MeV and m K =916(1) MeV. At these parameter values, the central potential in the S-wave with the spin 2 shows attractions at all distances. By solving the Schrödinger equation with this potential, we find one bound state whose binding energy is 18.9(5.0)( +12.1 −1.8 ) MeV, where the first error is the statistical one, while the second represents the systematic error
Exotic meson decay widths using lattice QCD
International Nuclear Information System (INIS)
Cook, M. S.; Fiebig, H. R.
2006-01-01
A decay width calculation for a hybrid exotic meson h, with J PC =1 -+ , is presented for the channel h→πa 1 . This quenched lattice QCD simulation employs Luescher's finite box method. Operators coupling to the h and πa 1 states are used at various levels of smearing and fuzzing, and at four quark masses. Eigenvalues of the corresponding correlation matrices yield energy spectra that determine scattering phase shifts for a discrete set of relative πa 1 momenta. Although the phase shift data is sparse, fits to a Breit-Wigner model are attempted, resulting in a decay width of about 60 MeV when averaged over two lattice sizes having a lattice spacing of 0.07 fm
Finite continuum quasi distributions from lattice QCD
Monahan, Christopher; Orginos, Kostas
2018-03-01
We present a new approach to extracting continuum quasi distributions from lattice QCD. Quasi distributions are defined by matrix elements of a Wilson-line operator extended in a spatial direction, evaluated between nucleon states at finite momentum. We propose smearing this extended operator with the gradient flow to render the corresponding matrix elements finite in the continuum limit. This procedure provides a nonperturbative method to remove the power-divergence associated with the Wilson line and the resulting matrix elements can be directly matched to light-front distributions via perturbation theory.
Isoscalar meson spectroscopy from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jozef Dudek, Robert Edwards, David Richards, Christopher Thomas, Balint Joo, Michael Peardon
2011-06-01
We extract to high statistical precision an excited spectrum of single-particle isoscalar mesons using lattice QCD, including states of high spin and, for the first time, light exotic JPC isoscalars. The use of a novel quark field construction has enabled us to overcome the long-standing challenge of efficiently including quark-annihilation contributions. Hidden-flavor mixing angles are extracted and while most states are found to be close to ideally flavor mixed, there are examples of large mixing in the pseudoscalar and axial sectors in line with experiment. The exotic JPC isoscalar states appear at a mass scale comparable to the exotic isovector states.
Algorithms for Disconnected Diagrams in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Gambhir, Arjun Singh [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Stathopoulos, Andreas [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Yoon, Boram [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gupta, Rajan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Syritsyn, Sergey [Stony Brook Univ., NY (United States)
2016-11-01
Computing disconnected diagrams in Lattice QCD (operator insertion in a quark loop) entails the computationally demanding problem of taking the trace of the all to all quark propagator. We first outline the basic algorithm used to compute a quark loop as well as improvements to this method. Then, we motivate and introduce an algorithm based on the synergy between hierarchical probing and singular value deflation. We present results for the chiral condensate using a 2+1-flavor clover ensemble and compare estimates of the nucleon charges with the basic algorithm.
Nucleon wave function from lattice QCD
International Nuclear Information System (INIS)
Warkentin, Nikolaus
2008-04-01
In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)
Nucleon wave function from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Warkentin, Nikolaus
2008-04-15
In this work we develop a systematic approach to calculate moments of leading-twist and next-to-leading twist baryon distribution amplitudes within lattice QCD. Using two flavours of dynamical clover fermions we determine low moments of nucleon distribution amplitudes as well as constants relevant for proton decay calculations in grand unified theories. The deviations of the leading-twist nucleon distribution amplitude from its asymptotic form, which we obtain, are less pronounced than sometimes claimed in the literature. The results are applied within the light cone sum rule approach to calculate nucleon form factors that are compared with recent experimental data. (orig.)
Wilson Dslash Kernel From Lattice QCD Optimization
Energy Technology Data Exchange (ETDEWEB)
Joo, Balint [Jefferson Lab, Newport News, VA; Smelyanskiy, Mikhail [Parallel Computing Lab, Intel Corporation, California, USA; Kalamkar, Dhiraj D. [Parallel Computing Lab, Intel Corporation, India; Vaidyanathan, Karthikeyan [Parallel Computing Lab, Intel Corporation, India
2015-07-01
Lattice Quantum Chromodynamics (LQCD) is a numerical technique used for calculations in Theoretical Nuclear and High Energy Physics. LQCD is traditionally one of the first applications ported to many new high performance computing architectures and indeed LQCD practitioners have been known to design and build custom LQCD computers. Lattice QCD kernels are frequently used as benchmarks (e.g. 168.wupwise in the SPEC suite) and are generally well understood, and as such are ideal to illustrate several optimization techniques. In this chapter we will detail our work in optimizing the Wilson-Dslash kernels for Intel Xeon Phi, however, as we will show the technique gives excellent performance on regular Xeon Architecture as well.
Lattice QCD Calculation of Nucleon Structure
International Nuclear Information System (INIS)
Liu, Keh-Fei; Draper, Terrence
2016-01-01
It is emphasized in the 2015 NSAC Long Range Plan that 'understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics.' Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, ?NN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the 'quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D s meson decay constant f D s , the strangeness and charmness, the meson mass decomposition and the
Lattice QCD Calculation of Nucleon Structure
Energy Technology Data Exchange (ETDEWEB)
Liu, Keh-Fei [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy; Draper, Terrence [University of Kentucky, Lexington, KY (United States). Dept. of Physics and Astronomy
2016-08-30
It is emphasized in the 2015 NSAC Long Range Plan that "understanding the structure of hadrons in terms of QCD's quarks and gluons is one of the central goals of modern nuclear physics." Over the last three decades, lattice QCD has developed into a powerful tool for ab initio calculations of strong-interaction physics. Up until now, it is the only theoretical approach to solving QCD with controlled statistical and systematic errors. Since 1985, we have proposed and carried out first-principles calculations of nucleon structure and hadron spectroscopy using lattice QCD which entails both algorithmic development and large-scale computer simulation. We started out by calculating the nucleon form factors -- electromagnetic, axial-vector, πNN, and scalar form factors, the quark spin contribution to the proton spin, the strangeness magnetic moment, the quark orbital angular momentum, the quark momentum fraction, and the quark and glue decomposition of the proton momentum and angular momentum. The first round of calculations were done with Wilson fermions in the `quenched' approximation where the dynamical effects of the quarks in the sea are not taken into account in the Monte Carlo simulation to generate the background gauge configurations. Beginning in 2000, we have started implementing the overlap fermion formulation into the spectroscopy and structure calculations. This is mainly because the overlap fermion honors chiral symmetry as in the continuum. It is going to be more and more important to take the symmetry into account as the simulations move closer to the physical point where the u and d quark masses are as light as a few MeV only. We began with lattices which have quark masses in the sea corresponding to a pion mass at ~ 300 MeV and obtained the strange form factors, charm and strange quark masses, the charmonium spectrum and the D_{s} meson decay constant f_{Ds}, the strangeness and charmness, the meson mass
Spectroscopy of doubly charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Univ. of Graz, Graz (Austria); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Mathur, Nilmani [Tata Inst. of Fundamental Research, Mumbai (India); Peardon, Michael [Trinity College, Dublin (Ireland)
2015-05-06
This study presents the ground and excited state spectra of doubly charmed baryons from lattice QCD with dynamical quark fields. Calculations are performed on anisotropic lattices of size 16³ × 128, with inverse spacing in temporal direction a_{t}⁻¹=5.67(4) GeV and with a pion mass of about 390 MeV. A large set of baryonic operators that respect the symmetries of the lattice yet which retain a memory of their continuum analogues are used. These operators transform as irreducible representations of SU(3)_{F} symmetry for flavor, SU(4) symmetry for Dirac spins of quarks and O(3) for spatial symmetry. The distillation method is utilized to generate baryon correlation functions which are analyzed using the variational fitting method to extract excited states. The lattice spectra obtained have baryonic states with well-defined total spins up to 7/2 and the pattern of low-lying states does not support the diquark picture for doubly charmed baryons. On the contrary the calculated spectra are remarkably similar to the expectations from models with an SU(6)×O(3) symmetry. Various spin-dependent energy splittings between the extracted states are also evaluated.
Thermodynamics of strong-interaction matter from Lattice QCD
Ding, Heng-Tong; Karsch, Frithjof; Mukherjee, Swagato
2015-01-01
We review results from lattice QCD calculations on the thermodynamics of strong-interaction matter with emphasis on input these calculations can provide to the exploration of the phase diagram and properties of hot and dense matter created in heavy ion experiments. This review is organized as follows: 1) Introduction, 2) QCD thermodynamics on the lattice, 3) QCD phase diagram at high temperature, 4) Bulk thermodynamics, 5) Fluctuations of conserved charges, 6) Transport properties, 7) Open he...
Renormalization of Supersymmetric QCD on the Lattice
Costa, Marios; Panagopoulos, Haralambos
2018-03-01
We perform a pilot study of the perturbative renormalization of a Supersymmetric gauge theory with matter fields on the lattice. As a specific example, we consider Supersymmetric N=1 QCD (SQCD). We study the self-energies of all particles which appear in this theory, as well as the renormalization of the coupling constant. To this end we compute, perturbatively to one-loop, the relevant two-point and three-point Green's functions using both dimensional and lattice regularizations. Our lattice formulation involves theWilson discretization for the gluino and quark fields; for gluons we employ the Wilson gauge action; for scalar fields (squarks) we use naive discretization. The gauge group that we consider is SU(Nc), while the number of colors, Nc, the number of flavors, Nf, and the gauge parameter, α, are left unspecified. We obtain analytic expressions for the renormalization factors of the coupling constant (Zg) and of the quark (ZΨ), gluon (Zu), gluino (Zλ), squark (ZA±), and ghost (Zc) fields on the lattice. We also compute the critical values of the gluino, quark and squark masses. Finally, we address the mixing which occurs among squark degrees of freedom beyond tree level: we calculate the corresponding mixing matrix which is necessary in order to disentangle the components of the squark field via an additional finite renormalization.
Wilson fermion determinant in lattice QCD
International Nuclear Information System (INIS)
Nagata, Keitaro
2014-01-01
In this paper, the contraction formula for the fermion matrix is explained. The contraction formula is partly executed analytically only for the imaginary time component of the fermion matrices. It is utilized because the fermion matrices calculations are executed very effectively and it is also possible to get the analytical representation of the chemical potential. It is often used in the simulations of the finite density lattice QCD. The method to analytically calculate the imaginary time component of the fermion matrices is described in the case of fermion action called as the Wilson fermion. To explain the situation, the meaning of QCD, its non-perturbative properties, the sign problem of the quark chemical potentials etc. are mentioned. Then it is explained 'Why the fermion matrices are considered?' Then in the overall contraction formula explanation of the Wilson fermion matrices, the structure of the fermion matrices is described and the matrices calculations by using the exchange matrices are shown. The physical meaning of the contraction formula is given at the end. Finally some examples of the applications of this method are related for explanation. (S. Funahashi)
Hadronic matrix elements in lattice QCD
International Nuclear Information System (INIS)
Jaeger, Benjamin
2014-01-01
The lattice formulation of Quantum ChromoDynamics (QCD) has become a reliable tool providing an ab initio calculation of low-energy quantities. Despite numerous successes, systematic uncertainties, such as discretisation effects, finite-size effects, and contaminations from excited states, are inherent in any lattice calculation. Simulations with controlled systematic uncertainties and close to the physical pion mass have become state-of-the-art. We present such a calculation for various hadronic matrix elements using non-perturbatively O(a)-improved Wilson fermions with two dynamical light quark flavours. The main topics covered in this thesis are the axial charge of the nucleon, the electro-magnetic form factors of the nucleon, and the leading hadronic contributions to the anomalous magnetic moment of the muon. Lattice simulations typically tend to underestimate the axial charge of the nucleon by 5-10%. We show that including excited state contaminations using the summed operator insertion method leads to agreement with the experimentally determined value. Further studies of systematic uncertainties reveal only small discretisation effects. For the electro-magnetic form factors of the nucleon, we see a similar contamination from excited states as for the axial charge. The electro-magnetic radii, extracted from a dipole fit to the momentum dependence of the form factors, show no indication of finite-size or cutoff effects. If we include excited states using the summed operator insertion method, we achieve better agreement with the radii from phenomenology. The anomalous magnetic moment of the muon can be measured and predicted to very high precision. The theoretical prediction of the anomalous magnetic moment receives contribution from strong, weak, and electro-magnetic interactions, where the hadronic contributions dominate the uncertainties. A persistent 3σ tension between the experimental determination and the theoretical calculation is found, which is
Anisotropic dissipation in lattice metamaterials
Directory of Open Access Journals (Sweden)
Dimitri Krattiger
2016-12-01
Full Text Available Plane wave propagation in an elastic lattice material follows regular patterns as dictated by the nature of the lattice symmetry and the mechanical configuration of the unit cell. A unique feature pertains to the loss of elastodynamic isotropy at frequencies where the wavelength is on the order of the lattice spacing or shorter. Anisotropy may also be realized at lower frequencies with the inclusion of local resonators, especially when designed to exhibit directionally non-uniform connectivity and/or cross-sectional geometry. In this paper, we consider free and driven waves within a plate-like lattice−with and without local resonators−and examine the effects of damping on the isofrequency dispersion curves. We also examine, for free waves, the effects of damping on the frequency-dependent anisotropy of dissipation. Furthermore, we investigate the possibility of engineering the dissipation anisotropy by tuning the directional properties of the prescribed damping. The results demonstrate that uniformly applied damping tends to reduce the intensity of anisotropy in the isofrequency dispersion curves. On the other hand, lattice crystals and metamaterials are shown to provide an excellent platform for direction-dependent dissipation engineering which may be realized by simple changes in the spatial distribution of the damping elements.
Lattice QCD for Baryon Rich Matter – Beyond Taylor Expansions
International Nuclear Information System (INIS)
Bornyakov, V.; Boyda, D.; Goy, V.; Molochkov, A.; Nakamura, A.; Nikolaev, A.; Zakharov, V.I.
2016-01-01
We discuss our study for exploring the QCD phase diagram based on the lattice QCD. To go beyond the Taylor expansion and to reach higher density regions, we employ the canonical approach. In order to produce lattice data which meet experimental situation as much as possible, we propose a canonical approach with the charge and baryon number. We present our lattice QCD GPU code for this project which employs the clover improved Wilson fermions and Iwasaki gauge action to investigate pure imaginary chemical potential.
Nucleon axial form factor from lattice QCD
International Nuclear Information System (INIS)
Liu, K.F.; Dong, S.J.; Draper, T.; Wu, J.M.; Wilcox, W.
1994-01-01
Results for the isovector axial form factors of the proton from a lattice QCD calculation are presented for both the point-split and local currents. They are obtained on a quenched 16 3 x24 lattice at β=6.0 with Wilson fermions for a range of quark masses from strange to twice the charm mass. For each quark mass, we find that the axial form factor falls off slower than the corresponding proton electric form factor. Results extrapolated to the chiral limit show that the q 2 dependence of the axial form factor agrees quite well with experiment. The axial vector coupling constant g A calculated for the point-split and local currents is 1.20±0.11 and 1.18±0.11. The central values are 4% and 6% smaller than the experimental value of 1.254, respectively. We also consider the large ma correction and renormalization for the axial vector current of heavy quarks
Nucleon axial coupling from Lattice QCD
Cheng Chang, Chia; Nicholson, Amy; Rinaldi, Enrico; Berkowitz, Evan; Garron, Nicolas; Brantley, David; Monge-Camacho, Henry; Monahan, Chris; Bouchard, Chris; Clark, M. A.; Joó, Bálint; Kurth, Thorsten; Orginos, Kostas; Vranas, Pavlos; Walker-Loud, André
2018-03-01
We present state-of-the-art results from a lattice QCD calculation of the nucleon axial coupling, gA, using Möbius Domain-Wall fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ ensembles after they are smeared using the gradient-flow algorithm. Relevant three-point correlation functions are calculated using a method inspired by the Feynman-Hellmann theorem, and demonstrate significant improvement in signal for fixed stochastic samples. The calculation is performed at five pion masses of mπ {400, 350, 310, 220, 130} MeV, three lattice spacings of a {0.15, 0.12, 0.09} fm, and we do a dedicated volume study with mπL {3.22, 4.29, 5.36}. Control over all relevant sources of systematic uncertainty are demonstrated and quantified. We achieve a preliminary value of gA = 1.285(17), with a relative uncertainty of 1.33%.
Lattice QCD on new chips: a community summary
Directory of Open Access Journals (Sweden)
Rago Antonio
2018-01-01
Full Text Available I review the most recent evolutions of the QCD codes on new architectures, with a focus on the performances obtained by the different coding strategies as presented during the Lattice2017 conference.
Lattice QCD Thermodynamics First 5000 Trajectories
International Nuclear Information System (INIS)
Soltz, R; Gupta, R
2007-01-01
These results represent the first LQCD analysis for approximately 5000 trajectories with each of the p4rhmc and milc codes, with some of the lower temperature runs having fewer. Both runs were for lattice dimensions of 32 3 x8. Some 32 4 T=0 jobs were also run for p4rhmc. The p4 calculation was performed with v2.0 QMP( ) MPI.X (semi-optimized p4 code using qmp over mpi) and milc version of the su3 rhmc susc eos executable dated Mar 1, 2007 on ubgl in the /usr/gapps/hip/qcd/milc/bin subdirectory (svn revision 28). As with previous runs, calculations were performed along lines of constant physics, with the light quark masses 2-3 times their physics values and the strange quark mass set by m ud = 0.1m s . Job submissions were performed using a new subSet.pl job submission script that locates current jobs and submits additional jobs with the same beta value as pending. Note that after reaching a limit of about 35 jobs subsequent submissions are delayed and will not be submitted directly from that state. The job submission script was used to submit revised versions of the milc and p4rhmc csh scripts. Initial thermalized lattices for each code were also for milc (taken from the firstPhys runs), but the p4rhmc runs include thermalization. The only modifications for running on BG/L were to the directory names and the mT parameter which determines job durations (24 hrs on BG/L vs. 4 hrs on ubgl). All finite temperature jobs were submitted to the 512 node partitions, and all T=0 runs were submitted to 2048 node partitions. The set of runs was plagued by filesystem errors on lscratch1 and lscratcH 2 . Many jobs had to be reset (deleting the most recent output file for milc and/or lattice for p4) and resubmitted. The analysis was performed with a new set of scripts that produced a more condensed output for scanning. All scans were verified with checksums, which have been retained in the output along with the line numbers. All lattices, log files, and job submission scripts
Transverse momentum dependent quark densities from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer
2011-10-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. We discuss the basic concepts of the method, including renormalization of the gauge link. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities.
Exploring the spectrum of QCD using the lattice
International Nuclear Information System (INIS)
Bulava, John; Foley, Justin; Morningstar, Colin; Cohen, Saul; Dudek, Jozef; Edwards, Robert; Joo, Balint; Lin, Huey-Wen; Richards, David; Thomas, Christopher; Thomas, Anthony; Engelson, Eric; Wallace, Stephen; Juge, Jimmy; Mathur, Nilmani; Peardon, Mike; Ryan, Sinead
2009-01-01
The calculation of the spectrum of QCD is key to an understanding of the strong interactions, and vital if we are to capitalize on the experimental study of the spectrum. In this paper, we describe progress towards understanding the spectrum of resonances of both mesons and baryons from lattice QCD, focusing in particular on the resonances of the I = 1/2 nucleon states, and of charmonium mesons composed of the heavy charmed quarks.
Parton distributions and lattice QCD calculations: A community white paper
Lin, Huey-Wen; Nocera, Emanuele R.; Olness, Fred; Orginos, Kostas; Rojo, Juan; Accardi, Alberto; Alexandrou, Constantia; Bacchetta, Alessandro; Bozzi, Giuseppe; Chen, Jiunn-Wei; Collins, Sara; Cooper-Sarkar, Amanda; Constantinou, Martha; Del Debbio, Luigi; Engelhardt, Michael; Green, Jeremy; Gupta, Rajan; Harland-Lang, Lucian A.; Ishikawa, Tomomi; Kusina, Aleksander; Liu, Keh-Fei; Liuti, Simonetta; Monahan, Christopher; Nadolsky, Pavel; Qiu, Jian-Wei; Schienbein, Ingo; Schierholz, Gerrit; Thorne, Robert S.; Vogelsang, Werner; Wittig, Hartmut; Yuan, C.-P.; Zanotti, James
2018-05-01
In the framework of quantum chromodynamics (QCD), parton distribution functions (PDFs) quantify how the momentum and spin of a hadron are divided among its quark and gluon constituents. Two main approaches exist to determine PDFs. The first approach, based on QCD factorization theorems, realizes a QCD analysis of a suitable set of hard-scattering measurements, often using a variety of hadronic observables. The second approach, based on first-principle operator definitions of PDFs, uses lattice QCD to compute directly some PDF-related quantities, such as their moments. Motivated by recent progress in both approaches, in this document we present an overview of lattice-QCD and global-analysis techniques used to determine unpolarized and polarized proton PDFs and their moments. We provide benchmark numbers to validate present and future lattice-QCD calculations and we illustrate how they could be used to reduce the PDF uncertainties in current unpolarized and polarized global analyses. This document represents a first step towards establishing a common language between the two communities, to foster dialogue and to further improve our knowledge of PDFs.
Uncertainty quantification in lattice QCD calculations for nuclear physics
Energy Technology Data Exchange (ETDEWEB)
Beane, Silas R. [Univ. of Washington, Seattle, WA (United States); Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Savage, Martin J. [Institute for Nuclear Theory, Seattle, WA (United States)
2015-02-05
The numerical technique of Lattice QCD holds the promise of connecting the nuclear forces, nuclei, the spectrum and structure of hadrons, and the properties of matter under extreme conditions with the underlying theory of the strong interactions, quantum chromodynamics. A distinguishing, and thus far unique, feature of this formulation is that all of the associated uncertainties, both statistical and systematic can, in principle, be systematically reduced to any desired precision with sufficient computational and human resources. As a result, we review the sources of uncertainty inherent in Lattice QCD calculations for nuclear physics, and discuss how each is quantified in current efforts.
Electromagnetic form factors at large momenta from lattice QCD
International Nuclear Information System (INIS)
Chambers, Alexander J.; Dragos, J.; Michigan State Univ., East Lansing, MI; Horsley, R.
2017-01-01
Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavours of degenerate mass quarks corresponding to m π ∼470 MeV. We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV 2 , with results for G E /G M in the proton agreeing well with experimental results.
Transverse momentum dependent quark densities from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernhard Musch,Philipp Hagler,John Negele,Andreas Schafer
2011-02-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simpli?ed operator geometry show visible dipole de- formations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an ex- tension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.
Transverse momentum distributions inside the nucleon from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernhard Musch, Philipp Hagler, John Negele, Andreas Schafer
2010-06-01
We study transverse momentum dependent parton distribution functions (TMDs) with non-local operators in lattice QCD, using MILC/LHPC lattices. Results obtained with a simplified operator geometry show visible dipole deformations of spin-dependent quark momentum densities. We discuss the basic concepts of the method, including renormalization of the gauge link, and an extension to a more elaborate operator geometry that would allow us to analyze process-dependent TMDs such as the Sivers-function.
Comparing clusters and supercomputers for lattice QCD
International Nuclear Information System (INIS)
Gottlieb, Steven
2001-01-01
Since the development of the Beowulf project to build a parallel computer from commodity PC components, there have been many such clusters built. The MILC QCD code has been run on a variety of clusters and supercomputers. Key design features are identified, and the cost effectiveness of clusters and supercomputers are compared
Lattice QCD inputs to the CKM unitarity triangle analysis
International Nuclear Information System (INIS)
Laiho, Jack; Lunghi, E.; Van de Water, Ruth S.
2010-01-01
We perform a global fit to the Cabibbo-Kobayashi-Maskawa unitarity triangle using the latest experimental and theoretical constraints. Our emphasis is on the hadronic weak matrix elements that enter the analysis, which must be computed using lattice QCD or other nonperturbative methods. Realistic lattice QCD calculations which include the effects of the dynamical up, down, and strange quarks are now available for all of the standard inputs to the global fit. We therefore present lattice averages for all of the necessary hadronic weak matrix elements. We attempt to account for correlations between lattice QCD results in a reasonable but conservative manner: whenever there are reasons to believe that an error is correlated between two lattice calculations, we take the degree of correlation to be 100%. These averages are suitable for use as inputs both in the global Cabibbo-Kobayashi-Maskawa unitarity triangle fit and other phenomenological analyses. In order to illustrate the impact of the lattice averages, we make standard model predictions for the parameters B-circumflex K , |V cb |, and |V ub |/|V cb |. We find a (2-3)σ tension in the unitarity triangle, depending upon whether we use the inclusive or exclusive determination of |V cb |. If we interpret the tension as a sign of new physics in either neutral kaon or B mixing, we find that the scenario with new physics in kaon mixing is preferred by present data.
Lattice QCD results on chemical freeze-out
Directory of Open Access Journals (Sweden)
Ratti Claudia
2018-01-01
Full Text Available The latest lattice QCD results on fluctuations of conserved charges at finite temperature and density are reviewed, and connected to the experimental moments of their net-multiplicity distributions, in order to describe the chemical freeze-out from first principles.
Deflation of Eigenvalues for GMRES in Lattice QCD
International Nuclear Information System (INIS)
Morgan, Ronald B.; Wilcox, Walter
2002-01-01
Versions of GMRES with deflation of eigenvalues are applied to lattice QCD problems. Approximate eigenvectors corresponding to the smallest eigenvalues are generated at the same time that linear equations are solved. The eigenvectors improve convergence for the linear equations, and they help solve other right-hand sides
Hadronic corrections to electroweak observables from twisted mass lattice QCD
International Nuclear Information System (INIS)
Pientka, Grit
2015-01-01
For several benchmark quantities investigated to detect signs for new physics beyond the standard model of elementary particle physics, lattice QCD currently constitutes the only ab initio approach available at small momentum transfers for the computation of non-perturbative hadronic contributions. Among those observables are the lepton anomalous magnetic moments and the running of the electroweak coupling constants. We compute the leading QCD contribution to the muon anomalous magnetic moment by performing lattice QCD calculations on ensembles incorporating N f =2+1+1 dynamical twisted mass fermions. Considering active up, down, strange, and charm quarks, admits for the first time a direct comparison of the lattice data for the muon anomaly with phenomenological results because both the latter as well as the experimentally obtained values are sensitive to the complete first two generations of quarks at the current level of precision. Recently, it has been noted that improved measurements of the electron and tau anomalous magnetic moments might also provide ways of detecting new physics contributions. Therefore, we also compute their leading QCD contributions, which simultaneously serve as cross-checks of the value obtained for the muon. Additionally, we utilise the obtained data to compute the leading hadronic contribution to the running of the fine structure constant, which enters all perturbative QED calculations. Furthermore, we show that even for the weak mixing angle the leading QCD contribution can be computed from this data. In this way, we identify a new prime observable in the search for new physics whose hadronic contributions can be obtained from lattice QCD. With the results obtained in this thesis, we are able to exclude unsuitable phenomenologically necessary flavour separations and thus directly assist the presently more precise phenomenological determinations of this eminent quantity.
Calculation of weak transitions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Brower, R.C.; Maturana, G.; Gavela, M.B.; Gupta, R.
1984-10-01
We propose the use of Monte Carlo simulations of QCD to evaluate hadronic matrix elements of local operators encountered in electroweak and grand-unified-theory transitions. Preliminary Monte Carlo estimates are made of the ..delta..S = 2 matrix elements responsible for the K/sub l/-K/sub S/ mass difference and the ..delta..S = 1 operators believed to explain the ..delta..I = (1/2) enhancement.
Nucleon, Δ and Ω excited state spectra in Nf=2+1 lattice QCD
International Nuclear Information System (INIS)
Bulava, J.; Edwards, R.G.; Joo, B.; Richards, D.G.; Engelson, E.; Wallace, S.J.; Lin, H.W.; Morningstar, C.
2010-04-01
The energies of the excited states of the Nucleon, Δ and Ω and are computed in lattice QCD, using two light quarks and one strange quark on anisotropic lattices. The calculation is performed at three values of the light quark mass, corresponding to pion masses m π =392(4), 438(3) and 521(3) MeV. We employ the variational method with a large basis of interpolating operators enabling six energies in each irreducible representation of the lattice to be distinguished clearly. We compare our calculation with the low-lying experimental spectrum, with which we nd reasonable agreement in the pattern of states. The need to include operators that couple to the expected multi-hadron states in the spectrum is clearly identified. (orig.)
Axion cosmology, lattice QCD and the dilute instanton gas
Directory of Open Access Journals (Sweden)
Sz. Borsanyi
2016-01-01
Full Text Available Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T in the quenched framework (infinitely large quark masses and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA. A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
Axion cosmology, lattice QCD and the dilute instanton gas
International Nuclear Information System (INIS)
Borsanyi, S.; Fodor, Z.; Mages, S.W.; Nogradi, D.; Szabo, K.K.
2015-08-01
Axions are one of the most attractive dark matter candidates. The evolution of their number density in the early universe can be determined by calculating the topological susceptibility χ(T) of QCD as a function of the temperature. Lattice QCD provides an ab initio technique to carry out such a calculation. A full result needs two ingredients: physical quark masses and a controlled continuum extrapolation from non-vanishing to zero lattice spacings. We determine χ(T) in the quenched framework (infinitely large quark masses) and extrapolate its values to the continuum limit. The results are compared with the prediction of the dilute instanton gas approximation (DIGA). A nice agreement is found for the temperature dependence, whereas the overall normalization of the DIGA result still differs from the non-perturbative continuum extrapolated lattice results by a factor of order ten. We discuss the consequences of our findings for the prediction of the amount of axion dark matter.
3 (and even 4) loops renormalization constants for Lattice QCD
International Nuclear Information System (INIS)
Di Renzo, F.; Mantovi, A.; Miccio, V.; Scorzato, L.; Torrero, C.
2006-01-01
We compute renormalization constants for Lattice QCD by means of Numerical Stochastic Perturbation Theory. As an example we discuss Wilson quark bilinears and in particular the 'gold plated' case of Z p /Z s for which we can evaluate the perturbative series up to four loops. By making use of the knowledge of anomalous dimension up to 3 loops in the RI'-MOM scheme, the generic bilinears ca be computed to the same (3rd) order. Finite volume effects are carefully assessed and the continuum limit of the computation is taken in a clean way. The convergence properties of the series can be assessed and a comparison with non-perturbative evaluations of the same quantities can be done. In the end, Lattice Perturbation Theory to high loops is a valuable tool to evaluate renormalization constants for lattice QCD with a very high precision
Transverse momentum distributions inside the nucleon from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Musch, Bernhard Ulrich
2009-05-29
Nucleons, i.e., protons and neutrons, are composed of quarks and gluons, whose interactions are described by the theory of quantum chromodynamics (QCD), part of the standard model of particle physics. This work applies lattice QCD to compute quark momentum distributions in the nucleon. The calculations make use of lattice data generated on supercomputers that has already been successfully employed in lattice studies of spatial quark distributions (''nucleon tomography''). In order to be able to analyze transverse momentum dependent parton distribution functions, this thesis explores a novel approach based on non-local operators. One interesting observation is that the transverse momentum dependent density of polarized quarks in a polarized nucleon is visibly deformed. A more elaborate operator geometry is required to enable a quantitative comparison to high energy scattering experiments. First steps in this direction are encouraging. (orig.)
Deconfining chiral transition in QCD on the lattice
International Nuclear Information System (INIS)
Kanaya, Kazuyuki
1995-01-01
The deconfining chiral transition in finite-temperature QCD is studied on the lattice using Wilson quarks. After discussing the nature of chiral limit with Wilson quarks, we first study the case of two degenerate quarks N F =2, and find that the transition is smooth in the chiral limit on both N t =4 and 6 lattices. For N F =3, on the other hand, clear two state signals are observed for m q t =4 lattices. For a more realistic case of N F =2+1, i.e. two degenerate u and d-quarks and a heavier s-quark, we study the cases m s ≅ 150 and 400 MeV with m u = m d ≅ 0: In contrast to a previous result with staggered quarks, clear two state signals are observed for both cases, suggesting a first order QCD phase transition in the real world. (author)
The world according to lattice QCD
International Nuclear Information System (INIS)
Sharpe, S.R.
1988-12-01
A non-technical introduction to lattice calculations is given. The successes and problems of current calculations are emphasized. A summary of lattice results on non-exotic meson and baryon masses indicates that while calculations in the quenched approximation are becoming reliable, the results differ in systematic ways from the physical values. Results for exotic mesons (glueballs and hybrids) are then presented. The future prospects are discussed. 23 refs., 4 figs
Some new results in O(a) improved lattice QCD
Luscher, Martin; Sommer, Rainer; Weisz, Peter; Wittig, Hartmut; Wolff, Ulli
1996-01-01
It is shown how on-shell O(a) improvement can be implemented non-perturbatively in lattice QCD with Wilson quarks. Improvement conditions are obtained by requiring the PCAC relation to hold exactly in certain matrix elements. These are derived from the QCD Schrödinger functional which enables us to simulate directly at vanishing quark masses. In the quenched approximation and for bare couplings in the range $0\\leq g_0\\leq 1$, we determine the improved action, the improved axial current, the additive renormalization of the quark mass and the isospin current normalization constants Z_A and Z_V.
Lattice QCD computations: Recent progress with modern Krylov subspace methods
Energy Technology Data Exchange (ETDEWEB)
Frommer, A. [Bergische Universitaet GH Wuppertal (Germany)
1996-12-31
Quantum chromodynamics (QCD) is the fundamental theory of the strong interaction of matter. In order to compare the theory with results from experimental physics, the theory has to be reformulated as a discrete problem of lattice gauge theory using stochastic simulations. The computational challenge consists in solving several hundreds of very large linear systems with several right hand sides. A considerable part of the world`s supercomputer time is spent in such QCD calculations. This paper presents results on solving systems for the Wilson fermions. Recent progress is reviewed on algorithms obtained in cooperation with partners from theoretical physics.
The renormalization group and lattice QCD
International Nuclear Information System (INIS)
Gupta, R.
1989-01-01
This report discusses the following topics: scaling of thermodynamic quantities and critical exponents; scaling relations; block spin idea of Kadanoff; exact RG solution of the 1-d Ising model; Wilson's formulation of the renormalization group; linearized transformation matrix and classification of exponents; derivation of exponents from the eigenvalues of Τ αβ ; simple field theory: the gaussian model; linear renormalization group transformations; numerical methods: MCRG; block transformations for 4-d SU(N) LGT; asymptotic freedom makes QCD simple; non-perturbative β-function and scaling; and the holy grail: the renormalized trajectory
Extracting the Omega- electric quadrupole moment from lattice QCD data
Energy Technology Data Exchange (ETDEWEB)
G. Ramalho, M.T. Pena
2011-03-01
The Omega- has an extremely long lifetime, and is the most stable of the baryons with spin 3/2. Therefore the Omega- magnetic moment is very accurately known. Nevertheless, its electric quadrupole moment was never measured, although estimates exist in different formalisms. In principle, lattice QCD simulations provide at present the most appropriate way to estimate the Omega- form factors, as function of the square of the transferred four-momentum, Q2, since it describes baryon systems at the physical mass for the strange quark. However, lattice QCD form factors, and in particular GE2, are determined at finite Q2 only, and the extraction of the electric quadrupole moment, Q_Omega= GE2(0) e/(2 M_Omega), involves an extrapolation of the numerical lattice results. In this work we reproduce the lattice QCD data with a covariant spectator quark model for Omega- which includes a mixture of S and two D states for the relative quark-diquark motion. Once the model is calibrated, it is used to determine Q_Omega. Our prediction is Q_Omega= (0.96 +/- 0.02)*10^(-2) efm2 [GE2(0)=0.680 +/- 0.012].
Automated generation of lattice QCD Feynman rules
International Nuclear Information System (INIS)
Hart, A.; Mueller, E.H.; Horgan, R.R.
2009-04-01
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Two Dimensional Super QCD on a Lattice
Energy Technology Data Exchange (ETDEWEB)
Catterall, Simon [Syracuse U.; Veernala, Aarti [Fermilab
2017-10-04
We construct a lattice theory with one exact supersymmetry which consists of fields transforming in both the adjoint and fundamental representations of a U(Nc) gauge group. In addition to gluons and gluinos, the theory contains Nf flavors of fermion in the fundamental representation along with their scalar partners and is invariant under a global U(Nf) flavor symmetry. The lattice action contains an additional Fayet-Iliopoulos term which can be used to generate a scalar potential. We perform numerical simulations that corroborate the theoretical expectation that supersymmetry is spontaneously broken for Nf
Automated generation of lattice QCD Feynman rules
Energy Technology Data Exchange (ETDEWEB)
Hart, A.; Mueller, E.H. [Edinburgh Univ. (United Kingdom). SUPA School of Physics and Astronomy; von Hippel, G.M. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Horgan, R.R. [Cambridge Univ. (United Kingdom). DAMTP, CMS
2009-04-15
The derivation of the Feynman rules for lattice perturbation theory from actions and operators is complicated, especially for highly improved actions such as HISQ. This task is, however, both important and particularly suitable for automation. We describe a suite of software to generate and evaluate Feynman rules for a wide range of lattice field theories with gluons and (relativistic and/or heavy) quarks. Our programs are capable of dealing with actions as complicated as (m)NRQCD and HISQ. Automated differentiation methods are used to calculate also the derivatives of Feynman diagrams. (orig.)
Elimination of spurious lattice fermion solutions and noncompact lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Lee, T.D.
1997-09-22
It is well known that the Dirac equation on a discrete hyper-cubic lattice in D dimension has 2{sup D} degenerate solutions. The usual method of removing these spurious solutions encounters difficulties with chiral symmetry when the lattice spacing l {ne} 0, as exemplified by the persistent problem of the pion mass. On the other hand, we recall that in any crystal in nature, all the electrons do move in a lattice and satisfy the Dirac equation; yet there is not a single physical result that has ever been entangled with a spurious fermion solution. Therefore it should not be difficult to eliminate these unphysical elements. On a discrete lattice, particle hop from point to point, whereas in a real crystal the lattice structure in embedded in a continuum and electrons move continuously from lattice cell to lattice cell. In a discrete system, the lattice functions are defined only on individual points (or links as in the case of gauge fields). However, in a crystal the electron state vector is represented by the Bloch wave functions which are continuous functions in {rvec {gamma}}, and herein lies one of the essential differences.
Lattice QCD at finite temperature and density from Taylor expansion
Steinbrecher, Patrick
2017-01-01
In the first part, I present an overview of recent Lattice QCD simulations at finite temperature and density. In particular, we discuss fluctuations of conserved charges: baryon number, electric charge and strangeness. These can be obtained from Taylor expanding the QCD pressure as a function of corresponding chemical potentials. Our simulations were performed using quark masses corresponding to physical pion mass of about 140 MeV and allow a direct comparison to experimental data from ultra-relativistic heavy ion beams at hadron colliders such as the Relativistic Heavy Ion Collider at Brookhaven National Laboratory and the Large Hadron Collider at CERN. In the second part, we discuss computational challenges for current and future exascale Lattice simulations with a focus on new silicon developments from Intel and NVIDIA.
Chiral effective theory with a light scalar and lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Soto, J., E-mail: joan.soto@ub.edu [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Talavera, P., E-mail: pere.talavera@icc.ub.edu [Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Comte Urgell 187, E-08036 Barcelona (Spain); Tarrus, J., E-mail: tarrus@ecm.ub.es [Departament d' Estructura i Constituents de la Materia, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain); Institut de Ciencies del Cosmos, Universitat de Barcelona, Diagonal 647, E-08028 Barcelona, Catalonia (Spain)
2013-01-21
We extend the usual chiral perturbation theory framework ({chi}PT) to allow the inclusion of a light dynamical isosinglet scalar. Using lattice QCD results, and a few phenomenological inputs, we explore the parameter space of the effective theory. We discuss the S-wave pion-pion scattering lengths, extract the average value of the two light quark masses and evaluate the impact of the dynamical singlet field in the low-energy constants l{sup Macron }{sub 1}, l{sup Macron }{sub 3} and l{sup Macron }{sub 4} of {chi}PT. We also show how to extract the mass and width of the sigma resonance from chiral extrapolations of lattice QCD data.
Electromagnetic form factors at large momenta from lattice QCD
Chambers, A. J.; Dragos, J.; Horsley, R.; Nakamura, Y.; Perlt, H.; Pleiter, D.; Rakow, P. E. L.; Schierholz, G.; Schiller, A.; Somfleth, K.; Stüben, H.; Young, R. D.; Zanotti, J. M.; Qcdsf/Ukqcd/Cssm Collaborations
2017-12-01
Accessing hadronic form factors at large momentum transfers has traditionally presented a challenge for lattice QCD simulations. Here, we demonstrate how a novel implementation of the Feynman-Hellmann method can be employed to calculate hadronic form factors in lattice QCD at momenta much higher than previously accessible. Our simulations are performed on a single set of gauge configurations with three flavors of degenerate mass quarks corresponding to mπ≈470 MeV . We are able to determine the electromagnetic form factors of the pion and nucleon up to approximately 6 GeV2 , with results for the ratio of the electric and magnetic form factors of the proton at our simulated quark mass agreeing well with experimental results.
The gluon structure of hadrons and nuclei from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Shanahan, Phiala A. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
2018-04-01
I discuss recent lattice QCD studies of the gluon structure of hadrons and light nuclei. After very briefly highlighting new determinations of the gluon contributions to the nucleon's momentum and spin, presented by several collaborations over the last year, I describe first calculations of gluon generalised form factors. The generalised transversity gluon distributions are of particular interest since they are purely gluonic; they do not mix with quark distributions at leading twist. In light nuclei they moreover provide a clean signature of non-nucleonic gluon degrees of freedom, and I present the first evidence for such effects, based on lattice QCD calculations. The planned Electron-Ion Collider, designed to access gluon structure quantities, will have the capability to test this prediction, and measure a range of gluon observables including generalised gluon distributions and transverse momentum dependent gluon distributions, within the next decade.
B-physics from lattice QCD...with a twist
Carrasco, N.; Frezzotti, R.; Gimenez, V.; Herdoiza, G.; Lubicz, V.; Martinelli, G.; Michael, C.; Palao, D.; Rossi, G.C.; Sanfilippo, F.; Shindler, A.; Simula, S.; Tarantino, C.
2012-01-01
We present a precise lattice QCD determination of the b-quark mass, of the B and Bs decay constants and first results for the B-meson bag parameters. For our computation we employ the so-called ratio method and our results benefit from the use of improved interpolating operators for the B-mesons. QCD calculations are performed with Nf = 2 dynamical light-quarks at four values of the lattice spacing and the results are extrapolated to the continuum limit. The preliminary results are mb(mb) = 4.35(12) GeV for the MSbar b-quark mass, fBs = 234(6) MeV and fB = 197(10) MeV for the B-meson decay constants, BBs(mb) = 0.90(5) and BB(mb) = 0.87(5) for the B-meson bag parameters.
Proton decay matrix elements from lattice QCD
International Nuclear Information System (INIS)
Aoki, Yasumichi; Shintani, Eigo
2012-01-01
We report on the calculation of the matrix elements of nucleon to pseudoscalar decay through a three quark operator, a part of the low-energy, four-fermion, baryon-number-violating operator originating from grand unified theories. The direct calculation of the form factors using domain-wall fermions on the lattice, incorporating the u, d and s sea-quarks effects yields the results with all the relevant systematic uncertainties controlled for the first time.
Two-color lattice QCD with staggered quarks
Energy Technology Data Exchange (ETDEWEB)
Scheffler, David
2015-07-20
The study of quantum chromodynamics (QCD) at finite temperature and density provides important contributions to the understanding of strong-interaction matter as it is present e.g. in nuclear matter and in neutron stars or as produced in heavy-ion collision experiments. Lattice QCD is a non-perturbative approach, where equations of motion for quarks and gluons are discretized on a finite space-time lattice. The method successfully describes the behavior of QCD in the vacuum and at finite temperature, however it cannot be applied to finite baryon density due to the fermion sign problem. Various QCD-like theories, that offer to draw conclusions about QCD, allow simulations also at finite densities. In this work we investigate two-color QCD as a popular example of a QCD-like theory free from the sign problem with methods from lattice gauge theory. For the generation of gauge configurations with two dynamical quark flavors in the staggered formalism with the ''rooting trick'' we apply the Rational Hybrid Monte Carlo (RHMC) algorithm. We carry out essential preparatory work for future simulations at finite density. As a start, we concentrate on the calculation of the effective potential for the Polyakov loop, which is an order parameter for the confinement-deconfinement transition, in dependence of the temperature and quark mass. It serves as an important input for effective models of QCD. We obtain the effective potential via the histogram method from local distributions of the Polyakov loop. To study the influence of dynamical quarks on gluonic observables, the simulations are performed with large quark masses and are compared to calculations in the pure gauge theory. In the second part of the thesis we examine aspects of the chiral phase transition along the temperature axis. The symmetry group of chiral symmetry in two-color QCD is enlarged to SU(2N{sub f}). Discretized two-color QCD in the staggered formalism exhibits a chiral symmetry breaking
A consumer`s guide to lattice QCD results
Energy Technology Data Exchange (ETDEWEB)
DeGrand, T. [Univ. of Colorado, Boulder, CO (United States)
1994-12-01
The author presents an overview of recent lattice QCD results on hadron spectroscopy and matrix elements. Case studies include light quark spectroscopy, the determination of {alpha}{sub s} from heavy quark spectroscopy, the D-meson decay constant, a calculation of the Isgur-Wise function, and some examples of the (lack of) effect of sea quarks on matrix elements. The review is intended for the nonexpert.
Uses of Effective Field Theory in Lattice QCD
Kronfeld, Andreas S.
2002-01-01
Several physical problems in particle physics, nuclear physics, and astrophysics require information from non-perturbative QCD to gain a full understanding. In some cases the most reliable technique for quantitative results is to carry out large-scale numerical calculations in lattice gauge theory. As in any numerical technique, there are several sources of uncertainty. This chapter explains how effective field theories are used to keep them under control and, then, obtain a sensible error ba...
Benchmark test of CP-PACS for lattice QCD
International Nuclear Information System (INIS)
Yoshie, Tomoteru
1996-01-01
The CP-PACS is a massively parallel computer dedicated for calculations in computational physics and will be in operation in the spring of 1996 at Center for Computational Physics, University of Tsukuba. In this paper, we describe the architecture of the CP-PACS and report the results of the estimate of the performance of the CP-PACS for typical lattice QCD calculations. (author)
QCD, monopoles on the lattice and gauge invariance
International Nuclear Information System (INIS)
Bonati, C.; Di Giacomo, A.; D'Elia, M.
2011-01-01
The number and the location of the monopoles observed on the lattice in QCD configurations happens to depend strongly on the choice of the gauge used to expose them, in contrast to the physical expectation that monopoles be gauge invariant objects. It is proved by use of the non abelian Bianchi identities (NABI) that monopoles are indeed gauge invariant, but the method used to detect them depends, in a controllable way, on the choice of the abelian projection. Numerical checks are presented.
Lattice QCD at finite temperature with Wilson fermions
International Nuclear Information System (INIS)
Pinke, Christopher
2014-01-01
The subatomic world is governed by the strong interactions of quarks and gluons, described by Quantum Chromodynamics (QCD). Quarks experience confinement into colour-less objects, i.e. they can not be observed as free particles. Under extreme conditions such as high temperature or high density, this constraint softens and a transition to a phase where quarks and gluons are quasi-free particles (Quark-Gluon-Plasma) can occur. This environment resembles the conditions prevailing during the early stages of the universe shortly after the Big Bang. The phase diagram of QCD is under investigation in current and future collider experiments, for example at the Large Hadron Collider (LHC) or at the Facility for Antiproton and Ion Research (FAIR). Due to the strength of the strong interactions in the energy regime of interest, analytic methods can not be applied rigorously. The only tool to study QCD from first principles is given by simulations of its discretised version, Lattice QCD (LQCD). These simulations are in the high-performance computing area, hence, the numerical aspects of LQCD are a vital part in this field of research. In recent years, Graphic Processing Units (GPUs) have been incorporated in these simulations as they are a standard tool for general purpose calculations today. In the course of this thesis, the LQCD application CL 2 QCD has been developed, which allows for simulations on GPUs as well as on traditional CPUs, as it is based on OpenCL. CL 2 QCD constitutes the first application for Wilson type fermions in OpenCL. It provides excellent performance and has been applied in physics studies presented in this thesis. The investigation of the QCD phase diagram is hampered by the notorious sign-problem, which restricts current simulation algorithms to small values of the chemical potential. Theoretically, studying unphysical parameter ranges allows for constraints on the phase diagram. Of utmost importance is the clarification of the order of the finite
Volume dependence of light hadron masses in full lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Orth, B.; Lippert, T.; Schilling, K
2004-03-01
The aim of the GRAL project is to simulate full QCD with standard Wilson fermions at light quark masses on small to medium-sized lattices and to obtain infinite-volume results by extrapolation. In order to establish the functional form of the volume dependence we study systematically the finite-size effects in the light hadron spectrum. We give an update on the status of the GRAL project and show that our simulation data for the light hadron masses depend exponentially on the lattice size.
Hyperon-Nulceon Scattering from Fully-Dynamical Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Silas Beane; Paulo Bedaque; Thomas Luu; Konstantinos Orginos; Elizabetta Pallante; Assumpta Parreno; Martin Savage
2007-10-01
We present results of the first fully-dynamical lattice QCD determination of hyperon-nucleon scattering. One s-wave phase shift was determined for n{Lambda} scattering in both spin-channels at pion masses of 350, 490, and 590 MeV, and for n{Sigma}^- scattering in both spin channels at pion masses of 490, and 590 MeV. The calculations were performed with domain-wall valence quarks on dynamical, staggered gauge configurations with a lattice spacing of b ~0.125 fm.
Nucleon electromagnetic form factors in twisted mass lattice QCD
International Nuclear Information System (INIS)
Alexandrou, C.; Jansen, K.; Korzec, T.; Humboldt Univ. Berlin
2011-02-01
We present results on the nucleon electromagnetic form factors within lattice QCD using two flavors of degenerate twisted mass fermions. Volume effects are examined using simulations at two volumes of spatial length L=2.1 fm and L=2.8 fm. Cut-off effects are investigated using three different values of the lattice spacings, namely a=0.089 fm, a=0.070 fm and a=0.056 fm. The nucleon magnetic moment, Dirac and Pauli radii are obtained in the continuum limit and chirally extrapolated to the physical pion mass allowing for a comparison with experiment. (orig.)
Meson masses and decay constants from unquenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jansen, K. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); McNeile, C. [Glasgow Univ. (United Kingdom). Dept. of Physics and Astronomy; Michael, C. [Liverpool Univ. (United Kingdom). Theoretical Physics Div., Dept. of Mathematical Sciences; Urbach, C. [Humboldt Univ. Berlin (Germany). Inst. fuer Physik
2009-06-15
We report results for the masses of the flavour non-singlet light 0{sup ++}, 1{sup --}, and 1{sup +-} mesons from unquenched lattice QCD at two lattice spacings. The twisted mass formalism was used with two flavours of sea quarks. For the 0{sup ++} and 1{sup +-} mesons we look for the effect of decays on the mass dependence. For the light vector mesons we study the chiral extrapolations of the mass. We report results for the leptonic and transverse decay constants of the meson. We test the mass dependence of the KRSF relations. (orig.)
Charmed meson decay constants in three-flavor lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Aubin, C.; Bernard, C.; DeTar, C.; Di Pierro, M.; Freeland, Elizabeth D.; Gottlieb, Steven; Heller, U.M.; Hetrick, J.E.; El-Khadra, Aida X.; Kronfeld, Andreas S.; Levkova, L.; Mackenzie, P.B.; Menscher, D.; Maresca, F.; Nobes, M.; Okamoto, M.; Renner, D.B.; Simone, J.; Sugar, R.; Toussaint, D.; Trottier, H.D.; /Art Inst. of Chicago /Columbia
2005-06-01
The authors present the first lattice QCD calculation with realistic sea quark content of the D{sup +}-meson decay constant f{sub D+}. They use the MILC Collaboration's publicly available ensembles of lattice gauge fields, which have a quark sea with two flavors (up and down) much lighter than a third (strange). They obtain f{sub D+} = 201 {+-} 3 {+-} 17 MeV, where the errors are statistical and a combination of systematic errors. They also obtain f{sub D{sub s}} = 249 {+-} 3 {+-} 16 MeV for the D{sub s} meson.
Charmed tetraquarks Tcc and Tcs from dynamical lattice QCD simulations
Ikeda, Yoichi; Charron, Bruno; Aoki, Sinya; Doi, Takumi; Hatsuda, Tetsuo; Inoue, Takashi; Ishii, Noriyoshi; Murano, Keiko; Nemura, Hidekatsu; Sasaki, Kenji
2014-02-01
Charmed tetraquarks Tcc=(ccubardbar) and Tcs=(csubardbar) are studied through the S-wave meson-meson interactions, D-D, Kbar-D, D-D* and Kbar-D*, on the basis of the (2+1)-flavor lattice QCD simulations with the pion mass mπ≃410, 570 and 700 MeV. For the charm quark, the relativistic heavy quark action is employed to treat its dynamics on the lattice. Using the HAL QCD method, we extract the S-wave potentials in lattice QCD simulations, from which the meson-meson scattering phase shifts are calculated. The phase shifts in the isospin triplet (I=1) channels indicate repulsive interactions, while those in the I=0 channels suggest attraction, growing as mπ decreases. This is particularly prominent in the Tcc (JP=1+,I=0) channel, though neither bound state nor resonance are found in the range mπ=410-700 MeV. We make a qualitative comparison of our results with the phenomenological diquark picture.
Lattice QCD at High Temperature and Density
Rebhan, Anton
The theoretical framework for describing ultrarelativistically hot and dense matter is quantum field theory at finite temperature and density. At sufficiently high temperatures and densities, asymptotic freedom should make it possible to describe even the fundamental theory of strong interactions, quantum chromodynamics (QCD), through analytical and mostly perturbative means. This article tries to cover both principal issues related to gauge freedom as well as specific problems of thermal perturbation theory in non-Abelian gauge theories. After a brief review of the imaginary- and real-time formalisms of thermal field theory, the latter is extended to gauge theories. Aspects of different treatments of Faddeev-Popov ghosts and different gauge choices are discussed for general non-Abelian gauge theories, both in the context of path integrals and in covariant operator quantization. The dependence of the formalism on the gauge-fixing parameters introduced in perturbation theory is investigated in detail. Only the partition function and expectation values of gauge-invariant observables are entirely gauge independent. Beyond those it is shown that the location of singularities of gauge and matter propagators, which define screening behaviour and dispersion laws of the corresponding quasi-particle excitations, are gauge independent when calculated systematically.
Rho resonance parameters from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guo, Dehua; Alexandru, Andrei; Molina, Raquel; Döring, Michael
2016-08-01
We perform a high-precision calculation of the phase shifts for $\\pi$-$\\pi$ scattering in the I = 1, J = 1 channel in the elastic region using elongated lattices with two mass-degenerate quark favors ($N_f = 2$). We extract the $\\rho$ resonance parameters using a Breit-Wigner fit at two different quark masses, corresponding to $m_{\\pi} = 226$MeV and $m_{\\pi} = 315$MeV, and perform an extrapolation to the physical point. The extrapolation is based on a unitarized chiral perturbation theory model that describes well the phase-shifts around the resonance for both quark masses. We find that the extrapolated value, $m_{\\rho} = 720(1)(15)$MeV, is significantly lower that the physical rho mass and we argue that this shift could be due to the absence of the strange quark in our calculation.
A lattice QCD calculation of the transverse decay constant of the b1(1235) meson
International Nuclear Information System (INIS)
Jansen, K.; McNeile, C.; Michael, C.; Urbach, C.
2009-10-01
We review various B meson decays that require knowledge of the transverse decay constant of the b 1 (1235) meson. We report on an exploratory lattice QCD calculation of the transverse decay constant of the b 1 meson. The lattice QCD calculations used unquenched gauge configurations, at two lattice spacings, generated with two flavours of sea quarks. The twisted mass formalism is used. (orig.)
Effective action calculation in lattice QCD
International Nuclear Information System (INIS)
Hoek, J.
1983-01-01
A method (called the effective action method) devised to make analytic calculations in Quantum Chromodynamics in the region of strong coupling is presented. First, the author deals with developing the calculation of a strong coupling expansion of the generating functional for gauge systems on a lattice with arbitrary sources. An accompanying manual describes the implementation of this calculation on a computer. The next step consists of substituting the expressions for the one-link free energies for a specific gauge group in the result of the previous calculation. This process of substitution, together with the replacement of the sources by a bilinear combination of fermion fields, is described for the group SU(3). More details on the implementation of the substitution scheme on a computer can be found in the accompanying manual. From the effective action thus obtained in terms of meson fields and baryon fields the Green functions of the theory can be derived. As an illustrative application the effective potential determining the vacuum expectation value of the meson field is calculated. (Auth.)
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Virotta, Francesco
2012-02-21
In this work we investigate the critical slowing down of lattice QCD simulations. We perform a preliminary study in the quenched approximation where we find that our estimate of the exponential auto-correlation time scales as {tau}{sub exp}(a){proportional_to}a{sup -5}, where a is the lattice spacing. In unquenched simulations with O(a) improved Wilson fermions we do not obtain a scaling law but find results compatible with the behavior that we find in the pure gauge theory. The discussion is supported by a large set of ensembles both in pure gauge and in the theory with two degenerate sea quarks. We have moreover investigated the effect of slow algorithmic modes in the error analysis of the expectation value of typical lattice QCD observables (hadronic matrix elements and masses). In the context of simulations affected by slow modes we propose and test a method to obtain reliable estimates of statistical errors. The method is supposed to help in the typical algorithmic setup of lattice QCD, namely when the total statistics collected is of O(10){tau}{sub exp}. This is the typical case when simulating close to the continuum limit where the computational costs for producing two independent data points can be extremely large. We finally discuss the scale setting in N{sub f}=2 simulations using the Kaon decay constant f{sub K} as physical input. The method is explained together with a thorough discussion of the error analysis employed. A description of the publicly available code used for the error analysis is included.
Critical slowing down and error analysis in lattice QCD simulations
International Nuclear Information System (INIS)
Schaefer, Stefan; Sommer, Rainer; Virotta, Francesco
2010-09-01
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
Critical slowing down and error analysis in lattice QCD simulations
Energy Technology Data Exchange (ETDEWEB)
Schaefer, Stefan [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Sommer, Rainer; Virotta, Francesco [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2010-09-15
We study the critical slowing down towards the continuum limit of lattice QCD simulations with Hybrid Monte Carlo type algorithms. In particular for the squared topological charge we find it to be very severe with an effective dynamical critical exponent of about 5 in pure gauge theory. We also consider Wilson loops which we can demonstrate to decouple from the modes which slow down the topological charge. Quenched observables are studied and a comparison to simulations of full QCD is made. In order to deal with the slow modes in the simulation, we propose a method to incorporate the information from slow observables into the error analysis of physical observables and arrive at safer error estimates. (orig.)
Interquark Potential with Finite Quark Mass from Lattice QCD
International Nuclear Information System (INIS)
Kawanai, Taichi; Sasaki, Shoichi
2011-01-01
We present an investigation of the interquark potential determined from the qq Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The qq potential at finite quark mass m q can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schroedinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≅2.1 GeV in a range 1.0≤m q ≤3.6 GeV. Our numerical results show that the qq potential in the m q →∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the qq potential and the spin-spin potential are also examined.
Interquark potential with finite quark mass from lattice QCD.
Kawanai, Taichi; Sasaki, Shoichi
2011-08-26
We present an investigation of the interquark potential determined from the q ̄q Bethe-Salpeter (BS) amplitude for heavy quarkonia in lattice QCD. The q ̄q potential at finite quark mass m(q) can be calculated from the equal-time and Coulomb gauge BS amplitude through the effective Schrödinger equation. The definition of the potential itself requires information about a kinetic mass of the quark. We then propose a self-consistent determination of the quark kinetic mass on the same footing. To verify the proposed method, we perform quenched lattice QCD simulations with a relativistic heavy-quark action at a lattice cutoff of 1/a≈2.1 GeV in a range 1.0≤m(q)≤3.6 GeV. Our numerical results show that the q ̄q potential in the m(q)→∞ limit is fairly consistent with the conventional one obtained from Wilson loops. The quark-mass dependence of the q ̄q potential and the spin-spin potential are also examined. © 2011 American Physical Society
Relevant energy scale of color confinement from lattice QCD
International Nuclear Information System (INIS)
Yamamoto, Arata; Suganuma, Hideo
2009-01-01
We propose a new lattice framework to extract the relevant gluonic energy scale of QCD phenomena which is based on a 'cut' on link variables in momentum space. This framework is expected to be broadly applicable to all lattice QCD calculations. Using this framework, we quantitatively determine the relevant energy scale of color confinement, through the analyses of the quark-antiquark potential and meson masses. The relevant energy scale of color confinement is found to be below 1.5 GeV in the Landau gauge. In fact, the string tension is almost unchanged even after cutting off the high-momentum gluon component above 1.5 GeV. When the relevant low-energy region is cut, the quark-antiquark potential is approximately reduced to a Coulomb-like potential, and each meson becomes a quasifree quark pair. As an analytical model calculation, we also investigate the dependence of the Richardson potential on the cut, and find the consistent behavior with the lattice result.
Multi-meson systems in lattice QCD / Many-body QCD
Energy Technology Data Exchange (ETDEWEB)
Detmold, William [College of William and Mary, Williamsburg, VA (United States)
2013-08-31
Nuclear physics entails the study of the properties and interactions of hadrons, such as the proton and neutron, and atomic nuclei and it is central to our understanding of our world at the smallest scales. The underlying basis for nuclear physics is provided by the Standard Model of particle physics which describes how matter interacts through the strong, electromagnetic and weak (electroweak) forces. This theory was developed in the 1970s and provides an extremely successful description of our world at the most fundamental level to which it has been probed. The Standard Model has been, and continues to be, subject to stringent tests at particle accelerators around the world, so far passing without blemish. However, at the relatively low energies that are relevant for nuclear physics, calculations involving the strong interaction, governed by the equations of Quantum Chromodynamics (QCD), are enormously challenging, and to date, the only systematic way to perform them is numerically, using a framework known as lattice QCD (LQCD). In this approach, one discretizes space-time and numerically solves the equations of QCD on a space-time lattice; for realistic calculations, this requires highly optimized algorithms and cutting-edge high performance computing (HPC) resources. Progress over the project period is discussed in detail in the following subsections
A Framework for Lattice QCD Calculations on GPUs
Energy Technology Data Exchange (ETDEWEB)
Winter, Frank; Clark, M A; Edwards, Robert G; Joo, Balint
2014-08-01
Computing platforms equipped with accelerators like GPUs have proven to provide great computational power. However, exploiting such platforms for existing scientific applications is not a trivial task. Current GPU programming frameworks such as CUDA C/C++ require low-level programming from the developer in order to achieve high performance code. As a result porting of applications to GPUs is typically limited to time-dominant algorithms and routines, leaving the remainder not accelerated which can open a serious Amdahl's law issue. The lattice QCD application Chroma allows to explore a different porting strategy. The layered structure of the software architecture logically separates the data-parallel from the application layer. The QCD Data-Parallel software layer provides data types and expressions with stencil-like operations suitable for lattice field theory and Chroma implements algorithms in terms of this high-level interface. Thus by porting the low-level layer one can effectively move the whole application in one swing to a different platform. The QDP-JIT/PTX library, the reimplementation of the low-level layer, provides a framework for lattice QCD calculations for the CUDA architecture. The complete software interface is supported and thus applications can be run unaltered on GPU-based parallel computers. This reimplementation was possible due to the availability of a JIT compiler (part of the NVIDIA Linux kernel driver) which translates an assembly-like language (PTX) to GPU code. The expression template technique is used to build PTX code generators and a software cache manages the GPU memory. This reimplementation allows us to deploy an efficient implementation of the full gauge-generation program with dynamical fermions on large-scale GPU-based machines such as Titan and Blue Waters which accelerates the algorithm by more than an order of magnitude.
N to Delta electromagnetic transition form factors from Lattice QCD
Alexandrou, C; Lippert, T; Neff, H; Negele, J W; Schilling, K; Tsapalis, A; Forcrand, Ph. de; Lippert, Th.
2004-01-01
The magnetic dipole, the electric quadrupole and the Coulomb quadrupole amplitudes for the transition $\\gamma N\\to \\Delta$ are evaluated in lattice QCD. Unquenching effects are studied using two dynamical Wilson fermions. The dipole transition form factor is accurately determined at several values of momentum transfer. The electric quadrupole amplitude is found to be non-zero yielding a negative value for the ratio,$ R_{EM}$, of electric quadrupole to magnetic dipole amplitudes given in the chiral limit at three values of momenta transfer.
Correlation functions of atomic nuclei in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Fodor, Zoltan [Department of Physics, Bergische Universitaet Wuppertal (Germany); Institute for Theoretical Physics, Eoetvoes University, Budapest (Hungary); Juelich Supercomputing Centre, Forschungszentrum Juelich (Germany); Guenther, Jana; Toth, Balint; Varnhorst, Lukas [Department of Physics, Bergische Universitaet Wuppertal (Germany)
2012-07-01
To determine the mass of the atomic nuclei in lattice QCD one has to calculate the correlation function of suitable combinations of quark field operators. However the calculation of this correlation functions requires to evaluate a large number of Wick contractions which scales as the factorial of the number of nucleons in the system. We explore the possibilities to reduce the computational effort for such evaluations by exploiting certain symmetries of the systems. We discuss a recursive approach which respects these symmetries and may allow the determination of the correlation function in significantly less computer time.
Quarkonium-nucleus bound states from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Beane, S. R. [Univ. of Washington, Seattle, WA (United States); Chang, E. [Univ. of Washington, Seattle, WA (United States); Cohen, S. D. [Univ. of Washington, Seattle, WA (United States); Detmold, W. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Lin, H. -W. [Univ. of Washington, Seattle, WA (United States); Orginos, K. [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Parreño, A. [Univ., de Barcelona, Marti Franques (Spain); Savage, M. J. [Univ. of Washington, Seattle, WA (United States)
2015-06-11
Quarkonium-nucleus systems are composed of two interacting hadronic states without common valence quarks, which interact primarily through multi-gluon exchanges, realizing a color van der Waals force. We present lattice QCD calculations of the interactions of strange and charm quarkonia with light nuclei. Both the strangeonium-nucleus and charmonium-nucleus systems are found to be relatively deeply bound when the masses of the three light quarks are set equal to that of the physical strange quark. Extrapolation of these results to the physical light-quark masses suggests that the binding energy of charmonium to nuclear matter is B < 40 MeV.
Exploring quark transverse momentum distributions with lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bernhard U. Musch, Philipp Hagler, John W. Negele, Andreas Schafer
2011-05-01
We discuss in detail a method to study transverse momentum dependent parton distribution functions (TMDs) using lattice QCD. To develop the formalism and to obtain first numerical results, we directly implement a bi-local quark-quark operator connected by a straight Wilson line, allowing us to study T-even, "process-independent" TMDs. Beyond results for x-integrated TMDs and quark densities, we present a study of correlations in x and transverse momentum. Our calculations are based on domain wall valence quark propagators by the LHP collaboration calculated on top of gauge configurations provided by MILC with 2+1 flavors of asqtad-improved staggered sea quarks.
The strangeness contribution to the proton spin from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We compute the strangeness and light-quark contributions {delta}s, {delta}u and {delta}d to the proton spin in n{sub f}=2 lattice QCD at a pion mass of about 285 MeV and at a lattice spacing{approx}0.073 fm, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson action. We carry out the renormalization of these matrix elements which involves mixing between contributions from different quark flavours. Our main result is the small negative value {delta}s{sup MS}({radical}(7.4)GeV) =-0.020(10)(4) of the strangeness contribution to the nucleon spin. (orig.)
Bottomonium suppression using a lattice QCD vetted potential
Krouppa, Brandon; Rothkopf, Alexander; Strickland, Michael
2018-01-01
We estimate bottomonium yields in relativistic heavy-ion collisions using a lattice QCD vetted, complex-valued, heavy-quark potential embedded in a realistic, hydrodynamically evolving medium background. We find that the lattice-vetted functional form and temperature dependence of the proper heavy-quark potential dramatically reduces the dependence of the yields on parameters other than the temperature evolution, strengthening the picture of bottomonium as QGP thermometer. Our results also show improved agreement between computed yields and experimental data produced in RHIC 200 GeV /nucleon collisions. For LHC 2.76 TeV /nucleon collisions, the excited states, whose suppression has been used as a vital sign for quark-gluon-plasma production in a heavy-ion collision, are reproduced better than previous perturbatively-motivated potential models; however, at the highest LHC energies our estimates for bottomonium suppression begin to underestimate the data. Possible paths to remedy this situation are discussed.
Excited and exotic charmonium spectroscopy from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Liuming Liu, Graham Moir, Michael Peardon, Sinead Ryan, Christopher Thomas, Pol Vilaseca, Jozef Dudek, Robert Edwards, Balint Joo, David Richards
2012-07-01
We present a spectrum of highly excited charmonium mesons up to around 4.5 GeV calculated using dynamical lattice QCD. Employing novel computational techniques and the variational method with a large basis of carefully constructed operators, we extract and reliably identify the continuum spin of an extensive set of excited states, states with exotic quantum numbers (0+-, 1-+, 2+-) and states with high spin. Calculations are performed on two lattice volumes with pion mass ? 400 MeV and the mass determinations have high statistical precision even for excited states. We discuss the results in light of experimental observations, identify the lightest 'supermultiplet' of hybrid mesons and comment on the phenomenological implications of the spectrum of exotic mesons.
Excited and exotic charmonium spectroscopy from lattice QCD
International Nuclear Information System (INIS)
Liu, Liuming; Moir, Graham; Peardon, Michael; Ryan, Sinead; Thomas, Christopher; Vilaseca, Pol; Dudek, Jozef; Edwards, Robert; Joo, Balint; Richards, David
2012-01-01
We present a spectrum of highly excited charmonium mesons up to around 4.5 GeV calculated using dynamical lattice QCD. Employing novel computational techniques and the variational method with a large basis of carefully constructed operators, we extract and reliably identify the continuum spin of an extensive set of excited states, states with exotic quantum numbers (0+-, 1-+, 2+-) and states with high spin. Calculations are performed on two lattice volumes with pion mass ? 400 MeV and the mass determinations have high statistical precision even for excited states. We discuss the results in light of experimental observations, identify the lightest 'supermultiplet' of hybrid mesons and comment on the phenomenological implications of the spectrum of exotic mesons.
Sharing lattice QCD data over a widely distributed file system
Amagasa, T.; Aoki, S.; Aoki, Y.; Aoyama, T.; Doi, T.; Fukumura, K.; Ishii, N.; Ishikawa, K.-I.; Jitsumoto, H.; Kamano, H.; Konno, Y.; Matsufuru, H.; Mikami, Y.; Miura, K.; Sato, M.; Takeda, S.; Tatebe, O.; Togawa, H.; Ukawa, A.; Ukita, N.; Watanabe, Y.; Yamazaki, T.; Yoshie, T.
2015-12-01
JLDG is a data-grid for the lattice QCD (LQCD) community in Japan. Several large research groups in Japan have been working on lattice QCD simulations using supercomputers distributed over distant sites. The JLDG provides such collaborations with an efficient method of data management and sharing. File servers installed on 9 sites are connected to the NII SINET VPN and are bound into a single file system with the GFarm. The file system looks the same from any sites, so that users can do analyses on a supercomputer on a site, using data generated and stored in the JLDG at a different site. We present a brief description of hardware and software of the JLDG, including a recently developed subsystem for cooperating with the HPCI shared storage, and report performance and statistics of the JLDG. As of April 2015, 15 research groups (61 users) store their daily research data of 4.7PB including replica and 68 million files in total. Number of publications for works which used the JLDG is 98. The large number of publications and recent rapid increase of disk usage convince us that the JLDG has grown up into a useful infrastructure for LQCD community in Japan.
From hot lattice QCD to cold quark stars
International Nuclear Information System (INIS)
Schulze, Robert
2011-01-01
A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model - following from the former using a series of approximations - and QCD - from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling. Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas. An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars. (orig.)
From hot lattice QCD to cold quark stars
Energy Technology Data Exchange (ETDEWEB)
Schulze, Robert
2011-02-22
A thermodynamic model of the quark-gluon plasma using quasiparticle degrees of freedom based on the hard thermal loop self-energies is introduced. It provides a connection between an established phenomenological quasiparticle model - following from the former using a series of approximations - and QCD - from which the former is derived using the Cornwall-Jackiw-Tomboulis formalism and a special parametrization of the running coupling. Both models allow for an extrapolation of first-principle QCD results available at small chemical potentials using Monte-Carlo methods on the lattice to large net baryon densities with remarkably similar results. They are used to construct equations of state for heavy-ion collider experiments at SPS and FAIR as well as quark and neutron star interiors. A mixed-phase construction allows for a connection of the SPS equation of state to the hadron resonance gas. An extension to the weak sector is presented as well as general stability and binding arguments for compact stellar objects are developed. From the extrapolation of the most recent lattice results the existence of bound pure quark stars is not suggested. However, quark matter might exist in a hybrid phase in cores of neutron stars. (orig.)
Anisotropic Born-Mayer potential in lattice dynamics of Vanadium
International Nuclear Information System (INIS)
Onwuagba, B.N.
1988-01-01
A microscopic theory of the lattice dynamics of the transition metal vanadium is developed based on the Animalu's transition metal model potential (TMMP). The Born-Mayer potential associated with the distribution of the transition metal d-electrons is treated as anisotropic. Good agreement with experimental phonon dispersion curves longitudinal branches in the [111] direction
Global QCD Analysis of the Nucleon Tensor Charge with Lattice QCD Constraints
Shows, Harvey, III; Melnitchouk, Wally; Sato, Nobuo
2017-09-01
By studying the parton distribution functions (PDFs) of a nucleon, we probe the partonic scale of nature, exploring what it means to be a nucleon. In this study, we are interested in the transversity PDF-the least studied of the three collinear PDFs. By conducting a global analysis on experimental data from semi-inclusive deep inelastic scattering (SIDIS), as well as single-inclusive e+e- annihilation (SIA), we extract the fit parameters needed to describe the transverse moment dependent (TMD) transversity PDF, as well as the Collins fragmentation function. Once the collinear transversity PDF is obtained by integrating the extracted TMD PDF, we wish to resolve discrepancies between lattice QCD calculations and phenomenological extractions of the tensor charge from data. Here we show our results for the transversity distribution and tensor charge. Using our method of iterative Monte Carlo, we now have a more robust understanding of the transversity PDF. With these results we are able to progress in our understanding of TMD PDFs, as well as testify to the efficacy of current lattice QCD calculations. This work is made possible through support from NSF award 1659177 to Old Dominion University.
Aspects of confinement in QCD from lattice simulations
International Nuclear Information System (INIS)
Spielmann, Daniel
2011-01-01
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Aspects of confinement in QCD from lattice simulations
Energy Technology Data Exchange (ETDEWEB)
Spielmann, Daniel
2011-01-12
We study confinement in quantum chromodynamics via numerical simulations in the framework of lattice gauge theory. In Landau gauge, the mechanism of confinement is related to the infrared behavior of the ghost and gluon propagators via the Gribov-Zwanziger and Kugo- Ojima scenarios. These scenarios entail a scaling behavior. Functional methods in the continuum allow both for this behavior and for decoupling solutions, while lattice simulations in three and four dimensions yield only the latter. A possible explanation for this mismatch is based on limitations of standard lattice gauge fixing methods. Hence, we investigate a number of alternative gauge fixing algorithms in pure SU(2) gauge theory in two, three and four dimensions. We find that stochastic quantization yields an infrared behavior of the propagators in agreement with the results of standard procedures, even though the Faddeev-Popov operator spectrum indicates some different properties. In the strong-coupling limit, our results challenge the standard picture. In particular, we find in a non-perturbative completion of Landau gauge an enormous effect of the Gribov ambiguity. It entails that no subset of infrared solutions can be excluded yet. Moreover, we study the gluon propagator with free boundary conditions. On large lattices, the results mostly show the standard behavior. We also examine non-periodic gauge transformations. Furthermore, we analyze two topics related to the phase diagram of QCD. First, we explore the sign problem for fermions on the lattice by simulating the three-dimensional Thirring model with a complex Langevin equation. The algorithm succeeds in yielding a 'Silver Blaze' behavior of observables, but it does not reliably describe the onset to a phase with non-zero density. Second, we determine properties of the deconfinement phase transition of pure SU(2) gauge theory in 2+1 dimensions, like the critical temperature, by means of the gluon propagator in Landau gauge. (orig.)
Why QCD lattice theory is important to spin physicists
International Nuclear Information System (INIS)
Rebbi, C.
1982-01-01
The lattice formulation of a quantum field theory allows calculations in the regime of strong coupling, by expansion techniques, and for intermediate coupling, by Monte Carlo simulations. These computations are especially valuable in the case of Quantum Chromodynamics (QCD), where several of the most important problems are not amenable to a perturbative analysis. Monte carlo simulations, in particular, have recently emerged as a very powerful tool and have been used to evaluate a variety of important physical quantities, such as the string tension, the deconfinement temperature, the scale of the interquark potential, glueball masses and masses in the quark model spectrum. If we consider those problems of strong interactions where spin plays an important role, it is unlikely, for the moment at least, that the lattice formulation may be of relevance where the phenomena being investigated involve propagations over extended domains of space-time; thus, for instance, it is impossible to perform a meaningful simulation of a scattering experiment on the lattice. But we are at the stage where Monte Carlo calculations begin to provide relevant information on spectroscopic properties related to spin. These are briefly discussed
Two-nucleon bound states in quenched lattice QCD
International Nuclear Information System (INIS)
Yamazaki, T.; Kuramashi, Y.; Ukawa, A.
2011-01-01
We address the issue of bound state in the two-nucleon system in lattice QCD. Our study is made in the quenched approximation at the lattice spacing of a=0.128 fm with a heavy quark mass corresponding to m π =0.8 GeV. To distinguish a bound state from an attractive scattering state, we investigate the volume dependence of the energy difference between the ground state and the free two-nucleon state by changing the spatial extent of the lattice from 3.1 fm to 12.3 fm. A finite energy difference left in the infinite spatial volume limit leads us to the conclusion that the measured ground states for not only spin triplet but also singlet channels are bounded. Furthermore the existence of the bound state is confirmed by investigating the properties of the energy for the first excited state obtained by a 2x2 diagonalization method. The scattering lengths for both channels are evaluated by applying the finite volume formula derived by Luescher to the energy of the first excited states.
Energy Technology Data Exchange (ETDEWEB)
Sternbeck, A.
2006-07-18
Within the framework of lattice QCD we investigate different aspects of QCD in Landau gauge using Monte Carlo simulations. In particular, we focus on the low momentum behavior of gluon and ghost propagators. The gauge group is SU(3). Different systematic effects on the gluon and ghost propagators are studied. We demonstrate the ghost dressing function to systematically depend on the choice of Gribov copies at low momentum, while the influence on the gluon dressing function is not resolvable. Also the eigenvalue distribution of the Faddeev-Popov operator is sensitive to Gribov copies. We show that the influence of dynamical Wilson fermions on the ghost propagator is negligible at the momenta available to us. On the contrary, fermions affect the gluon propagator at large and intermediate momenta. In addition, we analyze data for both propagators obtained on asymmetric lattices and compare these results with data obtained on symmetric lattices. We compare our data with results from studies of Dyson-Schwinger equations for the gluon and ghost propagators. We demonstrate that the infrared behavior of both propagators, as found in this thesis, is consistent with different criteria for confinement. However, the running coupling constant, given as a renormalization-group-invariant combination of the gluon and ghost dressing functions, does not expose a finite infrared fixed point. Rather the data are in favor of an infrared vanishing coupling constant. We also report on a first nonperturbative computation of the SU(3) ghost-gluon-vertex renormalization constant. We present results of an investigation of the spectral properties of the Faddeev-Popov operator. For this we have calculated the low-lying eigenvalues and eigenmodes of the Faddeev-Popov operator. (orig.)
Morningstar, C; Fahy, B; Foley, J; Jhang, Y C; Juge, K J; Lenkner, D; Wong, C C H
2013-01-01
Multi-hadron operators are crucial for reliably extracting the masses of excited states lying above multi-hadron thresholds in lattice QCD Monte Carlo calculations. The construction of multi-hadron operators with significant coupling to the lowest-lying states of interest involves combining single hadron operators of various momenta. The design and implementation of large sets of spatially-extended single-hadron operators of definite momentum and their combinations into two-hadron operators are described. The single hadron operators are all assemblages of gauge-covariantly-displaced, smeared quark fields. Group-theoretical projections onto the irreducible representations of the symmetry group of a cubic spatial lattice are used in all isospin channels. Tests of these operators on 24^3 x 128 and 32^3 x 256 anisotropic lattices using a stochastic method of treating the low-lying modes of quark propagation which exploits Laplacian Heaviside quark-field smearing are presented. The method provides reliable estimat...
Non-perturbative chiral corrections for lattice QCD
International Nuclear Information System (INIS)
Thomas, A.W.; Leinweber, D.B.; Lu, D.H.
2002-01-01
We explore the chiral aspects of extrapolation of observables calculated within lattice QCD, using the nucleon magnetic moments as an example. Our analysis shows that the biggest effects of chiral dynamics occur for quark masses corresponding to a pion mass below 600 MeV. In this limited range chiral perturbation theory is not rapidly convergent, but we can develop some understanding of the behaviour through chiral quark models. This model dependent analysis leads us to a simple Pade approximant which builds in both the limits m π → 0 and m π → ∞ correctly and permits a consistent, model independent extrapolation to the physical pion mass which should be extremely reliable. (author)
Transverse momentum-dependent parton distribution functions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Engelhardt, Michael G. [New Mexico State University; Musch, Bernhard U. [Tech. University Munich; Haegler, Philipp G. [Tech. University Munich; Negele, John W. [MIT; Schaefer, Andreas [Regensburg
2013-08-01
A fundamental structural property of the nucleon is the distribution of quark momenta, both parallel as well as perpendicular to its propagation. Experimentally, this information is accessible via selected processes such as semi-inclusive deep inelastic scattering (SIDIS) and the Drell-Yan process (DY), which can be parametrized in terms of transversemomentum-dependent parton distributions (TMDs). On the other hand, these distribution functions can be extracted from nucleon matrix elements of a certain class of bilocal quark operators in which the quarks are connected by a staple-shaped Wilson line serving to incorporate initial state (DY) or final state (SIDIS) interactions. A scheme for evaluating such matrix elements within lattice QCD is developed. This requires casting the calculation in a particular Lorentz frame, which is facilitated by a parametrization of the matrix elements in terms of invariant amplitudes. Exploratory results are presented for the time-reversal odd Sivers and Boer-Mulders transverse momentum shifts.
B physics from HQET in two-flavour lattice QCD
International Nuclear Information System (INIS)
Bernardoni, F.; Blossier, B.; Bulava, J.
2012-11-01
We present our analysis of B physics quantities using non-perturbatively matched Heavy Quark Effective Theory (HQET) in N f =2 lattice QCD on the CLS ensembles. Using all-to-all propagators, HYP-smeared static quarks, and the Generalized Eigenvalue Problem (GEVP) approach with a conservative plateau selection procedure, we are able to systematically control all sources of error. With significantly increased statistics compared to last year, our preliminary results are anti m b (anti m b )=4.22(10)(4) z GeV for the MS b-quark mass, and f B =193(9) stat (4) χ MeV and f B s =219(12) stat MeV for the B-meson decay constants.
Improved methods for the study of hadronic physics from lattice QCD
International Nuclear Information System (INIS)
Orginos, Kostas; Richards, David
2015-01-01
The solution of quantum chromodynamics (QCD) on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this paper, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD. (paper)
Improved methods for the study of hadronic physics from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Orginos, Kostas [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-02-05
The solution of QCD on a lattice provides a first-principles method for understanding QCD in the low-energy regime, and is thus an essential tool for nuclear physics. The generation of gauge configurations, the starting point for lattice calculations, requires the most powerful leadership-class computers available. However, to fully exploit such leadership-class computing requires increasingly sophisticated methods for obtaining physics observables from the underlying gauge ensembles. In this study, we describe a variety of recent methods that have been used to advance our understanding of the spectrum and structure of hadrons through lattice QCD.
Finite size effects in lattice QCD with dynamical Wilson fermions
Energy Technology Data Exchange (ETDEWEB)
Orth, B.
2004-06-01
Due to limited computing resources choosing the parameters for a full lattice QCD simulation always amounts to a compromise between the competing objectives of a lattice spacing as small, quarks as light, and a volume as large as possible. Aiming at pushing unquenched simulations with the standard Wilson action towards the computationally expensive regime of small quark masses, the GRAL project addresses the question whether computing time can be saved by sticking to lattices with rather modest numbers of grid sites and extrapolating the finite-volume results to the infinite volume (prior to the usual chiral and continuum extrapolations). In this context we investigate in this work finite-size effects in simulated light hadron masses. Understanding their systematic volume dependence may not only help saving computer time in light quark simulations with the Wilson action, but also guide future simulations with dynamical chiral fermions which for a foreseeable time will be restricted to rather small lattices. We analyze data from hybrid Monte Carlo simulations with the N{sub f} = 2 Wilson action at two values of the coupling parameter, {beta} = 5.6 (lattice spacing {alpha} {approx} 0.08 fm) and {beta} = 5.32144 ({alpha} {approx} 0.13 fm). The larger {beta} corresponds to the coupling used previously by SESAM/T{chi}L. The considered hopping parameters {kappa} = 0.1575, 0.158 (at the larger {beta}) and {kappa} = 0.1665 (at the smaller {beta}) correspond to quark masses of 85, 50 and 36% of the strange quark mass, respectively. At each quark mass we study at least three different lattice extents in the range from L = 10 to L = 24 (0.85-2.04 fm). Estimates of autocorrelation times in the stochastic updating process and of the computational cost of every run are given. For each simulated sea quark mass we calculate quark propagators and hadronic correlation functions in order to extract the pion, rho and nucleon masses as well as the pion decay constant and the quark mass
Glueball Spectrum and Matrix Elements on Anisotropic Lattices
Energy Technology Data Exchange (ETDEWEB)
Y. Chen; A. Alexandru; S.J. Dong; T. Draper; I. Horvath; F.X. Lee; K.F. Liu; N. Mathur; C. Morningstar; M. Peardon; S. Tamhankar; B.L. Young; J.B. Zhang
2006-01-01
The glueball-to-vacuum matrix elements of local gluonic operators in scalar, tensor, and pseudoscalar channels are investigated numerically on several anisotropic lattices with the spatial lattice spacing ranging from 0.1fm - 0.2fm. These matrix elements are needed to predict the glueball branching ratios in J/{psi} radiative decays which will help identify the glueball states in experiments. Two types of improved local gluonic operators are constructed for a self-consistent check and the finite volume effects are studied. We find that lattice spacing dependence of our results is very weak and the continuum limits are reliably extrapolated, as a result of improvement of the lattice gauge action and local operators. We also give updated glueball masses with various quantum numbers.
Anisotropic square lattice Potts ferromagnet: renormalization group treatment
International Nuclear Information System (INIS)
Oliveira, P.M.C. de; Tsallis, C.
1981-01-01
The choice of a convenient self-dual cell within a real space renormalization group framework enables a satisfactory treatment of the anisotropic square lattice q-state Potts ferromagnet criticality. The exact critical frontier and dimensionality crossover exponent PHI as well as the expected universality behaviour (renormalization flow sense) are recovered for any linear scaling factor b and all values of q(q - [pt
Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Morningstar, C.; Lenkner, D.; Wong, C.H. [Pittsburgh Univ., PA (United States). Dept. of Physics; Bulava, J. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Foley, J. [Utah Univ., Salt Lake City, UT (United States). Dept. of Physics and Astronomy; Juge, K.J. [University of the Pacific, Stockton, CA (United States). Dept. of Physics; Peardon, M. [Trinity College, Dublin (Ireland). School of Mathematics
2011-08-15
A new method of stochastically estimating the low-lying effects of quark propagation is proposed which allows accurate determinations of temporal correlations of single-hadron and multi-hadron operators in lattice QCD. The method is well suited for calculations in large volumes. Contributions involving quark propagation connecting hadron sink operators at the same final time can be handled in a straightforward manner, even for a large number of final time slices. The method exploits Laplacian Heaviside (LapH) smearing. Z{sub N} noise is introduced in a novel way, and variance reduction is achieved using judiciously-chosen noise dilution projectors. The method is tested using isoscalar mesons in the scalar, pseudoscalar, and vector channels, and using the two-pion system of total isospin I=0,1,2 on large anisotropic 24{sup 3} x 128 lattices with spatial spacing a{sub s} {proportional_to}0.12 fm and temporal spacing a{sub t} {proportional_to}0.034 fm for pion masses m{sub {pi}} {approx} 390 and 240 MeV. (orig.)
The Nucleon Axial Form Factor and Staggered Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Meyer, Aaron Scott [Chicago U.
2017-01-01
The study of neutrino oscillation physics is a major research goal of the worldwide particle physics program over the upcoming decade. Many new experiments are being built to study the properties of neutrinos and to answer questions about the phenomenon of neutrino oscillation. These experiments need precise theoretical cross sections in order to access fundamental neutrino properties. Neutrino oscillation experiments often use large atomic nuclei as scattering targets, which are challenging for theorists to model. Nuclear models rely on free-nucleon amplitudes as inputs. These amplitudes are constrained by scattering experiments with large nuclear targets that rely on the very same nuclear models. The work in this dissertation is the rst step of a new initiative to isolate and compute elementary amplitudes with theoretical calculations to support the neutrino oscillation experimental program. Here, the eort focuses on computing the axial form factor, which is the largest contributor of systematic error in the primary signal measurement process for neutrino oscillation studies, quasielastic scattering. Two approaches are taken. First, neutrino scattering data on a deuterium target are reanalyzed with a model-independent parametrization of the axial form factor to quantify the present uncertainty in the free-nucleon amplitudes. The uncertainties on the free-nucleon cross section are found to be underestimated by about an order of magnitude compared to the ubiquitous dipole model parametrization. The second approach uses lattice QCD to perform a rst-principles computation of the nucleon axial form factor. The Highly Improved Staggered Quark (HISQ) action is employed for both valence and sea quarks. The results presented in this dissertation are computed at physical pion mass for one lattice spacing. This work presents a computation of the axial form factor at zero momentum transfer, and forms the basis for a computation of the axial form factor momentum dependence
The Quark Condensate in Multi-Flavour QCD - Planar Equivalence Confronting Lattice Simulations
Armoni, Adi; Shore, Graham; Veneziano, Gabriele
2014-01-01
Planar equivalence between the large $N$ limits of ${\\cal N}=1$ Super Yang-Mills (SYM) theory and a variant of QCD with fermions in the antisymmetric representation is a powerful tool to obtain analytic non-perturbative results in QCD itself. In particular, it allows the quark condensate for $N=3$ QCD with quarks in the fundamental representation to be inferred from exact calculations of the gluino condensate in ${\\cal N}=1$ SYM. In this paper, we review and refine our earlier predictions for the quark condensate in QCD with a general number $n_f$ of flavours and confront these with lattice results.
Statistics of baryon correlation functions in lattice QCD
Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration
2017-12-01
A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.
Phase structure of lattice QCD for general number of flavors
International Nuclear Information System (INIS)
Iwasaki, Y.; Kanaya, K.; Yoshie, T.; Kaya, S.; Sakai, S.
2004-01-01
We investigate the phase structure of lattice QCD for the general number of flavors in the parameter space of gauge coupling constant and quark mass, employing the one-plaquette gauge action and the standard Wilson quark action. Performing a series of simulations for the number of flavors N F =6-360 with degenerate-mass quarks, we find that when N F ≥7 there is a line of a bulk first order phase transition between the confined phase and a deconfined phase at a finite current quark mass in the strong coupling region and the intermediate coupling region. The massless quark line exists only in the deconfined phase. Based on these numerical results in the strong coupling limit and in the intermediate coupling region, we propose the following phase structure, depending on the number of flavors whose masses are less than Λ d which is the physical scale characterizing the phase transition in the weak coupling region: When N F ≥17, there is only a trivial IR fixed point and therefore the theory in the continuum limit is free. On the other hand, when 16≥N F ≥7, there is a nontrivial IR fixed point and therefore the theory is nontrivial with anomalous dimensions, however, without quark confinement. Theories which satisfy both quark confinement and spontaneous chiral symmetry breaking in the continuum limit exist only for N F ≤6
X(3872) in lattice QCD with exact chiral symmetry
Energy Technology Data Exchange (ETDEWEB)
Chiu, T.-W. [Department of Physics, National Taiwan University, Taipei 10617, Taiwan (China)]. E-mail: twchiu@phys.ntu.edu.tw; Hsieh, T.-H. [Physics Section, Commission of General Education, National United University, Miao-Li 36003, Taiwan (China)
2007-03-08
We investigate the mass spectrum of 1{sup ++} exotic mesons with quark content (cqc-barq-bar), using molecular and diquark-antidiquark operators, in quenched lattice QCD with exact chiral symmetry. For the molecular operator {l_brace}(q-bar{gamma}{sub i}c)(c-bar{gamma}{sub 5}q)-(c-bar{gamma}{sub i}q)(q-bar{gamma}{sub 5}c){r_brace} and the diquark-antidiquark operator {l_brace}(q{sup T}C{gamma}{sub i}c)(q-barC{gamma}{sub 5}c-bar{sup T})-(q-barC{gamma}{sub i}{sup T}c-bar{sup T})(q{sup T}C= {gamma}{sub 5}c){r_brace}, both detect a resonance with mass around 3890+/-30 MeV in the limit m{sub q}->m{sub u}, which is naturally identified with X(3872). Further, heavier exotic meson resonances with J{sup PC}=1{sup ++} are also detected, with quark content (csc-bar s-bar) around 4100+/-50 MeV.
O(a) improvement of lattice QCD with two flavors of Wilson quarks
Jansen, K; Jansen, Karl; Sommer, Rainer
1998-01-01
We consider O(a) improvement for two flavor lattice QCD. The improvement term in the action is computed non-perturbatively for a large range of the bare coupling. The position of the critical line and higher order lattice artifacts remaining after improvement are estimated. We also discuss the behavior of the HMC algorithm in our simulations.
Lattice QCD Application Development within the US DOE Exascale Computing Project
Energy Technology Data Exchange (ETDEWEB)
Brower, Richard [Boston U.; Christ, Norman [Columbia U.; DeTar, Carleton [Utah U.; Edwards, Robert [Jefferson Lab; Mackenzie, Paul [Fermilab
2017-10-30
In October, 2016, the US Department of Energy launched the Exascale Computing Project, which aims to deploy exascale computing resources for science and engineering in the early 2020's. The project brings together application teams, software developers, and hardware vendors in order to realize this goal. Lattice QCD is one of the applications. Members of the US lattice gauge theory community with significant collaborators abroad are developing algorithms and software for exascale lattice QCD calculations. We give a short description of the project, our activities, and our plans.
Present Constraints on the H-dibaryon at the Physical Point from Lattice QCD
International Nuclear Information System (INIS)
Beane, Silas; Chang, E.; Detmold, Will; Joo, Balint; Lin, Huey-Wen; Luu, T.C.; Orginos, Konstantinos; Parreno, Assumpta; Savage, Martin; Torok, Aaron; Walker-Loud, Andre
2011-01-01
The current constraints from Lattice QCD on the existence of the H-dibaryon are discussed. With only two significant Lattice QCD calculations of the H-dibaryon binding energy at approximately the same lattice spacing, the form of the chiral and continuum extrapolations to the physical point are not determined. In this brief report, an extrapolation that is quadratic in the pion mass, motivated by low-energy effective field theory, is considered. An extrapolation that is linear in the pion mass is also considered, a form that has no basis in the effective field theory, but is found to describe the light-quark mass dependence observed in Lattice QCD calculations of the octet baryon masses. In both instances, the extrapolation to the physical pion mass allows for a bound H-dibaryon or a near-threshold scattering state.
Continuing progress on a lattice QCD software infrastructure
International Nuclear Information System (INIS)
Joo, B
2008-01-01
We report on the progress of the software effort in the QCD application area of SciDAC. In particular, we discuss how the software developed under SciDAC enabled the aggressive exploitation of leadership computers, and we report on progress in the area of QCD software for multi-core architectures
Schwarz-preconditioned HMC algorithm for two-flavor lattice QCD
Lüscher, Martin
2005-01-01
The combination of a non-overlapping Schwarz preconditioner and the Hybrid Monte Carlo (HMC) algorithm is shown to yield an efficient simulation algorithm for two-flavour lattice QCD with Wilson quarks. Extensive tests are performed, on lattices of size up to 32x24x24x24, with lattice spacings a~0.08 fm and at bare current-quark masses as low as 21 MeV.
Novel fat-link fermion actions for lattice QCD
International Nuclear Information System (INIS)
Zanotti, J.; Bilson-Thompson, S.; Bonnet, F.; Leinweber, D.; Melnitchouk, W.; Williams, A.
2000-01-01
Full text: We are currently exploring new ideas for lattice fermion actions. Naive implementations of fermion actions encounter the well known fermion-doubling problem. In order to solve this problem, Wilson introduced an irrelevant (energy) dimension-five operator (the so-called Wilson term) which explicitly breaks chiral symmetry. The scaling properties of this Wilson action can be improved by introducing any number of irrelevant operators of increasing dimension which also vanish in the continuum limit. In this manner, one can improve fermion actions at finite 'a' by combining operators to eliminate O(a) and perhaps O(a 2 ) errors etc. A popular formulation of a lattice fermion action that achieves this is the Clover action which removes the O(a) error introduced by the Wilson term by introducing an additional irrelevant dimension-five operator. The Clover action can be O(a) improved to all orders in the strong coupling 'g'. While the Clover action displays excellent scaling, it is responsible for revealing the exceptional configuration problem where the quark propagator encounters singular behaviour particularly as the quark mass becomes small. Moreover, its free dispersion relation between energy and momentum is unchanged from the standard Wilson action dispersion and shows a continuum like behaviour only for relatively small momenta [F. X. Lee and D. B. Leinweber, Phys. Rev. D59, 074504 (1999), hep-lat/9711044]. Finally, significant chiral symmetry breaking is apparent as the renormalised quark mass differs significantly from the bare mass of the theory. Hence we propose a different approach to fermion action improvement. One in which the additive renormalisations become small while expressing good chiral behaviour. This can be achieved through the consideration of 'fat-link' fermion actions [T. DeGrand (the MILC collaboration, Phys. Rev. D60, 094501 (1999)]. Fat links are created by averaging or smearing links on the lattice with their nearest neighbours in
Beauty and the beast: What lattice QCD can do for B physics
International Nuclear Information System (INIS)
Kronfeld, A.S.
1993-01-01
One of the reasons why b-hadrons are interesting is that their properties (decays, mixing, CP violation) help determine the least well-known elements of the Cabibbo-Kobayashi-Maskawa (CKM) matrix. In each case, however, the standard-model expression for the (differential) decay rate follows the pattern: (experimental measurement) = (known factors)(QCD factor)(CKM factor). To extract the CKM factor from the measurement one must have reliable theoretical calculations in nonperturbative QCD. The only systematic, first-principles approach to nonperturbative QCD is the formulation on the lattice. The most promising calculational method has proven to be large-scale numerical computations
Constructing a neutron star from the lattice in G{sub 2}-QCD
Energy Technology Data Exchange (ETDEWEB)
Hajizadeh, Ouraman; Maas, Axel [University of Graz, Institute of Physics, NAWI Graz (Austria)
2017-10-15
The inner structure of neutron stars is still an open question. One obstacle is the infamous sign problem of lattice QCD, which bars access to the high-density equation of state. A possibility to make progress and understand the qualitative impact of gauge interactions on the neutron star structure is to study a modified version of QCD without the sign problem. In the modification studied here the gauge group of QCD is replaced by the exceptional Lie group G{sub 2}, which keeps neutrons in the spectrum. Using an equation of state from lattice calculations only we determine the mass-radius-relation for a neutron star using the Tolman-Oppenheimer-Volkoff equation. This allows us to understand the challenges and approximations currently necessary to use lattice data for this purpose. We discuss in detail the particular uncertainties and systematic problems of this approach. (orig.)
Chiral symmetry breaking and the Banks-Casher relation in lattice QCD with Wilson quarks
Giusti, Leonardo
2009-01-01
The Banks--Casher relation links the spontaneous breaking of chiral symmetry in QCD to the presence of a non-zero density of quark modes at the low end of the spectrum of the Dirac operator. Spectral observables like the number of modes in a given energy interval are renormalizable and can therefore be computed using the Wilson formulation of lattice QCD even though the latter violates chiral symmetry at energies on the order of the inverse lattice spacing. Using numerical simulations, we find (in two-flavour QCD) that the low quark modes do condense in the expected way. In particular, the chiral condensate can be accurately calculated simply by counting the low modes on large lattices. Other spectral observables can be considered as well and have a potentially wide range of uses.
Lattice refining loop quantum cosmology, anisotropic models, and stability
International Nuclear Information System (INIS)
Bojowald, Martin; Cartin, Daniel; Khanna, Gaurav
2007-01-01
A general class of loop quantizations for anisotropic models is introduced and discussed, which enhances loop quantum cosmology by relevant features seen in inhomogeneous situations. The main new effect is an underlying lattice which is being refined during dynamical changes of the volume. In general, this leads to a new feature of dynamical difference equations which may not have constant step-size, posing new mathematical problems. It is discussed how such models can be evaluated and what lattice refinements imply for semiclassical behavior. Two detailed examples illustrate that stability conditions can put strong constraints on suitable refinement models, even in the absence of a fundamental Hamiltonian which defines changes of the underlying lattice. Thus, a large class of consistency tests of loop quantum gravity becomes available. In this context, it will also be seen that quantum corrections due to inverse powers of metric components in a constraint are much larger than they appeared recently in more special treatments of isotropic, free scalar models where they were artificially suppressed
Energy Technology Data Exchange (ETDEWEB)
Beane, S R; Detmold, W; Lin, H W; Luu, T C; Orginos, K; Parreno, A; Savage, M J; Torok, A; Walker-Loud, A
2011-07-01
The volume dependence of the octet baryon masses and relations among them are explored with Lattice QCD. Calculations are performed with nf = 2 + 1 clover fermion discretization in four lattice volumes, with spatial extent L ? 2.0, 2.5, 3.0 and 4.0 fm, with an anisotropic lattice spacing of b_s ? 0.123 fm in the spatial direction, and b_t = b_s/3.5 in the time direction, and at a pion mass of m_\\pi ? 390 MeV. The typical precision of the ground-state baryon mass determination is lattice gauge-field configurations. Finally, the volume dependence of the pion and kaon masses are analyzed with two-flavor and three-flavor chiral perturbation theory.
Extracting scattering phase shifts in higher partial waves from lattice QCD calculations
Energy Technology Data Exchange (ETDEWEB)
Luu, Thomas; Savage, Martin J.
2011-06-01
Lüscher’s method is routinely used to determine meson-meson, meson-baryon, and baryon-baryon s-wave scattering amplitudes below inelastic thresholds from lattice QCD calculations—presently at unphysical light-quark masses. In this work we review the formalism and develop the requisite expressions to extract phase shifts describing meson-meson scattering in partial waves with angular momentum l≤6 and l=9. The implications of the underlying cubic symmetry, and strategies for extracting the phase shifts from lattice QCD calculations, are presented, along with a discussion of the signal-to-noise problem that afflicts the higher partial waves.
Incommensurate correlations in the anisotropic triangular Heisenberg lattice
Weichselbaum, Andreas; White, Steven R.
2011-12-01
We study the anisotropic spin-1/2 antiferromagnetic triangular Heisenberg lattice in two dimensions, seen as a set of chains with couplings J (J') along (in-between) chains, respectively. Our focus is on the incommensurate correlation that emerges in this system in a wide parameter range due to the intrinsic frustration of the spins. We study this system with traditional density matrix renormalization group using cylindrical boundary conditions to least constrain possible incommensurate order. Despite that the limit of essentially decoupled chains J'/J≲0.5 is not very accessible numerically, it appears that the spin-spin correlations remain incommensurate for any finite 0JC', where JC'/J>1. The incommensurate wave vector qJ, however, approaches the commensurate value corresponding to the antiferromagnetic correlation of a single chain very rapidly with decreasing J'/J, roughly as qJ˜π-c1(J'/J)ne-c2J/J'.
Lattice models of directed and semiflexible polymers in anisotropic environment
International Nuclear Information System (INIS)
Haydukivska, K; Blavatska, V
2015-01-01
We study the conformational properties of polymers in presence of extended columnar defects of parallel orientation. Two classes of macromolecules are considered: the so-called partially directed polymers with preferred orientation along direction of the external stretching field and semiflexible polymers. We are working within the frames of lattice models: partially directed self-avoiding walks (PDSAWs) and biased self-avoiding walks (BSAWs). Our numerical analysis of PDSAWs reveals, that competition between the stretching field and anisotropy caused by presence of extended defects leads to existing of three characteristic length scales in the system. At each fixed concentration of disorder we found a transition point, where the influence of extended defects is exactly counterbalanced by the stretching field. Numerical simulations of BSAWs in anisotropic environment reveal an increase of polymer stiffness. In particular, the persistence length of semiflexible polymers increases in presence of disorder. (paper)
Anisotropic ordering in a two-temperature lattice gas
DEFF Research Database (Denmark)
Szolnoki, Attila; Szabó, György; Mouritsen, Ole G.
1997-01-01
We consider a two-dimensional lattice gas model with repulsive nearest- and next-nearest-neighbor interactions that evolves in time according to anisotropic Kawasaki dynamics. The hopping of particles along the principal directions is governed by two heat baths at different temperatures T-x and T-y...... of the higher temperature. In the resulting phase diagram in the T-x-T-y plane the critical temperature curve shows a weak maximum as a function of the parallel temperature which is confirmed by Monte Carlo simulations. Finite-size scaling analysis suggests that the model leaves the equilibrium universality...... class of the x-y model with cubic anisotropy and is described by the Ising exponents....
Twisted mass lattice QCD with non-degenerate quark masses
International Nuclear Information System (INIS)
Muenster, Gernot; Sudmann, Tobias
2006-01-01
Quantum Chromodynamics on a lattice with Wilson fermions and a chirally twisted mass term is considered in the framework of chiral perturbation theory. For two and three numbers of quark flavours, respectively, with non-degenerate quark masses the pseudoscalar meson masses and decay constants are calculated in next-to-leading order including lattice effects quadratic in the lattice spacing a
Kundin, Julia; Ajmal Choudhary, Muhammad
2017-07-01
In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.
Mass of the Bc Meson in Three-Flavor Lattice QCD
International Nuclear Information System (INIS)
Allison, Ian F.; Davies, Christine T. H.; Gray, Alan; Kronfeld, Andreas S.; Mackenzie, Paul B.; Simone, James N.
2005-01-01
We use lattice QCD to predict the mass of the B c meson. We use the MILC Collaboration's ensembles of lattice gauge fields, which have a quark sea with two flavors much lighter than a third. Our final result is m B c =6304±12 -0 +18 MeV. The first error bar is a sum in quadrature of statistical and systematic uncertainties, and the second is an estimate of heavy-quark discretization effects
On the geometric lattice approximation to a realistic model of QCD
International Nuclear Information System (INIS)
Becher, P.; Joos, H.
1982-12-01
We suggest a model of QCD with four flavour degrees of freedom on the lattice. This model has a well-defined continuum limit and no spurious quark degrees of freedom. The formulation is realistic insofar as the different quarks may have different bare masses. For Monte-Carlo calculations on finite lattices our suggestion should be superior to comparable other models. The model is formulated within the Dirac-Kaehler description of fermions which we repeat in a short glossary. (orig.)
$N^*$ Resonances in Lattice QCD from (mostly) Low to (sometimes) High Virtualities
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-11-01
I present a survey of calculations of the excited $N^*$ spectrum in lattice QCD. I then describe recent advances aimed at extracting the momentum-dependent phase shifts from lattice calculations, notably in the meson sector, and the potential for their application to baryons. I conclude with a discussion of calculations of the electromagnetic transition form factors to excited nucleons, including calculations at high $Q^2$.
Twenty-first Century Lattice Gauge Theory: Results from the QCD Lagrangian
Energy Technology Data Exchange (ETDEWEB)
Kronfeld, Andreas S.; /Fermilab
2012-03-01
Quantum chromodynamics (QCD) reduces the strong interactions, in all their variety, to an elegant nonabelian gauge theory. It clearly and elegantly explains hadrons at short distances, which has led to its universal acceptance. Since its advent, however, many of its long-distance, emergent properties have been believed to be true, without having been demonstrated to be true. This paper reviews a variety of results in this regime that have been established with lattice gauge theory, directly from the QCD Lagrangian. This body of work sheds light on the origin of hadron masses, its interplay with dynamical symmetry breaking, as well as on other intriguing features such as the phase structure of QCD. In addition, nonperturbative QCD is quantitatively important to many aspects of particle physics (especially the quark flavor sector), nuclear physics, and astrophysics. This review also surveys some of the most interesting connections to those subjects.
Local coherence and deflation of the low quark modes in lattice QCD
International Nuclear Information System (INIS)
Luescher, Martin
2007-01-01
The spontaneous breaking of chiral symmetry in QCD is known to be linked to a non-zero density of eigenvalues of the massless Dirac operator near the origin. Numerical studies of two-flavour QCD now suggest that the low quark modes are locally coherent to a certain extent. As a consequence, the modes can be simultaneously deflated, using local projectors, with a total computational effort proportional to the lattice volume (rather than its square). Deflation has potentially many uses in lattice QCD. The technique is here worked out for the case of quark propagator calculations, where large speed-up factors and a flat scaling behaviour with respect to the quark mass are achieved
Local coherence and deflation of the low quark modes in lattice QCD
Lüscher, Martin
2007-01-01
The spontaneous breaking of chiral symmetry in QCD is known to be linked to a non-zero density of eigenvalues of the massless Dirac operator near the origin. Numerical studies of two-flavour QCD now suggest that the low quark modes are locally coherent to a certain extent. As a consequence, the modes can be simultaneously deflated, using local projectors, with a total computational effort proportional to the lattice volume (rather than its square). Deflation has potentially many uses in lattice QCD. The technique is here worked out for the case of quark propagator calculations, where large speed-up factors and a flat scaling behaviour with respect to the quark mass are achieved.
An anisotropic preconditioning for the Wilson fermion matrix on the lattice
International Nuclear Information System (INIS)
Joo, Balint; Edwards, Robert G; Peardon, Michael
2010-01-01
A preconditioning for the Wilson fermion matrix on the lattice is defined, which is particularly suited to the case when the temporal lattice spacing is much smaller than the spatial one. Details on the implementation of the scheme are given. The method is tested in numerical studies of quantum chromodynamics on anisotropic lattices.
Scientific articles of the RBRC/CCAST Symposium on Spin Physics Lattice QCD and RHIC Physics
International Nuclear Information System (INIS)
2003-01-01
This volume comprises scientific articles of the symposium on spin physics, lattice QCD and RHIC physics organized by RIKEN BNL research center (RBRC) and China center of advanced science and technology (CCAST). The talks were discussing the spin structure of nucleons and other problems of RHIC physics
Induced Chern-Simons term in lattice QCD at finite temperature
International Nuclear Information System (INIS)
Borisenko, O.A.; Petrov, V.K.; Zinov'ev, G.M.
1992-01-01
The general conditions when the Chern-Simons action could arise (in continuum limit) as non universal contribution of fermionic determinant of finite-temperature lattice QCD are formulated. The dependence of this action coefficient on non universal parameters (a chemical potential, vacuum features, etc.) is investigated in detail. Special attention is paid to the role of possible 0 >-condensate existence. 42 refs. (author)
A new approach to the problem of dynamical quarks in numerical simulations of lattice QCD
International Nuclear Information System (INIS)
Luescher, M.
1993-11-01
Lattice QCD with an even number of degenerate quark flavours is shown to be a limit of a local bosonic field theory. The action of the bosonic theory is real and bounded from below so that standard simulation algorithms can be expected to apply. The feasibility of such calculations is discussed, but no practical tests have yet been made. (orig.)
Lattice QCD with chemical potential: Evading the fermion-sign problem
Indian Academy of Sciences (India)
journal of. December 2004 physics pp. 1211–1224. Lattice QCD with chemical potential: Evading the fermion-sign problem. SOURENDU GUPTA. Department of ... figure 1. In this talk I shall focus on recent attempts to determine the location ..... for the critical end-point are yet to come: the current excitement is that it has been.
The static-light meson spectrum from twisted mass lattice QCD
International Nuclear Information System (INIS)
Jansen, Karl; Michael, Chris; Shindler, Andrea; Wagner, Marc
2008-10-01
We compute the static-light meson spectrum with N f =2 flavours of sea quarks using Wilson twisted mass lattice QCD. We consider five different values for the light quark mass corresponding to 300 MeV PS s mesons. (orig.)
Lattice simulations of QCD-like theories at finite baryon density
Energy Technology Data Exchange (ETDEWEB)
Scior, Philipp Friedrich
2016-07-13
The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G{sub 2}-QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G{sub 2}. We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G{sub 2} Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we
Lattice simulations of QCD-like theories at finite baryon density
International Nuclear Information System (INIS)
Scior, Philipp Friedrich
2016-01-01
The exploration of the phase diagram of quantum chromodynamics (QCD) is of great importance to describe e.g. the properties of neutron stars or heavy-ion collisions. Due to the sign problem of lattice QCD at finite chemical potential we need effective theories to study QCD at finite density. Here, we use a three-dimensional Polyakov-loop theory to study the phase diagrams of QCD-like theories. In particular, we investigate the heavy quark limit of the QCD-like theories where the effective theory can be derived from the full theory by a combined strong coupling and hopping expansion. This expansion can be systematically improved order by order. Since there is no sign problem for the QCD-like theories we consider, we can compare our results to data from lattice calculations of the full theories to make qualitative and quantitative statements of the effective theory's validity. We start by deriving the effective theory up to next-to-next-to leading-order, in particular for two-color and G 2 -QCD where replace the three colors in QCD with only two colors or respectively replace the gauge group SU(3) of QCD with G 2 . We will then apply the effective theory at finite temperature mainly to test the theory and the implementation but also to make some predictions for the deconfinement phase transition in G 2 Yang-Mills theory. Finally, we turn our attention to the cold and dense regime of the phase diagram where we observe a sharp increase of the baryon density with the quark chemical potential μ, when μ reaches half the diquark mass. At vanishing temperature this is expected to happen in a quantum phase transition with Bose-Einstein-condensation of diquarks. In contrast to the liquid-gas transition in QCD, the phase transition to the Bose-Einstein condensate is continuous. We find evidence that the effective theories for heavy quarks are able to describe the qualitative difference between first and second order phase transitions. For even higher μ we find the rise
Directory of Open Access Journals (Sweden)
Khaled Z. Ibrahim
2009-01-01
Full Text Available Lattice Quantum Chromodynamic (QCD models subatomic interactions based on a four-dimensional discretized space–time continuum. The Lattice QCD computation is one of the grand challenges in physics especially when modeling a lattice with small spacing. In this work, we study the implementation of the main kernel routine of Lattice QCD that dominates the execution time on the Cell Broadband Engine. We tackle the problem of efficient SIMD execution and the problem of limited bandwidth for data transfers with the off-chip memory. For efficient SIMD execution, we present runtime data fusion technique that groups data processed similarly at runtime. We also introduce analysis needed to reduce the pressure on the scarce memory bandwidth that limits the performance of this computation. We studied two implementations for the main kernel routine that exhibit different patterns of accessing the memory and thus allowing different sets of optimizations. We show the attributes that make one implementation more favorable in terms of performance. For lattice size that is significantly larger than the local store, our implementation achieves 31.2 GFlops for single precision computations and 16.6 GFlops for double precision computations on the PowerXCell 8i, an order of magnitude better than the performance achieved on most general-purpose processors.
Pseudoscalar decay constants from N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Farchioni, Federico [Muenster Univ. (Germany). Inst. fuer Theoretische Physik; Herdoiza, Gregorio; Jansen, Karl; Nube, Andreas [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Petschlies, Marcus [Humboldt-Univ., Berlin (Germany). Inst. fuer Physik; Urbach, Carsten [Bonn Univ. (Germany). Helmholtz-Inst. fuer Strahlen- und Kernphysik and Bethe Center for Theoretical Physics
2010-12-15
We present first results for the pseudoscalar decay constants f{sub K}, f{sub D} and f{sub D{sub S}} from lattice QCD with N{sub f} = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Exploring autocorrelations in two-flavor Wilson Lattice QCD using DD-HMC algorithm
Chowdhury, Abhishek; De, Asit K.; De Sarkar, Sangita; Harindranath, A.; Maiti, Jyotirmoy; Mondal, Santanu; Sarkar, Anwesa
2013-05-01
We perform an extensive study of the autocorrelation of several observables in lattice QCD with two degenerate flavors of unimproved Wilson fermions and Wilson gauge action using the DD-HMC algorithm. We show that (1) at a given lattice spacing, autocorrelation of topological susceptibility and unsmeared plaquette show indication of a decrease with decreasing quark mass, (2) autocorrelation of topological susceptibility and topological charge density correlator increase with decreasing lattice spacing but the effect is milder in the latter case and (3) increasing the size and the smear level increase the autocorrelation of smeared Wilson loop.
Pseudoscalar decay constants from Nf=2+1+1 twisted mass lattice QCD
International Nuclear Information System (INIS)
Farchioni, Federico; Petschlies, Marcus; Urbach, Carsten
2010-12-01
We present first results for the pseudoscalar decay constants f K , f D and f D S from lattice QCD with N f = 2 + 1 + 1 flavours of dynamical quarks. The lattice simulations have been performed by the European Twisted Mass collaboration (ETMC) using maximally twisted mass quarks. For the pseudoscalar decay constants we follow a mixed action approach by using so called Osterwalder-Seiler fermions in the valence sector for strange and charm quarks. The data for two values of the lattice spacing and several values of the up/down quark mass is analysed using chiral perturbation theory. (orig.)
Non-degenerate light quark masses from 2+1f lattice QCD+QED
Energy Technology Data Exchange (ETDEWEB)
Drury, Shane [Southampton U.; Blum, Thomas [RIKEN BNL; Hayakawa, Masashi [Nagoya U.; Izubuchi, Taku [RIKEN BNL; Sachrajda, Chris [Southampton U.; Zhou, Ran [Indiana U.
2014-01-01
We report on a calculation of the effects of isospin breaking in Lattice QCD+QED. This involves using Chiral Perturbation Theory with Electromagnetic corrections to find the renormalized, non-degenerate, light quark masses. The calculations are carried out on QCD ensembles generated by the RBC and UKQCD collaborations using Domain Wall Fermions and the Iwasaki and Iwasaki+DSDR Gauge Actions with unitary pion masses down to 170 MeV. Non-compact QED is treated in the quenched approximation. The simulations use a $32^3$ lattice size with $a^{-1}=2.28(3)$ GeV (Iwasaki) and 1.37(1) (Iwasaki+DSDR). This builds on previous work from the RBC/UKQCD collaboration with lattice spacing $a^{-1}=1.78(4)$ GeV.
Grid portal-based data management for lattice QCD data
International Nuclear Information System (INIS)
Andronico, G.; Barbera, R.; Falzone, A.
2004-01-01
We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects
Grid portal-based data management for lattice QCD data
Energy Technology Data Exchange (ETDEWEB)
Andronico, G. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy)]. E-mail: giuseppe.andronico@ct.infn.it; Barbera, R. [Istituto Nazionale di Fisica Nucleare, Sezione di Catania, via S. Sofia 64, 95123 Catania (Italy); Dipartimento di Fisica e Astronomia dell' Universita di Catania, via S. Sofia 64, 95123 Catania (Italy); Falzone, A. [NICE SRL, via Marchesi di Roero 1, 14020 Cortanze (Italy)
2004-11-21
We describe here a case of the European Union DataGrid Project data management services by a Lattice Quantum ChromoDynamics (LQCD) application to share the large amount of configurations generated and based on a solution developed from the International Lattice Data Grid Project using a XML dialect called QCDML. In order to allow the user to store, search and browse the lattice configurations described by QCDML in an uniform and transparent way, we have exploited the functionalities of the GENIUS Grid portal, jointly developed by INFN and NICE srl in the context of the Italian INFN Grid and EU DataGrid Projects.
Supporting the search for the CEP location with nonlocal PNJL models constrained by lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Contrera, Gustavo A. [IFLP, UNLP, CONICET, Facultad de Ciencias Exactas, La Plata (Argentina); Gravitation, Astrophysics and Cosmology Group, FCAyG, UNLP, La Plata (Argentina); CONICET, Buenos Aires (Argentina); Grunfeld, A.G. [CONICET, Buenos Aires (Argentina); Comision Nacional de Energia Atomica, Departamento de Fisica, Buenos Aires (Argentina); Blaschke, David [University of Wroclaw, Institute of Theoretical Physics, Wroclaw (Poland); Joint Institute for Nuclear Research, Moscow Region (Russian Federation); National Research Nuclear University (MEPhI), Moscow (Russian Federation)
2016-08-15
We investigate the possible location of the critical endpoint in the QCD phase diagram based on nonlocal covariant PNJL models including a vector interaction channel. The form factors of the covariant interaction are constrained by lattice QCD data for the quark propagator. The comparison of our results for the pressure including the pion contribution and the scaled pressure shift Δ P/T {sup 4} vs. T/T{sub c} with lattice QCD results shows a better agreement when Lorentzian form factors for the nonlocal interactions and the wave function renormalization are considered. The strength of the vector coupling is used as a free parameter which influences results at finite baryochemical potential. It is used to adjust the slope of the pseudocritical temperature of the chiral phase transition at low baryochemical potential and the scaled pressure shift accessible in lattice QCD simulations. Our study, albeit presently performed at the mean-field level, supports the very existence of a critical point and favors its location within a region that is accessible in experiments at the NICA accelerator complex. (orig.)
The IR sector of QCD: lattice versus Schwinger-Dyson equations
International Nuclear Information System (INIS)
Binosi, Daniele
2010-01-01
Important information about the infrared dynamics of QCD is encoded in the behavior of its (of-shell) Green's functions, most notably the gluon and the ghost propagators. Due to recent improvements in the quality of lattice data and the truncation schemes employed for the Schwinger-Dyson equations we have now reached a point where the interplay between these two non-perturbative tools can be most fruitful. In this talk several of the above points will be reviewed, with particular emphasis on the implications for the ghost sector, the non-perturbative effective charge of QCD, and the Kugo-Ojima function.
Lattice QCD simulations using the OpenACC platform
International Nuclear Information System (INIS)
Majumdar, Pushan
2016-01-01
In this article we will explore the OpenACC platform for programming Graphics Processing Units (GPUs). The OpenACC platform offers a directive based programming model for GPUs which avoids the detailed data flow control and memory management necessary in a CUDA programming environment. In the OpenACC model, programs can be written in high level languages with OpenMP like directives. We present some examples of QCD simulation codes using OpenACC and discuss their performance on the Fermi and Kepler GPUs. (paper)
Searching for evidence of diquark states using lattice QCD simulations
Fukuda, Ryutaro
2017-01-01
In recent years, exotic hadrons called X, Y, Z which cannot be explained by the quark model have been found one after another. The tetra–quark state, which is one of the typical scenarios to interpret the exotic state, is based on the existence of a diquark state. The discovery of a pentaquark state at CERN in 2015 also makes a diquark state even more important. Therefore, it is considered that a diquark state plays an important role in many kinds of QCD physics. We discuss existence of such diquarks from the viewpoint of a first principle calculation.
Parton distributions from lattice QCD with momentum smearing
Energy Technology Data Exchange (ETDEWEB)
Alexandrou, Constantia [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Computation-based Science and Technology Research Center, Nicosia (Cyprus). Cyprus Inst.; Cichy, Krzysztof [Frankfurt Univ. (Germany). Inst. fuer Theoretische Physik; Adam Mickiewicz Univ., Poznan (Poland). Inst. of Physics; Constantinou, Martha [Temple Univ., Philadelphia, PA (United States); Hadjiyiannakou, Kyriakos [Univ. of Cyprus, Nicosia (Cyprus). Dept. of Physics; Jansen, Karl; Steffens, Fernanda; Wiese, Christian [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC
2017-01-15
In this work we continue our effort to explore a recent proposal, which allows light-cone distributions to be extracted from purely spatial correlations, being thus accessible to lattice methods. In order to test the feasibility of this method, we present our latest results from a twisted mass lattice calculation of the flavor non-singlet momentum, helicity and transversity distributions of the nucleon. Furthermore, we apply a newly proposed momentum improved smearing, which has the potential to reach higher nucleon momenta as required for a safe matching procedure to the physical distribution functions.
Energy Technology Data Exchange (ETDEWEB)
MAEZAWA,Y.; AOKI, S.; EJIRI, S.; HATSUDA, T.; ISHII, N.; KANAYA, K.; UKITA, N.
2006-11-14
The authors report the current status of the systematic studies of the QCD thermodynamics by lattice QCD simulations with two flavors of improved Wilson quarks. They evaluate the critical temperature of two flavor QCD in the chiral limit at zero chemical potential and show the preliminary result. Also they discuss fluctuations at none-zero temperature and density by calculating the quark number and isospin susceptibilities and their derivatives with respect to chemical potential.
K$\\to \\pi\\pi$ Amplitudes from Lattice QCD with a Light Charm Quark
Giusti, Leonardo; Laine, M; Peña, C; Wennekers, J; Wittig, H
2007-01-01
We compute the leading-order low-energy constants of the DeltaS=1 effective weak Hamiltonian in the quenched approximation of QCD with up, down, strange, and charm quarks degenerate and light (GIM limit). The low-energy constants are extracted by comparing the predictions of finite volume chiral perturbation theory with lattice QCD computations of suitable correlation functions carried out with quark masses ranging from a few MeV up to half of the physical strange mass. We observe a large DeltaI=1/2 enhancement in this corner of the parameter space of the theory. Although matching with the experimental result is not observed for the DeltaI=1/2 amplitude, our computation suggests large QCD contributions to the physical DeltaI=1/2 rule in the GIM limit, and represents the first step to quantify the role of the charm quark-mass in K-->pipi amplitudes.
QCD at ﬁnite temperature and density on the lattice
Directory of Open Access Journals (Sweden)
Lombardo M.-P.
2010-10-01
Full Text Available In the ﬁrst lecture we brieﬂy summarize the basics of ﬁeld theory thermodynamics and critical phenomena. We then introduce the lattice gauge ﬁeld theory approach to QCD at ﬁnite temperature and density, which is a non-perturbative scheme allowing ﬁrst principle calculations using the QCD Lagrangian as a sole input. Some of the general concepts and idea introduced at the beginning are demonstrated by use of simple eﬀective models of QCD. The second lecture is devoted to applications. We emphasize that current methods suﬃce to study the main phenomena at RHIC and LHC energies, and we discuss the ongoing theoretical eﬀorts devoted to the solution of the sign problem which hampers the simulations of cold and dense matter. We conclude with short overview of the status of the ﬁeld as of Summer 2008.
Interactions of pion-like particles from lattice QCD
International Nuclear Information System (INIS)
Markum, H.; Pullirsch, R.; Rabitsch, K.; Fiebig, H.R.; Mihaly, A.
1999-01-01
An approximate local potential for the residual π + - π + interaction is computed. We use an O(a 2 ) improved action on a coarse 9 3 x 13 lattice with spacing a ∼ 0.4 fm. We attempt extrapolation of the π + - π + potential to the chiral limit. Refs. 6, figs. 2 (author)
Symmetry properties of fermionic bilinears in lattice QCD
International Nuclear Information System (INIS)
Verstegen, D.
1985-01-01
The 256 fermionic bilinears anti psiγTpsi appearing in the Kogut-Susskind/Kaehler-Dirac theory are classified into representations of the hypercubic rotation reflection group; charge conjugation and U(1)sub(A) are also considered. Applications to the study of the normalization of lattice currents are suggested. (orig.)
Large N lattice QCD and its extended strong-weak connection to the hypersphere
Energy Technology Data Exchange (ETDEWEB)
Christensen, Alexander S.; Myers, Joyce C.; Pedersen, Peter D. [Niels Bohr International Academy,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark); Discovery Centre, The Niels Bohr Institute, University of Copenhagen,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark)
2014-02-06
We calculate an effective Polyakov line action of QCD at large N{sub c} and large N{sub f} from a combined lattice strong coupling and hopping expansion working to second order in both, where the order is defined by the number of windings in the Polyakov line. We compare with the action, truncated at the same order, of continuum QCD on S{sup 1}×S{sup d} at weak coupling from one loop perturbation theory, and find that a large N{sub c} correspondence of equations of motion found in http://dx.doi.org/10.1007/JHEP10(2012)067 at leading order, can be extended to the next order. Throughout the paper, we review the background necessary for computing higher order corrections to the lattice effective action, in order to make higher order comparisons more straightforward.
Overlap between Lattice QCD and HRG with in-medium effects and parity doubling
Morita, Kenji; Sasaki, Chihiro; Lo, Pok Man; Redlich, Krzysztof
2018-02-01
We investigate the fluctuations and correlations involving baryon number in hot hadronic matter with modified masses of negative-parity baryons, in the context of the hadron resonance gas. Temperature-dependent masses are adopted from the recent lattice QCD results and from a chiral effective model which implements the parity doubling structure with respect to the chiral symmetry. Confronting the baryon number susceptibility, baryon-charge correlation, and baryon-strangeness correlation and their ratios with the lattice QCD data, we show that the strong downward mass shift in hyperons can accidentally reproduce some correlation ratios, however it also tends to overshoot the individual fluctuations and correlations. This indicates, that in order to correctly account for the influence of the chiral symmetry restoration on the fluctuation observables, a consistent framework of in-medium effects beyond hadron mass shifts is required.
Prediction of the bottomonium D-wave spectrum from full lattice QCD.
Daldrop, J O; Davies, C T H; Dowdall, R J
2012-03-09
We calculate the full spectrum of D-wave states in the Υ system in lattice QCD for the first time, by using an improved version of nonrelativistic QCD on coarse and fine "second-generation" gluon field configurations from the MILC Collaboration that include the effect of up, down, strange, and charm quarks in the sea. By taking the 2S-1S splitting to set the lattice spacing, we determine the (3)D2-1S splitting to 2.3% and find agreement with experiment. Our prediction of the fine structure relative to the (3)D2 gives the (3)D3 at 10.181(5) GeV and the (3)D1 at 10.147(6) GeV. We also discuss the overlap of (3)D1 operators with (3)S1 states.
Exponential noise reduction in Lattice QCD: new tools for new physics
CERN. Geneva
2017-01-01
The numerical computations of many quantities of theoretical and phenomenological interest are plagued by statistical errors which increase exponentially with the distance of the sources in the relevant correlators. Notable examples are baryon masses and matrix elements, the hadronic vacuum polarization and the light-by-light scattering contributions to the muon g-2, and the form factors of semileptonic B decays. Reliable and precise determinations of these quantities are very difficult if not impractical with state-of-the-art standard Monte Carlo integration schemes. I will discuss a recent proposal for factorizing the fermion determinant in lattice QCD that leads to a local action in the gauge field and in the auxiliary boson fields. Once combined with the corresponding factorization of the quark propagator, it paves the way for multi-level Monte Carlo integration in the presence of fermions opening new perspectives in lattice QCD and in its capability to unveil new physics. Exploratory results on the impac...
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double-β Decay Phenomenology
Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.; Nplqcd Collaboration
2017-08-01
The potential importance of short-distance nuclear effects in double-β decay is assessed using a lattice QCD calculation of the n n →p p transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarizability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-β decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-β decay searches. The prospects of constraining the isotensor axial polarizabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
Thermo-magnetic effects in quark matter: Nambu-Jona-Lasinio model constrained by lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Farias, Ricardo L.S. [Universidade Federal de Santa Maria, Departamento de Fisica, Santa Maria, RS (Brazil); Kent State University, Physics Department, Kent, OH (United States); Timoteo, Varese S. [Universidade Estadual de Campinas (UNICAMP), Grupo de Optica e Modelagem Numerica (GOMNI), Faculdade de Tecnologia, Limeira, SP (Brazil); Avancini, Sidney S.; Pinto, Marcus B. [Universidade Federal de Santa Catarina, Departamento de Fisica, Florianopolis, Santa Catarina (Brazil); Krein, Gastao [Universidade Estadual Paulista, Instituto de Fisica Teorica, Sao Paulo, SP (Brazil)
2017-05-15
The phenomenon of inverse magnetic catalysis of chiral symmetry in QCD predicted by lattice simulations can be reproduced within the Nambu-Jona-Lasinio model if the coupling G of the model decreases with the strength B of the magnetic field and temperature T. The thermo-magnetic dependence of G(B, T) is obtained by fitting recent lattice QCD predictions for the chiral transition order parameter. Different thermodynamic quantities of magnetized quark matter evaluated with G(B, T) are compared with the ones obtained at constant coupling, G. The model with G(B, T) predicts a more dramatic chiral transition as the field intensity increases. In addition, the pressure and magnetization always increase with B for a given temperature. Being parametrized by four magnetic-field-dependent coefficients and having a rather simple exponential thermal dependence our accurate ansatz for the coupling constant can be easily implemented to improve typical model applications to magnetized quark matter. (orig.)
Large N lattice QCD and its extended strong-weak connection to the hypersphere
International Nuclear Information System (INIS)
Christensen, Alexander S.; Myers, Joyce C.; Pedersen, Peter D.
2014-01-01
We calculate an effective Polyakov line action of QCD at large N c and large N f from a combined lattice strong coupling and hopping expansion working to second order in both, where the order is defined by the number of windings in the Polyakov line. We compare with the action, truncated at the same order, of continuum QCD on S 1 ×S d at weak coupling from one loop perturbation theory, and find that a large N c correspondence of equations of motion found in http://dx.doi.org/10.1007/JHEP10(2012)067 at leading order, can be extended to the next order. Throughout the paper, we review the background necessary for computing higher order corrections to the lattice effective action, in order to make higher order comparisons more straightforward
Minkowski space pion model inspired by lattice QCD running quark mass
Directory of Open Access Journals (Sweden)
Clayton S. Mello
2017-03-01
Full Text Available The pion structure in Minkowski space is described in terms of an analytic model of the Bethe–Salpeter amplitude combined with Euclidean Lattice QCD results. The model is physically motivated to take into account the running quark mass, which is fitted to Lattice QCD data. The pion pseudoscalar vertex is associated to the quark mass function, as dictated by dynamical chiral symmetry breaking requirements in the limit of vanishing current quark mass. The quark propagator is analyzed in terms of a spectral representation, and it shows a violation of the positivity constraints. The integral representation of the pion Bethe–Salpeter amplitude is also built. The pion space-like electromagnetic form factor is calculated with a quark electromagnetic current, which satisfies the Ward–Takahashi identity to ensure current conservation. The results for the form factor and weak decay constant are found to be consistent with the experimental data.
QED Corrections to Hadronic Processes in Lattice QCD
Carrasco, N; Martinelli, G; Sachrajda, C T; Tantalo, N; Tarantino, C; Testa, M
2015-01-01
In this paper, for the first time a method is proposed to compute electromagnetic effects in hadronic processes using lattice simulations. The method can be applied, for example, to the leptonic and semileptonic decays of light or heavy pseudoscalar mesons. For these quantities the presence of infrared divergences in intermediate stages of the calculation makes the procedure much more complicated than is the case for the hadronic spectrum, for which calculations already exist. In order to compute the physical widths, diagrams with virtual photons must be combined with those corresponding to the emission of real photons. Only in this way do the infrared divergences cancel as first understood by Bloch and Nordsieck in 1937. We present a detailed analysis of the method for the leptonic decays of a pseudoscalar meson. The implementation of our method, although challenging, is within reach of the present lattice technology.
BK-parameter from Nf=2 twisted mass lattice QCD
International Nuclear Information System (INIS)
Constantinou, M.; Dimopoulos, P.; Frezzotti, R.; INFN, Rome
2011-01-01
We present an unquenched N f = 2 lattice computation of the B K parameter which controls K 0 - anti K 0 oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B K parameter which is both multiplicatively renormalizable and O(a) improved. Employing the non-perturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B RGI K =0.729±0.030, a number well in line with the existing quenched and unquenched determinations. (orig.)
Lattice QCD at finite density via a new canonical approach
International Nuclear Information System (INIS)
Alexandru, Andrei; Horvath, Ivan; Liu, K.-F.; Faber, Manfried
2005-01-01
We carry out a finite density calculation based on a canonical approach which is designed to address the overlap problem. Two degenerate flavor simulations are performed using Wilson gauge action and Wilson fermions on 4 4 lattices, at temperatures close to the critical temperature T c ≅170 MeV and large densities (5 to 20 times nuclear matter density). In this region, we find that the algorithm works well. We compare our results with those from other approaches
Semileptonic B → D** decays in lattice QCD: a feasability
Energy Technology Data Exchange (ETDEWEB)
Atoui, M.; Morenas, V. [Unite Mixte de Recherche 6533 CNRS/IN2P3, Universite Blaise Pascal, Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Campus des Cezeaux, 24 avenue des Landais, BP 80026, Aubiere Cedex (France); Blossier, B.; Pene, O. [Unite Mixte de Recherche 8627 du Centre National de la Recherche Scientifique et Universite Paris-Sud XI, Laboratoire de Physique Theorique, Orsay Cedex (France); Petrov, K. [Inria Saclay, Batiment Alan Turing, Palaiseau (France)
2015-08-15
We compute the decays B → D{sub 0}{sup *} and B → D{sub 2}{sup *} with finite masses for the b and c quarks. We first discuss the spectral properties of both the B meson as a function of its momentum and the D{sub 0}{sup *} and D{sub 2}{sup *} at rest. We compute the theoretical formulae leading to the decay amplitudes from the three-point and two-point correlators. We then compute the amplitudes at zero recoil of B → D{sub 0}{sup *}, which turns out not to be vanishing contrary to what happens in the heavy quark limit. This opens the possibility to get better agreement with experiment. To improve the continuum limit we have added a set of data with smaller lattice spacing. The B → D{sub 2}{sup *} vanishes at zero recoil and we show a convincing signal but only slightly more than 1 sigma from 0. In order to reach quantitatively significant results we plan to exploit fully smaller lattice spacings as well as another lattice regularisation. (orig.)
Effective hadronic lagrangian in the strong coupling expansion of lattice QCD with Susskind fermions
International Nuclear Information System (INIS)
Azakov, S.I.; Aliev, E.S.
1987-12-01
The effective hadronic action in lattice QCD with U(N) and SU(N) gauge groups and with Susskind fermions is constructed in the framework of the strong coupling approximation. For arbitrary finite (odd) N (in particular N=3) we find an effective potential, vacuum expectation value of the (χ-barχ) and an effective action for the physical meson field π(x). (author). 19 refs
Decay Constants of B and D Mesons from Non-pertubatively Improved Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
K.C. Bowler; L. Del Debbio; J.M. Flynn; G.N, Lacagnina; V.I. Lesk; C.M. Maynard; D.G. Richards
2000-07-01
The decay constants of B and D mesons are computed in quenched lattice QCD at two different values of the coupling. The action and operators are ? (a) improved with non-perturbative coefficients where available. The results and systematic errors are discussed in detail. Results for vector decay constants, flavour symmetry breaking ratios of decay constants, the pseudoscalar-vector mass splitting and D meson masses are also presented.
Thermodynamics of lattice QCD with 2 quark flavours : chiral symmetry and topology
International Nuclear Information System (INIS)
Lagae, J.-F.
1998-01-01
We have studied the restoration of chiral symmetry in lattice QCD at the finite temperature transition from hadronic matter to a quark-gluon plasma. By measuring the screening masses of flavour singlet and non-singlet meson excitations, we have seen evidence that, although flavour chiral symmetry is restored at this transition, flavour singlet (U(1)) axial symmetry is not. We conclude that this indicates that instantons continue to play an important role in the quark-gluon plasma phase
Determination of csw in Nf=3+1 lattice QCD with massive Wilson fermions
International Nuclear Information System (INIS)
Fritzsch, Patrick; Stollenwerk, Felix; Wolff, Ulli; Sommer, Rainer
2015-01-01
We develop a strategy for the non-perturbative determination of the O(a)-improvement coefficient c sw for Wilson fermions with massive sea quarks. The improvement condition is defined via the PCAC relation in the Schroedinger functional. It is imposed along a line of constant physics designed to be close to the correct mass of the charm quark. The numerical work uses the tree-level improved Luescher-Weisz gauge action in N f =3+1 Lattice QCD.
Lattice QCD simulations on big cats, sea monsters and clock towers
International Nuclear Information System (INIS)
Joo, Balint
2009-01-01
We present details of lattice QCD computations we are performing on the Cray XT series of computers, from BigBen - an XT3 hosted at the Pittsburgh Supercomputing Center (PSC) - through Jaguar (XT4) and Kraken (XT5) - which are hosted at the National Center for Computational Science (NCCS) and the National Institute of Computational Science (NICS), respectively, at Oak Ridge National Laboratory (ORNL). We discuss algorithmic tuning to make the computation more efficient and present some recent results.
Breakdown of the 1/N expansion in the continuum limit of strong coupling lattice QCD
International Nuclear Information System (INIS)
Bralic, N.; Pontificia Universidade Catolica de Chile, Santiago. Facultad de Fisica); Loewe, M.
1983-08-01
The restoration of lorentz covariance in the continuum limit of strong coupling lattice QCD is shown to require the breakdown of the 1/N expansion. With the leading 1/N appoximation becoming irrelevant in that limit. To leading order in 1/N lorentz convariance can be restored only as an approximate long distance symmetry a non conventional continuum limit with a non hermitian hamiltonian. (Author) [pt
The chiral condensate from lattice QCD with Wilson twisted mass quarks
Energy Technology Data Exchange (ETDEWEB)
Urbach, Carsten [Bonn Univ. (Germany). HISKP (Theorie)
2016-11-01
Lattice QCD is a very computer time demanding scientific application. Only with the computer time made available on supercomputers like SuperMUC significant progress, like the one reported here, can be reached. Moreover, the computing resources made available by LRZ are used to reduce the systematic uncertainties in our results even further: in another project we are generating ensembles with physical values of the quark masses, such that a chiral extrapolation is not needed anymore.
High-energy behavior of hadronic total cross sections from lattice QCD
International Nuclear Information System (INIS)
Meggiolaro, Enrico; Giordano, Matteo; Moretti, Niccolò
2013-01-01
By means of a nonperturbative approach to soft high-energy hadron-hadron scattering, based on the analytic continuation of Wilson-loop correlation functions from Euclidean to Minkowskian theory, we shall investigate the asymptotic energy dependence of hadron-hadron total cross sections in lattice QCD: we will show, using best fits of the lattice data with proper functional forms satisfying unitarity and other physical constraints, how indications emerge in favor of a universal asymptotic high-energy behavior of the kind Blog 2 s for hadronic total cross sections
D-Meson Mixing in 2+1-Flavor Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [William-Mary Coll.; Bouchard, C. M. [William-Mary Coll.; El-Khadra, A. X. [Illinois U., Urbana; Freeland, E. [Art Inst. of Chicago; Gámiz, E. [Granada U., Theor. Phys. Astrophys.; Kronfeld, A. S. [Fermilab; Laiho, J. W. [Syracuse U.; Neil, E. T. [Colorado U.; Simone, J. N. [Fermilab; Van de Water, R. S. [Fermilab
2017-01-20
We present results for neutral D-meson mixing in 2+1-flavor lattice QCD. We compute the matrix elements for all five operators that contribute to D mixing at short distances, including those that only arise beyond the Standard Model. Our results have an uncertainty similar to those of the ETM collaboration (with 2 and with 2+1+1 flavors). This work shares many features with a recent publication on B mixing and with ongoing work on heavy-light decay constants from the Fermilab Lattice and MILC Collaborations.
Deflation of eigenvalues for iterative methods in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Darnell, Dean; Morgan, Ronald B.; Wilcox, Walter
2004-03-01
Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of A{chi} = b in an efficient manner. We also discuss and give numerical results on the possibilty of combining deflated GMRES for the first right hand side with a deflated BiCGStab algorithm for the subsequent right hand sides.
Deflation of eigenvalues for iterative methods in lattice QCD
International Nuclear Information System (INIS)
Darnell, Dean; Morgan, Ronald B.; Wilcox, Walter
2004-01-01
Work on generalizing the deflated, restarted GMRES algorithm, useful in lattice studies using stochastic noise methods, is reported. We first show how the multi-mass extension of deflated GMRES can be implemented. We then give a deflated GMRES method that can be used on multiple right-hand sides of Aχ = b in an efficient manner. We also discuss and give numerical results on the possibilty of combining deflated GMRES for the first right hand side with a deflated BiCGStab algorithm for the subsequent right hand sides
Lattice QCD exploration of parton pseudo-distribution functions
Orginos, Kostas; Radyushkin, Anatoly; Karpie, Joseph; Zafeiropoulos, Savvas
2017-11-01
We demonstrate a new method of extracting parton distributions from lattice calculations. The starting idea is to treat the generic equal-time matrix element M (P z3,z32) as a function of the Ioffe time ν =P z3 and the distance z3. The next step is to divide M (P z3,z32) by the rest-frame density M (0 ,z32). Our lattice calculation shows a linear exponential z3-dependence in the rest-frame function, expected from the Z (z32) factor generated by the gauge link. Still, we observe that the ratio M (P z3,z32)/M (0 ,z32) has a Gaussian-type behavior with respect to z3 for 6 values of P used in the calculation. This means that Z (z32) factor was canceled in the ratio. When plotted as a function of ν and z3, the data are very close to z3-independent functions. This phenomenon corresponds to factorization of the x - and k⊥-dependence for the TMD F (x ,k⊥2). For small z3≤4 a , the residual z3-dependence is explained by perturbative evolution, with αs/π =0.1 .
Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential
Directory of Open Access Journals (Sweden)
Volodymyr Vovchenko
2017-12-01
Full Text Available The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential â corresponding to the fugacity or virial expansion at real chemical potential â are calculated within this model, and compared with the Nt=12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to Tâ185Â MeV is described fairly well by an interacting HRG with a single baryonâbaryon eigenvolume interaction parameter bâ1Â fm3, while the available lattice data on the difference Ï2BâÏ4B of baryon number susceptibilities is reproduced up to Tâ175Â MeV. Keywords: Hadron resonance gas, Excluded volume, Imaginary chemical potential
Repulsive baryonic interactions and lattice QCD observables at imaginary chemical potential
Vovchenko, Volodymyr; Pásztor, Attila; Fodor, Zoltán; Katz, Sandor D.; Stoecker, Horst
2017-12-01
The first principle lattice QCD methods allow to calculate the thermodynamic observables at finite temperature and imaginary chemical potential. These can be compared to the predictions of various phenomenological models. We argue that Fourier coefficients with respect to imaginary baryochemical potential are sensitive to modeling of baryonic interactions. As a first application of this sensitivity, we consider the hadron resonance gas (HRG) model with repulsive baryonic interactions, which are modeled by means of the excluded volume correction. The Fourier coefficients of the imaginary part of the net-baryon density at imaginary baryochemical potential - corresponding to the fugacity or virial expansion at real chemical potential - are calculated within this model, and compared with the Nt = 12 lattice data. The lattice QCD behavior of the first four Fourier coefficients up to T ≃ 185 MeV is described fairly well by an interacting HRG with a single baryon-baryon eigenvolume interaction parameter b ≃ 1 fm3, while the available lattice data on the difference χ2B - χ4B of baryon number susceptibilities is reproduced up to T ≃ 175 MeV.
Thermodynamics of lattice QCD with two light quark flavours on A 16{sup 3} x 8 lattice II.
Energy Technology Data Exchange (ETDEWEB)
Gottlieb, S.; Heller, U. M.; Kennedy, A. D.; Kim, S.; Kogut, J. B.; Liu, C.; Renken, R. L.; Sinclair, D. K.; Sugar, R. L.; Toussaint, D.; Wang, K. C.; High Energy Physics; Indiana Univ.; Florida State Univ.; Seoul National Univ.; Univ. of Illinois; Morgan Stanley & Co. Inc.; Univ. of Central Florida; Univ. of California; Univ. of Arizona; China Graduate School of Theology
1997-01-01
We have extended our earlier simulations of the high-temperature behavior of lattice QCD with two light flavors of staggered quarks on a 16{sup 3}x8 lattice to a lower quark mass (m{sub q}=0.00625). The transition from hadronic matter to a quark-gluon plasma is observed at 6/g{sup 2}=5.49(2) corresponding to a temperature of {Tc}{approx}140 MeV. We present measurements of observables which probe the nature of the quark-gluon plasma and serve to distinguish it from hadronic matter. Although the transition is quite abrupt, we have seen no indications that it is first order.
Thermodynamics of lattice QCD with two light quarks on a 16{sup 3}{times}8 lattice. II
Energy Technology Data Exchange (ETDEWEB)
Gottlieb, S. [Department of Physics, Indiana University, Bloomington, Indiana 47405 (United States); Heller, U.M.; Kennedy, A.D. [SCRI, The Florida State University, Tallahassee, Florida 32306-4052 (United States); Kim, S. [Center for Theoretical Physics, Seoul National University, Seoul (Korea); Kogut, J.B. [Department of Physics, University of Illinois, 1110 West Green Street, Urbana, Illinois 61801 (United States); Liu, C. [Morgan Stanley and Co. Inc., 1585 Broadway, New York, New York 10036 (United States); Renken, R.L. [Department of Physics, University of Central Florida, Orlando, Florida 32816 (United States); Sinclair, D.K. [HEP Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, Illinois 60439 (United States); Sugar, R.L. [Department of Physics, University of California, Santa Barbara, California 93106 (United States); Toussaint, D. [Department of Physics, University of Arizona, Tucson, Arizona 85721 (United States); Wang, K.C. [China Graduate School of Theology, 5 Devon Rd, Kowloon Tong, Kowloon (Hong Kong)
1997-06-01
We have extended our earlier simulations of the high-temperature behavior of lattice QCD with two light flavors of staggered quarks on a 16{sup 3}{times}8 lattice to a lower quark mass (m{sub q}=0.00625). The transition from hadronic matter to a quark-gluon plasma is observed at 6/g{sup 2}=5.49(2) corresponding to a temperature of T{sub c}{approx}140 MeV. We present measurements of observables which probe the nature of the quark-gluon plasma and serve to distinguish it from hadronic matter. Although the transition is quite abrupt, we have seen no indications that it is first order. {copyright} {ital 1997} {ital The American Physical Society}
The Search for Beauty-fully Bound Tetraquarks Using Lattice Non-Relativistic QCD
Energy Technology Data Exchange (ETDEWEB)
Hughes, Ciaran [Fermilab; Eichten, Estia [Fermilab; Davies, Christine H. [Glasgow U.
2017-10-09
Motivated by multiple phenomenological considerations, we perform the first search for the existence of a $\\bar{b}\\bar{b}bb$ tetraquark bound state with a mass below the lowest non-interacting bottomonium-pair threshold using the first-principles lattice non-relativistic QCD methodology. We use a full $S$-wave colour/spin basis for the $\\bar{b}\\bar{b}bb$ operators in the three $0^{++}$, $1^{+-}$ and $2^{++}$ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from $a = 0.06 - 0.12$ fm, all of which include $u$, $d$, $s$ and $c$ quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest non-interacting thresholds in the channels studied.
Searching for beauty-fully bound tetraquarks using lattice nonrelativistic QCD
Hughes, Ciaran; Eichten, Estia; Davies, Christine T. H.
2018-03-01
Motivated by multiple phenomenological considerations, we perform the first search for the existence of a b ¯b ¯b b tetraquark bound state with a mass below the lowest noninteracting bottomonium-pair threshold using the first-principles lattice nonrelativistic QCD methodology. We use a full S -wave color/spin basis for the b ¯b ¯b b operators in the three 0++, 1+- and 2++ channels. We employ four gluon field ensembles at multiple lattice spacing values ranging from a =0.06 - 0.12 fm , all of which include u , d , s and c quarks in the sea, and one ensemble which has physical light-quark masses. Additionally, we perform novel exploratory work with the objective of highlighting any signal of a near threshold tetraquark, if it existed, by adding an auxiliary potential into the QCD interactions. With our results we find no evidence of a QCD bound tetraquark below the lowest noninteracting thresholds in the channels studied.
Doubly magic nuclei from lattice QCD forces at MPS=469 MeV /c2
McIlroy, C.; Barbieri, C.; Inoue, T.; Doi, T.; Hatsuda, T.
2018-02-01
We perform ab initio self-consistent Green's function calculations of the closed shell nuclei 4He, 16O, and 40Ca, based on two-nucleon potentials derived from lattice QCD simulations, in the flavor SU(3) limit and at the pseudoscalar meson mass of 469 MeV/c2. The nucleon-nucleon interaction is obtained using the hadrons-to-atomic-nuclei-from-lattice (HAL) QCD method, and its short-distance repulsion is treated by means of ladder resummations outside the model space. Our results show that this approach diagonalizes ultraviolet degrees of freedom correctly. Therefore, ground-state energies can be obtained from infrared extrapolations even for the relatively hard potentials of HAL QCD. Comparing to previous Brueckner Hartree-Fock calculations, the total binding energies are sensibly improved by the full account of many-body correlations. The results suggest an interesting possible behavior in which nuclei are unbound at very large pion masses and islands of stability appear at first around the traditional doubly magic numbers when the pion mass is lowered toward its physical value. The calculated one-nucleon spectral distributions are qualitatively close to those of real nuclei even for the pseudoscalar meson mass considered here.
Statistical Angles on the Lattice QCD Signal-to-Noise Problem
Wagman, Michael L.
The theory of quantum chromodynamics (QCD) encodes the strong interactions that bind quarks and gluons into nucleons and that bind nucleons into nuclei. Predictive control of QCD would allow nuclear structure and reactions as well as properties of supernovae and neutron stars to be theoretically studied from first principles. Lattice QCD (LQCD) can represent generic QCD predictions in terms of well-defined path integrals, but the sign and signal-to-noise problems have obstructed LQCD calculations of large nuclei and nuclear matter in practice. This thesis presents a statistical study of LQCD correlation functions, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in baryon correlation functions is demonstrated to arise from a sign problem associated with Monte Carlo sampling of complex correlation functions. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails associated with stable distributions and Levy flights are found to play a central role in the time evolution of baryon correlation functions. Building on these observations, a new statistical analysis technique called phase reweighting is introduced that allow energy levels to be extracted from large-time correlation functions with time-independent signal-to-noise ratios. Phase reweighting effectively includes dynamical refinement of source magnitudes but introduces a bias associated with the phase. This bias can be removed by performing an extrapolation, but at the expense of re-introducing a signal-to-noise problem. Lattice QCD calculations of the ρ+ and nucleon masses and of the ΞΞ(1S0) binding energy show consistency between standard results obtained using smaller-time correlation functions and phase-reweighted results using large-time correlation functions inaccessible to standard statistical analysis
Unified chiral analysis of the vector meson spectrum from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Wes Armour; Chris Allton; Derek Leinweber; Anthony Thomas; Ross Young
2005-10-13
The chiral extrapolation of the vector meson mass calculated in partially-quenched lattice simulations is investigated. The leading one-loop corrections to the vector meson mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. To incorporate the effect of the opening decay channel as the chiral limit is approached, the extrapolation is studied using a necessary phenomenological extension of chiral effective field theory. This chiral analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of $M_\\rho$ in excellent agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are much less enlightening.
The bottomonium spectrum at finite temperature from N f = 2 + 1 lattice QCD
Aarts, G.; Allton, C.; Harris, T.; Kim, S.; Lombardo, M. P.; Ryan, S. M.; Skullerud, J.-I.
2014-07-01
We present results on the bottomonium spectrum at temperatures above and below the deconfinement crossover temperature, T c , from dynamical lattice QCD simulations. The heavy quark is treated with a non-relativistic effective field theory on the lattice and serves as a probe of the hot medium. Ensembles with a finer spatial lattice spacing and a greater range of temperatures below T c than those previously employed by this collaboration are used. In addition, there are N f = 2 + 1 flavours of Wilson clover quark in the sea with M π ≈ 400 MeV and we perform a more careful tuning of the bottom quark mass in this work. We calculate the spectral functions of S and P wave bottomonium states using the maximum entropy method and confirm earlier findings on the survival of the ground state S wave states up to at least 2 T c and the immediate dissociation of the P wave states above T c .
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
International Nuclear Information System (INIS)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M.; Pleiter, D.; Stueben, H.
2014-03-01
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q 2 in the range 0.2-1.3 GeV 2 . The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ p G E p /G M p . This quantity decreases with Q 2 in a way qualitatively consistent with recent experimental results.
An analysis of the nucleon spectrum from lattice partially-quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Armour, W. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Allton, C. R. [Swansea University, Swansea, SA2 8PP, Wales, U.K.; Leinweber, Derek B. [Univ. of Adelaide, SA (Australia); Thomas, Anthony W. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Young, Ross D. [Argonne National Lab. (ANL), Argonne, IL (United States)
2010-09-01
The chiral extrapolation of the nucleon mass, Mn, is investigated using data coming from 2-flavour partially-quenched lattice simulations. The leading one-loop corrections to the nucleon mass are derived for partially-quenched QCD. A large sample of lattice results from the CP-PACS Collaboration is analysed, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite-volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
The Contribution of Novel CP Violating Operators to the nEDM using Lattice QCD
Directory of Open Access Journals (Sweden)
Gupta Rajan
2017-01-01
Full Text Available In this talk, we motivate the calculation of the matrix elements of novel CP violating operators, the quark EDM and the quark chromo EDM operators, within the nucleon state using lattice QCD. These matrix elements, combined with the bound on the neutron EDM, would provide stringent constraints on beyond the standard model physics, especially as the next generation of neutron EDM experiments reduce the current bound. We then present our lattice strategy for the calculation of these matrix elements, in particular we describe the use of the Schrodinger source method to reduce the calculation of the 4-point to 3-point functions needed to evaluate the quark chromo EDM contribution. We end with a status report on the quality of the signal obtained in the lattice calculations of the connected contributions to the quark chromo EDM operator and the pseudoscalar operator it mixes with under renormalization.
Non-perturbative renormalization of static-light four-fermion operators in quenched lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Palombi, F. [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Papinutto, M.; Pena, C. [CERN, Geneva (Switzerland). Physics Dept., Theory Div.; Wittig, H. [Mainz Univ. (Germany). Inst. fuer Kernphysik
2007-06-15
We perform a non-perturbative study of the scale-dependent renormalization factors of a multiplicatively renormalizable basis of {delta}B=2 parity-odd four-fermion operators in quenched lattice QCD. Heavy quarks are treated in the static approximation with various lattice discretizations of the static action. Light quarks are described by nonperturbatively O(a) improved Wilson-type fermions. The renormalization group running is computed for a family of Schroedinger functional (SF) schemes through finite volume techniques in the continuum limit. We compute non-perturbatively the relation between the renormalization group invariant operators and their counterparts renormalized in the SF at a low energy scale. Furthermore, we provide non-perturbative estimates for the matching between the lattice regularized theory and all the SF schemes considered. (orig.)
Excited-state spectroscopy of singly, doubly and triply-charmed baryons from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Padmanath, M. [Tata Institute; Edwards, Robert G. [JLAB; Mathur, Nilmani [Tata Institute; Peardon, Michael [Trinity College
2014-07-01
We present the ground and excited state spectra of singly, doubly and triply-charmed baryons by using dynamical lattice QCD. A large set of baryonic operators that respect the symmetries of the lattice and are obtained after subduction from their continuum analogues are utilized. These operators transform as irreducible representations of SU(3)F symmetry for flavour, SU(4) symmetry for Dirac spins of quarks and O(3) symmetry for orbital angular momenta. Using novel computational techniques correlation functions of these operators are generated and the variational method is exploited to extract excited states. The lattice spectra that we obtain have baryonic states with well-defined total spins up to 7/2 and the low lying states remarkably resemble the expectations of quantum numbers from SU(6)ⓍO(3) symmetry.
$B$- and $D$-meson leptonic decay constants from four-flavor lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bazavov, A. [Michigan State U.; Bernard, C. [Washington U., St. Louis; Brown, N. [Washington U., St. Louis; Detar, C. [Utah U.; El-Khadra, A. X. [Fermilab; Gámiz, E. [Granada U., Theor. Phys. Astrophys.; Gottlieb, Steven [Indiana U.; Heller, U. M. [APS, New York; Komijani, J. [TUM-IAS, Munich; Kronfeld, A. S. [TUM-IAS, Munich; Laiho, J. [Syracuse U.; Mackenzie, P. B. [Fermilab; Neil, E. T. [RIKEN BNL; Simone, J. N. [Fermilab; Sugar, R. L. [UC, Santa Barbara; Toussaint, D. [Glasgow U.; Van De Water, R. S. [Fermilab
2017-12-26
We calculate the leptonic decay constants of heavy-light pseudoscalar mesons with charm and bottom quarks in lattice quantum chromodynamics on four-flavor QCD gauge-field configurations with dynamical $u$, $d$, $s$, and $c$ quarks. We analyze over twenty isospin-symmetric ensembles with six lattice spacings down to $a\\approx 0.03$~fm and several values of the light-quark mass down to the physical value $\\frac{1}{2}(m_u+m_d)$. We employ the highly-improved staggered-quark (HISQ) action for the sea and valence quarks; on the finest lattice spacings, discretization errors are sufficiently small that we can calculate the $B$-meson decay constants with the HISQ action for the first time directly at the physical $b$-quark mass. We obtain the most precise determinations to-date of the $D$- and $B$-meson decay constants and their ratios, $f_{D^+} = 212.6 (0.5)$~MeV, $f_{D_s} = 249.8(0.4)$~MeV, $f_{D_s}/f_{D^+} = 1.1749(11)$, $f_{B^+} = 189.4(1.4)$~MeV, $f_{B_s} = 230.7(1.2)$~MeV, $f_{B_s}/f_{B^+} = 1.2180(49)$, where the errors include statistical and all systematic uncertainties. Our results for the $B$-meson decay constants are three times more precise than the previous best lattice-QCD calculations, and bring the QCD errors in the Standard-Model predictions for the rare leptonic decays $\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 3.65(11) \\times 10^{-9}$, $\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-) = 1.00(3) \\times 10^{-11}$, and $\\overline{\\mathcal{B}}(B^0 \\to \\mu^+\\mu^-)/\\overline{\\mathcal{B}}(B_s \\to \\mu^+\\mu^-) = 0.00264(7)$ to well below other sources of uncertainty. As a byproduct of our analysis, we also update our previously published results for the light-quark-mass ratios and the scale-setting quantities $f_{p4s}$, $M_{p4s}$, and $R_{p4s}$. We obtain the most precise lattice-QCD determination to date of the ratio $f_{K^+}/f_{\\pi^+} = 1.1950(^{+15}_{-22})$~MeV.
Lattice QCD-based equations of state at vanishing net-baryon density
Bluhm, M; Alberico, W; Beraudo, A; Ratti, C
2014-01-01
We construct a realistic equation of state for QCD matter at vanishing net-baryon density, which is based on recent lattice QCD results at high temperatures combined with a hadron resonance gas model in the low-temperature, confined phase. Partial chemical equilibrium, in which certain particle ratios are fixed at the chemical freeze-out, can be implemented, allowing a description closer to the experimental situation. Given the present uncertainty in the chemical freeze-out temperature, we consider different values within the expected range. The resulting equations of state can be applied in the hydrodynamic modeling of relativistic heavy-ion collisions at the LHC and at the highest RHIC beam energies. Suitable parametrizations of our results are provided.
Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD
International Nuclear Information System (INIS)
Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.
2016-01-01
Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ( 3 He and 4 He) as well, employing (2+1)-flavor lattice QCD at m π =0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.
Light meson form factors at high Q2 from lattice QCD
Koponen, Jonna; Zimermmane-Santos, André; Davies, Christine; Lepage, G. Peter; Lytle, Andrew
2018-03-01
Measurements and theoretical calculations of meson form factors are essential for our understanding of internal hadron structure and QCD, the dynamics that bind the quarks in hadrons. The pion electromagnetic form factor has been measured at small space-like momentum transfer |q2| values up to 2.5 GeV2 by scattering electrons from the pion cloud around a proton. On the other hand, in the limit of very large (or infinite) Q2 = -q2, perturbation theory is applicable. This leaves a gap in the intermediate Q2 where the form factors are not known. As a part of their 12 GeV upgrade Jefferson Lab will measure pion and kaon form factors in this intermediate region, up to Q2 of 6 GeV2. This is then an ideal opportunity for lattice QCD to make an accurate prediction ahead of the experimental results. Lattice QCD provides a from-first-principles approach to calculate form factors, and the challenge here is to control the statistical and systematic uncertainties as errors grow when going to higher Q2 values. Here we report on a calculation that tests the method using an ηs meson, a 'heavy pion' made of strange quarks, and also present preliminary results for kaon and pion form factors. We use the nf = 2 + 1 + 1 ensembles made by the MILC collaboration and Highly Improved Staggered Quarks, which allows us to obtain high statistics. The HISQ action is also designed to have small dicretisation errors. Using several light quark masses and lattice spacings allows us to control the chiral and continuum extrapolation and keep systematic errors in check. Warning, no authors found for 2018EPJWC.17506016.
Catani, S; Soper, Davison Eugene; Stirling, William James; Tapprogge, Stefan; Alekhin, S I; Aurenche, Patrick; Balázs, C; Ball, R D; Battistoni, G; Berger, E L; Binoth, T; Brock, R L; Casey, D; Corcella, Gennaro; Del Duca, V; Fabbro, A D; de Roeck, A; Ewerz, C; de Florian, D; Fontannaz, M; Frixione, Stefano; Giele, W T; Grazzini, Massimiliano; Guillet, J P; Marlen-Heinrich, G; Huston, J; Kalk, J; Kataev, A L; Kato, K; Keller, S; Klasen, M; Kosower, D A; Kulesza, A; Kunszt, Zoltán; Kupco, A; Ilyin, V A; Magnea, L; Mangano, Michelangelo L; Martin, A D; Mazumdar, K; Miné, P; Moretti, M; van Neerven, W L; Parente, G; Perret-Gallix, D; Pilon, E; Pukhov, A E; Puljak, I; Pumplin, Jon; Richter-Was, Elzbieta; Roberts, R G; Salam, Gavin P; Seymour, Michael H; Skachkov, N B; Sidorov, A V; Stenzel, H; Stump, D R; Thorne, R S; Treleani, D; Tung, W K; Vogt, A; Webber, Bryan R; Werlen, M; Zmouchko, S; Mine, Ph.
2000-01-01
We discuss issues of QCD at the LHC including parton distributions, Monte Carlo event generators, the available next-to-leading order calculations, resummation, photon production, small x physics, double parton scattering, and backgrounds to Higgs production.
Application of Chiral Quarks to High-Energy Processes and Lattice QCD
International Nuclear Information System (INIS)
Broniowski, W.; Arriola, E.R.
2009-01-01
Results of the chiral quark models for the soft matrix elements involving pions and photons, relevant for high-energy processes, are reviewed. We discuss quantities related to the generalized parton distributions of the pion: the parton distribution functions, the parton distribution amplitudes, and the generalized form factors. The model predictions are compared to the data or lattice simulations, with good agreement. The QCD evolution from the low quark model scale up to the experimental scales is a crucial ingredient of the approach. (authors)
Bottomonium from lattice QCD as a probe of the Quark-Gluon Plasma
Aarts, G.; Allton, C.; Kelly, A.; Skullerud, J.-I.; Kim, S.; Harris, T.; Ryan, S. M.; Lombardo, M. P.; Oktay, M. B.; Sinclair, D. K.
2013-04-01
We study the temperature dependence of bottomonium for temperatures in the range 0.4Te < T < 2.1Tc, using non-relativistic dynamics for the bottom quark and full relativistic lattice QCD simulations for Nf = 2 light flavors. We consider the behaviour of the correlators in Euclidean space, we analyze the associated spectral functions and we study the dependence on the momentum. Our results are amenable to a successful comparison with effective field theories. They help build a coherent picture of the behaviour of bottomonium in the plasma, consistent which the current LHC results.
ChPT calculations for the analysis of lattice QCD data
International Nuclear Information System (INIS)
Greil, Ludwig
2014-01-01
We present calculations within the framework of three-flavor chiral perturbation theory (ChPT) for several observables (first moments of parton distributions, baryon octet masses and vector meson masses including phi-omega-mixing). We use lattice QCD data to determine the local couplings appearing in this chosen effective theory and we use these extrapolations to study the convergence of the chiral expansion around the symmetric point where all light quark masses have the same value. We also comment on the various benefits that stem from an expansion around the symmetric point.
Axial-Current Matrix Elements in Light Nuclei from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Savage, Martin [Univ. of Washington, Seattle, WA (United States); Shanahan, Phiala E. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Tiburzi, Brian C. [Univ. of Maryland, College Park, MD (United States); Wagman, Michael L. [Univ. of Washington, Seattle, WA (United States); Winter, Frank T. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Beane, Silas [Univ. of New Hampshire, Durham, NH (United States); Chang, Emmanuel [Univ. of Washington, Seattle, WA (United States); Davoudi, Zohreh; Detmold, William [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States)
2016-12-01
I present results from the first lattice QCD calculations of axial-current matrix elements in light nuclei, performed by the NPLQCD collaboration. Precision calculations of these matrix elements, and the subsequent extraction of multi-nucleon axial-current operators, are essential in refining theoretical predictions of the proton-proton fusion cross section, neutrino-nucleus cross sections and $\\beta\\beta$-decay rates of nuclei. In addition, they are expected to shed light on the phenomenological quenching of $g_A$ that is required in nuclear many-body calculations.
Resonances in coupled $\\pi K, \\eta K$ scattering from lattice QCD
Wilson, David J.; Dudek, Jozef J.; Edwards, Robert G.; Thomas, Christopher E.
2014-01-01
Coupled-channel $\\pi K$ and $\\eta K$ scattering amplitudes are determined by studying the finite-volume energy spectra obtained from dynamical lattice QCD calculations. Using a large basis of interpolating operators, including both those resembling a $q\\bar{q}$ construction and those resembling a pair of mesons with relative momentum, a reliable excited-state spectrum can be obtained. Working at ${m_\\pi=391\\,\\mathrm{MeV}}$, we find a gradual increase in the $J^P=0^+$ $\\pi K$ phase-shift which...
Insights into the Quark–Gluon Vertex from Lattice QCD and Meson Spectroscopy
International Nuclear Information System (INIS)
Rojas, E.; El-Bennich, B.; Melo, J.P.B.C. de; Paracha, M. Ali.
2015-01-01
By comparing successful quark–gluon vertex interaction models with the corresponding interaction extracted from lattice-QCD data on the quark’s propagator, we identify common qualitative features which could be important to tune future interaction models beyond the rainbow ladder approximation. Clearly, a quantitative comparison is conceptually not simple, but qualitatively the results suggest that a realistic interaction should be relatively broad with a strong support at about 0.4–0.6 GeV and infrared-finite. (author)
Partially quenched lattice QCD with two degenerate dynamical light Wilson quarks
International Nuclear Information System (INIS)
De, Asit K.; Harindranath, A.; Maiti, Jyotirmoy
2006-01-01
We present our results of numerical studies of partially quenched latticed QCD with two degenerate flavors of dynamical quarks. Gauge configurations are generated with Wilson gauge action and tadpole improved Wilson fermions at β = 5.6 and K sea = 0.155, 0.156, 0.157 and 0.158. Suitably smeared gauge configurations are used to calculate the static interquark potential in order to set the physical scale. Mesonic propagators are calculated at above mentioned four different values of K val for each K sea . We present results for pion and rho masses. (author)
Calculation of the Nucleon Axial Form Factor Using Staggered Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Meyer, Aaron S. [Fermilab; Hill, Richard J. [Perimeter Inst. Theor. Phys.; Kronfeld, Andreas S. [Fermilab; Li, Ruizi [Indiana U.; Simone, James N. [Fermilab
2016-10-14
The nucleon axial form factor is a dominant contribution to errors in neutrino oscillation studies. Lattice QCD calculations can help control theory errors by providing first-principles information on nucleon form factors. In these proceedings, we present preliminary results on a blinded calculation of $g_A$ and the axial form factor using HISQ staggered baryons with 2+1+1 flavors of sea quarks. Calculations are done using physical light quark masses and are absolutely normalized. We discuss fitting form factor data with the model-independent $z$ expansion parametrization.
Finite-temperature phase structure of lattice QCD with Wilson quark action
International Nuclear Information System (INIS)
Aoki, S.; Ukawa, A.; Umemura, T.
1996-01-01
The long-standing issue of the nature of the critical line of lattice QCD with the Wilson quark action at finite temperatures, defined to be the line of vanishing pion screening mass, and its relation to the line of finite-temperature chiral transition is examined. Presented are both analytical and numerical evidence that the critical line forms a cusp at a finite gauge coupling, and that the line of chiral transition runs past the tip of the cusp without touching the critical line. Implications on the continuum limit and the flavor dependence of chiral transition are discussed. copyright 1996 The American Physical Society
Computation of $\\bar{\\Lambda}$ and $\\lambda_1$ with Lattice QCD
Kronfeld, Andreas S.; Simone, James N.
2000-01-01
We pursue a new method, based on lattice QCD, for determining the quantities $\\bar{\\Lambda}$, $\\lambda_1$, and $\\lambda_2$ of heavy-quark effective theory. We combine Monte Carlo data for the meson mass spectrum with perturbative calculations of the short-distance behavior, to extract $\\bar{\\Lambda}$ and $\\lambda_1$ from a formula from HQET. Taking into account uncertainties from fitting the mass dependence and from taking the continuum limit, we find $\\bar{\\Lambda} = 0.68{+0.02}_{-0.12} \\tex...
Light hadrons from lattice QCD with light (u,d), strange and charm dynamical quarks
Energy Technology Data Exchange (ETDEWEB)
Baron, R. [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Boucaud, P. [CNRS et Paris-Sud 11 Univ., 91 - Orsay (France). Lab. de Physique Theorique; Carbonell, J. [Lab. de Physique Subatomique et Cosmologie, 38 - Grenoble (FR)] (and others)
2010-04-15
We present results of lattice QCD simulations with mass-degenerate up and down and mass-split strange and charm (N{sub f}=2+1+1) dynamical quarks using Wilson twisted mass fermions at maximal twist. The tuning of the strange and charm quark masses is performed at two values of the lattice spacing a {approx} 0:078 fm and a {approx}0.086 fm with lattice sizes ranging from L{approx}1.9 fm to L{approx}2.8 fm. We measure with high statistical precision the light pseudoscalar mass m{sub PS} and decay constant f{sub PS} in a range 270
Non-perturbative test of the Witten-Veneziano formula from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Goethe-Universität, Institut für Theoretische Physik,Max-von-Laue-Straße 1, Frankfurt a.M., D-60438 (Germany); NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Adam Mickiewicz University, Faculty of Physics,Umultowska 85, Poznan, 61-614 (Poland); Garcia-Ramos, Elena [NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Humboldt Universität zu Berlin,Newtonstr. 15, Berlin, D-12489 (Germany); Jansen, Karl [NIC, DESY,Platanenallee 6, Zeuthen, D-15738 (Germany); Ottnad, Konstantin [Institut für Strahlen- und Kernphysik (Theorie),Nussallee 14-16, Bonn 53115 Germania (Germany); Urbach, Carsten [Institut für Strahlen- und Kernphysik (Theorie),Nussallee 14-16, Bonn 53115 Germania (Germany); Bethe Center for Theoretical Physics,Nussallee 12, Universität Bonn, Bonn, D-53115 (Germany); Collaboration: The ETM collaboration
2015-09-03
We compute both sides of the Witten-Veneziano formula using lattice techniques. For the one side we perform dedicated quenched simulations and use the spectral projector method to determine the topological susceptibility in the pure Yang-Mills theory. The other side we determine in lattice QCD with N{sub f}=2+1+1 dynamical Wilson twisted mass fermions including for the first time also the flavour singlet decay constant. The Witten-Veneziano formula represents a leading order expression in the framework of chiral perturbation theory and we also employ leading order chiral perturbation theory to relate the flavor singlet decay constant to the relevant decay constant parameters in the quark flavor basis and flavor non-singlet decay constants. After taking the continuum and the SU(2) chiral limits we compare both sides and find good agreement within uncertainties.
Towards corrections to the strong coupling limit of staggered lattice QCD
Fromm, Michael; Philipsen, Owe; de Forcrand, Philippe; Unger, Wolfgang; Miura, Kotaroh
2011-01-01
We report on the first steps of an ongoing project to add gauge observables and gauge corrections to the well-studied strong coupling limit of staggered lattice QCD, which has been shown earlier to be amenable to numerical simulations by the worm algorithm in the chiral limit and at finite density. Here we show how to evaluate the expectation value of the Polyakov loop in the framework of the strong coupling limit at finite temperature, allowing to study confinement properties along with those of chiral symmetry breaking. We find the Polyakov loop to rise smoothly, thus signalling deconfinement. The non-analytic nature of the chiral phase transition is reflected in the derivative of the Polyakov loop. We also discuss how to construct an effective theory for non-zero lattice coupling, which is valid to $O(\\beta)$.
Overlap valence quarks on a twisted mass sea. A case study for mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Garcia-Ramos, Elena [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Humboldt-Universitaet, Berlin (Germany); Herdoiza, Gregorio [UAM/CSIC Univ. Autonoma de Madrid (Spain). Dept. de Fisica Teorica; UAM/CSIC Univ. Autonoma de Madrid (Spain). Inst. de Fisica Teorica; Collaboration: European Twisted Mass Collaboration
2012-11-15
We discuss a Lattice QCD mixed action investigation employing Wilson maximally twisted mass sea and overlap valence fermions. Using four values of the lattice spacing, we demonstrate that the overlap Dirac operator assumes a point-like locality in the continuum limit. We also show that by adopting suitable matching conditions for the sea and valence theories a consistent continuum limit for the pion decay constant and light baryon masses can be obtained. Finally, we confront results for sea-valence mixed meson masses and the valence scalar correlator with corresponding expressions of chiral perturbation theory. This allows us to extract low energy constants of mixed action chiral perturbation which characterize the strength of unitarity violations in our mixed action setup.
Critical point of Nf=3 QCD from lattice simulations in the canonical ensemble
International Nuclear Information System (INIS)
Li Anyi; Alexandru, Andrei; Liu, Keh-Fei
2011-01-01
A canonical ensemble algorithm is employed to study the phase diagram of N f =3 QCD using lattice simulations. We lock in the desired quark number sector using an exact Fourier transform of the fermion determinant. We scan the phase space below T c and look for an S-shape structure in the chemical potential, which signals the coexistence phase of a first order phase transition in finite volume. Applying Maxwell construction, we determine the boundaries of the coexistence phase at three temperatures and extrapolate them to locate the critical point. Using an improved gauge action and improved Wilson fermions on lattices with a spatial extent of 1.8 fm and quark masses close to that of the strange, we find the critical point at T E =0.925(5)T c and baryon chemical potential μ B E =2.60(8)T c .
Properties of pseudoscalar flavour-singlet mesons from 2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Cichy, Krzysztof [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Poznan Univ. (Poland). Faculty of Physics; Drach, Vincent; Garcia Ramos, Elena; Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Michael, Chris [Liverpool Univ. (United Kingdom). Dept. of Mathematical Sciences; Ottnad, Konstantin; Urbach, Carsten; Zimmermann, Falk [Bonn Univ. (Germany). Inst. fuer Strahlen- und Kernphysik
2012-11-15
We study properties of pseudoscalar flavour-singlet mesons from Wilson twisted mass lattice QCD with N{sub f}=2+1+1 dynamical quark flavors. Results for masses are presented at three values of the lattice spacing and light quark masses corresponding to values of the pion mass from 230 MeV to 500 MeV. We briefly discuss scaling effects and the light and strange quark mass dependence of M{sub {eta}}. In addition we present an exploratory study using Osterwalder-Seiler type strange and charm valence quarks. This approach avoids some of the complications of the twisted mass heavy doublet. We present first results for matching valence and unitary actions and a comparison of statistical uncertainties.
High-Performance I/O: HDF5 for Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Kurth, Thorsten; Pochinsky, Andrew; Sarje, Abhinav; Syritsyn, Sergey; Walker-Loud, Andre
2015-01-01
Practitioners of lattice QCD/QFT have been some of the primary pioneer users of the state-of-the-art high-performance-computing systems, and contribute towards the stress tests of such new machines as soon as they become available. As with all aspects of high-performance-computing, I/O is becoming an increasingly specialized component of these systems. In order to take advantage of the latest available high-performance I/O infrastructure, to ensure reliability and backwards compatibility of data files, and to help unify the data structures used in lattice codes, we have incorporated parallel HDF5 I/O into the SciDAC supported USQCD software stack. Here we present the design and implementation of this I/O framework. Our HDF5 implementation outperforms optimized QIO at the 10-20% level and leaves room for further improvement by utilizing appropriate dataset chunking.
Short-distance matrix elements for $D$-meson mixing for 2+1 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chang, Chia Cheng [Univ. of Illinois, Champaign, IL (United States)
2015-01-01
We study the short-distance hadronic matrix elements for D-meson mixing with partially quenched N_{f} = 2+1 lattice QCD. We use a large set of the MIMD Lattice Computation Collaboration's gauge configurations with a^{2} tadpole-improved staggered sea quarks and tadpole-improved Lüscher-Weisz gluons. We use the a^{2} tadpole-improved action for valence light quarks and the Sheikoleslami-Wohlert action with the Fermilab interpretation for the valence charm quark. Our calculation covers the complete set of five operators needed to constrain new physics models for D-meson mixing. We match our matrix elements to the MS-NDR scheme evaluated at 3 GeV. We report values for the Beneke-Buchalla-Greub-Lenz-Nierste choice of evanescent operators.
Criticality of the anisotropic quantum Heisenberg model on a simple cubic lattice
International Nuclear Information System (INIS)
Mariz, A.M.; Tsallis, C.; Santos, R.M.Z. dos; Santos, Raimundo R. dos.
1984-11-01
Within a Real Space Renormalization Group Framework, the criticality (phase diagram, and critical thermal and crossover exponents) of the spin 1/2 - anisotropic quantum Heisenberg ferromagnet on a simple cubic lattice is studied. The results obtained are in antisfactory agreement with known results whenever available. (Author) [pt
Spin wave analysis to the spatially-anisotropic Heisenberg antiferromagnet on triangular lattice
Trumper, Adolfo E.
1998-01-01
We study the phase diagram at T=0 of the antiferromagnetic Heisenberg model on the triangular lattice with spatially-anisotropic interactions. For values of the anisotropy very close to J_alpha/J_beta=0.50, conventional spin wave theory predicts that quantum fluctuations melt the classical structures, for S=1/2. For the regime J_beta
Kumar, Avdhesh; Jamal, M. Yousuf; Chandra, Vinod; Bhatt, Jitesh R.
2018-02-01
Collective modes of an anisotropic hot QCD medium have been studied within the semiclassical transport theory employing the Bhatnagar-Gross-Krook (BGK) collisional kernel. The modeling of the isotropic medium is primarily based on a recent quasiparticle description of a hot QCD equation of state where the medium effects have been encoded in effective gluon and quark/antiquark momentum distributions that posses nontrivial energy dispersions. The anisotropic distribution functions are obtained in a straightforward way by stretching or squeezing the isotropic ones along one of the directions. The gluon self-energy is computed using these distribution functions in a linearized transport equation with the BGK collisional kernel. Further, the tensor decomposition of gluon self-energy leads to the structure functions which eventually controls the dispersion relations and the collective mode structure of the medium. It has been seen that both the medium effects and collisions induce appreciable modifications to the collective modes or the plasma excitations in the hot QCD medium.
Energy- and cost-efficient lattice-QCD computations using graphics processing units
Energy Technology Data Exchange (ETDEWEB)
Bach, Matthias
2014-07-01
Quarks and gluons are the building blocks of all hadronic matter, like protons and neutrons. Their interaction is described by Quantum Chromodynamics (QCD), a theory under test by large scale experiments like the Large Hadron Collider (LHC) at CERN and in the future at the Facility for Antiproton and Ion Research (FAIR) at GSI. However, perturbative methods can only be applied to QCD for high energies. Studies from first principles are possible via a discretization onto an Euclidean space-time grid. This discretization of QCD is called Lattice QCD (LQCD) and is the only ab-initio option outside of the high-energy regime. LQCD is extremely compute and memory intensive. In particular, it is by definition always bandwidth limited. Thus - despite the complexity of LQCD applications - it led to the development of several specialized compute platforms and influenced the development of others. However, in recent years General-Purpose computation on Graphics Processing Units (GPGPU) came up as a new means for parallel computing. Contrary to machines traditionally used for LQCD, graphics processing units (GPUs) are a massmarket product. This promises advantages in both the pace at which higher-performing hardware becomes available and its price. CL2QCD is an OpenCL based implementation of LQCD using Wilson fermions that was developed within this thesis. It operates on GPUs by all major vendors as well as on central processing units (CPUs). On the AMD Radeon HD 7970 it provides the fastest double-precision D kernel for a single GPU, achieving 120GFLOPS. D - the most compute intensive kernel in LQCD simulations - is commonly used to compare LQCD platforms. This performance is enabled by an in-depth analysis of optimization techniques for bandwidth-limited codes on GPUs. Further, analysis of the communication between GPU and CPU, as well as between multiple GPUs, enables high-performance Krylov space solvers and linear scaling to multiple GPUs within a single system. LQCD
Yao, De-Liang; Alvarez-Ruso, Luis; Vicente-Vacas, Manuel J.
2017-12-01
We calculate the nucleon axial form factor up to the leading one-loop order in a covariant chiral effective field theory with the Δ (1232 ) resonance as an explicit degree of freedom. We fit the axial form factor to the latest lattice QCD data and pin down the relevant low-energy constants. The lattice QCD data, for various pion masses below 400 MeV, can be well described up to a momentum transfer of ˜0.6 GeV . The Δ (1232 ) loops contribute significantly to this agreement. Furthermore, we extract the axial charge and radius based on the fitted values of the low-energy constants. The results are gA=1.237 (74 ) and ⟨rA2⟩=0.263 (38 ) fm2 . The obtained coupling gA is consistent with the experimental value if the uncertainty is taken into account. The axial radius is below but in agreement with the recent extraction from neutrino quasielastic scattering data on deuterium, which has large error bars. Up to our current working accuracy, rA is predicted only at leading order, i.e., the one-loop level. A more precise determination might need terms of O (p5).
Gluon and ghost propagator studies in lattice QCD at finite temperature
Energy Technology Data Exchange (ETDEWEB)
Aouane, Rafik
2013-04-29
Gluon and ghost propagators in quantum chromodynamics (QCD) computed in the infrared momentum region play an important role to understand quark and gluon confinement. They are the subject of intensive research thanks to non-perturbative methods based on Dyson-Schwinger (DS) and functional renormalization group (FRG) equations. Moreover, their temperature behavior might also help to explore the chiral and deconfinement phase transition or crossover within QCD at non-zero temperature. Our prime tool is the lattice discretized QCD (LQCD) providing a unique ab-initio non-perturbative approach to deal with the computation of various observables of the hadronic world. We investigate the temperature dependence of Landau gauge gluon and ghost propagators in pure gluodynamics and in full QCD. Regarding the gluon propagator, we compute its longitudinal D{sub L} as well its transversal D{sub T} components. The aim is to provide a data set in terms of fitting formulae which can be used as input for DS (or FRG) equations. We deal with full (N{sub f}=2) LQCD with the twisted mass fermion discretization. We employ gauge field configurations provided by the tmfT collaboration for temperatures in the crossover region and for three fixed pion mass values in the range [300,500] MeV. Finally, within SU(3) pure gauge theory (at T=0) we compute the Landau gauge gluon propagator according to different gauge fixing criteria. Our goal is to understand the influence of gauge copies with minimal (non-trivial) eigenvalues of the Faddeev-Popov operator.
Continuous Time Monte Carlo for Lattice QCD in the Strong Coupling Limit
Unger, Wolfgang
2011-01-01
We present results for lattice QCD with staggered fermions in the limit of infinite gauge coupling, obtained from a worm-type Monte Carlo algorithm on a discrete spatial lattice but with continuous Euclidean time. This is achieved by sending both the anisotropy parameter $\\gamma^2\\simeq a/\\at$ and the number of time-slices $N_\\tau$ to infinity, keeping the ratio $\\gamma^2/N_\\tau \\simeq aT$ fixed. In this limit, ambiguities arising from the anisotropy parameter $\\gamma$ are eliminated and discretization errors usually introduced by a finite temporal lattice extent $\\Nt$ are absent. The obvious gain is that no continuum extrapolation $N_\\tau \\rightarrow \\infty$ has to be carried out. Moreover, the algorithm is faster and the sign problem disappears completely. As a first application, we determine the phase diagram as a function of temperature and real and imaginary baryon chemical potential. We compare our computations with those on lattices with discrete Euclidean time. Discretization errors due to finite $\\Nt...
Towards the confirmation of QCD on the lattice. Improved actions and algorithms
Energy Technology Data Exchange (ETDEWEB)
Krieg, Stefan F.
2009-07-01
Lattice Quantum Chromodynamics has made tremendous progress over the last decade. New and improved simulation algorithms and lattice actions enable simulations of the theory with unprecedented accuracy. In the first part of this thesis, novel simulation algorithms for dynamical overlap fermions are presented. The generic Hybrid Monte Carlo algorithm is adapted to treat the singularity in the Molecular Dynamics force, to increase the tunneling rate between different topological sectors and to improve the overall volume scaling of the combined algorithm. With this new method, simulations with dynamical overlap fermions can reach smaller lattice spacings, larger volumes, smaller quark masses, and therefore higher precision than had previously been possible. The second part of this thesis is focused on a large scale simulation aiming to compute the light hadron mass spectrum. This simulation is based on a tree-level Symanzik improved gauge and tree-level improved stout-smeared Wilson clover action. The efficiency of the combination of this action and the improved simulation algorithms used allows to completely control all systematic errors. Therefore, this simulation provides a highly accurate ab initio calculation of the masses of the light hadrons, such as the proton, responsible for 95% of the mass of the visible universe, and confirms Lattice QCD in the light hadron sector. (orig.)
High-order dynamic lattice method for seismic simulation in anisotropic media
Hu, Xiaolin; Jia, Xiaofeng
2018-03-01
The discrete particle-based dynamic lattice method (DLM) offers an approach to simulate elastic wave propagation in anisotropic media by calculating the anisotropic micromechanical interactions between these particles based on the directions of the bonds that connect them in the lattice. To build such a lattice, the media are discretized into particles. This discretization inevitably leads to numerical dispersion. The basic lattice unit used in the original DLM only includes interactions between the central particle and its nearest neighbours; therefore, it represents the first-order form of a particle lattice. The first-order lattice suffers from numerical dispersion compared with other numerical methods, such as high-order finite-difference methods, in terms of seismic wave simulation. Due to its unique way of discretizing the media, the particle-based DLM no longer solves elastic wave equations; this means that one cannot build a high-order DLM by simply creating a high-order discrete operator to better approximate a partial derivative operator. To build a high-order DLM, we carry out a thorough dispersion analysis of the method and discover that by adding more neighbouring particles into the lattice unit, the DLM will yield different spatial accuracy. According to the dispersion analysis, the high-order DLM presented here can adapt the requirement of spatial accuracy for seismic wave simulations. For any given spatial accuracy, we can design a corresponding high-order lattice unit to satisfy the accuracy requirement. Numerical tests show that the high-order DLM improves the accuracy of elastic wave simulation in anisotropic media.
1999-01-01
Basic Properties of QCD: the Lagrangian, the running coupling, asymptotic freedom and colour confinement. Examples of perturbative calculations in electron- positron physics (total cross sections and event) Parton branching approach will be used to derive the evolution equations for hadron structure functions Comarison with data on deep inelastic scattering and jet production will be for hadron structure functions and jet fragmentation functions
Anisotropic magnetocrystalline coupling of the skyrmion lattice in MnSi
Luo, Yongkang; Lin, Shi-Zeng; Fobes, D. M.; Liu, Zhiqi; Bauer, E. D.; Betts, J. B.; Migliori, A.; Thompson, J. D.; Janoschek, M.; Maiorov, B.
2018-03-01
We investigate the anisotropic nature of magnetocrystalline coupling between the crystallographic and skyrmion crystal (SKX) lattices in the chiral magnet MnSi by magnetic field-angle resolved resonant ultrasound spectroscopy. Abrupt changes are observed in the elastic moduli and attenuation when the magnetic field is parallel to the [011] crystallographic direction. These observations are interpreted in a phenomenological Ginzburg-Landau theory that identifies switching of the SKX orientation to be the result of an anisotropic magnetocrystalline coupling potential. Our paper sheds new light on the nature of magnetocrystalline coupling potential relevant to future spintronic applications.
Nucleon structure in lattice QCD with dynamical domain-wall fermions quarks
International Nuclear Information System (INIS)
Huey-Wen Lin; Shigemi Ohta
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with about 200 gauge configurations each. The lattice cutoff is about 1.7 GeV and the spatial volume is about (1.9 fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δ u-Δ d are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is about 1.6 GeV and the spatial volume is about (3.0 fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu - Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
NUCLEON STRUCTURE IN LATTICE QCD WITH DYNAMICAL DOMAIN--WALL FERMIONS QUARKS
International Nuclear Information System (INIS)
LIN, H.W.; OHTA, S.
2006-01-01
We report RBC and RBC/UKQCD lattice QCD numerical calculations of nucleon electroweak matrix elements with dynamical domain-wall fermions (DWF) quarks. The first, RBC, set of dynamical DWF ensembles employs two degenerate flavors of DWF quarks and the DBW2 gauge action. Three sea quark mass values of 0.04, 0.03 and 0.02 in lattice units are used with 220 gauge configurations each. The lattice cutoff is a -1 ∼ 1.7GeV and the spatial volume is about (1.9fm) 3 . Despite the small volume, the ratio of the isovector vector and axial charges g A /g V and that of structure function moments u-d / Δu-Δd are in agreement with experiment, and show only very mild quark mass dependence. The second, RBC/UK, set of ensembles employs one strange and two degenerate (up and down) dynamical DWF quarks and Iwasaki gauge action. The strange quark mass is set at 0.04, and three up/down mass values of 0.03, 0.02 and 0.01 in lattice units are used. The lattice cutoff is a -1 ∼ 1.6GeV and the spatial volume is about (3.0fm) 3 . Even with preliminary statistics of 25-30 gauge configurations, the ratios g A /g V and u-d / Δu-Δd are consistent with experiment and show only very mild quark mass dependence. Another structure function moment, d 1 , though yet to be renormalized, appears small in both sets
Electric form factors of the octet baryons from lattice QCD and chiral extrapolation
Energy Technology Data Exchange (ETDEWEB)
Shanahan, P.E.; Thomas, A.W.; Young, R.D.; Zanotti, J.M. [Adelaide Univ., SA (Australia). ARC Centre of Excellence in Particle Physics at the Terascale and CSSM; Horsley, R. [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Nakamura, Y. [RIKEN Advanced Institute for Computational Science, Kobe, Hyogo (Japan); Pleiter, D. [Forschungszentrum Juelich (Germany). JSC; Regensburg Univ. (Germany). Inst. fuer Theoretische Physik; Rakow, P.E.L. [Liverpool Univ. (United Kingdom). Theoretical Physics Div.; Schierholz, G. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Stueben, H. [Hamburg Univ. (Germany). Regionales Rechenzentrum; Collaboration: CSSM and QCDSF/UKQCD Collaborations
2014-03-15
We apply a formalism inspired by heavy baryon chiral perturbation theory with finite-range regularization to dynamical 2+1-flavor CSSM/QCDSF/UKQCD Collaboration lattice QCD simulation results for the electric form factors of the octet baryons. The electric form factor of each octet baryon is extrapolated to the physical pseudoscalar masses, after finite-volume corrections have been applied, at six fixed values of Q{sup 2} in the range 0.2-1.3 GeV{sup 2}. The extrapolated lattice results accurately reproduce the experimental form factors of the nucleon at the physical point, indicating that omitted disconnected quark loop contributions are small. Furthermore, using the results of a recent lattice study of the magnetic form factors, we determine the ratio μ{sub p}G{sub E}{sup p}/G{sub M}{sup p}. This quantity decreases with Q{sup 2} in a way qualitatively consistent with recent experimental results.
Up and Down Quark Masses and Corrections to Dashen's Theorem from Lattice QCD and Quenched QED.
Fodor, Z; Hoelbling, C; Krieg, S; Lellouch, L; Lippert, Th; Portelli, A; Sastre, A; Szabo, K K; Varnhorst, L
2016-08-19
In a previous Letter [Borsanyi et al., Phys. Rev. Lett. 111, 252001 (2013)] we determined the isospin mass splittings of the baryon octet from a lattice calculation based on N_{f}=2+1 QCD simulations to which QED effects have been added in a partially quenched setup. Using the same data we determine here the corrections to Dashen's theorem and the individual up and down quark masses. Our ensembles include 5 lattice spacings down to 0.054 fm, lattice sizes up to 6 fm, and average up-down quark masses all the way down to their physical value. For the parameter which quantifies violations to Dashen's theorem, we obtain ϵ=0.73(2)(5)(17), where the first error is statistical, the second is systematic, and the third is an estimate of the QED quenching error. For the light quark masses we obtain, m_{u}=2.27(6)(5)(4) and m_{d}=4.67(6)(5)(4) MeV in the modified minimal subtraction scheme at 2 GeV and the isospin breaking ratios m_{u}/m_{d}=0.485(11)(8)(14), R=38.2(1.1)(0.8)(1.4), and Q=23.4(0.4)(0.3)(0.4). Our results exclude the m_{u}=0 solution to the strong CP problem by more than 24 standard deviations.
Two-nucleon higher partial-wave scattering from lattice QCD
Berkowitz, Evan; Kurth, Thorsten; Nicholson, Amy; Joó, Bálint; Rinaldi, Enrico; Strother, Mark; Vranas, Pavlos M.; Walker-Loud, André
2017-02-01
We present a determination of nucleon-nucleon scattering phase shifts for ℓ ≥ 0. The S, P, D and F phase shifts for both the spin-triplet and spin-singlet channels are computed with lattice Quantum ChromoDynamics. For ℓ > 0, this is the first lattice QCD calculation using the Lüscher finite-volume formalism. This required the design and implementation of novel lattice methods involving displaced sources and momentum-space cubic sinks. To demonstrate the utility of our approach, the calculations were performed in the SU (3)-flavor limit where the light quark masses have been tuned to the physical strange quark mass, corresponding to mπ =mK ≈ 800 MeV. In this work, we have assumed that only the lowest partial waves contribute to each channel, ignoring the unphysical partial wave mixing that arises within the finite-volume formalism. This assumption is only valid for sufficiently low energies; we present evidence that it holds for our study using two different channels. Two spatial volumes of V ≈(3.5 fm)3 and V ≈(4.6 fm)3 were used. The finite-volume spectrum is extracted from the exponential falloff of the correlation functions. Said spectrum is mapped onto the infinite volume phase shifts using the generalization of the Lüscher formalism for two-nucleon systems.
Nearly perturbative lattice-motivated QCD coupling with zero IR limit
Ayala, César; Cvetič, Gorazd; Kögerler, Reinhart; Kondrashuk, Igor
2018-03-01
The product of the gluon dressing function and the square of the ghost dressing function in the Landau gauge can be regarded to represent, apart from the inverse power corrections 1/{Q}2n, a nonperturbative generalization { \\mathcal A }({Q}2) of the perturbative QCD running coupling a({Q}2) (\\equiv {α }s({Q}2)/π ). Recent large volume lattice calculations for these dressing functions indicate that the coupling defined in such a way goes to zero as { \\mathcal A }({Q}2)∼ {Q}2 when the squared momenta Q 2 go to zero ({Q}2\\ll 1 {GeV}}2). In this work we construct such a QCD coupling { \\mathcal A }({Q}2) which fulfills also various other physically motivated conditions. At high momenta it becomes the underlying perturbative coupling a({Q}2) to a very high precision. And at intermediate low squared momenta {Q}2∼ 1 {GeV}}2 it gives results consistent with the data of the semihadronic τ lepton decays as measured by OPAL and ALEPH. The coupling is constructed in a dispersive way, resulting as a byproduct in the holomorphic behavior of { \\mathcal A }({Q}2) in the complex Q 2-plane which reflects the holomorphic behavior of the spacelike QCD observables. Application of the Borel sum rules to τ-decay V + A spectral functions allows us to obtain values for the gluon (dimension-4) condensate and the dimension-6 condensate, which reproduce the measured OPAL and ALEPH data to a significantly better precision than the perturbative \\overline{MS}} coupling approach.
International Nuclear Information System (INIS)
Magalhaes, A.C.N. de; Tsallis, C.; Schwaccheim, G.
1980-04-01
The uncorrelated bond percolation problem is studied in three planar systems where there are two distinct occupancy probabilities. Two different real space renormalization group approaches (referred as the 'canonical' (CRG) and the 'parametric' (PRG) ones) are applied to the anisotropic first-neighbour square lattice, and both of them exhibit the expected tendency towards the exactly known phase boundary (p+q=1). Then, within the context of PRG calculations for increasingly large cells, an extrapolation method is introduced, which leads to analytic proposals for the other two lattices, namely p+q = 1/2 for the first-and second-neighbour square lattice (p and q are, respectively, the first and second neighbour occupancy probabilities), and 3 (p-1/2) = 4 [(1-q) 2 + (1-q) 3 ] (p and q are, respectively, the occupancy probabilities of the topologically different bonds which are in a 1:2 ratio) for the 4- 8 lattice. (Author) [pt
Quenched lattice QCD with domain wall fermions and the chiral limit
International Nuclear Information System (INIS)
Blum, T.; Wingate, M.; Chen, P.; Christ, N.; Cristian, C.; Fleming, G.; Kaehler, A.; Liao, X.; Liu, G.; Malureanu, C.; Mawhinney, R.; Siegert, G.; Sui, C.; Wu, L.; Zhestkov, Y.; Dawson, C.; Soni, A.; Ohta, S.; Vranas, P.
2004-01-01
Quenched QCD simulations on three volumes 8 3 x, 12 3 x and 16 3 x32 and three couplings β=5.7, 5.85 and 6.0 using domain wall fermions provide a consistent picture of quenched QCD. We demonstrate that the small induced effects of chiral symmetry breaking inherent in this formulation can be described by a residual mass (m res ) whose size decreases as the separation between the domain walls (L s ) is increased. However, at stronger couplings much larger values of L s are required to achieve a given physical value of m res . For β=6.0 and L s =16, we find m res /m s =0.033(3), while for β=5.7, and L s =48, m res /m s =0.074(5), where m s is the strange quark mass. These values are significantly smaller than those obtained from a more naive determination in our earlier studies. Important effects of topological near zero modes which should afflict an accurate quenched calculation are easily visible in both the chiral condensate and the pion propagator. These effects can be controlled by working at an appropriately large volume. A non-linear behavior of m π 2 in the limit of small quark mass suggests the presence of additional infrared subtlety in the quenched approximation. Good scaling is seen both in masses and in f π over our entire range, with inverse lattice spacing varying between 1 and 2 GeV
Application of Quadrature Methods for Re-Weighting in Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Abdou Abdel-Rehim, William Detmold, Kostas Orginos
2011-12-01
Re-weighting is a useful tool that has been employed in Lattice QCD in different contexts including, tuning the strange quark mass, approaching the light quark mass regime, and simulating electromagnetic fields on top of QCD gauge configurations. In case of re-weighting the sea quark mass, the re-weighting factor is given by the ratio of the determinants of two Dirac operators D{sub a} and D{sub b}. A popular approach for computing this ratio is to use a pseudofermion representation of the determinant of the composite operator {Omega} = D{sub a}(D{sub b}{sup {dagger}}D{sub b}){sup -1} D{sub a}{sup {dagger}}. Here, we study using quadrature methods together with noise vectors to compute the ratio of determinants. We show that, with quadrature methods each determinant can be computed separately using the operators {Omega}{sub a} = D{sub a}{sup {dagger}}D{sub a} and {Omega}{sub b} = D{sub b}{sup {dagger}} D{sub b}. We also discuss using bootstrap re-sampling to remove the bias from the determinant estimator.
Blum, Thomas; Chowdhury, Saumitra; Hayakawa, Masashi; Izubuchi, Taku
2015-01-09
The most compelling possibility for a new law of nature beyond the four fundamental forces comprising the standard model of high-energy physics is the discrepancy between measurements and calculations of the muon anomalous magnetic moment. Until now a key part of the calculation, the hadronic light-by-light contribution, has only been accessible from models of QCD, the quantum description of the strong force, whose accuracy at the required level may be questioned. A first principles calculation with systematically improvable errors is needed, along with the upcoming experiments, to decisively settle the matter. For the first time, the form factor that yields the light-by-light scattering contribution to the muon anomalous magnetic moment is computed in such a framework, lattice QCD+QED and QED. A nonperturbative treatment of QED is used and checked against perturbation theory. The hadronic contribution is calculated for unphysical quark and muon masses, and only the diagram with a single quark loop is computed for which statistically significant signals are obtained. Initial results are promising, and the prospect for a complete calculation with physical masses and controlled errors is discussed.
Large scale simulations of lattice QCD thermodynamics on Columbia Parallel Supercomputers
International Nuclear Information System (INIS)
Ohta, Shigemi
1989-01-01
The Columbia Parallel Supercomputer project aims at the construction of a parallel processing, multi-gigaflop computer optimized for numerical simulations of lattice QCD. The project has three stages; 16-node, 1/4GF machine completed in April 1985, 64-node, 1GF machine completed in August 1987, and 256-node, 16GF machine now under construction. The machines all share a common architecture; a two dimensional torus formed from a rectangular array of N 1 x N 2 independent and identical processors. A processor is capable of operating in a multi-instruction multi-data mode, except for periods of synchronous interprocessor communication with its four nearest neighbors. Here the thermodynamics simulations on the two working machines are reported. (orig./HSI)
In-medium P-wave quarkonium from the complex lattice QCD potential
International Nuclear Information System (INIS)
Burnier, Yannis; Kaczmarek, Olaf; Rothkopf, Alexander
2016-01-01
We extend our lattice QCD potential based study http://dx.doi.org/10.1007/JHEP12(2015)101 of the in-medium properties of heavy quark bound states to P-wave bottomonium and charmonium. Similar to the behavior found in the S-wave channel their spectra show a characteristic broadening, as well as mass shifts to lower energy with increasing temperature. In contrast to the S-wave states, finite angular momentum leads to the survival of spectral peaks even at temperatures, where the continuum threshold reaches below the bound state remnant mass. We elaborate on the ensuing challenges in defining quarkonium dissolution and present estimates of melting temperatures for the spin averaged χ b and χ c states. As an application to heavy-ion collisions we further estimate the contribution of feed down to S-wave quarkonium through the P-wave states after freezeout.
The structure and elastic moduli of flux-line lattices in anisotropic superconductors
International Nuclear Information System (INIS)
Grishin, A.M.; Martynovich, A.Yu.; Yampol'skiy, S.V.
1992-01-01
The elastic moduli of flux-line lattices in anisotropic superconductors are investigated. In addition to the well-known bulk, shear, and tilt moduli the authors observe moduli that relate deformations in the basal plane of the lattice to vortex tilt. These moduli vanish when the superconductor is magnetized along the axis of anisotropy. The vortex structure continuum realized in this case has identical bulk and shear moduli and different tilt moduli. A hexagonal flux-line lattice is realized in superconductors with 'easy axis' anisotropy when a weak magnetic field is applied. When the field H is applied in the ab-plane of the crystal the lattice becomes an oblique lattice with orthorhombic symmetry. This results in a sharp growth of its elastic moduli and the induction in the sample. Vortex chain structures are the only stable structures in 'easy plane' superconductors. The elastic moduli characterizing the rigidity of an isolated chain are exponentially large compared to the moduli describing interchain interaction. The tilt moduli may reverse their sign when H is oriented near the axis of anisotropy c for strongly anisotropic superconductors. In this case, the vortex structure and all related elastic moduli undergo a discontinuous irreversible change
International Nuclear Information System (INIS)
Craigie, N.S.; Katznelson, E.; Rebbi, C.
1984-01-01
We analyze the behaviour that correlation functions ought to have on the lattice in order to reproduce QCD sum rules in the continuum limit. We formulate a set of relations between lattice correlation functions of meson operators at small time separation and the quark condensates responsible for spontaneous breakdown of chiral symmetry. We suggest that the degree to which such relations are satisfied will provide a set of consistency checks on the ability of lattice Monte Carlo simulations to reproduce the correct spontaneous chiral symmetry breaking of the continuum limit. (author)
Axial-vector form factors of the nucleon from lattice QCD
Gupta, Rajan; Jang, Yong-Chull; Lin, Huey-Wen; Yoon, Boram; Bhattacharya, Tanmoy; Precision Neutron Decay Matrix Elements Pndme Collaboration
2017-12-01
We present results for the form factors of the isovector axial vector current in the nucleon state using large scale simulations of lattice QCD. The calculations were done using eight ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2 +1 +1 dynamical flavors. These ensembles span three lattice spacings a ≈0.06 , 0.09, and 0.12 fm and light-quark masses corresponding to the pion masses Mπ≈135 , 225, and 310 MeV. High-statistics estimates allow us to quantify systematic uncertainties in the extraction of GA(Q2) and the induced pseudoscalar form factor G˜P(Q2). We perform a simultaneous extrapolation in the lattice spacing, lattice volume and light-quark masses of the axial charge radius rA data to obtain physical estimates. Using the dipole ansatz to fit the Q2 behavior we obtain rA|dipole=0.49 (3 ) fm , which corresponds to MA=1.39 (9 ) GeV , and is consistent with MA=1.35 (17 ) GeV obtained by the miniBooNE collaboration. The estimate obtained using the z -expansion is rA|z -expansion =0.46(6) fm, and the combined result is rA|combined=0.48(4 ) fm. Analysis of the induced pseudoscalar form factor G ˜P(Q2) yields low estimates for gP* and gπ NN compared to their phenomenological values. To understand these, we analyze the partially conserved axial current (PCAC) relation by also calculating the pseudoscalar form factor. We find that these low values are due to large deviations in the PCAC relation between the three form factors, and in the pion-pole dominance hypothesis.
Akemann, G; Bloch, J; Shifrin, L; Wettig, T
2008-01-25
We analyze how individual eigenvalues of the QCD Dirac operator at nonzero quark chemical potential are distributed in the complex plane. Exact and approximate analytical results for both quenched and unquenched distributions are derived from non-Hermitian random matrix theory. When comparing these to quenched lattice QCD spectra close to the origin, excellent agreement is found for zero and nonzero topology at several values of the quark chemical potential. Our analytical results are also applicable to other physical systems in the same symmetry class.
On the Green function for the anisotropic simple cubic lattice
International Nuclear Information System (INIS)
Delves, R.T.; Joyce, G.S.
2001-01-01
The analytical properties of the lattice Green function G(α, w)=((1)/(π 3 ))∫ π 0 ∫ π 0 ∫ π 0 ((dθ 1 dθ 2 dθ 3 )/(w-cosθ 1 -cosθ 2 -αcosθ 3 ))are investigated, where w=u+iv is a complex variable in the (u, v) plane and α is a real parameter in the interval (0, ∞). In particular, it is shown that the function y G (α, z)≡wG(α, w), where z=1/w 2 , is a solution of a fourth-order linear differential equation of the type Σ(j=0)/4f j (α, z)D 4-j y=0,where f j (α, z) is a polynomial in the variables α and z and D≡d/dz. It is then proved that the solutions of this differential equation can all be expressed in terms of a product of two functions H 1 (α, z) and H 2 (α, z) which satisfy second-order linear differential equations of the normal type[D 2 +U + (α, z)]y=0,[D 2 +U - (α, z)]y=0,respectively, where U ± (α, z) are complicated algebraic functions of α and z. Next Schwarzian transformation theory is used to reduce both these second-order differential equations to the standard Gauss hypergeometric differential equation. From this result it is deduced that wG(α, w)=((2)/(√1-(2-α) 2 z+√1-(2+α) 2 z))[((2)/(π))K(k + )][((2)/(π))K(k - )],wherek 2 ± ≡ k 2 ± (α, z)=((1)/(2))-((1)/(2))[√1-(2-α) 2 z+√1-(2+α) 2 z] -3 [}1+(2-αz1-(2+α)√z+√1-(2-α)√ z1+(2+α)√z]{±16z+√1-α 2 z[√1+(2-α)z√1+(2+α)√z+√1-(2-α)√z√1-(2+α)] 2 }and K(k) denotes the complete elliptic integral of the first kind with a modulus k. This basic formula is valid for all values of w=u+iv which lie in the (u, v) plane, provided that a cut is made along the real axis from w=-2-α to w=2+α. In the remainder of the paper exact series expansions for G(α, w) are derived which are valid in a sufficiently small neighbourhood of the branch-point singularities at w=2+α, w=α, and w=vertical bar2-αvertical bar. In all cases it is shown that the real and imaginary parts of the coefficients in the analytic part of these expansions can be
The strange and light quark contributions to the nucleon mass from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bali, Gunnar S.; Collins, Sara; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2011-12-15
We determine the strangeness and light quark fractions of the nucleon mass by computing the quark line connected and disconnected contributions to the matrix elements m{sub q} left angle N vertical stroke anti qq vertical stroke N right angle in lattice QCD, using the non-perturbatively improved Sheikholeslami-Wohlert Wilson Fermionic action. We simulate n{sub F}=2 mass degenerate sea quarks with a pion mass of about 285 MeV and a lattice spacing {approx}0.073 fm. The renormalization of the matrix elements involves mixing between contributions from different quark flavours. The pion-nucleon {sigma}-term is extrapolated to physical quark masses exploiting the sea quark mass dependence of the nucleon mass. We obtain the renormalized values {sigma}{sub {pi}}{sub N}=(38{+-}12) MeV at the physical point and f{sub T{sub s}}={sigma}{sub s}/m{sub N}=0.012(14){sup +10}{sub -3} for the strangeness contribution at our larger than physical sea quark mass. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Ying Chen; Shao-Jing Dong; Terrence Draper; Ivan Horvath; Keh-Fei Liu; Nilmani Mathur; Sonali Tamhankar; Cidambi Srinivasan; Frank X. Lee; Jianbo Zhang
2004-05-01
We introduce the ''Sequential Empirical Bayes Method'', an adaptive constrained-curve fitting procedure for extracting reliable priors. These are then used in standard augmented-{chi}{sup 2} fits on separate data. This better stabilizes fits to lattice QCD overlap-fermion data at very low quark mass where a priori values are not otherwise known. Lessons learned (including caveats limiting the scope of the method) from studying artificial data are presented. As an illustration, from local-local two-point correlation functions, we obtain masses and spectral weights for ground and first-excited states of the pion, give preliminary fits for the a{sub 0} where ghost states (a quenched artifact) must be dealt with, and elaborate on the details of fits of the Roper resonance and S{sub 11}(N{sup 1/2-}) previously presented elsewhere. The data are from overlap fermions on a quenched 16{sup 3} x 28 lattice with spatial size La = 3.2 fm and pion mass as low as {approx}180 MeV.
van der Waals Interactions in Hadron Resonance Gas: From Nuclear Matter to Lattice QCD.
Vovchenko, Volodymyr; Gorenstein, Mark I; Stoecker, Horst
2017-05-05
An extension of the ideal hadron resonance gas (HRG) model is constructed which includes the attractive and repulsive van der Waals (VDW) interactions between baryons. This VDW-HRG model yields the nuclear liquid-gas transition at low temperatures and high baryon densities. The VDW parameters a and b are fixed by the ground state properties of nuclear matter, and the temperature dependence of various thermodynamic observables at zero chemical potential are calculated within the VDW-HRG model. Compared to the ideal HRG model, the inclusion of VDW interactions between baryons leads to a qualitatively different behavior of second and higher moments of fluctuations of conserved charges, in particular in the so-called crossover region T∼140-190 MeV. For many observables this behavior resembles closely the results obtained from lattice QCD simulations. This hadronic model also predicts nontrivial behavior of net-baryon fluctuations in the region of phase diagram probed by heavy-ion collision experiments. These results imply that VDW interactions play a crucial role in the thermodynamics of hadron gas. Thus, the commonly performed comparisons of the ideal HRG model with the lattice and heavy-ion data may lead to misconceptions and misleading conclusions.
Heavy quark masses in the continuum limit of quenched Lattice QCD
International Nuclear Information System (INIS)
De Divitiis, G.M.; Guagnelli, M.; Palombi, F.; Petronzio, R.; Tantalo, N.
2003-01-01
We compute charm and bottom quark masses in the quenched approximation and in the continuum limit of lattice QCD. We make use of a step scaling method, previously introduced to deal with two scale problems, that allows to take the continuum limit of the lattice data. We determine the RGI quark masses and make the connection to the MS-bar scheme. The continuum extrapolation gives us a value m b RGI =6.73(16) GeV for the b-quark and m c RGI =1.681(36) GeV for the c-quark, corresponding, respectively, to m b MS-bar (m b MS-bar =4.33(10) GeV and m c MS-bar (m c MS-bar =1.319(28) GeV. The latter result, in agreement with current estimates, is for us a check of the method. Using our results on the heavy quark masses we compute the mass of the B c meson, M B c =6.46(15) GeV
Finite size scaling study of Nf=4 finite density QCD on the lattice
Jin, Xiao-Yong; Kuramashi, Yoshinobu; Nakamura, Yoshifumi; Takeda, Shinji; Ukawa, Akira
2013-11-01
We explore the phase space spanned by the temperature and the chemical potential for four-flavor lattice QCD using the Wilson-clover quark action. In order to determine the order of the phase transition, we apply finite-size scaling analyses to gluonic and quark observables, including plaquette, Polyakov loop, and quark number density, and examine their susceptibility, skewness, kurtosis, and Challa-Landau-Binder cumulant. Simulations were carried out on lattices of a temporal size fixed at Nt=4 and spatial sizes chosen from 63 up to 103. Configurations were generated using the phase-reweighting approach, while the value of the phase of the quark determinant was carefully monitored. The μ-parameter reweighting technique is employed to precisely locate the point of the phase transition. Among various approximation schemes for calculating the ratio of quark determinants needed for μ reweighting, we found the Taylor expansion of the logarithm of the quark determinant to be the most reliable. Our finite-size analyses show that the transition is first order at (β,κ,μ/T)=(1.58,0.1385,0.584±0.008), where (mπ/mρ,T/mρ)=(0.822,0.154). It weakens considerably at (β,κ,μ/T)=(1.60,0.1371,0.821±0.008), where (mπ/mρ,T/mρ)=(0.839,0.150), and a crossover rather than a first-order phase transition cannot be ruled out.
Tetraquark operators in lattice QCD and exotic flavour states in the charm sector
Cheung, Gavin K. C.; Thomas, Christopher E.; Dudek, Jozef J.; Edwards, Robert G.
2017-11-01
We present a general class of operators resembling compact tetraquarks which have a range of colour-flavour-spin structures, transform irreducibly under the symmetries of the lattice and respect other relevant symmetries. These constructions are demonstrated in lattice QCD calculations with light quarks corresponding to m π = 391 MeV. Using the distillation framework, correlation functions involving large bases of meson-meson and tetraquark operators are computed in the isospin-1 hidden-charm and doubly-charmed sectors, and finite-volume spectra are extracted with the variational method. We find the spectra are insensitive to the addition of tetraquark operators to the bases of meson-meson operators. For the first time, through using diverse bases of meson-meson operators, the multiple energy levels associated with meson-meson levels which would be degenerate in the non-interacting limit are extracted reliably. The number of energy levels in each spectrum is found to be equal to the number of expected non-interacting meson-meson levels in the energy region considered and the majority of energies lie close to the non-interacting levels. Therefore, there is no strong indication for any bound state or narrow resonance in the channels we study.
QCD thermodynamics from an imaginary μB: Results on the four flavor lattice model
International Nuclear Information System (INIS)
D'Elia, Massimo; Lombardo, Maria-Paola
2004-01-01
We study four flavor QCD at nonzero temperature and density by analytic continuation from an imaginary chemical potential. The explored region is T=0.95T c c , and the baryochemical potentials range from 0 to ≅500 MeV. Observables include the number density, the order parameter for chiral symmetry, and the pressure, which is calculated via an integral method at fixed temperature and quark mass. The simulations are carried out on a 16 3 x4 lattice, and the mass dependence of the results is estimated by exploiting the Maxwell relations. In the hadronic region, we confirm that the results are consistent with a simple resonance hadron gas model, and we estimate the critical density by combining the results for the number density with those for the critical line. In the hot phase, above the end point of the Roberge-Weiss transition T E ≅1.1T c , the results are consistent with a free lattice model with a fixed effective number of flavor slightly different from four. We confirm that confinement and chiral symmetry are coincident by a further analysis of the critical line, and we discuss the interrelation between thermodynamics and critical behavior. We comment on the strength and weakness of the method, and propose further developments
Hadronic correlation functions with quark-disconnected contributions in lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Guelpers, Vera Magdalena
2015-09-14
One of the fundamental interactions in the Standard Model of particle physics is the strong force, which can be formulated as a non-abelian gauge theory called Quantum Chromodynamics (QCD). In the low-energy regime, where the QCD coupling becomes strong and quarks and gluons are confined to hadrons, a perturbative expansion in the coupling constant is not possible. However, the introduction of a four-dimensional Euclidean space-time lattice allows for an ab initio treatment of QCD and provides a powerful tool to study the low-energy dynamics of hadrons. Some hadronic matrix elements of interest receive contributions from diagrams including quark-disconnected loops, i.e. disconnected quark lines from one lattice point back to the same point. The calculation of such quark loops is computationally very demanding, because it requires knowledge of the all-to-all propagator. In this thesis we use stochastic sources and a hopping parameter expansion to estimate such propagators. We apply this technique to study two problems which relay crucially on the calculation of quark-disconnected diagrams, namely the scalar form factor of the pion and the hadronic vacuum polarization contribution to the anomalous magnet moment of the muon. The scalar form factor of the pion describes the coupling of a charged pion to a scalar particle. We calculate the connected and the disconnected contribution to the scalar form factor for three different momentum transfers. The scalar radius of the pion is extracted from the momentum dependence of the form factor. The use of several different pion masses and lattice spacings allows for an extrapolation to the physical point. The chiral extrapolation is done using chiral perturbation theory (χPT). We find that our pion mass dependence of the scalar radius is consistent with χPT at next-to-leading order. Additionally, we are able to extract the low energy constant anti l{sub 4} from the extrapolation, and our result is in agreement with results
Energy Technology Data Exchange (ETDEWEB)
Molina, Raquel [Univ. of Sao Paulo (Brazil); Hu, Bitao [George Washington Univ., Washington, DC (United States); Doering, Michael [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); George Washington Univ., Washington, DC (United States); Mai, Maxim [George Washington Univ., Washington, DC (United States); Alexandru, Andrei [George Washington Univ., Washington, DC (United States)
2018-04-01
Several lattice QCD simulations of meson-meson scattering in p-wave and Isospin = 1 in Nf = 2 + 1 flavours have been carried out recently. Unitarized Chiral Perturbation Theory is used to perform extrapolations to the physical point. In contrast to previous findings on the analyses of Nf = 2 lattice data, where most of the data seems to be in agreement, some discrepancies are detected in the Nf = 2 + 1 lattice data analyses, which could be due to different masses of the strange quark, meson decay constants, initial constraints in the simulation, or other lattice artifacts. In addition, the low-energy constants are compared to the ones from a recent analysis of Nf = 2 lattice data.
Phase diagram of the Z(4) ferromagnet in anisotropic square lattice
International Nuclear Information System (INIS)
Tsallis, C.; Souletie, J.
1985-01-01
Within a real-space renormalisation-group (RG) scheme, the criticality of the ferromagnetic Z(4) model on anisotropic square lattice is studied. A RG cluster which has already proved to be very efficient for the Potts model on the same lattice is used. The establishment of the RG recurrence relations is greatly simplified through the break-collapse method. The phase diagram (exhibiting ferromagnetic, paramagnetic and nematic-like phases) recovers all the available exact results, and is believed to be a high precision one everywhere. If the model is alternatively thought as being associated with a particular hierarchical lattice rather than with the square one, then it is exact everywhere. (Author) [pt
Iso-vector and iso-scalar tensor charges of the nucleon from lattice QCD
International Nuclear Information System (INIS)
Bhattacharya, Tanmoy; Cirigliano, Vincenzo; Gupta, Rajan; Yoon, Boram; Cohen, Saul D.; Joseph, Anosh; Lin, Huey-Wen
2015-07-01
We present results for the iso-vector and flavor diagonal tensor charges g u-d T , g u T , g d T , and g s T needed to probe novel tensor interactions at the TeV scale in neutron and nuclear β-decays and the contribution of the quark electric dipole moment (EDM) to the neutron EDM. The lattice QCD calculations were done using nine ensembles of gauge configurations generated by the MILC collaboration using the HISQ action with 2+1+1 dynamical flavors. These ensembles span three lattice spacings a∼0.06, 0.09 and 0.12 fm and three quark masses corresponding to the pion masses M π ∼130, 220 and 310 MeV. Using estimates from these ensembles, we quantify all systematic uncertainties and perform a simultaneous extrapolation in the lattice spacing, volume and light quark masses for the connected contributions. The final estimates of the connected nucleon (proton) tensor charge for the iso-vector combination is g u-d T =1.020(76) in the MS scheme at 2 GeV. The additional disconnected quark loop contributions needed for the flavor-diagonal matrix elements are calculated using a stochastic estimator employing the truncated solver method with the all-mode-averaging technique. We find that the size of the disconnected contribution is smaller than the statistical error in the connected contribution. This allows us to bound the disconnected contribution and include it as an additional uncertainty in the flavor-diagonal charges. After a continuum extrapolation, we find g u T =0.774(66), g d T =-0.233(28) and g u+d T =0.541(67). The strangeness tensor charge, that can make a significant contribution to the neutron EDM due to the large ratio m s /m u,d , is g s T =0.008(9) in the continuum limit.
Dowdall, R J; Davies, C T H; Horgan, R R; Monahan, C J; Shigemitsu, J
2013-05-31
We present the first lattice QCD calculation of the decay constants f(B) and f(B(s)) with physical light quark masses. We use configurations generated by the MILC Collaboration including the effect of u, d, s, and c highly improved staggered quarks in the sea at three lattice spacings and with three u/d quark mass values going down to the physical value. We use improved nonrelativistic QCD (NRQCD) for the valence b quarks. Our results are f(B)=0.186(4) GeV, f(B(s))=0.224(4) GeV, f(B(s))/f(B)=1.205(7), and M(B(s))-M(B)=85(2) MeV, superseding earlier results with NRQCD b quarks. We discuss the implications of our results for the standard model rates for B((s))→μ(+)μ(-) and B→τν.
Lattice dynamical appraisal of the anisotropic Debye-Waller factors in graphite lattice
International Nuclear Information System (INIS)
Haridasan, T.M.; Sathyamurthy, G.
1989-12-01
The Debye-Waller factors in graphite for the atomic motions within the basal plane and also across the basal planes have been calculated using the various lattice dynamical models available to date and a critical comparison is made with the existing experimental data from X ray and neutron scattering studies. The present study reveals the need for further investigation on the nature of atomic motion across the basal planes. (author). 15 refs, 1 tab
Lattice QCD investigation of the structure of the a0(980 ) meson
Alexandrou, Constantia; Berlin, Joshua; Dalla Brida, Mattia; Finkenrath, Jacob; Leontiou, Theodoros; Wagner, Marc
2018-02-01
We investigate the quark content of the low-lying states in the I (JP)=1 (0+) sector, which are the quantum numbers of the a0(980 ) meson, using lattice QCD. To this end, we consider correlation functions of six different two- and four-quark interpolating fields. We evaluate all diagrams, including diagrams, where quarks propagate within a time slice, e.g. with closed quark loops. We demonstrate that diagrams containing such closed quark loops have a drastic effect on the final results and, thus, may not be neglected. Our analysis, which is carried out at unphysically heavy u and d quark mass corresponding to mπ=296 (3 ) MeV and in a single spatial volume of extent 2.9 fm, shows that in addition to the expected spectrum of two-meson scattering states there is an additional energy level around the two-particle thresholds of K +K ¯ and η +π . This additional state, which is a candidate for the a0(980 ) meson, couples to a quark-antiquark as well as to a diquark-antidiquark interpolating field, indicating that it is a superposition of an ordinary q ¯q and a tetraquark structure. The analysis is performed using AMIAS, a novel statistical method based on the sampling of all possible spectral decompositions of the considered correlation functions, as well as solving standard generalized eigenvalue problems.
Singly and Doubly Charmed $J=1/2$ Baryon Spectrum from Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Liu, Liuming [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Lin, Huey-Wen [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Univ. of Washington, Seattle, WA (United States); Orginos, Kostas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2010-05-01
We compute the masses of the singly and doubly charmed baryons in full QCD using the relativistic Fermilab action for the charm quark. For the light quarks we use domain-wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We use the low-lying charmonium spectrum to tune our heavy-quark action and as a guide to understanding the discretization errors associated with the heavy quark. Our results are in good agreement with experiment within our systematicss, except for the spin-1/2 $\\Xi_{cc}$, for which we predict the isospin averaged mass to be $M_{\\Xi_{cc}} = 3665 \\pm17 \\pm14\\, {}^{+0}_{-35}$~{MeV} (here the first uncertainty is statistical, the second systematic and the third an estimate of lattice discretization errors). In addition, we predict the splitting of the (isospin averaged) spin-1/2 $\\O_{cc}$ with the $\\Xi_{cc}$ to be $M_{\\O_{cc}} - M_{\\Xi_{cc}} = 98 \\pm9 \\pm22$~{MeV} (in this mass splitting, the leading discretization errors cancel). This corresponds to a prediction of $M_{\\O_{cc}} = 3763\\pm9\\pm44\\, {}^{+0}_{-35}$~{MeV}.
Phase diagram of dense two-color QCD within lattice simulations
Directory of Open Access Journals (Sweden)
Braguta V.V.
2017-01-01
Full Text Available We present the results of a low-temperature scan of the phase diagram of dense two-color QCD with Nf = 2 quarks. The study is conducted using lattice simulation with rooted staggered quarks. At small chemical potential we observe the hadronic phase, where the theory is in a confining state, chiral symmetry is broken, the baryon density is zero and there is no diquark condensate. At the critical point μ = mπ/2 we observe the expected second order transition to Bose-Einstein condensation of scalar diquarks. In this phase the system is still in confinement in conjunction with nonzero baryon density, but the chiral symmetry is restored in the chiral limit. We have also found that in the first two phases the system is well described by chiral perturbation theory. For larger values of the chemical potential the system turns into another phase, where the relevant degrees of freedom are fermions residing inside the Fermi sphere, and the diquark condensation takes place on the Fermi surface. In this phase the system is still in confinement, chiral symmetry is restored and the system is very similar to the quarkyonic state predicted by SU(Nc theory at large Nc.
Aspects of thermodynamics and confinement in the lattice formulation of QCD
International Nuclear Information System (INIS)
Liptak, L.
2009-01-01
This dissertation thesis covers selected problems related to two aspects of the theory of strong interactions, quantum chromodynamics: thermodynamics of QCD and color confinement. The problems were treated in a nonperturbative way, in the lattice formulation of the theory. Main results of our investigation can be summarized in the following way: - Our first study was focused on properties of thermodynamical quantities for free massless fermions at non-zero temperature and chemical potential on a lattice. We used the so-called overlap Dirac operator and introduced the chemical potential in a way proposed recently by Bloch and Wettig, based on analytic continuation of the usual sign function in the complex plane. The overlap Dirac operator satisfies the proper lattice chiral symmetry defined by the Ginsparg-Wilson relation, and therefore represents an appropriate formulation for massless fermions. We analyzed the behavior of the free-fermion energy density and the number operator at non-zero chemical potential. We found that the expected behavior of these quantities in the continuum limit was reliably approached both at zero and non-zero temperatures. The conclusion is that overlap fermions with the suggested analytic continuation provide both chiral symmetry and the correct description of fermions at finite density, at least for free fermions. We also showed that the overlap fermions have a quantitatively similar behavior like Wilson fermions. - Further we studied the canonical formalism of thermodynamics. An important aspect which motivates a study of canonical partition functions is the possibility to reproduce the grand canonical partition function from canonical ones via the fugacity expansion; in this way, one can circumvent the fermion sign problem. Recently, a factorization formula of the fermion determinant was proposed by Danzer and Gattringer, which is based on the proper division of the lattice and redefinition of the chemical potential. We investigated
On the absence of pentaquark states from dynamics in strongly coupled lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Anjos, Petrus Henrique Ribeiro dos [Universidade Federal de Goias (UFG), Goiania, GO (Brazil); Veiga, Paulo Afonso Faria da; O' Carroll, Michael [Universidade de Sao Paulo (USP), SP (Brazil); Francisco Neto, Antonio [Universidade Federal de Ouro Preto (UFOP), MG (Brazil)
2011-07-01
Full text: We consider an imaginary time functional integral formulation of a two-flavor, 3 + 1 lattice QCD model with Wilson's action and in the strong coupling regime (with a small hopping parameter, {kappa}0, and a much smaller plaquette coupling, {beta} = 1/g{sub 0}{sup 2}, so that the quarks and glueballs are heavy). The model has local SU(3){sub c} gauge and global SU(2){sub f} flavor symmetries, and incorporates the corresponding part of the eightfold way particles: baryons (mesons) of asymptotic mass -3ln{kappa}(-2 ln {kappa}). We search for pentaquark states as meson-baryon bound states in the energy-momentum spectrum of the model, using a lattice Bethe-Salpeter equation. This equation is solved within a ladder approximation, given by the lowest nonvanishing order in {kappa} and {beta} of the Bethe-Salpeter kernel. It includes order 2 contributions with a q-barq exchange potential together with a contribution that is a local-in-space, energy-dependent potential. The attractive or repulsive nature of the exchange interaction depends on the spin of the meson-baryon states. The Bethe-Salpeter equation presents integrable singularities, forcing the couplings to be above a threshold value for the meson and the baryon to bind in a pentaquark. We analyzed all the total isospin sectors, I = 1/2/3/2/ 5/2, for the system. For all I, the net attraction resulting from the two sources of interaction is not strong enough for the meson and the baryon to bind. Thus, within our approximation, these pentaquark states are not present up to near the free meson-baryon energy threshold of - 5 ln{kappa}. This result is to be contrasted with the spinless case for which our method detects meson-baryon bound states, as well as for Yukawa effective baryon and meson field models. A physical interpretation of our results emerges from an approximate correspondence between meson-baryon bound states and negative energy states of a one-particle lattice Schroedinger Hamiltonian
Energy Technology Data Exchange (ETDEWEB)
Blossier, B
2006-06-15
We have studied some phenomenological aspects of the B meson physics by using lattice QCD, which is a non perturbative method (based on the first principles of Quantum Field Theory) of computing Green functions of the theory. Pionic couplings g{sub 1} and g{sub 2}, parameterizing the effective chiral Lagrangian which describes interactions between heavy-light mesons and soft pions, have been computed beyond the quenched approximation (at N{sub f} = 2). We have renormalized the operator q-bar{gamma}{sub {mu}}{gamma}{sup 5}q non perturbatively by using chiral Ward identities. We obtain g{sub 1} = 0.4/0.6 and g{sub 2} = -0.1/-0.3. We have estimated from an un-quenched simulation (at N{sub f} = 2) the strange quark mass: the non perturbative renormalisation scheme RI-MOM has been applied. After the matching in the MS scheme the result is m{sub s}(2 GeV) = 101 {+-} 8(-0,+25) MeV. We have proposed a method to calculate on the lattice the Heavy Quark Effective Theory form factors of the semileptonic transitions B {yields} D{sup **} at zero recoil. The renormalisation constant of the operator h-bar{gamma}{sub i}{gamma}{sup 5}D{sub j}h has been computed at one-loop order of the perturbation theory. We obtain {tau}{sub 1/2}(1) = 0.3/0.5 and {tau}{sub 3/2}(1) 0.5/0.7. Eventually the bag parameter B{sub B{sub s}} associated the B{sub s} - B{sub s}-bar mixing amplitude in the Standard Model has been estimated in the quenched approximation by using for the strange quark an action which verifies the chiral symmetry at finite lattice spacing a. Thus systematic errors are significantly reduced in the renormalisation procedure because the spurious mixing of the four-fermion operator h-bar{gamma}{sub {mu}}{sub L}qh-bar{gamma}{sub {mu}}{sub L}q with four-fermion operators of different chirality is absent. The result is B{sub B{sub s}} = 0.92(3). (author)
Anisotropic intrinsic lattice thermal conductivity of borophane from first-principles calculations.
Liu, Gang; Wang, Haifeng; Gao, Yan; Zhou, Jian; Wang, Hui
2017-01-25
Borophene (boron sheet) as a new type of two-dimensional (2D) material was grown successfully recently. Unfortunately, the structural stability of freestanding borophene is still an open issue. Theoretical research has found that full hydrogenation can remove such instability, and the product is called borophane. In this paper, using first-principles calculations we investigate the lattice dynamics and thermal transport properties of borophane. The intrinsic lattice thermal conductivity and the relaxation time of borophane are investigated by solving the phonon Boltzmann transport equation (BTE) based on first-principles calculations. We find that the intrinsic lattice thermal conductivity of borophane is anisotropic, as the higher value (along the zigzag direction) is about two times of the lower one (along the armchair direction). The contributions of phonon branches to the lattice thermal conductivities along different directions are evaluated. It is found that both the anisotropy of thermal conductivity and the different phonon branches which dominate the thermal transport along different directions are decided by the group velocity and the relaxation time of phonons with very low frequency. In addition, the size dependence of thermal conductivity is investigated using cumulative thermal conductivity. The underlying physical mechanisms of these unique properties are also discussed in this paper.
Calculation of the heavy-hadron axial couplings g1, g2, and g3 using lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Will Detmold, David Lin, Stefan Meinel
2012-06-01
In a recent paper [arXiv:1109.2480] we have reported on a lattice QCD calculation of the heavy-hadron axial couplings g{sub 1}, g{sub 2}, and g{sub 3}. These quantities are low-energy constants of heavy-hadron chiral perturbation theory (HH{chi}PT) and are related to the B*B{pi}, {Sigma}{sub b}*{Sigma}{sub b}{pi}, and {Sigma}{sub b}{sup (*)}{Lambda}{sub b}{pi} couplings. In the following, we discuss important details of the calculation and give further results. To determine the axial couplings, we explicitly match the matrix elements of the axial current in QCD with the corresponding matrix elements in HH{chi}PT. We construct the ratios of correlation functions used to calculate the matrix elements in lattice QCD, and study the contributions from excited states. We present the complete numerical results and discuss the data analysis in depth. In particular, we demonstrate the convergence of SU(4|2) HH{chi}PT for the axial current matrix elements at pion masses up to about 400 MeV and show the impact of the nonanalytic loop contributions. Finally, we present additional predictions for strong and radiative decay widths of charm and bottom baryons.
Braun-Munzinger, P.; Redlich, K.; Stachel, J.
2016-01-01
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge, strangeness and baryon number from experimental data on the particle production yields at midrapidity of the ALICE Collaboration at CERN. The data were taken in central Pb-Pb collisions at $\\sqrt{s_{\\rm NN}}$~=~2.76~TeV and cover one unit of rapidity. We show that the resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_{c} \\simeq$ 155 MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. Since Lattice QCD calculations are performed at a baryochemical potential of $\\mu_{B}$ = 0, the comparisons with LHC data are the most direct due to the vanishing baryon transport to midrapidity at these high energies.
Energy Technology Data Exchange (ETDEWEB)
Chiu, T.-W.; Hsieh, T.-H
2004-03-01
We determine several quantities in quenched lattice QCD with optimal domain-wall fermion. On the 16{sup 3} x 3{sup 2} lattice at {beta} = 6.0, we determine the parameters (C, {delta}, B) in the pseudoscalar meson mass in quenched chiral perturbation theory (g{sub X}PT). Using these parameters, as well as our lattice spacing a and the experimental inputs of m{sub {pi}} and m{sub K} we determine the light quark masses: M{sub u,d} = 4.4 {+-} 0.3 MeV, and m{sub s} = 98 {+-} 7 MeV, in MSbar at {mu} = 2 GeV. Also, we determine the quark condensate q-barq {<=} -(250 {+-} 3 MeV){sup 3}, and the quark-gluon condensate ggbar{sigma}{sub {mu}}{sub v}q< = -(434 {+-} 4 McV){sup 5}, in MSbar at scale 2 GeV.
Energy Technology Data Exchange (ETDEWEB)
Nube, Andreas [DESY Zeuthen, Platanenallee 6, 15738 Zeuthen (Germany)
2013-07-01
The aim of this project is to calculate a theoretical estimate of the D{sub s}-meson decay constant f{sub D{sub s}} in the framework of lattice-QCD with a chirally rotated mass term and four dynamic quark flavours (up, down, strange and charm). A comprehensive set of gauge configurations has been produced with high input on super-computers across Europe. Data from three different lattice spacings is available with four to eight different light quark masses each. HMXPT is used to extrapolate the estimates of f{sub D{sub s}} to the physical point. First determinations indicate a good agreement with both, former lattice determinations and experimental measurements.
Braun-Munzinger, Peter; Redlich, Krzysztof; Stachel, Johanna
2015-01-01
We construct net baryon number and strangeness susceptibilities as well as correlations between electric charge and strangeness from experimental data of the ALICE Collaboration at the CERN LHC. The data were taken in Pb-Pb collisions at $\\sqrt{s_{NN}}$=2.76 TeV. The resulting fluctuations and correlations are consistent with Lattice QCD results at the chiral crossover pseudocritical temperature $T_c\\simeq 155$ MeV. This agreement lends strong support to the assumption that the fireball created in these collisions is of thermal origin and exhibits characteristic properties expected in QCD at the transition from the quark gluon plasma to the hadronic phase. The volume of the fireball for one unit of rapidity at $T_c$ is found to exceed 4000 fm$^3$. A detailed discussion on uncertainties in the temperature and volume of the fireball is presented. The results are linked to pion interferometry measurements and predictions from percolation theory.
International Nuclear Information System (INIS)
Tsallis, C.; Santos, R.J.V. dos
1983-01-01
On conjectural grounds an equation that provides a very good approximation for the critical temperature of the fully-anisotropic homogeneous quenched bond-random q-state Potts ferromagnet in triangular and honeycomb lattices is presented. Almost all the exact particular results presently known for the square, triangular and honeycomb lattices are recovered; the numerical discrepancy is quite small for the few exceptions. Some predictions that we believe to be exact are made explicite as well. (Author) [pt
Energy Technology Data Exchange (ETDEWEB)
Christ, Norman H. [Columbia Univ., New York, NY (United States); Flynn, Jonathan M. [Univ. of Southampton, Southampton (United Kingdom); Izubuchi, Taku [Brookhaven National Lab. (BNL), Upton, NY (United States); Kawanai, Taichi [RIKEN, Wako (Japan); Brookhaven National Lab. (BNL), Upton, NY (United States); Lehner, Christoph [Brookhaven National Lab. (BNL), Upton, NY (United States); Soni, Amarjit [Brookhaven National Lab. (BNL), Upton, NY (United States); Van de Water, Ruth S. [Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Witzel, Oliver [Boston Univ., Boston, MA (United States)
2015-03-10
We calculate the B-meson decay constants f_{B}, f_{B}s, and their ratio in unquenched lattice QCD using domain-wall light quarks and relativistic b-quarks. We use gauge-field ensembles generated by the RBC and UKQCD collaborations using the domain-wall fermion action and Iwasaki gauge action with three flavors of light dynamical quarks. We analyze data at two lattice spacings of a ≈ 0.11, 0.086 fm with unitary pion masses as light as M_{π} ≈ 290 MeV; this enables us to control the extrapolation to the physical light-quark masses and continuum. For the b-quarks we use the anisotropic clover action with the relativistic heavy-quark interpretation, such that discretization errors from the heavy-quark action are of the same size as from the light-quark sector. We renormalize the lattice heavy-light axial-vector current using a mostly nonperturbative method in which we compute the bulk of the matching factor nonperturbatively, with a small correction, that is close to unity, in lattice perturbation theory. We also improve the lattice heavy-light current through O(α_{s}a). We extrapolate our results to the physical light-quark masses and continuum using SU(2) heavy-meson chiral perturbation theory, and provide a complete systematic error budget. We obtain f_{B0} = 196.2(15.7) MeV, f_{B+} = 195.4(15.8) MeV, f_{Bs} = 235.4(12.2) MeV, f_{Bs}/f_{B0} = 1.193(59), and f_{Bs}/f_{B+} = 1.220(82), where the errors are statistical and total systematic added in quadrature. In addition, these results are in good agreement with other published results and provide an important independent cross check of other three-flavor determinations of B-meson decay constants using staggered light quarks.
International Nuclear Information System (INIS)
Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis
2005-01-01
Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom
Computing K and D meson masses with N{sub f}=2+1+1 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Baron, Remi [CEA, Centre de Saclay, 91 - Gif-sur-Yvette (France). IRFU/Service de Physique Nucleaire; Blossier, Benoit; Boucaud, Philippe [Paris XI Univ., 91 - Orsay (FR). Lab. de Physique Theorique] (and others)
2010-05-15
We discuss the computation of the mass of the K and D mesons within the framework of N{sub f}=2+1+1 twisted mass lattice QCD from a technical point of view. These quantities are essential, already at the level of generating gauge configurations, being obvious candidates to tune the strange and charm quark masses to their physical values. In particular, we address the problems related to the twisted mass flavor and parity symmetry breaking, which arise when considering a non-degenerate (c,s) doublet. We propose and verify the consistency of three methods to extract the K and D meson masses in this framework. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Constantia Alexandrou; Bojan Bistrovic; Robert Edwards; P de Forcrand; George Fleming; Philipp Haegler; John Negele; Konstantinos Orginos; Andrew Pochinsky; Dru Renner; David Richards; Wolfram Schroers; Antonios Tsapalis
2005-10-01
Lattice QCD is an essential complement to the current and anticipated DOE-supported experimental program in hadronic physics. In this poster we address several key questions central to our understanding of the building blocks of nuclear matter, nucleons and pions. Firstly, we describe progress at computing the electromagnetic form factors of the nucleon, describing the distribution of charge and current, before considering the role played by the strange quarks. We then describe the study of transition form factors to the Delta resonance. Finally, we present recent work to determine the pion form factor, complementary to the current JLab experimental determination and providing insight into the approach to asymptotic freedom.
Edge states in a honeycomb lattice: effects of anisotropic hopping and mixed edges
Energy Technology Data Exchange (ETDEWEB)
Dahal, Hari P [Los Alamos National Laboratory; Balatsky, Alexander V [Los Alamos National Laboratory; Sinistsyn, N A [Los Alamos National Laboratory; Hu, Zi - Xiang [ZHEJIANG UNIV; Yang, Kun [NHMFL/FSU
2008-01-01
We study the edge states in graphene in the presence of a magnetic field perpendicular to the plane of the lattice. Most of the work done so far discusses the edge states in either zigzag or armchair edge graphene considering an isotropic electron hopping. In practice, graphene can have a mixture of armchair and zigzag edges and the electron hopping can be anisotropic, which is the subject of this article. We predict that the mixed edges smear the enhanced local density of states (LDOS) at E=0 of the zigzag edge and, on the other hand, the anisotropic hopping gives rise to the enhanced LDOS at E=0 in the armchair edge. The behavior of the LDOS can be studied using scanning tunneling microscopy (STM) experiments. We suggest that care must be taken while interpreting the STM data, because the clear distinction between the zigzag edge (enhanced LDOS at E=0) and armchair edge (suppressed LDOS at E=0) can be lost if the hopping is not isotropic and if the edges are mixed.
International Nuclear Information System (INIS)
Brambilla, M.; Di Renzo, F.
2013-01-01
Numerical Stochastic Perturbation Theory was able to get three- (and even four-) loop results for finite Lattice QCD renormalization constants. More recently, a conceptual and technical framework has been devised to tame finite size effects, which had been reported to be significant for (logarithmically) divergent renormalization constants. In this work we present three-loop results for fermion bilinears in the Lattice QCD regularization defined by tree-level Symanzik improved gauge action and n f =2 Wilson fermions. We discuss both finite and divergent renormalization constants in the RI'-MOM scheme. Since renormalization conditions are defined in the chiral limit, our results also apply to Twisted Mass QCD, for which non-perturbative computations of the same quantities are available. We emphasize the importance of carefully accounting for both finite lattice space and finite volume effects. In our opinion the latter have in general not attracted the attention they would deserve. (orig.)
Non-perturbative determination of cV, ZV and ZS/ZP in Nf = 3 lattice QCD
Heitger, Jochen; Joswig, Fabian; Vladikas, Anastassios; Wittemeier, Christian
2018-03-01
We report on non-perturbative computations of the improvement coefficient cV and the renormalization factor ZV of the vector current in three-flavour O(a) improved lattice QCD with Wilson quarks and tree-level Symanzik improved gauge action. To reduce finite quark mass effects, our improvement and normalization conditions exploit massive chiral Ward identities formulated in the SchrÃ¶dinger functional setup, which also allow deriving a new method to extract the ratio ZS/ZP of scalar to pseudoscalar renormalization constants. We present preliminary results of a numerical evaluation of ZV and cV along a line of constant physics with gauge couplings corresponding to lattice spacings of about 0:09 fm and below, relevant for phenomenological applications.
Energy Technology Data Exchange (ETDEWEB)
Walker-Loud, Andre [College of William and Mary, Williamsburg, VA (United States)
2016-10-14
The research supported by this grant is aimed at probing the limits of the Standard Model through precision low-energy nuclear physics. The work of the PI (AWL) and additional personnel is to provide theory input needed for a number of potentially high-impact experiments, notably, hadronic parity violation, Dark Matter direct detection and searches for permanent electric dipole moments (EDMs) in nucleons and nuclei. In all these examples, a quantitative understanding of low-energy nuclear physics from the fundamental theory of strong interactions, Quantum Chromo-Dynamics (QCD), is necessary to interpret the experimental results. The main theoretical tools used and developed in this work are the numerical solution to QCD known as lattice QCD (LQCD) and Effective Field Theory (EFT). This grant is supporting a new research program for the PI, and as such, needed to be developed from the ground up. Therefore, the first fiscal year of this grant, 08/01/2014-07/31/2015, has been spent predominantly establishing this new research effort. Very good progress has been made, although, at this time, there are not many publications to show for the effort. After one year, the PI accepted a job at Lawrence Berkeley National Laboratory, so this final report covers just a single year of five years of the grant.
One dimensionalization in the spin-1 Heisenberg model on the anisotropic triangular lattice
Gonzalez, M. G.; Ghioldi, E. A.; Gazza, C. J.; Manuel, L. O.; Trumper, A. E.
2017-11-01
We investigate the effect of dimensional crossover in the ground state of the antiferromagnetic spin-1 Heisenberg model on the anisotropic triangular lattice that interpolates between the regime of weakly coupled Haldane chains (J'≪J ) and the isotropic triangular lattice (J'=J ). We use the density-matrix renormalization group (DMRG) and Schwinger boson theory performed at the Gaussian correction level above the saddle-point solution. Our DMRG results show an abrupt transition between decoupled spin chains and the spirally ordered regime at (J'/J) c˜0.42 , signaled by the sudden closing of the spin gap. Coming from the magnetically ordered side, the computation of the spin stiffness within Schwinger boson theory predicts the instability of the spiral magnetic order toward a magnetically disordered phase with one-dimensional features at (J'/J) c˜0.43 . The agreement of these complementary methods, along with the strong difference found between the intra- and the interchain DMRG short spin-spin correlations for sufficiently large values of the interchain coupling, suggests that the interplay between the quantum fluctuations and the dimensional crossover effects gives rise to the one-dimensionalization phenomenon in this frustrated spin-1 Hamiltonian.
Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium
Energy Technology Data Exchange (ETDEWEB)
Srivastava, P.K.; Patra, Binoy Krishna [Indian Institute of Technology Roorkee, Department of Physics, Roorkee (India)
2017-06-15
The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy. (orig.)
Drag and diffusion of heavy quarks in a hot and anisotropic QCD medium
Srivastava, P. K.; Patra, Binoy Krishna
2017-06-01
The propagation of heavy quarks (HQs) in a medium was quite often modeled by the Fokker-Planck (FP) equation. Since the transport coefficients, related to drag and diffusion processes, are the main ingredients in the FP equation, the evolution of HQs is thus effectively controlled by them. At the initial stage of the relativistic heavy-ion collisions, asymptotic weak-coupling causes the free-streaming motions of partons in the beam direction and the expansions in transverse directions are almost frozen, hence an anisotropy in the momentum space sets in. Since HQs are too produced in the same time, the study of the effect of momentum anisotropy on the drag and diffusion coefficients becomes highly desirable. In this article we have thus studied the drag and diffusion of HQs in the anisotropic medium and found that the presence of the anisotropy reduces both drag and diffusion coefficients. In addition, the anisotropy introduces an angular dependence to both the drag and diffusion coefficients, as a result both coefficients get more inflated when the partons are moving transversely to the direction of anisotropy than when moving parallel to the direction of anisotropy.
QCD with light Wilson quarks on fine lattices (II): DD-HMC simulations and data analysis
Del Debbio, L; Lüscher, Martin; Petronzio, R; Tantalo, N
2007-01-01
In this second report on our recent numerical simulations of two-flavour QCD, we provide further technical details on the simulations and describe the methods we used to extract the meson masses and decay constants from the generated ensembles of gauge fields. Among the topics covered are the choice of the DD-HMC parameters, the issue of stability, autocorrelations and the statistical error analysis. Extensive data tables are included as well as a short discussion of the quark-mass dependence in partially quenched QCD, supplementing the physics analysis that was presented in the first paper in this series.
Lattice QCD with chemical potential: Evading the fermion-sign problem
Indian Academy of Sciences (India)
Since the turn of the millennium there has been tremendous progress in understanding QCD at finite chemical potential, . Apart from qualitative results obtained using models, and exact results at very large obtained in weak coupling theory, there has been tremendous progress in getting exact and quantitative results ...
DEFF Research Database (Denmark)
Andersen, Christian Walther; Bulava, John; Hörz, Ben
2018-01-01
We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I=3/2, p-wave nucleon-pion amplitude on a single ensemble of Nf=2+1 Wilson-clover fermions with mπ=280 MeV and mK=460 Me...
Up, down, strange and charm quark masses with Nf=2+1+1 twisted mass lattice QCD
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-10-01
Full Text Available We present a lattice QCD calculation of the up, down, strange and charm quark masses performed using the gauge configurations produced by the European Twisted Mass Collaboration with Nf=2+1+1 dynamical quarks, which include in the sea, besides two light mass degenerate quarks, also the strange and charm quarks with masses close to their physical values. The simulations are based on a unitary setup for the two light quarks and on a mixed action approach for the strange and charm quarks. The analysis uses data at three values of the lattice spacing and pion masses in the range 210–450 MeV, allowing for accurate continuum limit and controlled chiral extrapolation. The quark mass renormalization is carried out non-perturbatively using the RI′-MOM method. The results for the quark masses converted to the MS¯ scheme are: mud(2 GeV=3.70(17 MeV, ms(2 GeV=99.6(4.3 MeV and mc(mc=1.348(46 GeV. We obtain also the quark mass ratios ms/mud=26.66(32 and mc/ms=11.62(16. By studying the mass splitting between the neutral and charged kaons and using available lattice results for the electromagnetic contributions, we evaluate mu/md=0.470(56, leading to mu=2.36(24 MeV and md=5.03(26 MeV.
Chiral behavior of K →π l ν decay form factors in lattice QCD with exact chiral symmetry
Aoki, S.; Cossu, G.; Feng, X.; Fukaya, H.; Hashimoto, S.; Kaneko, T.; Noaki, J.; Onogi, T.; Jlqcd Collaboration
2017-08-01
We calculate the form factors of the K →π l ν semileptonic decays in three-flavor lattice QCD and study their chiral behavior as a function of the momentum transfer and the Nambu-Goldstone boson masses. Chiral symmetry is exactly preserved by using the overlap quark action, which enables us to directly compare the lattice data with chiral perturbation theory (ChPT). We generate gauge ensembles at a lattice spacing of 0.11 fm with four pion masses covering 290-540 MeV and a strange quark mass ms close to its physical value. By using the all-to-all quark propagator, we calculate the vector and scalar form factors with high precision. Their dependence on ms and the momentum transfer is studied by using the reweighting technique and the twisted boundary conditions for the quark fields. We compare the results for the semileptonic form factors with ChPT at next-to-next-to-leading order in detail. While many low-energy constants appear at this order, we make use of our data of the light meson electromagnetic form factors in order to control the chiral extrapolation. We determine the normalization of the form factors as f+(0 )=0.9636 (36 )(-35+57) and observe reasonable agreement of their shape with experiment.
Wu, Songtao; Zhu, Gaohua; Zhang, Jin S; Banerjee, Debasish; Bass, Jay D; Ling, Chen; Yano, Kazuhisa
2014-05-21
We report anisotropic expansion of self-assembled colloidal polystyrene-poly(dimethylsiloxane) crystals and its impact on the phonon band structure at hypersonic frequencies. The structural expansion was achieved by a multistep infiltration-polymerization process. Such a process expands the interplanar lattice distance 17% after 8 cycles whereas the in-plane distance remains unaffected. The variation of hypersonic phonon band structure induced by the anisotropic lattice expansion was recorded by Brillouin measurements. In the sample before expansion, a phononic band gap between 3.7 and 4.4 GHz is observed; after 17% structural expansion, the gap is shifted to a lower frequency between 3.5 and 4.0 GHz. This study offers a facile approach to control the macroscopic structure of colloidal crystals with great potential in designing tunable phononic devices.
Evidence for the existence of Gribov copies in Landau gauge lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Marinari, E.; Ricci, R. (Rome-2 Univ. (Italy). Dipt. di Fisica INFN, Rome (Italy)); Parrinello, C. (New York Univ., NY (USA). Physics Dept.)
1991-09-16
We unambiguously show the existence of Gribov copies in a pure SU(3) gauge lattice model, with Wilson action. We show that the usual steepest-descent algorithms used for implementing the lattice Landau gauge lead to ambiguities, which are related to the existence of Gribov copies in the model. (orig.).
The kaon B-parameter from unquenched mixed action lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Aubin, Christopher A.; Laiho, Jack; Van de Water, Ruth S.
2007-10-01
We present a preliminary calculation of B{sub K} using domain-wall valence quarks and 2+1 flavors of improved staggered sea quarks. Both the size of the residual quark mass, which measures the amount of chiral symmetry breaking, and of the mixed meson splitting Delta{sub mix}, a measure of taste-symmetry breaking, show that discretization effects are under control in our mixed action lattice simulations. We show preliminary data for pseudoscalar meson masses, decay constants and B{sub K}. We discuss general issues associated with the chiral extrapolation of lattice data, and, as an example, present a preliminary chiral and continuum extrapolation of f{sub pi}. The quality of our data shows that the good chiral properties of domain-wall quarks, in combination with the light sea quark masses and multiple lattice spacings available with the MILC staggered configurations, will allow for a precise determination of B{sub K}.
An analysis of the nucleon spectrum from lattice partially-quenched QCD.
Energy Technology Data Exchange (ETDEWEB)
Armour, W.; Allton, C. R.; Leinweber, D. B.; Thomas, A. W.; Young, R. D.; Physics; Swansea Univ.; Univ. of Adelaide; Coll. of William and Mary
2010-09-01
The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of Mn in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
An analysis of the nucleon spectrum from lattice partially-quenched QCD
Energy Technology Data Exchange (ETDEWEB)
Armour, W. [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Allton, C.R., E-mail: c.allton@swan.ac.u [Department of Physics, Swansea University, Swansea SA2 8PP, Wales (United Kingdom); Leinweber, D.B. [Special Research Centre for the Subatomic Structure of Matter (CSSM), School of Chemistry and Physics, University of Adelaide, 5005 (Australia); Thomas, A.W. [Jefferson Lab, 12000 Jefferson Ave., Newport News, VA 23606 (United States); College of William and Mary, Williamsburg, VA 23187 (United States); Young, R.D. [Physics Division, Argonne National Laboratory, Argonne, IL 60439 (United States)
2010-09-01
The chiral extrapolation of the nucleon mass, M{sub n}, is investigated using data coming from 2-flavour partially-quenched lattice simulations. A large sample of lattice results from the CP-PACS Collaboration is analysed using the leading one-loop corrections, with explicit corrections for finite lattice spacing artifacts. The extrapolation is studied using finite-range regularised chiral perturbation theory. The analysis also provides a quantitative estimate of the leading finite volume corrections. It is found that the discretisation, finite volume and partial quenching effects can all be very well described in this framework, producing an extrapolated value of M{sub n} in agreement with experiment. Furthermore, determinations of the low energy constants of the nucleon mass's chiral expansion are in agreement with previous methods, but with significantly reduced errors. This procedure is also compared with extrapolations based on polynomial forms, where the results are less encouraging.
Novel quark-field creation operator construction for hadronic physics in lattice QCD
International Nuclear Information System (INIS)
Peardon, Michael; Bulava, John; Foley, Justin; Morningstar, Colin; Dudek, Jozef; Edwards, Robert G.; Joo, Balint; Lin, H.-W.; Richards, David G.; Juge, Keisuke Jimmy
2009-01-01
A new quark-field smearing algorithm is defined which enables efficient calculations of a broad range of hadron correlation functions. The technique applies a low-rank operator to define smooth fields that are to be used in hadron creation operators. The resulting space of smooth fields is small enough that all elements of the reduced quark propagator can be computed exactly at reasonable computational cost. Correlations between arbitrary sources, including multihadron operators can be computed a posteriori without requiring new lattice Dirac operator inversions. The method is tested on realistic lattice sizes with light dynamical quarks.
A first look at maximally twisted mass lattice QCD calculations at the physical point
Energy Technology Data Exchange (ETDEWEB)
Abdel-Rehim, A. [The Cyprus Institute, Nicosia (Cyprus). CaSToRC; Boucaud, P. [Paris XI Univ., Orsay (France). Laboratoire de Physique Theorique; Carrasco, N. [Valencia-CSIC Univ. (Spain). Dept. de Fisica Teorica; IFIC, Valencia (Spain); and others
2013-11-15
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N{sub f}=2 results and their phenomenological values. Finally, the strategy for extending simulations to N{sub f}=2+1+1 is outlined.
A first look at maximally twisted mass lattice QCD calculations at the physical point
International Nuclear Information System (INIS)
Abdel-Rehim, A.
2013-11-01
In this contribution, a first look at simulations using maximally twisted mass Wilson fermions at the physical point is presented. A lattice action including clover and twisted mass terms is presented and the Monte Carlo histories of one run with two mass-degenerate flavours at a single lattice spacing are shown. Measurements from the light and heavy-light pseudoscalar sectors are compared to previous N f =2 results and their phenomenological values. Finally, the strategy for extending simulations to N f =2+1+1 is outlined.
Requirements for high performance computing for lattice QCD. Report of the ECFA working panel
International Nuclear Information System (INIS)
Jegerlehner, F.; Kenway, R.D.; Martinelli, G.; Michael, C.; Pene, O.; Petersson, B.; Petronzio, R.; Sachrajda, C.T.; Schilling, K.
2000-01-01
This report, prepared at the request of the European Committee for Future Accelerators (ECFA), contains an assessment of the High Performance Computing resources which will be required in coming years by European physicists working in Lattice Field Theory and a review of the scientific opportunities which these resources would open. (orig.)
Ordering of spin-1/2 excitations of the nucleon in lattice QCD
International Nuclear Information System (INIS)
Mahbub, M.S.; Kamleh, Waseem; Leinweber, Derek B.; O Cais, Alan; Williams, Anthony G.
2010-01-01
We present results for the negative parity low-lying state of the nucleon, N1/2 - (1535 MeV) S 11 , from a variational analysis method. The analysis is performed in quenched QCD with the FLIC fermion action. The principal focus of this Letter is to explore the level ordering between the Roper (P 11 ) and the negative parity ground (S 11 ) states of the nucleon. Evidence of the physical level ordering is observed at light quark masses. A wide variety of smeared-smeared correlation functions are used to construct correlation matrices. A comprehensive correlation matrix analysis is performed to ensure an accurate isolation of the N1/2 - state.
The quenched limit of lattice QCD at non-zero baryon number
International Nuclear Information System (INIS)
Engels, J.; Kaczmarek, O.; Karsch, F.; Laermann, E.
1999-01-01
We discuss the thermodynamics of gluons in the background of static quark sources. In order to do so we formulate the quenched limit of QCD at non-zero baryon number. A first numerical analysis of this system shows that it undergoes a smooth deconfining transition. We find evidence for a region of coexisting phases that becomes broader with increasing baryon number density. Although the action is in our formulation explicitly Z(3) symmetric the Polyakov loop expectation value becomes non-zero already in the low temperature phase. It indicates that the heavy quark potential stays finite at large distances, i.e. the string between static quarks breaks at non-zero baryon number density already in the hadronic phase
George, Janine; Deringer, Volker L.; Wang, Ai; Müller, Paul; Englert, Ulli; Dronskowski, Richard
2016-12-01
Thermal properties of solid-state materials are a fundamental topic of study with important practical implications. For example, anisotropic displacement parameters (ADPs) are routinely used in physics, chemistry, and crystallography to quantify the thermal motion of atoms in crystals. ADPs are commonly derived from diffraction experiments, but recent developments have also enabled their first-principles prediction using periodic density-functional theory (DFT). Here, we combine experiments and dispersion-corrected DFT to quantify lattice thermal expansion and ADPs in crystalline α-sulfur (S8), a prototypical elemental solid that is controlled by the interplay of covalent and van der Waals interactions. We begin by reporting on single-crystal and powder X-ray diffraction measurements that provide new and improved reference data from 10 K up to room temperature. We then use several popular dispersion-corrected DFT methods to predict vibrational and thermal properties of α-sulfur, including the anisotropic lattice thermal expansion. Hereafter, ADPs are derived in the commonly used harmonic approximation (in the computed zero-Kelvin structure) and also in the quasi-harmonic approximation (QHA) which takes the predicted lattice thermal expansion into account. At the PPBE+D3(BJ) level, the QHA leads to excellent agreement with experiments. Finally, more general implications of this study for theory and experiment are discussed.
Isotensor Axial Polarizability and Lattice QCD Input for Nuclear Double- \beta Decay Phenomenology
Energy Technology Data Exchange (ETDEWEB)
Shanahan, Phiala E.; Tiburzi, Brian C.; Wagman, Michael L.; Winter, Frank; Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Orginos, Kostas; Savage, Martin J.
2017-08-01
The potential importance of short-distance nuclear effects in double-$\\beta$ decay is assessed using a lattice QCD calculation of the $nn\\rightarrow pp$ transition and effective field theory methods. At the unphysical quark masses used in the numerical computation, these effects, encoded in the isotensor axial polarisability, are found to be of similar magnitude to the nuclear modification of the single axial current, which phenomenologically is the quenching of the axial charge used in nuclear many-body calculations. This finding suggests that nuclear models for neutrinoful and neutrinoless double-$\\beta$ decays should incorporate this previously neglected contribution if they are to provide reliable guidance for next-generation neutrinoless double-$\\beta$ decay searches. The prospects of constraining the isotensor axial polarisabilities of nuclei using lattice QCD input into nuclear many-body calculations are discussed.
B{sub K}-parameter from N{sub f}=2 twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Constantinou, M. [Cyprus Univ., Nicosia (Cyprus). Dept. of Physics; Dimopoulos, P. [Roma Univ. (Italy). Dipt. di Fisica; Frezzotti, R. [Roma ' ' Tor Vergata' ' Univ. (Italy). Dipt. di Fisica; INFN, Rome (IT). Dipt. di Fisica] (and others)
2011-01-07
We present an unquenched N{sub f} = 2 lattice computation of the B{sub K} parameter which controls K{sup 0}- anti K{sup 0} oscillations. A partially quenched setup is employed with two maximally twisted dynamical (sea) light Wilson quarks, and valence quarks of both the maximally twisted and the Osterwalder-Seiler variety. Suitable combinations of these two kinds of valence quarks lead to a lattice definition of the B{sub K} parameter which is both multiplicatively renormalizable and O(a) improved. Employing the non-perturbative RI-MOM scheme, in the continuum limit and at the physical value of the pion mass we get B{sup RGI}{sub K}=0.729{+-}0.030, a number well in line with the existing quenched and unquenched determinations. (orig.)
tmLQCD: a program suite to simulate Wilson twisted mass lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Jansen, Karl [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany); Urbach, Carsten [Institut fuer Physik, Humboldt-Universitaet, Berlin (Germany)
2009-05-15
We discuss a program suite for simulating Quantum Chromodynamics on a 4-dimensional space-time lattice. The basic Hybrid Monte Carlo algorithm is introduced and a number of algorithmic improvements are explained. We then discuss the implementations of these concepts as well as our parallelisation strategy in the actual simulation code. Finally, we provide a user guide to compile and run the program. (orig.)
International Nuclear Information System (INIS)
Wissel, S.
2006-10-01
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T c . Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T c at nearly zero quark masses. At 1.24 T c , the occurrence of topological effects, a sign for the presence of a still broken U(1) A symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T c cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
New approach to lattice QCD thermodynamics from Yang-Mills gradient flow
Hatsuda, T.; FlowQCD Collaboration
2014-11-01
The bulk thermodynamics in lattice gauge theory is studied on the basis of the Yang-Mills gradient flow with a fictitious time t. The energy density and the pressure of SU (3) gauge theory at fixed temperature are obtained from the thermal average of the well-defined energy-momentum tensor. The continuum limit is taken in a controlled manner from the t-dependence of the flowed data.
Energy Technology Data Exchange (ETDEWEB)
Wissel, S.
2006-10-15
In this thesis we investigate thermal in-medium modifications of various mesonic correlation functions by lattice simulations of Quantum Chromodynamics for light valence quark masses and vanishing chemical potential. Mesonic properties are typically extracted from spatial correlation functions. The results presented are based on quenched gauge field configurations generated with the standard Wilson plaquette gauge action. Concerning the fermionic part of the action, we use the non-perturbative O(a) improved Sheikholeslami-Wohlert as well as the truncated hypercube perfect action. Furthermore we utilize the maximum entropy method in order to determine physically relevant pole masses and to investigate thermal modifications of physical states and possible lattice artefacts in the interacting case. The analyses of pole and screening masses, dispersion relations, wave functions, decay constants and spectral functions essentially yield no significant modifications of the zero-temperature behavior up to 0.55 T{sub c}. Close to the phase transition in-medium effects seem to appear, which lead inter alia to significant differences between pole and screening masses. The decay constants are in good agreement with the experimental values. We have simulated above T{sub c} at nearly zero quark masses. At 1.24 T{sub c}, the occurrence of topological effects, a sign for the presence of a still broken U(1){sub A} symmetry, prevent a more thorough analyses close to the phase transition. A complete continuum and infinite volume extrapolation of screening masses, guided by free lattice effective masses is done. It shows that the presence of collective phenomena at 1.5 and 3 T{sub c} cannot be explained by pure lattice artefacts. Unlike the vector meson the pion is far from being considered an unbound state. (orig.)
Effective potential in the strong-coupling lattice QCD with next-to-next-to-learning order effects
International Nuclear Information System (INIS)
Nakano, Takashi Z.; Miura, Kohtaroh; Ohnishi, Akira
2010-01-01
We derive an analytic expression of the effective potential at finite temperature (T) and chemical potential (μ) in the strong-coupling lattice QCD for color SU(3) including next-to-next-to-leading order (NNLO) effects in the strong coupling expansion. NNLO effective action terms are systematically evaluated in the leading order of the large dimensional (1/d) expansion, and are found to come from some types of connected two-plaquette configurations. We apply the extended Hubbard-Stratonovich transformation and a gluonic-dressed fermion technique to the effective action, and obtain the effective potential as a function of T, μ, and two order parameters: chiral condensate and vector potential field. The next-to-leading order (NLO) and NNLO effects result in modifications of the wave function renormalization factor, quark mass, and chemical potential. We find that T c,μ =0 and μ c,T =0 are similar to the NLO results, whereas the position of the critical point is sensitive to NNLO corrections. (author)
Pion vector form factor from lattice QCD at the physical point
Alexandrou, C.; Bacchio, S.; Dimopoulos, P.; Finkenrath, J.; Frezzotti, R.; Jansen, K.; Kostrzewa, B.; Mangin-Brinet, M.; Sanfilippo, F.; Simula, S.; Urbach, C.; Wenger, U.; ETM Collaboration
2018-01-01
We present an investigation of the electromagnetic pion form factor, Fπ(Q2) , at small values of the four-momentum transfer Q2 (≲0.25 GeV2), based on the gauge configurations generated by the European Twisted Mass Collaboration with Nf=2 twisted-mass quarks at maximal twist including a clover term. Momentum is injected using nonperiodic boundary conditions and the calculations are carried out at a fixed lattice spacing (a ≃0.09 fm ) and with pion masses equal to its physical value, 240 MeV and 340 MeV. Our data are successfully analyzed using chiral perturbation theory at next-to-leading order in the light-quark mass. For each pion mass two different lattice volumes are used to take care of finite size effects. Our final result for the squared charge radius is ⟨r2⟩π=0.443 (29 ) fm2, where the error includes several sources of systematic errors except the uncertainty related to discretization effects. The corresponding value of the SU(2) chiral low-energy constant ℓ¯6 is equal to ℓ¯6=16.2 (1.0 ).
Flavor-singlet meson decay constants from Nf=2 +1 +1 twisted mass lattice QCD
Ottnad, Konstantin; Urbach, Carsten; ETM Collaboration
2018-03-01
We present an improved analysis of our lattice data for the η - η' system, including a correction of the relevant correlation functions for residual topological finite size effects and employing consistent chiral and continuum fits. From this analysis we update our physical results for the masses Mη=557 (11 )stat(03 )χ PT MeV and Mη'=911 (64 )stat(03 )χ PT MeV , as well as the mixing angle in the quark flavor basis ϕ =38.8 (2.2 )stat(2.4 )χPT ∘ in excellent agreement with other results from phenomenology. Similarly, we include an analysis for the decay constant parameters, leading to fl=125 (5 )stat(6 )χ PT MeV and fs=178 (4 )stat(1 )χ PT MeV . The second error reflects the uncertainty related to the chiral extrapolation. The data used for this study has been generated on gauge ensembles provided by the European Twisted Mass Collaboration with Nf=2 +1 +1 dynamical flavors of Wilson twisted mass fermions. These ensembles cover a range of pion masses from 220 MeV to 500 MeV and three values of the lattice spacing. Combining our data with a prediction from chiral perturbation theory, we give an estimate for the physical η , η'→γ γ decay widths and the singly-virtual η , η'→γ γ* transition form factors in the limit of large momentum transfer.
Wave functions of the nucleon and its parity partner from lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Warkentin, Nikolaus; Braun, Vladimir M.; Goeckeler, Meinulf [Regensburg Univ. (DE). Inst. fuer Theoretische Physik] (and others)
2008-11-15
We compute moments of distribution amplitudes using gauge configurations with two flavors of clover fermions from QCDSF/DIK and operators which are optimized with respect to their behavior under the lattice symmetries. The knowledge of these quantities helps in understanding the internal structure of hadrons and in the analysis of (semi-)exclusive processes. We present results for the nucleon distribution amplitude which suggest that the asymmetries (the deviations from the asymptotic form) are smaller than indicated by sum rule calculations. Using the same approach we were also able to calculate the same quantities for the N{sup *}(1535), the parity partner of the nucleon. These results show a stronger deviation from the asymptotic form. (orig.)
Lattice QCD with Domain Decomposition on Intel Xeon Phi Co-Processors
Energy Technology Data Exchange (ETDEWEB)
Heybrock, Simon; Joo, Balint; Kalamkar, Dhiraj D; Smelyanskiy, Mikhail; Vaidyanathan, Karthikeyan; Wettig, Tilo; Dubey, Pradeep
2014-12-01
The gap between the cost of moving data and the cost of computing continues to grow, making it ever harder to design iterative solvers on extreme-scale architectures. This problem can be alleviated by alternative algorithms that reduce the amount of data movement. We investigate this in the context of Lattice Quantum Chromodynamics and implement such an alternative solver algorithm, based on domain decomposition, on Intel Xeon Phi co-processor (KNC) clusters. We demonstrate close-to-linear on-chip scaling to all 60 cores of the KNC. With a mix of single- and half-precision the domain-decomposition method sustains 400-500 Gflop/s per chip. Compared to an optimized KNC implementation of a standard solver [1], our full multi-node domain-decomposition solver strong-scales to more nodes and reduces the time-to-solution by a factor of 5.
Accelerating Lattice QCD Multigrid on GPUs Using Fine-Grained Parallelization
Energy Technology Data Exchange (ETDEWEB)
Clark, M. A. [NVIDIA Corp., Santa Clara; Joó, Bálint [Jefferson Lab; Strelchenko, Alexei [Fermilab; Cheng, Michael [Boston U., Ctr. Comp. Sci.; Gambhir, Arjun [William-Mary Coll.; Brower, Richard [Boston U.
2016-12-22
The past decade has witnessed a dramatic acceleration of lattice quantum chromodynamics calculations in nuclear and particle physics. This has been due to both significant progress in accelerating the iterative linear solvers using multi-grid algorithms, and due to the throughput improvements brought by GPUs. Deploying hierarchical algorithms optimally on GPUs is non-trivial owing to the lack of parallelism on the coarse grids, and as such, these advances have not proved multiplicative. Using the QUDA library, we demonstrate that by exposing all sources of parallelism that the underlying stencil problem possesses, and through appropriate mapping of this parallelism to the GPU architecture, we can achieve high efficiency even for the coarsest of grids. Results are presented for the Wilson-Clover discretization, where we demonstrate up to 10x speedup over present state-of-the-art GPU-accelerated methods on Titan. Finally, we look to the future, and consider the software implications of our findings.
Nucleon mass and sigma term from lattice QCD with two light fermion flavors
International Nuclear Information System (INIS)
Bali, G.S.; Bruns, P.C.; Collins, S.
2012-06-01
We analyze N f =2 nucleon mass data with respect to their dependence on the pion mass down to m π =157 MeV and compare it with predictions from covariant baryon chiral perturbation theory (BChPT). A novel feature of our approach is that we fit the nucleon mass data simultaneously with the directly obtained pion-nucleon σ-term. Our lattice data below m π =435 MeV is well described by O(p 4 ) BChPT and we find σ 37(8)(6)MeV for the σ-term at the physical point. Using the nucleon mass to set the scale we obtain a Sommer parameter of r 0 =0.501(10)(11) fm. (orig.)
Parameters of heavy quark effective theory from N{sub f}=2 lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Blossier, Benoit [CNRS, Orsay (France). LPT; Paris-11 Univ., 91 - Orsay (France); Della Morte, Michele [Mainz Univ. (Germany). Inst. fuer Kernphysik; Fritzsch, Patrick [Humboldt-Universitaet, Berlin (Germany). Inst. fuer Physik; Garron, Nicolas [Edinburgh Univ. (United Kingdom). School of Physics and Astronomy; Heitger, Jochen [Muenster Univ. (Germany). Inst. fuer Theoretische Physik 1; Simma, Hubert; Sommer, Rainer [Deutsches Elektronen-Synchrotron (DESY), Zeuthen (Germany). John von Neumann-Inst. fuer Computing NIC; Tantalo, Nazario [Rome-3 Univ. (Italy). Dipt. di Fisica; INFN, Sezione di Roma (Italy)
2012-07-15
We report on a non-perturbative determination of the parameters of the lattice Heavy Quark Effective Theory (HQET) Lagrangian and of the time component of the heavy-light axial-vector current with N{sub f} = 2 flavors of massless dynamical quarks. The effective theory is considered at the 1/m{sub h} order, and the heavy mass m{sub h} covers a range from slightly above the charm to beyond the beauty region. These HQET parameters are needed to compute, for example, the b-quark mass, the heavy-light spectrum and decay constants in the static approximation and to order 1/m{sub h} in HQET. The determination of the parameters is done non-perturbatively. The computation reported in this paper uses the plaquette gauge action and two different static actions for the heavy quark described by HQET. For the light-quark action we choose non-perturbatively O(a)-improved Wilson fermions.
Scalar, Axial, and Tensor Interactions of Light Nuclei from Lattice QCD
Chang, Emmanuel; Davoudi, Zohreh; Detmold, William; Gambhir, Arjun S.; Orginos, Kostas; Savage, Martin J.; Shanahan, Phiala E.; Wagman, Michael L.; Winter, Frank; Nplqcd Collaboration
2018-04-01
Complete flavor decompositions of the matrix elements of the scalar, axial, and tensor currents in the proton, deuteron, diproton, and 3He at SU(3)-symmetric values of the quark masses corresponding to a pion mass mπ˜806 MeV are determined using lattice quantum chromodynamics. At the physical quark masses, the scalar interactions constrain mean-field models of nuclei and the low-energy interactions of nuclei with potential dark matter candidates. The axial and tensor interactions of nuclei constrain their spin content, integrated transversity, and the quark contributions to their electric dipole moments. External fields are used to directly access the quark-line connected matrix elements of quark bilinear operators, and a combination of stochastic estimation techniques is used to determine the disconnected sea-quark contributions. The calculated matrix elements differ from, and are typically smaller than, naive single-nucleon estimates. Given the particularly large, O (10 %), size of nuclear effects in the scalar matrix elements, contributions from correlated multinucleon effects should be quantified in the analysis of dark matter direct-detection experiments using nuclear targets.
Excited meson radiative transitions from lattice QCD using variationally optimized operators
Energy Technology Data Exchange (ETDEWEB)
Shultz, Christian J. [Old Dominion Univ., Norfolk, VA (United States); Dudek, Jozef J. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Old Dominion Univ., Norfolk, VA (United States); Edwards, Robert G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2015-06-02
We explore the use of 'optimized' operators, designed to interpolate only a single meson eigenstate, in three-point correlation functions with a vector-current insertion. These operators are constructed as linear combinations in a large basis of meson interpolating fields using a variational analysis of matrices of two-point correlation functions. After performing such a determination at both zero and non-zero momentum, we compute three-point functions and are able to study radiative transition matrix elements featuring excited state mesons. The required two- and three-point correlation functions are efficiently computed using the distillation framework in which there is a factorization between quark propagation and operator construction, allowing for a large number of meson operators of definite momentum to be considered. We illustrate the method with a calculation using anisotopic lattices having three flavors of dynamical quark all tuned to the physical strange quark mass, considering form-factors and transitions of pseudoscalar and vector meson excitations. In conclusion, the dependence on photon virtuality for a number of form-factors and transitions is extracted and some discussion of excited-state phenomenology is presented.
Computing the nucleon charge and axial radii directly at Q2=0 in lattice QCD
Hasan, Nesreen; Green, Jeremy; Meinel, Stefan; Engelhardt, Michael; Krieg, Stefan; Negele, John; Pochinsky, Andrew; Syritsyn, Sergey
2018-02-01
We describe a procedure for extracting momentum derivatives of nucleon matrix elements on the lattice directly at Q2=0 . This is based on the Rome method for computing momentum derivatives of quark propagators. We apply this procedure to extract the nucleon isovector magnetic moment and charge radius as well as the isovector induced pseudoscalar form factor at Q2=0 and the axial radius. For comparison, we also determine these quantities with the traditional approach of computing the corresponding form factors, i.e. GEv(Q2) and GMv(Q2) for the case of the vector current and GPv(Q2) and GAv(Q2) for the axial current, at multiple Q2 values followed by z -expansion fits. We perform our calculations at the physical pion mass using a 2HEX-smeared Wilson-clover action. To control the effects of excited-state contamination, the calculations were done at three source-sink separations and the summation method was used. The derivative method produces results consistent with those from the traditional approach but with larger statistical uncertainties especially for the isovector charge and axial radii.
Finite-Volume QED Corrections to Decay Amplitudes in Lattice QCD
Lubicz, V.; Sachrajda, C.T.; Sanfilippo, F.; Simula, S.; Tantalo, N.
2017-01-01
We demonstrate that the leading and next-to-leading finite-volume effects in the evaluation of leptonic decay widths of pseudoscalar mesons at $O(\\alpha)$ are universal, i.e. they are independent of the structure of the meson. This is analogous to a similar result for the spectrum but with some fundamental differences, most notably the presence of infrared divergences in decay amplitudes. The leading non-universal, structure-dependent terms are of $O(1/L^2)$ (compared to the $O(1/L^3)$ leading non-universal corrections in the spectrum). We calculate the universal finite-volume effects, which requires an extension of previously developed techniques to include a dependence on an external three-momentum (in our case, the momentum of the final state lepton). The result can be included in the strategy proposed in Ref.\\,\\cite{Carrasco:2015xwa} for using lattice simulations to compute the decay widths at $O(\\alpha)$, with the remaining finite-volume effects starting at order $O(1/L^2)$. The methods developed in this...
Hadronic vacuum polarization contribution to {a}_{\mu} from full lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Chakraborty, Bipasha; Davies, C. T. H.; de Oliveira, P. G.; Koponen, J.; Lepage, G. P.; Van de Water, R. S.
2017-08-01
We determine the contribution to the anomalous magnetic moment of the muon from the $\\alpha^2_{\\mathrm{QED}}$ hadronic vacuum polarization diagram using full lattice QCD and including $u/d$ quarks with physical masses for the first time. We use gluon field configurations that include $u$, $d$, $s$ and $c$ quarks in the sea at multiple values of the lattice spacing, multiple $u/d$ masses and multiple volumes that allow us to include an analysis of finite-volume effects. We obtain a result for $a_{\\mu}^{\\mathrm{HVP,LO}}$ of $667(6)(12)$, where the first error is from the lattice calculation and the second includes systematic errors from missing QED and isospin-breaking effects and from quark-line disconnected diagrams. Our result implies a discrepancy between the experimental determination of $a_{\\mu}$ and the Standard Model of 3$\\sigma$.
Up-, down-, strange-, charm-, and bottom-quark masses from four-flavor lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bazavov, A.; Bernard, C.; Brambilla, N.; Brown, N.; DeTar, C.; El-Khadra, A. X.; Gámiz, E.; Gottlieb, Steven; Heller, U. M.; Komijani, J.; Kronfeld, A. S.; Laiho, J.; Mackenzie, P. B.; Neil, E. T.; Simone, J. N.; Sugar, R. L.; Toussaint, D.; Vairo, A.; Van de Water, R. S.
2018-02-12
We calculate the up-, down-, strange-, charm-, and bottom-quark masses using the MILC highly improved staggered-quark ensembles with four flavors of dynamical quarks. We use ensembles at six lattice spacings ranging from $a\\approx0.15~$fm to $0.03~$fm and with both physical and unphysical values of the two light and the strange sea-quark masses. We use a new method based on heavy-quark effective theory (HQET) to extract quark masses from heavy-light pseudoscalar meson masses. Combining our analysis with our separate determination of ratios of light-quark masses we present masses of the up, down, strange, charm, and bottom quarks. Our results for the $\\overline{\\text{MS}}$-renormalized masses are $m_u(2~\\text{GeV}) = 2.118(38)~$MeV, $m_d(2~\\text{GeV}) = 4.690(54)~$MeV, $m_s(2~\\text{GeV}) = 92.52(69)~$MeV, $m_c(3~\\text{GeV}) = 984.3(5.6)~$MeV, and $m_c(m_c) = 1273(10)~$MeV, with four active flavors; and $m_b(m_b) = 4197(14)~$MeV with five active flavors. We also obtain ratios of quark masses $m_c/m_s = 11.784(22)$, $m_b/m_s = 53.93(12)$, and $m_b/m_c = 4.577(8)$. The result for $m_c$ matches the precision of the most precise calculation to date, and the other masses and all quoted ratios are the most precise to date. Moreover, these results are the first with a perturbative accuracy of $\\alpha_s^4$. As byproducts of our method, we obtain the matrix elements of HQET operators with dimension 4 and 5: $\\overline{\\Lambda}_\\text{MRS}=552(30)~$MeV in the minimal renormalon-subtracted (MRS) scheme, $\\mu_\\pi^2 = 0.06(22)~\\text{GeV}^2$, and $\\mu_G^2(m_b)=0.38(2)~\\text{GeV}^2$. The MRS scheme [Phys. Rev. D97, 034503 (2018), arXiv:1712.04983 [hep-ph
Andersen, Christian Walther; Bulava, John; Hörz, Ben; Morningstar, Colin
2018-01-01
We present the first direct determination of meson-baryon resonance parameters from a scattering amplitude calculated using lattice QCD. In particular, we calculate the elastic I =3 /2 , p -wave nucleon-pion amplitude on a single ensemble of Nf=2 +1 Wilson-clover fermions with mπ=280 MeV and mK=460 MeV . At these quark masses, the Δ (1232 ) resonance pole is found close to the N -π threshold and a Breit-Wigner fit to the amplitude gives gΔN π BW=19.0 (4.7 ) in agreement with phenomenological determinations.
J1x-J1y-J2 square-lattice anisotropic Heisenberg model
Pires, A. S. T.
2017-08-01
The spin one Heisenberg model with an easy-plane single-ion anisotropy and spatially anisotropic nearest-neighbor coupling, frustrated by a next-nearest neighbor interaction, is studied at zero temperature using a SU(3) Schwinger boson formalism (sometimes also referred to as flavor wave theory) in a mean field approximation. The local constraint is enforced by introducing a Lagrange multiplier. The enlarged Hilbert space of S = 1 spins lead to a nematic phase that is ubiquitous to S = 1 spins with single ion anisotropy. The phase diagram shows two magnetically ordered phase, separated by a quantum paramagnetic (nematic) phase.
Energy Technology Data Exchange (ETDEWEB)
Hauke, Philipp [ICFO-Institut de Ciencies Fotoniques, Meditarranean Technology Park, E-08860 Castelldefels, Barcelona (Spain); Roscilde, Tommaso [Laboratoire de Physique, Ecole Normale Superieure de Lyon, 46 Allee d' Italie, F-69007 Lyon (France); Murg, Valentin; Ignacio Cirac, J; Schmied, Roman, E-mail: Philipp.Hauke@icfo.e [Max-Planck-Institut fuer Quantenoptik, Hans-Kopfermann-Strasse 1, D-85748 Garching (Germany)
2010-05-15
We investigate a system of frustrated hardcore bosons, modeled by an XY antiferromagnet on the spatially anisotropic triangular lattice, using Takahashi's modified spin-wave (MSW) theory. In particular, we implement ordering vector optimization on the ordered reference state of MSW theory, which leads to significant improvement of the theory and accounts for quantum corrections to the classically ordered state. The MSW results at zero temperature compare favorably to exact diagonalization (ED) and projected entangled-pair state (PEPS) calculations. The resulting zero-temperature phase diagram includes a one-dimensional (1D) quasi-ordered phase, a 2D Neel ordered phase and a 2D spiraling ordered phase. Strong indications coming from the ED and PEPS calculations, as well as from the breakdown of MSW theory, suggest that the various ordered or quasi-ordered phases are separated by spin-liquid phases with short-range correlations, in analogy to what has been predicted for the Heisenberg model on the same lattice. Within MSW theory, we also explore the finite-temperature phase diagram. In agreement with the Berezinskii-Kosterlitz-Thouless (BKT) theory, we find that zero-temperature long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition temperature), while zero-temperature quasi-ordered phases become short-range correlated at finite temperature. These results show that, despite its simplicity, MSW theory is very well suited to describing ordered and quasi-ordered phases of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero and finite temperatures. While MSW theory, just as other theoretical methods, cannot describe spin-liquid phases, its breakdown provides a fast and reliable method for singling out Hamiltonians that may feature these intriguing quantum phases. We thus suggest a tool for guiding our search for interesting systems whose properties are necessarily studied with a physical quantum simulator
Hauke, Philipp; Roscilde, Tommaso; Murg, Valentin; Cirac, J. Ignacio; Schmied, Roman
2010-05-01
We investigate a system of frustrated hardcore bosons, modeled by an XY antiferromagnet on the spatially anisotropic triangular lattice, using Takahashi's modified spin-wave (MSW) theory. In particular, we implement ordering vector optimization on the ordered reference state of MSW theory, which leads to significant improvement of the theory and accounts for quantum corrections to the classically ordered state. The MSW results at zero temperature compare favorably to exact diagonalization (ED) and projected entangled-pair state (PEPS) calculations. The resulting zero-temperature phase diagram includes a one-dimensional (1D) quasi-ordered phase, a 2D Néel ordered phase and a 2D spiraling ordered phase. Strong indications coming from the ED and PEPS calculations, as well as from the breakdown of MSW theory, suggest that the various ordered or quasi-ordered phases are separated by spin-liquid phases with short-range correlations, in analogy to what has been predicted for the Heisenberg model on the same lattice. Within MSW theory, we also explore the finite-temperature phase diagram. In agreement with the Berezinskii-Kosterlitz-Thouless (BKT) theory, we find that zero-temperature long-range-ordered phases turn into quasi-ordered phases (up to a BKT transition temperature), while zero-temperature quasi-ordered phases become short-range correlated at finite temperature. These results show that, despite its simplicity, MSW theory is very well suited to describing ordered and quasi-ordered phases of frustrated XY spins (or, equivalently, of frustrated lattice bosons) both at zero and finite temperatures. While MSW theory, just as other theoretical methods, cannot describe spin-liquid phases, its breakdown provides a fast and reliable method for singling out Hamiltonians that may feature these intriguing quantum phases. We thus suggest a tool for guiding our search for interesting systems whose properties are necessarily studied with a physical quantum simulator instead
Photonic band structure of isotropic and anisotropic Abrikosov lattices in superconductors
Energy Technology Data Exchange (ETDEWEB)
Zandi, Hesam [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: zandi@ee.sharif.edu; Kokabi, Alireza [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Jafarpour, Aliakbar [School of Physics, Georgia Institute of Technology, Atlanta, GA 30332-0430 (United States); Khorasani, Sina [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of); Fardmanesh, Mehdi [School of Electrical Engineering, Sharif University of Technology, P.O. Box 11365-9363, Tehran (Iran, Islamic Republic of)], E-mail: fardmanesh@sharif.edu; Adibi, Ali [School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0250 (United States)
2007-12-01
We have performed a numerical solution for band structure of an Abrikosov vortex lattice in type-II superconductors forming a periodic array in two dimensions for applications of incorporating the photonic crystals concept into superconducting materials with possibilities for optical electronics. The implemented numerical method is based on the extensive numerical solution of the Ginzburg-Landau equation for calculating the parameters of the two-fluid model and obtaining the band structure from the permittivity for both orthogonal polarizations, which depends on the above parameters and the frequency. This is while the characteristics of such crystals highly vary with an externally applied static normal magnetic field, leading to nonlinear behavior of the band structure, which also has nonlinear dependence on the temperature. The similar analysis for every arbitrary lattice structure is also possible to be developed by this approach as presented in this work. We also present some examples and discuss the results.
Harrison, Judd; Davies, Christine T. H.; Wingate, Matthew; Hpqcd Collaboration
2018-03-01
We present results of a lattice QCD calculation of B →D* and Bs→Ds* axial vector matrix elements with both states at rest. These zero recoil matrix elements provide the normalization necessary to infer a value for the CKM matrix element |Vc b| from experimental measurements of B¯ 0→D*+ℓ-ν ¯ and B¯s0→Ds*+ℓ-ν¯ decay. Results are derived from correlation functions computed with highly improved staggered quarks (HISQ) for light, strange, and charm quark propagators, and nonrelativistic QCD for the bottom quark propagator. The calculation of correlation functions employs MILC Collaboration ensembles over a range of three lattice spacings. These gauge field configurations include sea quark effects of charm, strange, and equal-mass up and down quarks. We use ensembles with physically light up and down quarks, as well as heavier values. Our main results are FB→D *(1 )=0.895 ±0.01 0stat±0.024sys and FBs→Ds*(1 )=0.883 ±0.01 2stat±0.02 8sys . We discuss the consequences for |Vc b| in light of recent investigations into the extrapolation of experimental data to zero recoil.
The aim of the workshop is to bring together experts on QCD in order to face a variety of subjects, including: The QCD spectrum of hadrons, mesons, glueballs QCD Green's functions: Lattice studies, Schwinger-Dyson approach, Gribov copies and quantization of Yang-Mills theories QCD at finite temperature, local CP-violation in quark gluon plasma, influence of strong magnetic fields Holographic descriptions of QCD and quark-gluon plasma Topological aspects of QCD (De)confinement and/or chiral symmetry breaking Vacuum condensates, sum rules
Anisotropic lattice variation of alloy 600 by an aging at 474 .deg. C
International Nuclear Information System (INIS)
Kim, Sung Soo; Kim, H.; Kim, D.; Hwang, S.; Lim, Y.; Kim, J.
2006-01-01
Recently it has been reported that the exothermic reaction between 430∼500 .deg. C in the water quenched specimen of alloy 600 originates from a formation of the short range order (SRO) through DSC (differential scanning calorimetry) study. Marucco has established the existence of an order-disorder transformation in Ni-Cr base alloys from the study of Ni 2 Cr, Ni 3 Cr, and Ni-Cr-Fe. Marucco concluded that the degree of order primarily depends on the Cr content and that the ordering kinetics become slower when the Ni-Cr atomic ratio departs from that of the composition of Ni 2 Cr. The presence of Fe has a strong delaying effect on the ordering kinetics, even in small quantities and other alloying elements can also influence the transformation. Marucco and Nath have concluded that most commercial Ni-Cr based alloys including alloy 600 have an ordering reaction based on Ni 2 Cr at below 550 .deg. C. Ordering is known to have the following consequences: (i) dimensional instability due to lattice parameter changes; (ii) electrical and thermal characteristics; (iii) changes in mechanical properties due to the pile-ups of dislocations; and (iv) phenomenon of negative creep or material contraction under a load. The effects of a formation of SRO on alloy 600 have not been identified as yet. However, it is reported that an aging treatment under about 500 .deg. C results in a lattice contraction after an aging for 40,000 hrs. The magnitude of contraction by an aging for 40,000 hrs was 10 -4 for Ni 3 Cr. It is reasonable that this lattice contraction is due to the formation of SRO or an atomic clustering. In this study, in order to understand the aging effects for long time at 474 .deg. C in alloy 600, neutron diffraction studies were carried out from room temperature (RT) to 650 .deg. C. The ordering effect on the interplanar spacing and thermal expansion coefficients were reported
Energy Technology Data Exchange (ETDEWEB)
Lapa, Rodrigo S.; Mendonça, Griffith [Departamento de Fi' sica, Universidade Federal de Minas Gerais, CP 702, 30161-970 Belo Horizonte, MG (Brazil); Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Roberto Viana, J. [Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@ufam.edu.br [Universidade Federal do Amazonas, Departamento de Fi' sica, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, Universidade Federal do Amazonas, Departamento de Fisica, 3000, Japiim, 69077-000 Manaus, AM (Brazil)
2014-11-15
We have studied the quantum spin-1/2 frustrated Heisenberg model with two ferromagnetic interactions: nearest-neighbor (NN) with different coupling strengths J{sub 1} and J{sub 1}{sup ′} along x and y directions, respectively, competing with a next-nearest-neighbor (NNN) with coupling J{sub 2}. Using the effective-field theory we obtain the ground-state phase diagram in the (λ,α) space, where λ=J{sub 1}{sup ′}/J{sub 1} and α=J{sub 2}/J{sub 1}. Depending on the values of λ and α we observe three different states: ferromagnetic (F), collinear ferromagnetic (CF) and quantum paramagnetic (QP). We observe a QP state between the ordered F and CF phases in the region λ{sub 1}<λ<1 (λ{sub 1}≃0.62). - Highlights: • We study the ferromagnetic J{sub 1}−J{sub 1}{sup ′}−J{sub 2} model on an anisotropic square lattice by using effective-field theory. • We obtain the ground phase diagram in the λ−α plane (λ=J{sub 1}{sup ′}/J{sub 1} and α=J{sub 2}/J{sub 1}). • A comparison with the results of the antiferromagnetic J{sub 1}−J{sub 1}{sup ′}−J{sub 2} model. • We propose a functional for the free energy.
Yang, Yuan; Yang, Jian; Li, Xiaobing; Zhao, Yue
2018-03-01
We investigate the topological phase transitions in an anisotropic square-octagon lattice in the presence of spin-orbit coupling and exchange field. On the basis of the Chern number and spin Chern number, we find a number of topologically distinct phases with tuning the exchange field, including time-reversal-symmetry-broken quantum spin Hall phases, quantum anomalous Hall phases and a topologically trivial phase. Particularly, we observe a coexistent state of both the quantum spin Hall effect and quantum anomalous Hall effect. Besides, by adjusting the exchange filed, we find the phase transition from time-reversal-symmetry-broken quantum spin Hall phase to spin-imbalanced and spin-polarized quantum anomalous Hall phases, providing an opportunity for quantum spin manipulation. The bulk band gap closes when topological phase transitions occur between different topological phases. Furthermore, the energy and spin spectra of the edge states corresponding to different topological phases are consistent with the topological characterization based on the Chern and spin Chern numbers.
Toward the excited meson spectrum of dynamical QCD
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef J.; Edwards, Robert G.; Peardon, Michael J.; Richards, David G.; Thomas, Christopher E.
2010-08-01
We present a detailed description of the extraction of the highly excited isovector meson spectrum on dynamical anisotropic lattices using a new quark-field construction algorithm and a large variational basis of operators. With careful operator construction, the combination of these techniques is used to identify the continuum spin of extracted states reliably, overcoming the reduced rotational symmetry of the cubic lattice. Excited states, states with exotic quantum numbers (0+-, 1-+ and 2+-) and states of high spin are resolved, including, for the first time in a lattice QCD calculation, spin-four states. The determinations of the spectrum of isovector mesons and kaons are performed on dynamical lattices with two volumes and with pion masses down to ~ 400 MeV, with statistical precision typically at or below 1% even for highly excited states.
Nonperturbation aspects of QCD. Monte Carlo and optimization
International Nuclear Information System (INIS)
Brezin, E.; Morel, A.; Marinari, E.; Couchot, F.; Narison, S.; Richard, J.M.; Blaizot, J.P.; Souillard, B.
1986-01-01
Phase transitions; lattice QCD; numerical simulation of lattice gauge theories; experimental research on gluonic mesons; QCD-duality sum rules; the bag model, potentials, and hadron spectra; and efficient Lagrangian functions and the Skyrme model are introduced [fr
International Nuclear Information System (INIS)
Burger, Florian
2012-01-01
In this thesis we report about an investigation of the finite temperature crossover/phase transition of quantum chromodynamics and the evaluation of the thermodynamic equation of state. To this end the lattice method and the Wilson twisted mass discretisation of the quark action are used. This formulation is known to have an automatic improvement of lattice artifacts and thus an improved continuum limit behaviour. This work presents first robust results using this action for the non-vanishing temperature case. We investigate the chiral limit of the two flavour phase transition with several small values of the pion mass in order to address the open question of the order of the transition in the limit of vanishing quark mass. For the currently simulated pion masses in the range of 300 to 700 MeV we present evidence that the finite temperature transition is a crossover transition rather than a genuine phase transition. The chiral limit is investigated by comparing the scaling of the observed crossover temperature with the mass including several possible scenarios. Complementary to this approach the chiral condensate as the order parameter for the spontaneous breaking of chiral symmetry is analysed in comparison with the O(4) universal scaling function which characterises a second order transition. With respect to thermodynamics the equation of state is obtained from the trace anomaly employing the temperature integral method which provides the pressure and energy density in the crossover region. The continuum limit of the trace anomaly is studied by considering several values of N τ and the tree-level correction technique.
Energy Technology Data Exchange (ETDEWEB)
Neto, Minos A., E-mail: minos@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Roberto Viana, J., E-mail: vianafisica@bol.com.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); Ricardo de Sousa, J., E-mail: jsousa@edu.ufam.br [Departamento de Fisica, Universidade Federal do Amazonas, 3000, Japiim, Manaus, 69077-000 AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, Manaus, 69077-000 AM (Brazil)
2012-08-15
In this work we study the critical behavior of the quantum spin-1/2 anisotropic Heisenberg antiferromagnet in the presence of a longitudinal field on a body centered cubic (bcc) lattice as a function of temperature, anisotropy parameter ({Delta}) and magnetic field (H), where {Delta}=0 and 1 correspond the isotropic Heisenberg and Ising models, respectively. We use the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). The staggered m{sub s}=(m{sub A}-m{sub B})/2 and total m=(m{sub A}+m{sub B})/2 magnetizations are numerically calculated, where in the limit of m{sub s}{yields}0 the critical line T{sub N}(H,{Delta}) is obtained. The phase diagram in the T-H plane is discussed as a function of the parameter {Delta} for all values of H Element-Of [0,H{sub c}({Delta})], where H{sub c}({Delta}) correspond the critical field (T{sub N}=0). Special focus is given in the low temperature region, where a reentrant behavior is observed around of H=H{sub c}({Delta}){>=}H{sub c}({Delta}=1)=8J in the Ising limit, results in accordance with Monte Carlo simulation, and also was observed for all values of {Delta} Element-Of [0,1]. This reentrant behavior increases with increase of the anisotropy parameter {Delta}. In the limit of low field, our results for the Heisenberg limit are compared with series expansion values. - Highlights: Black-Right-Pointing-Pointer In the lat decade there has been a great interest in the physics of the quantum phase transition in spins system. Black-Right-Pointing-Pointer Effective-field theory in cluster with N=4 spins is generalized to treat the quantum spin-1/2 Heisenberg model. Black-Right-Pointing-Pointer We have obtained phase diagram at finite temperature for the quantum spin-1/2 antiferromagnet Heisenberg model as a bcc lattice.
Blum, Thomas; Christ, Norman; Hayakawa, Masashi; Izubuchi, Taku; Jin, Luchang; Jung, Chulwoo; Lehner, Christoph
2017-08-01
In our previous work, Blum et al. [Phys. Rev. Lett. 118, 022005 (2017), 10.1103/PhysRevLett.118.022005], the connected and leading disconnected hadronic light-by-light contributions to the muon anomalous magnetic moment (g -2 ) have been computed using lattice QCD ensembles corresponding to physical pion mass generated by the RBC/UKQCD Collaboration. However, the calculation is expected to suffer from a significant finite-volume error that scales like 1 /L2 where L is the spatial size of the lattice. In this paper, we demonstrate that this problem is cured by treating the muon and photons in infinite-volume, continuum QED, resulting in a weighting function that is precomputed and saved with affordable cost and sufficient accuracy. We present numerical results for the case when the quark loop is replaced by a muon loop, finding the expected exponential approach to the infinite volume limit and consistency with the known analytic result. We have implemented an improved weighting function which reduces both discretization and finite-volume effects arising from the hadronic part of the amplitude.
Energy Technology Data Exchange (ETDEWEB)
Liuming, Liu; Orginos, Kostas; Guo, Feng-Kun; Hanhart, Christoph; Meissner, Ulf-G
2014-11-01
We study the scattering of light pseudoscalar mesons ( p , K ) off charmed mesons ( D , D _{s} ) in full lattice QCD. The S -wave scattering lengths are calculated using Luscher’s finite volume technique. We use a relativistic formulation for the charm quark. For the light quark, we use domain- wall fermions in the valence sector and improved Kogut-Susskind sea quarks. We calculate the scattering lengths of isospin-3/2 Dπ , D _{s}π , D _{s} K , isospin-0 DK and isospin-1 DK channels on the lattice. For the chiral extrapolation, we use a chiral unitary approach to next-to-leading order, which at the same time allows us to give predictions for other channels. It turns out that our results support the interpretation of the D*_{s0}( 2317 ) as a DK molecule. At the same time, we also update a prediction for the isospin breaking hadronic decay width G ( D*_{s0}( 2317 )→ D _{s}π ) to ( 133± 22 ) keV.
Blossier, BenoÃ®t.; Brinet, Mariane; Guichon, Pierre; Morénas, Vincent; Pène, Olivier; Rodríguez-Quintero, Jose; Zafeiropoulos, Savvas
2015-06-01
We present a precise nonperturbative determination of the renormalization constants in the mass independent RI'-MOM scheme. The lattice implementation uses the Iwasaki gauge action and four degenerate dynamical twisted-mass fermions. The gauge configurations are provided by the ETM Collaboration. Renormalization constants for scalar, pseudoscalar, vector and axial operators, as well as the quark propagator renormalization, are computed at three different values of the lattice spacing, two volumes and several twisted-mass parameters. The method we developed allows for a precise cross-check of the running, thanks to the particular proper treatment of hypercubic artifacts. Results for the twist-2 operator O44 are also presented.
Papavassiliou, G.; Pissas, M.; Karayanni, M.; Fardis, M.; Koutandos, S.; Prassides, K.
2002-01-01
We report a detailed study of $^{11}$B and $^{27}$Al NMR spin-lattice relaxation rates ($1/T_1$), as well as of $^{27}$Al Knight shift (K) of Mg$_{1-x}$Al$_x$B$_2$, $0\\leq x\\leq 1$. The obtained ($1/T_1T$) and K vs. x plots are in excellent agreement with ab initio calculations. This asserts experimentally the prediction that the Fermi surface is highly anisotropic, consisting mainly of hole-type 2-D cylindrical sheets from bonding $2p_{x,y}$ boron orbitals. It is also shown that the density ...
Semileptonic B→D{sup ∗∗} decays in lattice QCD: a feasability study and first results
Energy Technology Data Exchange (ETDEWEB)
Atoui, M. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Unité Mixte de Recherche 6533 CNRS/IN2P3, Université Blaise Pascal, BP 80026, Campus des Cézeaux, 24 avenue des Landais, 63171, Aubière Cedex (France); Blossier, B., E-mail: benoit.blossier@th.u-psud.fr [Laboratoire de Physique Théorique, Unité Mixte de Recherche 8627 du Centre National de la Recherche Scientifique et Université Paris-Sud XI, Bâtiment 210, 91405, Orsay Cedex (France); Morénas, V. [Laboratoire de Physique Corpusculaire de Clermont-Ferrand, Unité Mixte de Recherche 6533 CNRS/IN2P3, Université Blaise Pascal, BP 80026, Campus des Cézeaux, 24 avenue des Landais, 63171, Aubière Cedex (France); Pène, O. [Laboratoire de Physique Théorique, Unité Mixte de Recherche 8627 du Centre National de la Recherche Scientifique et Université Paris-Sud XI, Bâtiment 210, 91405, Orsay Cedex (France); Petrov, K. [Inria Saclay, Bâtiment Alan Turing, 1 rue Honoré d’Estienne d’Orves, Campus de l’Ecole Polytechnique, 91120, Palaiseau (France)
2015-08-21
We compute the decays B→D{sub 0}{sup ∗} and B→D{sub 2}{sup ∗} with finite masses for the b and c quarks. We first discuss the spectral properties of both the B meson as a function of its momentum and the D{sub 0}{sup ∗} and D{sub 2}{sup ∗} at rest. We compute the theoretical formulae leading to the decay amplitudes from the three-point and two-point correlators. We then compute the amplitudes at zero recoil of B→D{sub 0}{sup ∗}, which turns out not to be vanishing contrary to what happens in the heavy quark limit. This opens the possibility to get better agreement with experiment. To improve the continuum limit we have added a set of data with smaller lattice spacing. The B→D{sub 2}{sup ∗} vanishes at zero recoil and we show a convincing signal but only slightly more than 1 sigma from 0. In order to reach quantitatively significant results we plan to exploit fully smaller lattice spacings as well as another lattice regularisation.
Rindlisbacher, Tobias
2016-01-01
We investigate the properties of the half-filling point in lattice QCD (LQCD), in particular the disappearance of the sign problem and the emergence of an apparent particle-hole symmetry, and try to understand where these properties come from by studying the heavy-dense fermion determinant and the corresponding strong-coupling partition function (which can be integrated analytically). We then add in a first step an effective Polyakov loop gauge action (which reproduces the leading terms in the character expansion of the Wilson gauge action) to the heavy-dense partition function and try to analyze how some of the properties of the half-filling point change when leaving the strong coupling limit. In a second step, we take also the leading nearest-neighbor fermion hopping terms into account (including gauge interactions in the fundamental representation) and mention how the method could be improved further to incorporate the full set of nearest-neighbor fermion hoppings. Using our mean-field method, we also obta...
Energy Technology Data Exchange (ETDEWEB)
Faria da Veiga, Paulo A., E-mail: veiga@icmc.usp.br; O’Carroll, Michael, E-mail: michaelocarroll@gmail.com; Valencia Alvites, José C., E-mail: cien.mat@hotmail.com [Departamento de Matemática Aplicada e Estatística, ICMC, USP-São Carlos, C.P. 668, São Carlos, SP 13560-970 (Brazil)
2016-03-15
Considering a 3 + 1 dimensional lattice quantum chromodynamics (QCD) model defined with the improved Wilson action, three flavors, and 4 × 4 Dirac spin matrices, in the strong coupling regime, we reanalyze the question of the existence of the eightfold way baryons and complete our previous work where the existence of isospin octet baryons was rigorously solved. Here, we show the existence of isospin decuplet baryons which are associated with isolated dispersion curves in the subspace of the underlying quantum mechanical Hilbert space with vectors constructed with an odd number of fermion and antifermion basic quark and antiquark fields. Moreover, smoothness properties for these curves are obtained. The present work deals with a case for which the traditional method to solve the implicit equation for the dispersion curves, based on the use of the analytic implicit function theorem, cannot be applied. We do not have only one but two solutions for each one-baryon decuplet sector with fixed spin third component. Instead, we apply the Weierstrass preparation theorem, which also provides a general method for the general degenerate case. This work is completed by analyzing a spectral representation for the two-baryon correlations and providing the leading behaviors of the field strength normalization and the mass of the spectral contributions with more than one-particle. These are needed results for a rigorous analysis of the two-baryon and meson-baryon particle spectra.
Neutral B-Meson Mixing Parameters in and beyond the SM with 2+1 Flavor Lattice QCD
Energy Technology Data Exchange (ETDEWEB)
Bouchard, Chris M. [William-Mary Coll.; Freeland, Elizabeth [Art Inst. of Chicago; Bernard, C. W. [Washington U., St. Louis; Chang, Chia Cheng [Illinois U., Urbana; El-Khadra, Aida X [Illinois U., Urbana; Gámiz, M. Elvira [Granada U., Theor. Phys. Astrophys.; Kronfeld, A. S. [Munich, Tech. U.; Laiho, Jack [Syracuse U.; Van de Water, Ruth S. [Fermilab
2014-12-03
We report on the status of our calculation of the hadronic matrix elements for neutral $B$-meson mixing with asqtad sea and valence light quarks and using the Wilson clover action with the Fermilab interpretation for the $b$ quark. We calculate the matrix elements of all five local operators that contribute to neutral $B$-meson mixing both in and beyond the Standard Model. We use MILC ensembles with $N_f=2+1$ dynamical flavors at four different lattice spacings in the range $a \\approx 0.045$--$0.12$~fm, and with light sea-quark masses as low as 0.05 times the physical strange quark mass. We perform a combined chiral-continuum extrapolation including the so-called wrong-spin contributions in simultaneous fits to the matrix elements of the five operators. We present a complete systematic error budget and conclude with an outlook for obtaining final results from this analysis.
International Nuclear Information System (INIS)
Chadderton, L.T.; Johnson, E.; Wohlenberg, T.
1976-01-01
Void lattices in metals apparently owe their stability to elastically anisotropic interactions. An ordered array of voids on the anion sublattice in fluorite does not fit so neatly into this scheme of things. Crowdions may play a part in the formation of the void lattice, and stability may derive from other sources. (Auth.)
Energy Technology Data Exchange (ETDEWEB)
Athenodorou, Andreas [Cyprus Institute, Nicosia, Cyprus; Boucaud, Philippe [Univ. Paris-Sud, Orsay (France); de Soto, Feliciano [Univ. Pablo de Olavide, 41013 Sevilla; Spain; Univ. of Granada (Spain); Rodriguez-Quintero, Jose [Universidad de Huelva, 21071 Huelva; Spain; Univ. of Granada (Spain); Zafeiropoulos, Savvas [College of William and Mary, Williamsburg, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); Heidelberg Univ. (Germany). Inst. for Theoretische Physik
2018-04-01
We report on an instanton-based analysis of the gluon Green functions in the Landau gauge for low momenta; in particular we use lattice results for αs in the symmetric momentum subtraction scheme (MOM) for large-volume lattice simulations. We have exploited quenched gauge field configurations, Nf = 0, with both Wilson and tree-level Symanzik improved actions, and unquenched ones with Nf = 2 + 1 and Nf = 2 + 1 + 1 dynamical flavors (domain wall and twisted-mass fermions, respectively).We show that the dominance of instanton correlations on the low-momenta gluon Green functions can be applied to the determination of phenomenological parameters of the instanton liquid and, eventually, to a determination of the lattice spacing.We furthermore apply the Gradient Flow to remove short-distance fluctuations. The Gradient Flow gets rid of the QCD scale, ΛQCD, and reveals that the instanton prediction extents to large momenta. For those gauge field configurations free of quantum fluctuations, the direct study of topological charge density shows the appearance of large-scale lumps that can be identified as instantons, giving access to a direct study of the instanton density and size distribution that is compatible with those extracted from the analysis of the Green functions.
DEFF Research Database (Denmark)
Sannino, Francesco
2009-01-01
We uncover a novel solution of the 't Hooft anomaly matching conditions for QCD. Interestingly in the perturbative regime the new gauge theory, if interpreted as a possible QCD dual, predicts the critical number of flavors above which QCD in the nonperturbative regime, develops an infrared stable...
Guo, San-Dong
2017-11-01
Recently, three-component new fermions in topological semimetal MoP are experimentally observed (2017 Nature 546 627), which may have potential applications like topological qubits, low-power electronics and spintronics. These are closely related to thermal transport properties of MoP. In this work, the phonon transport of MoP is investigated by solving the linearized phonon Boltzmann equation within the single-mode relaxation time approximation (RTA). The calculated room-temperature lattice thermal conductivity is 18.41 [Formula: see text] and 34.71 [Formula: see text] along the in- and cross-plane directions, exhibiting very strong anisotropy. The isotope and size effects on the lattice thermal conductivity are also considered. It is found that isotope scattering produces little effect, and phonon has little contribution to the lattice thermal conductivity, when phonon mean free path (MFP) is larger than 0.15 [Formula: see text] at 300 K. It is noted that average room-temperature lattice thermal conductivity of MoP is lower than that of representative Weyl semimetal TaAs, which is due to smaller group velocities and larger Grüneisen parameters. Our works provide valuable informations for the thermal management of MoP-based nano-electronics devices, and motivate further experimental works to study thermal transport of MoP.
2015-01-01
These are the proceedings of the QCD Evolution 2015 Workshop which was held 26–30 May, 2015 at Jefferson Lab, Newport News, Virginia, USA. The workshop is a continuation of a series of workshops held during four consecutive years 2011, 2012, 2013 at Jefferson Lab, and in 2014 in Santa Fe, NM. With the rapid developments in our understanding of the evolution of parton distributions including low-x, TMDs, GPDs, higher-twist correlation functions, and the associated progress in perturbative QCD, lattice QCD and effective field theory techniques we look forward with great enthusiasm to the 2015 meeting. A special attention was also paid to participation of experimentalists as the topics discussed are of immediate importance for the JLab 12 experimental program and a future Electron Ion Collider.
J{sub 1x}-J{sub 1y}-J{sub 2} square-lattice anisotropic Heisenberg model
Energy Technology Data Exchange (ETDEWEB)
Pires, A.S.T., E-mail: antpires@frisica.ufmg.br
2017-08-01
Highlights: • We use the SU(3) Schwinger boson formalism. • We present the phase diagram at zero temperature. • We calculate the quadrupole structure factor. - Abstract: The spin one Heisenberg model with an easy-plane single-ion anisotropy and spatially anisotropic nearest-neighbor coupling, frustrated by a next-nearest neighbor interaction, is studied at zero temperature using a SU(3) Schwinger boson formalism (sometimes also referred to as flavor wave theory) in a mean field approximation. The local constraint is enforced by introducing a Lagrange multiplier. The enlarged Hilbert space of S = 1 spins lead to a nematic phase that is ubiquitous to S = 1 spins with single ion anisotropy. The phase diagram shows two magnetically ordered phase, separated by a quantum paramagnetic (nematic) phase.
Indian Academy of Sciences (India)
activities in non-perturbative QCD. Keywords. Deflation; overlap operator; GPU; CUDA. PACS Nos 11.15.Ha; 12.38.-t. 1. Introduction. The lattice gauge theory subgroup of the working group in non-perturbative QCD consisted of Mridupavan Deka, Sourendu Gupta, N D Hari Dass, Rajarshi Roy, Sayantan Sharma and.
International Nuclear Information System (INIS)
Gottlieb, S.
1992-01-01
Increased computer power is essential for future progress in lattice gauge theory and for other Grand challenge applications. We address the physics that can be done with a computer capable of sustaining 1 Teraflops for QCD and the technology that will make it possible to construct such a computer within the next three years. Our collaboration has proposed to build a computer based on the Thinking Machines CM5 communication network, but with nodes 10 times faster
Theoretical summary talk of QCD 2002
Indian Academy of Sciences (India)
This summary will cover the theoretical talks presented at the QCD 2002 meeting held at IIT, Kanpur from November 18–22, 2002. However this talk will not cover the T /= 0 and ρ /= 0 talks as well as discussions of lattice QCD given at the meeting – these will be discussed in the summary by Rajeev Bhalerao. The meeting ...
Finite Temperature Qcd With Domain Wall Fermions
Fleming, G T
2001-01-01
Domain wall fermions are a new lattice fermion formulation which preserves the full chiral symmetry of the continuum at finite lattice spacing, up to terms exponentially small in an extra parameter. We discuss the main features of the formulation and its application to study of QCD with two light fermions of equal mass. We also present numerical studies of the two flavor QCD thermodynamics with aT = 1/4.
Energy Technology Data Exchange (ETDEWEB)
Soltz, R; Vranas, P; Blumrich, M; Chen, D; Gara, A; Giampap, M; Heidelberger, P; Salapura, V; Sexton, J; Bhanot, G
2007-04-11
The theory of the strong nuclear force, Quantum Chromodynamics (QCD), can be numerically simulated from first principles on massively-parallel supercomputers using the method of Lattice Gauge Theory. We describe the special programming requirements of lattice QCD (LQCD) as well as the optimal supercomputer hardware architectures that it suggests. We demonstrate these methods on the BlueGene massively-parallel supercomputer and argue that LQCD and the BlueGene architecture are a natural match. This can be traced to the simple fact that LQCD is a regular lattice discretization of space into lattice sites while the BlueGene supercomputer is a discretization of space into compute nodes, and that both are constrained by requirements of locality. This simple relation is both technologically important and theoretically intriguing. The main result of this paper is the speedup of LQCD using up to 131,072 CPUs on the largest BlueGene/L supercomputer. The speedup is perfect with sustained performance of about 20% of peak. This corresponds to a maximum of 70.5 sustained TFlop/s. At these speeds LQCD and BlueGene are poised to produce the next generation of strong interaction physics theoretical results.
Maurya, A.; Thamizhavel, A.; Dhar, S. K.; Provino, A.; Pani, M.; Costa, G. A.
2017-03-01
Single crystals of the new compound CeCu0.18Al0.24Si1.58 have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi2 (tetragonal α-ThSi2-type, Pearson symbol tI12, space group I41/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi2 is a well-known valence-fluctuating paramagnetic compound, the CeCu0.18Al0.24Si1.58 phase orders ferromagnetically at TC=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K2) show that CeCu0.18Al0.24Si1.58 is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of TC in CeCu0.18Al0.24Si1.58.
Energy Technology Data Exchange (ETDEWEB)
Maurya, A.; Thamizhavel, A.; Dhar, S.K. [Department of Condensed Matter Physics & Materials Science, Tata Institute of Fundamental Research, Homi Bhabha Road, Mumbai 400 005 (India); Provino, A.; Pani, M.; Costa, G.A. [Department of Chemistry, University of Genova, Via Dodecaneso 31, 16146 Genova (Italy); Institute SPIN-CNR, Corso Perrone 24, 16152 Genova (Italy)
2017-03-15
Single crystals of the new compound CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} have been grown by high-temperature solution growth method using a eutectic Al-Si mixture as flux. This compound is derived from the binary CeSi{sub 2} (tetragonal α-ThSi{sub 2}-type, Pearson symbol tI12, space group I4{sub 1}/amd) obtained by partial substitution of Si by Cu and Al atoms but showing full occupation of the Si crystal site (8e). While CeSi{sub 2} is a well-known valence-fluctuating paramagnetic compound, the CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} phase orders ferromagnetically at T{sub C}=9.3 K. At low temperatures the easy-axis of magnetization is along the a-axis, which re-orients itself along the c-axis above 30 K. The presence of hysteresis in the magnetization curve, negative temperature coefficient of resistivity at high temperatures, reduced jump in the heat capacity and a relatively lower entropy released up to the ordering temperature, and enhanced Sommerfeld coefficient (≈100 mJ/mol K{sup 2}) show that CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58} is a Kondo lattice ferromagnetic, moderate heavy fermion compound. Analysis of the high temperature heat capacity data in the paramagnetic region lets us infer that the crystal electric field split doublet levels are located at 178 and 357 K, respectively, and Kondo temperature (8.4 K) is of the order of T{sub C} in CeCu{sub 0.18}Al{sub 0.24}Si{sub 1.58}.
Directory of Open Access Journals (Sweden)
N. Carrasco
2014-09-01
Full Text Available Motivated by a recent paper by the RBC–UKQCD Collaboration, which observes large violations of the naïve factorization hypothesis in K→ππ decays, we study in this paper the accuracy of the Vacuum Insertion Approximation (VIA for the matrix elements of the complete basis of four-fermion ΔF=2 operators. We perform a comparison between the matrix elements in QCD, evaluated on the lattice, and the VIA predictions. We also investigate the dependence on the external meson masses by computing matrix elements for K, Ds, Bs and static mesons. In commonly used renormalization schemes, we find large violations of the VIA in particular for one of the two relevant Wick contractions in the kaon sector. These deviations, however, decrease significantly as the meson mass increases and the VIA predictions turn out to be rather well verified for B-meson matrix elements and, even better, in the infinite mass limit.
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States); Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-03-01
I describe how hadron-hadron scattering amplitudes are related to the eigenstates of QCD in a finite cubic volume. The discrete spectrum of such eigenstates can be determined from correlation functions computed using lattice QCD, and the corresponding scattering amplitudes extracted. I review results from the Hadron Spectrum Collaboration who have used these finite volume methods to study ππ elastic scattering, including the ρ resonance, as well as coupled-channel πK, ηK scattering. The very recent extension to the case where an external current acts is also presented, considering the reaction πγ* → ππ, from which the unstable ρ → πγ transition form factor is extracted. Ongoing calculations are advertised and the outlook for finite volume approaches is presented.
Dynamical fermions in lattice quantum chromodynamics
International Nuclear Information System (INIS)
Szabo, Kalman
2007-01-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Dynamical fermions in lattice quantum chromodynamics
Energy Technology Data Exchange (ETDEWEB)
Szabo, Kalman
2007-07-01
The thesis presentS results in Quantum Chromo Dynamics (QCD) with dynamical lattice fermions. The topological susceptibilty in QCD is determined, the calculations are carried out with dynamical overlap fermions. The most important properties of the quark-gluon plasma phase of QCD are studied, for which dynamical staggered fermions are used. (orig.)
Λc→N form factors from lattice QCD and phenomenology of Λc→n ℓ+νℓ and Λc→p μ+μ- decays
Meinel, Stefan
2018-02-01
A lattice QCD determination of the Λc→N vector, axial vector, and tensor form factors is reported. The calculation was performed with 2 +1 flavors of domain-wall fermions at lattice spacings of a ≈0.11 and 0.085 fm and pion masses in the range 230 MeV ≲mπ≲350 MeV . The form factors are extrapolated to the continuum limit and the physical pion mass using modified z expansions. The rates of the charged-current decays Λc→n e+νe and Λc→n μ+νμ are predicted to be (0.405 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 and (0.396 ±0.01 6stat±0.02 0syst) |Vc d|2 ps-1 , respectively. The phenomenology of the rare charm decay Λc→p μ+μ- is also studied. The differential branching fraction, the fraction of longitudinally polarized dimuons, and the forward-backward asymmetry are calculated in the standard model and in an illustrative new-physics scenario.
International Nuclear Information System (INIS)
Makeenko, Yu.
1994-01-01
I review recent works on the problem of inducing large-N QCD by matrix fields. In the first part of the talk I describe the matrix models which induce large-N QCD and present the results of studies of their phase structure by the standard lattice technology (in particular, by the mean field method). The second part is devoted to the exact solution of these models in the strong coupling region by means of the loop equations. I describe the solution of the Kazakov-Migdal model with the quadratic and logarithmic potentials as well as that of analogous fermionic models with the quadratic potential. (orig.)
Hadron scattering, resonances, and QCD
Energy Technology Data Exchange (ETDEWEB)
Briceno, Raul [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-12-01
The non-perturbative nature of quantum chromodynamics (QCD) has historically left a gap in our understanding of the connection between the fundamental theory of the strong interactions and the rich structure of experimentally observed phenomena. For the simplest properties of stable hadrons, this is now circumvented with the use of lattice QCD (LQCD). In this talk I discuss a path towards a rigorous determination of few-hadron observables from LQCD. I illustrate the power of the methodology by presenting recently determined scattering amplitudes in the light-meson sector and their resonance content.
New perspectives for heavy flavour physics from the lattice
International Nuclear Information System (INIS)
Sommer, R.
2009-06-01
Heavy flavours represent a challenge for lattice QCD. We discuss it in very general terms. We give an idea of the significant recent progress which opens up good perspectives for high precision first principles QCD computations for flavour physics. (orig.)
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
susceptibility and the screening lengths. A short summary is provided at the end. 2. .... approximations but decreasing order of computer time, are (i) full QCD simulations on smaller lattices, (ii) partially quenched ... Theoretical expectations and simulation results for QCD phase diagram. over to different number of flavours.
Meson Spectroscopy from QCD - Project Results
Energy Technology Data Exchange (ETDEWEB)
Dudek, Jozef [Old Dominion Univ., Norfolk, VA (United States)
2017-04-17
Highlights of the research include: the determination of the form of the lowest energy gluonic excitation within QCD and the spectrum of hybrid hadrons which follows; the first calculation of the spectrum of hybrid baryons within a first-principles approach to QCD; a detailed mapping out of the phase-shift of elastic ππ scattering featuring the ρ resonance at two values of the light quark mass within lattice QCD; the first (and to date, only) determinations of coupled-channel meson-meson scattering within first-principles QCD; the first (and to date, only) determinations of the radiative coupling of a resonant state, the ρ appearing in πγ→ππ; the first (and to date, only) determination of the properties of the broad σ resonance in elastic ππ scattering within QCD without unjustified approximations.
Mass of the b quark and B -meson decay constants from Nf=2+1+1 twisted-mass lattice QCD
DEFF Research Database (Denmark)
Bussone, A.; Carrasco, N.; Dimopoulos, P
2016-01-01
We present precise lattice computations for the b-quark mass, the quark mass ratios mb/mc and mb/ms as well as the leptonic B-decay constants. We employ gauge configurations with four dynamical quark flavors, up-down, strange and charm, at three values of the lattice spacing (a∼0.06-0.09 fm......) and for pion masses as low as 210 MeV. Interpolation in the heavy quark mass to the bottom quark point is performed using ratios of physical quantities computed at nearby quark masses exploiting the fact that these ratios are exactly known in the static quark mass limit. Our results are also extrapolated...
Quark virtuality and QCD vacuum condensates
International Nuclear Information System (INIS)
Zhou Lijuan; Ma Weixing
2004-01-01
Based on the Dyson-Schwinger equations (DSEs) in the 'rainbow' approximation, the authors investigate the quark virtuality in the vacuum state and quantum-chromodynamics (QCD) vacuum condensates. In particular, authors calculate the local quark vacuum condensate and quark-gluon mixed condensates, and then the virtuality of quark. The calculated quark virtualities are λ u,d 2 =0.7 GeV 2 for u, d quarks, and λ s 2 =1.6 GeV 2 for s quark. The theoretical predictions are consistent with empirical values used in QCD sum rules, and also fit to lattice QCD predictions
Lattice calculations in gauge theory
International Nuclear Information System (INIS)
Rebbi, C.
1985-01-01
The lattice formulation of quantum gauge theories is discussed as a viable technique for quantitative studies of nonperturbative effects in QCD. Evidence is presented to ascertain that whole classes of lattice actions produce a universal continuum limit. Discrepancies between numerical results from Monto Carlo simulations for the pure gauge system and for the system with gauge and quark fields are discussed. Numerical calculations for QCD require very substantial computational resources. The use of powerful vector processors of special purpose machines, in extending the scope and magnitude or the calculations is considered, and one may reasonably expect that in the near future good quantitative predictions will be obtained for QCD
Working Group Report: Lattice Field Theory
Energy Technology Data Exchange (ETDEWEB)
Blum, T.; et al.,
2013-10-22
This is the report of the Computing Frontier working group on Lattice Field Theory prepared for the proceedings of the 2013 Community Summer Study ("Snowmass"). We present the future computing needs and plans of the U.S. lattice gauge theory community and argue that continued support of the U.S. (and worldwide) lattice-QCD effort is essential to fully capitalize on the enormous investment in the high-energy physics experimental program. We first summarize the dramatic progress of numerical lattice-QCD simulations in the past decade, with some emphasis on calculations carried out under the auspices of the U.S. Lattice-QCD Collaboration, and describe a broad program of lattice-QCD calculations that will be relevant for future experiments at the intensity and energy frontiers. We then present details of the computational hardware and software resources needed to undertake these calculations.
International Nuclear Information System (INIS)
Kalkreuter, T.; Simma, H.
1995-07-01
The low-lying eigenvalues of a (sparse) hermitian matrix can be computed with controlled numerical errors by a conjugate gradient (CG) method. This CG algorithm is accelerated by alternating it with exact diagonalizations in the subspace spanned by the numerically computed eigenvectors. We study this combined algorithm in case of the Dirac operator with (dynamical) Wilson fermions in four-dimensional SU(2) gauge fields. The algorithm is numerically very stable and can be parallelized in an efficient way. On lattices of sizes 4 4 - 16 4 an acceleration of the pure CG method by a factor of 4 - 8 is found. (orig.)
Theoretical overview: Hot and dense QCD in equilibrium
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Tetsuo.
1991-11-01
Static and dynamical properties of QCD at finite temperature and density are reviewed. Non-perturbative aspects of the QCD plasma and modification of the hadron properties associated with the chiral transition are discussed on the basis of lattice data, effective theories and QCD sum rules. Special emphasis is laid on the importance of the finite baryon density to see the effects of the restoration of chiral symmetry in experiment.
The exotic atoms of QCD: glueballs, hybrids and baryonia
International Nuclear Information System (INIS)
Barnes, T.
1984-05-01
The theoretical basis underlying the expected ''exotic'' states in QCD, the theory of quarks and gluons, is reviewed in three lectures. The first lecture is an historical introduction to QCD. The second lecture is a critical review of the MIT bag model and QCD on a lattice. The status of three candidate ''exotic'' states seen in psi radiative decays, the i(1440), O(1700) and zeta(2220) are discussed in the third lecture. (author)
The Renormalization Group Improvement of the QCD Static Potentials
Pineda-Ruiz, A; Pineda, Antonio; Soto, Joan
2000-01-01
We resum the leading ultrasoft logs of the singlet and octet static QCD potentials within potential NRQCD. We then obtain the complete three-loop renormalization group improvement of the singlet QCD static potential. The discrepancies between the perturbative evaluation and the lattice results at short distances are slightly reduced.
Confinining properties of QCD in strong magnetic backgrounds
Directory of Open Access Journals (Sweden)
Bonati Claudio
2017-01-01
Full Text Available Strong magnetic backgrounds are known to modify QCD properties at a nonperturbative level. We discuss recent lattice results, obtained for Nf = 2 + 1 QCD with physical quark masses, concerning in particular the modifications and the anisotropies induced at the level of the static quark-antiquark potential, both at zero and finite temperature.
Instantons in the QCD vacuum and in deep inelastic scattering
International Nuclear Information System (INIS)
Ringwald, A.; Schrempp, F.
1999-01-01
We give a brief status report on our on-going investigation of the prospects to discover QCD instantons in deep inelastic scattering (DIS) at HERA. A recent high-quality lattice study of the topological structure of the QCD vacuum is exploited to provide crucial support of our predictions for DIS, based on instanton perturbation theory
Some new/old approaches to QCD
Energy Technology Data Exchange (ETDEWEB)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD.
Some new/old approaches to QCD
International Nuclear Information System (INIS)
Gross, D.J.
1992-11-01
In this lecture I shall discuss some recent attempts to revive some old ideas to address the problem of solving QCD. I believe that it is timely to return to this problem which has been woefully neglected for the last decade. QCD is a permanent part of the theoretical landscape and eventually we will have to develop analytic tools for dealing with the theory in the infra-red. Lattice techniques are useful but they have not yet lived up to their promise. Even if one manages to derive the hadronic spectrum numerically, to an accuracy of 10% or even 1%, we will not be truly satisfied unless we have some analytic understanding of the results. Also, lattice Monte-Carlo methods can only be used to answer a small set of questions. Many issues of great conceptual and practical interest-in particular the calculation of scattering amplitudes, are thus far beyond lattice control. Any progress in controlling QCD in an explicit analytic, fashion would be of great conceptual value. It would also be of great practical aid to experimentalists, who must use rather ad-hoc and primitive models of QCD scattering amplitudes to estimate the backgrounds to interesting new physics. I will discuss an attempt to derive a string representation of QCD and a revival of the large N approach to QCD. Both of these ideas have a long history, many theorist-years have been devoted to their pursuit-so far with little success. I believe that it is time to try again. In part this is because of the progress in the last few years in string theory. Our increased understanding of string theory should make the attempt to discover a stringy representation of QCD easier, and the methods explored in matrix models might be employed to study the large N limit of QCD
Determinations of the QCD strong coupling αsub(s) and the scale Λsub(QCD)
International Nuclear Information System (INIS)
Duke, D.W.; Roberts, R.G.
1984-08-01
The authors review determinations, via experiment of the strong coupling of QCD, αsub(s). In almost every case, the results are used of perturbative QCD to make the necessary extraction from data. These include scaling violations of deep inelastic scattering, e + e - annihilation experiments (including quarkonium decays) and lepton pair production. Finally estimates for Λ from lattice calculations are listed. (author)
Energy Technology Data Exchange (ETDEWEB)
Brandt, Bastian B. [Institute for Theoretical Physics, Goethe-University of Frankfurt,60438 Frankfurt (Germany); Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany); Lohmayer, Robert; Wettig, Tilo [Institute for Theoretical Physics, University of Regensburg,93040 Regensburg (Germany)
2016-11-14
We explore an alternative discretization of continuum SU(N{sub c}) Yang-Mills theory on a Euclidean spacetime lattice, originally introduced by Budzcies and Zirnbauer. In this discretization the self-interactions of the gauge field are induced by a path integral over N{sub b} auxiliary boson fields, which are coupled linearly to the gauge field. The main progress compared to earlier approaches is that N{sub b} can be as small as N{sub c}. In the present paper we (i) extend the proof that the continuum limit of the new discretization reproduces Yang-Mills theory in two dimensions from gauge group U(N{sub c}) to SU(N{sub c}), (ii) derive refined bounds on N{sub b} for non-integer values, and (iii) perform a perturbative calculation to match the bare parameter of the induced gauge theory to the standard lattice coupling. In follow-up papers we will present numerical evidence in support of the conjecture that the induced gauge theory reproduces Yang-Mills theory also in three and four dimensions, and explore the possibility to integrate out the gauge fields to arrive at a dual formulation of lattice QCD.
Matrix Theory for Baryons: An Overview of Holographic QCD for Nuclear Physics
Aoki, Sinya; Iizuka, Norihiro
2013-01-01
We provide, for non-experts, a brief overview of holographic QCD and a review of a recent proposal of matrix-description of multi-baryon systems in holographic QCD. Based on the matrix model, we derive the baryon interaction at short distances in multi-flavor holographic QCD. We show that there is a very universal repulsive core of inter-baryon forces for generic number of flavors. This is consistent with a recent lattice QCD analysis for N_f = 2, 3 where repulsive core looks universal. We also provide a comparison of our results with the lattice QCD and the operator product expansion (OPE) analysis.
Critical frontier of anisotropic planar Potts ferromagnets : a new conjucture
International Nuclear Information System (INIS)
Tsallis, C.
1982-01-01
The critical frontier of the nearest-neighbour q-state Potts ferromagnet in the fully anisotropic 3-12 lattice is conjectured through a star-triangle transformation. It recovers all the available exact results concerning particular cases, namely: (i) anisotropic square lattice for all q; (ii) anisotropic triangular and honeycomb lattices for all q; (iii) anisotropic Kagome and diced lattices for q=2; (iv) isotropic 3-12 and Asanoha lattices for q=2. It provides proposals for several other planar lattices, in particular for the anisotropic Kagome (and diced) one for q different 2, where it slightly differs from the Wu 1979 conjecture (Which also satisfies the cases (i) and (iii)). The bond percolation critical probabilities on the 3-12 and Kagome lattices are determined to be respectively p sub(c) = 0.739830... and p sub(c) = 0.522372.... (Author) [pt
13. international QCD conference (QCD 06)
Energy Technology Data Exchange (ETDEWEB)
NONE
2006-07-01
This conference was organized around 5 sessions: 1) quantum chromodynamics (QCD) at colliders, 2) CP-violation, Kaon decays and Chiral symmetry, 3) perturbative QCD, 4) physics of light and heavy hadrons, 5) confinement, thermodynamics QCD and axion searches. This document gathers only the slides of the presentations.
Modeling the thermodynamics of QCD
Energy Technology Data Exchange (ETDEWEB)
Hell, Thomas
2010-07-26
Strongly interacting (QCD) matter is expected to exhibit a multifaceted phase structure: a hadron gas at low temperatures, a quark-gluon plasma at very high temperatures, nuclear matter in the low-temperature and high-density region, color superconductors at asymptotically high densities. Most of the conjectured phases cannot yet be scrutinized by experiments. Much of the present picture - particularly concerning the intermediate temperature and density area of the phase diagram of QCD matter - is based on model calculations. Further insights come from Lattice-QCD computations. The present thesis elaborates a nonlocal covariant extension of the Nambu and Jona-Lasinio (NJL) model with built-in constraints from the running coupling of QCD at high-momentum and instanton physics at low-momentum scales. We present this model for two and three quark flavors (in the latter case paying particular attention to the axial anomaly). At finite temperatures and densities, gluon dynamics is incorporated through a gluonic background field, expressed in terms of the Polyakov loop (P). The thermodynamics of this nonlocal PNJL model accounts for both chiral and deconfinement transitions. We obtain results in mean-field approximation and beyond, including additional pionic and kaonic contributions to the chiral condensate, the pressure and other thermodynamic quantities. Finally, the nonlocal PNJL model is applied to the finite-density region of the QCD phase diagram; for three quark flavors we investigate, in particular, the dependence of the critical point appearing in the models on the axial anomaly. The thesis closes with a derivation of the nonlocal PNJL model from first principles of QCD. (orig.)
Lattice Methods for Quantum Chromodynamics
DeGrand, Thomas
2006-01-01
Numerical simulation of lattice-regulated QCD has become an important source of information about strong interactions. In the last few years there has been an explosion of techniques for performing ever more accurate studies on the properties of strongly interacting particles. Lattice predictions directly impact many areas of particle and nuclear physics theory and phenomenology. This book provides a thorough introduction to the specialized techniques needed to carry out numerical simulations of QCD: a description of lattice discretizations of fermions and gauge fields, methods for actually do
Energy Technology Data Exchange (ETDEWEB)
Kurth, S.
2002-09-04
The renormalised quark mass in the Schroedinger functional is studied perturbatively with a non-vanishing background field. The framework in which the calculations are done is the Schroedinger functional. Its definition and basic properties are reviewed and it is shown how to make the theory converge faster towards its continuum limit by O(a) improvement. It is explained how the Schroedinger functional scheme avoids the implications of treating a large energy range on a single lattice in order to determine the scale dependence of renormalised quantities. The description of the scale dependence by the step scaling function is introduced both for the renormalised coupling and the renormalised quark masses. The definition of the renormalised coupling in the Schroedinger functional is reviewed, and the concept of the renormalised mass being defined by the axial current and density via the PCAC-relation is explained. The running of the renormalised mass described by its step scaling function is presented as a consequence of the fact that the renormalisation constant of the axial density is scale dependent. The central part of the thesis is the expansion of several correlation functions up to 1-loop order. The expansion coefficients are used to compute the critical quark mass at which the renormalised mass vanishes, as well as the 1-loop coefficient of the renormalisation constant of the axial density. Using the result for this renormalisation constant, the 2-loop anomalous dimension is obtained by conversion from the MS-scheme. Another important application of perturbation theory carried out in this thesis is the determination of discretisation errors. The critical quark mass at 1-loop order is used to compute the deviation of the coupling's step scaling function from its continuum limit at 2-loop order. Several lattice artefacts of the current quark mass, defined by the PCAC relation with the unrenormalised axial current and density, are computed at 1-loop order
International Nuclear Information System (INIS)
Kurth, S.
2002-01-01
The renormalised quark mass in the Schroedinger functional is studied perturbatively with a non-vanishing background field. The framework in which the calculations are done is the Schroedinger functional. Its definition and basic properties are reviewed and it is shown how to make the theory converge faster towards its continuum limit by O(a) improvement. It is explained how the Schroedinger functional scheme avoids the implications of treating a large energy range on a single lattice in order to determine the scale dependence of renormalised quantities. The description of the scale dependence by the step scaling function is introduced both for the renormalised coupling and the renormalised quark masses. The definition of the renormalised coupling in the Schroedinger functional is reviewed, and the concept of the renormalised mass being defined by the axial current and density via the PCAC-relation is explained. The running of the renormalised mass described by its step scaling function is presented as a consequence of the fact that the renormalisation constant of the axial density is scale dependent. The central part of the thesis is the expansion of several correlation functions up to 1-loop order. The expansion coefficients are used to compute the critical quark mass at which the renormalised mass vanishes, as well as the 1-loop coefficient of the renormalisation constant of the axial density. Using the result for this renormalisation constant, the 2-loop anomalous dimension is obtained by conversion from the MS-scheme. Another important application of perturbation theory carried out in this thesis is the determination of discretisation errors. The critical quark mass at 1-loop order is used to compute the deviation of the coupling's step scaling function from its continuum limit at 2-loop order. Several lattice artefacts of the current quark mass, defined by the PCAC relation with the unrenormalised axial current and density, are computed at 1-loop order. An
Topology in QCD and the axion abundance
Energy Technology Data Exchange (ETDEWEB)
Kitano, Ryuichiro; Yamada, Norikazu [KEK Theory Center,Tsukuba 305-0801 (Japan); Department of Particle and Nuclear Physics,The Graduate University for Advanced Studies (Sokendai),Tsukuba 305-0801 (Japan)
2015-10-21
The temperature dependence of the topological susceptibility in QCD, χ{sub t}, essentially determines the abundance of the QCD axion in the Universe, and is commonly estimated, based on the instanton picture, to be a certain negative power of temperature. While lattice QCD should be able to check this behavior in principle, the temperature range where lattice QCD works is rather limited in practice, because the topological charge is apt to freezes at high temperatures. In this work, two exploratory studies are presented. In the first part, we try to specify the temperature range in the quenched approximation. Since our purpose here is to estimate the range expected in unquenched QCD through quenched simulations, hybrid Monte Carlo (HMC) algorithm is employed instead of heatbath algorithm. We obtain an indication that unquenched calculations of χ{sub t} encounter the serious problem of autocorrelation already at T∼2 T{sub c} or even below with the plain HMC. In the second part, we revisit the axion abundance. The absolute value and the temperature dependence of χ{sub t} in real QCD can be significantly different from that in the quenched approximation, and is not well established above the critical temperature. Motivated by this fact and precedent arguments which disagree with the conventional instanton picture, we estimate the axion abundance in an extreme case where χ{sub t} decreases much faster than the conventional power-like behavior. We find a significant enhancement of the axion abundance in such a case.
QCD Phase Transitions, Volume 15
Energy Technology Data Exchange (ETDEWEB)
Schaefer, T.; Shuryak, E.
1999-03-20
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
QCD physics at hadron storage rings
Indian Academy of Sciences (India)
As a result of the rapid rise of the coupling constant at low momentum transfers, perturbation theory is not an appropriate method to describe the strong interaction. In this kinematic regime other methods such as lattice QCD or effective field theories are more appropriate to investigate the appearance of a still unsettled ...
CORE: Frustrated Magnets, Charge Fractionalization and QCD
Energy Technology Data Exchange (ETDEWEB)
Weinstein, M.
2004-10-11
I explain how to use a simple method to extract the physics of lattice Hamiltonian systems which are not easily analyzed by exact or other numerical methods. I will then use this method to establish the relationship between QCD and a special class of generalized, highly frustrated anti-ferromagnets.
QCD confinement and the meson spectrum
González, P; Valcarce, A; Vijande, J
2003-01-01
From QCD and lattice calculations two specific forms of quark confining potential, a strict linear and a screened linear confinement, come out. Both forms of the potential, implemented by the one gluon exchange interaction, are applied to the description of heavy quarkonia: cc and bb. Applications to light hadrons, mesons and baryons, are also commented. (11 refs).
Developments in lattice quantum chromodynamics for matter at high ...
Indian Academy of Sciences (India)
2015-05-06
May 6, 2015 ... A brief overview of the QCD phase diagram at nonzero temperature and density is provided. It is explained why standard lattice QCD techniques are not immediately applicable for its determination, due to the sign problem. A selection of recent lattice approaches that attempt to evade the sign problem are ...
Euler-Heisenberg-Weiss action for QCD +QED
Ozaki, Sho; Arai, Takashi; Hattori, Koichi; Itakura, Kazunori
2015-07-01
We derive an analytic expression for one-loop effective action of QCD +QED at zero and finite temperatures by using the Schwinger proper time method. The result is a nonlinear effective action not only for electromagnetic and chromo-electromagnetic fields but also for the Polyakov loop, and thus reproduces the Euler-Heisenberg action in QED, QCD, and QED +QCD , and also the Weiss potential for the Polyakov loop at finite temperature. As applications of this "Euler-Heisenberg-Weiss" action in QCD +QED , we investigate quark pair productions induced by QCD +QED fields at zero temperature and the Polyakov loop in the presence of strong electromagnetic fields. Quark one-loop contribution to the effective potential of the Polyakov loop explicitly breaks the center symmetry, and is found to be enhanced by the magnetic field, which is consistent with the inverse magnetic catalysis observed in lattice QCD simulation.
Metafluid with anisotropic dynamic mass
International Nuclear Information System (INIS)
Gumen, L.N.; Arriaga, J.; Krokhin, A.A.
2011-01-01
We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhibits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Using the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass tensor of the metafluid. The proposed formula is very general - it is valid for arbitrary Bravais lattices and arbitrary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with prescribed anisotropy.
Lattice gauge theory using parallel processors
International Nuclear Information System (INIS)
Lee, T.D.; Chou, K.C.; Zichichi, A.
1987-01-01
The book's contents include: Lattice Gauge Theory Lectures: Introduction and Current Fermion Simulations; Monte Carlo Algorithms for Lattice Gauge Theory; Specialized Computers for Lattice Gauge Theory; Lattice Gauge Theory at Finite Temperature: A Monte Carlo Study; Computational Method - An Elementary Introduction to the Langevin Equation, Present Status of Numerical Quantum Chromodynamics; Random Lattice Field Theory; The GF11 Processor and Compiler; and The APE Computer and First Physics Results; Columbia Supercomputer Project: Parallel Supercomputer for Lattice QCD; Statistical and Systematic Errors in Numerical Simulations; Monte Carlo Simulation for LGT and Programming Techniques on the Columbia Supercomputer; Food for Thought: Five Lectures on Lattice Gauge Theory
Energy Technology Data Exchange (ETDEWEB)
Hatsuda, Tetsuo [Phys. Dep., Univ. of Tokyo, Tokyo 113-0033 (Japan) and Theoretical Research Division, Nishina Center, RIKEN, Saitama 351-0198 (Japan)
2012-11-12
Dynamics of hadrons and nuclei are governed by the fundamental theory of strong interaction, the quantm chromodynamics (QCD). The current status of QCD and its applications to nuclear physics are reviewed.
A color magnetic vortex condensate in QCD
International Nuclear Information System (INIS)
Ambjoern, J.; Olesen, P.
1980-03-01
It is shown that there exists a very close analogy between a lattice of vorticies in a superconductor near the critical field and a condensate of color magnetic flux tubes due to the unstable mode in QCD. This analogy makes it possible to identify a dynamical Higgs field in QCD. It is shown that the color magnetic flux tubes are quantized in terms of the center group Z(2) in the SU(2) case. In the case of SU(N) it is possible to select a color direction of the field such that one has Z(N) quantization. (Auth.)
Neutron Electric Dipole Moment on the Lattice
Directory of Open Access Journals (Sweden)
Yoon Boram
2018-01-01
Full Text Available For the neutron to have an electric dipole moment (EDM, the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
Neutron Electric Dipole Moment on the Lattice
Yoon, Boram; Bhattacharya, Tanmoy; Gupta, Rajan
2018-03-01
For the neutron to have an electric dipole moment (EDM), the theory of nature must have T, or equivalently CP, violation. Neutron EDM is a very good probe of novel CP violation in beyond the standard model physics. To leverage the connection between measured neutron EDM and novel mechanism of CP violation, one requires the calculation of matrix elements for CP violating operators, for which lattice QCD provides a first principle method. In this paper, we review the status of recent lattice QCD calculations of the contributions of the QCD Θ-term, the quark EDM term, and the quark chromo-EDM term to the neutron EDM.
The Chiral limit in lattice QCD
International Nuclear Information System (INIS)
Morel, A.
1985-11-01
Using the results of a quenched SU(2) simulation with staggered fermions, we discuss the small quark mass behaviour of m π 2 and f π 2 . The importance of finite size effects and of non linearities in the zero mass extrapolation is emphasized. Evidence for scaling of m π 2 and of a suitably determined value of f π 2 is presented
Energy Technology Data Exchange (ETDEWEB)
Ricardo de Sousa, J. [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); National Institute of Science and Technology for Complex Systems, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Neto, Minos A., E-mail: minos@pq.cnpq.br [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil); Padilha, Igor T.; Salmon, Octavio D.R.; Viana, J. Roberto [Universidade Federal do Amazonas, Departamento de Física, 3000, Japiim, 69077-000 Manaus, AM (Brazil)
2013-12-15
We have studied the anisotropic three-dimensional nearest-neighbor Ising model with competitive interactions in an uniform longitudinal magnetic field H. The model consists of ferromagnetic interactions J{sub z}=λ{sub 2}J{sub x} in the x(z) direction and antiferromagnetic interactions J{sub y}=λ{sub 1}J{sub x} in the y direction (Ising superantiferromagnet). For the particular case λ{sub 1}=λ{sub 2}=1 we obtain the phase diagram in the H−T plane, using the framework of the differential operator technique in the effective-field theory with finite cluster of N=4 spins (EFT-4). It was observed first- and second-order transitions in the low and high temperature limits, respectively, with the presence of a tricritical point and a reentrant behavior is observed at low temperature. The critical curve in the classical approach is also obtained and the results are compared.
International Nuclear Information System (INIS)
Cohen-Tannoudji, G.
1989-01-01
This series of lectures is devoted to review ot he connections between QCD and string theories. One reviews the phenomenological models leading to string pictures in non perturbative QCD and the string effects, related to soft gluon coherence, which arise in perturbative QCD. One tries to build a string theory which goes to QCD at the zero slope limit. A specific model, based on superstring theories is shown to agree with QCD four point amplitudes at the Born approximation and with one loop corrections. One shows how this approach can provide a theoretical framework to account for the phenomenological property of parton-hadron duality.(author)
International Nuclear Information System (INIS)
Bowler, Ken
1990-01-01
One of the major recent developments in particle theory has been the use of very high performance computers to obtain approximate numerical solutions of quantum field theories by formulating them on a finite space-time lattice. The great virtue of this new technique is that it avoids the straitjacket of perturbation theory and can thus attack new, but very fundamental problems, such as the calculation of hadron masses in quark-gluon field theory (quantum chromodynamics - QCD)
International Nuclear Information System (INIS)
Negele, J.W.
1993-01-01
Architectural enhancements are described to increase the performance of the arithmetic accelerator and memory of the nodes in the CM-5 for QCD and a broad range of general problems while maintaining compatibility with existing software, compilers, communications network and I/O subsystems. A factor of 10 increase in performance is obtained by increasing the number of floating point processors by a factor of 4, extending the vector instruction set for dual execution of single-precision arithmetic, and increasing the clock rate from 32 to 40 MHz. The required memory bandwidth is obtained by using synchronous DRAMs and 4 floating point processors are packaged into a multichip module which occupies the same area as a present processor package. The proposed 2048 node machine will provide 2.6 Teraflops peak, 0.5 - 1.5 Teraflops sustained on lattices of 32 2 x 64 - 128 3 x 256, will have 256 Gigabytes of memory, 1 Terabyte of disk, an estimated cost of approximately $40 million, and can be built in 2.5 years. (orig.)
Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.
2017-03-01
The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is
Introduction to finite temperature and finite density QCD
International Nuclear Information System (INIS)
Kitazawa, Masakiyo
2014-01-01
It has been pointed out that QCD (Quantum Chromodynamics) in the circumstances of medium at finite temperature and density shows numbers of phenomena similar to the characteristics of solid state physics, e.g. phase transitions. In the past ten years, the very high temperature and density matter came to be observed experimentally at the heavy ion collisions. At the same time, the numerical QCD analysis at finite temperature and density attained quantitative level analysis possible owing to the remarkable progress of computers. In this summer school lecture, it has been set out to give not only the recent results, but also the spontaneous breaking of the chiral symmetry, the fundamental theory of finite temperature and further expositions as in the following four sections. The first section is titled as 'Introduction to Finite Temperature and Density QCD' with subsections of 1.1 standard model and QCD, 1.2 phase transition and phase structure of QCD, 1.3 lattice QCD and thermodynamic quantity, 1.4 heavy ion collision experiments, and 1.5 neutron stars. The second one is 'Equilibrium State' with subsections of 2.1 chiral symmetry, 2.2 vacuum state: BCS theory, 2.3 NJL (Nambu-Jona-Lasinio) model, and 2.4 color superconductivity. The third one is 'Static fluctuations' with subsections of 3.1 fluctuations, 3.2 moment and cumulant, 3.3 increase of fluctuations at critical points, 3.4 analysis of fluctuations by lattice QCD and Taylor expansion, and 3.5 experimental exploration of QCD phase structure. The fourth one is 'Dynamical Structure' with 4.1 linear response theory, 4.2 spectral functions, 4.3 Matsubara function, and 4.4 analyses of dynamical structure by lattice QCD. (S. Funahashi)
Holographic study of the QCD matter under external conditions
Directory of Open Access Journals (Sweden)
Katanaeva Alisa
2017-01-01
We use methods of the bottom-up AdS/QCD approach to bring out the phase structure of several holographic models in which transition to a deconfined phase is related to a (first order Hawking-Page phase transition. The impact of phenomenological model parameters on the critical temperature and chemical potential is studied in detail. Comparison of the model predictions with results of experimental investigations, lattice QCD simulations and other methods is also done.
The spatial string tension and dimensional reduction in QCD
Cheng, M.; Datta, S.; van der Heide, J.; Huebner, K.; Karsch, F.; Kaczmarek, O.; Laermann, E.; Liddle, J.; Mawhinney, R. D.; Miao, C.; Petreczky, P.; Petrov, K.; Schmidt, C.; Soeldner, W.; Umeda, T.
2008-08-01
We calculate the spatial string tension in (2+1) flavor QCD with physical strange quark mass and almost physical light quark masses using lattices with temporal extent Nτ=4, 6 and 8. We compare our results on the spatial string tension with predictions of dimensionally reduced QCD. This suggests that also in the presence of light dynamical quarks dimensional reduction works well down to temperatures 1.5Tc.
The spatial string tension and dimensional reduction in QCD
Rbc-Bielefeld Collaboration; Laermann, E.; Liddle, J.; RBC-Bielefeld Collaboration
2009-04-01
The spatial string tension is calculated in 2+1 flavor QCD with a physical strange quark mass and almost physical light quark masses on lattices with N=4,6 and 8. The results are compared with predictions of dimensionally reduced QCD. They suggest that dimensional reduction works also in the presence of light dynamical quarks down to temperatures of about 1.5T.
International Nuclear Information System (INIS)
Mackenzie, Paul
1989-01-01
The forty-year dream of understanding the properties of the strongly interacting particles from first principles is now approaching reality. Quantum chromodynamics (QCD - the field theory of the quark and gluon constituents of strongly interacting particles) was initially handicapped by the severe limitations of the conventional (perturbation) approach in this picture, but Ken Wilson's inventions of lattice gauge theory and renormalization group methods opened new doors, making calculations of masses and other particle properties possible. Lattice gauge theory became a major industry around 1980, when Monte Carlo methods were introduced, and the first prototype calculations yielded qualitatively reasonable results. The promising developments over the past year were highlighted at the 1988 Symposium on Lattice Field Theory - Lattice 88 - held at Fermilab
Lattice Studies of Hyperon Spectroscopy
Energy Technology Data Exchange (ETDEWEB)
Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)
2016-04-01
I describe recent progress at studying the spectrum of hadrons containing the strange quark through lattice QCD calculations. I emphasise in particular the richness of the spectrum revealed by lattice studies, with a spectrum of states at least as rich as that of the quark model. I conclude by prospects for future calculations, including in particular the determination of the decay amplitudes for the excited states.
The strong coupling constant of QCD with four flavors
Energy Technology Data Exchange (ETDEWEB)
Tekin, Fatih
2010-11-01
In this thesis we study the theory of strong interaction Quantum Chromodynamics on a space-time lattice (lattice QCD) with four flavors of dynamical fermions by numerical simulations. In the early days of lattice QCD, only pure gauge field simulations were accessible to the computational facilities and the effects of quark polarization were neglected. The so-called fermion determinant in the path integral was set to one (quenched approximation). The reason for this approximation was mainly the limitation of computational power because the inclusion of the fermion determinant required an enormous numerical effort. However, for full QCD simulations the virtual quark loops had to be taken into account and the development of new machines and new algorithmic techniques made the so-called dynamical simulations with at least two flavors possible. In recent years, different collaborations studied lattice QCD with dynamical fermions. In our project we study lattice QCD with four degenerated flavors of O(a) improved Wilson quarks in the Schroedinger functional scheme and calculate the energy dependence of the strong coupling constant. For this purpose, we determine the O(a) improvement coefficient c{sub sw} with four flavors and use this result to calculate the step scaling function of QCD with four flavors which describes the scale evolution of the running coupling. Using a recursive finite-size technique, the {lambda} parameter is determined in units of a technical scale L{sub max} which is an unambiguously defined length in the hadronic regime. The coupling {alpha}{sub SF} of QCD in the so-called Schroedinger functional scheme is calculated over a wide range of energies non-perturbatively and compared with 2-loop and 3-loop perturbation theory as well as with the non-perturbative result for only two flavors. (orig.)
Strong evidence for spontaneous chiral symmetry breaking in (quenched) QCD
International Nuclear Information System (INIS)
Barbour, I.M.; Gibbs, P.; Schierholz, G.; Teper, M.; Gilchrist, J.P.; Schneider, H.
1983-09-01
We calculate the chiral condensate for all quark masses using Kogut-Susskind fermions in lattice-regularized quenched QCD. The large volume behaviour of at small quark masses demonstrates that the explicit U(1) chiral symmetry is spontaneously broken. We perform the calculation for β = 5.1 to 5.9 and find very good continuum renormalization group behaviour. We infer that the spontaneous breaking we observe belongs to continuum QCD. This constitutes the first unambiguous demonstration of spontaneous chiral symmetry breaking in continuum quenched QCD. (orig.)
High Temperature QCD and Dimensional Reduction
Petersson, Bengt
2001-04-01
In this talk I will first give a short discussion of some lattice results for QCD at finite temperature. I will then describe in some detail the technique of dimensional reduction, which in principle is a powerful technique to obtain results on the long distance properties of the quark-gluon plasma. Finally I will describe some new results, which test the technique in a simpler model, namely three dimensional gauge theory.
Recent results from lattice calculations
Hashimoto, Shoji
2004-01-01
Recent results from lattice QCD calculations relevant to particle physics phenomenology are reviewed. They include the calculations of strong coupling constant, quark masses, kaon matrix elements, and D and B meson matrix elements. Special emphasis is on the recent progress in the simulations including dynamical quarks.
Lattice Calculations and Hadron Physics
Aoki, Sinya
1999-01-01
We review progress in lattice QCD, focusing on efforts to calculate weak matrix elements relevant for the determination of the Cabibbo-Kobayashi-Maskawa matrix. Topics we discuss include light hadron spectrum and quark masses, CP-violation in K meson decays and weak matrix elements of heavy-light mesons.
Lattice quantum chromodynamics: Some topics
Indian Academy of Sciences (India)
For reasons of both time and interest, I have chosen to limit this review to some se- lected topics. I will begin with a lightning quick overview of the basic lattice gauge theory and then go on to discuss the recent results on the QCD phase diagram, quark number susceptibility and the screening lengths. A short summary is ...
The lowest Landau level in QCD
Directory of Open Access Journals (Sweden)
Bruckmann Falk
2017-01-01
Full Text Available The thermodynamics of Quantum Chromodynamics (QCD in external (electro-magnetic fields shows some unexpected features like inverse magnetic catalysis, which have been revealed mainly through lattice studies. Many effective descriptions, on the other hand, use Landau levels or approximate the system by just the lowest Landau level (LLL. Analyzing lattice configurations we ask whether such a picture is justified. We find the LLL to be separated from the rest by a spectral gap in the two-dimensional Dirac operator and analyze the corresponding LLL signature in four dimensions. We determine to what extent the quark condensate is LLL dominated at strong magnetic fields.
Non-perturbative studies of QCD at small quark masses
Energy Technology Data Exchange (ETDEWEB)
Wennekers, J.
2006-07-15
We investigate the quenched approximation of lattice QCD with numerical simulations of Ginsparg-Wilson fermions, which are a fermion discretisation with exact chiral symmetry. We compute the renormalisation constant of the scalar density, which allows to extrapolate the chiral condensate to the continuum limit. Furthermore we match lattice results of matrix elements describing hadronic kaon decays to Chiral Perturbation Theory in finite volume and at almost vanishing quark mass. The resulting low-energy constants in the considered SU(4)-flavour symmetric case indicate a substantial contribution of low scale QCD effects to the {delta}I = 1/2 rule. (Orig.)
Fundamental parameters of QCD from non-perturbative methods for two and four flavors
International Nuclear Information System (INIS)
Marinkovic, Marina
2013-01-01
The non-perturbative formulation of Quantumchromodynamics (QCD) on a four dimensional space-time Euclidean lattice together with the finite size techniques enable us to perform the renormalization of the QCD parameters non-perturbatively. In order to obtain precise predictions from lattice QCD, one needs to include the dynamical fermions into lattice QCD simulations. We consider QCD with two and four mass degenerate flavors of O(a) improved Wilson quarks. In this thesis, we improve the existing determinations of the fundamental parameters of two and four flavor QCD. In four flavor theory, we compute the precise value of the Λ parameter in the units of the scale L max defined in the hadronic regime. We also give the precise determination of the Schroedinger functional running coupling in four flavour theory and compare it to the perturbative results. The Monte Carlo simulations of lattice QCD within the Schroedinger Functional framework were performed with a platform independent program package Schroedinger Funktional Mass Preconditioned Hybrid Monte Carlo (SF-MP-HMC), developed as a part of this project. Finally, we compute the strange quark mass and the Λ parameter in two flavour theory, performing a well-controlled continuum limit and chiral extrapolation. To achieve this, we developed a universal program package for simulating two flavours of Wilson fermions, Mass Preconditioned Hybrid Monte Carlo (MP-HMC), which we used to run large scale simulations on small lattice spacings and on pion masses close to the physical value.
International Nuclear Information System (INIS)
Anon.
1979-01-01
Is quantum chromodynamics (QCD) the ultimate theory of hadronic phenomena? Or, put more sceptically, can one tell QCD from a hole in the ground? This is the title of a new theory roadshow, which after a successful premiere at CERN went on to attract a large audience at Erice, Sicily, during the recent international school of subnuclear physics
Cho, Y. M.; Pham, X. Y.; Zhang, Pengming; Xie, Ju-Jun; Zou, Li-Ping
2015-06-01
The Abelian decomposition of QCD which decomposes the gluons to the color neutral binding gluons and the colored valence gluons shows that QCD can be viewed as the restricted QCD (RCD) made of the binding gluons which has the valence gluons as colored source, and simplifies the QCD dynamics greatly. In particular, it tells that the gauge covariant valence gluons can be treated as the constituents of hadrons, and generalizes the quark model to the quark and valence gluon model. So it provides a comprehensive picture of glueballs and their mixing with quarkoniums, and predicts new hybrid hadrons made of quarks and valence gluons. We discuss how these predictions could be confirmed experimentally. In particular we present a systematic search for the ground state glueballs and their mixing with quarkoniums below 2 GeV in 0++ , 2++, and 0-+ channels within the framework of QCD, and predict the relative branching ratios of the radiative decay of ψ to the physical states.
Constraints on СS and Їј ¯ from lattice quantum chromo- dynamics
Indian Academy of Sciences (India)
Relevance of these results to estimates of б. ' /б is discussed. Keywords. Lattice QCD ... Their values depend on the QCD renormalization scale, and three quantitative approaches have been used to .... Numerical results show that, for a fixed value of the lattice scale, increasing N increases the coupling g¾ through vacuum ...
The critical point of quantum chromodynamics through lattice and ...
Indian Academy of Sciences (India)
B2(T, μ)]. (6) can be predicted from lattice QCD. As there are two thermodynamic parameters in the problem, the prediction of a single quantity is not of great significance. One must go beyond classic thermodynamics to sharpen tests of QCD.
Effective holographic models for QCD: Glueball spectrum and trace anomaly
Ballon-Bayona, Alfonso; Boschi-Filho, Henrique; Mamani, Luis A. H.; Miranda, Alex S.; Zanchin, Vilson T.
2018-02-01
We investigate effective holographic models for QCD arising from five-dimensional dilaton gravity. The models are characterized by a dilaton with a mass term in the UV, dual to a CFT deformation by a relevant operator, and quadratic in the IR. The UV constraint leads to the explicit breaking of conformal symmetry, whereas the IR constraint guarantees linear confinement. We propose semianalytic interpolations between the UV and the IR and obtain a spectrum for scalar and tensor glueballs consistent with lattice QCD data. We use the glueball spectrum as a physical constraint to find the evolution of the model parameters as the mass term goes to 0. Finally, we reproduce the universal result for the trace anomaly of deformed CFTs and propose a dictionary between this result and the QCD trace anomaly. A nontrivial consequence of this dictionary is the emergence of a β function similar to the two-loop perturbative QCD result.
QCD PHASE TRANSITIONS-VOLUME 15.
Energy Technology Data Exchange (ETDEWEB)
SCHAFER,T.
1998-11-04
The title of the workshop, ''The QCD Phase Transitions'', in fact happened to be too narrow for its real contents. It would be more accurate to say that it was devoted to different phases of QCD and QCD-related gauge theories, with strong emphasis on discussion of the underlying non-perturbative mechanisms which manifest themselves as all those phases. Before we go to specifics, let us emphasize one important aspect of the present status of non-perturbative Quantum Field Theory in general. It remains true that its studies do not get attention proportional to the intellectual challenge they deserve, and that the theorists working on it remain very fragmented. The efforts to create Theory of Everything including Quantum Gravity have attracted the lion share of attention and young talent. Nevertheless, in the last few years there was also a tremendous progress and even some shift of attention toward emphasis on the unity of non-perturbative phenomena. For example, we have seen some. efforts to connect the lessons from recent progress in Supersymmetric theories with that in QCD, as derived from phenomenology and lattice. Another example is Maldacena conjecture and related development, which connect three things together, string theory, super-gravity and the (N=4) supersymmetric gauge theory. Although the progress mentioned is remarkable by itself, if we would listen to each other more we may have chance to strengthen the field and reach better understanding of the spectacular non-perturbative physics.
Towards a Connection Between Nuclear Structure and QCD
Energy Technology Data Exchange (ETDEWEB)
Anthony Thomas; Pierre Guichon; Ross Young
2003-12-01
As we search for an ever deeper understanding of the structure of hadronic matter one of the most fundamental questions is whether or not one can make a connection to the underlying theory of the strong interaction, QCD. We build on recent advances in the chiral extrapolation problem linking lattice QCD at relatively large, light quark masses to the physical world to estimate the scalar polarizability of the nucleon. The latter plays a key role in modern relativistic mean-field descriptions of nuclei and nuclear matter (such as QMC) and, in particular, leads to a very natural saturation mechanism. We demonstrate that the value of the scalar polarizability extracted from the lattice data is consistent with that needed for a successful description of nuclei within the framework of QMC. In a very real sense this is the first hint of a direct connection between QCD and the properties of finite nuclei.
Learning from mass calculations of quarkless QCD
International Nuclear Information System (INIS)
Brower, R.C.
1983-01-01
In calculating mass ratios by Monte Carlo simulations of QCD much has been learned about the dynamics of lattice gauge theory. In study of the first mass ratio--the string tension relative to the lattice R /SUB o/ ' parameter, precocious scaling, or string tension crossover, is illuminated. Another crossover was observed in the specific heat at about the same value of coupling. The analysis gives direct evidence for precocious scaling hypothesis for both string tension and specific heat, into the weak coupling side of the respective crossovers. A model for the size dependent term is devised in terms of an ensemble of free glueballs on a finite lattice. An understanding of the behavior of free energy is obtained through study of the Z 2 degrees of freedom (monopoles and strings). The Z 2 -Higgs model successfully characterizes the bulk crossover. Asymptotic free scaling, its cause and its breakdown, is also studied
APE results of hadron masses in full QCD simulations
International Nuclear Information System (INIS)
Antonelli, S.; Panizzi, E.; Ruiz-Lorenzo, J.J.; Todesco, G.M.; Torelli, M.; Vicini, P.
1995-01-01
We present numerical results obtained in full QCD with 2 flavors of Wilson fermions. We discuss the relation between the phase of Polyakov loops and the sea quark boundary conditions. We report preliminary results about the HMC autocorrelation of the hadronic masses, on a 16 3 x32 lattice volume, at β=5.55 with k sea =0.1570. ((orig.))
Investigating the critical slowing down of QCD simulations
International Nuclear Information System (INIS)
Schaefer, Stefan
2009-12-01
Simulations of QCD are known to suffer from serious critical slowing down towards the continuum limit. This is particularly prominent in the topological charge. We investigate the severeness of the problem in the range of lattice spacings used in contemporary simulations and propose a method to give more reliable error estimates. (orig.)
The running QCD coupling in the pre-asymptotic region
Energy Technology Data Exchange (ETDEWEB)
Burgio, G.; Di Renzo, F.; Parrinello, C.; Pittori, C
1999-03-01
We study deviations from the perturbative asymptotic behaviour in the running QCD coupling by analysing non-perturbative measurements of {alpha}{sub s}(p) at low momenta (p {approx} 2 GeV) as obtained from the lattice three-gluon vertex. Our exploratory study provides some evidence for power corrections to the perturbative running proportional to 1/p{sup 2}.
The impact of quark masses on pQCD thermodynamics
Energy Technology Data Exchange (ETDEWEB)
Graf, Thorben; Schaffner-Bielich, Juergen [Goethe University, Institute for Theoretical Physics, Frankfurt am Main (Germany); Fraga, Eduardo S. [Universidade Federal do Rio de Janeiro, Instituto de Fisica, Rio de Janeiro (Brazil)
2016-07-15
We present results for several thermodynamic quantities within the next-to-leading order calculation of the thermodynamic potential in perturbative QCD at finite temperature and chemical potential including non-vanishing quark masses. These results are compared to lattice data and to higher-order optimized perturbative calculations to investigate the trend brought about by mass corrections. (orig.)
Skands, Peter
2013-01-01
These lectures were originally given at TASI and are directed at a level suitable for graduate students in High Energy Physics. They are intended to give an introduction to the theory and phenomenology of quantum chromodynamics (QCD), focusing on collider physics applications. The aim is to bring the reader to a level where informed decisions can be made concerning different approaches and their uncertainties. The material is divided into five main areas: 1) fundamentals, 2) fixed-order perturbative QCD, 3) Monte Carlo event generators and parton showers, 4) Matching at Leading and Next-to-Leading Order, and 5) Soft QCD physics.
2017-01-01
This edition is the ninth in a series of workshops that had been previously organised in Poland (2009), Slovakia (2010 and 2015), France (2011), Portugal (2012 and 2016) and Bosnia and Herzegovina (2013 and 2014). In the year 2017 the workshop goes to the beautiful Sintra near Lisbon, Portugal. The workshop covers diverse aspects of QCD: (i) QCD at low energies: excited hadrons, new resonances, glueballs, multiquarks. (ii) QCD at high temperatures and large densities: heavy-ion collisions, jets, diffraction, hadronisation, quark-gluon plasma, holography, colour-glass condensate, compact stars, applications to astrophysics.
Lattice quantum chromodynamics practical essentials
Knechtli, Francesco; Peardon, Michael
2017-01-01
This book provides an overview of the techniques central to lattice quantum chromodynamics, including modern developments. The book has four chapters. The first chapter explains the formulation of quarks and gluons on a Euclidean lattice. The second chapter introduces Monte Carlo methods and details the numerical algorithms to simulate lattice gauge fields. Chapter three explains the mathematical and numerical techniques needed to study quark fields and the computation of quark propagators. The fourth chapter is devoted to the physical observables constructed from lattice fields and explains how to measure them in simulations. The book is aimed at enabling graduate students who are new to the field to carry out explicitly the first steps and prepare them for research in lattice QCD.
Anisotropic hydrodynamic modeling of 2.76 TeV Pb-Pb collisions
Alqahtani, Mubarak; Nopoush, Mohammad; Ryblewski, Radoslaw; Strickland, Michael
2017-10-01
We compare phenomenological results from 3 +1 D quasiparticle anisotropic hydrodynamics (aHydroQP) with experimental data collected in the CERN Large Hadron Collider 2.76 TeV Pb-Pb collisions. In particular, we present comparisons of particle spectra, average transverse momentum, elliptic flow, and Hanbury Brown-Twiss radii. The aHydroQP model relies on the introduction of a single temperature-dependent quasiparticle mass which is fit to lattice QCD data. By taking moments of the resulting Boltzmann equation, we obtain the dynamical equations used in the hydrodynamic stage which include the effects of both shear and bulk viscosities. At freeze-out, we use anisotropic Cooper-Frye freeze-out performed on a fixed-energy-density hypersurface to convert to hadrons. To model the production and decays of the hadrons we use therminator2 which is customized to sample from ellipsoidal momentum-space distribution functions. Using smooth Glauber initial conditions, we find very good agreement with many heavy-ion collision observables.
Material Induced Anisotropic Damage
Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Hora, P.
2012-01-01
The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based
The Gluon Propagator without lattice Gribov copies on a finer lattice
Alexandrou, C; Follana, E; Forcrand, Ph. de
2002-01-01
We extend our study of the gluon propagator in quenched lattice QCD using the Laplacian gauge to a finer lattice. We verify the existence of a pole mass as we take the continuum limit and deduce a value of $\\sim 600^{+150}_{-30}$ MeV for this pole mass. We find a finite value of $(454(5){\\rm MeV})^{-2}$ for the renormalized zero-momentum propagator, in agreement with results on coarser lattices.
Anisotropic universe with anisotropic sources
Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha
2013-12-01
We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.
Sykora, Tomas; The ATLAS collaboration
2018-01-01
Recent results of soft QCD measurements performed by the ATLAS collaboration are reported. The measurements include total, elastic and inelastic cross sections, inclusive spectra, underlying event and particle correlations in p-p and p-Pb collisions.
International Nuclear Information System (INIS)
Mueller, A.H.
1986-03-01
A brief review of some of the recent progress in perturbative QCD is given (heavy quark production, small-x physics, minijets and related topics, classical simulations in high energy reactions, coherence and the string effect)
Energy Technology Data Exchange (ETDEWEB)
Lutz, Matthias F. M.; Lange, Jens Sören; Pennington, Michael; Bettoni, Diego; Brambilla, Nora; Crede, Volker; Eidelman, Simon; Gillitzer, Albrecht; Gradl, Wolfgang; Lang, Christian B.; Metag, Volker; Nakano, Takashi; Nieves, Juan; Neubert, Sebastian; Oka, Makoto; Olsen, Stephen L.; Pappagallo, Marco; Paul, Stephan; Pelizäus, Marc; Pilloni, Alessandro; Prencipe, Elisabetta; Ritman, Jim; Ryan, Sinead; Thoma, Ulrike; Uwer, Ulrich; Weise, Wolfram
2016-04-01
We report on the EMMI Rapid Reaction Task Force meeting 'Resonances in QCD', which took place at GSI October 12-14, 2015 (Fig.~1). A group of 26 people met to discuss the physics of resonances in QCD. The aim of the meeting was defined by the following three key questions; what is needed to understand the physics of resonances in QCD?; where does QCD lead us to expect resonances with exotic quantum numbers?; and what experimental efforts are required to arrive at a coherent picture? For light mesons and baryons only those with up, down and strange quark content were considered. For heavy-light and heavy-heavy meson systems, those with charm quarks were the focus.This document summarizes the discussions by the participants, which in turn led to the coherent conclusions we present here.