WorldWideScience

Sample records for anisotropic elastic properties

  1. Elastic properties of spherically anisotropic piezoelectric composites

    International Nuclear Information System (INIS)

    En-Bo, Wei; Guo-Qing, Gu; Ying-Ming, Poon

    2010-01-01

    Effective elastic properties of spherically anisotropic piezoelectric composites, whose spherically anisotropic piezoelectric inclusions are embedded in an infinite non-piezoelectric matrix, are theoretically investigated. Analytical solutions for the elastic displacements and the electric potentials under a uniform external strain are derived exactly. Taking into account of the coupling effects of elasticity, permittivity and piezoelectricity, the formula is derived for estimating the effective elastic properties based on the average field theory in the dilute limit. An elastic response mechanism is revealed, in which the effective elastic properties increase as inclusion piezoelectric properties increase and inclusion dielectric properties decrease. Moreover, a piezoelectric response mechanism, of which the effective piezoelectric response vanishes due to the symmetry of spherically anisotropic composite, is also disclosed. (condensed matter: structure, thermal and mechanical properties)

  2. Anisotropic elastic plates

    CERN Document Server

    Hwu, Chyanbin

    2010-01-01

    As structural elements, anisotropic elastic plates find wide applications in modern technology. The plates here are considered to be subjected to not only in plane load but also transverse load. In other words, both plane and plate bending problems as well as the stretching-bending coupling problems are all explained in this book. In addition to the introduction of the theory of anisotropic elasticity, several important subjects have are discussed in this book such as interfaces, cracks, holes, inclusions, contact problems, piezoelectric materials, thermoelastic problems and boundary element a

  3. Chirality-dependent anisotropic elastic properties of a monolayer graphene nanosheet.

    Science.gov (United States)

    Guo, Jian-Gang; Zhou, Li-Jun; Kang, Yi-Lan

    2012-04-01

    An analytical approach is presented to predict the elastic properties of a monolayer graphene nanosheet based on interatomic potential energy and continuum mechanics. The elastic extension and torsional springs are utilized to simulate the stretching and angle variation of carbon-carbon bond, respectively. The constitutive equation of the graphene nanosheet is derived by using the strain energy density, and the analytical formulations for nonzero elastic constants are obtained. The in-plane elastic properties of the monolayer graphene nanosheet are proved to be anisotropic. In addition, Young's moduli, Poisson's ratios and shear modulus of the monolayer graphene nanosheet are calculated according to the force constants derived from Morse potential and AMBER force field, respectively, and they were proved to be chirality-dependent. The comparison with experimental results shows a very agreement.

  4. Anisotropic elastic and thermal properties of titanium borides by first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Liang; Gao, Yimin [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Xiao, Bing [Department of Physics and Quantum Theory Group, School of Science and Engineering, Tulane University, New Orleans, LA 70118 (United States); Li, Yefei, E-mail: yefeili@126.com [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Guoliang [State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University, Xi’an 710049 (China)

    2013-12-05

    Highlights: •Elastic properties of titanium borides are calculated by first principles calculation. •Thermodynamical stability of titanium borides is analyzed. •Heat capacity and thermal expansion coefficient for titanium borides are calculated and compared. •Grüneisen parameters of titanium borides are calculated. -- Abstract: The anisotropic elastic and thermal expansions of the titanium borides (TiB{sub 2}, Ti{sub 3}B{sub 4}, TiB{sub P}nma and TiB{sub F}m3{sup ¯}m) are calculated from first-principles using density functional theory. All borides show different anisotropic elastic properties; the bulk, shear and Young’s moduli are consistent with those determined experimentally. The temperature dependence of thermal expansions is mainly caused by the restoration of thermal energy due to phonon excitations at low temperature. When the temperature is higher than 500 K, the volumetric coefficient is increased linearly by increasing temperature. Meanwhile, the heat capacities of titanium borides are obtained based on the knowledge of thermal expansion coefficient and the elasticity, the calculations are in good agreement with the experiments.

  5. A first principle calculation of anisotropic elastic, mechanical and electronic properties of TiB

    Science.gov (United States)

    Zhang, Junqin; Zhao, Bin; Ma, Huihui; Wei, Qun; Yang, Yintang

    2018-04-01

    The structural, mechanical and electronic properties of the NaCl-type structure TiB are theoretically calculated based on the first principles. The density of states of TiB shows obvious density peaks at -0.70eV. Furthermore, there exists a pseudogap at 0.71eV to the right of the Fermi level. The calculated structural and mechanical parameters (i.e., bulk modulus, shear modulus, Young's modulus, Poisson's ratio and universal elastic anisotropy index) were in good agreement both with the previously reported experimental values and theoretical results at zero pressure. The mechanical stability criterion proves that TiB at zero pressure is mechanistically stable and exhibits ductility. The universal anisotropic index and the 3D graphics of Young's modulus are also given in this paper, which indicates that TiB is anisotropy under zero pressure. Moreover, the effects of applied pressures on the structural, mechanical and anisotropic elastic of TiB were studied in the range from 0 to 100GPa. It was found that ductility and anisotropy of TiB were enhanced with the increase of pressure.

  6. Nonlinear constitutive relations for anisotropic elastic materials

    Science.gov (United States)

    Sokolova, Marina; Khristich, Dmitrii

    2018-03-01

    A general approach to constructing of nonlinear variants of connection between stresses and strains in anisotropic materials with different types of symmetry of properties is considered. This approach is based on the concept of elastic proper subspaces of anisotropic materials introduced in the mechanics of solids by J. Rychlewski and on the particular postulate of isotropy proposed by A. A. Il’yushin. The generalization of the particular postulate on the case of nonlinear anisotropic materials is formulated. Systems of invariants of deformations as lengths of projections of the strain vector into proper subspaces are developed. Some variants of nonlinear constitutive relations for anisotropic materials are offered. The analysis of these relations from the point of view of their satisfaction to general and limit forms of generalization of partial isotropy postulate on anisotropic materials is performed. The relations for particular cases of anisotropy are written.

  7. Elastic properties

    International Nuclear Information System (INIS)

    Ledbetter, H.M.

    1983-01-01

    This chapter investigates the following five aspects of engineering-material solid-state elastic constants: general properties, interrelationships, relationships to other physical properties, changes during cooling from ambient to near-zero temperature, and near-zero-temperature behavior. Topics considered include compressibility, bulk modulus, Young's modulus, shear modulus, Poisson's ratio, Hooke's law, elastic-constant measuring methods, thermodynamic potentials, higher-order energy terms, specific heat, thermal expansivity, magnetic materials, structural phase transitions, polymers, composites, textured aggregates, and other-phenomena correlations. Some of the conclusions concerning polycrystalline elastic properties and their temperature dependence are: elastic constants are physical, not mechanical, properties which relate thermodynamically to other physical properties such as specific heat and thermal expansivity; elastic constants at low temperatures are nearly temperature independent, as required by the third law of thermodynamics; and elastic constants can be used to study directional properties of materials, such as textured aggregates and composites

  8. Properties of weak contrast PP reflection/transmission coefficients for weakly anisotropic elastic media

    Czech Academy of Sciences Publication Activity Database

    Pšenčík, Ivan; Martins, J. L.

    2001-01-01

    Roč. 45, č. 2 (2001), s. 176-199 ISSN 0039-3169. [ICTCA'99. Trieste, 10.05.1999-14.05.1999] Institutional research plan: CEZ:AV0Z3012916 Keywords : elastic media * anisotropy * seismic reflection Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 0.680, year: 2001

  9. Investigation of structural, electronic and anisotropic elastic properties of Ru-doped WB{sub 2} compound by increased valence electron concentration

    Energy Technology Data Exchange (ETDEWEB)

    Surucu, Gokhan, E-mail: g_surucu@yahoo.com [Ahi Evran University, Department of Electric and Energy, 40100, Kirsehir (Turkey); Gazi University, Photonics Application and Research Center, 06500, Ankara (Turkey); Kaderoglu, Cagil [Ankara University, Department of Engineering Physics, 06100, Ankara (Turkey); Deligoz, Engin; Ozisik, Haci [Aksaray University, Department of Physics, 68100, Aksaray (Turkey)

    2017-03-01

    First principles density functional theory (DFT) calculations have been used to investigate the structural, anisotropic elastic and electronic properties of ruthenium doped tungsten-diboride ternary compounds (W{sub 1−x}Ru{sub x}B{sub 2}) for an increasing molar fraction of Ru atom from 0.1 to 0.9 by 0.1. Among the nine different compositions, W{sub 0.3}Ru{sub 0.7}B{sub 2} has been found as the most stable one due to the formation energy and band filling theory calculations. Moreover, the band structures and partial density of states (PDOS) have been computed for each x composition. After obtaining the elastic constants for all x compositions, the secondary results such as Bulk modulus, Young’s modulus, Poisson’s ratio, Shear modulus, and Vickers Hardness of polycrystalline aggregates have been derived and the relevant mechanical properties have been discussed. In addition, the elastic anisotropy has been visualized in detail by plotting the directional dependence of compressibility, Poisson ratio, Young’s and Shear moduli. - Highlights: • Effects of Ru substitution in WB{sub 2} using increased valence electron concentration. • Structural, electronic, mechanic and elastic properties for increasing Ru content. • Considered alloys are incompressible, brittle, stiffer and high hard materials.

  10. The determination of the elastic properties of an anisotropic polycrystalline graphite using neutron diffraction and ultrasonic measurements

    Czech Academy of Sciences Publication Activity Database

    Lokajíček, Tomáš; Lukáš, Petr; Nikitin, A. N.; Papushkin, I.V.; Sumin, V. V.; Vasin, R.N.

    2010-01-01

    Roč. 49, č. 4 (2010), s. 1374-1384 ISSN 0008-6223 R&D Projects: GA ČR GA205/08/0676 Institutional research plan: CEZ:AV0Z30130516; CEZ:AV0Z10480505 Keywords : extruded graphite * elastic properties * neutron diffraction * ultrasonic sounding * thermal-expansion * self-consistent * young moduls * porosity * stress * rocks Subject RIV: DB - Geology ; Mineralogy Impact factor: 4.893, year: 2010

  11. Effective stress law for anisotropic elastic deformation

    International Nuclear Information System (INIS)

    Carroll, M.M.

    1979-01-01

    An effective stress law is derived analytically to describe the effect of pore fluid pressure on the linearly elastic response of saturated porous rocks which exhibit anisotropy. For general anisotropy the difference between the effective stress and the applied stress is not hydrostatic. The effective stress law involves two constants for transversely isotropic response and three constants for orthotropic response; these constants can be expressed in terms of the moduli of the porous material and of the solid material. These expressions simplify considerably when the anisotropy is structural rather than intrinsic, i.e., in the case of an isotropic solid material with an anisotropic pore structure. In this case the effective stress law involves the solid or grain bulk modulus and two or three moduli of the porous material, for transverse isotropy and orthotropy, respectively. The law reduces, in the case of isotropic response, to that suggested by Geertsma (1957) and by Skempton (1961) and derived analytically by Nur and Byerlee

  12. Effective material parameter retrieval of anisotropic elastic metamaterials with inherent nonlocality

    Science.gov (United States)

    Lee, Hyung Jin; Lee, Heung Son; Ma, Pyung Sik; Kim, Yoon Young

    2016-09-01

    In this paper, the scattering (S-) parameter retrieval method is presented specifically for anisotropic elastic metamaterials; so far, no retrieval has been accomplished when elastic metamaterials exhibit fully anisotropic behavior. Complex constitutive property and intrinsic scattering behavior of elastic metamaterials make their characterization far more complicated than that for acoustic and electromagnetic metamaterials. In particular, elastic metamaterials generally exhibit anisotropic scattering behavior due to higher scattering modes associated with shear deformation. They also exhibit nonlocal responses to some degrees, which originate from strong multiple scattering interactions even in the long wavelength limit. Accordingly, the conventional S-parameter retrieval methods cannot be directly used for elastic metamaterials, because they determine only the diagonal components in effective tensor property. Also, the conventional methods simply use the analytic inversion formulae for the material characterization so that inherent nonlocality cannot be taken into account. To establish a retrieval method applicable to anisotropic elastic metamaterials, we propose an alternative S-parameter method to deal with full anisotropy of elastic metamaterials. To retrieve the whole effective anisotropic parameter, we utilize not only normal but also oblique wave incidences. For the retrieval, we first retrieve the ratio of the effective stiffness tensor to effective density and then determine the effective density. The proposed retrieval method is validated by characterizing the effective material parameters of various types of non-resonant anisotropic metamaterials. It is found that the whole effective parameters are retrieved consistently regardless of used retrieval conditions in spite of inherent nonlocality.

  13. First-principles study of optical, elastic anisotropic and thermodynamic properties of TiN under high temperature and high pressure

    Directory of Open Access Journals (Sweden)

    R. Yang

    2017-12-01

    Full Text Available The optical, elastic anisotropic and thermodynamic properties of TiN in the NaCl (B1 structure are analyzed in detail in the temperature range from 0 to 2000 K and the pressure range from 0 to 20 GPa. From the calculated dielectric constants, a first order isostructural phase transition between 29 and 30 GPa is found for TiN. The absorption spectra exhibit high values ranging from the far infrared region to the ultra-violet one. The anisotropy value of Young's modulus of TiN is smaller than that of c-BN at 0 GPa and the anisotropy of TiN clearly increases with an increase of pressure. The effects of pressure and temperature on the bulk modulus, Grüneisen parameter, Gibbs free energy, and Debye temperature are significant. The Grüneisen parameter of TiN is much larger than that of c-BN. At temperatures below 1000 K, TiN's heat capacity is much larger than that of c-BN.

  14. Fluid-like elasticity induced by anisotropic effective mass density

    DEFF Research Database (Denmark)

    Ma, Guancong; Fu, Caixing; Wang, Guanghao

    We present a three-dimensional anisotropic elastic metamaterial, which can generate dipolar resonances. Repeating these subwavelength units can lead to one-dimensional arrays, which are essentially elastic rods that can withstand both longitudinal, and flexural vibrations. Band structure analysis...

  15. Existence of longitudinal waves in pre-stressed anisotropic elastic ...

    Indian Academy of Sciences (India)

    waves is truly longitudinal. Longitudinal wave in an anisotropic elastic medium is defined as the wave motion in which the particle motion (i.e., the. Keywords. General anisotropy; elastic stiffness; pre-stress; group velocity; ray direction; longitudinal waves; polarization. J. Earth Syst. Sci. 118, No. 6, December 2009, pp. 677– ...

  16. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth's surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  17. Elastic orthorhombic anisotropic parameter inversion: An analysis of parameterization

    KAUST Repository

    Oh, Juwon

    2016-09-15

    The resolution of a multiparameter full-waveform inversion (FWI) is highly influenced by the parameterization used in the inversion algorithm, as well as the data quality and the sensitivity of the data to the elastic parameters because the scattering patterns of the partial derivative wavefields (PDWs) vary with parameterization. For this reason, it is important to identify an optimal parameterization for elastic orthorhombic FWI by analyzing the radiation patterns of the PDWs for many reasonable model parameterizations. We have promoted a parameterization that allows for the separation of the anisotropic properties in the radiation patterns. The central parameter of this parameterization is the horizontal P-wave velocity, with an isotropic scattering potential, influencing the data at all scales and directions. This parameterization decouples the influence of the scattering potential given by the P-wave velocity perturbation fromthe polar changes described by two dimensionless parameter perturbations and from the azimuthal variation given by three additional dimensionless parameters perturbations. In addition, the scattering potentials of the P-wave velocity perturbation are also decoupled from the elastic influences given by one S-wave velocity and two additional dimensionless parameter perturbations. The vertical S-wave velocity is chosen with the best resolution obtained from S-wave reflections and converted waves, little influence on P-waves in conventional surface seismic acquisition. The influence of the density on observed data can be absorbed by one anisotropic parameter that has a similar radiation pattern. The additional seven dimensionless parameters describe the polar and azimuth variations in the P- and S-waves that we may acquire, with some of the parameters having distinct influences on the recorded data on the earth\\'s surface. These characteristics of the new parameterization offer the potential for a multistage inversion from high symmetry

  18. Elastic properties of carbon phases obtained from C sub 6 sub 0 under pressure: the first example of anisotropic disordered carbon solid

    CERN Document Server

    Brazhkin, V V; Mukhamadiarov, V V; Gromnitskaya, E L; Lyapin, A G; Popova, S V; Stalgorova, O V

    2002-01-01

    We observe an anisotropy of the propagation velocities of longitudinal and transverse ultrasonic waves, as well as of the hardness, for disordered graphite-like samples obtained from the C sub 6 sub 0 fullerite, which is heated to different temperatures under a pressure of 7.5 GPa. The anisotropy of the elastic properties and the hardness is connected to the additional pressure component that occurs in the quasi-hydrostatic experimental conditions. The elastic characteristics of the samples are determined. We propose a model description relating the observed properties of superhard sp sup 2 carbon to its possible structural features and to the mechanism of its formation.

  19. Conical Refraction of Elastic Waves by Anisotropic Metamaterials and Application for Parallel Translation of Elastic Waves.

    Science.gov (United States)

    Ahn, Young Kwan; Lee, Hyung Jin; Kim, Yoon Young

    2017-08-30

    Conical refraction, which is quite well-known in electromagnetic waves, has not been explored well in elastic waves due to the lack of proper natural elastic media. Here, we propose and design a unique anisotropic elastic metamaterial slab that realizes conical refraction for horizontally incident longitudinal or transverse waves; the single-mode wave is split into two oblique coupled longitudinal-shear waves. As an interesting application, we carried out an experiment of parallel translation of an incident elastic wave system through the anisotropic metamaterial slab. The parallel translation can be useful for ultrasonic non-destructive testing of a system hidden by obstacles. While the parallel translation resembles light refraction through a parallel plate without angle deviation between entry and exit beams, this wave behavior cannot be achieved without the engineered metamaterial because an elastic wave incident upon a dissimilar medium is always split at different refraction angles into two different modes, longitudinal and shear.

  20. Adaptation of generalized Hill inequalities to anisotropic elastic ...

    African Journals Online (AJOL)

    user

    Thallium manganese chloride(TIMnCl 3 ). 101.4. 16.5. 32.2. 5.2 For Isotropic Media. For some materials, it is possible to make approaches from cubic symmetry to isotropic symmetry. With cubic symmetry, three independent elastic constants are needed. If the medium is elastically isotropic, the elastic properties are ...

  1. Elastic waves trapped by a homogeneous anisotropic semicylinder

    Energy Technology Data Exchange (ETDEWEB)

    Nazarov, S A [Institute of Problems of Mechanical Engineering, Russian Academy of Sciences, St.-Petersburg (Russian Federation)

    2013-11-30

    It is established that the problem of elastic oscillations of a homogeneous anisotropic semicylinder (console) with traction-free lateral surface (Neumann boundary condition) has no eigenvalues when the console is clamped at one end (Dirichlet boundary condition). If the end is free, under additional requirements of elastic and geometric symmetry, simple sufficient conditions are found for the existence of an eigenvalue embedded in the continuous spectrum and generating a trapped elastic wave, that is, one which decays at infinity at an exponential rate. The results are obtained by generalizing the methods developed for scalar problems, which however require substantial modification for the vector problem in elasticity theory. Examples are given and open questions are stated. Bibliography: 53 titles.

  2. Circumferential gap propagation in an anisotropic elastic bacterial sacculus

    OpenAIRE

    Taneja, Swadhin; Levitan, Benjamin A.; Rutenberg, Andrew D.

    2013-01-01

    We have modelled stress concentration around small gaps in anisotropic elastic sheets, corresponding to the peptidoglycan sacculus of bacterial cells, under loading corresponding to the effects of turgor pressure in rod-shaped bacteria. We find that under normal conditions the stress concentration is insufficient to mechanically rupture bacteria, even for gaps up to a micron in length. We then explored the effects of stress-dependent smart-autolysins, as hypothesised by Arthur L Koch [Advance...

  3. Numerical simulation of ultrasonic wave propagation in elastically anisotropic media

    International Nuclear Information System (INIS)

    Jacob, Victoria Cristina Cheade; Jospin, Reinaldo Jacques; Bittencourt, Marcelo de Siqueira Queiroz

    2013-01-01

    The ultrasonic non-destructive testing of components may encounter considerable difficulties to interpret some inspections results mainly in anisotropic crystalline structures. A numerical method for the simulation of elastic wave propagation in homogeneous elastically anisotropic media, based on the general finite element approach, is used to help this interpretation. The successful modeling of elastic field associated with NDE is based on the generation of a realistic pulsed ultrasonic wave, which is launched from a piezoelectric transducer into the material under inspection. The values of elastic constants are great interest information that provide the application of equations analytical models, until small and medium complexity problems through programs of numerical analysis as finite elements and/or boundary elements. The aim of this work is the comparison between the results of numerical solution of an ultrasonic wave, which is obtained from transient excitation pulse that can be specified by either force or displacement variation across the aperture of the transducer, and the results obtained from a experiment that was realized in an aluminum block in the IEN Ultrasonic Laboratory. The wave propagation can be simulated using all the characteristics of the material used in the experiment valuation associated to boundary conditions and from these results, the comparison can be made. (author)

  4. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai

    2015-06-05

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters for materials such as finely layered media or randomly oriented or aligned fractures. In such cases, the analytic solutions for upscaled properties can be used for accurate prediction of wave propagation. However, such theories cannot be applied directly to homogenize elastic media with more complex, arbitrary spatial heterogeneity. Therefore, we have proposed a numerical homogenization algorithm based on multiscale finite-element methods for simulating elastic wave propagation in heterogeneous, anisotropic elastic media. Specifically, our method used multiscale basis functions obtained from a local linear elasticity problem with appropriately defined boundary conditions. Homogenized, effective medium parameters were then computed using these basis functions, and the approach applied a numerical discretization that was similar to the rotated staggered-grid finite-difference scheme. Comparisons of the results from our method and from conventional, analytical approaches for finely layered media showed that the homogenization reliably estimated elastic parameters for this simple geometry. Additional tests examined anisotropic models with arbitrary spatial heterogeneity in which the average size of the heterogeneities ranged from several centimeters to several meters, and the ratio between the dominant wavelength and the average size of the arbitrary heterogeneities ranged from 10 to 100. Comparisons to finite-difference simulations proved that the numerical homogenization was equally accurate for these complex cases.

  5. Estimation of macroscopic elastic characteristics for hierarchical anisotropic solids based on probabilistic approach

    Science.gov (United States)

    Smolina, Irina Yu.

    2015-10-01

    Mechanical properties of a cable are of great importance in design and strength calculation of flexible cables. The problem of determination of elastic properties and rigidity characteristics of a cable modeled by anisotropic helical elastic rod is considered. These characteristics are calculated indirectly by means of the parameters received from statistical processing of experimental data. These parameters are considered as random quantities. With taking into account probable nature of these parameters the formulas for estimation of the macroscopic elastic moduli of a cable are obtained. The calculating expressions for macroscopic flexural rigidity, shear rigidity and torsion rigidity using the macroscopic elastic characteristics obtained before are presented. Statistical estimations of the rigidity characteristics of some cable grades are adduced. A comparison with those characteristics received on the basis of deterministic approach is given.

  6. Quantitative multi-waves migration in elastic anisotropic media; Migration quantitative multi-ondes en milieu elastique anisotrope

    Energy Technology Data Exchange (ETDEWEB)

    Borgne, H.

    2004-12-01

    Seismic imaging is an important tool for ail exploration. From the filtered seismic traces and a subsurface velocity model, migration allows to localize the reflectors and to estimate physical properties of these interfaces. The subsurface is split up into a reference medium, corresponding to the low spatial frequencies (a smooth medium), and a perturbation medium, corresponding to the high spatial frequencies. The propagation of elastic waves in the medium of reference is modelled by the ray theory. The association of this theory with a principle of diffraction or reflection allows to take into account the high spatial frequencies: the Kirchhoff approach represents so the medium of perturbations with continuous surfaces, characterized by reflection coefficients. The target of the quantitative migration is to reconstruct this reflection coefficient, notably its behaviour according to the incidence angle. These information will open the way to seismic characterization of the reservoir domain, with. a stratigraphic inversion for instance. In order to improve the qualitative and quantitative migration results, one of the current challenges is to take into account the anisotropy of the subsurface. Taking into account rocks anisotropy in the imaging process of seismic data requires two improvements from the isotropic case. The first one roughly concerns the modelling aspect: an anisotropic propagator should be used to avoid a mis-positioning or bad focusing of the imaged reflectors. The second correction concerns the migration aspect: as anisotropy affects the reflectivity of subsurface, a specific anisotropic imaging formula should be applied in the migration kernel, in order to recover the correct A V A behavior of the subsurface reflectors, If the first correction is DOW made in most so-called anisotropic imaging algorithms, the second one is currently ignored. The first part of my work concerns theoretical aspects. 1 study first the preservation of amplitudes in the

  7. Elastic and viscoplastic properties

    International Nuclear Information System (INIS)

    Lebensohn, R.A.

    2015-01-01

    In this chapter, we review crystal elasticity and plasticity-based self-consistent theories and apply them to the determination of the effective response of polycrystalline aggregates. These mean-field formulations, which enable the prediction of the mechanical behaviour of polycrystalline aggregates based on the heterogeneous and/or directional properties of their constituent single crystal grains and phases, are ideal tools to establish relationships between microstructure and properties of these materials, ubiquitous among fuels and structural materials for nuclear systems. (author)

  8. Contact instabilities of anisotropic and inhomogeneous soft elastic films

    Science.gov (United States)

    Tomar, Gaurav; Sharma, Ashutosh

    2012-02-01

    Anisotropy plays important roles in various biological phenomena such as adhesion of geckos and grasshoppers enabled by the attachment pods having hierarchical structures like thin longitudinal setae connected with threads mimicked by anisotropic films. We study the contact instability of a transversely isotropic thin elastic film when it comes in contact proximity of another surface. In the present study we investigate the contact stability of a thin incompressible transversely isotropic film by performing linear stability analysis. Based on the linear stability analysis, we show that an approaching contactor renders the film unstable. The critical wavelength of the instability is a function of the total film thickness and the ratio of the Young's modulus in the longitudinal direction and the shear modulus in the plane containing the longitudinal axis. We also analyze the stability of a thin gradient film that is elastically inhomogeneous across its thickness. Compared to a homogeneous elastic film, it becomes unstable with a longer wavelength when the film becomes softer in going from the surface to the substrate.

  9. Anisotropic mechanical properties of graphene sheets from molecular dynamics

    International Nuclear Information System (INIS)

    Ni Zhonghua; Bu Hao; Zou Min; Yi Hong; Bi Kedong; Chen Yunfei

    2010-01-01

    Anisotropic mechanical properties are observed for a sheet of graphene along different load directions. The anisotropic mechanical properties are attributed to the hexagonal structure of the unit cells of the graphene. Under the same tensile loads, the edge bonds bear larger load in the longitudinal mode (LM) than in the transverse mode (TM), which causes fracture sooner in LM than in TM. The Young's modulus and the third order elastic modulus for the LM are slightly larger than that for the TM. Simulation also demonstrates that, for both LM and TM, the loading and unloading stress-strain response curves overlap as long as the graphene is unloaded before the fracture point. This confirms that graphene sustains complete elastic and reversible deformation in the elongation process.

  10. The Determination of ’In Situ’ Anisotropic Elastic Moduli from Laboratory Ultrasonic and Field Seismic Measurements.

    Science.gov (United States)

    feet of the uppermost Kayenta sandstone unit at the Mixed Company site, for which the in situ elastic moduli are determined to be as follows: C11...and plastic anisotropic properties of Kayenta sandstone from the Mixed Company site are in poor agreement with newly generated data. (Author)

  11. Pressure Prediction of Electronic, Anisotropic Elastic, Optical, and Thermal Properties of Quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-01-01

    Full Text Available The electronic, mechanical, anisotropic elastic, optical, and thermal properties of quaternary (M2/3Ti1/33AlC2 (M = Cr, Mo, and Ti under different pressure are systematically investigated by first-principles calculations. The bonding characteristics of these compounds are the mixture of metallic and covalent bonds. With an increase of pressure, the heights of total density of states (TDOS for these compounds decrease at Fermi level. The highest volume compressibility among three compounds is Mo2TiAlC2 for its smallest relative volume decline. The relative bond lengths are decreasing when the pressure increases. The bulk and shear modulus of the one doped with Cr or Mo are larger than those of Ti3AlC2 with pressure increasing. With an increase of pressure, the anisotropy of these compounds also increases. Moreover, Mo2TiAlC2 has the biggest anisotropy among the three compounds. The results of optical functions indicate that the reflectivity of the three compounds is high in visible-ultraviolet region up to ~10.5 eV under ambient pressure and increasing constantly when under pressure. Mo2TiAlC2 has the highest loss function. The calculated sound velocity and Debye temperature show that they all increase with pressure. CV of the three compounds is also calculated.

  12. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  13. Effect of reorientation of anisotropic point defects on relaxation of crystal elastic coefficients of high order

    International Nuclear Information System (INIS)

    Topchyan, I.I.; Dokhner, R.D.

    1977-01-01

    The effect of reorientation of anisotropic point defects in uniform fields of elastic stresses on the relaxation of the elastic coefficients of a crystal was investigated in the nonlinear elasticity theory approximation. In calculating the interaction of point defects with elastic-stress fields was taken into consideration. The expression for the relaxations of the elasticity coefficients are obtained in an analytical form. The relaxation of the second-order elasticity coefficients is due to the dimentional interaction of a point defect with an applied-stress field, whereas the relaxation of the higher-order elasticity coefficients is determined both by dimentional and module effects

  14. Anisotropic properties of single crystals of high Tc superconductors

    International Nuclear Information System (INIS)

    Tholence, J.L.; Saint-Paul, M.; Laborde, O.; Monceau, P.; Guillot, M.; Niel, H.; Levet, J.C.; Potel, M.; Padiou, J.; Gougeon, P.

    1990-01-01

    In this article the authors make a review of some of the anisotropic properties of high T c compounds, essentially RE Ba 2 Cu 3 O 7 , Bi-SR-Ca-Cu-O and Tl-Ca-Ba-Cu-O systems. In section 2 a short description of the crystal growth is reported. Section 3 deals with the anisotropic elastic properties measured by ultrasonic techniques. In section 4 the authors discuss the anisotropy in magnetization measurements and consequently on the critical currents. Section 5 concerns the magnetoresistance measurements, and the determination of the superconducting critical magnetic field H c2 . Finally in section 6, in conclusion of result described in sections 4 and 5, the authors discuss on the pinning force and on the controversial Lorentz force for explaining the broadening of the superconducting transition under magnetic field. The authors apologize for not having quoted all the works published on these different topics, which is in fact practically impossible

  15. In Situ elastic property sensors

    International Nuclear Information System (INIS)

    Olness, D.; Hirschfeld, T.; Kishiyama, K.; Steinhaus, R.

    1987-01-01

    Elasticity is an important property of many materials. Loss of elasticity can have serious consequences, such as when a gasket deteriorates and permits leakage of an expensive or hazardous material, or when a damping system begins to go awry. Loss of elasticity can also provide information related to an ancillary activity such as degradation of electrical insulation, loss of plasticizer in a plastic, or changes in permeability of a thin film. In fact, the mechanical properties of most organic compounds are altered when the compound degrades. Thus, a sensor for the mechanical properties can be used to monitor associated characteristics as well. A piezoelectric material in contact with an elastomer forms an oscillating system that can provide real-time elasticity monitoring. This combination constitutes a forced harmonic oscillator with damping provided by the elastomer. A ceramic oscillator with a total volume of a few mm 3 was used as an elasticity sensor. It was placed in intimate contact with an elastomer and then monitored remotely with a simple oscillator circuit and standard frequency counting electronics. Resonant frequency shifts and changes in Q value were observed corresponding to changes in ambient temperature and/or changes in pressure applied to the sample. Elastomer samples pretreated with ozone (to simulate aging) showed changes in Q value and frequency response, even though there were no visible changes in the elastic samples

  16. Uniqueness in the inverse boundary value problem for piecewise homogeneous anisotropic elasticity

    OpenAIRE

    Cârstea, Cătălin I.; Honda, Naofumi; Nakamura, Gen

    2016-01-01

    Consider a three dimensional piecewise homogeneous anisotropic elastic medium $\\Omega$ which is a bounded domain consisting of a finite number of bounded subdomains $D_\\alpha$, with each $D_\\alpha$ a homogeneous elastic medium. One typical example is a finite element model with elements with curvilinear interfaces for an ansiotropic elastic medium. Assuming the $D_\\alpha$ are known and Lipschitz, we are concerned with the uniqueness in the inverse boundary value problem of identifying the ani...

  17. High‐order rotated staggered finite difference modeling of 3D elastic wave propagation in general anisotropic media

    KAUST Repository

    Chu, Chunlei

    2009-01-01

    We analyze the dispersion properties and stability conditions of the high‐order convolutional finite difference operators and compare them with the conventional finite difference schemes. We observe that the convolutional finite difference method has better dispersion properties and becomes more efficient than the conventional finite difference method with the increasing order of accuracy. This makes the high‐order convolutional operator a good choice for anisotropic elastic wave simulations on rotated staggered grids since its enhanced dispersion properties can help to suppress the numerical dispersion error that is inherent in the rotated staggered grid structure and its efficiency can help us tackle 3D problems cost‐effectively.

  18. Anisotropic propagation imaging of elastic waves in oriented columnar thin films

    Science.gov (United States)

    Coffy, E.; Dodane, G.; Euphrasie, S.; Mosset, A.; Vairac, P.; Martin, N.; Baida, H.; Rampnoux, J. M.; Dilhaire, S.

    2017-12-01

    We report on the observation of strongly anisotropic surface acoustic wave propagation on nanostructured thin films. Two kinds of tungsten samples were prepared by sputtering on a silicon substrate: a conventional thin film with columns normal to the substrate surface, and an oriented columnar architecture using the glancing angle deposition (GLAD) process. Pseudo-Rayleigh waves (PRWs) were imaged as a function of time in x and y directions for both films thanks to a femtosecond heterodyne pump-probe setup. A strong anisotropic propagation as well as a high velocity reduction of the PRWs were exhibited for the GLAD sample. For the wavevector k/2π  =  3  ×  105 m-1 the measured group velocities v x and v y equal 2220 m s-1 for the sample prepared with conventional sputtering, whereas a strong anisotropy appears (v x   =  1600 m s-1 and v y   =  870 m s-1) for the sample prepared with the GLAD process. Using the finite element method, the anisotropy is related to the structural anisotropy of the thin film’s architecture. The drop of PRWs group velocities is mainly assigned to the porous microstructure, especially favored by atomic shadowing effects which appear during the growth of the inclined columns. Such GLAD thin films constitute a new tool for the control of the propagation of surface elastic waves and for the design of new devices with useful properties.

  19. Wave velocities in a pre-stressed anisotropic elastic medium

    Indian Academy of Sciences (India)

    Modified Christoffel equations are derived for three-dimensional wave propagation in a general anisotropic medium under initial stress.The three roots of a cubic equation define the phase velocities of three quasi-waves in the medium.Analytical expressions are used to calculate the directional derivatives of phase ...

  20. TOPICAL REVIEW Textured silicon nitride: processing and anisotropic properties

    Directory of Open Access Journals (Sweden)

    Xinwen Zhu and Yoshio Sakka

    2008-01-01

    Full Text Available Textured silicon nitride (Si3N4 has been intensively studied over the past 15 years because of its use for achieving its superthermal and mechanical properties. In this review we present the fundamental aspects of the processing and anisotropic properties of textured Si3N4, with emphasis on the anisotropic and abnormal grain growth of β-Si3N4, texture structure and texture analysis, processing methods and anisotropic properties. On the basis of the texturing mechanisms, the processing methods described in this article have been classified into two types: hot-working (HW and templated grain growth (TGG. The HW method includes the hot-pressing, hot-forging and sinter-forging techniques, and the TGG method includes the cold-pressing, extrusion, tape-casting and strong magnetic field alignment techniques for β-Si3N4 seed crystals. Each processing technique is thoroughly discussed in terms of theoretical models and experimental data, including the texturing mechanisms and the factors affecting texture development. Also, methods of synthesizing the rodlike β-Si3N4 single crystals are presented. Various anisotropic properties of textured Si3 N4 and their origins are thoroughly described and discussed, such as hardness, elastic modulus, bending strength, fracture toughness, fracture energy, creep behavior, tribological and wear behavior, erosion behavior, contact damage behavior and thermal conductivity. Models are analyzed to determine the thermal anisotropy by considering the intrinsic thermal anisotropy, degree of orientation and various microstructure factors. Textured porous Si3N4 with a unique microstructure composed of oriented elongated β-Si3N4 and anisotropic pores is also described for the first time, with emphasis on its unique mechanical and thermal-mechanical properties. Moreover, as an important related material, textured α-Sialon is also reviewed, because the presence of elongated α-Sialon grains allows the production of textured

  1. Seismic distortions of a deep circular tunnel in elastic slightly anisotropic ground

    Directory of Open Access Journals (Sweden)

    Antonio Bobet

    2017-06-01

    Full Text Available Tunnels must withstand not only the demands stemming from normal working conditions but also from extreme events such as earthquakes. Indeed, there is consistent evidence in the technical literature that indicates that tunnels are vulnerable to damage and must be designed to adequately support the demand imposed by the earthquake. Such demand should be estimated using dynamic numerical methods that include soil-structure interaction and incorporate realistic models for the support and surrounding ground. For preliminary analysis, however, or when the seismic demand is insufficient to take the ground beyond its elastic regime, analytical solutions may provide a reasonable estimate of the tunnel behavior, especially if the tunnel is sufficiently far from the seismic source such that a pseudo-static analysis is acceptable. Most analytical solutions are based on the assumption that the ground is isotropic, which may not be realistic, as e.g. depositional processes may result in engineering properties that depend on the direction of deposition. The work presented in the paper builds on the results by Bobet (2011, 2016 who provided closed-form solutions for deep tunnels in elastic transversely anisotropic ground; however, the paper provides much simpler solutions for those cases where the ground is slightly anisotropic. A comparison between the approximate and the exact solutions shows that the errors are negligible when the ground anisotropy is small and grow, albeit slowly, as the ground anisotropy increases. The conclusion applies to different loading conditions, drained and undrained, and to different ground-support interfaces, tied or frictionless.

  2. Electrostatic flocking of chitosan fibres leads to highly porous, elastic and fully biodegradable anisotropic scaffolds.

    Science.gov (United States)

    Gossla, Elke; Tonndorf, Robert; Bernhardt, Anne; Kirsten, Martin; Hund, Rolf-Dieter; Aibibu, Dilibar; Cherif, Chokri; Gelinsky, Michael

    2016-10-15

    Electrostatic flocking - a common textile technology which has been applied in industry for decades - is based on the deposition of short polymer fibres in a parallel aligned fashion on flat or curved substrates, covered with a layer of a suitable adhesive. Due to their highly anisotropic properties the resulting velvet-like structures can be utilised as scaffolds for tissue engineering applications in which the space between the fibres can be defined as pores. In the present study we have developed a fully resorbable compression elastic flock scaffold from a single material system based on chitosan. The fibres and the resulting scaffolds were analysed concerning their structural and mechanical properties and the biocompatibility was tested in vitro. The tensile strength and Young's modulus of the chitosan fibres were analysed as a function of the applied sterilisation technique (ethanol, supercritical carbon dioxide, γ-irradiation and autoclaving). All sterilisation methods decreased the Young's modulus (from 14GPa to 6-12GPa). The tensile strength was decreased after all treatments - except after the autoclaving of chitosan fibres submerged in water. Compressive strength of the highly porous flock scaffolds was 18±6kPa with a elastic modulus in the range of 50-100kPa. The flocked scaffolds did not show any cytotoxic effect during indirect or direct culture of human mesenchymal stem cells or the sarcoma osteogenic cell line Saos-2. Furthermore cell adhesion and proliferation of both cell types could be observed. This is the first demonstration of a fully biodegradable scaffold manufactured by electrostatic flocking. Most tissues possess anisotropic fibrous structures. In contrast, most of the commonly used scaffolds have an isotropic morphology. By utilising the textile technology of electrostatic flocking, highly porous and clearly anisotropic scaffolds can be manufactured. Flocking leads to parallel aligned short fibres, glued on the surface of a substrate

  3. Equations of motion for anisotropic nonlinear elastic continuum in gravitational field

    International Nuclear Information System (INIS)

    Sokolov, S.N.

    1994-01-01

    Equations of motion for anisotropic nonlinear elastic continuum in the gravitational field are written in the form convenient for numerical calculations. The energy-stress tensor is expressed through scalar and tensor products of three vectors frozen in the continuum. Examples of expansion of the energy-stress tensor into scalar and tensor invariants corresponding to some crystal classes are given. 47 refs

  4. A two-dimensional linear elasticity problem for anisotropic materials, solved with a parallelization code

    Directory of Open Access Journals (Sweden)

    Mihai-Victor PRICOP

    2010-09-01

    Full Text Available The present paper introduces a numerical approach of static linear elasticity equations for anisotropic materials. The domain and boundary conditions are simple, to enhance an easy implementation of the finite difference scheme. SOR and gradient are used to solve the resulting linear system. The simplicity of the geometry is also useful for MPI parallelization of the code.

  5. Temperature dependence of elastic properties of paratellurite

    International Nuclear Information System (INIS)

    Silvestrova, I.M.; Pisarevskii, Y.V.; Senyushenkov, P.A.; Krupny, A.I.

    1987-01-01

    New data are presented on the temperature dependence of the elastic wave velocities, elastic stiffness constants, and thermal expansion of paratellurite. It is shown that the external pressure appreciably influences the elastic properties of TeO 2 , especially the temperature dependence of the elastic modulus connected with the crystal soft mode. (author)

  6. Surface waves in fibre-reinforced anisotropic elastic media

    Indian Academy of Sciences (India)

    Springer Verlag Heidelberg #4 2048 1996 Dec 15 10:16:45

    Rayleigh, Love and Stoneley types. The wave velocity equations are found to be in agreement with the corresponding classical result when the ... (1924) and Jeffreys (1959), regarding surface waves in classical elasticity. Sengupta and his research collaborators have also studied surface waves (Acharya & Sengupta 1978;.

  7. Fast algorithms for evaluating the stress field of dislocation lines in anisotropic elastic media

    Science.gov (United States)

    Chen, C.; Aubry, S.; Oppelstrup, T.; Arsenlis, A.; Darve, E.

    2018-06-01

    In dislocation dynamics (DD) simulations, the most computationally intensive step is the evaluation of the elastic interaction forces among dislocation ensembles. Because the pair-wise interaction between dislocations is long-range, this force calculation step can be significantly accelerated by the fast multipole method (FMM). We implemented and compared four different methods in isotropic and anisotropic elastic media: one based on the Taylor series expansion (Taylor FMM), one based on the spherical harmonics expansion (Spherical FMM), one kernel-independent method based on the Chebyshev interpolation (Chebyshev FMM), and a new kernel-independent method that we call the Lagrange FMM. The Taylor FMM is an existing method, used in ParaDiS, one of the most popular DD simulation softwares. The Spherical FMM employs a more compact multipole representation than the Taylor FMM does and is thus more efficient. However, both the Taylor FMM and the Spherical FMM are difficult to derive in anisotropic elastic media because the interaction force is complex and has no closed analytical formula. The Chebyshev FMM requires only being able to evaluate the interaction between dislocations and thus can be applied easily in anisotropic elastic media. But it has a relatively large memory footprint, which limits its usage. The Lagrange FMM was designed to be a memory-efficient black-box method. Various numerical experiments are presented to demonstrate the convergence and the scalability of the four methods.

  8. Size-dependent effective properties of anisotropic piezoelectric composites with piezoelectric nano-particles

    International Nuclear Information System (INIS)

    Huang, Ming-Juan; Fang, Xue-Qian; Liu, Jin-Xi; Feng, Wen-Jie; Zhao, Yong-Mao

    2015-01-01

    Based on the electro-elastic surface/interface theory, the size-dependent effective piezoelectric and dielectric coefficients of anisotropic piezoelectric composites that consist of spherically piezoelectric inclusions under a uniform electric field are investigated, and the analytical solutions for the elastic displacement and electric potentials are derived. With consideration of the coupling effects of elasticity, permittivity and piezoelectricity, the effective field method is introduced to derive the effective dielectric and piezoelectric responses in the dilute limit. The numerical examples show that the effective dielectric constant exhibits a significant variation due to the surface/interface effect. The dielectric property of the surface/interface displays greater effect than the piezoelectric property, and the elastic property shows little effect. A comparison with the existing results validates the present approach. (paper)

  9. Measuring anisotropic muscle stiffness properties using elastography.

    Science.gov (United States)

    Green, M A; Geng, G; Qin, E; Sinkus, R; Gandevia, S C; Bilston, L E

    2013-11-01

    Physiological and pathological changes to the anisotropic mechanical properties of skeletal muscle are still largely unknown, with only a few studies quantifying changes in vivo. This study used the noninvasive MR elastography (MRE) technique, in combination with diffusion tensor imaging (DTI), to measure shear modulus anisotropy in the human skeletal muscle in the lower leg. Shear modulus measurements parallel and perpendicular to the fibre direction were made in 10 healthy subjects in the medial gastrocnemius, soleus and tibialis anterior muscles. The results showed significant differences in the medial gastrocnemius (μ‖ = 0.86 ± 0.15 kPa; μ⊥ = 0.66 ± 0.19 kPa, P < 0.001), soleus (μ‖ = 0.83 ± 0.22 kPa; μ⊥ = 0.65 ± 0.13 kPa, P < 0.001) and the tibialis anterior (μ‖ = 0.78 ± 0.24 kPa; μ⊥ = 0.66 ± 0.16 kPa, P = 0.03) muscles, where the shear modulus measured in the direction parallel is greater than that measured in the direction perpendicular to the muscle fibres. No significant differences were measured across muscle groups. This study provides the first direct estimates of the anisotropic shear modulus in the triceps surae muscle group, and shows that the technique may be useful for the probing of mechanical anisotropy changes caused by disease, aging and injury. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Dispersive elastic properties of Dzyaloshinskii domain walls

    Science.gov (United States)

    Pellegren, James; Lau, Derek; Sokalski, Vincent

    Recent studies on the asymmetric field-driven growth of magnetic bubble domains in perpendicular thin films exhibiting an interfacial Dzyaloshinskii-Moriya interaction (DMI) have provided a wealth of experimental evidence to validate models of creep phenomena, as key properties of the domain wall (DW) can be altered with the application of an external in-plane magnetic field. While asymmetric growth behavior has been attributed to the highly anisotropic DW energy, σ (θ) , which results from the combination of DMI and the in-plane field, many experimental results remain anomalous. In this work, we demonstrate that the anisotropy of DW energy alters the elastic response of the DW as characterized by the surface stiffness, σ (θ) = σ (θ) + σ (θ) , and evaluate the impact of this stiffness on the creep law. We find that at in-plane fields larger than and antiparallel to the effective field due to DMI, the DW stiffness decreases rapidly, suggesting that higher energy walls can actually become more mobile than their low energy counterparts. This result is consistent with experiments on CoNi multilayer films where velocity curves for domain walls with DMI fields parallel and antiparallel to the applied field cross over at high in-plane fields.

  11. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  12. Elastic properties of Gum Metal

    International Nuclear Information System (INIS)

    Kuramoto, Shigeru; Furuta, Tadahiko; Hwang, Junghwan; Nishino, Kazuaki; Saito, Takashi

    2006-01-01

    In situ X-ray diffraction measurements under tensile loading and dynamic mechanical analysis were performed to investigate the mechanisms of elastic deformation in Gum Metal. Tensile stress-strain curves for Gum Metal indicate that cold working substantially decreases the elastic modulus while increasing the yield strength, thereby confirming nonlinearity in the elastic range. The gradient of each curve decreased continuously to about one-third its original value near the elastic limit. As a result of this decrease in elastic modulus and nonlinearity, elastic deformability reaches 2.5% after cold working. Superelasticity is attributed to stress-induced martensitic transformations, although the large elastic deformation in Gum Metal is not accompanied by a phase transformation

  13. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    International Nuclear Information System (INIS)

    Zhang, Lin; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel

    2014-01-01

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν 12 and ν 13 as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%

  14. Anisotropic elasticity of silicon and its application to the modelling of X-ray optics

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Lin, E-mail: zhang@esrf.fr; Barrett, Raymond; Cloetens, Peter; Detlefs, Carsten; Sanchez del Rio, Manuel [European Synchrotron Radiation Facility, 6 Rue Jules Horowitz, BP 220, 38043 Grenoble (France)

    2014-04-04

    Anisotropic elasticity of single-crystal silicon, applications to modelling of a bent X-ray mirror, and thermal deformation of a liquid-nitrogen-cooled monochromator crystal are presented. The crystal lattice of single-crystal silicon gives rise to anisotropic elasticity. The stiffness and compliance coefficient matrix depend on crystal orientation and, consequently, Young’s modulus, the shear modulus and Poisson’s ratio as well. Computer codes (in Matlab and Python) have been developed to calculate these anisotropic elasticity parameters for a silicon crystal in any orientation. These codes facilitate the evaluation of these anisotropy effects in silicon for applications such as microelectronics, microelectromechanical systems and X-ray optics. For mechanically bent X-ray optics, it is shown that the silicon crystal orientation is an important factor which may significantly influence the optics design and manufacturing phase. Choosing the appropriate crystal orientation can both lead to improved performance whilst lowering mechanical bending stresses. The thermal deformation of the crystal depends on Poisson’s ratio. For an isotropic constant Poisson’s ratio, ν, the thermal deformation (RMS slope) is proportional to (1 + ν). For a cubic anisotropic material, the thermal deformation of the X-ray optics can be approximately simulated by using the average of ν{sub 12} and ν{sub 13} as an effective isotropic Poisson’s ratio, where the direction 1 is normal to the optic surface, and the directions 2 and 3 are two normal orthogonal directions parallel to the optical surface. This average is independent of the direction in the optical surface (the crystal plane) for Si(100), Si(110) and Si(111). Using the effective isotropic Poisson’s ratio for these orientations leads to an error in thermal deformation smaller than 5.5%.

  15. Elastic properties of graphite and interstitial defects

    International Nuclear Information System (INIS)

    Ayasse, J.-B.

    1977-01-01

    The graphite elastic constants C 33 and C 44 , reflecting the interaction of the graphitic planes, were experimentally measured as a function of irradiation and temperature. A model of non-central strength atomic interaction was established to explain the experimental results obtained. This model is valid at zero temperature. The temperature dependence of the elastic properties was analyzed. The influence of the elastic property variations on the specific heat of the lattice at very low temperature was investigated [fr

  16. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    International Nuclear Information System (INIS)

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin

    2015-01-01

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system

  17. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Kai, E-mail: kaigao87@gmail.com [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Fu, Shubin, E-mail: shubinfu89@gmail.com [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Gibson, Richard L., E-mail: gibson@tamu.edu [Department of Geology and Geophysics, Texas A& M University, College Station, TX 77843 (United States); Chung, Eric T., E-mail: tschung@math.cuhk.edu.hk [Department of Mathematics, The Chinese University of Hong Kong, Shatin, NT (Hong Kong); Efendiev, Yalchin, E-mail: efendiev@math.tamu.edu [Department of Mathematics, Texas A& M University, College Station, TX 77843 (United States); Numerical Porous Media SRI Center (NumPor), King Abdullah University of Science and Technology, Thuwal (Saudi Arabia)

    2015-08-15

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both the boundaries and interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  18. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    KAUST Repository

    Gao, Kai

    2015-04-14

    It is important to develop fast yet accurate numerical methods for seismic wave propagation to characterize complex geological structures and oil and gas reservoirs. However, the computational cost of conventional numerical modeling methods, such as finite-difference method and finite-element method, becomes prohibitively expensive when applied to very large models. We propose a Generalized Multiscale Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property variations, and allows us to greatly reduce the degrees of freedom that are required to implement the modeling compared with conventional finite-element method for wave equation, while restricting the error to low values. We formulate the continuous Galerkin and discontinuous Galerkin formulation of the multiscale method, both of which have pros and cons. Applications of the multiscale method to three heterogeneous models show that our multiscale method can effectively model the elastic wave propagation in anisotropic media with a significant reduction in the degrees of freedom in the modeling system.

  19. Anisotropic chemical strain in cubic ceria due to oxygen-vacancy-induced elastic dipoles.

    Science.gov (United States)

    Das, Tridip; Nicholas, Jason D; Sheldon, Brian W; Qi, Yue

    2018-06-06

    Accurate characterization of chemical strain is required to study a broad range of chemical-mechanical coupling phenomena. One of the most studied mechano-chemically active oxides, nonstoichiometric ceria (CeO2-δ), has only been described by a scalar chemical strain assuming isotropic deformation. However, combined density functional theory (DFT) calculations and elastic dipole tensor theory reveal that both the short-range bond distortions surrounding an oxygen-vacancy and the long-range chemical strain are anisotropic in cubic CeO2-δ. The origin of this anisotropy is the charge disproportionation between the four cerium atoms around each oxygen-vacancy (two become Ce3+ and two become Ce4+) when a neutral oxygen-vacancy is formed. Around the oxygen-vacancy, six of the Ce3+-O bonds elongate, one of the Ce3+-O bond shorten, and all seven of the Ce4+-O bonds shorten. Further, the average and maximum chemical strain values obtained through tensor analysis successfully bound the various experimental data. Lastly, the anisotropic, oxygen-vacancy-elastic-dipole induced chemical strain is polarizable, which provides a physical model for the giant electrostriction recently discovered in doped and non-doped CeO2-δ. Together, this work highlights the need to consider anisotropic tensors when calculating the chemical strain induced by dilute point defects in all materials, regardless of their symmetry.

  20. Iron particle and anisotropic effects on mechanical properties of magneto-sensitive elastomers

    Science.gov (United States)

    Kumar, Vineet; Lee, Dong-Joo

    2017-11-01

    Rubber specimens were prepared by mixing micron-sized iron particles dispersed in room-temperature-vulcanized (RTV) silicone rubber by solution mixing. The possible correlations of the particle volume, size, and distribution with the mechanical properties of the specimens were examined. An isotropic mechanical test shows that at 60 phr, the elastic modulus was 3.29 MPa (electrolyte), 2.92 MPa (carbonyl), and 2.61 MPa (hybrid). The anisotropic effect was examined by curing the specimen under magnetic fields of 0.5-2.0 T at 90° relative to the applied strain. The measurements show anisotropic effects of 11% (carbonyl), 9% (electrolyte), and 6% (hybrid) at 40 phr and 1 T. At 80 phr, the polymer-filler compatibility factor (c-factor) was estimated using the Pythagorean theorem as 0.53 (regular) and 0.73 (anisotropic studies). The improved features could be useful in applications such as controlled damping, vibrational absorption, or automotive bushings.

  1. Elastic properties of icosahedral and decagonal quasicrystals

    International Nuclear Information System (INIS)

    Chernikov, Mikhail A

    2005-01-01

    Problems associated with determining the symmetry properties of the elastic constant tensor of icosahedral and decagonal quasicrystals are reviewed. Notions of elastic isotropy and anisotropy are considered, and their relation to the components of the elastic constant tensor is discussed. The question is addressed of how to determine experimentally whether a system under study is elastically isotropic. Experimental results produced by resonant ultrasound spectroscopy of icosahedral Al-Li-Cu and decagonal Al-Ni-Co single quasicrystals are discussed in detail. (methodological notes)

  2. Effective elastic properties of damaged isotropic solids

    International Nuclear Information System (INIS)

    Lee, U Sik

    1998-01-01

    In continuum damage mechanics, damaged solids have been represented by the effective elastic stiffness into which local damage is smoothly smeared. Similarly, damaged solids may be represented in terms of effective elastic compliances. By virtue of the effective elastic compliance representation, it may become easier to derive the effective engineering constants of damaged solids from the effective elastic compliances, all in closed form. Thus, in this paper, by using a continuum modeling approach based on both the principle of strain energy equivalence and the equivalent elliptical micro-crack representation of local damage, the effective elastic compliance and effective engineering constants are derived in terms of the undamaged (virgin) elastic properties and a scalar damage variable for both damaged two-and three-dimensional isotropic solids

  3. Anisotropic properties of aligned SWNT modified poly (methyl ...

    Indian Academy of Sciences (India)

    The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...

  4. An anisotropic linear thermo-viscoelastic constitutive law - Elastic relaxation and thermal expansion creep in the time domain

    Science.gov (United States)

    Pettermann, Heinz E.; DeSimone, Antonio

    2017-09-01

    A constitutive material law for linear thermo-viscoelasticity in the time domain is presented. The time-dependent relaxation formulation is given for full anisotropy, i.e., both the elastic and the viscous properties are anisotropic. Thereby, each element of the relaxation tensor is described by its own and independent Prony series expansion. Exceeding common viscoelasticity, time-dependent thermal expansion relaxation/creep is treated as inherent material behavior. The pertinent equations are derived and an incremental, implicit time integration scheme is presented. The developments are implemented into an implicit FEM software for orthotropic material symmetry under plane stress assumption. Even if this is a reduced problem, all essential features are present and allow for the entire verification and validation of the approach. Various simulations on isotropic and orthotropic problems are carried out to demonstrate the material behavior under investigation.

  5. Study of anisotropic mechanical properties for aeronautical PMMA

    Directory of Open Access Journals (Sweden)

    Wei Shang

    Full Text Available For the properties of polymer are relative to its structure, the main purpose of the present work is to investigate the mechanical properties of the aeronautical PMMA which has been treated by the directional tensile technology. Isodyne images reveal the stress state in directional PMMA. And then, an anisotropic mechanical model is established. Furthermore, all mechanical parameters are measured by the digital image correlation method. Finally, based on the anisotropic mechanical model and mechanical parameters, the FEM numerical simulation and experimental methods are applied to analyze the fracture mechanical properties along different directions.

  6. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations.

    Science.gov (United States)

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Wang, Dayun

    2017-08-08

    The structural, mechanical, elastic anisotropic, and electronic properties of Pbca -XN (X = C, Si, Ge) are investigated in this work using the Perdew-Burke-Ernzerhof (PBE) functional, Perdew-Burke-Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA-PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca -CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca -XN (X = C, Si, Ge) show that Pbca -SiN and Pbca -GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca -XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson's ratio, bulk modulus, shear modulus, Young's modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca -CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young's modulus than the (100) plane.

  7. Mechanical, Anisotropic, and Electronic Properties of XN (X = C, Si, Ge): Theoretical Investigations

    Science.gov (United States)

    Ma, Zhenyang; Liu, Xuhong; Yu, Xinhai; Shi, Chunlei; Wang, Dayun

    2017-01-01

    The structural, mechanical, elastic anisotropic, and electronic properties of Pbca-XN (X = C, Si, Ge) are investigated in this work using the Perdew–Burke–Ernzerhof (PBE) functional, Perdew–Burke–Ernzerhof for solids (PBEsol) functional, and Ceperly and Alder, parameterized by Perdew and Zunger (CA–PZ) functional in the framework of density functional theory. The achieved results for the lattice parameters and band gap of Pbca-CN with the PBE functional in this research are in good accordance with other theoretical results. The band structures of Pbca-XN (X = C, Si, Ge) show that Pbca-SiN and Pbca-GeN are both direct band gap semiconductor materials with a band gap of 3.39 eV and 2.22 eV, respectively. Pbca-XN (X = C, Si, Ge) exhibits varying degrees of mechanical anisotropic properties with respect to the Poisson’s ratio, bulk modulus, shear modulus, Young’s modulus, and universal anisotropic index. The (001) plane and (010) plane of Pbca-CN/SiN/GeN both exhibit greater elastic anisotropy in the bulk modulus and Young’s modulus than the (100) plane. PMID:28786960

  8. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon; Alkhalifah, Tariq Ali

    2016-01-01

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  9. 3D elastic-orthorhombic anisotropic full-waveform inversion: Application to field OBC data

    KAUST Repository

    Oh, Juwon

    2016-09-06

    For the purpose of extracting higher resolution information from a 3D field data set, we apply a 3D elastic orthorhombic (ORT) anisotropic full waveform inversion (FWI) to hopefully better represent the physics of the Earth. We utilize what we consider as the optimal parameterization for surface acquired seismic data over a potentially orthorhombic media. This parameterization admits the possibility of incorporating a hierarchical implementation moving from higher anisotropy symmetry to lower ones. From the analysis of the radiation pattern of this new parameterization, we focus the inversion of the 3D data on the parameters that may have imprint on the data with minimal tradeoff, and as a result we invert for the horizontal P-wave velocity model, an ε1 model, its orthorhombic deviation, and the shear wave velocity. The inverted higher resolution models provide reasonable insights of the medium.

  10. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    International Nuclear Information System (INIS)

    Namkoong, Gon; Huang, Sa; Moseley, Michael; Doolittle, W. Alan

    2009-01-01

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO 2 , by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO 2 . The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO 2 , respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 ± 0.17 and 7.8 ± 0.7 nm along the a- and b-axis of LiGaO 2 , respectively.

  11. A new technique for generating the isotropic and linearly anisotropic components of elastic and discrete inelastic transfer matrices

    International Nuclear Information System (INIS)

    Garcia, R.D.M.

    1984-01-01

    A new technique for generating the isotropic and linearly anisotropic componets of elastic and discrete inelastic transfer matrices is proposed. The technique allows certain angular integrals to be expressed in terms of functions that can be computed by recursion relations or series expansions alternatively to the use of numerical quadratures. (Author) [pt

  12. An efficient Matlab script to calculate heterogeneous anisotropically elastic wave propagation in three dimensions

    Science.gov (United States)

    Boyd, O.S.

    2006-01-01

    We have created a second-order finite-difference solution to the anisotropic elastic wave equation in three dimensions and implemented the solution as an efficient Matlab script. This program allows the user to generate synthetic seismograms for three-dimensional anisotropic earth structure. The code was written for teleseismic wave propagation in the 1-0.1 Hz frequency range but is of general utility and can be used at all scales of space and time. This program was created to help distinguish among various types of lithospheric structure given the uneven distribution of sources and receivers commonly utilized in passive source seismology. Several successful implementations have resulted in a better appreciation for subduction zone structure, the fate of a transform fault with depth, lithospheric delamination, and the effects of wavefield focusing and defocusing on attenuation. Companion scripts are provided which help the user prepare input to the finite-difference solution. Boundary conditions including specification of the initial wavefield, absorption and two types of reflection are available. ?? 2005 Elsevier Ltd. All rights reserved.

  13. Elastic-Plastic Constitutive Equation of WC-Co Cemented Carbides with Anisotropic Damage

    International Nuclear Information System (INIS)

    Hayakawa, Kunio; Nakamura, Tamotsu; Tanaka, Shigekazu

    2007-01-01

    Elastic-plastic constitutive equation of WC-Co cemented carbides with anisotropic damage is proposed to predict a precise service life of cold forging tools. A 2nd rank symmetric tensor damage tensor is introduced in order to express the stress unilaterality; a salient difference in uniaxial behavior between tension and compression. The conventional framework of irreversible thermodynamics is used to derive the constitutive equation. The Gibbs potential is formulated as a function of stress, damage tensor, isotropic hardening variable and kinematic hardening variable. The elastic-damage constitutive equation, conjugate forces of damage, isotropic hardening and kinematic hardening variable is derived from the potential. For the kinematic hardening variable, the superposition of three kinematic hardening laws is employed in order to improve the cyclic behavior of the material. For the evolution equation of the damage tensor, the damage is assumed to progress by fracture of the Co matrix - WC particle interface and by the mechanism of fatigue, i.e. the accumulation of microscopic plastic strain in matrix and particles. By using the constitutive equations, calculation of uniaxial tensile and compressive test is performed and the results are compared with the experimental ones in the literature. Furthermore, finite element analysis on cold forward extrusion was carried out, in which the proposed constitutive equation was employed as die insert material

  14. Elastic properties of some transition metal arsenides

    Science.gov (United States)

    Nayak, Vikas; Verma, U. P.; Bisht, P. S.

    2018-05-01

    The elastic properties of transition metal arsenides (TMAs) have been studied by employing Wien2K package based on density functional theory in the zinc blende (ZB) and rock salt (RS) phase treating valance electron scalar relativistically. Further, we have also treated them non-relativistically to find out the relativistic effect. We have calculated the elastic properties by computing the volume conservative stress tensor for small strains, using the method developed by Charpin. The obtained results are discussed in paper. From the obtained results, it is clear that the values of C11 > C12 and C44 for all the compounds. The values of shear moduli of these compounds are also calculated. The internal parameter for these compounds shows that ZB structures of these compounds have high resistance against bond order. We find that the estimated elastic constants are in good agreement with the available data.

  15. A thin two-phase foils deformed by an interfacial dislocation in anisotropic elasticity

    Directory of Open Access Journals (Sweden)

    Madani, Salah

    2005-04-01

    Full Text Available The purpose of this work is the numerical resolution, in the case of anisotropic elasticity, of the problem of a dislocation parallel and near to the two free surfaces of a thin bicrystal. This case is obtained while making the period of a network of misfit dislocations much greater than the thickness of the two foils. As a result, in the vicinity of the dislocation, the limiting bondary conditions will be close to that of Volterra translation dislocation. The elastic fields of displacement and stress are calculated for various orientations of the burgers vector. Before this calculation, we tested the precision of the results of the program by comparing the interfacial relative displacement obtained from this one to the results of the analytical expression describing this same displacement. The thin bicristal Al/Al2Cu, that made the object of several investigations, is treated like example. The results obtained are compared to those obtained in isotropic elasticity.

    Este trabajo aborda la resolución numérica en anisotropía elástica, del problema de una dislocación paralela cercana a las superficies libres de un bi-cristal delgado. Este problema se genera cuando el periodo de la red de dislocaciones desplazadas es mucho mayor que el espesor de la bi-lámina. Como resultados, en la vecindad de la dislocación, las condiciones de contorno estarán cercanas a la dislocación de traslación de Volterra. Los campos elásticos de desplazamiento y las tensiones se calcularon para distintas orientaciones del vector de burgers. Como paso previo a los cálculos, se comprobó la precisión de los resultados del programa comparando le desplazamiento relativo interracial obtenido con los resultados de la expresión analítica que describen dicho desplazamiento. Se emplearon como ejemplo bi-cristales de Al/Al2Cu, debido a su empleo en varias investigaciones. Los resultados fueron comparados con los obtenidos en elasticidad isótropa.

  16. Ab initio elastic properties and tensile strength of crystalline hydroxyapatite.

    Science.gov (United States)

    Ching, W Y; Rulis, Paul; Misra, A

    2009-10-01

    We report elastic constant calculation and a "theoretical" tensile experiment on stoichiometric hydroxyapatite (HAP) crystal using an ab initio technique. These results compare favorably with a variety of measured data. Theoretical tensile experiments are performed on the orthorhombic cell of HAP for both uniaxial and biaxial loading. The results show considerable anisotropy in the stress-strain behavior. It is shown that the failure behavior of the perfect HAP crystal is brittle for tension along the z-axis with a maximum stress of 9.6 GPa at 10% strain. Biaxial failure envelopes from six "theoretical" loading tests show a highly anisotropic pattern. Structural analysis of the crystal under various stages of tensile strain reveals that the deformation behavior manifests itself mainly in the rotation of the PO(4) tetrahedron with concomitant movements of both the columnar and axial Ca ions. These results are discussed in the context of mechanical properties of bioceramic composites relevant to mineralized tissues.

  17. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing; Alkhalifah, Tariq Ali; Wu, Zedong; Zou, Peng; Wang, Chenlong

    2016-01-01

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  18. Simulating propagation of decoupled elastic waves using low-rank approximate mixed-domain integral operators for anisotropic media

    KAUST Repository

    Cheng, Jiubing

    2016-03-15

    In elastic imaging, the extrapolated vector fields are decoupled into pure wave modes, such that the imaging condition produces interpretable images. Conventionally, mode decoupling in anisotropic media is costly because the operators involved are dependent on the velocity, and thus they are not stationary. We have developed an efficient pseudospectral approach to directly extrapolate the decoupled elastic waves using low-rank approximate mixed-domain integral operators on the basis of the elastic displacement wave equation. We have applied k-space adjustment to the pseudospectral solution to allow for a relatively large extrapolation time step. The low-rank approximation was, thus, applied to the spectral operators that simultaneously extrapolate and decompose the elastic wavefields. Synthetic examples on transversely isotropic and orthorhombic models showed that our approach has the potential to efficiently and accurately simulate the propagations of the decoupled quasi-P and quasi-S modes as well as the total wavefields for elastic wave modeling, imaging, and inversion.

  19. A micromechanical constitutive model for anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals

    Science.gov (United States)

    Yu, Chao; Kang, Guozheng; Kan, Qianhua

    2015-09-01

    Based on the experimental observations on the anisotropic cyclic deformation of super-elastic NiTi shape memory alloy single crystals done by Gall and Maier (2002), a crystal plasticity based micromechanical constitutive model is constructed to describe such anisotropic cyclic deformation. To model the internal stress caused by the unmatched inelastic deformation between the austenite and martensite phases on the plastic deformation of austenite phase, 24 induced martensite variants are assumed to be ellipsoidal inclusions with anisotropic elasticity and embedded in the austenite matrix. The homogeneous stress fields in the austenite matrix and each induced martensite variant are obtained by using the Mori-Tanaka homogenization method. Two different inelastic mechanisms, i.e., martensite transformation and transformation-induced plasticity, and their interactions are considered in the proposed model. Following the assumption of instantaneous domain growth (Cherkaoui et al., 1998), the Helmholtz free energy of a representative volume element of a NiTi shape memory single crystal is established and the thermodynamic driving forces of the internal variables are obtained from the dissipative inequalities. The capability of the proposed model to describe the anisotropic cyclic deformation of super-elastic NiTi single crystals is first verified by comparing the predicted results with the experimental ones. It is concluded that the proposed model can capture the main quantitative features observed in the experiments. And then, the proposed model is further used to predict the uniaxial and multiaxial transformation ratchetting of a NiTi single crystal.

  20. Tuning and switching the hypersonic phononic properties of elastic impedance contrast nanocomposites.

    Science.gov (United States)

    Sato, Akihiro; Pennec, Yan; Shingne, Nitin; Thurn-Albrecht, Thomas; Knoll, Wolfgang; Steinhart, Martin; Djafari-Rouhani, Bahram; Fytas, George

    2010-06-22

    Anodic aluminum oxide (AAO) containing arrays of aligned cylindrical nanopores infiltrated with polymers is a well-defined model system for the study of hypersound propagation in polymer nanocomposites. Hypersonic phononic properties of AAO/polymer nanocomposites such as phonon localization and anisotropic sound propagation can be tailored by adjusting elastic contrast and density contrast between the components. Changes in density and elastic properties of the component located in the nanopores induced by phase transitions allow reversible modification of the phononic band structure and mode switching. As example in case, the crystallization and melting of poly(vinylidene difluoride) inside AAO was investigated.

  1. A Model of Anisotropic Property of Seepage and Stress for Jointed Rock Mass

    Directory of Open Access Journals (Sweden)

    Pei-tao Wang

    2013-01-01

    Full Text Available Joints often have important effects on seepage and elastic properties of jointed rock mass and therefore on the rock slope stability. In the present paper, a model for discrete jointed network is established using contact-free measurement technique and geometrical statistic method. A coupled mathematical model for characterizing anisotropic permeability tensor and stress tensor was presented and finally introduced to a finite element model. A case study of roadway stability at the Heishan Metal Mine in Hebei Province, China, was performed to investigate the influence of joints orientation on the anisotropic properties of seepage and elasticity of the surrounding rock mass around roadways in underground mining. In this work, the influence of the principal direction of the mechanical properties of the rock mass on associated stress field, seepage field, and damage zone of the surrounding rock mass was numerically studied. The numerical simulations indicate that flow velocity, water pressure, and stress field are greatly dependent on the principal direction of joint planes. It is found that the principal direction of joints is the most important factor controlling the failure mode of the surrounding rock mass around roadways.

  2. Timoshenko beam element with anisotropic cross-sectional properties

    DEFF Research Database (Denmark)

    Stäblein, Alexander; Hansen, Morten Hartvig

    2016-01-01

    Beam models are used for the aeroelastic time and frequency domain analysis of wind turbines due to their computational efficiency. Many current aeroelastic tools for the analysis of wind turbines rely on Timoshenko beam elements with classical crosssectional properties (EA, EI, etc.). Those cross......-sectional properties do not reflect the various couplings arising from the anisotropic behaviour of the blade material. A twonoded, three-dimensional Timoshenko beam element was therefore extended to allow for anisotropic cross-sectional properties. For an uncoupled beam, the resulting shape functions are identical...... to the original formulation. The new element was implemented into a co-rotational formulation and validated against natural frequencies and several static load cases of previous works....

  3. Generalized Multiscale Finite-Element Method (GMsFEM) for elastic wave propagation in heterogeneous, anisotropic media

    KAUST Repository

    Gao, Kai; Fu, Shubin; Gibson, Richard L.; Chung, Eric T.; Efendiev, Yalchin R.

    2015-01-01

    , anisotropic media, where we construct basis functions from multiple local problems for both boundaries and the interior of a coarse node support or coarse element. The application of multiscale basis functions can capture the fine scale medium property

  4. Complete volumetric decomposition of individual trabecular plates and rods and its morphological correlations with anisotropic elastic moduli in human trabecular bone.

    Science.gov (United States)

    Liu, X Sherry; Sajda, Paul; Saha, Punam K; Wehrli, Felix W; Bevill, Grant; Keaveny, Tony M; Guo, X Edward

    2008-02-01

    Trabecular plates and rods are important microarchitectural features in determining mechanical properties of trabecular bone. A complete volumetric decomposition of individual trabecular plates and rods was used to assess the orientation and morphology of 71 human trabecular bone samples. The ITS-based morphological analyses better characterize microarchitecture and help predict anisotropic mechanical properties of trabecular bone. Standard morphological analyses of trabecular architecture lack explicit segmentations of individual trabecular plates and rods. In this study, a complete volumetric decomposition technique was developed to segment trabecular bone microstructure into individual plates and rods. Contributions of trabecular type-associated morphological parameters to the anisotropic elastic moduli of trabecular bone were studied. Seventy-one human trabecular bone samples from the femoral neck (FN), tibia, and vertebral body (VB) were imaged using muCT or serial milling. Complete volumetric decomposition was applied to segment trabecular bone microstructure into individual plates and rods. The orientation of each individual trabecula was determined, and the axial bone volume fractions (aBV/TV), axially aligned bone volume fraction along each orthotropic axis, were correlated with the elastic moduli. The microstructural type-associated morphological parameters were derived and compared with standard morphological parameters. Their contributions to the anisotropic elastic moduli, calculated by finite element analysis (FEA), were evaluated and compared. The distribution of trabecular orientation suggested that longitudinal plates and transverse rods dominate at all three anatomic sites. aBV/TV along each axis, in general, showed a better correlation with the axial elastic modulus (r(2) = 0.95 approximately 0.99) compared with BV/TV (r(2) = 0.93 approximately 0.94). The plate-associated morphological parameters generally showed higher correlations with the

  5. Membrane elastic properties and cell function.

    Directory of Open Access Journals (Sweden)

    Bruno Pontes

    Full Text Available Recent studies indicate that the cell membrane, interacting with its attached cytoskeleton, is an important regulator of cell function, exerting and responding to forces. We investigate this relationship by looking for connections between cell membrane elastic properties, especially surface tension and bending modulus, and cell function. Those properties are measured by pulling tethers from the cell membrane with optical tweezers. Their values are determined for all major cell types of the central nervous system, as well as for macrophage. Astrocytes and glioblastoma cells, which are considerably more dynamic than neurons, have substantially larger surface tensions. Resting microglia, which continually scan their environment through motility and protrusions, have the highest elastic constants, with values similar to those for resting macrophage. For both microglia and macrophage, we find a sharp softening of bending modulus between their resting and activated forms, which is very advantageous for their acquisition of phagocytic functions upon activation. We also determine the elastic constants of pure cell membrane, with no attached cytoskeleton. For all cell types, the presence of F-actin within tethers, contrary to conventional wisdom, is confirmed. Our findings suggest the existence of a close connection between membrane elastic constants and cell function.

  6. Identification of elastic properties of composite plate

    International Nuclear Information System (INIS)

    Kovalovs, A; Rucevskis, S

    2011-01-01

    Composite laminates are used extensively in the aerospace industry, especially for the fabrication of high-performance structures. The determination of stiffness parameters for complex materials, such as fibre-reinforced composites, is much more complicated than for isotropic materials. A conventional way is testing the coupon specimens, which are manufactured by technology similar to that used for the real, large structures. When such a method is used, the question arises of whether the material properties obtained from the coupon tests are the same as those in the large structure. Therefore, the determination of actual material properties for composite laminates using non-destructive evaluation techniques has been widely investigated. A number of various non-destructive evaluation techniques have been proposed for determining the material properties of composite laminates. In the present study, attention is focused on the identification of the elastic properties of laminated plate using vibration test data. The problem associated with vibration testing is converting the measured modal frequencies to elastic constants. A standard method for solving this problem is the use of a numerical-experimental model and optimization techniques. The identification functional represents the gap between the numerical model response and the experimental one. This gap should be minimized, taking into account the side constraints on the design variables (elastic constants). The minimization problem is solved by using non-linear mathematical programming techniques and sensitivity analysis. The results obtained were verified by comparing the experimentally measured eigenfrequencies with the numerical ones obtained by FEM at the point of optima

  7. In-plane anisotropic strain of elastically and plastically deformed III-nitrides on lithium gallate

    Energy Technology Data Exchange (ETDEWEB)

    Namkoong, Gon, E-mail: gnamkoon@odu.ed [Old Dominion University, Electrical and Computer Engineering, Applied Research Center, 12050 Jefferson Avenue, Newport News, VA 23606 (United States); Huang, Sa; Moseley, Michael; Doolittle, W. Alan [Georgia Institute of Technology, School of Electrical and Computer Engineering, 777 Atlantic Dr., Atlanta, GA 30332 (United States)

    2009-10-30

    We have investigated both elastically and plastically deformed GaN films on lithium gallate, LiGaO{sub 2}, by molecular beam epitaxy. The in-plane lattice parameters were determined from high resolution X-ray diffraction and indicated two different groups of in-plane lattice parameters, influenced by the a- and b-axis of LiGaO{sub 2}. The measured in-plane lattice parameters indicate that there exist both compressive and tensile strains of in-plane GaN along the a- and b-axis of LiGaO{sub 2}, respectively. This anisotropic strain in GaN films forms a slight distortion of the basal-plane hexagonal structure of GaN films, leading to a different critical thickness of 4.0 {+-} 0.17 and 7.8 {+-} 0.7 nm along the a- and b-axis of LiGaO{sub 2}, respectively.

  8. Prediction study of structural, elastic and electronic properties of FeMP (M = Ti, Zr, Hf) compounds

    Science.gov (United States)

    Tanto, A.; Chihi, T.; Ghebouli, M. A.; Reffas, M.; Fatmi, M.; Ghebouli, B.

    2018-06-01

    First principles calculations are applied in the study of FeMP (M = Ti, Zr, Hf) compounds. We investigate the structural, elastic, mechanical and electronic properties by combining first-principles calculations with the CASTEP approach. For ideal polycrystalline FeMP (M = Ti, Zr, Hf) the shear modulus, Young's modulus, Poisson's ratio, elastic anisotropy indexes, Pugh's criterion, elastic wave velocities and Debye temperature are also calculated from the single crystal elastic constants. The shear anisotropic factors and anisotropy are obtained from the single crystal elastic constants. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal.

  9. Elastic Properties and Stability of Physisorbed Graphene

    Directory of Open Access Journals (Sweden)

    Philippe Lambin

    2014-05-01

    Full Text Available Graphene is an ultimate membrane that mixes both flexibility and mechanical strength, together with many other remarkable properties. A good knowledge of the elastic properties of graphene is prerequisite to any practical application of it in nanoscopic devices. Although this two-dimensional material is only one atom thick, continuous-medium elasticity can be applied as long as the deformations vary slowly on the atomic scale and provided suitable parameters are used. The present paper aims to be a critical review on this topic that does not assume a specific pre-knowledge of graphene physics. The basis for the paper is the classical Kirchhoff-Love plate theory. It demands a few parameters that can be addressed from many points of view and fitted to independent experimental data. The parameters can also be estimated by electronic structure calculations. Although coming from diverse backgrounds, most of the available data provide a rather coherent picture that gives a good degree of confidence in the classical description of graphene elasticity. The theory can than be used to estimate, e.g., the buckling limit of graphene bound to a substrate. It can also predict the size above which a scrolled graphene sheet will never spontaneously unroll in free space.

  10. CONCERNING THE ELASTIC ORTHOTROPIC MODEL APPLIED TO WOOD ELASTIC PROPERTIES

    OpenAIRE

    Tadeu Mascia,Nilson

    2003-01-01

    Among the construction materials, wood reveals an orthotropic pattern, because of unique characteristics in its internal structure with three axes of wood biological directions (longitudinal, tangential and radial). elastic symmetry: longitudinal, tangential and radial, reveals an orthotropic pattern. The effect of grain angle orientation onin the elastic modulus constitutes the fundamental cause forof wood anisotropy. It is responsible for the greatest changes in the values of the constituti...

  11. Directional radiative properties of anisotropic rough silicon and gold surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Lee, H.J.; Chen, Y.B.; Zhang, Z.M. [George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332 (United States)

    2006-11-15

    Recent studies have shown that the topography of some chemically etched microrough silicon surfaces is non-Gaussian and may be strongly anisotropic. However, the bidirectional reflectance distribution function (BRDF) of anisotropic surfaces has not been fully understood. The present study uses the Monte Carlo method to investigate the out-of-plane BRDF, multiple scattering, and the change of the polarization state upon reflection. Two ray-tracing algorithms are developed that incorporate the surface topography or slope distribution of the samples obtained by the use of an atomic force microscope. The predicted BRDFs for silicon surfaces with or without a gold coating are in reasonable agreement with the results measured using a laser scatterometer at a wavelength of 635nm. The employment of surface topographic data is indispensable to the BRDF modeling of anisotropic surfaces. While first-order scattering makes the dominant contribution to reflections from the studied surfaces, it is critical to consider the polarization state change in order to correctly predict the out-of-plane BRDF. The versatile Monte Carlo modeling tools developed through the present study help gain a better understanding of the directional radiative properties of microrough surfaces and, furthermore, will have an impact on thermal metrology in the semiconductor industry. (author)

  12. Anisotropic mechanical properties and Stone-Wales defects in graphene monolayer: A theoretical study

    International Nuclear Information System (INIS)

    Fan, B.B.; Yang, X.B.; Zhang, R.

    2010-01-01

    We investigate the mechanical properties of graphene monolayer via the density functional theoretical (DFT) method. We find that the strain energies are anisotropic for the graphene under large strain. We attribute the anisotropic feature to the anisotropic sp 2 hybridization in the hexagonal lattice. We further identify that the formation energies of Stone-Wales (SW) defects in the graphene monolayer are determined by the defect concentration and also the direction of applied tensile strain, correlating with the anisotropic feature.

  13. Investigation on the elastic properties of Gd-Sc-Al garnet by the Mandelstam-Brillouin light scattering method

    International Nuclear Information System (INIS)

    Zharikov, E.V.; Zagumennyj, A.I.; Kitaeva, V.F.; Lutts, G.B.; Terskov, D.B.

    1991-01-01

    The Gd-Sc-Al garnet (GSAG) crystals grown from the melt with composition Gd 2.88 Sc 1.89 Al 3.23 O 12 , were investigated. The GSAG doped with chromium was also studied. The Mandelstam-Brillouin (MB) light scattering in the GSAG crystals was observed. The garnet elastic components were determined using the data on the MB component shifts, the products of the elastic constants by molar volume were calculated as well. The GSAG is elastically anisotropic. The doping addition introduction do not cause noticeable change in the elastic properties. The obtained values of elastic constants and their combinations for GSAG were compared with the data for aluminium and gallium garnets. The comparison has shown that the values of elastic constants for GSAG is closer to those for Gd-Sc-Ga garnet than to the corresponding values for the Y-Al one

  14. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.; Tabor, M.

    2013-01-01

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells

  15. A numerical homogenization method for heterogeneous, anisotropic elastic media based on multiscale theory

    KAUST Repository

    Gao, Kai; Chung, Eric T.; Gibson, Richard L.; Fu, Shubin; Efendiev, Yalchin R.

    2015-01-01

    The development of reliable methods for upscaling fine-scale models of elastic media has long been an important topic for rock physics and applied seismology. Several effective medium theories have been developed to provide elastic parameters

  16. High field dielectric properties of anisotropic polymer-ceramic composites

    International Nuclear Information System (INIS)

    Tomer, V.; Randall, C. A.

    2008-01-01

    Using dielectrophoretic assembly, we create anisotropic composites of BaTiO 3 particles in a silicone elastomer thermoset polymer. We study a variety of electrical properties in these composites, i.e., permittivity, dielectric breakdown, and energy density as function of ceramic volume fraction and connectivity. The recoverable energy density of these electric-field-structured composites is found to be highly dependent on the anisotropy present in the system. Our results indicate that x-y-aligned composites exhibit higher breakdown strengths along with large recoverable energy densities when compared to 0-3 composites. This demonstrates that engineered anisotropy can be employed to control dielectric breakdown strengths and nonlinear conduction at high fields in heterogeneous systems. Consequently, manipulation of anisotropy in high-field dielectric properties can be exploited for the development of high energy density polymer-ceramic systems

  17. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng

    2017-05-10

    Staggering grid is a very effective way to reduce the Nyquist errors and to suppress the non-causal ringing artefacts in the pseudo-spectral solution of first-order elastic wave equations. However, the straightforward use of a staggered-grid pseudo-spectral method is problematic for simulating wave propagation when the anisotropy level is greater than orthorhombic or when the anisotropic symmetries are not aligned with the computational grids. Inspired by the idea of rotated staggered-grid finite-difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using the Lebedev grids, the rotated staggered-grid-based pseudo-spectral method possesses the best balance between the mitigation of artefacts and efficiency. A 2D example on a transversely isotropic model with tilted symmetry axis verifies its effectiveness to suppress the ringing artefacts. Two 3D examples of increasing anisotropy levels demonstrate that the rotated staggered-grid-based pseudo-spectral method can successfully simulate complex wavefields in such anisotropic formations.

  18. Anisotropic bias dependent transport property of defective phosphorene layer

    Science.gov (United States)

    Umar Farooq, M.; Hashmi, Arqum; Hong, Jisang

    2015-01-01

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, no systematic studies on the transport properties modified due to defects have been performed. Here, we present the electronic band structure, defect formation energy and bias dependent transport property of various defective systems. We found that the defect formation energy is much less than that in graphene. The defect configuration strongly affects the electronic structure. The band gap vanishes in single vacancy layers, but the band gap reappears in divacancy layers. Interestingly, a single vacancy defect behaves like a p-type impurity for transport property. Unlike the common belief, we observe that the vacancy defect can contribute to greatly increasing the current. Along the zigzag direction, the current in the most stable single vacancy structure was significantly increased as compared with that found in the pristine layer. In addition, the current along the armchair direction was always greater than along the zigzag direction and we observed a strong anisotropic current ratio of armchair to zigzag direction. PMID:26198318

  19. Elastic properties of superconducting bulk metallic glasses

    International Nuclear Information System (INIS)

    Hempel, Marius

    2015-01-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  20. Surface elastic properties in silicon nanoparticles

    Science.gov (United States)

    Melis, Claudio; Giordano, Stefano; Colombo, Luciano

    2017-09-01

    The elastic behavior of the external surface of a solid body plays a key role in nanomechanical phenomena. While bulk elasticity enjoys the benefits of a robust theoretical understanding, many surface elasticity features remain unexplored: some of them are here addressed by blending together continuum elasticity and atomistic simulations. A suitable readdressing of the surface elasticity theory allows to write the balance equations in arbitrary curvilinear coordinates and to investigate the dependence of the surface elastic parameters on the mean and Gaussian curvatures of the surface. In particular, we predict the radial strain induced by surface effects in spherical and cylindrical silicon nanoparticles and provide evidence that the surface parameters are nearly independent of curvatures and, therefore, of the surface conformation.

  1. Boron nitride elastic and thermal properties. Irradiation effects

    International Nuclear Information System (INIS)

    Jager, Bernard.

    1977-01-01

    The anisotropy of boron nitride (BN) and especially thermal and elastic properties were studied. Specific heat and thermal conductivity between 1.2 and 300K, thermal conductivity between 4 and 350K and elastic constants C 33 and C 44 were measured. BN was irradiated with electrons at 77K and with neutrons at 27K to determine properties after irradiation [fr

  2. Physical Principles Pertaining to Ultrasonic and Mechanical Properties of Anisotropic Media and Their Application to Nondestructive Evaluation of Fiber-Reinforced Composite Materials

    Science.gov (United States)

    Handley, Scott Michael

    The central theme of this thesis is to contribute to the physics underlying the mechanical properties of highly anisotropic materials. Our hypothesis is that a fundamental understanding of the physics involved in the interaction of interrogating ultrasonic waves with anisotropic media will provide useful information applicable to quantitative ultrasonic measurement techniques employed for the determination of material properties. Fiber-reinforced plastics represent a class of advanced composite materials that exhibit substantial anisotropy. The desired characteristics of practical fiber -reinforced composites depend on average mechanical properties achieved by placing fibers at specific angles relative to the external surfaces of the finished part. We examine the physics underlying the use of ultrasound as an interrogation probe for determination of ultrasonic and mechanical properties of anisotropic materials such as fiber-reinforced composites. Fundamental constituent parameters, such as elastic stiffness coefficients (c_{rm IJ}), are experimentally determined from ultrasonic time-of-flight measurements. Mechanical moduli (Poisson's ratio, Young's and shear modulus) descriptive of the anisotropic mechanical properties of unidirectional graphite/epoxy composites are obtained from the ultrasonically determined stiffness coefficients. Three-dimensional visualizations of the anisotropic ultrasonic and mechanical properties of unidirectional graphite/epoxy composites are generated. A related goal of the research is to strengthen the connection-between practical ultrasonic nondestructive evaluation methods and the physics underlying quantitative ultrasonic measurements for the assessment of manufactured fiber-reinforced composites. Production defects such as porosity have proven to be of substantial concern in the manufacturing of composites. We investigate the applicability of ultrasonic interrogation techniques for the detection and characterization of porosity in

  3. Magnetic and magneto-elastic properties of a single crystal of TbB{sub 6}

    Energy Technology Data Exchange (ETDEWEB)

    Granovsky, S.A.; Amara, M.; Galera, R.M. [Laboratoire Louis Neel, CNRS, BP 166, Grenoble (France); Kunii, S. [Department of Physics, Faculty of Science, Tohoku University, Aramaki, Aoba-ku, Sendai (Japan)

    2001-07-23

    The magnetic and magneto-elastic properties of a single crystal of TbB{sub 6} are studied. In the ordered range metamagnetic behaviours are observed and complex phase diagrams are determined for magnetic fields along fourfold and threefold directions. In the paramagnetic phase the third-order magnetic susceptibilities and the parastriction curves show anisotropic behaviour which could be accounted for by crystalline electric field (CEF) effects. A set of CEF parameters is proposed on the basis of the analysis of the experimental magnetic and quadrupolar susceptibilities. Though non-negligible, the deduced quadrupolar couplings are weak in comparison with those previously determined in PrB{sub 6}. (author)

  4. Modelling the elastic properties of cellulose nanopaper

    DEFF Research Database (Denmark)

    Mao, Rui; Goutianos, Stergios; Tu, Wei

    2017-01-01

    The elastic modulus of cellulose nanopaper was predicted using a two-dimensional (2D) micromechanical fibrous network model. The elastic modulus predicted by the network model was 12 GPa, which is well within the range of experimental data for cellulose nanopapers. The stress state in the network...

  5. Anisotropic surface chemistry properties and adsorption behavior of silicate mineral crystals.

    Science.gov (United States)

    Xu, Longhua; Tian, Jia; Wu, Houqin; Fang, Shuai; Lu, Zhongyuan; Ma, Caifeng; Sun, Wei; Hu, Yuehua

    2018-03-07

    Anisotropic surface properties of minerals play an important role in a variety of fields. With a focus on the two most intensively investigated silicate minerals (i.e., phyllosilicate minerals and pegmatite aluminosilicate minerals), this review highlights the research on their anisotropic surface properties based on their crystal structures. Four surface features comprise the anisotropic surface chemistry of minerals: broken bonds, energy, wettability, and charge. Analysis of surface broken bond and energy anisotropy helps to explain the cleavage and growth properties of mineral crystals, and understanding surface wettability and charge anisotropy is critical to the analysis of minerals' solution behavior, such as their flotation performance and rheological properties. In a specific reaction, the anisotropic surface properties of minerals are reflected in the adsorption strengths of reagents on different mineral surfaces. Combined with the knowledge of mineral crushing and grinding, a thorough understanding of the anisotropic surface chemistry properties and the anisotropic adsorption behavior of minerals will lead to the development of effective relational models comprising their crystal structure, surface chemistry properties, and targeted reagent adsorption. Overall, such a comprehensive approach is expected to firmly establish the connection between selective cleavage of mineral crystals for desired surfaces and designing novel reagents selectively adsorbed on the mineral surfaces. As tools to characterize the anisotropic surface chemistry properties of minerals, DLVO theory, atomic force microscopy (AFM), and molecular dynamics (MD) simulations are also reviewed. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Pulse splitting in nonlinear media with anisotropic dispersion properties

    DEFF Research Database (Denmark)

    Bergé, L.; Juul Rasmussen, J.; Schmidt, M.R.

    1998-01-01

    The nonlinear self-focusing of beams in media with anisotropic (mix-signed) dispersion is investigated. Theoretical predictions employing virial-type arguments and self-similar techniques suggest that a pulse propagating in a nonlinear medium with anisotropic dispersion will not collapse...

  7. Optical properties of anisotropic 3D nanoparticles arrays

    Science.gov (United States)

    Santiago, E. Y.; Esquivel-Sirvent, R.

    2017-07-01

    The optical properties of 3D periodic arrays of spheroidal Au nanoparticles are calculated using a Bruggeman effective medium approximation. The optical response of the supra-crystal depends on the volume fraction of the nanoparticles and their aspect or size ratio (major/minor axis). All the nanoparticles have the same orientation, and this defines an anisotropic dielectric function of the crystal. As a function of the filling fraction, while keeping the size ratio fixed, the maximum in the extinction spectra along the major and minor axes does not show a significant change. However, for a fixed filling fraction, varying the aspect ratio of the particles induces a shift of several hundred of nanometers in the maximum of the extinction spectra along the major axis and almost no changes along the minor axis. Depending on the aspect ratio and the filling fraction, we show that the supra-crystal has three regimes with different values of an effective plasma frequency. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  8. Anisotropic properties of the enamel organic extracellular matrix.

    Science.gov (United States)

    do Espírito Santo, Alexandre R; Novaes, Pedro D; Line, Sérgio R P

    2006-05-01

    Enamel biosynthesis is initiated by the secretion, processing, and self-assembly of a complex mixture of proteins. This supramolecular ensemble controls the nucleation of the crystalline mineral phase. The detection of anisotropic properties by polarizing microscopy has been extensively used to detect macromolecular organizations in ordinary histological sections. The aim of this work was to study the birefringence of enamel organic matrix during the development of rat molar and incisor teeth. Incisor and molar teeth of rats were fixed in 2% paraformaldehyde/0.5% glutaraldehyde in 0.2 M phosphate-buffered saline (PBS), pH 7.2, and decalcified in 5% nitric acid/4% formaldehyde. After paraffin embedding, 5-microm-thick sections were obtained, treated with xylene, and hydrated. Form birefringence curves were obtained after measuring optical retardations in imbibing media, with different refractive indices. Our observations showed that enamel organic matrix of rat incisor and molar teeth is strongly birefringent, presenting an ordered supramolecular structure. The birefringence starts during the early secretion phase and disappears at the maturation phase. The analysis of enamel organic matrix birefringence may be used to detect the effects of genetic and environmental factors on the supramolecular orientation of enamel matrix and their effects on the structure of mature enamel.

  9. Micro-CT based finite element models for elastic properties of glass-ceramic scaffolds.

    Science.gov (United States)

    Tagliabue, Stefano; Rossi, Erica; Baino, Francesco; Vitale-Brovarone, Chiara; Gastaldi, Dario; Vena, Pasquale

    2017-01-01

    In this study, the mechanical properties of porous glass-ceramic scaffolds are investigated by means of three-dimensional finite element models based on micro-computed tomography (micro-CT) scan data. In particular, the quantitative relationship between the morpho-architectural features of the obtained scaffolds, such as macroscopic porosity and strut thickness, and elastic properties, is sought. The macroscopic elastic properties of the scaffolds have been obtained through numerical homogenization approaches using the mechanical characteristics of the solid walls of the scaffolds (assessed through nanoindentation) as input parameters for the numerical simulations. Anisotropic mechanical properties of the produced scaffolds have also been investigated by defining a suitable anisotropy index. A comparison with morphological data obtained through the micro-CT scans is also presented. The proposed study shows that the produced glass-ceramic scaffolds exhibited a macroscopic porosity ranging between 29% and 97% which corresponds to an average stiffness ranging between 42.4GPa and 36MPa. A quantitative estimation of the isotropy of the macroscopic elastic properties has been performed showing that the samples with higher solid fractions were those closest to an isotropic material. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Rotation, inversion and perversion in anisotropic elastic cylindrical tubes and membranes

    KAUST Repository

    Goriely, A.

    2013-03-06

    Cylindrical tubes and membranes are universal structural elements found in biology and engineering over a wide range of scales.Working in the framework of nonlinear elasticity, we consider the possible deformations of elastic cylindrical shells reinforced by one or two families of fibres. We consider both small and large deformations and the reduction from thick cylindrical shells (tubes) to thin shells (cylindrical membranes). In particular, a number of universal parameter regimes can be identified where the response behaviour of the cylinder is qualitatively different. This include the possibility of inversion of twist or axial strain when the cylinder is subject to internal pressure. Copyright © The Royal Society 2013.

  11. Probing Anisotropic Surface Properties of Molybdenite by Direct Force Measurements.

    Science.gov (United States)

    Lu, Zhenzhen; Liu, Qingxia; Xu, Zhenghe; Zeng, Hongbo

    2015-10-27

    Probing anisotropic surface properties of layer-type mineral is fundamentally important in understanding its surface charge and wettability for a variety of applications. In this study, the surface properties of the face and the edge surfaces of natural molybdenite (MoS2) were investigated by direct surface force measurements using atomic force microscope (AFM). The interaction forces between the AFM tip (Si3N4) and face or edge surface of molybdenite were measured in 10 mM NaCl solutions at various pHs. The force profiles were well-fitted with classical DLVO (Derjaguin-Landau-Verwey-Overbeek) theory to determine the surface potentials of the face and the edge surfaces of molybdenite. The surface potentials of both the face and edge surfaces become more negative with increasing pH. At neutral and alkaline conditions, the edge surface exhibits more negative surface potential than the face surface, which is possibly due to molybdate and hydromolybdate ions on the edge surface. The point of zero charge (PZC) of the edge surface was determined around pH 3 while PZC of the face surface was not observed in the range of pH 3-11. The interaction forces between octadecyltrichlorosilane-treated AFM tip (OTS-tip) and face or edge surface of molybdenite were also measured at various pHs to study the wettability of molybdenite surfaces. An attractive force between the OTS-tip and the face surface was detected. The force profiles were well-fitted by considering DLVO forces and additional hydrophobic force. Our results suggest the hydrophobic feature of the face surface of molybdenite. In contrast, no attractive force between the OTS-tip and the edge surface was detected. This is the first study in directly measuring surface charge and wettability of the pristine face and edge surfaces of molybdenite through surface force measurements.

  12. Elastic properties of fly ash-stabilized mixes

    Directory of Open Access Journals (Sweden)

    Sanja Dimter

    2015-12-01

    Full Text Available Stabilized mixes are used in the construction of bearing layers in asphalt and concrete pavement structures. Two nondestructive methods: resonant frequency method and ultrasonic pulse velocity method, were used for estimation of elastic properties of fly ash–stabilized mixes. Stabilized mixes were designed containing sand from the river Drava and binder composed of different share of cement and fly ash. The aim of the research was to analyze the relationship between the dynamic modulus of elasticity determined by different nondestructive methods. Data showed that average value of elasticity modulus obtained by the ultrasound velocity method is lower than the values of elasticity modulus obtained by resonant frequency method. For further analysis and enhanced discussion of elastic properties of fly ash stabilized mixes, see Dimter et al. [1].

  13. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.; Kö nig, D.; Santamarina, Carlos; Schanz, T.

    2017-01-01

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr

  14. An in situ estimation of anisotropic elastic moduli for a submarine shale

    Science.gov (United States)

    Miller, Douglas E.; Leaney, Scott; Borland, William H.

    1994-11-01

    Direct arrival times and slownesses from wide-aperture walkaway vertical seismic profile data acquired in a layered anisotropic medium can be processed to give direct estimate of the phase slowness surface associated with the medium at the depth of the receivers. This slowness surface can, in turn, be fit by an estimated transversely isotropic medium with a vertical symmetry axis (a 'TIV' medium). While the method requires that the medium between the receivers and the surface be horizontally stratified, no further measurement or knowledge of that medium is required. When applied to data acquired in a compacting shale sequence (here termed the 'Petronas shale') encountered by a well in the South China Sea, the method yields an estimated TIV medium that fits the data extremely well over 180 deg of propagation angles sampled by 201 source positions. The medium is strongly anisotropic. The anisotropy is significantly anelliptic and implies that the quasi-shear mode should be triplicated for off-axis propagation. Estimated density-normalized moduli (in units of sq km/sq s) for the Petronas shale are A(sub 11) = 6.99 +/- 0.21, A(sub 33) = 5.53 +/- 0.17, A(sub 55) = 0.91 +/- 0.05, and A(sub 13) = 2.64 +/- 0.26. Densities in the logged zone just below the survey lie in the range between 2200 and 2400 kg/cu m with an average value close to 2300 kg/cu m.

  15. Anisotropic nanomaterials: Synthesis, optical and magnetic properties, and applications

    Science.gov (United States)

    Banholzer, Matthew John

    As nanoscience and nanotechnology mature, anisotropic metal nanostructures are emerging in a variety of contexts as valuable class of nanostructures due to their distinctive attributes. With unique properties ranging from optical to magnetic and beyond, these structures are useful in many new applications. Chapter two discusses the nanodisk code: a linear array of metal disk pairs that serve as surface-enhanced Raman scattering substrates. These multiplexing structures employ a binary encoding scheme, perform better than previous nanowires designs (in the context of SERS) and are useful for both convert encoding and tagging of substrates (based both on spatial disk position and spectroscopic response) as well as biomolecule detection (e.g. DNA). Chapter three describes the development of improved, silver-based nanodisk code structures. Work was undertaken to generate structures with high yield and reproducibility and to reoptimize the geometry of each disk pair for maximum Raman enhancement. The improved silver structures exhibit greater enhancement than Au structures (leading to lower DNA detection limits), convey additional flexibility, and enable trinary encoding schemes where far more unique structures can be created. Chapter four considers the effect of roughness on the plasmonic properties of nanorod structures and introduces a novel method to smooth the end-surfaces of nanorods structures. The smoothing technique is based upon a two-step process relying upon diffusion control during nanowires growth and selective oxidation after each step of synthesis is complete. Empirical and theoretical work show that smoothed nanostructures have superior and controllable optical properties. Chapter five concerns silica-encapsulated gold nanoprisms. This encapsulation allows these highly sensitive prisms to remain stable and protected in solution, enabling their use as class-leading sensors. Theoretical study complements the empirical work, exploring the effect of

  16. Elastic properties of gamma-Pu by resonant ultrasound spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Migliori, Albert [Los Alamos National Laboratory; Betts, J [Los Alamos National Laboratory; Trugman, A [Los Alamos National Laboratory; Mielke, C H [Los Alamos National Laboratory; Mitchell, J N [Los Alamos National Laboratory; Ramos, M [Los Alamos National Laboratory; Stroe, I [WORXESTER, MA

    2009-01-01

    Despite intense experimental and theoretical work on Pu, there is still little understanding of the strange properties of this metal. We used resonant ultrasound spectroscopy method to investigate the elastic properties of pure polycrystalline Pu at high temperatures. Shear and longitudinal elastic moduli of the {gamma}-phase of Pu were determined simultaneously and the bulk modulus was computed from them. A smooth linear and large decrease of all elastic moduli with increasing temperature was observed. We calculated the Poisson ratio and found that it increases from 0.242 at 519K to 0.252 at 571K.

  17. Elastic Property Simulation of Nano-particle Reinforced Composites

    Directory of Open Access Journals (Sweden)

    He Jiawei

    2016-01-01

    Full Text Available A series of numerical micro-mechanical models for two kinds of particle (cylindrical and discal particle reinforced composites are developed to investigate the effect of microstructural parameters on the elastic properties of composites. The effects of both the degree of particle clustering and particle’s shape on the elastic mechanical properties of composites are investigated. In addition, single particle unit cell approximation is good enough for the analysis of the effect of averaged parameters when only linear elastic response is considered without considering the particle clustering in particle-reinforced composites.

  18. Structural, elastic, optoelectronic and magnetic properties of ...

    Indian Academy of Sciences (India)

    2017-09-22

    Sep 22, 2017 ... 1Laboratoire de Physique Quantique de la Matière et de la ... 5Department of Physics and Astronomy, College of Science, King Saud ... elastic moduli, CdHo2S4 is mechanically stable with a ductile nature and a noticeable.

  19. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    Cho, Seog Je; Jeong, Hyun Jo

    1999-01-01

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  20. Correlations between elastic moduli and properties in bulk metallic glasses

    International Nuclear Information System (INIS)

    Wang Weihua

    2006-01-01

    A survey of the elastic, mechanical, fragility, and thermodynamic properties of bulk metallic glasses (BMGs) and glass-forming liquids is presented. It is found that the elastic moduli of BMGs have correlations with the glass transition temperature, melting temperature, mechanical properties, and even liquid fragility. On the other hand, the elastic constants of available BMGs show a rough correlation with a weighted average of the elastic constants for the constituent elements. Although the theoretical and physical reasons for the correlations are to be clarified, these correlations could assist in understanding the long-standing issues of glass formation and the nature of glass and simulate the work of theorists. Based on the correlation, we show that the elastic moduli can assist in selecting alloying components for controlling the elastic properties and glass-forming ability of the BMGs and thus can guide BMG design. As case study, we report the formation of the families of rare-earth-based BMGs with controllable properties

  1. Anisotropic failure and size effects in periodic honeycomb materials: A gradient-elasticity approach

    Science.gov (United States)

    Réthoré, Julien; Dang, Thi Bach Tuyet; Kaltenbrunner, Christine

    2017-02-01

    This paper proposes a fracture mechanics model for the analysis of crack propagation in periodic honeycomb materials. The model is based on gradient-elasticity which enables us to account for the effect of the material structure at the macroscopic scale. For simulating the propagation of cracks along an arbitrary path, the numerical implementation is elaborated based on an extended finite element method with the required level of continuity. The two main features captured by the model are directionality and size effect. The numerical predictions are consistent with experimental results on honeycomb materials but also with results reported in the literature for microstructurally short cracks in metals.

  2. Crack path predictions and experiments in plane structures considering anisotropic properties and material interfaces

    Directory of Open Access Journals (Sweden)

    P.O. Judt

    2015-10-01

    Full Text Available In many engineering applications special requirements are directed to a material's fracture behavior and the prediction of crack paths. Especially if the material exhibits anisotropic elastic properties or fracture toughnesses, e.g. in textured or composite materials, the simulation of crack paths is challenging. Here, the application of path independent interaction integrals (I-integrals, J-, L- and M-integrals is beneficial for an accurate crack tip loading analysis. Numerical tools for the calculation of loading quantities using these path-invariant integrals are implemented into the commercial finite element (FE-code ABAQUS. Global approaches of the integrals are convenient considering crack tips approaching other crack faces, internal boundaries or material interfaces. Curved crack faces require special treatment with respect to integration contours. Numerical crack paths are predicted based on FE calculations of the boundary value problem in connection with an intelligent adaptive re-meshing algorithm. Considering fracture toughness anisotropy and accounting for inelastic effects due to small plastic zones in the crack tip region, the numerically predicted crack paths of different types of specimens with material interfaces and internal boundaries are compared to subcritically grown paths obtained from experiments.

  3. [Aortic elastic properties and its clinical significance in intracranial aneurysms].

    Science.gov (United States)

    Pu, Zhao-xia; You, Xiang-dong; Weng, Wen-chao; Wang, Jian-an; Shi, Jian

    2011-09-01

    To investigate the aortic elastic properties and its clinical significance in intracranial aneurysms (IAs). One hundred and seven IAs patients (57 with hypertension) and 108 healthy subjects were recruited. The internal aortic diameters in systole and diastole were measured by the M-mode echocardiography, the aortic elasticity indexes were calculated and compared. The aortic distensibility (DIS) was lower and the aortic stiffness index (SI) was higher in IAs patients than those in controls (both P IAs patients with hypertension (IAs-HP) than those in IAs with no hypertension (P IAs patients and hypertension is closely related to the severity of aortic elasticity.

  4. First-principles investigations on structural, elastic and mechanical properties of BNxAs1‑x ternary alloys

    Science.gov (United States)

    Zhang, Junqin; Ma, Huihui; Zhao, Bin; Wei, Qun; Yang, Yintang

    2018-05-01

    A systematic investigation of the structural optimization, elastic and mechanical properties of the BNxAs1‑x ternary alloys are reported in the present work using the density-functional theory with the generalized gradient approximation (GGA) of the exchange-correlation functional. Some of the constants which are used to analyze the properties including elastic constants and modulus, and some parameters describing the elastic anisotropy and Debye temperature are also calculated. Our calculations were performed to evaluate the equilibrium lattice constant and band structure compared with the available theoretical works. On the one hand, our results might be expected to provide a theoretical basis for future study of BNxAs1‑x alloys towards elastic or mechanical properties. On the other hand, we draw a conclusion that BNxAs1‑x alloys show direct bandgap when x equals 0.25, 0.5 or 0.75. We obtained the elastic modulus, Poisson’s ratio and universal anisotropic index which are used to demonstrate the elastic anisotropy of these alloys which is proved according to our calculations. Also, we calculated the Debye temperature to illustrate covalent interactions and obtained the lower limit of the thermal conductivity for further research.

  5. Anisotropic kernel p(μ → μ') for transport calculations of elastically scattered neutrons

    International Nuclear Information System (INIS)

    Stevenson, B.

    1985-01-01

    Literature in the area of anisotropic neutron scattering is by no means lacking. Attention, however, is usually devoted to solution of some particular neutron transport problem and the model employed is at best approximate. The present approach to the problem in general is classically exact and may be of some particular value to individuals seeking exact numerical results in transport calculations. For attempts neutrons originally directed toward the unit vector Omega, it attempts the evaluation of p(theta'), defined such that p(theta') d theta' is that fraction of scattered neutrons that emerges in the vicinity of a cone i.e., having been scattered to between angles theta' and theta' + d theta' with the axis of preferred orientation i; Omega makes an angle theta with i. The relative simplicity of the final form of the solution for hydrogen, in spite of the complicated nature of the limits involved, is a trade-off that truly is not necessary. The exact general solution presented here in integral form, has exceedingly simple limits, i.e., 0 ≤ theta' ≤ π regardless of the material involved; but the form of the final solution is extraordinarily complicated

  6. Layered Black Phosphorus: Strongly Anisotropic Magnetic, Electronic, and Electron-Transfer Properties.

    Science.gov (United States)

    Sofer, Zdeněk; Sedmidubský, David; Huber, Štěpán; Luxa, Jan; Bouša, Daniel; Boothroyd, Chris; Pumera, Martin

    2016-03-01

    Layered elemental materials, such as black phosphorus, exhibit unique properties originating from their highly anisotropic layered structure. The results presented herein demonstrate an anomalous anisotropy for the electrical, magnetic, and electrochemical properties of black phosphorus. It is shown that heterogeneous electron transfer from black phosphorus to outer- and inner-sphere molecular probes is highly anisotropic. The electron-transfer rates differ at the basal and edge planes. These unusual properties were interpreted by means of calculations, manifesting the metallic character of the edge planes as compared to the semiconducting properties of the basal plane. This indicates that black phosphorus belongs to a group of materials known as topological insulators. Consequently, these effects render the magnetic properties highly anisotropic, as both diamagnetic and paramagnetic behavior can be observed depending on the orientation in the magnetic field. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Some properties of the Boltzmann elastic collision operator

    International Nuclear Information System (INIS)

    Delcroix, J. L.; Salmon, J.

    1959-01-01

    The authors point out some properties (an important one is a variational property) of the Boltzmann elastic collision operator, valid in a more general framework than that of the Lorentz gas. Reprint of a paper published in 'Le journal de physique et le radium', tome 20, Jun 1959, p. 594-596 [fr

  8. Magnetic Cellulose Nanocrystal Based Anisotropic Polylactic Acid Nanocomposite Films: Influence on Electrical, Magnetic, Thermal, and Mechanical Properties.

    Science.gov (United States)

    Dhar, Prodyut; Kumar, Amit; Katiyar, Vimal

    2016-07-20

    This paper reports a single-step co-precipitation method for the fabrication of magnetic cellulose nanocrystals (MGCNCs) with high iron oxide nanoparticle content (∼51 wt % loading) adsorbed onto cellulose nanocrystals (CNCs). X-ray diffraction (XRD), Fourier transform infrared (FTIR), and Raman spectroscopic studies confirmed that the hydroxyl groups on the surface of CNCs (derived from the bamboo pulp) acted as anchor points for the adsorption of Fe3O4 nanoparticles. The fabricated MGCNCs have a high magnetic moment, which is utilized to orient the magnetoresponsive nanofillers in parallel or perpendicular orientations inside the polylactic acid (PLA) matrix. Magnetic-field-assisted directional alignment of MGCNCs led to the incorporation of anisotropic mechanical, thermal, and electrical properties in the fabricated PLA-MGCNC nanocomposites. Thermomechanical studies showed significant improvement in the elastic modulus and glass-transition temperature for the magnetically oriented samples. Differential scanning calorimetry (DSC) and XRD studies confirmed that the alignment of MGCNCs led to the improvement in the percentage crystallinity and, with the absence of the cold-crystallization phenomenon, finds a potential application in polymer processing in the presence of magnetic field. The tensile strength and percentage elongation for the parallel-oriented samples improved by ∼70 and 240%, respectively, and for perpendicular-oriented samples, by ∼58 and 172%, respectively, in comparison to the unoriented samples. Furthermore, its anisotropically induced electrical and magnetic properties are desirable for fabricating self-biased electronics products. We also demonstrate that the fabricated anisotropic PLA-MGCNC nanocomposites could be laminated into films with the incorporation of directionally tunable mechanical properties. Therefore, the current study provides a novel noninvasive approach of orienting nontoxic bioderived CNCs in the presence of low

  9. Elastic properties of uniaxial-fiber reinforced composites - General features

    Science.gov (United States)

    Datta, Subhendu; Ledbetter, Hassel; Lei, Ming

    The salient features of the elastic properties of uniaxial-fiber-reinforced composites are examined by considering the complete set of elastic constants of composites comprising isotropic uniaxial fibers in an isotropic matrix. Such materials exhibit transverse-isotropic symmetry and five independent elastic constants in Voigt notation: C(11), C(33), C(44), C(66), and C(13). These C(ij) constants are calculated over the entire fiber-volume-fraction range 0.0-1.0, using a scattered-plane-wave ensemple-average model. Some practical elastic constants such as the principal Young moduli and the principal Poisson ratios are considered, and the behavior of these constants is discussed. Also presented are the results for the four principal sound velocities used to study uniaxial-fiber-reinforced composites: v(11), v(33), v(12), and v(13).

  10. Homogenized Elastic Properties of Graphene for Small Deformations

    Directory of Open Access Journals (Sweden)

    Jurica Sorić

    2013-09-01

    Full Text Available In this paper, we provide the quantification of the linear and non-linear elastic mechanical properties of graphene based upon the judicious combination of molecular mechanics simulation results and homogenization methods. We clarify the influence on computed results by the main model features, such as specimen size, chirality of microstructure, the effect of chosen boundary conditions (imposed displacement versus force and the corresponding plane stress transformation. The proposed approach is capable of explaining the scatter of the results for computed stresses, energy and stiffness and provides the bounds on graphene elastic properties, which are quite important in modeling and simulation of the virtual experiments on graphene-based devices.

  11. Reliability of in vivo measurements of the dielectric properties of anisotropic tissue: a simulative study

    International Nuclear Information System (INIS)

    Huo Xuyang; Shi Xuetao; You Fusheng; Fu Feng; Liu Ruigang; Tang Chi; Dong Xiuzhen; Lu Qiang

    2013-01-01

    A simulative study was performed to measure the dielectric properties of anisotropic tissue using several in vivo and in vitro probes. COMSOL Multiphysics was selected to carry out the simulation. Five traditional probes and a newly designed probe were used in this study. One of these probes was an in vitro measurement probe and the other five were in vivo. The simulations were performed in terms of the minimal tissue volume for in vivo measurements, the calibration of a probe constant, the measurement performed on isotropic tissue and the measurement performed on anisotropic tissue. Results showed that the in vitro probe can be used to measure the in-cell dielectric properties of isotropic and anisotropic tissues. When measured with the five in vivo probes, the dielectric properties of isotropic tissue were all measured accurately. For the measurements performed on anisotropic tissue, large errors were observed when the four traditional in vivo probes were used, but only a small error was observed when the new in vivo probe was used. This newly designed five-electrode in vivo probe may indicate the dielectric properties of anisotropic tissue more accurately than these four traditional in vivo probes. (paper)

  12. Elastic properties of synthetic materials for soft tissue modeling

    International Nuclear Information System (INIS)

    Mansy, H A; Grahe, J R; Sandler, R H

    2008-01-01

    Mechanical models of soft tissue are useful for studying vibro-acoustic phenomena. They may be used for validating mathematical models and for testing new equipment and techniques. The objective of this study was to measure density and visco-elastic properties of synthetic materials that can be used to build such models. Samples of nine different materials were tested under dynamic (0.5 Hz) compressive loading conditions. The modulus of elasticity of the materials was varied, whenever possible, by adding a softener during manufacturing. The modulus was measured over a nine month period to quantify the effect of ageing and softener loss on material properties. Results showed that a wide range of the compression elasticity modulus (10 to 1400 kPa) and phase (3.5 0 -16.7 0 ) between stress and strain were possible. Some materials tended to exude softener over time, resulting in a weight loss and elastic properties change. While the weight loss under normal conditions was minimal in all materials (<3% over nine months), loss under accelerated weight-loss conditions can reach 59%. In the latter case an elasticity modulus increase of up to 500% was measured. Key advantages and limitations of candidate materials were identified and discussed

  13. Size dependence of elastic mechanical properties of nanocrystalline aluminum

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Wenwu; Dávila, Lilian P., E-mail: ldavila@ucmerced.edu

    2017-04-24

    The effect of grain size on the elastic mechanical properties of nanocrystalline pure metal Al is quantified by molecular dynamics simulation method. In this work, the largest nanocrystalline Al sample has a mean grain size of 29.6 nm and contains over 100 millions atoms in the modeling system. The simulation results show that the elastic properties including elastic modulus and ultimate tensile strength of nanocrystalline Al are relatively insensitive to the variation of mean grain size above 13 nm yet they become distinctly grain size dependent below 13 nm. Moreover, at a grain size <13 nm, the elastic modulus decreases monotonically with decreasing grain size while the ultimate tensile strength of nanocrystalline Al initially decreases with the decrease of the grain size down to 9 nm and then increases with further reduction of grain size. The increase of ultimate tensile strength below 9 nm is believed to be a result of an extended elasticity in the ultrafine grain size nanocrystalline Al. This study can facilitate the prediction of varied mechanical properties for similar nanocrystalline materials and even guide testing and fabrication schemes of such materials.

  14. Permeability and elastic properties of cracked glass under pressure

    Science.gov (United States)

    Ougier-Simonin, A.; GuéGuen, Y.; Fortin, J.; Schubnel, A.; Bouyer, F.

    2011-07-01

    Fluid flow in rocks is allowed through networks of cracks and fractures at all scales. In fact, cracks are of high importance in various applications ranging from rock elastic and transport properties to nuclear waste disposal. The present work aims at investigating thermomechanical cracking effects on elastic wave velocities, mechanical strength, and permeability of cracked glass under pressure. We performed the experiments on a triaxial cell at room temperature which allows for independent controls of the confining pressure, the axial stress, and pore pressure. We produced cracks in original borosilicate glass samples with a reproducible method (thermal treatment with a thermal shock of 300°C). The evolution of the elastic and transport properties have been monitored using elastic wave velocity sensors, strain gage, and flow measurements. The results obtained evidence for (1) a crack family with identified average aspect ratio and crack aperture, (2) a very small permeability which decreases as a power (exponential) function of pressure, and depends on (3) the crack aperture cube. We also show that permeability behavior of a cracked elastic brittle solid is reversible and independent of the fluid nature. Two independent methods (permeability and elastic wave velocity measurements) give these consistent results. This study provides data on the mechanical and transport properties of an almost ideal elastic brittle solid in which a crack population has been introduced. Comparisons with similar data on rocks allow for drawing interesting conclusions. Over the timescale of our experiments, our results do not provide any data on stress corrosion, which should be considered in further study.

  15. First-principles study of structural stability and elastic property of pre-perovskite PbTiO3

    International Nuclear Information System (INIS)

    Liu Yong; Ni Li-Hong; Ren Zhao-Hui; Xu Gang; Li Xiang; Song Chen-Lu; Han Gao-Rong

    2012-01-01

    The structural stability and the elastic properties of a novel structure of lead titanate, which is named pre- perovskite PbTiO 3 (PP-PTO) and is constructed with TiO 6 octahedral columns arranged in a one-dimensional manner, are investigated by using first-principles calculations. PP-PTO is energetically unstable compared with conventional perovskite phases, however it is mechanically stable. The equilibrium transition pressures for changing from pre- perovskite to cubic and tetragonal phases are −0.5 GPa and −1.4 GPa, respectively, with first-order characteristics. Further, the differences in elastic properties between pre-perovskite and conventional perovskite phases are discussed for the covalent bonding network, which shows a highly anisotropic character in PP-PTO. This study provides a crucial insight into the structural stabilities of PP-PTO and conventional perovskite. (condensed matter: structural, mechanical, and thermal properties)

  16. Macroscopic anisotropic bone material properties in children with severe osteogenesis imperfecta.

    Science.gov (United States)

    Albert, Carolyne; Jameson, John; Tarima, Sergey; Smith, Peter; Harris, Gerald

    2017-11-07

    Children with severe osteogenesis imperfecta (OI) typically experience numerous fractures and progressive skeletal deformities over their lifetime. Recent studies proposed finite element models to assess fracture risk and guide clinicians in determining appropriate intervention in children with OI, but lack of appropriate material property inputs remains a challenge. This study aimed to characterize macroscopic anisotropic cortical bone material properties and investigate relationships with bone density measures in children with severe OI. Specimens were obtained from tibial or femoral shafts of nine children with severe OI and five controls. The specimens were cut into beams, characterized in bending, and imaged by synchrotron radiation X-ray micro-computed tomography. Longitudinal modulus of elasticity, yield strength, and bending strength were 32-65% lower in the OI group (p<0.001). Yield strain did not differ between groups (p≥0.197). In both groups, modulus and strength were lower in the transverse direction (p≤0.009), but anisotropy was less pronounced in the OI group. Intracortical vascular porosity was almost six times higher in the OI group (p<0.001), but no differences were observed in osteocyte lacunar porosity between the groups (p=0.086). Volumetric bone mineral density was lower in the OI group (p<0.001), but volumetric tissue mineral density was not (p=0.770). Longitudinal OI bone modulus and strength were correlated with volumetric bone mineral density (p≤0.024) but not volumetric tissue mineral density (p≥0.099). Results indicate that cortical bone in children with severe OI yields at the same strain as normal bone, and that their decreased bone material strength is associated with reduced volumetric bone mineral density. These results will enable the advancement of fracture risk assessment capability in children with severe OI. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Elastic properties of various ceramic materials

    International Nuclear Information System (INIS)

    Zimmermann, H.

    1992-09-01

    The Young's modulus and the Poisson's ratio of various ceramics have been investigated at room temperature and compared with data from the literature. The ceramic materials investigated are Al 2 O 3 , Al 2 O 3 -ZrO 2 , MgAl 2 O 4 , LiAlO 2 , Li 2 SiO 3 , Li 4 SiO 4 , UO 2 , AlN, SiC, B 4 C, TiC, and TiB 2 . The dependence of the elastic moduli on porosity and temperature have been reviewed. Measurements were also performed on samples of Al 2 O 3 , AlN, and SiC, which had been irradiated to maximum neutron fluences of 1.6.10 26 n/m 2 (E>0.1 MeV) at different temperatures. The Young's modulus is nearly unaffected at fluences up to about 4.10 24 n/m 2 . However, it decreases with increasing neutron fluence and seems to reach a saturation value depending upon the irradiation temperature. The reduction of the Young's modulus is lowest in SiC. (orig.) [de

  18. Atomistic calculations of interface elastic properties in noncoherent metallic bilayers

    International Nuclear Information System (INIS)

    Mi Changwen; Jun, Sukky; Kouris, Demitris A.; Kim, Sung Youb

    2008-01-01

    The paper describes theoretical and computational studies associated with the interface elastic properties of noncoherent metallic bicrystals. Analytical forms of interface energy, interface stresses, and interface elastic constants are derived in terms of interatomic potential functions. Embedded-atom method potentials are then incorporated into the model to compute these excess thermodynamics variables, using energy minimization in a parallel computing environment. The proposed model is validated by calculating surface thermodynamic variables and comparing them with preexisting data. Next, the interface elastic properties of several fcc-fcc bicrystals are computed. The excess energies and stresses of interfaces are smaller than those on free surfaces of the same crystal orientations. In addition, no negative values of interface stresses are observed. Current results can be applied to various heterogeneous materials where interfaces assume a prominent role in the systems' mechanical behavior

  19. Anisotropic gold nanoparticles: synthesis, properties, applications, and toxicity.

    Science.gov (United States)

    Li, Na; Zhao, Pengxiang; Astruc, Didier

    2014-02-10

    Anisotropic gold nanoparticles (AuNPs) have attracted the interest of scientists for over a century, but research in this field has considerably accelerated since 2000 with the synthesis of numerous 1D, 2D, and 3D shapes as well as hollow AuNP structures. The anisotropy of these nonspherical, hollow, and nanoshell AuNP structures is the source of the plasmon absorption in the visible region as well as in the near-infrared (NIR) region. This NIR absorption is especially sensitive to the AuNP shape and medium and can be shifted towards the part of the NIR region in which living tissue shows minimum absorption. This has led to crucial applications in medical diagnostics and therapy ("theranostics"), especially with Au nanoshells, nanorods, hollow nanospheres, and nanocubes. In addition, Au nanowires (AuNWs) can be synthesized with longitudinal dimensions of several tens of micrometers and can serve as plasmon waveguides for sophisticated optical devices. The application of anisotropic AuNPs has rapidly spread to optical, biomedical, and catalytic areas. In this Review, a brief historical survey is given, followed by a summary of the synthetic modes, variety of shapes, applications, and toxicity issues of this fast-growing class of nanomaterials. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Elastic properties of magnetostrictive rare-earth-iron alloys

    International Nuclear Information System (INIS)

    Cullen, J.R.; Blessing, G.; Rinaldi, S.

    1978-01-01

    The elastic properties of certain magnetostrictive rare-earth-iron alloys, namely polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2), Smsub(0.88)Dysub(0.12)Fesub(2)and amorphous TbFesub(2), were investigated ultrasonically. In all cases two shear waves were observed propagating simultaneously when a magnetic field was applied perpendicular to the direction of propagation. A model to explain this behaviour, based on magnetic-elastic coupling within local regions of these disordered materials, is developed and discussed in two limiting cases: (i) strongly coupled regions for which an effective isotropic magneto-elastic coupling is appropriate, and (ii) materials for which the elastic properties of the conglomerate are determined by averaging over those of independent regions. Experimental results up to fields of 25 kOe on the alloys mentioned above are exhibited and compared with the limiting cases (i) and (ii). In the case of polycrystalline Tbsub(0.3)Dysub(0.7)Fesub(2) further comparison is made between the determination of the magneto-elastic coupling constants using this model and the determination by using the results of a previous single-crystal study. (author)

  1. Anisotropy in elastic properties of lithium sodium sulphate ...

    Indian Academy of Sciences (India)

    Anisotropy in elastic properties of lithium sodium sulphate hexahydrate single crystal—An ultrasonic study. GEORGE VARUGHESE. ,∗. , A S KUMAR†, J PHILIP†† and GODFREY LOUIS#. Department of Physics, Catholicate College, Pathanamthitta 689 648, India. †SPAP, M.G. University, Kottayam 686 560, India. ††STIC ...

  2. Erratum to: Elastic and piezoelectric properties, sound velocity and ...

    Indian Academy of Sciences (India)

    Erratum to: Elastic and piezoelectric properties, sound velocity and Debye temperature of (B3) BBi compound under pressure. S DAOUD1,∗, N BIOUD2 and N LEBGAA2. 1Faculté des Sciences et de la Technologie, Université de Bordj Bou Arreridj, 34000, Algeria. 2Laboratoire d'Optoélectronique & Composants, Université ...

  3. Structural, elastic, electronic and optical properties of bi-alkali ...

    Indian Academy of Sciences (India)

    The structural parameters, elastic constants, electronic and optical properties of the bi-alkali ... and efficient method for the calculation of the ground-state ... Figure 2. Optimization curve (E–V) of the bi-alkali antimonides: (a) Na2KSb, (b) Na2RbSb, (c) Na2CsSb, .... ical shape of the charge distributions in the contour plots.

  4. Atomistic simulation of the structural and elastic properties of ...

    Indian Academy of Sciences (India)

    experimental data and previous theoretical results, showing no phase transition ... and theoretical [2,9–11] studies have been dedicated to deter- ..... [33] introduced a simple relationship that empirically links the plastic properties of materials with their elastic moduli. The shear modulus G represents the resistance to plastic.

  5. Anomalous structural changes and elastic properties of bismuth oxide superconductors

    International Nuclear Information System (INIS)

    He, Y.S.; Xiang, J.; Chang, F.G.; Zhang, J.C.; He, A.S.; Wang, H.; Gu, B.L.

    1989-01-01

    Ultrasonic measurement revealed that there are anomalous structural changes near 200 K in single 2212 or 2223 phase samples of Bi(Pb)-Sr-Ca-Cu-O. Detailed study showed such anomalous changes are isothermal-like processes and have a characteristics of second order phase transition, accompanying with increases in lattice constants. The elastic properties of these ceramics and related systems are discussed

  6. Structural, elastic, mechanical and thermodynamic properties of Terbium oxide: First-principles investigations

    Directory of Open Access Journals (Sweden)

    Samah Al-Qaisi

    Full Text Available First-principles investigations of the Terbium oxide TbO are performed on structural, elastic, mechanical and thermodynamic properties. The investigations are accomplished by employing full potential augmented plane wave FP-LAPW method framed within density functional theory DFT as implemented in the WIEN2k package. The exchange-correlation energy functional, a part of the total energy functional, is treated through Perdew Burke Ernzerhof scheme of the Generalized Gradient Approximation PBEGGA. The calculations of the ground state structural parameters, like lattice constants a0, bulk moduli B and their pressure derivative B′ values, are done for the rock-salt RS, zinc-blende ZB, cesium chloride CsCl, wurtzite WZ and nickel arsenide NiAs polymorphs of the TbO compound. The elastic constants (C11, C12, C13, C33, and C44 and mechanical properties (Young’s modulus Y, Shear modulus S, Poisson’s ratio σ, Anisotropic ratio A and compressibility β, were also calculated to comprehend its potential for valuable applications. From our calculations, the RS phase of TbO compound was found strongest one mechanically amongst the studied cubic structures whereas from hexagonal phases, the NiAs type structure was found stronger than WZ phase of the TbO. To analyze the ductility of the different structures of the TbO, Pugh’s rule (B/SH and Cauchy pressure (C12–C44 approaches are used. It was found that ZB, CsCl and WZ type structures of the TbO were of ductile nature with the obvious dominance of the ionic bonding while RS and NiAs structures exhibited brittle nature with the covalent bonding dominance. Moreover, Debye temperature was calculated for both cubic and hexagonal structures of TbO in question by averaging the computed sound velocities. Keywords: DFT, TbO, Elastic properties, Thermodynamic properties

  7. Elastic properties of rigid fiber-reinforced composites

    Science.gov (United States)

    Chen, J.; Thorpe, M. F.; Davis, L. C.

    1995-05-01

    We study the elastic properties of rigid fiber-reinforced composites with perfect bonding between fibers and matrix, and also with sliding boundary conditions. In the dilute region, there exists an exact analytical solution. Around the rigidity threshold we find the elastic moduli and Poisson's ratio by decomposing the deformation into a compression mode and a rotation mode. For perfect bonding, both modes are important, whereas only the compression mode is operative for sliding boundary conditions. We employ the digital-image-based method and a finite element analysis to perform computer simulations which confirm our analytical predictions.

  8. Effects of anisotropic properties on bursting behavior of rectangular cup with a V-notch

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jeong Tai [R and D Center, TERA Co. Ltd., Seoul (Korea, Republic of); Kim, Sang Mok [R and D Center, Hyosung Power and Industrial Systems PG, Changwon (Korea, Republic of); Kang, Beom Soo [Dept. of Aerospace Engineering, Pusan National University, Busan (Korea, Republic of); Ku, Tae Wan [Engineering Research Center of Innovative Technology on Advanced Forming, Pusan National University, Busan (Korea, Republic of)

    2016-09-15

    Effects of mechanical anisotropic properties on bursting failure and its pressure of rectangular deep-drawn cup fabricated by using AA3005-H14 thin sheet are investigated to utilize for electrolyte container of lithium-ion secondary batteries. The V-notch shape with a depth of 0.1 mm and an angle of 20.0 degrees is defined on the rectangular cup, which has a thickness of 0.20 mm on the major surface and that of 0.30 mm on the minor surface. With the measured mechanical properties by uni-axial tensile tests and the defined V-notch geometry, a series of numerical prediction models considering isotropic, planar and normal anisotropic characteristics, are built-up and the bursting simulations are performed. Thereafter, the bursting fracture behavior is investigated by adopting ductile fracture criterion proposed by Cockcroft and Latham. The results predicted for the planar and the normal anisotropic models show that the bursting fracture pressure is well matched to 0.400 MPa, and the isotropic and the planar anisotropic models present a bursting fracture height of about 4.95 mm and 4.92 mm, respectively. A series of experimental investigations are undertaken to verify the bursting deformation that had been predicted. The bursting pressure and its height during experimental verifications are shown to be in good agreement with each variation of about 5.88% and roughly 0.20% with respect to the numerical results obtained using the planar anisotropic model.

  9. Elastic and Mechanical Properties of the MAX Phases

    Science.gov (United States)

    Barsoum, Michel W.; Radovic, Miladin

    2011-08-01

    The more than 60 ternary carbides and nitrides, with the general formula Mn+1AXn—where n = 1, 2, or 3; M is an early transition metal; A is an A-group element (a subset of groups 13-16); and X is C and/or N—represent a new class of layered solids, where Mn+1Xn layers are interleaved with pure A-group element layers. The growing interest in the Mn+1AXn phases lies in their unusual, and sometimes unique, set of properties that can be traced back to their layered nature and the fact that basal dislocations multiply and are mobile at room temperature. Because of their chemical and structural similarities, the MAX phases and their corresponding MX phases share many physical and chemical properties. In this paper we review our current understanding of the elastic and mechanical properties of bulk MAX phases where they differ significantly from their MX counterparts. Elastically the MAX phases are in general quite stiff and elastically isotropic. The MAX phases are relatively soft (2-8 GPa), are most readily machinable, and are damage tolerant. Some of them are also lightweight and resistant to thermal shock, oxidation, fatigue, and creep. In addition, they behave as nonlinear elastic solids, dissipating 25% of the mechanical energy during compressive cycling loading of up to 1 GPa at room temperature. At higher temperatures, they undergo a brittle-to-plastic transition, and their mechanical behavior is a strong function of deformation rate.

  10. Density functional theory for calculation of elastic properties of orthorhombic crystals: Application to TiSi2

    International Nuclear Information System (INIS)

    Ravindran, P.; Fast, L.; Korzhavyi, P.A.; Johansson, B.; Wills, J.; Eriksson, O.

    1998-01-01

    A theoretical formalism to calculate the single crystal elastic constants for orthorhombic crystals from first principle calculations is described. This is applied for TiSi 2 and we calculate the elastic constants using a full potential linear muffin-tin orbital method using the local density approximation (LDA) and generalized gradient approximation (GGA). The calculated values compare favorably with recent experimental results. An expression to calculate the bulk modulus along crystallographic axes of single crystals, using elastic constants, has been derived. From this the calculated linear bulk moduli are found to be in good agreement with the experiments. The shear modulus, Young's modulus, and Poisson's ratio for ideal polycrystalline TiSi 2 are also calculated and compared with corresponding experimental values. The directional bulk modulus and the Young's modulus for single crystal TiSi 2 are estimated from the elastic constants obtained from LDA as well as GGA calculations and are compared with the experimental results. The shear anisotropic factors and anisotropy in the linear bulk modulus are obtained from the single crystal elastic constants. From the site and angular momentum decomposed density of states combined with a charge density analysis and the elastic anisotropies, the chemical bonding nature between the constituents in TiSi 2 is analyzed. The Debye temperature is calculated from the average elastic wave velocity obtained from shear and bulk modulus as well as the integration of elastic wave velocities in different directions of the single crystal. The calculated elastic properties are found to be in good agreement with experimental values when the generalized gradient approximation is used for the exchange and correlation potential. copyright 1998 American Institute of Physics

  11. Elastic properties and electron transport in InAs nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Migunov, Vadim

    2013-02-22

    The electron transport and elastic properties of InAs nanowires grown by chemical vapor deposition on InAs (001) substrate were studied experimentally, in-situ in a transmission electron microscope (TEM). A TEM holder allowing the measurement of a nanoforce while simultaneous imaging nanowire bending was used. Diffraction images from local areas of the wire were recorded to correlate elastic properties with the atomic structure of the nanowires. Another TEM holder allowing the application of electrical bias between the nanowire and an apex of a metallic needle while simultaneous imaging the nanowire in TEM or performing electron holography was used to detect mechanical vibrations in mechanical study or holographical observation of the nanowire inner potential in the electron transport studies. The combination of the scanning probe methods with TEM allows to correlate the measured electric and elastic properties of the nanowires with direct identification of their atomic structure. It was found that the nanowires have different atomic structures and different stacking fault defect densities that impacts critically on the elastic properties and electric transport. The unique methods, that were applied in this work, allowed to obtain dependencies of resistivity and Young's modulus of left angle 111 right angle -oriented InAs nanowires on defect density and diameter. It was found that the higher is the defect density the higher are the resistivity and the Young's modulus. Regarding the resistivity, it was deduced that the stacking faults increase the scattering of the electrons in the nanowire. These findings are consistent with the literature, however, the effect described by the other groups is not so pronounced. This difference can be attributed to the significant incompleteness of the physical models used for the data analysis. Regarding the elastic modulus, there are several mechanisms affecting the elasticity of the nanowires discussed in the thesis. It

  12. Linear elastic properties derivation from microstructures representative of transport parameters.

    Science.gov (United States)

    Hoang, Minh Tan; Bonnet, Guy; Tuan Luu, Hoang; Perrot, Camille

    2014-06-01

    It is shown that three-dimensional periodic unit cells (3D PUC) representative of transport parameters involved in the description of long wavelength acoustic wave propagation and dissipation through real foam samples may also be used as a standpoint to estimate their macroscopic linear elastic properties. Application of the model yields quantitative agreement between numerical homogenization results, available literature data, and experiments. Key contributions of this work include recognizing the importance of membranes and properties of the base material for the physics of elasticity. The results of this paper demonstrate that a 3D PUC may be used to understand and predict not only the sound absorbing properties of porous materials but also their transmission loss, which is critical for sound insulation problems.

  13. Elastic properties of ultrathin diamond/AlN membranes

    International Nuclear Information System (INIS)

    Zuerbig, V.; Hees, J.; Pletschen, W.; Sah, R.E.; Wolfer, M.; Kirste, L.; Heidrich, N.; Nebel, C.E.; Ambacher, O.; Lebedev, V.

    2014-01-01

    Nanocrystalline diamond- (NCD) and AlN-based ultrathin single layer and bilayer membranes are investigated towards their mechanical properties. It is shown that chemo-mechanical polishing and heavy boron doping of NCD thin films do not impact the elastic properties of NCD layers as revealed by negligible variations of the NCD Young's modulus (E). In addition, it is demonstrated that the combination of NCD elastic layer and AlN piezo-actuator is highly suitable for the fabrication of mechanically stable ultrathin membranes in comparison to AlN single layer membranes. The elastic parameters of NCD/AlN heterostructures are mainly determined by the outstanding high Young's modulus of NCD (E = 1019 ± 19 GPa). Such ultrathin unimorph membranes allow for fabrication of piezo-actuated AlN/NCD microlenses with tunable focus length. - Highlights: • Mechanical properties of nanocrystalline diamond (NCD) and AlN circular membranes • No influence of polishing of NCD thin films on the mechanical properties of NCD • No influence of heavy boron-doping on the mechanical properties of NCD • Demonstration of mechanically stable piezo-actuated NCD/AlN membranes • Reported performance of AlN/NCD microlenses with adjustable focus length

  14. The influence of the anisotropic stress state on the intermediate strain properties of granular material

    KAUST Repository

    Goudarzy, M.

    2017-07-20

    This paper shows the effect of anisotropic stress state on intermediate strain properties of cylindrical samples containing spherical glass particles. Tests were carried out with the modified resonant column device available at Ruhr-Universität Bochum. Dry samples were subjected to two anisotropic stress states: (a) cell pressure, σ′h, constant and vertical stress, σ′v, increased (stress state GB-I) and (b) σ′v/σ′h equal to 2 (stress state GB-II). The experimental results revealed that the effect of stress state GB-II on the modulus and damping ratio was more significant and obvious than stress state GB-I. The effect of the anisotropic stress state was explained through the impact of confining pressure and anisotropic stress components on the stiffness and damping ratio. The results showed that: (a) G(γ) increased, η(γ) decreased and their strain non-linearity decreased with an increase in the confining pressure component σ′vσ′h; (b) G(γ) decreased, η(γ) increased and their strain non-linearity increased with an increase in the anisotropic stress component, σ′v/σ′h. The analysis of results revealed that reference shear strain was also affected by anisotropic stress state. Therefore, an empirical relationship was developed to predict the reference shear strain, as a function of confining pressure and anisotropic stress components. Additionally, the damping ratio was written as a function of the minimum damping ratio and the reference shear strain.

  15. A micromechanics model of the elastic properties of human dentine

    Energy Technology Data Exchange (ETDEWEB)

    Kinney, J. H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Balooch, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marshall, G. W. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry; Marshall, S. J. [Univ. of California, San Francisco, CA (United States). Dept. of Restorative Dentistry

    1999-10-01

    A generalized self-consistent model of cylindrical inclusions in a homogeneous and isotropic matrix phase was used to study the effects of tubule orientation on the elastic properties of dentin. Closed form expressions for the five independent elastic constants of dentin were derived in terms of tubule concentration, and the Young's moduli and Poisson ratios of peri- and intertubular dentin. An atomic force microscope (AFM) indentation technique determined the Young's moduli of the peri- and intertubular dentin as approximately 30 GPa and 15 GPa, respectively. Over the natural variation in tubule density found in dentin, there was only a slight variation in the axial and transverse shear moduli with position in the tooth, and there was no measurable effect of tubule orientation. We conclude that tubule orientation has no appreciable effect on the elastic behavior of normal dentin, and that the elastic properties of healthy dentin can be modeled as an isotropic continuum with a Young's modulus of approximately 16 GPa and a shear modulus of 6.2 GPa.

  16. Structural phase transition and elastic properties of mercury chalcogenides

    Energy Technology Data Exchange (ETDEWEB)

    Varshney, Dinesh, E-mail: vdinesh33@rediffmail.com [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Shriya, S. [School of Physics, Vigyan Bhavan, Devi Ahilya University, Khandwa Road Campus, Indore 452001 (India); Khenata, R. [Laboratoire de Physique Quantique et de Modelisation Mathematique (LPQ3M), Departement de Technologie, Universite de Mascara, 29000 Mascara (Algeria)

    2012-08-15

    Pressure induced structural transition and elastic properties of ZnS-type (B3) to NaCl-type (B1) structure in mercury chalcogenides (HgX; X = S, Se and Te) are presented. An effective interionic interaction potential (EIOP) with long-range Coulomb, as well charge transfer interactions, Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbor ions and van der Waals interactions are considered. Emphasis is on the evaluation of the pressure dependent Poisson's ratio {nu}, the ratio R{sub BT/G} of B (bulk modulus) over G (shear modulus), anisotropy parameter, Shear and Young's modulus, Lame constant, Kleinman parameter, elastic wave velocity and thermodynamical property as Debye temperature. The Poisson's ratio behavior infers that Mercury chalcogenides are brittle in nature. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of elastic and thermodynamical properties explicitly the ductile (brittle) nature of HgX and still awaits experimental confirmations. Highlights: Black-Right-Pointing-Pointer Vast volume discontinuity in phase diagram infers transition from ZnS to NaCl structure. Black-Right-Pointing-Pointer The shear elastic constant C{sub 44} is nonzero confirms the mechanical stability. Black-Right-Pointing-Pointer Pressure dependence of {theta}{sub D} infers the softening of lattice with increasing pressure. Black-Right-Pointing-Pointer Estimated bulk, shear and tetragonal moduli satisfied elastic stability criteria. Black-Right-Pointing-Pointer In both B3 and B1 phases, C{sub 11} and C{sub 12} increase linearly with pressure.

  17. Theoretical prediction of sandwiched two-dimensional phosphide binary compound sheets with tunable bandgaps and anisotropic physical properties

    Science.gov (United States)

    Zhang, C. Y.; Yu, M.

    2018-03-01

    Atomic layers of GaP and InP binary compounds with unique anisotropic structural, electronic and mechanical properties have been predicted from first-principle molecular dynamics simulations. These new members of the phosphide binary compound family stabilize to a sandwiched two-dimensional (2D) crystalline structure with orthorhombic lattice symmetry and high buckling of 2.14 Å-2.46 Å. Their vibration modes are similar to those of phosphorene with six Raman active modes ranging from ˜80 cm-1 to 400 cm-1. The speeds of sound in their phonon dispersions reflect anisotropy in their elastic constants, which was further confirmed by their strong directional dependence of Young’s moduli and effective nonlinear elastic moduli. They show wide bandgap semiconductor behavior with fundamental bandgaps of 2.89 eV for GaP and 2.59 eV for InP, respectively, even wider than their bulk counterparts. Such bandgaps were found to be tunable under strain. In particular, a direct-indirect bandgap transition was found under certain strains along zigzag or biaxial orientations, reflecting their promising applications in strain-induced bandgap engineering in nanoelectronics and photovoltaics. Feasible pathways to realize these novel 2D phosphide compounds are also proposed.

  18. Elastic properties of sub-stoichiometric nitrogen ion implanted silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sarmanova, M.F., E-mail: marina.sarmanova@iom-leipzig.de [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Karl, H. [University Augsburg, Institute of Physics, D-86135 Augsburg (Germany); Mändl, S.; Hirsch, D. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); Mayr, S.G.; Rauschenbach, B. [Leibniz Institute of Surface Modification, D-04318 Leipzig (Germany); University Leipzig, Institute for Experimental Physics II, D-04103 Leipzig (Germany)

    2015-04-15

    Elastic properties of sub-stoichiometric nitrogen implanted silicon were measured with nanometer-resolution using contact resonance atomic force microscopy (CR-AFM) as function of ion fluence and post-annealing conditions. The determined range of indentation moduli was between 100 and 180 GPa depending on the annealing duration and nitrogen content. The high indentation moduli can be explained by formation of Si–N bonds, as verified by X-ray photoelectron spectroscopy.

  19. Anisotropic magnetic properties of the KMo4O6

    Science.gov (United States)

    Andrade, M.; Maffei, M. L.; Dos Santos, C. A. M.; Ferreira, B.; Sartori, A. F.

    2012-02-01

    Electrical resistivity measurements in the tetragonal KMo4O6 single crystals show a metal-insulator transition (MIT) near 100K. Magnetization measurements as a function of temperature show no evidence of magnetic ordering at this MIT [1]. Single crystals of KMo4O6 were obtained by electrolysis of a melt with a molar ratio of K2MoO4:MoO3 = 6:1. The process were carried out at 930 C with a current of 20-25mA for 52h in argon atmosphere. After that, electrodes were removed from the melt alloying the crystals to cool down to room temperature rapidly. Scanning Electron Microscopy (SEM) showed that the black single crystals were grown on the platinum cathode. Typical dimensions of the single crystals are 1x0.2x0.2mm^3. X-ray diffractometry confirmed that the single crystals have KMo4O6 tetragonal crystalline structure with space group P4. Magnetization measurements were performed parallel and perpendicular to the c-axis from 2 to 300K. The results show anisotropic behavior between both directions. Furthermore, the temperature independence of the magnetization at high temperature and the upturn at low temperature are observed in agreement with previous results [1]. MxH curves measured at several temperatures show nonlinear behavior and a small magnetic ordering. The magnetic ordering seems to be related to the MIT near 100K. This material is based upon support by FAPESP (2009/14524-6 and 2009/54001-6) and CNPq/NSF (490182/2009-7). M. Andrade is CAPES fellow and C.A.M. dos Santos is CNPq fellow. [4pt] [1] K. V. Ramanujachary et al., J. Sol. State Chem.102 (1993) 69.

  20. A Comuputerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    Full Text Available A numerical computer model, based on the dual reciprocity boundary element method (DRBEM for studying the generalized magneto-thermo-visco-elastic stress waves in a rotating functionally graded anisotropic thin film/substrate structure under pulsed laser irradiation is established. An implicit-implicit staggered algorithm was proposed and implemented for use with the DRBEM to get the solution for the temperature, displacement components and thermal stress components through the structure thickness. A comparison of the results for different theories is presented in the presence and absence of rotation. Some numerical results that demonstrate the validity of the proposed method are also presented.

  1. Anisotropic evaluation of synthetic surgical meshes.

    Science.gov (United States)

    Saberski, E R; Orenstein, S B; Novitsky, Y W

    2011-02-01

    The material properties of meshes used in hernia repair contribute to the overall mechanical behavior of the repair. The anisotropic potential of synthetic meshes, representing a difference in material properties (e.g., elasticity) in different material axes, is not well defined to date. Haphazard orientation of anisotropic mesh material can contribute to inconsistent surgical outcomes. We aimed to characterize and compare anisotropic properties of commonly used synthetic meshes. Six different polypropylene (Trelex(®), ProLite™, Ultrapro™), polyester (Parietex™), and PTFE-based (Dualmesh(®), Infinit) synthetic meshes were selected. Longitudinal and transverse axes were defined for each mesh, and samples were cut in each axis orientation. Samples underwent uniaxial tensile testing, from which the elastic modulus (E) in each axis was determined. The degree of anisotropy (λ) was calculated as a logarithmic expression of the ratio between the elastic modulus in each axis. Five of six meshes displayed significant anisotropic behavior. Ultrapro™ and Infinit exhibited approximately 12- and 20-fold differences between perpendicular axes, respectively. Trelex(®), ProLite™, and Parietex™ were 2.3-2.4 times. Dualmesh(®) was the least anisotropic mesh, without marked difference between the axes. Anisotropy of synthetic meshes has been underappreciated. In this study, we found striking differences between elastic properties of perpendicular axes for most commonly used synthetic meshes. Indiscriminate orientation of anisotropic mesh may adversely affect hernia repairs. Proper labeling of all implants by manufacturers should be mandatory. Understanding the specific anisotropic behavior of synthetic meshes should allow surgeons to employ rational implant orientation to maximize outcomes of hernia repair.

  2. Elastic properties of liquid and solid argon in nanopores

    International Nuclear Information System (INIS)

    Schappert, Klaus; Pelster, Rolf

    2013-01-01

    We have measured sorption isotherms and determined the intrinsic longitudinal elastic modulus β Ar,ads of nanoconfined material via ultrasonic measurements combined with a special effective medium analysis. In the liquid regime the adsorbate only contributes to the measured effective properties when the pores are completely filled and the modulus is bulklike. At partial fillings its contribution is cancelled out by the high compressibility of the vapour phase. In contrast, at lower temperatures frozen argon as well as underlying liquid surface layers cause a linear increase of the effective longitudinal modulus upon filling. During sorption the contribution of the liquid surface layers near the pore wall β Ar,surf increases with the thickness of the solid layers reaching the bulk value β Ar,liquid only in the limit of complete pore filling. We interpret this effect as due to the gradual stiffening of the solid argon membrane. The measurements and their analysis show that longitudinal ultrasonic waves are well suited to the study of the elastic properties and liquid–solid phase transitions in porous systems. This method should also help to detect the influence of nanoconfinement on elastic properties in further research. (paper)

  3. An H(∞) approach for elasticity properties reconstruction.

    Science.gov (United States)

    Liu, Huafeng; Hu, Hongjie; Sinusas, Albert J; Shi, Pengcheng

    2012-01-01

    Quantification of object elasticity properties has significant technical implications as well as important practical applications, such as medical disease diagnosis. In general, given noisy measurements on the kinematic states of the objects from imaging data, the aim is to recover the elasticity parameters for assumed material constitutive models of the objects. The implementation is complicated caused by the large dimensionality of the parameters. Various versions of the least-square (LS) methods have been widely used, which, however, do not perform well under reasonably realistic levels of disturbances. Another popular strategy, based on the extended Kalman filter (EKF), is also far from optimal and subject to divergence if either the initializations are poor or the noises are not Gaussian. In this paper, the authors propose a robust system identification paradigm for the quantitative analysis of object elasticity. It is derived and extended from the H(∞) filtering principles and is particularly powerful for real-world situations where the types and levels of the disturbances are unknown. Using synthetic data, the authors investigate the sensitivity of the strategies toward different types (Gaussian and Poisson) and levels of noises, as well as various initializations. The experimental results show consistently superior performance of the proposed method over the LS and EKF algorithms in reliably identifying object elastic modulus distributions. Results from phase contrast imaging data of canine hearts and human MRI data are also presented, which demonstrate the power of the framework.

  4. Pseudo-spectral method using rotated staggered grid for elastic wave propagation in 3D arbitrary anisotropic media

    KAUST Repository

    Zou, Peng; Cheng, Jiubing

    2017-01-01

    -difference method, we propose a modified pseudo-spectral method for wave propagation in arbitrary anisotropic media. Compared with an existing remedy of staggered-grid pseudo-spectral method based on stiffness matrix decomposition and a possible alternative using

  5. Directional anisotropy, finite size effect and elastic properties of hexagonal boron nitride

    International Nuclear Information System (INIS)

    Thomas, Siby; Ajith, K M; Valsakumar, M C

    2016-01-01

    Classical molecular dynamics simulations have been performed to analyze the elastic and mechanical properties of two-dimensional (2D) hexagonal boron nitride (h-BN) using a Tersoff-type interatomic empirical potential. We present a systematic study of h-BN for various system sizes. Young’s modulus and Poisson’s ratio are found to be anisotropic for finite sheets whereas they are isotropic for the infinite sheet. Both of them increase with system size in accordance with a power law. It is concluded from the computed values of elastic constants that h-BN sheets, finite or infinite, satisfy Born’s criterion for mechanical stability. Due to the the strong in-plane sp 2 bonds and the small mass of boron and nitrogen atoms, h-BN possesses high longitudinal and shear velocities. The variation of bending rigidity with system size is calculated using the Foppl–von Karman approach by coupling the in-plane bending and out-of-plane stretching modes of the 2D h-BN. (paper)

  6. Magnetic and elastic properties of the antiferromagnet uranium mononitride

    International Nuclear Information System (INIS)

    Van Doorn, C.F.

    1976-10-01

    The magnetic and elastic properties of antiferromagnetic uranium mononitride single crystals are studied in the thesis from the measurements of the temperature dependences of the magnetic susceptibility, electrical resistivity and elastic constants. The elastic constants C 11 , C 12 and C 44 were determined in the temperature interval 4 to 300 K by ultrasonic measurements of the five possible wave velocities in the [100] and [110] directions. A test for internal consistency was also made. A dip of about 9 percent occurs in C 11 at a temperature of 5 to 6 K lower than the Neel temperature T(N) (equals about 53 K). Starting at T(N), a renormalization in C 44 is proportional to the square of the sublattice magnetization also occurs. Both these results agree with model calculations which include spin-phonon interactions. The investigation of this anomaly was extended by measuring the electrical resistivity of a sample cut from the same crystal as that on which the elasticity was measured. No anomalous behavior was observed at the temperature where C 11 displays its anomaly. However, a discontinuity in the temperature derivative of the resistance was found at T(N). The possible effect of a magnetic field on the resistivity, as well as on the elasticity, was investigated without any measurable effect. The magnetic susceptibility was measured with a Foner magnetometer between 4 and 1 000 K. It was found that above the Neel temperature the paramagnetic susceptibility followed a revised Curie-Weiss law. In an attempt to ascertain the ionic state of the 5f-uranium ion in UN, use was made of the experimentally determined Weiss constant, spin disorder resistivity and Knight shift. A calculation was made that gave a good representation of the ratio of the experimental susceptibilities along the [100] and [110] directions in the ordered region [af

  7. A first principles study of the electronic structure, elastic and thermal properties of UB2

    Science.gov (United States)

    Jossou, Ericmoore; Malakkal, Linu; Szpunar, Barbara; Oladimeji, Dotun; Szpunar, Jerzy A.

    2017-07-01

    Uranium diboride (UB2) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB2 towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB2, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB2 structure respectively. The electronic structure of UB2 was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (kL) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (kel) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along 'a' and 'c' axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB2.

  8. Elastic properties of LaSnxNi5-x compounds

    International Nuclear Information System (INIS)

    Yeheskel, O.; Nattrass, C.E.; Leisure, R.G.; Jacob, I.; Bowman, R.C. Jr.

    2004-01-01

    Ultrasonic methods were used to measure the room-temperature elastic moduli of polycrystalline LaSn x Ni 5-x compounds for 0≤x≤0.5. These materials are of great importance for their hydrogen storage properties. The samples, prepared by a hot isostatic pressing method, had near-theoretical densities with calculated porosities ranging from 0 to 1.5%. The porosity-corrected moduli decreased with increasing x. Poisson's ratio was approximately constant at 0.314 for all the compounds. The Debye temperature, calculated from the RT polycrystalline moduli, decreased from 359 to 344 K as x increased from 0 to 0.5. The results were used to calculate the elastic interaction energy of an interstitial hydrogen atom with the strain fields of all the other interstitial hydrogen. This energy was in turn used to calculate the critical temperature below which phase separation occurs in LaM x Ni 5-x H y compounds (M=Sn or Al). It was found that the critical temperature decreases with increasing x, confirming in a more general way a conclusion drawn for a specific case from earlier thermodynamic measurements. It is suggested that the lowering of the critical temperature plays a role in limiting the width of the plateaus in pressure-composition isotherms for the two-phase regions of these compounds. This suggestion implies a relation between the elastic properties and the maximum hydrogen capacity

  9. Theoretical study of the elastic properties of titanium nitride

    Institute of Scientific and Technical Information of China (English)

    Jingdong CHEN; Yinglu ZHAO; Benhai YU; Chunlei WANG; Deheng SHI

    2009-01-01

    The equilibrium lattice parameter, relative volume V/Vo, elastic constants Cij, and bulk modulus of titanium nitride are successfully obtained using the ab initio plane-wave pseudopotential (PW-PP) method within the framework of density functional theory. The quasi-harmonic Debye model, using a set of total energy vs molar volume obtained with the PW-PP method, is applied to the study of the elastic properties and vibrational effects. We analyze the relationship between the bulk modulus and temperature up to 2000 K and obtain the relationship between bulk modulus B and pressure at different temperatures. It is found that the bulk modulus B increases monotonously with increasing pressure and decreases with increasing temperature. Moreover, the Debye temperature is determined from the non-equilibrium Gibbs func-tions.

  10. Anisotropic surface hole-transport property of triphenylamine-derivative single crystal prepared by solution method

    Energy Technology Data Exchange (ETDEWEB)

    Umeda, Minoru, E-mail: mumeda@vos.nagaokaut.ac.jp [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Katagiri, Mitsuhiko; Shironita, Sayoko [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Nagayama, Norio [Nagaoka University of Technology, Kamitomioka, Nagaoka, Niigata 940-2188 (Japan); Ricoh Company, Ltd., Nishisawada, Numazu, Shizuoka 410-0007 (Japan)

    2016-12-01

    Highlights: • A hole transport molecule was investigated based on its electrochemical redox characteristics. • The solubility and supersolubility curves of the molecule were measured in order to prepare a large crystal. • The polarization micrograph and XRD results revealed that a single crystal was obtained. • An anisotropic surface conduction, in which the long-axis direction exceeds that of the amorphous layer, was observed. • The anisotropic surface conduction was well explained by the molecular stacked structure. - Abstract: This paper reports the anisotropic hole transport at the triphenylamine-derivative single crystal surface prepared by a solution method. Triphenylamine derivatives are commonly used in a hole-transport material for organic photoconductors of laser-beam printers, in which the materials are used as an amorphous form. For developing organic photovoltaics using the photoconductor’s technology, preparation of a single crystal seems to be a specific way by realizing the high mobility of an organic semiconductor. In this study, a single crystal of 4-(2,2-diphenylethenyl)-N,N-bis(4-methylphenyl)-benzenamine (TPA) was prepared and its anisotropic hole-transport property measured. First, the hole-transport property of the TPA was investigated based on its chemical structure and electrochemical redox characteristics. Next, a large-scale single crystal formation at a high rate was developed by employing a solution method based on its solubility and supersolubility curves. The grown TPA was found to be a single crystal based on the polarization micrograph observation and crystallographic analysis. For the TPA single crystal, an anisotropic surface conduction was found, which was well explained by its molecular stack structure. The measured current in the long-axis direction is one order of magnitude greater than that of amorphous TPA.

  11. Determination of prestress and elastic properties of virus capsids

    Science.gov (United States)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  12. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu

    2011-06-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Anisotropic Adhesion Properties of Triangular-Tip-Shaped Micropillars

    KAUST Repository

    Kwak, Moon Kyu; Jeong, Hoon Eui; Bae, Won Gyu; Jung, Ho-Sup; Suh, Kahp Y.

    2011-01-01

    Directional dry adhesive microstructures consisting of high-density triangular-tip-shaped micropillars are described. The wide-tip structures allow for unique directional shear adhesion properties with respect to the peeling direction, along with relatively high normal adhesion. © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Optical transmission properties of an anisotropic defect cavity in one-dimensional photonic crystal

    Science.gov (United States)

    Ouchani, Noama; El Moussaouy, Abdelaziz; Aynaou, Hassan; El Hassouani, Youssef; El Boudouti, El Houssaine; Djafari-Rouhani, Bahram

    2018-01-01

    We investigate theoretically the possibility to control the optical transmission in the visible and infrared regions by a defective one dimensional photonic crystal formed by a combination of a finite isotropic superlattice and an anisotropic defect layer. The Green's function approach has been used to derive the reflection and the transmission coefficients, as well as the densities of states of the optical modes. We evaluate the delay times of the localized modes and we compare their behavior with the total densities of states. We show that the birefringence of an anisotropic defect layer has a significant impact on the behavior of the optical modes in the electromagnetic forbidden bands of the structure. The amplitudes of the defect modes in the transmission and the delay time spectrum, depend strongly on the position of the cavity layer within the photonic crystal. The anisotropic defect layer induces transmission zeros in one of the two components of the transmission as a consequence of a destructive interference of the two polarized waves within this layer, giving rise to negative delay times for some wavelengths in the visible and infrared light ranges. This property is a typical characteristic of the anisotropic photonic layer and is without analogue in their counterpart isotropic defect layers. This structure offers several possibilities for controlling the frequencies, transmitted intensities and the delay times of the optical modes in the visible and infrared regions. It can be a good candidate for realizing high-precision optical filters.

  15. Anisotropy in elastic properties of TiSi2 (C49, C40 and C54), TiSi and Ti5Si3: an ab-initio density functional study

    International Nuclear Information System (INIS)

    Niranjan, Manish K

    2015-01-01

    We present a comparative study of the anisotropy in the elastic properties of the C49, C54 and C40 phases of TiSi 2 , as well as orthorhombic TiSi and hexagonal Ti 5 Si 3 . The elastic constants, elastic moduli, Debye temperature and sound velocities are computed within the framework of density functional theory. The computed values of the elastic constants and moduli are found to be in excellent agreement with available experimental values. The average elastic moduli, such as Young’s modulus, shear modulus, bulk modulus and Poisson’s ratio, of polycrystalline aggregates are computed using the computed elastic constants of single crystals. The anisotropy in elastic properties is analyzed using estimates of shear anisotropic factors, bulk modulus anisotropic factors and variations in Young’s and bulk moduli in different crystallographic directions. Among the Ti–Si phases, the computed directional Young’s modulus profiles of C49 TiSi 2 and C40 TiSi 2 are found to be quite similar to those of bulk Si and Ti, respectively. In addition to the elastic properties, the electronic structure of five Ti–Si phases is studied. The density of states and planar charge density profiles reveal mixed covalent–metallic bonding in all Ti–Si phases. (paper)

  16. Molecular Organization Induced Anisotropic Properties of Perylene - Silica Hybrid Nanoparticles.

    Science.gov (United States)

    Sriramulu, Deepa; Turaga, Shuvan Prashant; Bettiol, Andrew Anthony; Valiyaveettil, Suresh

    2017-08-10

    Optically active silica nanoparticles are interesting owing to high stability and easy accessibility. Unlike previous reports on dye loaded silica particles, here we address an important question on how optical properties are dependent on the aggregation-induced segregation of perylene molecules inside and outside the silica nanoparticles. Three differentially functionalized fluorescent perylene - silica hybrid nanoparticles are prepared from appropriate ratios of perylene derivatives and tetraethyl orthosilicate (TEOS) and investigated the structure property correlation (P-ST, P-NP and P-SF). The particles differ from each other on the distribution, organization and intermolecular interaction of perylene inside or outside the silica matrix. Structure and morphology of all hybrid nanoparticles were characterized using a range of techniques such as electron microscope, optical spectroscopic measurements and thermal analysis. The organizations of perylene in three different silica nanoparticles were explored using steady-state fluorescence, fluorescence anisotropy, lifetime measurements and solid state polarized spectroscopic studies. The interactions and changes in optical properties of the silica nanoparticles in presence of different amines were tested and quantified both in solution and in vapor phase using fluorescence quenching studies. The synthesized materials can be regenerated after washing with water and reused for sensing of amines.

  17. Electronic, magnetic, elastic and thermodynamic properties of Cu{sub 2}MnGa

    Energy Technology Data Exchange (ETDEWEB)

    Ghosh, Sukriti [Department of Physics, Government Kamla Raja Girls Autonomous Post Graduate College, Gwalior 474001, Madhya Pradesh (India); Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India); Gupta, Dinesh C., E-mail: sosfizix@gmail.com [Condensed Matter Theory Group, School of Studies in Physics, Jiwaji University, Gwalior 474 011, Madhya Pradesh (India)

    2016-08-01

    The full-potential linearized augmented plane wave method in the stable Fm-3m phase has been implemented to investigate the structural, elastic, magnetic and electronic properties of Cu{sub 2}MnGa. The optimized equilibrium lattice parameter in stable phase is found to be 5.9495 Å. By the spin resolved density of states calculations, we have shown that the exchange splitting due to Mn atom is the main reason of ferromagnetic behavior of Cu{sub 2}MnGa. The absence of energy gap in both the spin channels predicts that the material is metallic. The total and partial density of states, elastic constants, Shear, Bulk and Young’s moduli, Zener isotropy factor, Cauchy pressure, Pugh's ductility, Kleinman parameter and Poisson's ratio are reported for the first time for the alloy. Cauchy's pressure and Pugh's index of ductility label Cu{sub 2}MnGa as ductile. Cu{sub 2}MnGa is found to be ferromagnetic and anisotropic in nature. The quasi-harmonic approximations have been employed to study the pressure and temperature dependent thermodynamic properties of Cu{sub 2}MnGa. - Highlights: • It is the first attempt to predict a variety of crystal properties of Cu{sub 2}MnGa. • Cu{sub 2}MnGa shows magnetism and hence can prove to be important in modern technology. • Cu{sub 2}MnGa is ductile and hence can attract attention of scientists and technologists.

  18. Critical properties of Sudden Quench Dynamics in the anisotropic XY Model

    OpenAIRE

    Guo, Hongli; Liu, Zhao; Fan, Heng; Chen, Shu

    2010-01-01

    We study the zero temperature quantum dynamical critical behavior of the anisotropic XY chain under a sudden quench in a transverse field. We demonstrate theoretically that both quench magnetic susceptibility and two-particle quench correlation can be used to describe the dynamical quantum phase transition (QPT) properties. Either the quench magnetic susceptibility or the derivative of correlation functions as a function of initial magnetic field $a$ exhibits a divergence at the critical poin...

  19. Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model

    OpenAIRE

    Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi

    2015-01-01

    We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters along with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying $su(1,1)$ Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the s...

  20. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Directory of Open Access Journals (Sweden)

    Francesco Cordero

    2015-12-01

    Full Text Available The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x − T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPB(x boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems.

  1. Elastic Properties and Enhanced Piezoelectric Response at Morphotropic Phase Boundaries

    Science.gov (United States)

    Cordero, Francesco

    2015-01-01

    The search for improved piezoelectric materials is based on the morphotropic phase boundaries (MPB) between ferroelectric phases with different crystal symmetry and available directions for the spontaneous polarization. Such regions of the composition x−T phase diagrams provide the conditions for minimal anisotropy with respect to the direction of the polarization, so that the polarization can easily rotate maintaining a substantial magnitude, while the near verticality of the TMPBx boundary extends the temperature range of the resulting enhanced piezoelectricity. Another consequence of the quasi-isotropy of the free energy is a reduction of the domain walls energies, with consequent formation of domain structures down to nanoscale. Disentangling the extrinsic and intrinsic contributions to the piezoelectricity in such conditions requires a high level of sophistication from the techniques and analyses for studying the structural, ferroelectric and dielectric properties. The elastic characterization is extremely useful in clarifying the phenomenology and mechanisms related to ferroelectric MPBs. The relationship between dielectric, elastic and piezoelectric responses is introduced in terms of relaxation of defects with electric dipole and elastic quadrupole, and extended to the response near phase transitions in the framework of the Landau theory. An account is provided of the anelastic experiments, from torsional pendulum to Brillouin scattering, that provided new important information on ferroelectric MPBs, including PZT, PMN-PT, NBT-BT, BCTZ, and KNN-based systems. PMID:28793707

  2. Hardrock Elastic Physical Properties: Birch's Seismic Parameter Revisited

    Science.gov (United States)

    Wu, M.; Milkereit, B.

    2014-12-01

    Identifying rock composition and properties is imperative in a variety of fields including geotechnical engineering, mining, and petroleum exploration, in order to accurately make any petrophysical calculations. Density is, in particular, an important parameter that allows us to differentiate between lithologies and estimate or calculate other petrophysical properties. It is well established that compressional and shear wave velocities of common crystalline rocks increase with increasing densities (i.e. the Birch and Nafe-Drake relationships). Conventional empirical relations do not take into account S-wave velocity. Physical properties of Fe-oxides and massive sulfides, however, differ significantly from the empirical velocity-density relationships. Currently, acquiring in-situ density data is challenging and problematic, and therefore, developing an approximation for density based on seismic wave velocity and elastic moduli would be beneficial. With the goal of finding other possible or better relationships between density and the elastic moduli, a database of density, P-wave velocity, S-wave velocity, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio was compiled based on a multitude of lab samples. The database is comprised of isotropic, non-porous metamorphic rock. Multi-parameter cross plots of the various elastic parameters have been analyzed in order to find a suitable parameter combination that reduces high density outliers. As expected, the P-wave velocity to S-wave velocity ratios show no correlation with density. However, Birch's seismic parameter, along with the bulk modulus, shows promise in providing a link between observed compressional and shear wave velocities and rock densities, including massive sulfides and Fe-oxides.

  3. Numerical calculations of effective elastic properties of two cellular structures

    International Nuclear Information System (INIS)

    Tuncer, Enis

    2005-01-01

    Young's moduli of regular two-dimensional truss-like and eye-shaped structures are simulated using the finite element method. The structures are idealizations of soft polymeric materials used in ferro-electret applications. In the simulations, the length scales of the smallest representative units are varied, which changes the dimensions of the cell walls in the structures. A power-law expression with a quadratic as the exponent term is proposed for the effective Young's moduli of the systems as a function of the solid volume fraction. The data are divided into three regions with respect to the volume fraction: low, intermediate and high. The parameters of the proposed power-law expression in each region are later represented as a function of the structural parameters, the unit-cell dimensions. The expression presented can be used to predict a structure/property relationship in materials with similar cellular structures. The contribution of the cell-wall thickness to the elastic properties becomes significant at concentrations >0.15. The cell-wall thickness is the most significant factor in predicting the effective Young's modulus of regular cellular structures at high volume fractions of solid. At lower concentrations of solid, the eye-shaped structure yields a lower Young's modulus than a truss-like structure with similar anisotropy. Comparison of the numerical results with those of experimental data for poly(propylene) show good agreement regarding the influence of cell-wall thickness on elastic properties of thin cellular films

  4. Synthesis and colloidal properties of anisotropic hydrothermal barium titanate

    Science.gov (United States)

    Yosenick, Timothy James

    2005-11-01

    Nanoparticles of high dielectric constant materials, especially BaTiO3, are required to achieve decreased layer thickness in multilayer ceramic capacitors (MLCCs). Tabular metal nanoparticles can produce thin metal layers with low surface roughness via electrophoretic deposition (EPD). To achieve similar results with dielectric layers requires the synthesis and dispersion of tabular BaTiO3 nanoparticles. The goal of this study was to investigate the deposition of thin BaTiO3 layers using a colloidal process. The synthesis, interfacial chemistry and colloidal properties of hydrothermal BaTiO3 a model particle system, was investigated. After characterization of the material system particulates were deposited to form thin layers using EPD. In the current study, the synthesis of BaTiO3 has been investigated using a hydrothermal route. TEM and AFM analyses show that the synthesized particles are single crystal with a majority of the particle having a zone axis and {111} large face. The particles have a median thickness of 5.8 +/- 3.1 nm and face diameter of 27.1 +/- 12.3 nm. Particle growth was likely controlled by the formation of {111} twins and the synthesis pH which stabilizes the {111} face during growth. With limited growth in the direction, the particles developed a plate-like morphology. Physical property characterization shows the powder was suitable for further processing with high purity, low hydrothermal defect concentration, and controlled stoichiometry. TEM observations of thermally treated powders indicate that the particles begin to loose the plate-like morphology by 900 °C. The aqueous passivation, dispersion, and doping of nanoscale BaTiO 3 powders was investigated. Passivation BaTiO3 was achieved through the addition of oxalic acid. The oxalic acid selectively adsorbs onto the particle surface and forms a chemically stable 2-3 nm layer of barium oxalate. The negative surface charge of the oxalate effectively passivated the BaTiO3 providing a surface

  5. Method of determining elastic and plastic mechanical properties of ceramic materials using spherical indenters

    Science.gov (United States)

    Adler, Thomas A.

    1996-01-01

    The invention pertains a method of determining elastic and plastic mechanical properties of ceramics, intermetallics, metals, plastics and other hard, brittle materials which fracture prior to plastically deforming when loads are applied. Elastic and plastic mechanical properties of ceramic materials are determined using spherical indenters. The method is most useful for measuring and calculating the plastic and elastic deformation of hard, brittle materials with low values of elastic modulus to hardness.

  6. Phase stability and elastic properties of Cr-V alloys

    Science.gov (United States)

    Gao, M. C.; Suzuki, Y.; Schweiger, H.; Doǧan, Ö. N.; Hawk, J.; Widom, M.

    2013-02-01

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr-V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr-V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  7. Phase stability and elastic properties of Cr-V alloys

    Energy Technology Data Exchange (ETDEWEB)

    Gao, M C; Suzuki, Y; Schweiger, H; Doğan, Ö N; Hawk, J; Widom, M

    2013-01-23

    V is the only element in the periodic table that forms a complete solid solution with Cr and thus is particularly important in alloying strategy to ductilize Cr. This study combines first-principles density functional theory calculations and experiments to investigate the phase stability and elastic properties of Cr–V binary alloys. The cluster expansion study reveals the formation of various ordered compounds at low temperatures that were not previously known. These compounds become unstable due to the configurational entropy of bcc solid solution as the temperature is increased. The elastic constants of ordered and disordered compounds are calculated at both T = 0 K and finite temperatures. The overall trends in elastic properties are in agreement with measurements using the resonant ultrasound spectroscopy method. The calculations predict that addition of V to Cr decreases both the bulk modulus and the shear modulus, and enhances the Poisson’s ratio, in agreement with experiments. Decrease in the bulk modulus is correlated to decrease in the valence electron density and increase in the lattice constant. An enhanced Poisson’s ratio for bcc Cr–V alloys (compared to pure Cr) is associated with an increased density of states at the Fermi level. Furthermore, the difference charge density in the bonding region in the (110) slip plane is highest for pure Cr and decreases gradually as V is added. The present calculation also predicts a negative Cauchy pressure for pure Cr, and it becomes positive upon alloying with V. The intrinsic ductilizing effect from V may contribute, at least partially, to the experimentally observed ductilizing phenomenon in the literature.

  8. Electronic, optical, infrared, and elastic properties of KCdCO3F from first principles

    Science.gov (United States)

    Huang, Xue-Qian; Xue, Han-Yu; Zhang, Can; Pang, Dong-Dong; Lv, Zhen-Long; Duan, Man-Yi

    2018-05-01

    KCdCO3F is a newly synthesized promising ultraviolet nonlinear optical crystal, but its structure is disputed and its fundamental properties have not been well studied. Here our first-principles study indicates that the structure with the space group P 6 bar c2 is energetically more stable than the P 6 bar m2 phase. We systematically investigated its electronic, optical, vibrational, infrared, and elastic properties. The results reveal that KCdCO3F is a direct-band-gap insulator with rather flat bands below the Fermi level. Analyses of its partial density of states revealed that the top (bottom) of its valence (conduction) band is formed by the O 2p (Cd 5s) orbital. It is a negative uniaxial crystal with ionic-covalent nature. Both infrared-active and Raman-active modes exist at its Brillouin zone center, and ions contribute more to its static dielectric constants. Its optical spectra in the visual and infrared ranges were studied, and their origins were revealed. Calculations indicate that KCdCO3F is mechanically stable but anisotropic since it is more vulnerable to shear stress and is easy to cleave along the c axis.

  9. Ultrasonic measurement of high burn-up fuel elastic properties

    International Nuclear Information System (INIS)

    Laux, D.; Despaux, G.; Augereau, F.; Attal, J.; Gatt, J.; Basini, V.

    2006-01-01

    The ultrasonic method developed for the evaluation of high burn-up fuel elastic properties is presented hereafter. The objective of the method is to provide data for fuel thermo-mechanical calculation codes in order to improve industrial nuclear fuel and materials or to design new reactor components. The need for data is especially crucial for high burn-up fuel modelling for which the fuel mechanical properties are essential and for which a wide range of experiments in MTR reactors and high burn-up commercial reactor fuel examinations have been included in programmes worldwide. To contribute to the acquisition of this knowledge the LAIN activity is developing in two directions. First one is development of an ultrasonic focused technique adapted to active materials study. This technique was used few years ago in the EdF laboratory in Chinon to assess the ageing of materials under irradiation. It is now used in a hot cell at ITU Karlsruhe to determine the elastic moduli of high burnup fuels from 0 to 110 GWd/tU. Some of this work is presented here. The second on going programme is related to the qualification of acoustic sensors in nuclear environments, which is of a great interest for all the methods, which work, in a hostile nuclear environment

  10. Structural and elastic properties of InN nanowires

    Energy Technology Data Exchange (ETDEWEB)

    Quddus, Ehtesham B.; Wilson, Alina; Liu, Jie; Cai, Zhihua; Veereddy, Deepak; Tao, Xinyong; Li, Xiaodong; Koley, Goutam [Department of Electrical Engineering, University of South Carolina, Columbia, SC 29208 (United States); Webb, Richard A. [Department of Physics and Astronomy and USC Nanocenter, University of South Carolina, Columbia, SC 29208 (United States)

    2012-04-15

    Structural and elastic properties of InN nanowires (NWs) have been investigated. It was observed that the NWs bend spontaneously or upon meeting an obstacle in their growth path at angles that are multiples of 30 . Lithographically patterned trenches and barriers were found to influence the growth direction of the NWs, which depending on the angle of incidence, grew along the barrier or got deflected from it. Young's modulus of InN NWs, measured by three point bending method using a NW suspended across a trench, was found to be 266 GPa, which is in between the moduli of bulk and thin film InN. Overall, the InN NW properties were found to be very suitable for applications in nanoelectromechanical systems (NEMS) and sensors. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  11. Characterization of Anisotropic Behavior for High Grade Pipes

    Science.gov (United States)

    Yang, Kun; Huo, Chunyong; Ji, Lingkang; Li, Yang; Zhang, Jiming; Ma, Qiurong

    With the developing requirement of nature gas, the property needs of steel for pipe line are higher and higher, especially in strength and toughness. It is necessary to improve the steel grade in order to ensure economic demand and safety. However, with the rise of steel grade, the differences on properties in different orientations (anisotropic behaviors) become more and more obvious after the process of hot rolling, which may affect the prediction of fracture for the pipes seriously (Thinking of isotropic mechanical properties for material in traditional predict way). In order to get the reason for anisotropic mechanics, a series of tests are carried out for high grade steel pipes, including not only mechanical properties but also microstructures. Result indicates that there are obviously anisotropic behaviors for high grade steel pipes in two orientations (rolling orientation and transverse orientation). Strength is better in T orientation because Rm is higher and Rt 0.5 rises more in T orientation, and toughness is better in L orientation because of the higher Akv and SA in L orientation under a same temperature. Banded structures are formed in T orientation, and the spatial distribution of inclusion and precipitated phases are different in T, L and S orientation. The anisotropic arrangement for the matrix in space (banded structures), which is formed after the process of hot rolling, may affect the mechanical properties in different orientation. Moreover, the elasticity modulus of particles is different from the elasticity modulus of matrix, deformation between particles and matrix may cause stress concentration, and damage forms in this place. Because of the different distribution of particles in space, the level of damage is anisotropic in different orientations, and the anisotropic mechanical properties occur finally. Therefore, the anisotropic mechanical properties are determined by the anisotropic microstructures, both the anisotropic of matrix and the

  12. Analysis on the anisotropic electromechanical properties of lead magnoniobate titanate single crystal for ring type ultrasonic motors

    Directory of Open Access Journals (Sweden)

    Xiang Shi

    2016-11-01

    Full Text Available This work discussed the optimized cut of single crystal lead magnoniobate titanate (PMNT for use of ring type travelling wave ultrasonic motors (USMs, according to anisotropic analysis on electromechanical properties. The selection criterion of crystal orientation relies on the circular uniformity of the induced travelling wave amplitude on the stator surface. By calculating the equivalent elastic coefficient c11 and lateral piezoelectric constant d31, the optimal crystal orientations were proposed for PMNT single crystals poled along different directions. For single crystal poled along c directions, the optimal orientation lies along [001]c with d31=-1335pC/N and k31=0.87. The crystallographic orientation [025]c is the optimized orientation for single crystals poled along c direction with d31=199pC/N and k31=0.55. The optimal orientation of 1R configuration is [332¯]c with a large enhancement of d31 = 1201 and k31=0.92.

  13. Nonlinear and anisotropic tensile properties of graft materials used in soft tissue applications.

    Science.gov (United States)

    Yoder, Jonathon H; Elliott, Dawn M

    2010-05-01

    The mechanical properties of extracellular matrix grafts that are intended to augment or replace soft tissues should be comparable to the native tissue. Such grafts are often used in fiber-reinforced tissue applications that undergo multi-axial loading and therefore knowledge of the anisotropic and nonlinear properties are needed, including the moduli and Poisson's ratio in two orthogonal directions within the plane of the graft. The objective of this study was to measure the tensile mechanical properties of several marketed grafts: Alloderm, Restore, CuffPatch, and OrthADAPT. The degree of anisotropy and non-linearity within each graft was evaluated from uniaxial tensile tests and compared to their native tissue. The Alloderm graft was anisotropic in both the toe- and linear-region of the stress-strain response, was highly nonlinear, and generally had low properties. The Restore and CuffPatch grafts had similar stress-strain responses, were largely isotropic, had a linear-region modulus of 18MPa, and were nonlinear. OrthADAPT was anisotropic in the linear-region (131 MPA vs 47MPa in the toe-region) and was highly nonlinear. The Poisson ratio for all grafts was between 0.4 and 0.7, except for the parallel orientation of Restore which was greater than 1.0. Having an informed understanding of how the available grafts perform mechanically will allow for better assessment by the physician for which graft to apply depending upon its application. Copyright 2010 Elsevier Ltd. All rights reserved.

  14. The study of Widmanstätten ferrite in Fe–C alloys by a phase field model coupled with anisotropic elasticity

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Li [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shen, Yao, E-mail: yaoshen@sjtu.edu.cn [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Wan, Haibo [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China); Shanghai Power Equipment Research Institute, Shanghai 200240 (China); Xiong, Xiaochuan [General Motors Global Research & Development, China Science Laboratory, Shanghai 201206 (China); Zhang, Lanting [China State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240 (China)

    2015-11-25

    A phase field model accounting for anisotropic elastic energy has been formulated to investigate the morphology and growth kinetics of a Widmanstätten microstructure during the isothermal austenite to ferrite transformation in binary Fe–C. Physically realistic parameters are employed, for which the thermodynamic functions and the diffusional mobilities are from the literatures that were assessed via the Calphad technique and from experimental results respectively. The simulation results suggest that the anisotropy of elastic energy, resulting from the lattice distortion between the ferrite precipitate and the austenite matrix in the phase transformation, is sufficient to generate a plate-like Widmanstätten structure. The growth of the ferrite precipitate follows completely different dynamic laws in different directions, i.e., parabolic thickening in the direction of the plate thickness and linear lengthening in the direction toward the plate tip. The chief reason for the former is that the moving of the plate broad sides may be regarded as a migration of straight interfaces in the diffusion-controlled phase transformation; the latter is because that the plate tip can maintain a constant radius of curvature during the phase transition after a transient initial stage. Furthermore, the aspect ratio and the lengthening rate of the Widmanstätten ferrite plate simulated by our analyses are in good agreement with the experimental observations. - Highlights: • A model assuming elastic anisotropy for the growth of ferrites is formulated. • The elastic anisotropy is sufficient to generate acicular Widmanstätten ferrites. • The direction of the plate thickness features a parabolic thickening. • The direction of the plate tip characterizes a linear lengthening. • The calculated aspect ratio and growth rate are in good agreement with experiments.

  15. Stress effects on the elastic properties of amorphous polymeric materials

    Energy Technology Data Exchange (ETDEWEB)

    Caponi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Istituto Officina dei Materiali del CNR (CNR-IOM) - Unità di Perugia, c/o Dipartimento di Fisica e Geologia, Perugia I-06100 (Italy); Corezzi, S., E-mail: silvia.caponi@cnr.it, E-mail: silvia.corezzi@unipg.it [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); CNR-ISC (Istituto dei Sistemi Complessi), c/o Università di Roma “LaSapienza,” Piazzale A. Moro 2, I-00185 Roma (Italy); Mattarelli, M. [NiPS Laboratory, Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy); Fioretto, D. [Dipartimento di Fisica e Geologia, Università di Perugia, Via A. Pascoli, I-06100 Perugia (Italy)

    2014-12-07

    Brillouin light scattering measurements have been used to study the stress induced modification in the elastic properties of two glass forming polymers: polybutadiene and epoxy-amine resin, prototypes of linear and network polymers, respectively. Following the usual thermodynamic path to the glass transition, polybutadiene has been studied as a function of temperature from the liquid well into the glassy phase. In the epoxy resin, the experiments took advantage of the system ability to reach the glass both via the chemical vitrification route, i.e., by increasing the number of covalent bonds among the constituent molecules, as well as via the physical thermal route, i.e., by decreasing the temperature. Independently from the particular way chosen to reach the glassy phase, the measurements reveal the signature of long range tensile stresses development in the glass. The stress presence modifies both the value of the sound velocities and their mutual relationship, so as to break the generalized Cauchy-like relation. In particular, when long range stresses, by improvise sample cracking, are released, the frequency of longitudinal acoustic modes increases more than 10% in polybutadiene and ∼4% in the epoxy resin. The data analysis suggests the presence of at least two different mechanisms acting on different length scales which strongly affect the overall elastic behaviour of the systems: (i) the development of tensile stress acting as a negative pressure and (ii) the development of anisotropy which increases its importance deeper and deeper in the glassy state.

  16. Structural and elastic properties of AIBIIIC 2 VI semiconductors

    Science.gov (United States)

    Kumar, V.; Singh, Bhanu P.

    2018-01-01

    The plane wave pseudo-potential method within density functional theory has been used to calculate the structural and elastic properties of AIBIIIC 2 VI semiconductors. The electronic band structure, density of states, lattice constants (a and c), internal parameter (u), tetragonal distortion (η), energy gap (Eg), and bond lengths of the A-C (dAC) and B-C (dBC) bonds in AIBIIIC 2 VI semiconductors have been calculated. The values of elastic constants (Cij), bulk modulus (B), shear modulus (G), Young's modulus (Y), Poisson's ratio (υ), Zener anisotropy factor (A), Debye temperature (ϴD) and G/B ratio have also been calculated. The values of all 15 parameters of CuTlS2 and CuTlSe2 compounds, and 8 parameters of 20 compounds of AIBIIIC 2 VI family, except AgInS2 and AgInSe2, have been calculated for the first time. Reasonably good agreement has been obtained between the calculated, reported and available experimental values.

  17. Elastic properties of suspended multilayer WSe{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Rui, E-mail: rui.zhang@ed.ac.uk; Cheung, Rebecca [Scottish Microelectronics Centre, Alexander Crum Brown Road, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FF (United Kingdom); Koutsos, Vasileios [Institute for Materials and Processes, School of Engineering, The University of Edinburgh, King' s Buildings, Edinburgh EH9 3FB (United Kingdom)

    2016-01-25

    We report the experimental determination of the elastic properties of suspended multilayer WSe{sub 2}, a promising two-dimensional (2D) semiconducting material combined with high optical quality. The suspended WSe{sub 2} membranes have been fabricated by mechanical exfoliation of bulk WSe{sub 2} and transfer of the exfoliated multilayer WSe{sub 2} flakes onto SiO{sub 2}/Si substrates pre-patterned with hole arrays. Then, indentation experiments have been performed on these membranes with an atomic force microscope. The results show that the 2D elastic modulus of the multilayer WSe{sub 2} membranes increases linearly while the prestress decreases linearly as the number of layers increases. The interlayer interaction in WSe{sub 2} has been observed to be strong enough to prevent the interlayer sliding during the indentation experiments. The Young's modulus of multilayer WSe{sub 2} (167.3 ± 6.7 GPa) is statistically independent of the thickness of the membranes, whose value is about two thirds of other most investigated 2D semiconducting transition metal dichalcogenides, namely, MoS{sub 2} and WS{sub 2}. Moreover, the multilayer WSe{sub 2} can endure ∼12.4 GPa stress and ∼7.3% strain without fracture or mechanical degradation. The 2D WSe{sub 2} can be an attractive semiconducting material for application in flexible optoelectronic devices and nano-electromechanical systems.

  18. Anisotropic Effective Mass, Optical Property, and Enhanced Band Gap in BN/Phosphorene/BN Heterostructures.

    Science.gov (United States)

    Hu, Tao; Hong, Jisang

    2015-10-28

    Phosphorene is receiving great research interests because of its peculiar physical properties. Nonetheless, the phosphorus has a trouble of degradation due to oxidation. Hereby, we propose that the electrical and optical anisotropic properties can be preserved by encapsulating into hexagonal boron nitride (h-BN). We found that the h-BN contributed to enhancing the band gap of the phosphorene layer. Comparing the band gap of the pristine phosphorene layer, the band gap of the phosphorene/BN(1ML) system was enhanced by 0.15 eV. It was further enhanced by 0.31 eV in the BN(1ML)/phosphorene/BN(1ML) trilayer structure. However, the band gap was not further enhanced when we increased the thickness of the h-BN layers even up to 4 MLs. Interestingly, the anisotropic effective mass and optical property were still preserved in BN/phosphorene/BN heterostructures. Overall, we predict that the capping of phosphorene by the h-BN layers can be an excellent solution to protect the intrinsic properties of the phosphorene.

  19. Electronic, elastic, and optical properties of monolayer BC{sub 2}N

    Energy Technology Data Exchange (ETDEWEB)

    Jiao, Lina; Hu, Meng; Peng, Yusi; Luo, Yanting; Li, Chunmei; Chen, Zhiqian, E-mail: chen_zq@swu.edu.cn

    2016-12-15

    The structural stability, electronic structure, elasticity, and optical properties of four types of monolayer BC{sub 2}N have been investigated from first principles using calculation based on density functional theory. The results show that the structural stability of BC{sub 2}N increases with the number of C–C and B–N bonds. By calculating the two-dimensional Young's modulus, shear modulus, Poisson's ratio, and shear anisotropic factors in different directions, four structures present various anisotropies and the most stable structure is almost isotropic. For C-type BC{sub 2}N, the values of two-dimensional Young's modulus, shear modulus, and bulk modulus (309, 128, 195 GPa m{sup −1}), are smaller than those of graphene (343, 151, 208) but bigger than those of h-BN (286, 185, 116). Furthermore, the dielectric function, refractive index, reflectivity, absorption coefficient, and energy loss spectrum are also calculated to investigate the mechanism underpinning the optical transitions in BC{sub 2}N, revealing monolayer BC{sub 2}N as a candidate window material. - Graphical abstract: Schematic diagram of BC{sub 2}N under the biaxial tensile strain. Changes in the valence-band top and the conduction-band bottom of BC{sub 2}N with increasing strain.

  20. Elastic properties of Fe-bearing wadsleyite at high pressures

    Science.gov (United States)

    Mao, Z.; Jacobsen, S. D.; Jiang, F.; Smyth, J. R.; Holl, C. M.; Frost, D. J.; Duffy, T.

    2009-12-01

    The elastic properties of wadsleyite, thought to be the dominant phase from 410 to 520-km depth in the mantle, are essential to interpret the seismic images and profiles in the transition zone. Our previous experimental measurements showed that elasticity of Mg2SiO4 wadsleyite can be significantly reduced by hydration at high pressures (e.g. Mao et al., 2008a,b). These results provide the first constraints on the effect of hydration on the high-pressure sound velocities of wadsleyite, and are significantly important for identifying the potential hydrogen rich region in the Earth’s transition zone. Since mantle wadsleyite contains ~10 mol.% Fe, it is more important to investigate the combined effect of Fe and hydration on the elastic properties of wadsleyite. Here, we measured the single-crystal elasticity of wadsleyite with 1.0 wt.% H2O, Mg1.73Fe0.19SiO4H0.16, up to 12 GPa using Brillouin scattering. At ambient conditions, the aggregate bulk modulus, KS0, and shear modulus, G0, are 158.4(5) GPa and 99.2(3) GPa, respectively. Including the results of current and previous studies, we find that the elasticity of wadsleyite decreases linearly with Fe and H2O content according to relations (in GPa): KS0 = 171(3)-13.0(8)CH2O, G0 = 112(2)-8.8(3)CH2O-40(10)XFe, where CH2O is the concentration of hydrogen expressed as weight percent H2O, and XFe is the Fe molar fraction (XFe = Fe/(Mg+Fe)). Further high-pressure measurements showed that the presence of 1 wt.% H2O in Fe-bearing wadsleyite increases the pressure derivative of the shear modulus from 1.5(1) to 1.9(1). But Fe-bearing wadsleyite with this amount of H2O might have a similar pressure derivative of the bulk modulus (4.8(1)) similar to the corresponding anhydrous phase. Using our results, we computed the sound velocities of wadsleyite with 1 wt.% H2O up to 12 GPa at 300 K. Compared to Fe-bearing anhydrous wadsleyite, 1 wt.% H2O causes a 1.5(4)% reduction in the compressional velocity at 12 GPa, and a 1

  1. Numerical investigation of elastic mechanical properties of graphene structures

    International Nuclear Information System (INIS)

    Georgantzinos, S.K.; Giannopoulos, G.I.; Anifantis, N.K.

    2010-01-01

    The computation of the elastic mechanical properties of graphene sheets, nanoribbons and graphite flakes using spring based finite element models is the aim of this paper. Interatomic bonded interactions as well as van der Waals forces between carbon atoms are simulated via the use of appropriate spring elements expressing corresponding potential energies provided by molecular theory. Each layer is idealized as a spring-like structure with carbon atoms represented by nodes while interatomic forces are simulated by translational and torsional springs with linear behavior. The non-bonded van der Waals interactions among atoms which are responsible for keeping the graphene layers together are simulated with the Lennard-Jones potential using appropriate spring elements. Numerical results concerning the Young's modulus, shear modulus and Poisson's ratio for graphene structures are derived in terms of their chilarity, width, length and number of layers. The numerical results from finite element simulations show good agreement with existing numerical values in the open literature.

  2. Elastic and transport properties of topological semimetal ZrTe

    Science.gov (United States)

    Guo, San-Dong; Wang, Yue-Hua; Lu, Wan-Li

    2017-11-01

    Topological semimetals may have substantial applications in electronics, spintronics, and quantum computation. Recently, ZrTe was predicted as a new type of topological semimetal due to the coexistence of Weyl fermions and massless triply degenerate nodal points. In this work, the elastic and transport properties of ZrTe are investigated by combining the first-principles calculations and semiclassical Boltzmann transport theory. Calculated elastic constants prove the mechanical stability of ZrTe, and the bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio also are calculated. It is found that spin-orbit coupling (SOC) has slightly enhanced effects on the Seebeck coefficient, which along the a(b) and c directions for pristine ZrTe at 300 K is 46.26 μVK-1 and 80.20 μVK-1, respectively. By comparing the experimental electrical conductivity of ZrTe (300 K) with the calculated value, the scattering time is determined as 1.59 × 10-14 s. The predicted room-temperature electronic thermal conductivity along the a(b) and c directions is 2.37 {{Wm}}-1{{{K}}}-1 and 2.90 {{Wm}}-1{{{K}}}-1, respectively. The room-temperature lattice thermal conductivity is predicted as 17.56 {{Wm}}-1{{{K}}}-1 and 43.08 {{Wm}}-1{{{K}}}-1 along the a(b) and c directions, showing very strong anisotropy. Calculated results show that isotope scattering produces an observable effect on lattice thermal conductivity. To observably reduce lattice thermal conductivity by nanostructures, the characteristic length should be smaller than 70 nm, based on cumulative lattice thermal conductivity with respect to the phonon mean free path (MFP) at 300 K. It is noted that the average room-temperature lattice thermal conductivity of ZrTe is slightly higher than that of isostructural MoP, which is due to larger phonon lifetimes and smaller Grüneisen parameters. Finally, the total thermal conductivity as a function of temperature is predicted for pristine ZrTe. Our works provide valuable

  3. Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model

    Science.gov (United States)

    Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi

    2017-05-01

    We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters the Hamiltonian with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying su(1, 1) Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the same algebraic structure of the two-photon model. Through the analysis of the spectrum, we discover that the model displays close analogies to many-body systems undergoing quantum phase transitions.

  4. Characterization of fracture properties of thin aluminum inclusions embedded in anisotropic laminate composites

    Directory of Open Access Journals (Sweden)

    Gabriella Bolzon

    2012-01-01

    Full Text Available The fracture properties of thin aluminum inclusions embedded in anisotropic paperboard composites, of interest for food and beverage packaging industry, can be determined by performing tensile tests on non-conventional heterogeneous specimens. The region of interest of the investigated material samples is monitored all along the experiment by digital image correlation techniques, which allow to recover qualitative and quantitative information about the metal deformation and about the evolution of the damaging processes leading to the detachment of the inclusion from the surrounding laminate composite. The interpretation of the laboratory results is supported by the numerical simulation of the tests.

  5. First-principle calculations of the electronic, optical and elastic properties of ZnSiP2 semiconductor

    International Nuclear Information System (INIS)

    Kumar, V.; Tripathy, S.K.

    2014-01-01

    Highlights: • Optical properties of ZnSiP 2 studied under different pressure for stable structure. • Birefringence has been calculated at different wavelengths. • Lattice constants, ħω p , bulk modulus and its derivative have been calculated. • C ij , Y, υ and Zener anisotropic factor have also been estimated. • Our calculated values are relative more close to the experimental values. -- Abstract: The plane wave pseudo-potential method within density functional theory (DFT) has been used to investigate the structural, electronic, optical and elastic properties of ZnSiP 2 chalcopyrite semiconductor. The lattice constants are calculated from the optimized unit cells and compare with the experimental value. The band structure, total density of states (TDOS) and partial density of states (PDOS) have been discussed. The energy gap has been calculated along the Γ direction found to be 1.383 eV, which shows that ZnSiP 2 is pseudo-direct in nature. We have also analyzed the frequency dependent dielectric constant ε(ω) and calculated the birefringence (Δn). The optical properties under three different hydrostatic pressures of 0 GPa, 10 GPa and 20 GPa have been described for the first time in the energy range 0–20 eV. The values of bulk modulus (B), pressure derivative of bulk modulus (B ∗ ), elastic constants (C ij ), Young’s modulus (Y), anisotropic factor (A) and Poisson’s ratio (ν) have been calculated. The calculated values of all above parameters are compared with the available experimental values and the values reported by different workers. A fairly good agreement has been found between them

  6. A novel method for biomaterial scaffold internal architecture design to match bone elastic properties with desired porosity.

    Science.gov (United States)

    Lin, Cheng Yu; Kikuchi, Noboru; Hollister, Scott J

    2004-05-01

    An often-proposed tissue engineering design hypothesis is that the scaffold should provide a biomimetic mechanical environment for initial function and appropriate remodeling of regenerating tissue while concurrently providing sufficient porosity for cell migration and cell/gene delivery. To provide a systematic study of this hypothesis, the ability to precisely design and manufacture biomaterial scaffolds is needed. Traditional methods for scaffold design and fabrication cannot provide the control over scaffold architecture design to achieve specified properties within fixed limits on porosity. The purpose of this paper was to develop a general design optimization scheme for 3D internal scaffold architecture to match desired elastic properties and porosity simultaneously, by introducing the homogenization-based topology optimization algorithm (also known as general layout optimization). With an initial target for bone tissue engineering, we demonstrate that the method can produce highly porous structures that match human trabecular bone anisotropic stiffness using accepted biomaterials. In addition, we show that anisotropic bone stiffness may be matched with scaffolds of widely different porosity. Finally, we also demonstrate that prototypes of the designed structures can be fabricated using solid free-form fabrication (SFF) techniques.

  7. Bulk microstructure and local elastic properties of carbon nanocomposites studied by impulse acoustic microscopy technique

    Science.gov (United States)

    Levin, V.; Petronyuk, Yu.; Morokov, E.; Chernozatonskii, L.; Kuzhir, P.; Fierro, V.; Celzard, A.; Bellucci, S.; Bistarelli, S.; Mastrucci, M.; Tabacchioni, I.

    2016-05-01

    Bulk microstructure and elastic properties of epoxy-nanocarbon nanocomposites for diverse types and different content of carbon nanofiller has been studied by using impulse acoustic microscopy technique. It has been shown occurrence of various types of mesoscopic structure formed by nanoparticles inside the bulk of nanocomposite materials, including nanoparticle conglomerates and nanoparticle aerogel systems. In spite of the bulk microstructure, nanocarbon composites demonstrate elastic uniformity and negligible influence of nanofiller on elastic properties of carbon nanocomposite materials.

  8. Anisotropy of the Elastic Properties of Normal and Pathological Myocardium: Angular Dependence of Ultrasonic Backscatter, Attenuation, and Velocity.

    Science.gov (United States)

    Verdonk, Edward Dennis

    The focus of this thesis is the measurement of anisotropies in the ultrasonic parameters of soft tissues. The goal is to contribute to a better understanding of the physics which underlies the interaction of ultrasonic waves with inhomogeneous and anisotropic media. Broadband measurements using a piezoelectric transducer are reported for investigations of excised specimens of human and canine myocardial tissue. Emphasis is placed on identifying the effect that the muscle fiber orientation, relative to the direction of insonification, has on the propagation and scattering properties of ultrasonic waves. Results of the anisotropy of backscatter, the anisotropy of attenuation, and the anisotropy of quasilongitudinal velocity are presented for data obtained in 2^ circ increments through the full 360 ^circ relative to the myofibers. Measured velocities are used in conjunction with measured specimen densities to determine the elastic stiffness constants c_{11} and c_ {33} and to estimate specific mechanical moduli for thin layers of myocardium.

  9. Mechanical properties of cancellous bone in the human mandibular condyle are anisotropic

    DEFF Research Database (Denmark)

    Giesen, EB; Ding, Ming; Dalstra, M

    2001-01-01

    The objective of the present study was (1) to test the hypothesis that the elastic and failure properties of the cancellous bone of the mandibular condyle depend on the loading direction, and (2) to relate these properties to bone density parameters. Uniaxial compression tests were performed......). Archimedes' principle was applied to determine bone density parameters. The cancellous bone was in axial loading 3.4 times stiffer and 2.8 times stronger upon failure than in transverse loading. High coefficients of correlation were found among the various mechanical properties and between them...

  10. In-plane microwave dielectric properties of paraelectric barium strontium titanate thin films with anisotropic epitaxy

    Science.gov (United States)

    Simon, W. K.; Akdogan, E. K.; Safari, A.; Bellotti, J. A.

    2005-08-01

    In-plane dielectric properties of ⟨110⟩ oriented epitaxial (Ba0.60Sr0.40)TiO3 thin films in the thickness range from 25-1200nm have been investigated under the influence of anisotropic epitaxial strains from ⟨100⟩ NdGaO3 substrates. The measured dielectric properties show strong residual strain and in-plane directional dependence. Below 150nm film thickness, there appears to be a phase transition due to the anisotropic nature of the misfit strain relaxation. In-plane relative permittivity is found to vary from as much as 500-150 along [11¯0] and [001] respectively, in 600nm thick films, and from 75 to 500 overall. Tunability was found to vary from as much as 54% to 20% in all films and directions, and in a given film the best tunability is observed along the compressed axis in a mixed strain state, 54% along [11¯0] in the 600nm film for example.

  11. XRD- and infrared-probed anisotropic thermal expansion properties of an organic semiconducting single crystal.

    Science.gov (United States)

    Mohanraj, J; Capria, E; Benevoli, L; Perucchi, A; Demitri, N; Fraleoni-Morgera, A

    2018-01-17

    The anisotropic thermal expansion properties of an organic semiconducting single crystal constituted by 4-hydroxycyanobenzene (4HCB) have been probed by XRD in the range 120-300 K. The anisotropic thermal expansion coefficients for the three crystallographic axes and for the crystal volume have been determined. A careful analysis of the crystal structure revealed that the two different H-bonds stemming from the two independent, differently oriented 4HCB molecules composing the unit cell have different rearrangement patterns upon temperature variations, in terms of both bond length and bond angle. Linearly Polarized Mid InfraRed (LP-MIR) measurements carried out in the same temperature range, focused on the O-H bond spectral region, confirm this finding. The same LP-MIR measurements, on the basis of a semi-empirical relation and of geometrical considerations and assumptions, allowed calculation of the -CNH-O- hydrogen bond length along the a and b axes of the crystal. In turn, the so-calculated -CNH-O- bond lengths were used to derive the thermal expansion coefficients along the corresponding crystal axes, as well as the volumetric one, using just the LP-MIR data. Reasonable to good agreement with the same values obtained from XRD measurements was obtained. This proof-of-principle opens interesting perspectives about the possible development of a rapid, low cost and industry-friendly assessment of the thermal expansion properties of organic semiconducting single crystals (OSSCs) involving hydrogen bonds.

  12. First-principles calculations for elastic properties of OsB{sub 2} under pressure

    Energy Technology Data Exchange (ETDEWEB)

    Yang Junwei [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Chen Xiangrong, E-mail: x.r.chen@tom.co [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016 (China); Luo Fen [Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065 (China); Ji Guangfu [Laboratory for Shock Wave and Detonation Physics Research, Institute of Fluid Physics, Chinese Academy of Engineering Physics, Mianyang 621900 (China)

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB{sub 2} are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB{sub 2} under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB{sub 2} tend to increase with increasing pressure. It is predicted that OsB{sub 2} is not a superhard material from our calculations.

  13. First-principles calculations for elastic properties of OsB2 under pressure

    International Nuclear Information System (INIS)

    Yang Junwei; Chen Xiangrong; Luo Fen; Ji Guangfu

    2009-01-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  14. First-principles calculations for elastic properties of OsB 2 under pressure

    Science.gov (United States)

    Yang, Jun-Wei; Chen, Xiang-Rong; Luo, Fen; Ji, Guang-Fu

    2009-11-01

    The structure, elastic properties and elastic anisotropy of orthorhombic OsB 2 are investigated by density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation (GGA) as well as local density approximation (LDA). The obtained structural parameters, elastic constants, elastic anisotropy and Debye temperature for OsB 2 under pressure are consistent with the available experimental data and other theoretical results. It is found that the elastic constants, bulk modulus and Debye temperature of OsB 2 tend to increase with increasing pressure. It is predicted that OsB 2 is not a superhard material from our calculations.

  15. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  16. Elastic and transport properties in polycrystals of crackedgrains: Cross-property relations and microstructure

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    2007-10-02

    Some arguments of Bristow (1960) concerning the effects of cracks on elastic and transport (i.e., electrical or thermal conduction) properties of cold-worked metals are reexamined. The discussion is posed in terms of a modern understanding of bounds and estimates for physical properties of polycrystals--in contrast to Bristow's approach using simple mixture theory. One type of specialized result emphasized here is the cross-property estimates and bounds that can be obtained using the methods presented. Our results ultimately agree with those of Bristow, i.e., confirming that microcracking is not likely to be the main cause of the observed elastic behavior of cold-worked metals. However, it also becomes clear that the mixture theory approach to the analysis is too simple and that crack-crack interactions are necessary for proper quantitative study of Bristow's problem.

  17. Structural, elastic and electronic properties of C14-type Al{sub 2}M (M=Mg, Ca, Sr and Ba) Laves phases

    Energy Technology Data Exchange (ETDEWEB)

    Lishi, Ma; Yonghua, Duan, E-mail: duanyh@kmust.edu.cn; Runyue, Li

    2017-02-15

    The structural and mechanical properties, Debye temperatures and anisotropic sound velocities of the Laves phases Al{sub 2}M (M=Mg, Ca, Sr and Ba) with C14-type structure were investigated using the first-principles corresponding calculations. The corresponding calculated structural parameters and formation enthalpies are in good agreement with the available theoretical values, and Al{sub 2}Ca has the best phase stability. The mechanical properties, including elastic constants, bulk modulus B, shear modulus G, Young’s modulus E, and Poisson ratio ν, were deduced within the Voigt-Reuss-Hill approximation. The brittleness and ductility were estimated by the values of Poisson ratio, B/G and Cauchy pressure. Moreover, the elastic anisotropy was investigated by calculating and discussing several anisotropy indexes. Finally, the electronic structures were used to illustrate the bonding characteristics of C14-Al{sub 2}M (M=Mg, Ca, Sr and Ba) phases.

  18. Spin-orbit interaction induced anisotropic property in interacting quantum wires

    Directory of Open Access Journals (Sweden)

    Chang Kai

    2011-01-01

    Full Text Available We investigate theoretically the ground state and transport property of electrons in interacting quantum wires (QWs oriented along different crystallographic directions in (001 and (110 planes in the presence of the Rashba spin-orbit interaction (RSOI and Dresselhaus SOI (DSOI. The electron ground state can cross over different phases, e.g., spin density wave, charge density wave, singlet superconductivity, and metamagnetism, by changing the strengths of the SOIs and the crystallographic orientation of the QW. The interplay between the SOIs and Coulomb interaction leads to the anisotropic dc transport property of QW which provides us a possible way to detect the strengths of the RSOI and DSOI. PACS numbers: 73.63.Nm, 71.10.Pm, 73.23.-b, 71.70.Ej

  19. Modeling of anisotropic properties of double quantum rings by the terahertz laser field.

    Science.gov (United States)

    Baghramyan, Henrikh M; Barseghyan, Manuk G; Kirakosyan, Albert A; Ojeda, Judith H; Bragard, Jean; Laroze, David

    2018-04-18

    The rendering of different shapes of just a single sample of a concentric double quantum ring is demonstrated realizable with a terahertz laser field, that in turn, allows the manipulation of electronic and optical properties of a sample. It is shown that by changing the intensity or frequency of laser field, one can come to a new set of degenerated levels in double quantum rings and switch the charge distribution between the rings. In addition, depending on the direction of an additional static electric field, the linear and quadratic quantum confined Stark effects are observed. The absorption spectrum shifts and the additive absorption coefficient variations affected by laser and electric fields are discussed. Finally, anisotropic electronic and optical properties of isotropic concentric double quantum rings are modeled with the help of terahertz laser field.

  20. Effective Heat and Mass Transport Properties of Anisotropic Porous Ceria for Solar Thermochemical Fuel Generation

    Directory of Open Access Journals (Sweden)

    Sophia Haussener

    2012-01-01

    Full Text Available High-resolution X-ray computed tomography is employed to obtain the exact 3D geometrical configuration of porous anisotropic ceria applied in solar-driven thermochemical cycles for splitting H2O and CO2. The tomography data are, in turn, used in direct pore-level numerical simulations for determining the morphological and effective heat/mass transport properties of porous ceria, namely: porosity, specific surface area, pore size distribution, extinction coefficient, thermal conductivity, convective heat transfer coefficient, permeability, Dupuit-Forchheimer coefficient, and tortuosity and residence time distributions. Tailored foam designs for enhanced transport properties are examined by means of adjusting morphologies of artificial ceria samples composed of bimodal distributed overlapping transparent spheres in an opaque medium.

  1. Intrinsic defect processes and elastic properties of Ti3AC2 (A = Al, Si, Ga, Ge, In, Sn) MAX phases

    Science.gov (United States)

    Christopoulos, S.-R. G.; Filippatos, P. P.; Hadi, M. A.; Kelaidis, N.; Fitzpatrick, M. E.; Chroneos, A.

    2018-01-01

    Mn+1AXn phases (M = early transition metal; A = group 13-16 element and X = C or N) have a combination of advantageous metallic and ceramic properties, and are being considered for structural applications particularly where high thermal conductivity and operating temperature are the primary drivers: for example in nuclear fuel cladding. Here, we employ density functional theory calculations to investigate the intrinsic defect processes and mechanical behaviour of a range of Ti3AC2 phases (A = Al, Si, Ga, Ge, In, Sn). Based on the intrinsic defect reaction, it is calculated that Ti3SnC2 is the more radiation-tolerant 312 MAX phase considered herein. In this material, the C Frenkel reaction is the lowest energy intrinsic defect mechanism with 5.50 eV. When considering the elastic properties of the aforementioned MAX phases, Ti3SiC2 is the hardest and Ti3SnC2 is the softest. All the MAX phases considered here are non-central force solids and brittle in nature. Ti3SiC2 is elastically more anisotropic and Ti3AlC2 is nearly isotropic.

  2. Ground state properties of the bond alternating spin-1/2 anisotropic Heisenberg chain

    Directory of Open Access Journals (Sweden)

    S. Paul

    2017-06-01

    Full Text Available Ground state properties, dispersion relations and scaling behaviour of spin gap of a bond alternating spin-1/2 anisotropic Heisenberg chain have been studied where the exchange interactions on alternate bonds are ferromagnetic (FM and antiferromagnetic (AFM in two separate cases. The resulting models separately represent nearest neighbour (NN AFM-AFM and AFM-FM bond alternating chains. Ground state energy has been estimated analytically by using both bond operator and Jordan-Wigner representations and numerically by using exact diagonalization. Dispersion relations, spin gap and several ground state orders have been obtained. Dimer order and string orders are found to coexist in the ground state. Spin gap is found to develop as soon as the non-uniformity in alternating bond strength is introduced in the AFM-AFM chain which further remains non-zero for the AFM-FM chain. This spin gap along with the string orders attribute to the Haldane phase. The Haldane phase is found to exist in most of the anisotropic region similar to the isotropic point.

  3. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    International Nuclear Information System (INIS)

    Ma, Y.L.; Liu, X.B.; Nguyen, V.V.; Poudyal, N.; Yue, M.; Liu, J.P.

    2016-01-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd 2 Fe 14 B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH) max of 10 MGOe was obtained at NdFeB content of 50 wt%.

  4. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Y.L. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); College of Metallurgical and Materials Engineering, Chongqing University of Science and Technology, Chongqing 401331 (China); Liu, X.B.; Nguyen, V.V.; Poudyal, N. [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States); Yue, M. [College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124 (China); Liu, J.P., E-mail: pliu@uta.edu [Department of Physics, University of Texas at Arlington, Arlington, TX 76019 (United States)

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd{sub 2}Fe{sub 14}B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%. - Highlights: • Anisotropic bulk hybrid MnBi/NdFeB magnets were prepared. • MnBi content affected the density and coercivity temperature coefficient positively. • An energy product (BH){sub max} of 10 MGOe was obtained at NdFeB content of 50 wt%.

  5. Elastic properties of crystalline and liquid gallium at high pressures

    Science.gov (United States)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'Gorova, O. V.; Brazhkin, V. V.

    2008-11-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson’s ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson’s ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a “quasi-molecular” (partially covalent) metal state to a “normal” metal state. An increase in the Poisson’s ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G( p) with increasing pressure and an increase in the slope of the

  6. Elastic properties of crystalline and liquid gallium at high pressures

    International Nuclear Information System (INIS)

    Lyapin, A. G.; Gromnitskaya, E. L.; Yagafarov, O. F.; Stal'gorova, O. V.; Brazhkin, V. V.

    2008-01-01

    The elastic properties of gallium, such as the bulk modulus B, the shear modulus G, and the Poisson's ratio σ, are investigated and the relative change in the volume is determined in the stability regions of the Ga I, Ga II, and liquid phases at pressures of up to 1.7 GPa. The observed lines of the Ga I-Ga II phase transition and the melting curves of the Ga I and Ga II phases are in good agreement with the known phase diagram of gallium; in this case, the coordinates of the Ga I-Ga II-melt triple point are determined to be 1.24 ± 0.40 GPa and 277 ± 2 K. It is shown that the Ga I-Ga II phase transition is accompanied by a considerable decrease in the moduli B (by 30%) and G (by 55%) and an increase in the density by 5.7%. The Poisson's ratio exhibits a jump from typically covalent values of approximately 0.22-0.25 to values of approximately 0.32-0.33, which are characteristic of metals. The observed behavior of the elastic characteristics is described in the framework of the model of the phase transition from a 'quasi-molecular' (partially covalent) metal state to a 'normal' metal state. An increase in the Poisson's ratio in the Ga I phase from 0.22 to 0.25 with an increase in the pressure can be interpreted as a decrease in the degree of covalence, i.e., the degree of spatial anisotropy of the electron density along the bonds, whereas the large value of the pressure derivative of the bulk modulus (equal to approximately 8) observed up to the transition to the Ga II phase or the melt is associated not only with the quasicovalent nature of the Ga I phase but also with the structural features. In view of the presence of seven neighbors for each gallium atom in the Ga I phase, the gallium lattice can be treated as a structure intermediate between typical open-packed and close-packed structures. Premelting effects, such as a flattening of the isothermal dependence of the shear modulus G(p) with increasing pressure and an increase in the slope of the isobaric

  7. Structural, bonding, anisotropic mechanical and thermal properties of Al4SiC4 and Al4Si2C5 by first-principles investigations

    Directory of Open Access Journals (Sweden)

    Liang Sun

    2016-09-01

    Full Text Available The structural, bonding, electronic, mechanical and thermal properties of ternary aluminum silicon carbides Al4SiC4 and Al4Si2C5 are investigated by first-principles calculations combined with the Debye quasi-harmonic approximation. All the calculated mechanical constants like bulk, shear and Young's modulus are in good agreement with experimental values. Both compounds show distinct anisotropic elastic properties along different crystalline directions, and the intrinsic brittleness of both compounds is also confirmed. The elastic anisotropy of both aluminum silicon carbides originates from their bonding structures. The calculated band gap is obtained as 1.12 and 1.04 eV for Al4SiC4 and Al4Si2C5 respectively. From the total electron density distribution map, the obvious covalent bonds exist between Al and C atoms. A distinct electron density deficiency sits between AlC bond along c axis among Al4SiC4, which leads to its limited tensile strength. Meanwhile, the anisotropy of acoustic velocities for both compounds is also calculated and discussed.

  8. Effect of anisotropic plasticity on mixed mode interface crack growth

    DEFF Research Database (Denmark)

    Tvergaard, Viggo; Legarth, Brian Nyvang

    2007-01-01

    different anisotropic yield criteria to account for the plastic anisotropy. Conditions of small-scale yielding are assumed, and due to the mismatch of elastic properties across the interface the corresponding oscillating stress singularity field is applied as boundary conditions on the outer edge...

  9. Exact analysis of the spectral properties of the anisotropic two-bosons Rabi model

    International Nuclear Information System (INIS)

    Cui, Shuai; Cao, Jun-Peng; Fan, Heng; Amico, Luigi

    2017-01-01

    We introduce the anisotropic two-photon Rabi model in which the rotating and counter rotating terms enters the Hamiltonian with two different coupling constants. Eigenvalues and eigenvectors are studied with exact means. We employ a variation of the Braak method based on Bogolubov rotation of the underlying su (1, 1) Lie algebra. Accordingly, the spectrum is provided by the analytical properties of a suitable meromorphic function. Our formalism applies to the two-modes Rabi model as well, sharing the same algebraic structure of the two-photon model. Through the analysis of the spectrum, we discover that the model displays close analogies to many-body systems undergoing quantum phase transitions. (paper)

  10. Investigation of the Anisotropic Thermoelectric Properties of Oriented Polycrystalline SnSe

    Directory of Open Access Journals (Sweden)

    Yulong Li

    2015-06-01

    Full Text Available Polycrystalline SnSe was synthesized by a melting-annealing-sintering process. X-ray diffraction reveals the sample possesses pure phase and strong orientation along [h00] direction. The degree of the orientations was estimated and the anisotropic thermoelectric properties are characterized. The polycrystalline sample shows a low electrical conductivity and a positive and large Seebeck coefficient. The low thermal conductivity is also observed in polycrystalline sample, but slightly higher than that of single crystal. The minimum value of thermal conductivity was measured as 0.3 W/m·K at 790 K. With the increase of the orientation factor, both electrical and thermal conductivities decrease, but the thermopowers are unchanged. As a consequence, the zT values remain unchanged in the polycrystalline samples despite the large variation in the degree of orientation.

  11. Effect of Coulomb interactions and Hartree-Fock exchange on structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler: A comparative study

    Energy Technology Data Exchange (ETDEWEB)

    Lantri, T. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bentata, S., E-mail: sam_bentata@yahoo.com [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouadjemi, B.; Benstaali, W. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Bouhafs, B. [Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Abbad, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria); Modelling and Simulation in Materials Science Laboratory, Djillali Liabès University of Sidi Bel-Abbès, 22000 Sidi Bel-Abbes (Algeria); Zitouni, A. [Laboratory of Technology and Solid’s Properties, Faculty of Sciences and Technology, Abdelhamid Ibn Badis University, BP 227, Mostaganem 27000 (Algeria)

    2016-12-01

    Using the first-principle calculations, we have investigated the structural, elastic, optoelectronic and magnetic properties of Co{sub 2}MnSi Heusler alloy. Based on the density functional theory (DFT) and hiring the full-potential linearized augmented plane wave (FP-LAPW) method, we have used five approaches: the Hybrid on-site exact exchange, the Local Spin Density Approximation (LSDA), the LSDA+U, the Generalized Gradient Approximation GGA and GGA+U; where the Hubbard on-site Coulomb interaction correction U is calculated by constraint local density approximation for Co and Mn atoms. Our results show that the highly-ordered Co{sub 2}MnSi alloy is a ductile, stiff and anisotropic material. It has a half-metallic ferromagnetic character with an integer magnetic moment of 5 µB which is in good agreement with the Slater-Pauling rule. - Highlights: • Each approach gives a half magnetic compound. • EECE gives the largest gap. • Elastic properties show a stiff, ductile and anisotropic material. • Electronic properties are similar for the five approaches. • Total magnetic moment is the same for the five approaches (5 µB).

  12. Influence of temperature on elastic properties of caesium cyanide

    International Nuclear Information System (INIS)

    Singh, Preeti; Gaur, N.K.; Singh, R.K.

    2007-01-01

    An extended three body force shell model (ETSM), which incorporates the effects of translational-rotational (TR) coupling, three body interactions (TBI) and anharmonicity, has been applied to investigate the temperature dependence of the second order elastic constants (c ij , i,j=1,2) of CsCN. The elastic constant c 44 obtained by us shows an anomalous behaviour with the variation of temperature. The variations of elastic constants (c 11 , c 12 , c 44 ) with temperature are almost in excellent agreement with Brillouin scattering measured data. We have also evaluated the temperature variations of the third order elastic constants (c ijk ) and the pressure derivatives of the c ij in the CsCN material. However, their values could not be compared due to lack of experimental data. (copyright 2007 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. Elastic properties of surfactant monolayers at liquid-liquid interfaces: A molecular dynamics study

    DEFF Research Database (Denmark)

    Laradji, Mohamed; Mouritsen, Ole G.

    2000-01-01

    Using a simple molecular model based on the Lennard-Jones potential, we systematically study the elastic properties of liquid-liquid interfaces containing surfactant molecules by means of extensive and large-scale molecular dynamics simulations. The main elastic constants of the interface, corres...

  14. The role of an effective isotropic tissue modulus in the elastic properties of cancellous bone

    NARCIS (Netherlands)

    Kabel, J.; Rietbergen, van B.; Dalstra, M.; Odgaard, A.; Huiskes, H.W.J.

    1999-01-01

    Conceptually, the elastic characteristics of cancellous bone could be predicted directly from the trabecular morphology-or architecture-and by the elastic properties of the tissue itself. Although hardly any experimental evidence exists, it is often implicitly assumed that tissue anisotropy has a

  15. Elastic properties and spectroscopic studies of Na 2 O–ZnO–B 2 O 3 ...

    Indian Academy of Sciences (India)

    Elastic properties, 11B MAS–NMR and IR spectroscopic studies have been employed to study the structure of Na2O–ZnO–B2O3 glasses. Sound velocities and elastic moduli such as longitudinal, Young's, bulk and shear modulus have been measured at a frequency of 10 MHz as a function of ZnO concentration.

  16. Development of elastic properties of Cu-based shape memory alloys during martensitic transformation

    Czech Academy of Sciences Publication Activity Database

    Novák, Václav; Landa, Michal; Šittner, Petr

    2004-01-01

    Roč. 115, - (2004), s. 363 ISSN 1155-4339 Institutional research plan: CEZ:AV0Z1010914 Keywords : Cu-based shape memory alloy s * elastic properties * elastic constants * modelling Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.294, year: 2004

  17. High-pressure structural, elastic, and thermodynamic properties of zircon-type HoPO4 and TmPO4

    International Nuclear Information System (INIS)

    Gomis, O; Lavina, B; Rodríguez-Hernández, P; Muñoz, A; Errandonea, R; Errandonea, D; Bettinelli, M

    2017-01-01

    Zircon-type holmium phosphate (HoPO 4 ) and thulium phosphate (TmPO 4 ) have been studied by single-crystal x-ray diffraction and ab initio calculations. We report on the influence of pressure on the crystal structure, and on the elastic and thermodynamic properties. The equation of state for both compounds is accurately determined. We have also obtained information on the polyhedral compressibility which is used to explain the anisotropic axial compressibility and the bulk compressibility. Both compounds are ductile and more resistive to volume compression than to shear deformation at all pressures. Furthermore, the elastic anisotropy is enhanced upon compression. Finally, the calculations indicate that the possible causes that make the zircon structure unstable are mechanical instabilities and the softening of a silent B 1u mode. (paper)

  18. The effect of inclusions on macroscopic composite elasticity: A systematic finite-element analysis of constituent and bulk elastic properties

    International Nuclear Information System (INIS)

    Yoneda, A; Sohag, F H

    2010-01-01

    The bulk physical properties of composite systems are difficult to predict - even when the properties of the constituent materials in the system are well known. We conducted a finite-element method simulation to examine the inclusion effect by substituting an inclusion phase (second phase) into a host phase (first phase). We have organized the simulation results as a function of the elasticity of host and inclusion phases. In this procedure, special attention was paid to the initial change of elastic constants as the inclusion volume ratio was varied. To accomplish this, we introduced a new parameter D ij defined as the derivatives of the normalized stiffness elastic constant over the inclusion volume ratio. We succeeded in obtaining useful systematic formulations for D ij . These formulations are expected to be applicable to the study of composite systems in many disciplines, such as geophysics, mechanics, material engineering, and biology. The present results provide much more effective constraints on the physical properties of composite systems, like rocks, than traditional methods, such as the Voigt-Reuss bounds.

  19. Effect of elastic anisotropy of crystal grain on stress intensity factor

    International Nuclear Information System (INIS)

    Kamaya, Masayuki

    2002-01-01

    The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)

  20. Effect of elastic anisotropy of crystal grain on stress intensity factor

    Energy Technology Data Exchange (ETDEWEB)

    Kamaya, Masayuki [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The stress intensity factor (SIF) is used widely for evaluating integrity of cracked components. Usually, the SIF obtained under isotropic elastic conditions is used for the evaluations. Although, macroscopic elastic behaviors of polycrystal materials can be considered isotropic, each crystal has anisotropic elastic properties. This implies that if the crack size is small and the influence of anisotropic elastic properties on the stress around cracks is significant, the SIF evaluated under anisotropic elastic conditions may differ from the SIF obtained under isotropic elastic conditions. In the present study, the effect of anisotropic elasticity on the SIF was evaluated by using the finite element analysis (FEA). First, the SIF of semi-circular cracks located in a single crystal was evaluated. It was found that the SIF is affected crystal orientation. Secondly, FEA using a polycrystal model was performed. It was found that the change in the SIF was caused by crack tip crystal orientation as well as the deformation constraint from neighboring crystals. Finally, the statistical tendency of change in the SIF caused by the anisotropic elastic properties and the relationship with crack size were examined. The influence of the local SIF on crack growth behavior is also discussed. (author)

  1. Elastic properties of Ti-24Nb-4Zr-8Sn single crystals with bcc crystal structure

    International Nuclear Information System (INIS)

    Zhang, Y.W.; Li, S.J.; Obbard, E.G.; Wang, H.; Wang, S.C.; Hao, Y.L.; Yang, R.

    2011-01-01

    Research highlights: → The single crystals of Ti2448 alloy with the bcc crystal structure were prepared. → The elastic moduli and constants were measured by several resonant methods. → The crystal shows significant elastic asymmetry in tension and compression. → The crystal exhibits weak nonlinear elasticity with large elastic strain ∼2.5%. → The crystal has weak atomic interactions against crystal distortion to low symmetry. - Abstract: Single crystals of Ti2448 alloy (Ti-24Nb-4Zr-8Sn in wt.%) were grown successfully using an optical floating-zone furnace. Several kinds of resonant methods gave consistent Young's moduli of 27.1, 56.3 and 88.1 GPa and shear moduli of 34.8, 11.0 and 14.6 GPa for the , and oriented single crystals, and C 11 , C 12 and C 44 of 57.2, 36.1 and 35.9 GPa respectively. Uniaxial testing revealed asymmetrical elastic behaviors of the crystals: tension caused elastic softening with a large reversible strain of ∼4% and a stress plateau of ∼250 MPa, whereas compression resulted in gradual elastic stiffening with much smaller reversible strain. The crystals exhibited weak nonlinear elasticity with a large elastic strain of ∼2.5% and a high strength, approaching ∼20% and ∼30% of its ideal shear and ideal tensile strength respectively. The crystals showed linear elasticity with a small elastic strain of ∼1%. These elastic deformation characteristics have been interpreted in terms of weakened atomic interactions against crystal distortion to low crystal symmetry under external applied stresses. These results are consistent with the properties of polycrystalline Ti2448, including high strength, low elastic modulus, large recoverable strain and weak strengthening effect due to grain refinement.

  2. Improved measurements of elastic properties at acoustic resonant frequencies

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Ritchie, I.G.; Shillinglaw, A.J.

    1976-01-01

    The choice of specimens of rectangular cross section for determination of dynamic elastic moduli by the resonant bar technique is often dictated by specimen fabrication problems. The specimen of rectangular cross section lends itself to accurate determination of elastic vibration shapes by a method in which a simple noncontacting optical transducer is used. The unequivocal indexing of the various vibration modes obtained in this way more than compensates for the added computational difficulties associated with rectangular geometry. The approximations used in the calculations of Young's modulus and the shear modulus for bars of rectangular cross section are tested experimentally and it is shown that high precision can be obtained. Determinations of changes in dynamic elastic moduli with temperature or stress are also described. (author)

  3. First principles study of electronic, elastic and thermal properties of lutetium intermetallics

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, S.P.; Rajagopalan, M.

    2011-01-01

    In the present work, the electronic, elastic and thermal properties of lutetium intermetallics LuX have been studied theoretically by using first principles calculations based on density functional theory (DFT) with the generalized gradient approximation (GCA)

  4. A Formalism for the Consistent Description of Non-Linear Elasticity of Anisotropic Media Formalisme pour une description cohérente de l'élasticité non linéaire des milieux anisotropes

    Directory of Open Access Journals (Sweden)

    Helbig K.

    2006-12-01

    Full Text Available The propagation of elastic waves is generally treated under four assumptions: - that the medium is isotropic,- that the medium is homogeneous, - that there is a one-to-one relationship between stress and strain, - that stresses are linearly related to strains (equivalently, that strains are linearly related to stresses. Real media generally violate at least some-and often all-of these assumptions. A valid theoretical description of wave propagation in real media thus depends on the qualitative and quantitative description of the relevant inhomogeneity, anisotropy, and non-linearity: one either has to assume (or show that the deviation from the assumption can - for the problem at hand - be neglected, or develop a theoretical description that is valid even under the deviation. While the effect of a single deviation from the ideal state is rather well understood, difficulties arise in the combination of several such deviations. Non-linear elasticity of anisotropic (triclinic rock samples has been reported, e. g. by P. Rasolofosaon and H. Yin at the 6th IWSA in Trondheim (Rasolofosaon and Yin, 1996. Non-linear anisotropic elasticity matters only for non-infinitesimalamplitudes, i. e. , at least in the vicinity of the source. How large this vicinity is depends on the accuracy of observation and interpretation one tries to maintain, on the source intensity, and on the level of non-linearity. This paper is concerned with the last aspect, i. e. , with the meaning of the numbers beyond the fact that they are the results of measurements. As a measure of the non-linearity of the material, one can use the strain level at which the effective stiffness tensor deviates significantly from the zero-strain stiffness tensor. Particularly useful for this evaluation is the eigensystem (six eigenstiffnesses and six eigenstrains of the stiffness tensor : the eigenstrains provide suitable strain typesfor the calculation of the effective stiffness tensor, and the

  5. Elastic properties of silicon nitride ceramics reinforced with graphene nanofillers

    Czech Academy of Sciences Publication Activity Database

    Seiner, Hanuš; Ramírez, C.; Koller, M.; Sedlák, Petr; Landa, Michal; Miranzo, P.; Belmonte, M.; Osendí, M. I.

    2015-01-01

    Roč. 87, December (2015), s. 675-680 ISSN 0264-1275 R&D Projects: GA ČR GB14-36566G Institutional support: RVO:61388998 Keywords : multilayer graphene * graphene oxide (GO) * silicon nitride * elastic constants * elastic modulus * shear modulus Subject RIV: JI - Composite Materials Impact factor: 3.997, year: 2015 http://www.sciencedirect.com/science/article/pii/S0264127515302938/pdfft?md5=571e00fd7f976e9b66ed789ae2a868b2&pid=1-s2.0-S0264127515302938-main.pdf

  6. First-Principles Investigations of the Structural, Anisotropic Mechanical, Thermodynamic and Electronic Properties of the AlNi2Ti Compound

    Directory of Open Access Journals (Sweden)

    Shuli Tang

    2018-02-01

    Full Text Available In this paper, the electronic, mechanical and thermodynamic properties of AlNi2Ti are studied by first-principles calculations in order to reveal the influence of AlNi2Ti as an interfacial phase on ZTA (zirconia toughened alumina/Fe. The results show that AlNi2Ti has relatively high mechanical properties, which will benefit the impact or wear resistance of the ZTA/Fe composite. The values of bulk, shear and Young’s modulus are 164.2, 63.2 and 168.1 GPa respectively, and the hardness of AlNi2Ti (4.4 GPa is comparable to common ferrous materials. The intrinsic ductile nature and strong metallic bonding character of AlNi2Ti are confirmed by B/G and Poisson’s ratio. AlNi2Ti shows isotropy bulk modulus and anisotropic elasticity in different crystallographic directions. At room temperature, the linear thermal expansion coefficient (LTEC of AlNi2Ti estimated by quasi-harmonic approximation (QHA based on Debye model is 10.6 × 10−6 K−1, close to LTECs of zirconia toughened alumina and iron. Therefore, the thermal matching of ZTA/Fe composite with AlNi2Ti interfacial phase can be improved. Other thermodynamic properties including Debye temperature, sound velocity, thermal conductivity and heat capacity, as well as electronic properties, are also calculated.

  7. Exploring the Local Elastic Properties of Bilayer Membranes Using Molecular Dynamics Simulations

    DEFF Research Database (Denmark)

    Pieffet, Gilles; Botero, Alonso; Peters, Günther H.J.

    2014-01-01

    Membrane mechanical elastic properties regulate a variety of cellular processes involving local membrane deformation, such as ion channel function and vesicle fusion. In this work, we used molecular dynamics simulations to estimate the local elastic properties of a membrane. For this, we calculated...... the stretching process in molecular detail, allowing us to fit this profile to a previously proposed continuum elastic model. Through this approach, we calculated an effective membrane spring constant of 42 kJ-2.mol-1, which is in good agreement with the PMF calculation. Furthermore, the solvation energy we...

  8. Linear analysis using secants for materials with temperature dependent nonlinear elastic modulus and thermal expansion properties

    Science.gov (United States)

    Pepi, John W.

    2017-08-01

    Thermally induced stress is readily calculated for linear elastic material properties using Hooke's law in which, for situations where expansion is constrained, stress is proportional to the product of the material elastic modulus and its thermal strain. When material behavior is nonlinear, one needs to make use of nonlinear theory. However, we can avoid that complexity in some situations. For situations in which both elastic modulus and coefficient of thermal expansion vary with temperature, solutions can be formulated using secant properties. A theoretical approach is thus presented to calculate stresses for nonlinear, neo-Hookean, materials. This is important for high acuity optical systems undergoing large temperature extremes.

  9. Elastic Properties of Nucleic Acids by Single-Molecule Force Spectroscopy.

    Science.gov (United States)

    Camunas-Soler, Joan; Ribezzi-Crivellari, Marco; Ritort, Felix

    2016-07-05

    We review the current knowledge on the use of single-molecule force spectroscopy techniques to extrapolate the elastic properties of nucleic acids. We emphasize the lesser-known elastic properties of single-stranded DNA. We discuss the importance of accurately determining the elastic response in pulling experiments, and we review the simplest models used to rationalize the experimental data as well as the experimental approaches used to pull single-stranded DNA. Applications used to investigate DNA conformational transitions and secondary structure formation are also highlighted. Finally, we provide an overview of the effects of salt and temperature and briefly discuss the effects of contour length and sequence dependence.

  10. Orientational structure formation of silk fibroin with anisotropic properties in solutions

    International Nuclear Information System (INIS)

    Kholmuminov, A.A.

    2008-06-01

    on the boundary 'reservoir - withdrawing capillary' of gland, initiating the transition of α-spiral in β-structures as well as phase separation of fibroin and sericin in stream were discovered; the phase diagram of liquidus for secret in the framework of polymers orientation crystallization conception were suggested; the mechanism of fibroin orientational crystallization under the longitudinal flow of solutions and gels was conformed experimentally; the scientific principles of oriented-crystallized fibrillar biopolymer materials receipt were established on the base of fibroin model solutions with properties of anisotropy of moisture absorption, swelling, desorption, thermo- and biodegradation; the approach of jointly using polarization-optical and hydrodynamic methods to the investigation of fibrillar biopolymers structure formation and phase transformations in solution was developed. Practical value - the elucidated physical regularities of fibroin solution allow to formulate a new idea on fibrillar biopolymer solutions formation and to get on their late model systems for practical use; the established scientific principles of orientational structure-formation and phase transformation of fibroin will be the base for development of original methods of anisotropic biopolymer materials from solutions of the polarization-optical and developed hydrodynamic methods can be used for the investigation of structure and phase transformations of wide range of fibrillar biopolymer samples. Sphere of usage: physics of anisotropic polymer systems, macromolecular compounds solutions, gels, crystals, biopolymers materials science, optical polarization and hydrodynamics. (author)

  11. Anisotropic Dielectric Properties of Carbon Fiber Reinforced Polymer Composites during Microwave Curing

    Science.gov (United States)

    Zhang, Linglin; Li, Yingguang; Zhou, Jing

    2018-01-01

    Microwave cuing technology is a promising alternative to conventional autoclave curing technology in high efficient and energy saving processing of polymer composites. Dielectric properties of composites are key parameters related to the energy conversion efficiency during the microwave curing process. However, existing methods of dielectric measurement cannot be applied to the microwave curing process. This paper presented an offline test method to solve this problem. Firstly, a kinetics model of the polymer composites under microwave curing was established based on differential scanning calorimetry to describe the whole curing process. Then several specially designed samples of different feature cure degrees were prepared and used to reflect the dielectric properties of the composite during microwave curing. It was demonstrated to be a feasible plan for both test accuracy and efficiency through extensive experimental research. Based on this method, the anisotropic complex permittivity of a carbon fiber/epoxy composite during microwave curing was accurately determined. Statistical results indicated that both the dielectric constant and dielectric loss of the composite increased at the initial curing stage, peaked at the maximum reaction rate point and decreased finally during the microwave curing process. Corresponding mechanism has also been systematically investigated in this work.

  12. Theoretical studies of the pressure-induced phase transition and elastic properties of BeS

    Energy Technology Data Exchange (ETDEWEB)

    Ji, Xu [College of Polymer Science and Engineering, Sichuan University, Chengdu 610065 (China); College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Yu, Yang, E-mail: yuyang@scu.edu.cn [Department of Logistics Management, Sichuan University, Chengdu 610065 (China); Ji, Junyi [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China); Long, Jianping [College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059 (China); Chen, Jianjun; Liu, Daijun [College of Chemical Engineering, Sichuan University, Chengdu 610065 (China)

    2015-02-25

    Highlights: • Transition pressure from B3 to B8 of BeS is 58.86 GPa. • Elastic properties of BeS under pressure are predicted for the first time. • Elastic moduli of BeS increase monotonically with increasing pressure. • Elastic anisotropy of BeS has been investigated. - Abstract: First-principles calculations were performed to investigate the structural, electronic and elastic properties of BeS in both B3 and B8 structures. The structural phase transition from B3 to B8 occurs at 58.86 GPa with a volume decrease of 10.74%. The results of the electronic band structure show that the energy gap is indirect for B3 and B8 phases. The pressure dependence of the direct and indirect band gaps for BeS has been investigated. Especially, the elastic constants of B8 BeS under high pressure have been studied for the first time. The mechanical stability of the two phases has been discussed based on the pressure dependence of the elastic constants. In addition, the pressure dependence of bulk modulus, shear modulus, Young’s modulus, elastic wave velocities and brittle–ductile behavior of BeS are all successfully obtained. Finally, the elastic anisotropy has been investigated by using two different methods.

  13. Anisotropic viscoelastic properties of quartz and quartzite in the vicinity of the α- β phase transition

    Science.gov (United States)

    Klumbach, Steffen; Schilling, Frank R.

    2017-10-01

    In this study we performed high-temperature, dynamic (i.e. sinusoidal), three-point bending experiments of quartz single crystals and quartzite samples within the frequency range of seismic surveys (i.e. 0.1-20 Hz). At constant temperature close to the α- β phase transition we observed a unique complex elastic behaviour of both quartz and quartzite. We find a frequency dependence of the complex Young's modulus of α-quartz, including a dissipation maximum at ≈1 Hz supposedly related to the formation and variation of Dauphiné twin domains. Based on our experimental results for different crystallographic directions and additional modelling, we are able to describe the complex Young's modulus of quartz at its α- β phase transition in a 3D diagram. We derive a frequency-dependent elasticity tensor, using a three-element equivalent circuit, composed of two springs E 1 and E 2 as well as a dashpot η. E 1 and η are connected parallel to each other, E 2 is added in series. Compliance coefficients yield ( S 11) E 1 = 572 GPa, E 2 = 70.0 GPa, η = 64.6 GPa·s, ( S 33) E 1 = 127 GPa, E 2 = 52.1 GPa, η = 22.9 GPa·s, ( S 44) E 1 = 204 GPa, E 2 = 37.5 GPa, η = 26.4 GPa·s, ( S 12) E 1 = 612 GPa, E 2 = 106.7 GPa, η = 78.5 GPa·s, ( S 13) E 1 = 1546 GPa, E 2 = 284 GPa, η = 200 GPa·s; S 14 ≈-0.0024 GPa-1. We use the derived direction-dependent coefficients to predict the frequency-dependent complex elastic properties of isotropic polycrystalline quartz. These predictions agree well with the experimental results of the investigated quartzite. Finally, we explore the potential of using the anomalous frequency-dependent complex elastic properties of quartz at the α- β phase transition that we observed as an in situ temperature probe for seismic studies of the Earth's continental crust.

  14. AELAS: Automatic ELAStic property derivations via high-throughput first-principles computation

    Science.gov (United States)

    Zhang, S. H.; Zhang, R. F.

    2017-11-01

    The elastic properties are fundamental and important for crystalline materials as they relate to other mechanical properties, various thermodynamic qualities as well as some critical physical properties. However, a complete set of experimentally determined elastic properties is only available for a small subset of known materials, and an automatic scheme for the derivations of elastic properties that is adapted to high-throughput computation is much demanding. In this paper, we present the AELAS code, an automated program for calculating second-order elastic constants of both two-dimensional and three-dimensional single crystal materials with any symmetry, which is designed mainly for high-throughput first-principles computation. Other derivations of general elastic properties such as Young's, bulk and shear moduli as well as Poisson's ratio of polycrystal materials, Pugh ratio, Cauchy pressure, elastic anisotropy and elastic stability criterion, are also implemented in this code. The implementation of the code has been critically validated by a lot of evaluations and tests on a broad class of materials including two-dimensional and three-dimensional materials, providing its efficiency and capability for high-throughput screening of specific materials with targeted mechanical properties. Program Files doi:http://dx.doi.org/10.17632/f8fwg4j9tw.1 Licensing provisions: BSD 3-Clause Programming language: Fortran Nature of problem: To automate the calculations of second-order elastic constants and the derivations of other elastic properties for two-dimensional and three-dimensional materials with any symmetry via high-throughput first-principles computation. Solution method: The space-group number is firstly determined by the SPGLIB code [1] and the structure is then redefined to unit cell with IEEE-format [2]. Secondly, based on the determined space group number, a set of distortion modes is automatically specified and the distorted structure files are generated

  15. On the elastic properties of carbon nanotube-based composites: modelling and characterization

    CERN Document Server

    Thostenson, E T

    2003-01-01

    The exceptional mechanical and physical properties observed for carbon nanotubes has stimulated the development of nanotube-based composite materials, but critical challenges exist before we can exploit these extraordinary nanoscale properties in a macroscopic composite. At the nanoscale, the structure of the carbon nanotube strongly influences the overall properties of the composite. The focus of this research is to develop a fundamental understanding of the structure/size influence of carbon nanotubes on the elastic properties of nanotube-based composites. Towards this end, the nanoscale structure and elastic properties of a model composite system of aligned multi-walled carbon nanotubes embedded in a polystyrene matrix were characterized, and a micromechanical approach for modelling of short fibre composites was modified to account for the structure of the nanotube reinforcement to predict the elastic modulus of the nanocomposite as a function of the constituent properties, reinforcement geometry and nanot...

  16. The elastic properties of zirconium alloy fuel cladding and pressure tubing materials

    International Nuclear Information System (INIS)

    Rosinger, H.E.; Northwood, D.O.

    1979-01-01

    A knowledge of the elastic properties of zirconium alloys is required in the mathematical modelling of cladding and pressure tubing performance. Until recently, little of this type of data was available, particularly at elevated temperatures. The dynamic elastic moduli of zircaloy-2, zircaloy-4, the alloys Zr-1.0 wt%Nb, Zr-2.5 wt%Nb and Marz grade zirconium have therefore been determined over the temperature range 275 to 1000 K. Young's modulus and shear modulus for all the zirconium alloys decrease with temperature and are expressed by empirical relations fitted to the data. The elastic properties are texture dependent and a detailed study has been conducted on the effect of texture on the elastic properties of Zr-1.0 wt% Nb over the temperature range 275 to 775 K. The results are compared with polycrystalline elastic constants computed from single crystal elastic constants, and the effect of texture on the dynamic elastic moduli is discussed in detail. (Auth.)

  17. Anisotropic local physical properties of human dental enamel in comparison to properties of some common dental filling materials.

    Science.gov (United States)

    Raue, Lars; Hartmann, Christiane D; Rödiger, Matthias; Bürgers, Ralf; Gersdorff, Nikolaus

    2014-11-01

    A major aspect in evaluating the quality of dental materials is their physical properties. Their properties should be a best fit of the ones of dental hard tissues. Manufacturers give data sheets for each material. The properties listed are characterized by a specific value. This assumes (but does not prove) that there is no direction dependence of the properties. However, dental enamel has direction-dependent properties which additionally vary with location in the tooth. The aim of this paper is to show the local direction dependence of physical properties like the elastic modulus or the thermal expansion in dental hard tissues. With this knowledge the 'perfect filling/dental material' could be characterized. Enamel sections of ∼400-500 μm thickness have been cut with a diamond saw from labial/buccal to palatal/lingual (canine, premolar and molar) and parallel to labial (incisor). Crystallite arrangements have been measured in over 400 data points on all types of teeth with x-ray scattering techniques, known from materials science. X-ray scattering measurements show impressively that dental enamel has a strong direction dependence of its physical properties which also varies with location within the tooth. Dental materials possess only little or no property direction dependence. Therefore, a mismatch was found between enamel and dental materials properties. Since dental materials should possess equal (direction depending) properties, worthwhile properties could be characterized by transferring the directional properties of enamel into a property 'wish list' which future dental materials should fulfil. Hereby the 'perfect dental material' can be characterized.

  18. Phase stability, electronic, elastic and thermodynamic properties of Al-RE intermetallics in Mg-Al-RE alloy: A first principles study

    Directory of Open Access Journals (Sweden)

    H.L. Chen

    2015-09-01

    Full Text Available Electronic structure and elastic properties of Al2Y, Al3Y, Al2Gd and Al3Gd phases were investigated by means of first-principles calculations from CASTEP program based on density functional theory (DFT. The ground state energy and elastic constants of each phase were calculated, the formation enthalpy (ΔH, bulk modulus (B, shear modulus (G, Young's modulus (E, Poisson's ratio (ν and anisotropic coefficient (A were derived. The formation enthalpy shows that Al2RE is more stable than Al3RE, and Al-Y intermetallics have stronger phase stability than Al-Gd intermetallics. The calculated mechanical properties indicate that all these four intermetallics are strong and hard brittle phases, it may lead to the similar performance when deforming due to their similar elastic constants. The total and partial electron density of states (DOS, Mulliken population and metallicity were calculated to analyze the electron structure and bonding characteristics of the phases. Finally, phonon calculation was conducted, and the thermodynamic properties were obtained and further discussed.

  19. Preparation and magnetic properties of anisotropic bulk MnBi/NdFeB hybrid magnets

    Science.gov (United States)

    Ma, Y. L.; Liu, X. B.; Nguyen, V. V.; Poudyal, N.; Yue, M.; Liu, J. P.

    2016-08-01

    Anisotropic hybrid bulk magnets of MnBi/NdFeB with different composition ratio have been prepared with starting MnBi and Nd2Fe14B powders as well as epoxy resin as a binder in case it is needed to form bulk samples. It has been found that the ratio between the two phases in content has a remarkable influence on the magnetic properties, the thermal stability and the density of the bulk magnets. With increasing MnBi content the binder addition can be reduced. When the MnBi content is larger than 30 wt%, no binder is needed. On the other hand, the coercivity and saturation magnetization were increased significantly with increasing NdFeB content. When the NdFeB content was increased from 0% to 50%, the maximum energy product was enhanced from 4.7 to 10.0 MGOe, respectively. The energy product then decreased gradually with the NdFeB content due to the reduced density of the hybrid magnet. The thermal stability measurements showed that the temperature coefficient of coercivity grew with the MnBi content and became positive with MnBi=80 wt%.

  20. Properties of magnetic impurities embedded into an anisotropic Heisenberg chain with spin gap

    International Nuclear Information System (INIS)

    Schlottmann, P.

    2000-01-01

    We consider a U(1)-invariant model consisting of the integrable anisotropic easy-axis Heisenberg chain of arbitrary spin S embedding an impurity of spin S'. The host chain has a spin gap for all values of S. The ground state properties and the elementary excitations of the host are studied as a function of the anisotropy and the magnetic field. The impurity is located on a link of the chain and interacts only with both neighboring sites. The coupling of the impurity to the lattice can be tuned by the impurity rapidity p 0 (usually playing the role of the Kondo coupling). The impurity model is then integrable as a function of two continuous parameters (the anisotropy and the impurity rapidity) and two discrete variables (the spins S and S'). The Bethe ansatz equations are derived and used to obtain the magnetization of the impurity. The impurity magnetization is non-universal as a function of p 0 . For small fields the impurity magnetization is determined by the spin gap and the van Hove singularity of the rapidity band. For an overcompensated impurity (S'< S) at intermediate fields there is a crossover to non-Fermi-liquid behavior remnant from the suppressed quantum critical point

  1. Anisotropic stress rupture properties of the nickel-base single crystal superalloy SRR99

    International Nuclear Information System (INIS)

    Han, G.M.; Yu, J.J.; Sun, Y.L.; Sun, X.F.; Hu, Z.Q.

    2010-01-01

    The influence of orientation on the stress rupture properties of a single crystal superalloy SRR99 was investigated at temperatures of 760 and 1040 deg. C. It is found that the creep anisotropic behaviour is pronounced at the lower temperature of 760 deg. C and the stress rupture life ranks in the order [0 0 1] > [1 1 1] > [0 1 1]. Despite the anisotropy of stress rupture life is evidently reduced at the higher temperature, the [1 1 1] orientation exhibits the longest life. At 760 deg. C, EBSD (electron back scattered diffraction) was adopted to measure the lattice rotation and the deduced results indicate that the dominant slip systems are {1 1 1} during stress rupture test. At 1040 deg. C, the ranking order of the stress rupture life is [1 1 1] > [0 0 1] > [0 1 1] and the single crystal close to [0 1 1] orientation still shows the poorest life. In the [0 0 1] and [1 1 1] samples, regular γ' raft structure is formed compared with [0 1 1] samples. Further observations made by TEM investigations reveal the underlying deformation mechanisms for crystals with orientations near [0 0 1], [0 1 1] and [1 1 1] under two test conditions.

  2. Mechanical Properties and Elastic Constants Due to Damage Accumulation and Amorphization in SiC

    International Nuclear Information System (INIS)

    Gao, Fei; Weber, William J.

    2004-01-01

    Damage accumulation due to cascade overlap, which was simulated previously, has been used to study the changes of elastic constants, bulk and elastic moduli as a function of dose. These mechanical properties generally decrease with increasing dose, and the rapid decrease at low-dose level indicates that point defects and small clusters play an important role in the changes of elastic constants rather than topological disorder. The internal strain relaxation has no effect on the elastic constants, C11 and C12, in perfect SiC, but it has a significant influence on all elastic constants calculated in damaged SiC. The elastic constants in the cascade-amorphized (CA) SiC decrease about 19%, 29% and 46% for C11, C12 and C44, respectively. The bulk modulus decrease 23% and the elastic modulus decreases 29%, which is consistent with experimental measurements. The stability of both the perfect SiC and CA-SiC under hydrostatic tension has been also investigated. All mechanical properties in the CA-SiC exhibit behavior similar to that in perfect SiC, but the critical stress at which the CA-SiC becomes structurally unstable is one order of magnitude smaller than that for perfect SiC

  3. Acoustic and elastic properties of Sn2P2S6 crystals

    International Nuclear Information System (INIS)

    Mys, O; Martynyuk-Lototska, I; Vlokh, R; Grabar, A

    2009-01-01

    We present the results concerned with acoustic and elastic properties of Sn 2 P 2 S 6 crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  4. Acoustic and elastic properties of Sn(2)P(2)S(6) crystals.

    Science.gov (United States)

    Mys, O; Martynyuk-Lototska, I; Grabar, A; Vlokh, R

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn(2)P(2)S(6) crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  5. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  6. Structural, electronic and elastic properties of heavy fermion YbRh2 Laves phase compound

    Science.gov (United States)

    Pawar, Harsha; Shugani, Mani; Aynyas, Mahendra; Sanyal, Sankar P.

    2018-05-01

    The structural, electronic and elastic properties of YbRh2 Laves phase intermetallic compound which crystallize in cubic (MgCu2-type) structure have been investigated using ab-initio full potential linearized augmented plane wave (FP- LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B') are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for this compound which obeys the stability criteria for cubic system.

  7. Visco-Elastic Properties of Sodium Hyaluronate Solutions

    Science.gov (United States)

    Kulicke, Werner-Michael; Meyer, Fabian; Bingöl, Ali Ö.; Lohmann, Derek

    2008-07-01

    Sodium Hyaluronate (NaHA) is a member of the glycosaminoglycans and is present in the human organism as part of the synovial fluid and the vitreous body. HA is mainly commercialized as sodium or potassium salt. It can be extracted from cockscombs or can be produced by bacterial fermentation ensuring a low protein content. Because of its natural origin and toxicological harmlessness, NaHA is used to a great extent for pharmaceutical and cosmetic products. In medical applications, NaHA is already being used as a component of flushing and stabilizing fluids in the treatment of eye cataract and as a surrogate for natural synovial fluid. Another growing domain in the commercial utilization of NaHA is the field of skin care products like dermal fillers or moisturizers. In this spectrum, NaHA is used in dilute over semidilute up to concentrated (0elastic material functions of different NaHA samples. This includes, besides shear flow and oscillatory experiments, the performance of rheo-optical measurements in order to determine the elastic component in the range of low shear rates and low concentrations.

  8. Characterization of nuclear graphite elastic properties using laser ultrasonic methods

    Science.gov (United States)

    Zeng, Fan W.; Han, Karen; Olasov, Lauren R.; Gallego, Nidia C.; Contescu, Cristian I.; Spicer, James B.

    2015-05-01

    Laser ultrasonic methods have been used to characterize the elastic behaviors of commercially-available and legacy nuclear graphites. Since ultrasonic techniques are sensitive to various aspects of graphite microstructure including preferred grain orientation, microcrack orientation and porosity, laser ultrasonics is a candidate technique for monitoring graphite degradation and structural integrity in environments expected in high-temperature, gas-cooled nuclear reactors. Aspects of materials texture can be assessed by studying ultrasonic wavespeeds as a function of propagation direction and polarization. Shear wave birefringence measurements, in particular, can be used to evaluate elastic anisotropy. In this work, laser ultrasonic measurements of graphite moduli have been made to provide insight into the relationship between the microstructures and the macroscopic stiffnesses of these materials. In particular, laser ultrasonic measurements have been made using laser line sources to produce shear waves with specific polarizations. By varying the line orientation relative to the sample, shear wave birefringence measurements have been recorded. Results from shear wave birefringence measurements show that an isostatically molded graphite, such as PCIB, behaves isotropically, while an extruded graphite, such as H-451, displays significant ultrasonic texture. Graphites have complicated microstructures that depend on the manufacturing processes used, and ultrasonic texture in these materials could originate from grain orientation and preferred microcrack alignment. Effects on material isotropy due to service related microstructural changes are possible and the ultimate aim of this work is to determine the degree to which these changes can be assessed nondestructively using laser ultrasonics measurements.

  9. Elastic properties and spectroscopic studies of Na2O–ZnO–B2O3 ...

    Indian Academy of Sciences (India)

    Unknown

    Therefore, the choice of the most appropriate material for particular application requires a knowledge of its mechanical properties. Hence, elastic properties are ... son's ratio and θD the Debye temperature. Vl and Vt are longitudinal and shear sound velocities, respectively. The mean sound velocity, Vm, is defined by the ...

  10. Rational design of soft mechanical metamaterials : Independent tailoring of elastic properties with randomness

    NARCIS (Netherlands)

    Mirzaali Mazandarani, M.J.; Hedayati, R.; Vena, P; Vergani, L.; Strano, M.; Zadpoor, A.A.

    2017-01-01

    The elastic properties of mechanical metamaterials are direct functions of their topological designs. Rational design approaches based on computational models could, therefore, be used to devise topological designs that result in the desired properties. It is of particular importance to

  11. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    International Nuclear Information System (INIS)

    Bierwagen, O.

    2007-01-01

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  12. Growth and anisotropic transport properties of self-assembled InAs nanostructures in InP

    Energy Technology Data Exchange (ETDEWEB)

    Bierwagen, O.

    2007-12-20

    Self-assembled InAs nanostructures in InP, comprising quantum wells, quantum wires, and quantum dots, are studied in terms of their formation and properties. In particular, the structural, optical, and anisotropic transport properties of the nanostructures are investigated. The focus is a comprehending exploration of the anisotropic in-plane transport in large ensembles of laterally coupled InAs nanostructures. The self-assembled Stranski-Krastanov growth of InAs nanostructures is studied by gas-source molecular beam epitaxy on both nominally oriented and vicinal InP(001). Optical polarization of the interband transitions arising from the nanostructure type is demonstrated by photoluminescence and transmission spectroscopy. The experimentally convenient four-contact van der Pauw Hall measurement of rectangularly shaped semiconductors, usually applied to isotropic systems, is extended to yield the anisotropic transport properties. Temperature dependent transport measurements are performed in large ensembles of laterally closely spaced nanostructures. The transport of quantum wire-, quantum dash- and quantum dot containing samples is highly anisotropic with the principal axes of conductivity aligned to the <110> directions. The direction of higher mobility is [ anti 110], which is parallel to the direction of the quantum wires. In extreme cases, the anisotropies exceed 30 for electrons, and 100 for holes. The extreme anisotropy for holes is due to diffusive transport through extended states in the [ anti 110], and hopping transport through laterally localized states in the [110] direction, within the same sample. A novel 5-terminal electronic switching device based on gate-controlled transport anisotropy is proposed. The gate-control of the transport anisotropy in modulation-doped, self-organized InAs quantum wires embedded in InP is demonstrated. (orig.)

  13. Phased array compaction cell for measurement of the transversely isotropic elastic properties of compacting sediments

    Energy Technology Data Exchange (ETDEWEB)

    Nihei, K.T.; Nakagawa, S.; Reverdy, F.; Meyer, L.R.; Duranti, L.; Ball, G.

    2010-12-15

    Sediments undergoing compaction typically exhibit transversely isotropic (TI) elastic properties. We present a new experimental apparatus, the phased array compaction cell, for measuring the TI elastic properties of clay-rich sediments during compaction. This apparatus uses matched sets of P- and S-wave ultrasonic transducers located along the sides of the sample and an ultrasonic P-wave phased array source, together with a miniature P-wave receiver on the top and bottom ends of the sample. The phased array measurements are used to form plane P-waves that provide estimates of the phase velocities over a range of angles. From these measurements, the five TI elastic constants can be recovered as the sediment is compacted, without the need for sample unloading, recoring, or reorienting. This paper provides descriptions of the apparatus, the data processing, and an application demonstrating recovery of the evolving TI properties of a compacting marine sediment sample.

  14. GEO-MIX-SELF calculations of the elastic properties of a textured graphite sample at different hydrostatic pressures

    International Nuclear Information System (INIS)

    Matthies, Siegfried

    2012-01-01

    The recently developed GEO-MIX-SELF approximation (GMS) is applied to interpret the pressure dependence of the longitudinal ultrasonic wave velocities in a polycrystalline graphite sample that has already been investigated in a wide range of experimental contexts. Graphite single crystals have extremely anisotropic elastic properties, making this sample a challenging test to demonstrate the potential of the GMS method. GMS combines elements of well known self-consistent algorithms and of the geometric mean approximation. It is able to consider mixtures of different polycrystalline phases, each with its own nonspherical grain shape and preferred orientation (texture). Pores and 'cracks', typical for bulk graphite, are modeled as phases with 'empty' grains. The pressure dependence (up to 150 MPa) of the experimental wave velocities can be well explained using the known texture of the sample by fitting the shape parameters and volume fractions of the graphite grains, cracks and spherical pores. The pressure dependence of these parameters describes a reasonable scenario for the closing of the cracks and pores with increasing pressure. (orig.)

  15. Elastic properties of cubic perovskite BaRuO{sub 3} from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Han Deming; Liu Xiaojuan; Lv Shuhui; Li Hongping [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China); Meng Jian, E-mail: jmeng@ciac.jl.c [State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022 (China)

    2010-08-01

    We present first-principles investigations on the structural and elastic properties of the cubic perovskite BaRuO{sub 3} using density-functional theory within both local density approximation (LDA) and generalized gradient approximation (GGA). Basic physical properties, such as lattice constant, shear modulus, elastic constants (C{sub ij}) are calculated. The calculated energy band structures show that the cubic perovskite BaRuO{sub 3} is metallic. We have also predicted the Young's modulus (Y), Poisson's ratio ({upsilon}), and Anisotropy factor (A).

  16. First Principles Calculations for X-ray Resonant Spectra and Elastic Properties

    International Nuclear Information System (INIS)

    Yongbin Lee

    2006-01-01

    In this thesis, we discuss applications of first principles methods to x-ray resonant spectra and elastic properties calculation. We start with brief reviews about theoretical background of first principles methods, such as density functional theory, local density approximation (LDA), LDA+U, and the linear augmented plane wave (LAPW) method to solve Kohn-Sham equations. After that we discuss x-ray resonant scattering (XRMS), x-ray magnetic circular dichroism (XMCD) and the branching problem in the heavy rare earths Ledges. In the last chapter we discuss the elastic properties of the second hardest material AlMgB 14

  17. A first principles study of the electronic structure, elastic and thermal properties of UB{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Jossou, Ericmoore, E-mail: ericmoore.jossou@usask.ca [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Malakkal, Linu [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada); Szpunar, Barbara; Oladimeji, Dotun [Department of Physics and Engineering Physics, College of Art and Science, University of Saskatchewan, 116 Science Place, Saskatoon, S7N 5E2, Saskatchewan (Canada); Szpunar, Jerzy A. [Department of Mechanical Engineering, College of Engineering, University of Saskatchewan, 57 Campus Drive, Saskatoon, S7N 5A9, Saskatchewan (Canada)

    2017-07-15

    Uranium diboride (UB{sub 2}) has been widely deployed for refractory use and is a proposed material for Accident Tolerant Fuel (ATF) due to its high thermal conductivity. However, the applicability of UB{sub 2} towards high temperature usage in a nuclear reactor requires the need to investigate the thermomechanical properties, and recent studies have failed in highlighting applicable properties. In this work, we present an in-depth theoretical outlook of the structural and thermophysical properties of UB{sub 2}, including but not limited to elastic, electronic and thermal transport properties. These calculations were performed within the framework of Density Functional Theory (DFT) + U approach, using Quantum ESPRESSO (QE) code considering the addition of Coulomb correlations on the uranium atom. The phonon spectra and elastic constant analysis show the dynamic and mechanical stability of UB{sub 2} structure respectively. The electronic structure of UB{sub 2} was investigated using full potential linear augmented plane waves plus local orbitals method (FP-LAPW+lo) as implemented in WIEN2k code. The absence of a band gap in the total and partial density of states confirms the metallic nature while the valence electron density plot reveals the presence of covalent bond between adjacent B-B atoms. We predicted the lattice thermal conductivity (k{sub L}) by solving Boltzmann Transport Equation (BTE) using ShengBTE. The second order harmonic and third-order anharmonic interatomic force constants required as input to ShengBTE was calculated using the Density-functional perturbation theory (DFPT). However, we predicted the electronic thermal conductivity (k{sub el}) using Wiedemann-Franz law as implemented in Boltztrap code. We also show that the sound velocity along ‘a’ and ‘c’ axes exhibit high anisotropy, which accounts for the anisotropic thermal conductivity of UB{sub 2}. - Highlights: •Prediction of electronic structure and thermophysical properties of UB

  18. Elastic and piezoelectric fields around a quantum wire of zincblende heterostructures with interface elasticity effect

    Science.gov (United States)

    Ye, Wei; Liu, Yifei

    2018-04-01

    This work formulates the solutions to the elastic and piezoelectric fields around a quantum wire (QWR) with interface elasticity effect. Closed-form solutions to the piezoelectric potential field of zincblende QWR/matrix heterostructures grown along [111] crystallographic orientation are found and numerical results of InAs/InP heterostructures are provided as an example. The piezoelectric potential in the matrix depends on the interface elasticity, the radius and stiffness of the QWR. Our results indicate that interface elasticity can significantly alter the elastic and piezoelectric fields near the interface. Additionally, when the elastic property of the QWR is considered to be anisotropic in contrary to the common isotropic assumption, piezoelectric potentials are found to be distinct near the interface, but the deviations are negligible at positions far away from the interface.

  19. The Relationship between Elastic Properties and Shear Fabric in Clay-Rich Fault Gouge

    Science.gov (United States)

    Kenigsberg, A.; Saffer, D. M.; Riviere, J.; Ryan, K. L.; Marone, C.

    2016-12-01

    The low mechanical strength of major crustal faults remains a fundamental problem in geophysics and earthquake mechanics. Although both clay abundance and shear fabric are known as key controls on the frictional weakening of faults, the detailed links between fabric, elastic properties, composition, and fault strength remain poorly understood. This gap in information is in part because data are lacking to fully characterize the evolution of gouge microstructures and elastic properties during shearing. Here, we use seismic wave propagation to probe gouge ultrasonic and elastic properties, as a proxy for the development of shear fabrics. We report on a suite of direct shear experiments that include ultrasonic wave transmission to monitor compressional and shear wave velocities (Vp, Vs), during progressive shear of synthetic, clay-rich fault gouge. In order to better understand when and how clay grain alignment and nano-coatings begin to dominate the affect of shear fabric and local gouge density on elastic properties and shear strength, we studied a suite of synthetic gouges composed of Ca-montmorillonite and quartz ranging from 0-100% clay. Our laboratory experiments document friction coefficients (μ) ranging from 0.21 for gouges composed of 100% smectite to 0.62 for 100% quartz, with μ decreasing as clay content increases. We find that Vp and Vs increases as shear progresses and porosity decreases. Ongoing analyses of ultrasonic waves will assess variations of Vp, Vs, and elastic moduli throughout shear and as a function of gouge composition. We anticipate that these variations will be linked to formation of fabric elements observed via microstructural analysis, and will be indicative of whether quartz or clay is dominating how the fabrics form. Finally, we expect that clay content will be the dominant factor controlling shear fabric evolution and, consequently, the key control on the evolution of elastic properties with shear.

  20. Elasticity of Tantalum to 105 Gpa using a stress and angle-resolved x-ray diffraction

    International Nuclear Information System (INIS)

    Cynn, H; Yoo, C S

    1999-01-01

    Determining the mechanical properties such as elastic constants of metals at Mbar pressures has been a difficult task in experiment. Following the development of anisotropic elastic theory by Singh et al.[l], Mao et a1.[2] have recently developed a novel experimental technique to determine the elastic constants of Fe by using the stress and energy-dispersive x-ray diffraction (SEX). In this paper, we present an improved complementary technique, stress and angle-resolved x-ray diffraction (SAX), which we have applied to determine the elastic constants of tantalum to 105 GPa. The extrapolation of the tantalum elastic data shows an excellent agreement with the low-pressure ultrasonic data[3]. We also discuss the improvement of this SAX method over the previous SEX.[elastic constant, anisotropic elastic theory, angle-dispersive synchrotron x-ray diffraction, mechanical properties

  1. Structural phase transition and elastic properties of samarium monopnictides

    International Nuclear Information System (INIS)

    Pagare, Gitanjali; Chouhan, Sunil Singh; Soni, Pooja; Sanyal, Sankar P.

    2011-01-01

    In recent years the monopnictides and monochalcogenides of the rare-earth elements with rocksalt structure (B 1 ) have aroused intensive interest due to the presence of strongly correlated f electrons in them. Under pressure, the nature of f-electrons of these compounds can be changed from localized to itinerant leading to significant changes in physical and chemical properties. These unusual structural, electronic, and high-pressure properties make them candidates for advanced industrial applications. For these applications they provide unique physical properties which cannot be achieved with other materials

  2. The porosity effect on properties of sintered materials as their conductivity and Youngs modulus of elasticity

    International Nuclear Information System (INIS)

    Ondracek, G.; Thuemmler, F.

    1979-01-01

    A set of equations derived demonstrates quantitatively the influence of closed pores on the conductivity as well as on Youngsmodulus of elasticity of sintered materials. There are three microstructural parameters following from the theoretical derivation controlling the porosity effect on the properties, which are the total porosity, the form factor and the orientation factor of the pores. By quantitative microstructure analysis these factors become available providing together with the equations the tool - to calculate the conductivity and Youngs modulus of elasticity from microstructural quantities of sintered materials thus substituting direct property measurements by quantitative microstructure analysis if desired - to endeaver technologically optimum microstructures to obtain theoretically predicted special property values and to precalculate property alterations by microstructure variations ('taylor-made-materials') - to supplement the conventional microstructural quality control by calculated property data. (orig.) [de

  3. Micromechanics-based determination of effective elastic properties of polymer bonded explosives

    International Nuclear Information System (INIS)

    Banerjee, Biswajit; Adams, D.O.

    2003-01-01

    Polymer bonded explosives are particulate composites containing a high volume fraction of stiff elastic explosive particles in a compliant viscoelastic binder. Since the volume fraction of particles can be greater than 0.9 and the modulus contrast greater than 20 000, rigorous bounds on the elastic moduli of the composite are an order of magnitude different from experimentally determined values. Analytical solutions are also observed to provide inaccurate estimates of effective elastic properties. Direct finite element approximations of effective properties require large computational resources because of the complexity of the microstructure of these composites. An alternative approach, the recursive cells method (RCM) is also explored in this work. Results show that the degree of discretization and the microstructures used in finite element models of PBXs can significantly affect the estimated Young's moduli

  4. First-Principle Calculations for Elastic and Thermodynamic Properties of Diamond

    International Nuclear Information System (INIS)

    Fu Zhijian; Chen Xiangrong; Gou Qingquan; Ji Guangfu

    2009-01-01

    The elastic constants and thermodynamic properties of diamond are investigated by using the CRYSTAL03 program. The lattice parameters, the bulk modulus, the heat capacity, the Grueneisen parameter, and the Debye temperature are obtained. The results are in good agreement with the available experimental and theoretical data. Moreover, the relationship between V/V 0 and pressure, the elastic constants under high pressure are successfully obtained. Especially, the elastic constants of diamond under high pressure are firstly obtained theoretically. At the same time, the variations of the thermal expansion α with pressure P and temperature Tare obtained systematically in the ranges of 0-870 GPa and 0-1600 K. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  5. Pressure effect on structural, elastic, and thermodynamic properties of tetragonal B4C4

    Directory of Open Access Journals (Sweden)

    Baobing Zheng

    2015-03-01

    Full Text Available The compressibility, elastic anisotropy, and thermodynamic properties of the recently proposed tetragonal B4C4 (t-B4C4 are investigated under high temperature and high pressure by using of first-principles calculations method. The elastic constants, bulk modulus, shear modulus, Young’s modulus, Vickers hardness, Pugh’s modulus ratio, and Poisson’s ratio for t-B4C4 under various pressures are systematically explored, the obtained results indicate that t-B4C4 is a stiffer material. The elastic anisotropies of t-B4C4 are discussed in detail under pressure from 0 GPa to 100 GPa. The thermodynamic properties of t-B4C4, such as Debye temperature, heat capacity, and thermal expansion coefficient are investigated by the quasi-harmonic Debye model.

  6. Moisture Comfort and Antibacterial Properties of Elastic Warp-Knitted Fabrics

    Directory of Open Access Journals (Sweden)

    Yu Zhi-Cai

    2015-03-01

    Full Text Available Multifunction elastic warp-knitted fabrics were fabricated on a crochet machine with the use of metal composite yarns/viscose yarn and bamboo polyester/ crisscross-section polyester hybrid yarns as the front face and back face of the knitted fabric structure, respectively. We investigated the effect of the blend ratio of bamboo charcoal/ crisscross-section polyester multiply yarns on the fabric's moisture comfort properties, such as water vapour transmission (WVT, water evaporation rate (WER, and water absorbency. The results showed that blending ratio significantly influenced WVT and WER. Moreover, antibacterial activity of the elastic warp- knitted fabric was tested against Staphylococcus aureus and Escherichia coli in accordance with AATCC 90-2011. Finally, the extension- stress value curves were used to analyse the elastic stretching property, and the fabric exhibited greater breaking elongation and lower stress value in the walewise than in the weft direction.

  7. Mechanical properties of concrete with SAP. Part II: Modulus of elasticity

    DEFF Research Database (Denmark)

    Hasholt, Marianne Tange; Jespersen, Morten H. Seneka; Jensen, Ole Mejlhede

    2010-01-01

    In this study, focus is on the modulus of elasticity for concrete with superabsorbent polymers (SAP). The results show that based on composite theory it is possible to establish a model, which predicts overall concrete elasticity. The model assumes a three phase material of aggregate, cement paste......, and air with volume fractions of the three phases as well as elastic properties of paste and aggregates as input parameters. Addition of SAP changes the E-modulus, because it both has an influence on properties of the cement paste and on the volume of air voids. Here, the E-modulus is an example...... a more or less empirical relation. The results show that when introducing SAP, models of a more empirical nature can be misleading (and e.g. relations stated in codes are often of this empirical nature). The reason is twofold: First, the empirical models often have a general problem with the effect...

  8. Low-temperature elastic properties of YbSbPt probed by ultrasound measurements

    Science.gov (United States)

    Nakanishi, Y.; Takahashi, S.; Ohyama, R.; Hasegawa, J.; Nakamura, M.; Suzuki, H.; Yoshizawa, M.

    2018-03-01

    The elastic properties of a single crystal of the half-Heusler compound YbSbPt have been investigated by means of the ultrasonic measurement. In particular, careful measurements of the temperature (T) dependent elastic constant C 11(T) was performed in the vicinity of its phase transition point near T N of 0.5 K. A clear step-like anomaly accompanied by spin-density-wave type antiferromagnetic (AFM) phase transition was found in the C 11(T) curve. The low-temperature magnetic phase diagram is proposed on the basis of the results. The phase diagram consists of, at least two main distinct phases: a low-field and high-field regime with a transition field of approximately 0.6 T at zero field. We discuss the low-temperature elastic property based on analysis of Landau-type free energy.

  9. Elastic and thermal properties of silicon compounds from first-principles calculations

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Haijun; Zhu, H.J. [Yancheng Institute of Technology (China). School of Materials Engineering; Cheng, W.H. [Yancheng Institute of Technology (China). Dept. of Light Chemical Engineering; Xie, L.H. [Sichuan Normal Univ., Chengdu (China). Inst. of Solid State Physics and School of Physics and Electronic Engineering

    2016-11-01

    The structural and elastic properties of V-Si (V{sub 3}Si, VSi{sub 2}, V{sub 5}Si{sub 3}, and V{sub 6}Si{sub 5}) compounds are studied by using first-principles method. The calculated equilibrium lattice parameters and formation enthalpy are in good agreement with the available experimental data and other theoretical results. The calculated results indicate that the V-Si compounds are mechanically stable. Elastic properties including bulk modulus, shear modulus, Young's modulus, and Poisson's ratio are also obtained. The elastic anisotropies of V-Si compounds are investigated via the three-dimensional (3D) figures of directional dependences of reciprocals of Young's modulus. Finally, based on the quasi-harmonic Debye model, the internal energy, Helmholtz free energy, entropy, heat capacity, thermal expansion coefficient, Grueneisen parameter, and Debye temperature of V-Si compounds have been calculated.

  10. An anisotropically and heterogeneously aligned patterned electrospun scaffold with tailored mechanical property and improved bioactivity for vascular tissue engineering.

    Science.gov (United States)

    Xu, He; Li, Haiyan; Ke, Qinfei; Chang, Jiang

    2015-04-29

    The development of vascular scaffolds with controlled mechanical properties and stimulatory effects on biological activities of endothelial cells still remains a significant challenge to vascular tissue engineering. In this work, we reported an innovative approach to prepare a new type of vascular scaffolds with anisotropically and heterogeneously aligned patterns using electrospinning technique with unique wire spring templates, and further investigated the structural effects of the patterned electrospun scaffolds on mechanical properties and angiogenic differentiation of human umbilical vein endothelial cells (HUVECs). Results showed that anisotropically aligned patterned nanofibrous structure was obtained by depositing nanofibers on template in a structurally different manner, one part of nanofibers densely deposited on the embossments of wire spring and formed cylindrical-like structures in the transverse direction, while others loosely suspended and aligned along the longitudinal direction, forming a three-dimensional porous microstructure. We further found that such structures could efficiently control the mechanical properties of electrospun vascular scaffolds in both longitudinal and transverse directions by altering the interval distances between the embossments of patterned scaffolds. When HUVECs were cultured on scaffolds with different microstructures, the patterned scaffolds distinctively promoted adhesion of HUVECs at early stage and proliferation during the culture period. Most importantly, cells experienced a large shape change associated with cell cytoskeleton and nuclei remodeling, leading to a stimulatory effect on angiogenesis differentiation of HUVECs by the patterned microstructures of electrospun scaffolds, and the scaffolds with larger distances of intervals showed a higher stimulatory effect. These results suggest that electrospun scaffolds with the anisotropically and heterogeneously aligned patterns, which could efficiently control the

  11. Highly anisotropic optoelectronic properties of aligned films of self-assembled platinum molecular wires

    NARCIS (Netherlands)

    Debije, M.G.; Haas, de M.P.; Savenije, T.J.; Warman, J.M.; Fontana, M.; Stutzmann, N.; Caseri, W.R.; Smith, P.

    2003-01-01

    Self-assembled columns of alternating tetrachloro- and tetraalkylaminoplatinum moieties form stable, highly oriented, optically anisotropic films on a friction-deposited polytetrafluoroethylene surface (see Figure). Charge transport in the films is rapid (mobility =¿ca. 10–2 cm2¿V–1¿s–1) and highly

  12. EVALUATION OF ELASTICITY AND MECHANICAL PROPERTIES OF BREAD DOUGH MADE WITH REPLACED FLOUR POTATO (IPOMOEA BATATA

    Directory of Open Access Journals (Sweden)

    Ely Fernando Sacón Vera

    2016-10-01

    Full Text Available The effect of the incorporation of sweet potato flour, with 30% replacement in 1kg of wheat flour was evaluated to determine the behavior of elastic and mechanical properties during the kneading and baking stage of bread. For the evaluation the following varieties were studied: Morado Brazil, Morado Ecuador, Guayaco Morado, Ina and Toquecita, and the evaluated properties were: texture (hardness, elasticity, firmness, chewiness measured by a texture meter Bloomfield and volume was measured by INEN standard (NTE INEN 0530: 80. The design employed was completely at random, using analysis of variance at 5% significance level. The results obtained showed that elasticity attribute in texture variable presented significant differences (P <0.05. Analysis concluded that including Toquecita flour in the mixture to form the dough, had the highest elasticity of 13.32mm. However, Morado Ecuador variety flour presented a 6.24 mm elasticity value, ideal for both the malleability of the dough and the freshness of the bread, and concerning volume, the inclusion of Ecuador Morado flour and Ina in the formulation of bread, showed an increase in volume at 93.30 and 93.67cm3 respectively, close to the normed value for wheat flour bread.

  13. Physical and elastic properties of marine sediments off Bombay, India

    Digital Repository Service at National Institute of Oceanography (India)

    SubbaRaju, L.V.; Ramana, Y.V.

    45'N and 21 degrees 00N. Representative core samples preserving their natural state were also retrieved from the region in the water depths ranging from 5 to 70 m for the determination of physical properties in the laboratory. Data on the physical...

  14. A Nanoscale Simulation Study of Elastic Properties of Gaspeite

    Directory of Open Access Journals (Sweden)

    Benazzouz Brahim-Khalil

    2015-02-01

    Full Text Available The study of structural and mechanical properties of carbonate rock is an interesting subject in engineering and its different applications. In this paper, the crystal structure of gaspeite (NiCO3 is investigated by carrying out molecular dynamics simulations based on energy minimization technique using an interatomic interaction potential.

  15. Prediction of elastic properties for polymer-particle nanocomposites exhibiting an interphase

    International Nuclear Information System (INIS)

    Deng Fei; Van Vliet, Krystyn J

    2011-01-01

    Particle-polymer nanocomposites often exhibit mechanical properties described poorly by micromechanical models that include only the particle and matrix phases. Existence of an interfacial region between the particle and matrix, or interphase, has been posited and indirectly demonstrated to account for this effect. Here, we present a straightforward analytical approach to estimate effective elastic properties of composites comprising particles encapsulated by an interphase of finite thickness and distinct elastic properties. This explicit solution can treat nanocomposites that comprise either physically isolated nanoparticles or agglomerates of such nanoparticles; the same framework can also treat physically isolated nanoparticle aggregates or agglomerates of such aggregates. We find that the predicted elastic moduli agree with experiments for three types of particle-polymer nanocomposites, and that the predicted interphase thickness and stiffness of carbon black-rubber nanocomposites are consistent with measured values. Finally, we discuss the relative influence of the particle-polymer interphase thickness and stiffness to identify maximum possible changes in the macroscale elastic properties of such materials.

  16. Effect of van der Waals interactions on the structural and elastic properties of black phosphorus

    DEFF Research Database (Denmark)

    Appalakondaiah, S.; Vaitheeswaran, G.; Lebègue, S.

    2012-01-01

    constant is significantly larger than the C11 and C33 parameters, implying that black phosphorus is stiffer against strain along the a axis than along the b and c axes. From the calculated elastic constants, the mechanical properties, such as bulk modulus, shear modulus, Young's modulus, and Poisson...

  17. Structural, vibrational, elastic and topological properties of PaN under pressure

    DEFF Research Database (Denmark)

    Modak, P.; K. Verma, Ashok; Svane, A.

    2013-01-01

    Electronic, structural, vibrational and elastic properties of PaN have been studied both at ambient and high pressures, using first principles methods with several commonly used parameterizations of the exchange-correlation energy. The generalized gradient approximation (GGA) reproduces the groun...

  18. Elastic properties of Na 2 O–ZnO–ZnF 2

    Indian Academy of Sciences (India)

    Elastic properties of Na2O–ZnO–ZnF2–B2O3 oxyfluoride glasses with different ZnF2 concentrations have been investigated using ultrasonic velocity measurements at room temperature, at a frequency of 10 MHz. Glasses prepared by melt quenching method were suitably polished for the ultrasonic velocity measurements ...

  19. Using strong nonlinearity and high-frequency vibrations to control effective properties of discrete elastic waveguides

    DEFF Research Database (Denmark)

    Lazarov, Boyan Stefanov; Thomsen, Jon Juel; Snaeland, Sveinn Orri

    2008-01-01

    The aim of this article is to investigate how highfrequency (HF) excitation, combined with strong nonlinear elastic material behavior, influences the effective material or structural properties for low-frequency excitation and wave propagation. The HF effects are demonstrated on discrete linear s...

  20. The integration of elastic wave properties and machine learning for the distribution of petrophysical properties in reservoir modeling

    Science.gov (United States)

    Ratnam, T. C.; Ghosh, D. P.; Negash, B. M.

    2018-05-01

    Conventional reservoir modeling employs variograms to predict the spatial distribution of petrophysical properties. This study aims to improve property distribution by incorporating elastic wave properties. In this study, elastic wave properties obtained from seismic inversion are used as input for an artificial neural network to predict neutron porosity in between well locations. The method employed in this study is supervised learning based on available well logs. This method converts every seismic trace into a pseudo-well log, hence reducing the uncertainty between well locations. By incorporating the seismic response, the reliance on geostatistical methods such as variograms for the distribution of petrophysical properties is reduced drastically. The results of the artificial neural network show good correlation with the neutron porosity log which gives confidence for spatial prediction in areas where well logs are not available.

  1. Relationship between morphology and electrical properties in PP/MWCNT composites: Processing-induced anisotropic percolation threshold

    Energy Technology Data Exchange (ETDEWEB)

    Cesano, F., E-mail: federico.cesano@unito.it [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Zaccone, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Armentano, I. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Cravanzola, S.; Muscuso, L. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy); Torre, L. [Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Kenny, J.M. [ECNP, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Materials Engineering Center, UdR INSTM, University of Perugia, Str. Pentima 4, 05100 Terni (Italy); Monti, M. [Proplast, Strada Comunale Savonesa 9, 15057 Rivalta Scrivia, AL (Italy); Scarano, D. [Department of Chemistry, NIS (Nanostructured Interfaces and Surfaces) Interdepartmental Centre and INSTM Centro di Riferimento, University of Torino, Via P. Giuria, 7, 10125 Torino (Italy)

    2016-09-01

    Multi-walled carbon nanotubes (MWCNTs)/polypropylene composites were prepared by melt-mixing, by varying the MWCNT content from 1 to 7 wt%, and samples were manufactured by injection moulding technique. DC electrical characterization was performed by the two-probe method in the three main directions: longitudinal and transversal to the flux of the material during the mould filling, and in the through-thickness direction. Moreover, a dedicated setup was adopted to measure the electrical resistance at different depths of the specimen cross-sectional areas. Two different electrical percolation thresholds, calculated at about 2 wt% and 3 wt% of MWCNTs (longitudinally/transversely to the mould filling flux and in the through-thickness directions, respectively), were found. In order to investigate the role of the structure/morphology of the composites on the electrical properties, samples have been cryofractured, chemically etched and characterized by means of scanning electron microscopy. As a result, the observed anisotropic electrical behaviour was associated with the different network morphology, which was detected in the cross-sectional area, caused by the injection moulding process. Based on the observed through-thickness electrical behaviour, a phenomenological DC conduction model has been developed, describing the sample as a multilayer system, being the external layers (skin) less conductive than the internal region (core). This model, combined with the bulk electrical tests, can be considered as a valuable mathematical tool to foresee the electrical behaviour of MWCNT-based composites for designing new industrial injection-moulded components. - Highlights: • (1–7 wt%) MWCNTs/polypropylene composites are made by injection moulding technique. • The mould temperature is affecting the anisotropic electrical properties. • The anisotropic properties are connected with CNTs dispersion/aggregation. • External layers (skin) are less conductive than the

  2. Local elastic properties of nano-confined fluids: A density functional study

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Zongli, E-mail: zongli_sun@163.com [Science and Technology College, North China Electric Power University, Baoding 071051 (China); Kang, Yanshuang [College of Science, Agriculture University of Hebei, Baoding 071001 (China)

    2014-05-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  3. Local elastic properties of nano-confined fluids: A density functional study

    International Nuclear Information System (INIS)

    Sun, Zongli; Kang, Yanshuang

    2014-01-01

    The understanding of mechanical properties of confined fluids is essential for modeling and manipulating of nano-scaled systems. Unlike the uniform phase, the confined fluids usually display different features in structure and related properties. Due to the presence of the confining geometry, the density profile and many physical and chemical properties may be position-dependent. The aim of our research is to derive an expression for the local elastic property by using the classical elastic theory. Both the bulk and shear moduli are expressed as functional of density of particle. The theoretical result derived is applied to the Lennard-Jones fluids confined in nano-cavity. Comparison of our numerical result and the simulation result is made and qualitative agreement is observed. Further, influence of bulk density, temperature and external potential on moduli is calculated and the physical mechanism is analyzed. Relationship between contact modulus and the interfacial tension is also calculated. Their opposite trend with temperature is observed.

  4. The elastic and thermodynamic properties of ZrMo2 from first principles calculations

    International Nuclear Information System (INIS)

    Liu, Xian-Kun; Zhou, Wei; Zheng, Zhou; Peng, Shu-Ming

    2014-01-01

    Highlights: • Elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are calculated by first principles. • Mechanical stability is testified from elastic constants at zero pressure. • Phonon scattering of ZrMo 2 under different temperature are obtained. - Abstract: The elastic and thermodynamic properties of ZrMo 2 under high temperature and pressure are investigated by first-principles calculations based on pseudopotential plane-wave density functional theory (DFT) within the generalized gradient approximation (GGA) and quasi-harmonic Debye model. The calculated lattice parameters are in good agreement with the available experimental data. The calculated elastic constants of ZrMo 2 increase monotonically with increasing pressure, and the relationship between the elastic constants and pressure show that ZrMo 2 satisfies the mechanical stability criteria under applied pressure (0–65 GPa). The related mechanical properties such as bulk modulus (B), shear modulus (G), Young’s modulus (E), and Poisson’s ratio (v) are also studied for polycrystalline of ZrMo 2 . The calculated B/G value shows that ZrMo 2 behaves in a ductile manner, and higher pressure can significantly improve the ductility of ZrMo 2 . The pressure and temperature dependencies of the relative volume, the bulk modulus, the elastic constants, the heat capacity and the thermal expansion coefficient, as well as the Grüneisen parameters are obtained and discussed by the quasi-harmonic Debye model in the ranges of 0–1800 K and 0–65 GPa

  5. Low field anisotropic properties of a single crystals of superconducting YBa2Cu3O7-δ

    International Nuclear Information System (INIS)

    Hammann, J.; Ocio, M.; Vincent, E.; Bertinotti, A.; Luzet, D.

    1987-09-01

    Low field (0.4G≤H≤3G) magnetization measurements have been performed on small single crystals of superconducting YBa 2 Cu 3 O 7.δ using a SQUID magnetometer. They revealed anisotropic properties in the temperature dependences of the shielding and the Meissner effects. A sharp unique transition at 95 K is observed with the field parallel to c. In the perpendicular direction a second transition line seems to be crossed at T* = 84 K. This temperature T* remains constant in the range of fields investigated

  6. Quantum Mechanical Calculations Of Elastic Properties Of Doped Tetragonal Yttria-Stabilized Zirconium Dioxide

    Directory of Open Access Journals (Sweden)

    Yuriy Natanzon

    2008-01-01

    Full Text Available We report first principles calculations of the electronic and elastic properties of yttriastabilized tetragonal zirconium dioxide doped with metal oxides like: GeO2, TiO2, SiO2,MgO and Al2O3. It is shown that addition of such dopants affects selected elastic propertiesof ZrO2, which is driven by the attraction of electron density by dopant atom and creationof stronger dopant–oxygen bonds. This effect contributes to the increase of superplasticityof doped material.

  7. The first principles study of elastic and thermodynamic properties of ZnSe

    Science.gov (United States)

    Khatta, Swati; Kaur, Veerpal; Tripathi, S. K.; Prakash, Satya

    2018-05-01

    The elastic and thermodynamic properties of ZnSe are investigated using thermo_pw package implemented in Quantum espresso code within the framework of density functional theory. The pseudopotential method within the local density approximation is used for the exchange-correlation potential. The physical parameters of ZnSe bulk modulus and shear modulus, anisotropy factor, Young's modulus, Poisson's ratio, Pugh's ratio and Frantsevich's ratio are calculated. The sound velocity and Debye temperature are obtained from elastic constant calculations. The Helmholtz free energy and internal energy of ZnSe are also calculated. The results are compared with available theoretical calculations and experimental data.

  8. Structure, elastic properties and phase stability of Cr1-xAlxN

    International Nuclear Information System (INIS)

    Mayrhofer, P.H.; Music, D.; Reeswinkel, Th.; Fuss, H.-G.; Schneider, J.M.

    2008-01-01

    The effect of composition and metal sublattice population on the phase stability, structure and elastic properties of cubic (c), hexagonal (h) and orthorhombic spin-polarized Cr 1-x Al x N was studied using ab initio calculations. Excellent correlation between ab initio and experimentally obtained lattice parameters and elastic constants was obtained. The energy of formation suggests that the cubic phase can be stabilized for x in the range 0.48-0.75, depending on the metal sublattice population. The broad range of x, which is also observed in experiments, can be understood by considering the Al distribution induced changes in the configurational contribution to the total energy

  9. Elastic and Strength Properties of Heat-Treated Beech and Birch Wood

    Directory of Open Access Journals (Sweden)

    Vlastimil Borůvka

    2018-04-01

    Full Text Available This paper deals with the impact of heat treatment on the elastic and strength properties of two diffuse porous hardwoods, namely Fagus sylvatica and Betula pendula. Two degrees of the heat treatment were used at temperatures of 165 °C and 210 °C. The dynamic and static elasticity modulus, bending strength, impact toughness, hardness, and density were tested. It is already known that an increase in treatment temperature decreases the mechanical properties and, on the other hand, leads to a better shape and dimensional stability. Higher temperatures of the heat treatment correlated with lower elastic and strength properties. In the case of higher temperature treatments, the decline of tested properties was noticeable as a result of serious changes in the chemical composition of wood. It was confirmed that at higher temperature stages of treatment, there was a more pronounced decrease in beech properties compared to those of the birch, which was the most evident in their bending strength and hardness. Our research confirmed that there is no reason to consider birch wood to be of a lesser quality, although it is regarded by foresters as an inferior tree species. After the heat treatment, the wood properties are almost the same as in the case of beech wood.

  10. Thermophysical and elastic properties of titanium carbonitrides containing molybdenum and tungsten

    International Nuclear Information System (INIS)

    Matsuda, Tetsushi; Matsubara, Hideaki

    2013-01-01

    Highlights: ► (Ti,Me)(C,N) sintered bodies were prepared by hot-pressing. ► The thermophysical and elastic properties of the carbonitrides were evaluated. ► The porosities of the specimens were less than 1%. ► The Young’s modulus decreases with increasing Mo content. ► The Debye temperatures decrease with increasing Mo/W content. -- Abstract: Titanium carbonitride has good mechanical properties such as high hardness and high Young’s modulus. It is a major raw material for Ti(C,N)-based cermets, and their properties are strongly dependent on the properties of titanium carbonitrides. The thermophysical and elastic properties of the carbonitride need to be systematically investigated, so as to be used for designing cutting tools and wear-resistant tools. The thermophysical and elastic properties of (Ti,Me)(C,N) (Me = Mo. W) sintered bodies prepared by hot-pressing at 2200 °C were evaluated. The porosities of the specimens were less than 1%. The Young’s modulus decreased with increasing Mo, which seems to be the result of vacancy formation. The thermal expansion coefficient, the thermal conductivity and the Debye temperatures of (Ti,Me)(C,N) sintered bodies decreased with increasing Mo/W content

  11. Theoretical study of elastic, mechanical and thermodynamic properties of MgRh intermetallic compound

    Directory of Open Access Journals (Sweden)

    S. Boucetta

    2014-03-01

    Full Text Available In the last years, Magnesium alloys are known to be of great technological importance and high scientific interest. In this work, density functional theory plane-wave pseudo potential method, with local density approximation (LDA and generalized gradient approximation (GGA are used to perform first-principles quantum mechanics calculations in order to investigate the structural, elastic and mechanical properties of the intermetallic compound MgRh with a CsCl-type structure. Comparison of the calculated equilibrium lattice constant and experimental data shows good agreement. The elastic constants were determined from a linear fit of the calculated stress–strain function according to Hooke's law. From the elastic constants, the bulk modulus B, shear modulus G, Young's modulus E, Poisson's ratio σ, anisotropy factor A and the ratio B/G for MgRh compound are obtained. The sound velocities and Debye temperature are also predicted from elastic constants. Finally, the linear response method has been used to calculate the thermodynamic properties. The temperature dependence of the enthalpy H, free energy F, entropy S, and heat capacity at constant volume Cv of MgRh crystal in a quasi-harmonic approximation have been obtained from phonon density of states and discussed for the first report. This is the first quantitative theoretical prediction of these properties.

  12. Elastic properties of Sr- and Mg-doped lanthanum gallate at elevated temperature

    Science.gov (United States)

    Okamura, T.; Shimizu, S.; Mogi, M.; Tanimura, M.; Furuya, K.; Munakata, F.

    The elastic moduli, i.e., Young's modulus, shear modulus and Poisson's ratio, of a sintered La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ bulk have been experimentally determined in the temperature range from room temperature to 1373 K using a resonance technique. Anomalous elastic properties were observed over a wide temperature range from 473 to 1173 K. In the results for internal friction and in X-ray diffraction measurements at elevated temperature, two varieties of structural changes were seen in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ in the examined temperature range. The results agreed with the findings of a previous crystallographic study of the same composition system by Slater et al. In addition, the temperature range in which a successive structural change occurred in La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ was the same as that exhibiting the anomalous elastic properties. Taking all the results together, it can be inferred that the successive structural change in the significant temperature range is responsible for the elastic property anomaly of La 0.9Sr 0.1Ga 0.8Mg 0.2O 3- δ.

  13. Elastic properties of porous low-k dielectric nano-films

    Science.gov (United States)

    Zhou, W.; Bailey, S.; Sooryakumar, R.; King, S.; Xu, G.; Mays, E.; Ege, C.; Bielefeld, J.

    2011-08-01

    Low-k dielectrics have predominantly replaced silicon dioxide as the interlayer dielectric for interconnects in state of the art integrated circuits. In order to further reduce interconnect RC delays, additional reductions in k for these low-k materials are being pursued via the introduction of controlled levels of porosity. The main challenge for such dielectrics is the substantial reduction in elastic properties that accompanies the increased pore volume. We report on Brillouin light scattering measurements used to determine the elastic properties of these films at thicknesses well below 200 nm, which are pertinent to their introduction into present ultralarge scale integrated technology. The observation of longitudinal and transverse standing wave acoustic resonances and their transformation into traveling waves with finite in-plane wave vectors provides for a direct non-destructive measure of the principal elastic constants that characterize the elastic properties of these porous nano-scale films. The mode dispersion further confirms that for porosity levels of up to 25%, the reduction in the dielectric constant does not result in severe degradation in the Young's modulus and Poisson's ratio of the films.

  14. Ab initio study of the elastic properties of sodium chloride at high pressure

    International Nuclear Information System (INIS)

    Liu Lei; Bi Yan; Xu Jian; Chen Xiangrong

    2010-01-01

    The equation of state and elastic properties for B1- and B2-NaCl up to 160 GPa have been studied by using the density functional simulation within the generalized gradient approximation (GGA). The calculated lattice constants of NaCl agree well with experimental values in a precision of 0.1% over the pressure range studied. It is found that the cell volume decreases 5.5% at the phase transition point. All three independent elastic stiffness coefficients, c 11 , c 12 and c 44 for B1- and B2-NaCl are evaluated by a calculated stress tensor which was generated by forcing small strain to the optimized unit cell. The calculated zero-pressure elastic moduli, wave velocities, and their initial pressure dependences of B1-NaCl are in excellent agreement with experiments. Systematic investigation on the elasticity of NaCl has been done through four parameters, the Zener anisotropy ratio (A Z ), the acoustic anisotropy factor (A a ), the Cauchy deviation (δ), and the normalized elastic constants (c ij '). With the pressure, the Zener anisotropy ratio A Z decreases in the B1-phase, but increases in the B2-phase and reaches 1 at about 174 GPa, it suggests that NaCl would become elastic isotropic at this pressure range. The acoustic anisotropy factor A a shows the similar pressure behavior as A Z . The Cauchy deviation (δ)) increases with pressures, it demonstrates that in the interatomic interaction, the many-body contribution becomes more important at higher pressures. A discussion on the normalized elastic constants is also presented.

  15. Structure and properties of joints of two-ply steel using ''elastic'' explosives

    International Nuclear Information System (INIS)

    Gel'man, A.S.; Savel'ev, S.A.; Kulakevich, Ya.S.; Sharypov, N.A.; Drogovejko, I.Z.; Domolego, I.E.

    1980-01-01

    Some experimental data on structure and properties of compounds during cladding of sheets made of St3 with sheets of nichrome and steel 12Kh18N10T with the use of ''elastic'' explosives are presented. It is shown that the use of ''elastic'' explosives permits to decrease r parameter sufficiently, (where r - is the ratio of explosive mass to the mass of throwen phate) that reduces considerably the specific consumption explosives in comparison with the consumption conventional mixture explosives. Peculiarities of tested ''elastic'' explosives make their application perspective in two cases - at cladding of complex curved surfaces (drums, tube blanks etc.), as sell as at applications of burst chambers, where explosive mass limits dimensions of cladding blanks and details [ru

  16. Elastic properties of thin poly(vinyl alcohol)–cellulose nanocrystal membranes

    International Nuclear Information System (INIS)

    Pakzad, A; Yassar, R S; Simonsen, J

    2012-01-01

    In spite of extensive studies on the preparation and characterization of nanocomposite materials, the correlation of their properties at the nanoscale with those in bulk is a relatively unexplored area. This is of great importance, especially for materials with potential biomedical applications, where surface properties are as important in determining their applicability as bulk characteristics. In this study, the nanomechanical characteristics of thin poly(vinyl alcohol) (PVOH)–poly(acrylic acid) (PAA)–cellulose nanocrystal (CNC) membranes were studied using the nanoindentation module in an atomic force microscope (AFM) and the properties were compared with the macro-scale properties obtained by tensile tests. In general, the elastic properties measured by nanoindentation followed the same trend as macro-scale tensile tests except for the PVOH 85-PAA 0-CNC 15 sample. In comparison to the macro-scale elastic properties, the measured elastic moduli with AFM were higher. Macro-scale tensile test results indicated that, in the presence of PAA, incorporation of CNCs up to 20 wt% improved the elastic modulus of PVOH, but when no PAA was added, increasing the CNC content above 10 wt% resulted in their agglomeration and degradation in mechanical properties of PVOH. The discrepancy between macro-scale tensile tests and nanoindentation in the PVOH 85-PAA 0-CNC 15 sample was correlated to the high degree of inhomogeneity of CNC dispersion in the matrix. It was found that the composites reinforced with cellulose nanocrystals had smaller indentation imprints and the pile-up effect increased with the increase of cellulose nanocrystal content. (paper)

  17. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO{sub 2} aerogel

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Duoqi; Sun, Yantao [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Feng, Jian [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Yang, Xiaoguang, E-mail: yxg@buaa.edu.cn [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Han, Shiwei; Mi, Chunhu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China); Jiang, Yonggang [National Key Laboratory of Science and Technology on Advanced Ceramic Fibers and Composites, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073 (China); Qi, Hongyu [School of Energy and Power Engineering, Beihang University, P.O. Box 405, Beijing 100191 (China)

    2013-11-15

    Compression tests were conducted on a ceramic-fiber-reinforced SiO{sub 2} aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis.

  18. Experimental investigation on high temperature anisotropic compression properties of ceramic-fiber-reinforced SiO2 aerogel

    International Nuclear Information System (INIS)

    Shi, Duoqi; Sun, Yantao; Feng, Jian; Yang, Xiaoguang; Han, Shiwei; Mi, Chunhu; Jiang, Yonggang; Qi, Hongyu

    2013-01-01

    Compression tests were conducted on a ceramic-fiber-reinforced SiO 2 aerogel at high temperature. Anisotropic mechanical property was found. In-plane Young's modulus is more than 10 times higher than that of out-of-plane, but fracture strain is much lower by a factor of 100. Out-of-plane Young's modulus decreases with increasing temperature, but the in-plane modulus and fracture stress increase with temperature. The out-of-plane property does not change with loading rates. Viscous flow at high temperature is found to cause in-plane shrinkage, and both in-plane and out-of-plane properties change. Compression induced densification of aerogel matrix was also found by Scanning Electron Microscope analysis

  19. The first-principles calculations for the elastic properties of Zr2Al under compression

    International Nuclear Information System (INIS)

    Yuan Xiaoli; Wei Dongqing; Chen Xiangrong; Zhang Qingming; Gong Zizheng

    2011-01-01

    Graphical abstract: The calculated elastic constants C ij as a function of pressure P. Display Omitted Research highlights: → It is found that the five independent elastic constants increase monotonically with pressure. C 11 and C 33 vary rapidly as pressure increases, C 13 and C 12 becomes moderate. However, C 44 increases comparatively slowly with pressure. Figure shows excellent satisfaction of the calculated elastic constants of Zr 2 Al to these equations and hence in our calculation, the Zr 2 Al is mechanically stable at pressure up to 100 GPa. - Abstract: The first-principles calculations were applied to investigate the structural, elastic constants of Zr 2 Al alloy with increasing pressure. These properties are based on the plane wave pseudopotential density functional theory (DFT) method within the generalized gradient approximation (GGA) for exchange and correlation. The result of the heat of formation of Zr 2 Al crystal investigated is in excellent consistent with results from other study. The anisotropy, the shear modulus, and Young's modulus for the ideal polycrystalline Zr 2 Al are also studied. It is found that (higher) pressure can significantly improve the ductility of Zr 2 Al. Moreover, the elastic constants of Zr 2 Al increase monotonically and the anisotropies decrease with the increasing pressure. Finally, it is observed that Zr d electrons are mainly contributed to the density of states at the Fermi level.

  20. Density functional theory investigation of elastic properties and martensitic transformation of Ti-Ta alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chakraborty, Tanmoy; Rogal, Jutta; Drautz, Ralf [Interdisciplinary Centre for Advanced Materials Simulation, Ruhr- Universitaet Bochum (Germany)

    2016-07-01

    Ti-Ta alloys are considered as promising materials for high temperature shape memory alloys as well as biomedical applications. The properties of these alloys have been shown to be strongly composition dependent. The temperature for the martensitic transformation between the high temperature cubic austenite and the low temperature orthorhombic martensite decreases linearly with increasing Ta content. Likewise, the elastic properties show clear trends with changing composition. We use density functional theory to investigate the involved phases in Ti-Ta where the disordered phases are treated by special quasi-random structures. To compare the stability of the involved phases as a function of temperature we calculate free energies using the quasi-harmonic Debye model. The obtained trends in the stability are consistent with experimentally measured transformation temperatures. Furthermore, we determine elastic properties which are in good agreement with experimentally observed trends.

  1. Predicting the elastic properties of double-walled carbon nanotubes by molecular dynamics simulation

    International Nuclear Information System (INIS)

    Zhang Chenli; Shen Huishen

    2008-01-01

    Molecular dynamics simulation is performed on a double-walled carbon nanotube (DWCNT) to predict its elastic properties based on a double-walled shear deformable shell model. By direct buckling measurement, we present here a method for uniquely determining the effective wall thickness for the shell model. Accounting for two different kinds of DWCNTs by adding an inner or outer tube to a fiducial tube, the mechanical properties of DWCNTs are carefully investigated as compared with those of the fiducial tube. It is found that the predicted values of Young's and shear moduli depend strongly on the construction and helicity of DWCNTs, while the dependence on nanotube length is relatively small. The results also confirm that the temperature variation has a significant effect on the elastic properties of DWCNTs

  2. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    Energy Technology Data Exchange (ETDEWEB)

    Erba, A., E-mail: alessandro.erba@unito.it; Mahmoud, A.; Dovesi, R. [Dipartimento di Chimica and Centre of Excellence NIS (Nanostructured Interfaces and Surfaces), Università di Torino, via Giuria 5, IT-10125 Torino (Italy); Belmonte, D. [DISTAV, Università di Genova, Corso Europa 26, 16132 Genoa (Italy)

    2014-03-28

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed.

  3. High pressure elastic properties of minerals from ab initio simulations: The case of pyrope, grossular and andradite silicate garnets

    International Nuclear Information System (INIS)

    Erba, A.; Mahmoud, A.; Dovesi, R.; Belmonte, D.

    2014-01-01

    A computational strategy is devised for the accurate ab initio simulation of elastic properties of crystalline materials under pressure. The proposed scheme, based on the evaluation of the analytical stress tensor and on the automated computation of pressure-dependent elastic stiffness constants, is implemented in the CRYSTAL solid state quantum-chemical program. Elastic constants and related properties (bulk, shear and Young moduli, directional seismic wave velocities, elastic anisotropy index, Poisson's ratio, etc.) can be computed for crystals of any space group of symmetry. We apply such a technique to the study of high-pressure elastic properties of three silicate garnet end-members (namely, pyrope, grossular, and andradite) which are of great geophysical interest, being among the most important rock-forming minerals. The reliability of this theoretical approach is proved by comparing with available experimental measurements. The description of high-pressure properties provided by several equations of state is also critically discussed

  4. Effect of niobium on microstructure and magnetic properties of bulk anisotropic NdFeB/{alpha}-Fe nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Li Jun [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China); Liu Ying, E-mail: Liuying5536@163.com [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China) and Key Laboratory of Advanced Special Material and Technology, Ministry of Education, Chengdu 610065 (China); Ma Yilong [School of Materials Science and Engineering, Sichuan University, Chengdu 610065 (China)

    2012-07-15

    Bulk anisotropic NdFeB/{alpha}-Fe nano-composites were obtained directly from alloys of Nd{sub 11}Dy{sub 0.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0,0.5,1.0,1.5). High resolution transmission electron microscopy images showed the existence of Nb-rich amorphous grain boundary phase in the alloys with Nb doped. Field emission scanning electron microscope morphologies and X-ray diffraction patterns revealed the grain size and grain alignment of hot pressed and hot deformed nanocomposites. It was found that Nb could refine the grain size and grain texture in hot worked ribbons. Vibrating sample magnetometer results showed that the magnetic properties of the anisotropic nanocomposites were improved with increased Nb doping. The remanence, coercivity and maximum energy product of the bulk anisotropic Nd{sub 11}Dy{sub 0.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposites were 1.04 T, 563 kA/m and 146 kJ/m{sup 3}, respectively. - Highlights: Black-Right-Pointing-Pointer Nb has great influence on the microstructure and magnetic properties of (NdDy){sub 11.5}Fe{sub 82.4-x}Nb{sub x}B{sub 6.1} (x=0-2.0) nanocomposites. Black-Right-Pointing-Pointer Most of Nb atoms gather in the grain boundary to form Nb-rich amorphous intergranular phase, not NbFeB boride. Black-Right-Pointing-Pointer Furthermore, grain alignment can be prompt by the Nb-rich solid intergranular phase during deform. Black-Right-Pointing-Pointer Remanence, coercivity and (BH){sub m} of deformed (NdDy){sub 11.5}Fe{sub 80.4}Nb{sub 2}B{sub 6.1} nanocomposite is 1.04T, 563 kA/m and 146 kJ/m{sup 3} respectively. Black-Right-Pointing-Pointer This study provides an alternative method for prepare anisotropic nanocomposite direct from Nd-lean alloys with low cost.

  5. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk

    2012-06-04

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  6. Elastic Properties of Tricalcium Aluminate from High-Pressure Experiments and First-Principles Calculations

    KAUST Repository

    Moon, Juhyuk; Yoon, Seyoon; Wentzcovitch, Renata M.; Clark, Simon M.; Monteiro, Paulo J.M.

    2012-01-01

    The structure and elasticity of tricalcium aluminate (C 3A) have been experimentally and theoretically studied. From high-pressure X-ray diffraction experiments, the bulk modulus of 102(6) and 110(3) GPa were obtained by fitting second- and third-order finite strain equation of state, respectively. First-principles calculations with a generalized gradient approximation gave an isotropic bulk modulus of 102.1 GPa and an isothermal bulk modulus of 106.0 GPa. The static calculations using the exchange-correlation functional show an excellent agreement with the experimental measurements. Based on the agreement, accurate elastic constants and other elastic moduli were computed. The slight difference of behavior at high pressure can be explained by the infiltration of pressure-transmitting silicone oil into structural holes in C 3A. The computed elastic and mechanical properties will be useful in understanding structural and mechanical properties of cementitious materials, particularly with the increasing interest in the advanced applications at the nanoscale. © 2012 The American Ceramic Society.

  7. Anisotropic mass density by two-dimensional acoustic metamaterials

    Energy Technology Data Exchange (ETDEWEB)

    Torrent, Daniel; Sanchez-Dehesa, Jose [Wave Phenomena Group, Department of Electronic Engineering, Polytechnic University of Valencia, C/Camino de Vera s/n, E-46022 Valencia (Spain)], E-mail: jsdehesa@upvnet.upv.es

    2008-02-15

    We show that specially designed two-dimensional arrangements of full elastic cylinders embedded in a nonviscous fluid or gas define (in the homogenization limit) a new class of acoustic metamaterials characterized by a dynamical effective mass density that is anisotropic. Here, analytic expressions for the dynamical mass density and the effective sound velocity tensors are derived in the long wavelength limit. Both show an explicit dependence on the lattice filling fraction, the elastic properties of cylinders relative to the background, their positions in the unit cell, and their multiple scattering interactions. Several examples of these metamaterials are reported and discussed.

  8. Electronic, elastic, acoustic and optical properties of cubic TiO2: A DFT approach

    International Nuclear Information System (INIS)

    Mahmood, Tariq; Cao, Chuanbao; Tahir, Muhammad; Idrees, Faryal; Ahmed, Maqsood; Tanveer, M.; Aslam, Imran; Usman, Zahid; Ali, Zulfiqar; Hussain, Sajad

    2013-01-01

    The electronic, elastic, acoustic and optical properties of cubic phases TiO 2 fluorite and pyrite are investigated using the first principles calculations. We have employed five different exchange–correlation functions within the local density and generalized gradient approximations using the ultrasoft plane wave pseudopotential method. The calculated band structures of cubic-TiO 2 elucidate that the TiO 2 fluorite and pyrite are direct and indirect semiconductors in contrast to the previous findings. From our studied properties such as bulk and shear moduli, elastic constants C 44 and Debye temperature for TiO 2 fluorite and pyrite, we infer that both the cubic phases are not superhard materials and the pyrite phase is harder than fluorite. The longitudinal and transversal acoustic wave speeds for both phases in the directions [100], [110] and [111] are determined using the pre-calculated elastic constants. In addition, we also calculate the optical properties such as dielectric function, absorption spectrum, refractive index and energy loss function using the pre-optimized structure. On the observation of optical properties TiO 2 fluorite phase turn out to be more photocatalytic than pyrite

  9. Ferroelastic domains: mesoscopic mediators of elastic and diffusion properties of solids

    International Nuclear Information System (INIS)

    Redfern, S.A.T.

    2002-01-01

    Full text: Microstructure is well known to play a major role in determining the mechanical properties of a material such as its hardness, slip, ductility, and creep. Another important question is how microstructure affects the chemical reactivity of a material. Dislocations and vacancies greatly enhance transport of reactants, which increases reactivity. Fast diffusion is also believed to occur along grain boundaries, providing means for mass transport over distances of cm to metres. Here, however, I focus on the influence of (intra-grain) domain microstructures associated with structural phase transitions, in particular ferroelastic phase transitions and their associated domain walls. It has been found that these can cause a large increase in chemical reactivity. Examples include those found in measurement and computational simulation of transport and diffusion of Na and Li in perovskite structures and in quartz. It has been demonstrated that ferroelastic microstructure can exert a profound control on transport, providing a possible route to the synthesis and fabrication of novel devices. The bulk elastic properties of crystals are commonly affected by phase transitions occurring within them. For ferroelastic transitions Landau theory provides a good model of the critical behaviour of the elastic constants, with mean field behaviour being followed closely. But the influence of the microstructure that results from these transitions on the apparent elastic behaviour of materials can be even greater. The behaviour of the elastic storage modulus and elastic loss modulus of a strontium-calcium titanate perovskite as a function of temperature through the cubic-tetragonal phase transition. The large elastic loss ('tan delta') arises from the movement of domain walls under applied stress in the three-point bend geometry of the experiment, and their interaction with pinning centres and grain boundaries. The dynamics of domain movement and relaxation behave according to a

  10. Effective-field treatment of an anisotropic Ising ferromagnet: thermodynamical properties

    International Nuclear Information System (INIS)

    Sarmento, E.F.; Honmura, R.; Tsallis, C.

    1982-01-01

    The anisotropic square lattice spin -1/2 Ising ferromagnet is discussed. Through this system it is illustrated how all relevant thermodynamical quantities (phase diagram, magnetization, short range order parameter, specific heat and susceptibility) can be approximatively calculated within an effective-field unified procedure (which substantially improves the Mean Field Approximation). Two slightly different approximations for the susceptibility (whose exact computation is still lacking) are presented. The (square lattice) - (linear chain) crossover is exhibited. The present (mathematically simple) procedures could be useful in the study of complex Ising problems. (Author) [pt

  11. Anisotropic properties of phase separation in two-component dipolar Bose-Einstein condensates

    Science.gov (United States)

    Wang, Wei; Li, Jinbin

    2018-03-01

    Using Crank-Nicolson method, we calculate ground state wave functions of two-component dipolar Bose-Einstein condensates (BECs) and show that, due to dipole-dipole interaction (DDI), the condensate mixture displays anisotropic phase separation. The effects of DDI, inter-component s-wave scattering, strength of trap potential and particle numbers on the density profiles are investigated. Three types of two-component profiles are present, first cigar, along z-axis and concentric torus, second pancake (or blood cell), in xy-plane, and two non-uniform ellipsoid, separated by the pancake and third two dumbbell shapes.

  12. Anisotropic light scattering of individual sickle red blood cells.

    Science.gov (United States)

    Kim, Youngchan; Higgins, John M; Dasari, Ramachandra R; Suresh, Subra; Park, YongKeun

    2012-04-01

    We present the anisotropic light scattering of individual red blood cells (RBCs) from a patient with sickle cell disease (SCD). To measure light scattering spectra along two independent axes of elongated-shaped sickle RBCs with arbitrary orientation, we introduce the anisotropic Fourier transform light scattering (aFTLS) technique and measured both the static and dynamic anisotropic light scattering. We observed strong anisotropy in light scattering patterns of elongated-shaped sickle RBCs along its major axes using static aFTLS. Dynamic aFTLS analysis reveals the significantly altered biophysical properties in individual sickle RBCs. These results provide evidence that effective viscosity and elasticity of sickle RBCs are significantly different from those of the healthy RBCs.

  13. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed; Goumri-Said, Souraya

    2014-01-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young's modulus, and Poisson's ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  14. Effect of alloying on elastic properties of ZrN based transition metal nitride alloys

    KAUST Repository

    Kanoun, Mohammed

    2014-09-01

    We report the effect of composition and metal sublattice substitutional element on the structural, elastic and electronic properties of ternary transition metal nitrides Zr1-xMxN with M=Al, Ti, Hf, V, Nb, W and Mo. The analysis of the elastic constants, bulk modulus, shear modulus, Young\\'s modulus, and Poisson\\'s ratio provides insights regarding the mechanical behavior of Zr1-xMxN. We predict that ternary alloys are more ductile compared to their parent binary compounds. The revealed trend in the mechanical behavior might help for experimentalists on the ability of tuning the mechanical properties during the alloying process by varying the concentration of the transition metal. © 2014 Elsevier B.V.

  15. Structural stability, dynamical stability, thermoelectric properties, and elastic properties of GeTe at high pressure

    Science.gov (United States)

    Kagdada, Hardik L.; Jha, Prafulla K.; Śpiewak, Piotr; Kurzydłowski, Krzysztof J.

    2018-04-01

    The stability of GeTe in rhombohedral (R 3 m ), face centred cubic (F m 3 m ), and simple cubic (P m 3 m ) phases has been studied using density functional perturbation theory. The rhombohedral phase of GeTe is dynamically stable at 0 GPa, while F m 3 m and P m 3 m phases are stable at 3.1 and 33 GPa, respectively. The pressure-dependent phonon modes are observed in F m 3 m and P m 3 m phases at Γ and M points, respectively. The electronic and the thermoelectric properties have been investigated for the stable phases of GeTe. The electronic band gap for rhombohedral and F m 3 m phases of GeTe has been observed as 0.66 and 0.17 eV, respectively, while the P m 3 m phase shows metallic behavior. We have used the Boltzmann transport equation under a rigid band approximation and constant relaxation time approximation as implemented in boltztrap code for the calculation of thermoelectric properties of GeTe. The metallic behavior of P m 3 m phase gives a very low value of Seebeck coefficient compared to the other two phases as a function of temperature and the chemical potential μ. It is observed that the rhombohedral phase of GeTe exhibits higher thermoelectric performance. Due to the metallic nature of P m 3 m phase, negligible thermoelectric performance is observed compared to R 3 m and F m 3 m -GeTe. The calculated lattice thermal conductivities are low for F m 3 m -GeTe and high for R 3 m -GeTe. At the relatively higher temperature of 1350 K, the figure of merit ZT is found to be 0.7 for rhombohedral GeTe. The elastic constants satisfy the Born stability criteria for all three phases. The rhombohedral and F m 3 m phases exhibits brittleness and the P m 3 m phase shows ductile nature.

  16. Temperature dependence of elastic properties in austenite and martensite of Ni-Mn-Ga epitaxial films

    Czech Academy of Sciences Publication Activity Database

    Heczko, Oleg; Seiner, Hanuš; Stoklasová, Pavla; Sedlák, Petr; Sermeus, J.; Glorieux, C.; Backen, A.; Fähler, S.; Landa, Michal

    2018-01-01

    Roč. 145, Feb (2018), s. 298-305 ISSN 1359-6454 R&D Projects: GA ČR GA17-00062S Institutional support: RVO:68378271 ; RVO:61388998 Keywords : magnetic shape memory alloys * elastic properties * surface acoustic waves * Ni 2 MnGa * NiMnGa Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.); Acoustics (UT-L) Impact factor: 5.301, year: 2016

  17. Evaluation of elastic properties of DLC layers using resonant ultrasound spectroscopy and AFM nanoindentation

    Czech Academy of Sciences Publication Activity Database

    Kocourek, Tomáš; Růžek, Michal; Landa, Michal; Jelínek, Miroslav; Mikšovský, Jan; Kopeček, Jaromír

    2011-01-01

    Roč. 205, č. 2 (2011), S67-S70 ISSN 0257-8972 R&D Projects: GA ČR(CZ) GA101/09/0702 Institutional research plan: CEZ:AV0Z10100522; CEZ:AV0Z20760514 Keywords : RUS-resonant ultrasound spectroscopy * PLD * diamond-like carbon * elastic properties * AFM nanoindentation Subject RIV: BH - Optics, Masers, Lasers Impact factor: 1.867, year: 2011

  18. Relationship between swelling and elastic properties in neutron-irradiated 316 stainless steel

    International Nuclear Information System (INIS)

    Bates, J.F.

    1976-04-01

    The results encompass elastic property measurements on several alloys, which differ in silicon, molybdenum and phosphorus contents but have a nominal 316 stainless steel composition. It is shown that there is a good correlation between the initial shear modulus of the material and the resultant swelling rate of that material. It is also shown that the bias factor concept does not satisfactorily account for the observed compositional sensitivity of swelling in the alloys investigated. 6 fig

  19. Delayed hydride cracking and elastic properties of Excel, a candidate CANDU-SCWR pressure tube material

    International Nuclear Information System (INIS)

    Pan, Z.L.

    2010-01-01

    Excel, a Zr alloy which contains 3.5%Sn, 0.8%Nb and 0.8%Mo, shows high strength, good corrosion resistance, excellent creep-resistance and dimension stability and thus is selected as a candidate pressure tube material for CANDU-SCWR. In the present work, the delayed hydride cracking properties (K IH and the DHC growth rates), the hydrogen solubility and elastic modulus were measured in the irradiated and unirradiated Excel pressure tube material. (author)

  20. Elastic and strength properties of Hanford concrete mixes at room and elevated temperatures

    International Nuclear Information System (INIS)

    Abrams, M.S.; Gillen, M.; Campbell, D.H.

    1979-03-01

    The effects of long-term exposure to elevated temperatures on the physical properties of concrete mixes used in Hanford radioactive waste storage tanks were determined. Temperature had a significant effect on the elastic modulus of concretes. Poisson's ratio determined by the sonic method remained relatively constant. The splitting tensile strength increased rapidly up to 190 days of age. Then strength decreased to about 350 days and either leveled off or increased from that point on. Compressive strength data were erratic

  1. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate)-block-poly(Ethylene Oxide) Copolymers

    OpenAIRE

    Elżbieta Piesowicz; Sandra Paszkiewicz; Anna Szymczyk

    2016-01-01

    A series of poly(trimethylene terephthalate)-block-poly(ethylene oxide) (PTT-b-PEOT) copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied...

  2. Mussel-Inspired Anisotropic Nanocellulose and Silver Nanoparticle Composite with Improved Mechanical Properties, Electrical Conductivity and Antibacterial Activity

    Directory of Open Access Journals (Sweden)

    Hoang-Linh Nguyen

    2016-03-01

    Full Text Available Materials for wearable devices, tissue engineering and bio-sensing applications require both antibacterial activity to prevent bacterial infection and biofilm formation, and electrical conductivity to electric signals inside and outside of the human body. Recently, cellulose nanofibers have been utilized for various applications but cellulose itself has neither antibacterial activity nor conductivity. Here, an antibacterial and electrically conductive composite was formed by generating catechol mediated silver nanoparticles (AgNPs on the surface of cellulose nanofibers. The chemically immobilized catechol moiety on the nanofibrous cellulose network reduced Ag+ to form AgNPs on the cellulose nanofiber. The AgNPs cellulose composite showed excellent antibacterial efficacy against both Gram-positive and Gram-negative bacteria. In addition, the catechol conjugation and the addition of AgNP induced anisotropic self-alignment of the cellulose nanofibers which enhances electrical and mechanical properties of the composite. Therefore, the composite containing AgNPs and anisotropic aligned the cellulose nanofiber may be useful for biomedical applications.

  3. Optimised robot-based system for the exploration of elastic joint properties.

    Science.gov (United States)

    Frey, M; Burgkart, R; Regenfelder, F; Riener, R

    2004-09-01

    Numerous publications provide measured biomechanical data relating to synovial joints. However, in general, they do not reflect the non-linear elastic joint properties in detail or do not consider all degrees of freedom (DOF), or the quantity of data is sparse. To perform more comprehensive, extended measurements of elastic joint properties, an optimised robot-based approach was developed. The basis was an industrial, high-precision robot that was capable of applying loads to the joint and measuring the joint displacement in 6 DOF. The system was equipped with novel, custom-made control hardware. In contrast to the commonly used sampling rates that are below 100 Hz, a rate of 4 kHz was realised for each DOF. This made it possible to implement advanced, highly dynamic, quasi-continuous closed-loop controllers. Thus oscillations of the robot were avoided, and measurements were speeded up. The stiffness of the entire system was greater than 44 kNm(-1) and 22 Nm deg(-1), and the maximum difference between two successive measurements was less than 0.5 deg. A sophisticated CT-based referencing routine facilitated the matching of kinematic data with the individual anatomy of the tested joint. The detailed detection of the elastic varus-valgus properties of a human knee joint is described, and the need for high spatial resolution is demonstrated.

  4. Yttrium aluminium garnet under pressure: Structural, elastic, and vibrational properties from ab initio studies

    International Nuclear Information System (INIS)

    Monteseguro, V.; Rodríguez-Hernández, P.; Muñoz, A.

    2015-01-01

    The structural, elastic, and vibrational properties of yttrium aluminum garnet Y 3 Al 5 O 12 are studied under high pressure by ab initio calculations in the framework of the density functional theory. The calculated ground state properties are in good agreement with the available experimental data. Pressure dependences of bond length and bulk moduli of the constituent polyhedra are reported. The evolution of the elastic constants and the major elastic properties, Young and shear modulus, Poisson's ratios, and Zener anisotropy ratio, are described. The mechanical stability is analyzed, on the light of “Born generalized stability criteria,” showing that the garnet is mechanically unstable above 116 GPa. Symmetries, frequencies, and pressure coefficients of the Raman-active modes are discussed on the basis of the calculated total and partial phonon density of states, which reflect the dynamical contribution of each atom. The relations between the phonon modes of Y 3 Al 5 O 12 and the internal and external molecular modes of the different polyhedra are discussed. Infrared-active modes, as well as the silent modes, and their pressure dependence are also investigated. No dynamical instabilities were found below 116 GPa

  5. Analyses of microstructural and elastic properties of porous SOFC cathodes based on focused ion beam tomography

    Science.gov (United States)

    Chen, Zhangwei; Wang, Xin; Giuliani, Finn; Atkinson, Alan

    2015-01-01

    Mechanical properties of porous SOFC electrodes are largely determined by their microstructures. Measurements of the elastic properties and microstructural parameters can be achieved by modelling of the digitally reconstructed 3D volumes based on the real electrode microstructures. However, the reliability of such measurements is greatly dependent on the processing of raw images acquired for reconstruction. In this work, the actual microstructures of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes sintered at an elevated temperature were reconstructed based on dual-beam FIB/SEM tomography. Key microstructural and elastic parameters were estimated and correlated. Analyses of their sensitivity to the grayscale threshold value applied in the image segmentation were performed. The important microstructural parameters included porosity, tortuosity, specific surface area, particle and pore size distributions, and inter-particle neck size distribution, which may have varying extent of effect on the elastic properties simulated from the microstructures using FEM. Results showed that different threshold value range would result in different degree of sensitivity for a specific parameter. The estimated porosity and tortuosity were more sensitive than surface area to volume ratio. Pore and neck size were found to be less sensitive than particle size. Results also showed that the modulus was essentially sensitive to the porosity which was largely controlled by the threshold value.

  6. Elastic properties of amorphous boron suboxide based solids studied using ab initio molecular dynamics

    International Nuclear Information System (INIS)

    Music, Denis; Schneider, Jochen M

    2008-01-01

    We have studied the correlation between chemical composition, structure, chemical bonding and elastic properties of amorphous B 6 O based solids using ab initio molecular dynamics. These solids are of different chemical compositions, but the elasticity data appear to be a function of density. This is in agreement with previous experimental observations. As the density increases from 1.64 to 2.38 g cm -3 , the elastic modulus increases from 74 to 253 GPa. This may be understood by analyzing the cohesive energy and the chemical bonding of these compounds. The cohesive energy decreases from -7.051 to -7.584 eV/atom in the elastic modulus range studied. On the basis of the electron density distributions, Mulliken analysis and radial distribution functions, icosahedral bonding is the dominating bonding type. C and N promote cross-linking of icosahedra and thus increase the density, while H hinders the cross-linking by forming OH groups. The presence of icosahedral bonding is independent of the density

  7. Effect of temperature and geometric parameters on elastic properties of tungsten nanowire: A molecular dynamics study

    Energy Technology Data Exchange (ETDEWEB)

    Saha, Sourav, E-mail: ssaha09@me.buet.ac.bd; Mojumder, Satyajit; Mahboob, Monon [Department of Mechanical Engineering, Bangladesh University of Engineering and Technology, Dhaka-1000 (Bangladesh); Islam, M. Zahabul [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2016-07-12

    Tungsten is a promising material and has potential use as battery anode. Tungsten nanowires are gaining attention from researchers all over the world for this wide field of application. In this paper, we investigated effect of temperature and geometric parameters (diameter and aspect ratio) on elastic properties of Tungsten nanowire. Aspect ratios (length to diameter ratio) considered are 8:1, 10:1, and 12:1 while diameter of the nanowire is varied from 1-4 nm. For 2 nm diameter sample (aspect ratio 10:1), temperature is varied (10 K ~ 1500 K) to observe elastic behavior of Tungsten nanowire under uniaxial tensile loading. EAM potential is used for molecular dynamic simulation. We applied constant strain rate of 10{sup 9} s{sup −1} to deform the nanowire. Elastic behavior is expressed through stress vs. strain plot. We also investigated the fracture mechanism of tungsten nanowire and radial distribution function. Investigation suggests peculiar behavior of Tungsten nanowire in nano-scale with double peaks in stress vs. strain diagram. Necking before final fracture suggests that actual elastic behavior of the material is successfully captured through atomistic modeling.

  8. Characterisation of anisotropic etching in KOH using network etch rate function model: influence of an applied potential in terms of microscopic properties

    International Nuclear Information System (INIS)

    Nguyen, Q D; Elwenspoek, M

    2006-01-01

    Using the network etch rate function model, the anisotropic etch rate of p-type single crystal silicon was characterised in terms of microscopic properties including step velocity, step and terrace roughening. The anisotropic etch rate data needed have been obtained using a combination of 2 wagon wheel patterns on different substrate and 1 offset trench pattern. Using this procedure the influence of an applied potential has been investigated in terms of microscopic properties. Model parameter trends show a good correlation with chemical/electrochemical reaction mechanism and mono- and dihydride terminated steps reactivity difference. Results also indicate a minimum in (111) terrace roughening which results in a peak in anisotropic ratio at the non-OCP applied potential of -1250 mV vs OCP

  9. The Effect of Knitting Parameter and Finishing on Elastic Property of PET/PBT Warp Knitted Fabric

    Directory of Open Access Journals (Sweden)

    Chen Qing

    2017-12-01

    Full Text Available This study investigated the elastic elongation and elastic recovery of the elastic warp knittedfabric made of PET( polyethylene terephthalate and PBT(polybutylene terephthalate filament. Using 50/24F PET and 50D/24F PBT in two threadingbars, the tricot, locknit and satin warp knitted fabrics were produced on the E28 tricot warpknitting machine. The knitting parameters influencing the elastic elongation under 100N wereanalyzed in terms of fabric structure, yarn run-in speed and drawing density set on machine.Besides, dyeing temperature and heat setting temperature/time were also examined in order toretain proper elastic elongation and elastic recovery. The relationship between elastic elongationand knitting parameter and finishing parameter were analyzed. Finally, the elastic recovery ofPET/PBT warp knitted fabric was examined to demonstrate the elastic property of final finishedfabric. This study could help us to further exploit the use of PET/PBT warp knitted fabric in thedevelopment of elastic garment in future.

  10. Longitudinal elastic properties and porosity of cortical bone tissue vary with age in human proximal femur.

    Science.gov (United States)

    Malo, M K H; Rohrbach, D; Isaksson, H; Töyräs, J; Jurvelin, J S; Tamminen, I S; Kröger, H; Raum, K

    2013-04-01

    Tissue level structural and mechanical properties are important determinants of bone strength. As an individual ages, microstructural changes occur in bone, e.g., trabeculae and cortex become thinner and porosity increases. However, it is not known how the elastic properties of bone change during aging. Bone tissue may lose its elasticity and become more brittle and prone to fractures as it ages. In the present study the age-dependent variation in the spatial distributions of microstructural and microelastic properties of the human femoral neck and shaft were evaluated by using acoustic microscopy. Although these properties may not be directly measured in vivo, there is a major interest to investigate their relationships with the linear elastic measurements obtained by diagnostic ultrasound at the most severe fracture sites, e.g., the femoral neck. However, before the validity of novel in vivo techniques can be established, it is essential to understand the age-dependent variation in tissue elastic properties and porosity at different skeletal sites. A total of 42 transverse cross-sectional bone samples were obtained from the femoral neck (Fn) and proximal femoral shaft (Ps) of 21 men (mean±SD age 47.1±17.8, range 17-82years). Samples were quantitatively imaged using a scanning acoustic microscope (SAM) equipped with a 50MHz ultrasound transducer. Distributions of the elastic coefficient (c33) of cortical (Ct) and trabecular (Tr) tissues and microstructure of cortex (cortical thickness Ct.Th and porosity Ct.Po) were determined. Variations in c33 were observed with respect to tissue type (c33Trc33(Ct.Fn)=35.3GPa>c33(Tr.Ps)=33.8GPa>c33(Tr.Fn)=31.9GPa), and cadaver age (R(2)=0.28-0.46, pbone tissue were observed. These findings may explain in part the increase in susceptibility to suffer low energy fractures during aging and highlight the potential of ultrasound in clinical osteoporosis diagnostics. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Effect of mechanical boundary conditions on the dynamic and static properties of a strongly anisotropic ferromagnet

    International Nuclear Information System (INIS)

    Gorelikov, G. A.; Fridman, Yu. A.

    2013-01-01

    The spectra of coupled magnetoelastic waves in a semi-infinite strongly anisotropic easy-plane ferromagnet with a rigidly fixed face are analyzed for two variants of fixation (in the basal plane and perpendicularly to it). The phase states of the system are determined. Differences in the phase diagrams and elementary excitation spectra depending on the choice of the sample fixation plane are considered. When rotational invariance is taken into account, the nonreciprocity effect for the velocities of sound in a crystal appears. It is shown that the velocity of sound in the sample considerably depends on the symmetry of the imposed mechanical boundary conditions. The phase diagrams of the system under investigation are presented

  12. The anisotropic magnetic property and Faraday rotation in Er3Ga5O12 under high magnetic field

    International Nuclear Information System (INIS)

    Wang Wei; Zhang Xijuan; Liu Gongqiang

    2005-01-01

    A theoretical investigation on the anisotropic magnetic property and Faraday rotation in Er 3 Ga 5 O 12 (ErGaG) is presented. With particular consideration of the anisotropy of the exchange interaction between rare-earth ions (Er 3+ ), the magnetization, based on the quantum theory, in ErGaG under high magnetic field (HMF) is calculated. Theoretical calculations show that the appropriate choice of the crystal field (CF) parameters is of great importance. A novel three-level model is presented, and in terms of this model the Faraday rotation under HMF is calculated. In addition, it is demonstrated that the Faraday rotation (θ) depends not only on the magnetization (M) but also on the magnetic field (H e ). The theory is in good agreement with the experiment

  13. Thermodynamic and elastic properties of hexagonal ZnO under high temperature

    International Nuclear Information System (INIS)

    Wang, Feng; Wu, Jinghe; Xia, Chuanhui; Hu, Chenghua; Hu, Chunlian; Zhou, Ping; Shi, Lingna; Ji, Yanling; Zheng, Zhou; Liu, Xiankun

    2014-01-01

    Highlights: • A new method is applied to predict crystal constants of hexagonal crystal under high temperature. • Elastic properties of ZnO under high temperature are obtained exactly. • Thermodynamic properties of ZnO under high temperature are attained too. - Abstract: Studies on thermodynamic and elastic properties of hexagonal ZnO (wurtzite structure) under high temperature have not been reported usually from no matter experimental or theoretic methods. In this work, we study these properties by ab-initio together with quasi-harmonic Debye model. The value of C v tends to the Petit and Dulong limit at high temperature under any pressure, 49.73 J/mol K. And C v is greatly limited by pressure at intermediate temperatures. Nevertheless, the limit effect on C v caused by pressure is not obvious under low as well as very high temperature. The thermal expansions along a or c axis are almost same under temperature, which increase with temperature like a parabola. C 11 , C 33 , C 12 and C 13 decrease with temperature a little, which means that mechanics properties are weakened respectively

  14. Mechanical properties of two-way grid shells optimized considering roundness and elastic stiffness

    International Nuclear Information System (INIS)

    Ogawa, Toshiyuki; Yuta, Nishikawa; Rie, Tateishi; Ohsaki, Makoto

    2002-01-01

    A single-layer two-way grid shell defined by Bezier surface is optimized by coordinates of the control points as design variables. The purpose of this paper is to find optimal shapes considering roundness and elastic stiffness, and to investigate their mechanical properties. The distance of the center of curvature from the specified point is used for formulating the objective function for generating a round shape. Consider next a problem of minimizing the compliance as mechanical performance measure. The compliance is defined by the external work against the static loads applied to the nodes. The mechanically optimal shape is different from the round shape. Therefore, the multi objective optimization problem is formulated for optimizing the two objectives, which are roundness and the elastic stiffness defined by using the compliance. The constraint method is used for obtaining Pareto optimal solutions between the two objectives. We optimize single-layer two-way grid shells with square and rectangle plans. Mechanical properties of the optimal shapes are investigated by compliance and the distributions of axial force and bending moment. The round shape is significantly dominated by the bending moment and its compliance is large. The bending moment of the mechanically optimal shape is not very large, and the latticed shell has large stiffness through axial deformation. A trade-off shape is round enough, and the influence of the bending moment is smaller than that of the optimal round shape and the elastic stiffness is moderately large

  15. Field characterization of elastic properties across a fault zone reactivated by fluid injection

    Science.gov (United States)

    Jeanne, Pierre; Guglielmi, Yves; Rutqvist, Jonny; Nussbaum, Christophe; Birkholzer, Jens

    2017-08-01

    We studied the elastic properties of a fault zone intersecting the Opalinus Clay formation at 300 m depth in the Mont Terri Underground Research Laboratory (Switzerland). Four controlled water injection experiments were performed in borehole straddle intervals set at successive locations across the fault zone. A three-component displacement sensor, which allowed capturing the borehole wall movements during injection, was used to estimate the elastic properties of representative locations across the fault zone, from the host rock to the damage zone to the fault core. Young's moduli were estimated by both an analytical approach and numerical finite difference modeling. Results show a decrease in Young's modulus from the host rock to the damage zone by a factor of 5 and from the damage zone to the fault core by a factor of 2. In the host rock, our results are in reasonable agreement with laboratory data showing a strong elastic anisotropy characterized by the direction of the plane of isotropy parallel to the laminar structure of the shale formation. In the fault zone, strong rotations of the direction of anisotropy can be observed. The plane of isotropy can be oriented either parallel to bedding (when few discontinuities are present), parallel to the direction of the main fracture family intersecting the zone, and possibly oriented parallel or perpendicular to the fractures critically oriented for shear reactivation (when repeated past rupture along this plane has created a zone).

  16. Theoretical study of phonon dispersion, elastic, mechanical and thermodynamic properties of barium chalcogenides

    Science.gov (United States)

    Musari, A. A.; Orukombo, S. A.

    2018-03-01

    Barium chalcogenides are known for their high-technological importance and great scientific interest. Detailed studies of their elastic, mechanical, dynamical and thermodynamic properties were carried out using density functional theory and plane-wave pseudo potential method within the generalized gradient approximation. The optimized lattice constants were in good agreement when compared with experimental data. The independent elastic constants, calculated from a linear fit of the computed stress-strain function, were used to determine the Young’s modulus (E), bulk modulus (B), shear modulus (G), Poisson’s ratio (σ) and Zener’s anisotropy factor (A). Also, the Debye temperature and sound velocities for barium chalcogenides were estimated from the three independent elastic constants. The calculations of phonon dispersion showed that there are no negative frequencies throughout the Brillouin zone. Hence barium chalcogenides have dynamically stable NaCl-type crystal structure. Finally, their thermodynamic properties were calculated in the temperature range of 0-1000 K and their constant-volume specific heat capacities at room-temperature were reported.

  17. Phase Separation and Elastic Properties of Poly(Trimethylene Terephthalate-block-poly(Ethylene Oxide Copolymers

    Directory of Open Access Journals (Sweden)

    Elżbieta Piesowicz

    2016-06-01

    Full Text Available A series of poly(trimethylene terephthalate-block-poly(ethylene oxide (PTT-b-PEOT copolymers with different compositions of rigid PTT and flexible PEOT segments were synthesized via condensation in the melt. The influence of the block length and the block ratio on the micro-separated phase structure and elastic properties of the synthesized multiblock copolymers was studied. The PEOT segments in these copolymers were kept constant at 1130, 2130 or 3130 g/mol, whereas the PTT content varied from 30 up to 50 wt %. The phase separation was assessed using differential scanning calorimetry (DSC and dynamic mechanical thermal analysis (DMTA. The crystal structure of the synthesised block copolymers and their microstructure on the manometer scale was evaluated by using WAXS and SAXS analysis. Depending on the PTT/PEOT ratio, but also on the rigid and flexible segment length in PTT-b-PEO copolymers, four different domains were observed i.e.,: a crystalline PTT phase, a crystalline PEO phase (which exists for the whole series based on three types of PEOT segments, an amorphous PTT phase (only at 50 wt % content of PTT rigid segments and an amorphous PEO phase. Moreover, the elastic deformability and reversibility of PTT-b-PEOT block copolymers were studied during a cyclic tensile test. Determined values of permanent set resultant from maximum attained stain (100% and 200% for copolymers were used to evaluate their elastic properties.

  18. Competition of elastic and adhesive properties of carbon nanotubes anchored to atomic force microscopy tips

    International Nuclear Information System (INIS)

    Bernard, Charlotte; Marsaudon, Sophie; Boisgard, Rodolphe; Aime, Jean-Pierre

    2008-01-01

    In this paper we address the mechanical properties of carbon nanotubes anchored to atomic force microscopy (AFM) tips in a detailed analysis of experimental results and exhaustive description of a simple model. We show that volume elastic and surface adhesive forces both contribute to the dynamical AFM experimental signals. Their respective weights depend on the nanotube properties and on an experimental parameter: the oscillation amplitude. To quantify the elastic and adhesive contributions, a simple analytical model is used. It enables analytical expressions of the resonance frequency shift and dissipation that can be measured in the atomic force microscopy dynamical frequency modulation mode. It includes the nanotube adhesive contribution to the frequency shift. Experimental data for single-wall and multi-wall carbon nanotubes compare well to the model predictions for different oscillation amplitudes. Three parameters can be extracted: the distance necessary to unstick the nanotube from the surface and two spring constants corresponding to tube compression and to the elastic force required to overcome the adhesion force

  19. Computational modeling of elastic properties of carbon nanotube/polymer composites with interphase regions. Part II: Mechanical modeling

    KAUST Repository

    Han, Fei; Azdoud, Yan; Lubineau, Gilles

    2014-01-01

    We present two modeling approaches for predicting the macroscopic elastic properties of carbon nanotubes/polymer composites with thick interphase regions at the nanotube/matrix frontier. The first model is based on local continuum mechanics

  20. Molecular dynamics investigation of the elastic and fracture properties of the R-graphyne under uniaxial tension

    Energy Technology Data Exchange (ETDEWEB)

    Rouhi, Saeed, E-mail: s_rouhi@iaul.ac.ir

    2017-05-15

    In this paper, the mechanical properties of the R-graphynes are investigated by using molecular dynamics simulations. For this purpose, the uniaxial strain is applied on the nanosheets. The effects of R-graphyne chirality and dimension on their fracture and elastic properties are investigated. It is shown that the fracture properties of the armchair R-graphyne are approximately independent from the nanosheet sizes. However, a clear dependence is observed in the fracture properties of the zigzag R-graphyne on the nanosheet dimensions. Comparing the elastic modulus of the armchair and zigzag R-graphynes, it is shown that for the same sizes, the elastic modulus of armchair R-graphyne is approximately equal to 2.5 times of the elastic modulus of the zigzag ones. Pursuing the fracture process of R-graphynes with different chiralities, it is represented that the fracture propagates in the zigzag nanosheet with a higher velocity than the armchair ones.

  1. Comparison of stress and total energy methods for calculation of elastic properties of semiconductors.

    Science.gov (United States)

    Caro, M A; Schulz, S; O'Reilly, E P

    2013-01-16

    We explore the calculation of the elastic properties of zinc-blende and wurtzite semiconductors using two different approaches: one based on stress and the other on total energy as a function of strain. The calculations are carried out within the framework of density functional theory in the local density approximation, with the plane wave-based package VASP. We use AlN as a test system, with some results also shown for selected other materials (C, Si, GaAs and GaN). Differences are found in convergence rate between the two methods, especially in low symmetry cases, where there is a much slower convergence for total energy calculations with respect to the number of plane waves and k points used. The stress method is observed to be more robust than the total energy method with respect to the residual error in the elastic constants calculated for different strain branches in the systems studied.

  2. Structural, elastic, and electronic properties of compressed ZnP{sub 2}

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hong-Mei [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Li, Yan-Ling, E-mail: ylli@jsnu.edu.cn [School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116 (China); Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zeng, Zhi [Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China)

    2013-06-15

    The structural, elastic and electronic properties of compressed ZnP{sub 2} were investigated by first-principles total energy calculations. The optimized equilibrium structural parameters agree well with those of experiments for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure. α-ZnP{sub 2} transforms into I4{sub 1}/22 phase (referred as γ-ZnP{sub 2}) at 11 GPa, which is an indirect band-gap (∼0.78 eV) semiconductor. Space group of low pressure phase is the subgroup of that of high pressure phase. The calculated elastic constants for α-ZnP{sub 2} and β-ZnP{sub 2} at zero pressure as well as γ-ZnP{sub 2} at phase transition pressure determine their stability mechanically. Phonon calculation confirms dynamical stability of γ-ZnP{sub 2}.

  3. Elastic, thermal and high pressure structural properties of heavy rare earth antimonides

    International Nuclear Information System (INIS)

    Soni, P.; Pagare, G.; Sanyal, S.P.

    2009-01-01

    Pressure induced structural phase transition of two heavy rare earth antimonides (RESb; RE=Ho, Er) have been studied theoretically by using an inter-ionic potential theory. This method has been found quite satisfactory in the case of pnictides of rare earth and describes the crystal properties in the framework of rigid-ion modal. The long-range Coulomb interaction, short-range repulsive interaction and van der Waals (vdW) interactions are properly incorporated in this theory. These compounds exhibit first order crystallographic phase transition from their NaCl-type structure to CsCl-type structure at 27 GPa and 33.2 GPa, respectively. The bulk moduli of RESb compounds are compared with the experimental values of elastic constants. We have also calculated the Debye temperature by incorporating the elastic constants for both the rare earth antimonides. (author)

  4. High pressure and temperature induced structural and elastic properties of lutetium chalcogenides

    Science.gov (United States)

    Shriya, S.; Kinge, R.; Khenata, R.; Varshney, Dinesh

    2018-04-01

    The high-pressure structural phase transition and pressure as well temperature induced elastic properties of rock salt to CsCl structures in semiconducting LuX (X = S, Se, and Te) chalcogenides compound have been performed using effective interionic interaction potential with emphasis on charge transfer interactions and covalent contribution. Estimated values of phase transition pressure and the volume discontinuity in pressure-volume phase diagram indicate the structural phase transition from ZnS to NaCl structure. From the investigations of elastic constants the pressure (temperature) dependent volume collapse/expansion, melting temperature TM, Hardness (HV), and young modulus (E) the LuX lattice infers mechanical stiffening, and thermal softening.

  5. High Temperature Elastic Properties of Reduced Activation Ferritic-Martensitic (RAFM) Steel Using Impulse Excitation Technique

    Science.gov (United States)

    Tripathy, Haraprasanna; Raju, Subramanian; Hajra, Raj Narayan; Saibaba, Saroja

    2018-03-01

    The polycrystalline elastic constants of an indigenous variant of 9Cr-1W-based reduced activation ferritic-martensitic (RAFM) steel have been determined as a function of temperature from 298 K to 1323 K (25 °C to 1000 °C), using impulse excitation technique (IET). The three elastic constants namely, Young's modulus E, shear modulus G, and bulk modulus B, exhibited significant softening with increasing temperature, in a pronounced non-linear fashion. In addition, clearly marked discontinuities in their temperature variations are noticed in the region, where ferrite + carbides → austenite phase transformation occurred upon heating. Further, the incidence of austenite → martensite transformation upon cooling has also been marked by a step-like jump in both elastic E and shear moduli G. The martensite start M s and M f finish temperatures estimated from this study are, M s = 652 K (379 °C) and M f =580 K (307 °C). Similarly, the measured ferrite + carbide → austenite transformation onset ( Ac 1) and completion ( Ac 3) temperatures are found to be 1126 K and 1143 K (853 °C and 870 °C), respectively. The Poisson ratio μ exhibited distinct discontinuities at phase transformation temperatures; but however, is found to vary in the range 0.27 to 0.29. The room temperature estimates of E, G, and μ for normalized and tempered microstructure are found to be 219 GPa, 86.65 GPa, and 0.27, respectively. For the metastable austenite phase, the corresponding values are: 197 GPa, 76.5 GPa, and 0.29, respectively. The measured elastic properties as well as their temperature dependencies are found to be in good accord with reported estimates for other 9Cr-based ferritic-martensitic steel grades. Estimates of θ D el , the elastic Debye temperature and γ G, the thermal Grüneisen parameter obtained from measured bulk elastic properties are found to be θ D el = 465 K (192 °C) and γ G = 1.57.

  6. Multiparameter Elastic Full Waveform Inversion With Facies Constraints

    KAUST Repository

    Zhang, Zhendong

    2017-08-17

    Full waveform inversion (FWI) aims fully benefit from all the data characteristics to estimate the parameters describing the assumed physics of the subsurface. However, current efforts to utilize full waveform inversion as a tool beyond acoustic imaging applications, for example in reservoir analysis, faces inherent challenges related to the limited resolution and the potential trade-off between the elastic model parameters. Adding rock physics constraints does help to mitigate these issues, but current approaches to add such constraints are based on including them as a priori knowledge mostly valid around the well or as a boundary condition for the whole area. Since certain rock formations inside the Earth admit consistent elastic properties and relative values of elastic and anisotropic parameters (facies), utilizing such localized facies information in FWI can improve the resolution of inverted parameters. We propose a novel confidence map based approach to utilize the facies-based constraints in both isotropic and anisotropic elastic FWI. We invert for such a confidence map using Bayesian theory, in which the confidence map is updated at each iteration of the inversion using both the inverted models and a prior information. The numerical examples show that the proposed method can reduce the trade-offs and also can improve the resolution of the inverted elastic and anisotropic properties.

  7. First-principles study of structural and elastic properties of monoclinic and orthorhombic BiMnO3

    International Nuclear Information System (INIS)

    Mei Zhigang; Shang Shunli; Wang Yi; Liu Zikui

    2010-01-01

    The structural and elastic properties of BiMnO 3 with monoclinic (C 2/c) and orthorhombic (Pnma) ferromagnetic (FM) structures have been studied by first-principles calculations within LDA + U and GGA + U approaches. The equilibrium volumes and bulk moduli of BiMnO 3 phases are evaluated by equation of state (EOS) fittings, and the bulk properties predicted by LDA + U calculations are in better agreement with experiment. The orthorhombic phase is found to be more stable than the monoclinic phase at ambient pressure. A monoclinic to monoclinic phase transition is predicted to occur at a pressure of about 10 GPa, which is ascribed to magnetism versus volume instability of monoclinic BiMnO 3 . The single-crystal elastic stiffness constants c ij s of the monoclinic and orthorhombic phases are investigated using the stress-strain method. The c 46 of the monoclinic phase is predicted to be negative. In addition, the polycrystalline elastic properties including bulk modulus, shear modulus, Young's modulus, bulk modulus-shear modulus ratio, Poisson's ratio, and elastic anisotropy ratio are determined based on the calculated elastic constants. The presently predicted phase transition and elastic properties open new directions for investigation of the phase transitions in BiMnO 3 , and provide helpful guidance for the future elastic constant measurements.

  8. Evidence for anisotropic polar nanoregions in relaxor Pb(Mg1/3Nb2/3)O3: A neutron study of the elastic constants and anomalous TA phonon damping in PMN

    Science.gov (United States)

    Stock, C.; Gehring, P. M.; Hiraka, H.; Swainson, I.; Xu, Guangyong; Ye, Z.-G.; Luo, H.; Li, J.-F.; Viehland, D.

    2012-09-01

    We use neutron inelastic scattering to characterize the acoustic phonons in the relaxor Pb(Mg1/3Nb2/3)O3 (PMN) and demonstrate the presence of a highly anisotropic damping mechanism that is directly related to short-range polar correlations. For a large range of temperatures above Tc˜210 K, where dynamic, short-range polar correlations are present, acoustic phonons propagating along [11¯0] and polarized along [110] (TA2 phonons) are overdamped and softened across most of the Brillouin zone. By contrast, acoustic phonons propagating along [100] and polarized along [001] (TA1 phonons) are overdamped and softened for a more limited range of wave vectors q. The anisotropy and temperature dependence of the acoustic phonon energy linewidth Γ are directly correlated with neutron diffuse scattering cross section, indicating that polar nanoregions are the cause of the anomalous behavior. The damping and softening vanish for q→0, i.e., for long-wavelength acoustic phonons near the zone center, which supports the notion that the anomalous damping is a result of the coupling between the relaxational component of the diffuse scattering and the harmonic TA phonons. Therefore, these effects are not due to large changes in the elastic constants with temperature because the elastic constants correspond to the long-wavelength limit. We compare the elastic constants we measure to those from Brillouin scattering experiments and to values reported for pure PbTiO3. We show that while the values of C44 are quite similar, those for C11 and C12 are significantly less in PMN and result in a softening of (C11-C12) over PbTiO3. The elastic constants also show an increased elastic anisotropy [2C44/(C11-C12)] in PMN versus that in PbTiO3. These results are suggestive of an instability to TA2 acoustic fluctuations in PMN and other relaxor ferroelectrics. We discuss our results in the context of the current debate over the “waterfall” effect and show that they are inconsistent with

  9. Highly anisotropic electronic transport properties of monolayer and bilayer phosphorene from first principles

    Energy Technology Data Exchange (ETDEWEB)

    Jin, Zhenghe; Mullen, Jeffrey T. [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Kim, Ki Wook, E-mail: kwk@ncsu.edu [Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, North Carolina 27695 (United States); Department of Physics, North Carolina State University, Raleigh, North Carolina 27695 (United States)

    2016-08-01

    The intrinsic carrier transport dynamics in phosphorene is theoretically examined. Utilizing a density functional theory treatment, the low-field mobility and the saturation velocity are characterized for both electrons and holes in the monolayer and bilayer structures. The analysis clearly elucidates the crystal orientation dependence manifested through the anisotropic band structure and the carrier-phonon scattering rates. In the monolayer, the hole mobility in the armchair direction is estimated to be approximately five times larger than in the zigzag direction at room temperature (460 cm{sup 2}/V s vs. 90 cm{sup 2}/V s). The bilayer transport, on the other hand, exhibits a more modest anisotropy with substantially higher mobilities (1610 cm{sup 2}/V s and 760 cm{sup 2}/V s, respectively). The calculations on the conduction-band electrons indicate a comparable dependence while the characteristic values are generally smaller by about a factor of two. The variation in the saturation velocity is found to be less pronounced. With the anticipated superior performance and the diminished anisotropy, few-layer phosphorene offers a promising opportunity particularly in p-type applications.

  10. Thermodynamics and elastic properties of Ir from first-principle calculations

    International Nuclear Information System (INIS)

    Li Qiang; Huang Duohui; Cao Qilong; Wang Fanhou

    2013-01-01

    Within the framework of the quasiharmonic approximation, the thermodynamics and elastic properties, including phonon dispersion curves, equation of state, linear thermal expansion coefficient and temperature-dependent entropy, enthalpy, heat capacity, elastic constants, bulk modulus, shear modulus, Young's modulus of Ir have been studied using first-principles projector-augmented wave method. The results revealed that the predicted phonon dispersion curves of Ir are in agreement with the experimental measurements by neutron diffractions. Considering the thermal electronic contribution to Helmholtz free energy, the calculated entropy, enthalpy, heat capacity and linear thermal expansion co- efficient from the first-principle are consistent well with the experimental data. At 2600 K, the electronic heat capacity accounts for 17% of the total heat capacity at constant pressure, thus the thermal electronic contribution to Helmholtz free energy is very important. The predicted elastic constants, bulk modulus, shear modulus and Young's modulus at room temperature are also in agreement with the available measurements and increase with the increasing temperature. (authors)

  11. Elastic properties, reaction kinetics, and structural relaxation of an epoxy resin polymer during cure

    Science.gov (United States)

    Heili, Manon; Bielawski, Andrew; Kieffer, John

    The cure kinetics of a DGEBA/DETA epoxy is investigated using concurrent Raman and Brillouin light scattering. Raman scattering allows us to monitor the in-situ reaction and quantitatively assess the degree of cure. Brillouin scattering yields the elastic properties of the system, providing a measure of network connectivity. We show that the adiabatic modulus evolves non-uniquely as a function of cure degree, depending on the cure temperature and the molar ratio of the epoxy. Two mechanisms contribute to the increase in the elastic modulus of the material during curing. First, there is the formation of covalent bonds in the network during the curing process. Second, following bond formation, the epoxy undergoes structural relaxation toward an optimally packed network configuration, enhancing non-bonded interactions. We investigate to what extent the non-bonded interaction contribution to structural rigidity in cross-linked polymers is reversible, and to what extent it corresponds to the difference between adiabatic and isothermal moduli obtained from static tensile, i.e. the so-called relaxational modulus. To this end, we simultaneously measure the adiabatic and isothermal elastic moduli as a function of applied strain and deformation rate.

  12. Pressure dependent elastic and structural (B3-B1) properties of Ga based monopnictides

    International Nuclear Information System (INIS)

    Varshney, Dinesh; Joshi, Geetanjali; Varshney, Meenu; Shriya, Swarna

    2010-01-01

    By formulating an effective interionic interaction potential that incorporates the long-range Coulomb, the covalency effects, the charge transfer caused by the deformation of the electron shells of the overlapping ions, the Hafemeister and Flygare type short-range overlap repulsion extended up to the second neighbour ions and the van der Waals (vdW) interaction, the pressure dependent elastic and thermodynamical properties of the III-V semiconductors as GaY (Y = N, P, As) are studied. The estimated values of phase transition pressure of GaY (Y = N, P, As) are in reasonably good agreement with the available data on the phase transition pressures (P t = 41, 22, 17 GPa). The vast volume discontinuity in pressure-volume phase diagram identifies a structural phase transition from zinc-blende (B3) to rock salt (B1) structure. Later on, the Poisson's ratio ν, the ratio R S/B of S (Voigt averaged shear modulus) over B (bulk modulus), elastic anisotropy parameter, elastic wave velocity, average wave velocity and Debye temperature as functions of pressure is calculated. From Poisson's ratio and the ratio R S/B it is inferred that GaY (Y = N, P, As) is brittle [ductile] in zinc-blende (B3) [Sodium Chloride (B1)] phase. To our knowledge this is the first quantitative theoretical prediction of the pressure dependence of ductile (brittle) nature of GaY compounds and still awaits experimental confirmations.

  13. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions.

    Science.gov (United States)

    Wojciechowski, K W; Tretiakov, K V; Kowalik, M

    2003-03-01

    Systems of model planar, nonconvex, hard-body "molecules" of fivefold and sevenfold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers), are composed of five (seven) identical hard disks "atoms" with centers forming regular pentagons (heptagons) of sides equal to the disk diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudorandom number generators based on the idea proposed by Holian and co-workers [Holian et al., Phys. Rev. E 50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e., show negative Poisson ratios.

  14. Elastic properties of dense solid phases of hard cyclic pentamers and heptamers in two dimensions

    International Nuclear Information System (INIS)

    Wojciechowski, K.W.; Tretiakov, K.V.; Kowalik, M.

    2003-02-01

    Systems of model plannar, non-convex, hard-body 'molecules' of five-fold and seven-fold symmetry axes are studied by constant pressure Monte Carlo simulations with variable shape of the periodic box. The molecules, referred to as pentamers (heptamers) are composed of five (seven) identical hard discs-'atoms' with centers forming regular pentagons (heptagons) of sides equal to the disc diameter. The elastic compliances of defect-free solid phases are computed by analysis of strain fluctuations and the reference (equilibrium) state is determined within the same run in which the elastic properties are computed. Results obtained by using pseudo-random number generators based on the idea proposed by Holian and co-workers [B. L. Holian et al., Phys. Rev. E50, 1607 (1994)] are in good agreement with the results generated by DRAND48. It is shown that singular behavior of the elastic constants near close packing is in agreement with the free volume approximation; the coefficients of the leading singularities are estimated. The simulations prove that the highest density structures of heptamers (in which the molecules cannot rotate) are auxetic, i.e. show negative Poisson ratios. (author)

  15. Shock wave compression of hexagonal-close-packed metal single crystals: Time-dependent, anisotropic elastic-plastic response of beryllium

    International Nuclear Information System (INIS)

    Winey, J. M.; Gupta, Y. M.

    2014-01-01

    Understanding and modeling the response of hcp metals to high stress impulsive loading is challenging because the lower crystal symmetry, compared to cubic metals, results in a significantly more complex material response. To gain insight into the inelastic deformation of hcp metals subjected to high dynamic stresses, shock wave compression of single crystals provides a useful approach because different inelastic deformation mechanisms can be examined selectively by shock compression along different crystal orientations. As a representative example, we report, here, on wave propagation simulations for beryllium (Be) single crystals shocked along the c-axis, a-axis, and several low-symmetry directions to peak stresses reaching 7 GPa. The simulations utilized a time-dependent, anisotropic material model that incorporated dislocation dynamics, deformation twinning, and shear cracking based descriptions of inelastic deformation. The simulation results showed good overall agreement with measured wave profiles for all the different crystal orientations examined [Pope and Johnson, J. Appl. Phys. 46, 720 (1975)], including features arising from wave mode coupling due to the highly anisotropic inelastic response of Be. This good agreement demonstrates that the measured profiles can be understood in terms of dislocation slip along basal, prismatic, and pyramidal planes, together with deformation twinning along (101 ¯ 2) planes. Our results show that the response of shocked Be single crystals involves the simultaneous operation of multiple, distinct inelastic deformation mechanisms for all orientations except the c-axis. For shocked c-axis Be, the measured wave profiles do not provide good discrimination between pyramidal slip and other inelastic deformation mechanisms, such as shear cracking. The findings presented here provide insight into the complex inelastic deformation response of shocked Be single crystals and are expected to be useful for other hcp crystals. More

  16. Influence of exogenous pigmentation on the optical properties of orthodontic elastic ligatures

    Directory of Open Access Journals (Sweden)

    Alline Birra Nolasco Fernandes

    2012-08-01

    Full Text Available OBJECTIVES: The aim of this study was to assess the optical properties of orthodontic elastic ligatures under the influence of exogenous pigments contained in the daily diet. MATERIAL AND METHODS: For the analysis, colorless (clear elastic segments (ORTHO Organizers, lot 660625A10 were used as received from the manufacturer, and were divided into 8 groups of 3 segments each. Each group was immersed in 200 mL of a solution containing a determined substance, as follows: distilled water (control group, Coca-Cola®, Pomarola brand tomato sauce (Cica®, açai, Jasmine® brand green tea, Royal Blend® black tea brand, Pilão® brand coffee and Palmares® wine brand. All test specimens were immersed in the solutions and kept in an appropriate receptacle for 7 days at 37°C14. After the staining session, the test specimens were washed with distilled water in an ultrasonic vat for 5 min and dried with paper tissues6. The portable digital spectrophotometer Vita Easyshade Compact was used to assess if there was color variation of the test specimens. This variation was quantified and qualified at the initial time (T0 and after staining (T1. RESULTS: These results were analyzed statistically using the software SPSS version 18.0. The Shapiro-Wilk test of normality was applied followed by the one-way analysis of variance and the Tukey's post hoc test. The level of significance adopted was 5%. CONCLUSIONS: From the substances evaluated in this study, those with higher staining potential on esthetic elastic ligatures were black tea, coffee and wine, respectively. Knowing this information, the dentist may advise their patients to avoid certain foods because of elastic staining may occur thus decreasing the aesthetics of the material.

  17. Achilles and patellar tendinopathy display opposite changes in elastic properties: A shear wave elastography study.

    Science.gov (United States)

    Coombes, B K; Tucker, K; Vicenzino, B; Vuvan, V; Mellor, R; Heales, L; Nordez, A; Hug, F

    2018-03-01

    To compare tendon elastic and structural properties of healthy individuals with those with Achilles or patellar tendinopathy. Sixty-seven participants (22 Achilles tendinopathy, 17 patellar tendinopathy, and 28 healthy controls) were recruited between March 2015 and March 2016. Shear wave velocity (SWV), an index of tissue elastic modulus, and tendon thickness were measured bilaterally at mid-tendon and insertional regions of Achilles and patellar tendons by an examiner blinded to group. Analysis of covariance, adjusted for age, body mass index, and sex was used to compare differences in tendon thickness and SWV between the two tendinopathy groups (relative to controls) and regions. Tendon thickness was included as a covariate for analysis of SWV. Compared to controls, participants with Achilles tendinopathy had lower SWV at the distal insertion (Mean difference MD; 95% CI: -1.56; -2.49 to -0.62 m/s; P < .001) and greater thickness at the mid-tendon (MD 0.19; 0.05-0.33 cm; P = .007). Compared to controls, participants with patellar tendinopathy had higher SWV at both regions (MD 1.25; 0.40-2.10 m/s; P = .005) and greater thickness proximally (MD 0.17; 0.06-0.29 cm; P = .003). Compared to controls, participants with Achilles and patellar tendinopathy displayed lower Achilles tendon elastic modulus and higher patellar tendon elastic modulus, respectively. More research is needed to explore whether maturation, aging, or chronic load underlie these findings and whether current management programs for Achilles and patellar tendinopathy need to be tailored to the tendon. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  18. Elastic and Piezoelectric Properties of Boron Nitride Nanotube Composites. Part II; Finite Element Model

    Science.gov (United States)

    Kim, H. Alicia; Hardie, Robert; Yamakov, Vesselin; Park, Cheol

    2015-01-01

    This paper is the second part of a two-part series where the first part presents a molecular dynamics model of a single Boron Nitride Nanotube (BNNT) and this paper scales up to multiple BNNTs in a polymer matrix. This paper presents finite element (FE) models to investigate the effective elastic and piezoelectric properties of (BNNT) nanocomposites. The nanocomposites studied in this paper are thin films of polymer matrix with aligned co-planar BNNTs. The FE modelling approach provides a computationally efficient way to gain an understanding of the material properties. We examine several FE models to identify the most suitable models and investigate the effective properties with respect to the BNNT volume fraction and the number of nanotube walls. The FE models are constructed to represent aligned and randomly distributed BNNTs in a matrix of resin using 2D and 3D hollow and 3D filled cylinders. The homogenisation approach is employed to determine the overall elastic and piezoelectric constants for a range of volume fractions. These models are compared with an analytical model based on Mori-Tanaka formulation suitable for finite length cylindrical inclusions. The model applies to primarily single-wall BNNTs but is also extended to multi-wall BNNTs, for which preliminary results will be presented. Results from the Part 1 of this series can help to establish a constitutive relationship for input into the finite element model to enable the modeling of multiple BNNTs in a polymer matrix.

  19. Elastic properties and short-range structural order in mixed network former glasses.

    Science.gov (United States)

    Wang, Weimin; Christensen, Randilynn; Curtis, Brittany; Hynek, David; Keizer, Sydney; Wang, James; Feller, Steve; Martin, Steve W; Kieffer, John

    2017-06-21

    Elastic properties of alkali containing glasses are of great interest not only because they provide information about overall structural integrity but also they are related to other properties such as thermal conductivity and ion mobility. In this study, we investigate two mixed-network former glass systems, sodium borosilicate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)SiO 2 ] and sodium borogermanate 0.2Na 2 O + 0.8[xBO 1.5 + (1 - x)GeO 2 ] glasses. By mixing network formers, the network topology can be changed while keeping the network modifier concentration constant, which allows for the effect of network structure on elastic properties to be analyzed over a wide parametric range. In addition to non-linear, non-additive mixed-glass former effects, maxima are observed in longitudinal, shear and Young's moduli with increasing atomic number density. By combining results from NMR spectroscopy and Brillouin light scattering with a newly developed statistical thermodynamic reaction equilibrium model, it is possible to determine the relative proportions of all network structural units. This new analysis reveals that the structural characteristic predominantly responsible for effective mechanical load transmission in these glasses is a high density of network cations coordinated by four or more bridging oxygens, as it provides for establishing a network of covalent bonds among these cations with connectivity in three dimensions.

  20. Structure, cell wall elasticity and polysaccharide properties of living yeast cells, as probed by AFM

    International Nuclear Information System (INIS)

    Alsteens, David; Dupres, Vincent; Evoy, Kevin Mc; Dufrene, Yves F; Wildling, Linda; Gruber, Hermann J

    2008-01-01

    Although the chemical composition of yeast cell walls is known, the organization, assembly, and interactions of the various macromolecules remain poorly understood. Here, we used in situ atomic force microscopy (AFM) in three different modes to probe the ultrastructure, cell wall elasticity and polymer properties of two brewing yeast strains, i.e. Saccharomyces carlsbergensis and S. cerevisiae. Topographic images of the two strains revealed smooth and homogeneous cell surfaces, and the presence of circular bud scars on dividing cells. Nanomechanical measurements demonstrated that the cell wall elasticity of S. carlsbergensis is homogeneous. By contrast, the bud scar of S. cerevisiae was found to be stiffer than the cell wall, presumably due to the accumulation of chitin. Notably, single molecule force spectroscopy with lectin-modified tips revealed major differences in polysaccharide properties of the two strains. Polysaccharides were clearly more extended on S. cerevisiae, suggesting that not only oligosaccharides, but also polypeptide chains of the mannoproteins were stretched. Consistent with earlier cell surface analyses, these findings may explain the very different aggregation properties of the two organisms. This study demonstrates the power of using multiple complementary AFM modalities for probing the organization and interactions of the various macromolecules of microbial cell walls

  1. Effect of ionizing radiation on visco-elastic properties of polymethyl-methacrylate and poly-4-methylpentene-1

    International Nuclear Information System (INIS)

    Perepechko, I.I.; Mar'yasin, B.Ya.

    1978-01-01

    The effect of γ radiation on visco-elastic properties of polymethylmethacrylate (PMMA) and poly-4-methylpentene-1 (P4MPI) has been investigated by the method of the forced resonance oscillations of a cantilevered specimen. It has been shown, that the variation of the dynamic elasticity modulus of amorphous polymer when the irradiation dose increases, considerable depends on the polymer physical state during the measurement. The irradiated polymer is a binary mixture of radiolysis low-molecular products and polymer itself. The value of elasticity modulus in such a mixture is defined by the modules of different components. More complex than in PMMA in the effect of γ-radiation upon the P4MPI visco-elastic behaviour. During the P4MPI irradiation, the rebuilding of polymer supermolecular structure takes place, which results in the variation of the dynamic elasticity modulus values and in the intensity of peaks of mechanical losses

  2. Low frequency elastic properties of glasses at low temperatures - implications on the tunneling model

    International Nuclear Information System (INIS)

    Raychaudhuri, A.K.; Hunklinger, S.

    1984-01-01

    We have measured the low frequency elastic properties of dielectric, normal conducting and superconducting metallic glasses at audio-frequencies (fapprox.=1 kHz) and temperatures down to 10 mK. Our results are discussed in the framework of the tunneling model of glasses. The major assumption of the tunneling model regarding the tunneling states with long relaxation time has been verified, but discrepancies to high frequency measurements have been found. In addition, our experiments on superconducting metallic glasses seem to indicate that the present treatment of the electron-tunneling state interaction is not sufficient. (orig.)

  3. Laser-Ultrasonic Measurement of Elastic Properties of Anodized Aluminum Coatings

    Science.gov (United States)

    Singer, F.

    Anodized aluminum oxide plays a great role in many industrial applications, e.g. in order to achieve greater wear resistance. Since the hardness of the anodized films strongly depends on its processing parameters, it is important to characterize the influence of the processing parameters on the film properties. In this work the elastic material parameters of anodized aluminum were investigated using a laser-based ultrasound system. The anodized films were characterized analyzing the dispersion of Rayleigh waves with a one-layer model. It was shown that anodizing time and temperature strongly influence Rayleigh wave propagation.

  4. Evaluation of aortic elastic properties in patients with exaggerated systolic blood pressure response to exercise testing.

    Science.gov (United States)

    Kilicaslan, Baris; Eren, Nihan Kahya; Nazlı, Cem

    2015-01-01

    We aimed to evaluate the aortic elastic properties in subjects with hypertensive response to exercise stress test (HRE). Sixty-six patients were divided into two groups (33 patients in HRE group and 33 patients in normotensive group). Baseline demographic characteristics were similar. The mean aortic stiffness index (ASI) was significantly higher (p=0.001) whereas aortic distensibility (AD) was significantly lower (p=0.029) in patients suggesting HRE. The C-reactive protein levels of patients with HRE was higher in the HRE group (p=0.03). AD was significantly correlated with age (r=-0.406, pHRE.

  5. Characterization of elastic-viscoplastic properties of an AS4/PEEK thermoplastic composite

    Science.gov (United States)

    Yoon, K. J.; Sun, C. T.

    1991-01-01

    The elastic-viscoplastic properties of an AS4/PEEK (APC-2) thermoplastic composite were characterized at 24 C (75 F) and 121 C (250 F) by using a one-parameter viscoplasticity model. To determine the strain-rate effects, uniaxial tension tests were performed on unidirectional off-axis coupon specimens with different monotonic strain rates. A modified Bodner and Partom's model was also used to describe the viscoplasticity of the thermoplastic composite. The experimental results showed that viscoplastic behavior can be characterized quite well using the one-parameter overstress viscoplasticity model.

  6. Experimental study of the anisotropic properties of argillite under moisture and mechanical loads

    International Nuclear Information System (INIS)

    Yang, D.S.; Chanchole, S.; Wang, L.L.; Bornert, M.; Gatmiri, B.

    2012-01-01

    Document available in extended abstract form only. Due to various factors, such as sedimentation, layered morphology of clay mineral, in-situ stress, etc., the behavior of argillite rocks is often anisotropic. In order to study the anisotropy of the Callovo-Oxfordian (COx) argillite considered as a possible host rock for high-level radioactive nuclear waste repository in France, a series of tests including uniaxial compression and dehydration and hydration at different constant applied stress levels, are carried out using a specific setup combining mechanical and moisture loading devices. During these hydro-mechanical tests, this specific setup can also continuously capture images of the sample surfaces to be subsequently analyzed using Digital Image Correlation techniques (DIC) in order to determine full-field strains. In this study, three sampling directions are used with the angle θ between the bedding plane and the cylindrical sample axis equal to 45 deg., 60 deg. and 90 deg.. To investigate the mechanical anisotropy, uniaxial compressive tests with mechanical loading and unloading cycles are performed on several different samples at the same moisture level. The results show that the mechanical parameters (apparent modulus, failure stress) depend on loading orientation relative to the stratification plane. For a given water content, the failure stress reaches maximum values for θ =90 deg. and minimum values for θ =45 deg.. To study the hydric anisotropy, dehydration and hydration tests under stress-free conditions are performed on two cylindrical samples (θ=90 deg. and θ=60 deg.). Three cycles of hydration and dehydration are carried out by varying the relative humidity between 40% and 95%. The sample weight, the deformation measured by strain gages and the relative humidity are continuously recorded during the test by means of another specific setup described in [Pham et al., 2007]. Fig.1a illustrates the evolution of the strains of the sample EST28030-No

  7. Orientational structure formation of silk fibroin with anisotropic properties in solutions; Orientastionnoe strukturoobrazovanie fibroina shelka s anizotropnymi svojstvami v rastvorakh

    Energy Technology Data Exchange (ETDEWEB)

    Kholmuminov, A A [AS RU, Institute of Polymer Chemistry and Physics, Tashkent (Uzbekistan)

    2008-06-15

    presence of longitudinal field on the boundary 'reservoir - withdrawing capillary' of gland, initiating the transition of {alpha}-spiral in {beta}-structures as well as phase separation of fibroin and sericin in stream were discovered; the phase diagram of liquidus for secret in the framework of polymers orientation crystallization conception were suggested; the mechanism of fibroin orientational crystallization under the longitudinal flow of solutions and gels was conformed experimentally; the scientific principles of oriented-crystallized fibrillar biopolymer materials receipt were established on the base of fibroin model solutions with properties of anisotropy of moisture absorption, swelling, desorption, thermo- and biodegradation; the approach of jointly using polarization-optical and hydrodynamic methods to the investigation of fibrillar biopolymers structure formation and phase transformations in solution was developed. Practical value - the elucidated physical regularities of fibroin solution allow to formulate a new idea on fibrillar biopolymer solutions formation and to get on their late model systems for practical use; the established scientific principles of orientational structure-formation and phase transformation of fibroin will be the base for development of original methods of anisotropic biopolymer materials from solutions of the polarization-optical and developed hydrodynamic methods can be used for the investigation of structure and phase transformations of wide range of fibrillar biopolymer samples. Sphere of usage: physics of anisotropic polymer systems, macromolecular compounds solutions, gels, crystals, biopolymers materials science, optical polarization and hydrodynamics. (author)

  8. Structural, elastic and magnetic properties of Mn and Sb doped chromium nitride – An ab initio study

    Energy Technology Data Exchange (ETDEWEB)

    Ikram Un Nabi Lone; Sheik Sirajuddeen M Mohamed, E-mail: msheiksiraj@bsauniv.ac.in; Shameem Banu, I.B.; Sathik Basha, S.

    2017-05-01

    Structural, magnetic and elastic properties of Mn and Sb doped CrN were investigated by the electronic band structure calculations using Full Potential Linear Augmented Plane Wave (FP-LAPW) method. The host compound CrN was doped with Mn and Sb separately, in the doping concentration of 12.5% to replace Cr atoms. The introduction of Mn and Sb atoms replacing the Cr atoms does not change the structural stability of the compound. The changes in magnetic and elastic properties were investigated and compared in GGA and GGA+U methods. The doped CrN undergoes a relative increase in the magnetic order with the substitution of Mn and Sb atoms. In GGA method, the magnetic moments are found to be greater in Mn doped CrN than that found in Sb doped Cr{sub 0.875}NSb{sub 0.125}. When doped with Sb, the elastic moduli such as Young’s modulus, bulk modulus and rigidity modulus show a relative increase in comparison with that in Mn doped CrN. Using Hubbard model in GGA+U method, both the magnetic and elastic properties increase in Mn and Sb doped compounds. - Highlights: • Mn and Sb doped Chromium Nitride. • Structural properties. • Magnetic properties. • Elastic properties.

  9. First-principles study of elastic and thermodynamic properties of orthorhombic OsB4 under high pressure

    Science.gov (United States)

    Yan, Hai-Yan; Zhang, Mei-Guang; Huang, Duo-Hui; Wei, Qun

    2013-04-01

    The first-principles study on the elastic properties, elastic anisotropy and thermodynamic properties of the orthorhombic OsB4 is reported using density functional theory method with the ultrasoft pseudopotential scheme in the frame of the generalized gradient approximation. The calculated equilibrium parameters are in good agreement with the available theoretical data. A complete elastic tensor and crystal anisotropies of the ultra-incompressible OsB4 are determined in the pressure range of 0-50 GPa. By the elastic stability criteria, it is predicted that the orthorhombic OsB4 is stable below 50 GPa. By using the quasi-harmonic Debye model, the heat capacity, the coefficient of thermal expansion, and the Grüneisen parameter of OsB4 are also successfully obtained in the present work.

  10. Structural, Mechanical, Anisotropic, and Thermal Properties of AlAs in oC12 and hP6 Phases under Pressure

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2018-05-01

    Full Text Available The structural, mechanical, anisotropic, and thermal properties of oC12-AlAs and hP6-AlAs under pressure have been investigated by employing first-principles calculations based on density functional theory. The elastic constants, bulk modulus, shear modulus, Young’s modulus, B/G ratio, and Poisson’s ratio for oC12-AlAs and hP6-AlAs have been systematically investigated. The results show that oC12-AlAs and hP6-AlAs are mechanically stable within the considered pressure. Through the study of lattice constants (a, b, and c with pressure, we find that the incompressibility of oC12-AlAs and hP6-AlAs is the largest along the c-axis. At 0 GPa, the bulk modulus B of oC12-AlAs, hP6-AlAs, and diamond-AlAs are 76 GPa, 75 GPa, and 74 Gpa, respectively, indicating that oC12-AlAs and hP6-AlAs have a better capability of resistance to volume than diamond-AlAs. The pressure of transition from brittleness to ductility for oC12-AlAs and hP6-AlAs are 1.21 GPa and 2.11 GPa, respectively. The anisotropy of Young’s modulus shows that oC12-AlAs and hP6-AlAs have greater isotropy than diamond-AlAs. To obtain the thermodynamic properties of oC12-AlAs and hP6-AlAs, the sound velocities, Debye temperature, and minimum thermal conductivity at considered pressure were investigated systematically. At ambient pressure, oC12-AlAs (463 K and hP6-AlAs (471 K have a higher Debye temperature than diamond-AlAs (433 K. At T = 300 K, hP6-AlAs (0.822 W/cm·K−1 has the best thermal conductivity of the three phases, and oC12-AlAs (0.809 W/cm·K−1 is much close to diamond-AlAs (0.813 W/cm·K−1.

  11. Acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals

    Energy Technology Data Exchange (ETDEWEB)

    Mys, O; Martynyuk-Lototska, I; Vlokh, R [Institute of Physical Optics of the Ministry of Education and Science of Ukraine, 23 Dragomanov Street, 79005 Lviv (Ukraine); Grabar, A [Istitute for Solid State Physics and Chemistry, Uzhgorod National University, 54 Voloshyn Street, 88000 Uzhgorod (Ukraine)], E-mail: vlokh@ifo.lviv.ua

    2009-07-01

    We present the results concerned with acoustic and elastic properties of Sn{sub 2}P{sub 2}S{sub 6} crystals. The complete matrices of elastic stiffness and compliance coefficients are determined in both the crystallographic coordinate system and the system associated with eigenvectors of the elastic stiffness tensor. The acoustic slowness surfaces are constructed and the propagation and polarization directions of the slowest acoustic waves promising for acousto-optic interactions are determined on this basis. The acoustic obliquity angle and the deviation of polarization of the acoustic waves from purely transverse or longitudinal states are quantitatively analysed.

  12. Elastic properties and molar volume of rare-earth aluminosilicae glasses

    International Nuclear Information System (INIS)

    Tanabe, S.; Hirao, K.; Soga, N.

    1992-01-01

    This paper reports on the elastic properties, molar volume, and glass transition temperature (T g ) of rare-earth-containing aluminosilicate glasses that were investigated in the compositions of SiO 2 --LnAlO 3 and SiO 2 --Ln 3/4 Al 5/4 O 3 , where Ln is Y, La, Nd, Eu, or Yb. The molar volume decreased with decreased ionic size of the Ln 3+ ion, and T g and elastic moduli increased in the same order. The Yb-containing glasses showed the highest Young's modulus among all the oxide glasses, even higher than the highest value ever known fro glass containing Y 2 O 3 , as expected from the smaller ionic radius of Yb 3+ than that of Y 3+ . The bulk modulus was found to be almost proportional to the inverse four-thirds power of the molar volume of glasses in each composition, indicating that Ln 3+ ions can substitute for each other without changing the glass structure except for the size of the local structure around themselves. From the comparison of these properties, the structural role of rate-earth ions in these glasses is discussed

  13. Structural, electronic and elastic properties of potassium hexatitanate crystal from first-principles calculations

    International Nuclear Information System (INIS)

    Hua Manyu; Li Yimin; Long Chunguang; Li Xia

    2012-01-01

    The structural, electronic and elastic properties of potassium hexatitanate (K 2 Ti 6 O 13 ) whisker were investigated using first-principles calculations. The calculated cell parameters of K 2 Ti 6 O 13 including lattice constants and atomic positions are in good agreement with the experimental data. The obtained formation enthalpy (-61.1535 eV/atom) and cohesive energy (-137.4502 eV/atom) are both negative, showing its high structural stability. Further analysis of the electronic structures shows that the potassium hexatitanate is a wide-band semiconductor. Within K 2 Ti 6 O 13 crystal, the Ti---O bonding interactions are stronger than that of K---O, while no apparent K---Ti bonding interactions can be observed. The structural stability of K 2 Ti 6 O 13 was closely associated with the covalent bond interactions between Ti (d) and O (p) orbits. Further calculations on elastic properties show that K 2 Ti 6 O 13 is a high stiffness and brittle material with small anisotropy in shear and compression.

  14. The stabilities, electronic structures and elastic properties of Rb—As systems

    International Nuclear Information System (INIS)

    Ozisik Havva Bogaz; Colakoglu Kemal; Deligoz Engin; Ozisik Haci

    2012-01-01

    The structural, electronic and elastic properties of Rb—As systems (RbAs in NaP, LiAs and AuCu structures, RbAs 2 in the MgCu 2 structure, Rb 3 As in Na 3 As, Cu 3 P and Li 3 Bi structures, and Rb 5 As 4 in the A 5 B 4 structure) are investigated with the generalized gradient approximation in the frame of density functional theory. The lattice parameters, cohesive energies, formation energies, bulk moduli and the first derivatives of the bulk moduli (to fit Murnaghan's equation of state) of the considered structures are calculated and reasonable agreement is obtained. In addition, the phase transition pressures are also predicted. The electronic band structures, the partial densities of states corresponding to the band structures and the charge density distributions are presented and analysed. The second-order elastic constants based on the stress-strain method and other related quantities such as Young's modulus, the shear modulus, Poisson's ratio, sound velocities, the Debye temperature and shear anisotropy factors are also estimated. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  15. Studies on Effective Elastic Properties of CNT/Nano-Clay Reinforced Polymer Hybrid Composite

    Science.gov (United States)

    Thakur, Arvind Kumar; Kumar, Puneet; Srinivas, J.

    2016-02-01

    This paper presents a computational approach to predict elastic propertiesof hybrid nanocomposite material prepared by adding nano-clayplatelets to conventional CNT-reinforced epoxy system. In comparison to polymers alone/single-fiber reinforced polymers, if an additional fiber is added to the composite structure, it was found a drastic improvement in resultant properties. In this regard, effective elastic moduli of a hybrid nano composite are determined by using finite element (FE) model with square representative volume element (RVE). Continuum mechanics based homogenization of the nano-filler reinforced composite is considered for evaluating the volumetric average of the stresses and the strains under different periodic boundary conditions.A three phase Halpin-Tsai approach is selected to obtain the analytical result based on micromechanical modeling. The effect of the volume fractions of CNTs and nano-clay platelets on the mechanical behavior is studied. Two different RVEs of nano-clay platelets were used to investigate the influence of nano-filler geometry on composite properties. The combination of high aspect ratio of CNTs and larger surface area of clay platelets contribute to the stiffening effect of the hybrid samples. Results of analysis are validated with Halpin-Tsai empirical formulae.

  16. Electronic, elastic and optical properties of ZnGeP{sub 2} semiconductor under hydrostatic pressures

    Energy Technology Data Exchange (ETDEWEB)

    Tripathy, S.K.; Kumar, V., E-mail: vkumar52@hotmail.com

    2014-03-15

    The electronic, elastic and optical properties of zinc germanium phosphide, ZnGeP{sub 2}, semiconductor have been studied using local density approximation (LDA) method within the density functional theory (DFT). The lattice constants (a and c), band structure, density of states (DOS), bulk modulus (B) and pressure derivative of bulk modulus (B′) have been discussed. The value of pseudo-direct band gap (E{sub g}) at Γ point has been calculated. The pressure dependences of elastic stiffness coefficients (C{sub ij}), Zener anisotropy factor (A), Poisson's ratio (ν), Young modulus (Y) and shear modulus (G) have also been calculated. The ratio of B/G shows that that ZnGeP{sub 2} is ductile in nature. The optical properties have been discussed in detail under three different pressures in the energy range 0–22 eV. The calculated values of all parameters are compared with the available experimental values and the values reported by different workers. Reasonably good agreement has been obtained between them.

  17. First-principles study of electronic and elastic properties of LuAl{sub 3}

    Energy Technology Data Exchange (ETDEWEB)

    Shukla, Pushplata, E-mail: pujashukla50@gmail.com; Shrivastava, Deepika; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal 462026 (India)

    2016-05-06

    A systematic theoretical study of electronic structure of rare earth intermetallic LuAl{sub 3} has been carried out using full potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation(GGA) for exchange and correlation potential. The ground state properties such as lattice constant (a{sub o}), bulk modulus (B) and pressure derivative of bulk modulus (B′) were evaluated. LuAl{sub 3} has the cubic AuCu{sub 3} type crystal structure. The electronic properties of this compound have been analyzed quantatively from band structure and DOS. It is clear from band structure that this compound is metallic in nature. The calculated elastic constants infer that this compound is mechanically stable.

  18. Modeling amorphous Si3B3N7: Structure and elastic properties

    International Nuclear Information System (INIS)

    Hannemann, A.; Schoen, J.C.; Jansen, M.; Putz, H.; Lengauer, T.

    2004-01-01

    We investigate the structure and elastic properties of the amorphous high-temperature ceramic a-Si 3 B 3 N 7 . Several different structural models are generated and their properties such as the radial and angular distribution functions, the degree of local order, the density, the bulk modulus and the phonon spectrum, are calculated and compared with the experiment. The best structural agreement between model and experimental observations is found for models exhibiting a certain degree of local ( 3 B 3 N 7 has not been synthesized by cooling from the melt but via the polymerization and subsequent pyrolysis of molecular precursors. Furthermore, we suggest that, due to the synthesis process, stable nanoscale cavities (diameter 3 )

  19. Structural, Electronic and Elastic Properties of Heavy Fermion YbTM2 (TM= Ir and Pt) Laves Phase Compounds

    Science.gov (United States)

    Pawar, H.; Shugani, M.; Aynyas, M.; Sanyal, S. P.

    2018-02-01

    The structural, electronic and elastic properties of YbTM2 (TM = Ir and Pt) Laves phase intermetallic compounds which crystallize in cubic (MgCu2-type) structure, have been investigated using ab-initio full potential linearized augmented plane wave (FP-LAPW) method with LDA and LDA+U approximation. The calculated ground state properties such as lattice parameter (a0), bulk modulus (B) and its pressure derivative (B‧) are in good agreement with available experimental and theoretical data. The electronic properties are analyzed from band structures and density of states. Elastic constants are predicted first time for these compounds which obey the stability criteria for cubic system.

  20. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries.

    Science.gov (United States)

    Huang, Angela H; Balestrini, Jenna L; Udelsman, Brooks V; Zhou, Kevin C; Zhao, Liping; Ferruzzi, Jacopo; Starcher, Barry C; Levene, Michael J; Humphrey, Jay D; Niklason, Laura E

    2016-06-01

    Tissue-engineered blood vessels (TEVs) are typically produced using the pulsatile, uniaxial circumferential stretch to mechanically condition and strengthen the arterial grafts. Despite improvements in the mechanical integrity of TEVs after uniaxial conditioning, these tissues fail to achieve critical properties of native arteries such as matrix content, collagen fiber orientation, and mechanical strength. As a result, uniaxially loaded TEVs can result in mechanical failure, thrombus, or stenosis on implantation. In planar tissue equivalents such as artificial skin, biaxial loading has been shown to improve matrix production and mechanical properties. To date however, multiaxial loading has not been examined as a means to improve mechanical and biochemical properties of TEVs during culture. Therefore, we developed a novel bioreactor that utilizes both circumferential and axial stretch that more closely simulates loading conditions in native arteries, and we examined the suture strength, matrix production, fiber orientation, and cell proliferation. After 3 months of biaxial loading, TEVs developed a formation of mature elastic fibers that consisted of elastin cores and microfibril sheaths. Furthermore, the distinctive features of collagen undulation and crimp in the biaxial TEVs were absent in both uniaxial and static TEVs. Relative to the uniaxially loaded TEVs, tissues that underwent biaxial loading remodeled and realigned collagen fibers toward a more physiologic, native-like organization. The biaxial TEVs also showed increased mechanical strength (suture retention load of 303 ± 14.53 g, with a wall thickness of 0.76 ± 0.028 mm) and increased compliance. The increase in compliance was due to combinatorial effects of mature elastic fibers, undulated collagen fibers, and collagen matrix orientation. In conclusion, biaxial stretching is a potential means to regenerate TEVs with improved matrix production, collagen organization, and mechanical

  1. Characterization of the elastic and viscoelastic properties of dentin by a nanoindentation creep test.

    Science.gov (United States)

    Chuang, Shu-Fen; Lin, Shih-Yun; Wei, Pal-Jen; Han, Chang-Fu; Lin, Jen-Fin; Chang, Hsien-Chang

    2015-07-16

    Dentin is the main supporting structure of teeth, but its mechanical properties may be adversely affected by pathological demineralization. The purposes of this study were to develop a quantitative approach to characterize the viscoelastic properties of dentin after de- and re-mineralization, and to examine the elastic properties using a nanoindentation creep test. Dentin specimens were prepared to receive both micro- and nano-indentation tests at wet and dry states. These tests were repeatedly performed after demineralization (1% citric acid for 3 days) and remineralization (artificial saliva immersion for 28 days). The nanoindentation test was executed in a creep mode, and the resulting displacement-time responses were disintegrated into primary (transient) and secondary (viscous) creep. The structural changes and mineral densities of dentin were also examined under SEM and microCT, respectively. The results showed that demineralization removed superficial minerals of dentin to the depth of 400 μm, and affected its micro- and nano-hardness, especially in the hydrate state. Remineralization only repaired the minerals at the surface layer, and partially recovered the nanohardness. Both the primary the secondary creep increased in the demineralized dentin, while the hydration further enhanced creep deformation of untreated and remineralized dentin. Remineralization reduced the primary creep of dentin, but did not effectively increase the viscosity. In conclusion, water plasticization increases the transient and viscous creep strains of demineralized dentin and reduces load sustainability. The nanoindentation creep test is capable of analyzing the elastic and viscoelastic properties of dentin, and reveals crucial information about creep responses. Copyright © 2015 Elsevier Ltd. All rights reserved.

  2. Calculating Effective Elastic Properties of Berea Sandstone Using Segmentation-less Method without Targets

    Science.gov (United States)

    Ikeda, K.; Goldfarb, E. J.; Tisato, N.

    2017-12-01

    Digital rock physics (DRP) allows performing common laboratory experiments on numerical models to estimate, for example, rock hydraulic permeability. The standard procedure of DRP involves turning a rock sample into a numerical array using X-ray micro computed tomography (micro-CT). Each element of the array bears a value proportional to the X-ray attenuation of the rock at the element (voxel). However, the traditional DRP methodology, which includes segmentation, over-predicts rock moduli by significant amounts (e.g., 100%). Recently, a new methodology - the segmentation-less approach - has been proposed leading to more accurate DRP estimate of elastic moduli. This new method is based on homogenization theory. Typically, segmentation-less approach requires calibration points from known density objects, known as targets. Not all micro-CT datasets have these reference points. Here, we describe how we perform segmentation- and target-less DRP to estimate elastic properties of rocks (i.e., elastic moduli), which are crucial parameters to perform subsurface modeling. We calculate the elastic properties of a Berea sandstone sample that was scanned at a resolution of 40 microns per voxel. We transformed the CT images into density matrices using polynomial fitting curve with four calibration points: the whole rock, the center of quartz grains, the center of iron oxide grains, and the center of air-filled volumes. The first calibration point is obtained by assigning the density of the whole rock to the average of all CT-numbers in the dataset. Then, we locate the center of each phase by finding local extrema point in the dataset. The average CT-numbers of these center points are assigned the density equal to either pristine minerals (quartz and iron oxide) or air. Next, density matrices are transformed to porosity and moduli matrices by means of an effective medium theory. Finally, effective static bulk and shear modulus are numerically calculated by using a Matlab code

  3. Polymer concentration and properties of elastic turbulence in a von Karman swirling flow

    Science.gov (United States)

    Jun, Yonggun; Steinberg, Victor

    2017-10-01

    We report detailed experimental studies of statistical, scaling, and spectral properties of elastic turbulence (ET) in a von Karman swirling flow between rotating and stationary disks of polymer solutions in a wide, from dilute to semidilute entangled, range of polymer concentrations ϕ . The main message of the investigation is that the variation of ϕ just weakly modifies statistical, scaling, and spectral properties of ET in a swirling flow. The qualitative difference between dilute and semidilute unentangled versus semidilute entangled polymer solutions is found in the dependence of the critical Weissenberg number Wic of the elastic instability threshold on ϕ . The control parameter of the problem, the Weissenberg number Wi, is defined as the ratio of the nonlinear elastic stress to dissipation via linear stress relaxation and quantifies the degree of polymer stretching. The power-law scaling of the friction coefficient on Wi/Wic characterizes the ET regime with the exponent independent of ϕ . The torque Γ and pressure p power spectra show power-law decays with well-defined exponents, which has values independent of Wi and ϕ separately at 100 ≤ϕ ≤900 ppm and 1600 ≤ϕ ≤2300 ppm ranges. Another unexpected observation is the presence of two types of the boundary layers, horizontal and vertical, distinguished by their role in the energy pumping and dissipation, which has width dependence on Wi and ϕ differs drastically. In the case of the vertical boundary layer near the driving disk, wvv is independent of Wi/Wic and linearly decreases with ϕ /ϕ * , while in the case of the horizontal boundary layer wvh its width is independent of ϕ /ϕ * , linearly decreases with Wi/Wic , and is about five times smaller than wvv. Moreover, these Wi and ϕ dependencies of the vertical and horizontal boundary layer widths are found in accordance with the inverse turbulent intensity calculated inside the boundary layers Vθh/Vθh rms and Vθv/Vθv rms , respectively

  4. Elastic properties of Na2 O–ZnO–ZnF2 –B2 O3 oxyfluoride glasses

    Indian Academy of Sciences (India)

    Administrator

    Elastic properties of borate glasses through ultrasound velocity measurements is one of the important techniques to elucidate the structure of glasses, since their properties have direct bearing on the bonding and interatomic forces. Sound velocity measurement at ultrasonic fre- quencies is used to determine the mechanical ...

  5. Combining the AFLOW GIBBS and elastic libraries to efficiently and robustly screen thermomechanical properties of solids

    Science.gov (United States)

    Toher, Cormac; Oses, Corey; Plata, Jose J.; Hicks, David; Rose, Frisco; Levy, Ohad; de Jong, Maarten; Asta, Mark; Fornari, Marco; Buongiorno Nardelli, Marco; Curtarolo, Stefano

    2017-06-01

    Thorough characterization of the thermomechanical properties of materials requires difficult and time-consuming experiments. This severely limits the availability of data and is one of the main obstacles for the development of effective accelerated materials design strategies. The rapid screening of new potential materials requires highly integrated, sophisticated, and robust computational approaches. We tackled the challenge by developing an automated, integrated workflow with robust error-correction within the AFLOW framework which combines the newly developed "Automatic Elasticity Library" with the previously implemented GIBBS method. The first extracts the mechanical properties from automatic self-consistent stress-strain calculations, while the latter employs those mechanical properties to evaluate the thermodynamics within the Debye model. This new thermoelastic workflow is benchmarked against a set of 74 experimentally characterized systems to pinpoint a robust computational methodology for the evaluation of bulk and shear moduli, Poisson ratios, Debye temperatures, Grüneisen parameters, and thermal conductivities of a wide variety of materials. The effect of different choices of equations of state and exchange-correlation functionals is examined and the optimum combination of properties for the Leibfried-Schlömann prediction of thermal conductivity is identified, leading to improved agreement with experimental results than the GIBBS-only approach. The framework has been applied to the AFLOW.org data repositories to compute the thermoelastic properties of over 3500 unique materials. The results are now available online by using an expanded version of the REST-API described in the Appendix.

  6. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    Optical components made of anisotropic materials, such as crystal polarizers and crystal waveplates, are widely used in many complex optical system, such as display systems, microlithography, biomedical imaging and many other optical systems, and induce more complex aberrations than optical components made of isotropic materials. The goal of this dissertation is to accurately simulate the performance of optical systems with anisotropic materials using polarization ray trace. This work extends the polarization ray tracing calculus to incorporate ray tracing through anisotropic materials, including uniaxial, biaxial and optically active materials. The 3D polarization ray tracing calculus is an invaluable tool for analyzing polarization properties of an optical system. The 3x3 polarization ray tracing P matrix developed for anisotropic ray trace assists tracking the 3D polarization transformations along a ray path with series of surfaces in an optical system. To better represent the anisotropic light-matter interactions, the definition of the P matrix is generalized to incorporate not only the polarization change at a refraction/reflection interface, but also the induced optical phase accumulation as light propagates through the anisotropic medium. This enables realistic modeling of crystalline polarization elements, such as crystal waveplates and crystal polarizers. The wavefront and polarization aberrations of these anisotropic components are more complex than those of isotropic optical components and can be evaluated from the resultant P matrix for each eigen-wavefront as well as for the overall image. One incident ray refracting or reflecting into an anisotropic medium produces two eigenpolarizations or eigenmodes propagating in different directions. The associated ray parameters of these modes necessary for the anisotropic ray trace are described in Chapter 2. The algorithms to calculate the P matrix from these ray parameters are described in Chapter 3 for

  7. Carotid intima-media thickness and elastic properties of aortas in normotensive children of hypertensive parents.

    Science.gov (United States)

    Yildirim, Ali; Kosger, Pelin; Ozdemir, Gokmen; Sahin, Fezan Mutlu; Ucar, Birsen; Kilic, Zubeyir

    2015-09-01

    A significant correlation between hypertension history and high blood pressure has been observed with regard to age, race and gender. Investigating carotid intima-media thickness and aortic stiffness prior to the development of hypertension in children of hypertensive parents enabled us to evaluate these patients for subclinical atherosclerosis. We compared carotid intima-media thickness, aortic strain, distensibility, stiffness indices and elastic modulus in 67 normotensive children whose parents had a diagnosis of essential hypertension and 39 normotensive children with no parental history of hypertension. Although there were no significant differences between the two groups in terms of systolic blood pressure, diastolic blood pressure, average blood pressure and pulse pressure (P>0.05), systolic blood pressures were higher among patients 15 years and older in the study group. No significant differences were noted between the control and study groups regarding interventricular septal thickness, left-ventricular posterior wall thickness, left-ventricular systolic and diastolic diameter and aortic annulus diameter (P>0.05). The left atrium diameter was larger in the study group compared with that in the control group, mainly because of the values of the 15-year-old and older children (P=0.01). The mean, maximum and minimum values of carotid intima-media thickness were significantly different in the study group compared with the control group among all age groups (Pchildren of hypertensive parents compared with the control group (P=0.014, P=0.001, respectively). Although there were no differences between the study and control groups regarding aortic strain, aortic distensibility, elastic modulus and stiffness indices (P>0.05), aortic distensibility was lower, and aortic stiffness indices were higher among children 15 years and older in the study group. An increase in the carotid intima-media thickness in all age groups and a decrease in aortic elastic properties in

  8. On the propagation of elastic waves in acoustically anisotropic austenitic materials and at their boundaries during non-destructive inspection with ultrasound

    Energy Technology Data Exchange (ETDEWEB)

    Munikoti, V.K.

    2001-03-01

    In this work the propagation behaviour of ultrasound in austenitic weld metal has been analyzed by the time-harmonic plane wave approach. Bounded beam and pulse propagation as occurring in ultrasonic testing can be sufficiently dealt with by this approach. More sophisticated approaches principally do not offer any improvements in the results of plane wave modeling except for diffraction and aperture effects and, therefore, the subject matter of this work has been limited to plane wave propagation in the bulk of the medium and at different types of interfaces. Inspite of the fact, that the individual columnar grains of the weld metal have cubic symmetry, the austenitic weld metal as a whole exhibits cylinder-symmetrical texture, as substantiated by metallurgical examination, and therefore has been treated as an anisotropic poly-crystalline medium with transverse isotropic symmetry. (orig.) [German] In der vorliegenden Arbeit wird die Ultraschallausbreitung in akustisch anisotropen, homogenen Werkstoffen mit stengelkristalliner Textur wie austenitischen Plattierungen und Schweissverbindungen, austenitischem Guss oder geschweissten Komponenten aus austenitischem Guss modelliert. Wie die in dieser Arbeit referierten metallurgischen Untersuchungen gezeigt haben, koennen austenitisches Schweissgut und stengelkristallin erstarrter austenitischer Guss makroskopisch als polykristallines Medium mit zylindersymmetrischer Textur behandelt werden, also als Medium mit transversal isotroper Symmetrie, obwohl mikroskopisch die einzelnen Stengelkristallite kubische Symmetrie aufweisen. Die Schallausbreitung wird mit Hilfe des Ansatzes ebener Wellen modelliert. Obwohl bei der Ultraschallpruefung gepulste und begrenzte Schallbuendel verwendet werden, liefert dieser Ansatz die bei der Ultraschallpruefung beobachteten Wellenarten mit Geschwindigkeiten und Polarisationen, Schallbuendelablenkung und Reflexion und Brechnung nach Richtung und Amplitude, so dass ueber das Modell der ebenen

  9. 3D printed barium titanate/poly-(vinylidene fluoride) nano-hybrid with anisotropic dielectric properties

    DEFF Research Database (Denmark)

    Phatharapeetranun, N.; Ksapabutr, B.; Marani, D.

    2017-01-01

    properties of the starting materials are optimized to shape the hybrid by the precision-extrusion-based fuse deposition modeling technique. The 3D-printed BTNFs allow complex shapes with different degrees of fiber alignment as the result of printing shear stress and the chemical composition of the starting...

  10. Anisotropic electrical properties of superconducting single crystals YBa2 Cu3 O7-x

    International Nuclear Information System (INIS)

    Konczykowski, M.; Rullier-Albenque, F.

    1988-01-01

    The effect of the hydrostatic pressure (up to 18 kbar) on the transport properties of YBa 2 Cu 3 O 7 single crystals was investigated. A decrease of the resistivity and of its anisotropy was observed under pressure whereas an increase of the critical temperature, of the upper critical field and of its slope vs temperature variation was found

  11. Study of Optoelectronics Properties of Anisotropic Semiconductor Compounds with Ordered Stochiometric Vacancy

    National Research Council Canada - National Science Library

    Roud, Iouri

    2004-01-01

    This report results from a contract tasking loffe Institute as follows: The main aim of the project is to carry out basic research on optoelectronic properties of CdGeAs2 and (Zn,Cd,Hg)(Ga,Al,ln)2(S,Se,Te...

  12. Stability properties of an anisotropic guiding center plasma and relation with the Suydam function

    International Nuclear Information System (INIS)

    Choe, J.Y.; Davidson, R.C.

    1979-01-01

    The effect of pressure anisotropy on the equilibrium and stability properties of an unstable guiding center plasma and the dependence of associated stability properties on the Suydam function S are examined. An explicit solution of the guiding center plasma equilibrium equation is obtained as a function of the anitsotropy parameter αequivalentP/sub parallel//P/sub perpendicular/ (assumed constant), and the maximum growth rates for internal kink modes are numerically computed for the entire permissible range of α. For a typical tokamak field configuration with shear in straight cylindrical geometry, it is found that the maximum growth rate is a monotonically increasing function of α. A detailed parameter study of equilibrium and stability properties is presented. The dependence of stability properties on the Suydam function S is investigated by correlating maximum growth rates with the magnitude of S, and by examining the ratio of consecutive eigenvalues for each set of the parameters. The numerical analysis shows that, even though the Suydam function occurs naturally in studies of marginal stability, the maximum growth rate (except for a narrow range of α) is a monotonically decreasing function of S

  13. Band structure and optical properties of highly anisotropic LiBa2[B10O16(OH)3] decaborate crystal

    International Nuclear Information System (INIS)

    Smok, P.; Kityk, I.V.; Berdowski, J.

    2003-01-01

    The band structure (BS), charge density distribution and linear-optical properties of the anisotropic crystal LiBa 2 [B 10 O 16 (OH) 3 ] (LBBOH) are calculated using a self-consistent norm-conserving pseudopotential method within the framework of the local-density approximation theory. A high anisotropy of the band energy gap (4.22 eV for the E parallel b, 4.46 eV for the E parallel c) and giant birefringence (up to 0.20) are found. Comparison of the theoretically calculated and the experimentally measured polarised spectra of the imaginary part of the dielectric susceptibility ε 2 shows a good agreement. The anisotropy of the charge density distribution, BS dispersion and of the optical spectra originate from anisotropy between the 2p z B-2p z O and 2p y,x B-2p y,y O bonding orbitals. The observed anisotropy in the LBBOH is principally different from that of β-BaB 2 O 4 (BBO) single crystals. In the LBBOH single crystals the anisotropy of optical and charge density distribution is caused by different projection of the orbitals originating from particular borate clusters on the particular crystallographic axes, contrary to the BBO, where the anisotropy is caused prevailingly by a different local site symmetry of oxygen within the borate planes. The observed anisotropy is analysed in terms of the band energy dispersion and space charge density distribution

  14. Preparation and Properties of Anisotropic Nano-crystalline NdFeB Powders Made by Hydrogen Decrepitation of Die Upsetting Magnets

    Energy Technology Data Exchange (ETDEWEB)

    Yi, P P; Lee, D; Yan, A R, E-mail: ypp@nimte.ac.cn [Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201 (China)

    2011-01-01

    Anisotropic nanocrystalline NdFeB powders were prepared by hydrogen decrepitation (HD) of die upsetting magnets. The effects of varying temperatures of HD on the microstructure and magnetic properties of the anisotropic NdFeB particles were studied. It shows that the powders which obtained by HD process at higher temperature were larger than that at lower temperature, and the HD powders show a well anisotropy at 723 K, the remanence (B{sub r}) was more than 12.46 kG, the maximum energy product ((BH){sub max}) was 19.06 MGOe, and the coercivity (H{sub cj}) was 7.2 kOe. The microstructure of the anisotropic powders revealed that with a reasonable HD temperature, the platelet grains were not destroyed. They were nearly 150-300 nm long and 30-50 nm wide. The results indicate that HD process was an effective way to prepare the anisotropic NdFeB powders.

  15. Microstructure, elastic deformation behavior and mechanical properties of biomedical β-type titanium alloy thin-tube used for stents.

    Science.gov (United States)

    Tian, Yuxing; Yu, Zhentao; Ong, Chun Yee Aaron; Kent, Damon; Wang, Gui

    2015-05-01

    Cold-deformability and mechanical compatibility of the biomedical β-type titanium alloy are the foremost considerations for their application in stents, because the lower ductility restricts the cold-forming of thin-tube and unsatisfactory mechanical performance causes a failed tissue repair. In this paper, β-type titanium alloy (Ti-25Nb-3Zr-3Mo-2Sn, wt%) thin-tube fabricated by routine cold rolling is reported for the first time, and its elastic behavior and mechanical properties are discussed for the various microstructures. The as cold-rolled tube exhibits nonlinear elastic behavior with large recoverable strain of 2.3%. After annealing and aging, a nonlinear elasticity, considered as the intermediate stage between "double yielding" and normal linear elasticity, is attributable to a moderate precipitation of α phase. Quantitive relationships are established between volume fraction of α phase (Vα) and elastic modulus, strength as well as maximal recoverable strain (εmax-R), where the εmax-R of above 2.0% corresponds to the Vα range of 3-10%. It is considered that the "mechanical" stabilization of the (α+β) microstructure is a possible elastic mechanism for explaining the nonlinear elastic behavior. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Influence of loading and heating processes on elastic and geomechanical properties of eclogites and granulites

    Directory of Open Access Journals (Sweden)

    Hem Bahadur Motra

    2018-02-01

    Full Text Available Increased knowledge of the elastic and geomechnical properties of rocks is important for numerous engineering and geoscience applications (e.g. petroleum geoscience, underground waste repositories, geothermal energy, earthquake studies, and hydrocarbon exploration. To assess the effect of pressure and temperature on seismic velocities and their anisotropy, laboratory experiments were conducted on metamorphic rocks. P- (Vp and S-wave (Vs velocities were determined on cubic samples of granulites and eclogites with an edge length of 43 mm in a triaxial multianvil apparatus using the ultrasonic pulse emission technique in dependence of changes in pressure and temperature. At successive isotropic pressure states up to 600 MPa and temperatures up to 600 °C, measurements were performed related to the sample coordinates given by the three principal fabric directions (x, y, z representing the foliation (xy-plane, the normal to the foliation (z-direction, and the lineation direction (x-direction. Progressive volumetric strain was logged by the discrete piston displacements. Cumulative errors in Vp and Vs are estimated to be <1%. Microcrack closure significantly contributes to the increase in seismic velocities and decrease in anisotropies for pressures up to 200–250 MPa. Characteristic P-wave anisotropies of about 10% are obtained for eclogite and 3–4% in a strongly retrogressed eclogite as well as granulites. The wave velocities were used to calculate the geomechanical properties (e.g. density, Poisson's ratio, volumetric strain, and elastic moduli at different pressure and temperature conditions. These results contribute to the reliable estimate of geomechanical properties of rocks.

  17. Effect of Water on Elastic and Creep Properties of Self-Standing Clay Films.

    Science.gov (United States)

    Carrier, Benoit; Vandamme, Matthieu; Pellenq, Roland J-M; Bornert, Michel; Ferrage, Eric; Hubert, Fabien; Van Damme, Henri

    2016-02-09

    We characterized experimentally the elastic and creep properties of thin self-standing clay films, and how their mechanical properties evolved with relative humidity and water content. The films were made of clay montmorillonite SWy-2, obtained by evaporation of a clay suspension. Three types of films were manufactured, which differed by their interlayer cation: sodium, calcium, or a mixture of sodium with calcium. The orientational order of the films was characterized by X-ray diffractometry. The films were mechanically solicited in tension, the resulting strains being measured by digital image correlation. We measured the Young's modulus and the creep over a variety of relative humidities, on a full cycle of adsorption-desorption for what concerns the Young's modulus. Increasing relative humidity made the films less stiff and made them creep more. Both the elastic and creep properties depended significantly on the interlayer cation. For the Young's modulus, this dependence must originate from a scale greater than the scale of the clay layer. Also, hysteresis disappeared when plotting the Young's modulus versus water content instead of relative humidity. Independent of interlayer cation and of relative humidity greater than 60%, after a transient period, the creep of the films was always a logarithmic function of time. The experimental data gathered on these mesoscale systems can be of value for modelers who aim at predicting the mechanical behavior of clay-based materials (e.g., shales) at the engineering macroscopic scale from the one at the atomistic scale, for them to validate the first steps of their upscaling scheme. They provide also valuable reference data for bioinspired clay-based hybrid materials.

  18. Temperature and Pressure Dependences of the Elastic Properties of Tantalum Single Crystals Under Tensile Loading: A Molecular Dynamics Study

    Science.gov (United States)

    Li, Wei-bing; Li, Kang; Fan, Kan-qi; Zhang, Da-xing; Wang, Wei-dong

    2018-04-01

    Atomistic simulations are capable of providing insights into physical mechanisms responsible for mechanical properties of the transition metal of Tantalum (Ta). By using molecular dynamics (MD) method, temperature and pressure dependences of the elastic properties of Ta single crystals are investigated through tensile loading. First of all, a comparative study between two types of embedded-atom method (EAM) potentials is made in term of the elastic properties of Ta single crystals. The results show that Ravelo-EAM (Physical Review B, 2013, 88: 134101) potential behaves well at different hydrostatic pressures. Then, the MD simulation results based on the Ravelo-EAM potential show that Ta will experience a body-centered-cubic (BCC) to face-centered-cubic (FCC) phase transition before fracture under tensile loading at 1 K temperature, and model size and strain rate have no obvious effects on tensile behaviors of Ta. Next, from the simulation results at the system temperature from 1 to 1500 K, it can be derived that the elastic modulus of E 100 linearly decrease with the increasing temperature, while the yielding stress decrease with conforming a quadratic polynomial formula. Finally, the pressure dependence of the elastic properties is performed from 0 to 140 GPa and the observations show that the elastic modulus increases with the increasing pressure overall.

  19. Elastic Properties and Structural Studies on Boro-Vanadate Glasses Containing Sulphate (SO42-) Ions

    Science.gov (United States)

    Reddy, M. Sudhakar; Gowda, V. C. Veeranna; Reddy, C. Narayana

    2011-12-01

    Elastic properties of xLi2SO4-16 Li2O-(84-x) [0.7 B2O3-0.3 V2O5] where (5≤x≥30) glasses have been prepared by melt quenching method and structural investigations were carried out using ultrasonic pulse echo overlap technique at a frequency of 10 MHz and at 300 K. The molar volume increases and the density decreases with the increase of Li2SO4 concentration due to the incorporation of SO42- ions into the modified macromolecular network. The addition of Li2SO4 content leads to loose packing structure which is attributed to volume increasing effect and the reduction in the vibrations of borate and vanadate lattices. Increase in Li24SO results in decreasing cross link density which in turn decreases elastic moduli. The results are discussed in view of its network structure. The structural groups [VOO3/2]0 and [BO3/2]0 modify preferentially. This preference in modification is decided by the electronegativity (χ) of the structural groups.

  20. Ab initio study of single-crystalline and polycrystalline elastic properties of Mg-substituted calcite crystals.

    Science.gov (United States)

    Zhu, L-F; Friák, M; Lymperakis, L; Titrian, H; Aydin, U; Janus, A M; Fabritius, H-O; Ziegler, A; Nikolov, S; Hemzalová, P; Raabe, D; Neugebauer, J

    2013-04-01

    We employ ab initio calculations and investigate the single-crystalline elastic properties of (Ca,Mg)CO3 crystals covering the whole range of concentrations from pure calcite CaCO3 to pure magnesite MgCO3. Studying different distributions of Ca and Mg atoms within 30-atom supercells, our theoretical results show that the energetically most favorable configurations are characterized by elastic constants that nearly monotonously increase with the Mg content. Based on the first principles-derived single-crystalline elastic anisotropy, the integral elastic response of (Ca,Mg)CO3 polycrystals is determined employing a mean-field self-consistent homogenization method. As in case of single-crystalline elastic properties, the computed polycrystalline elastic parameters sensitively depend on the chemical composition and show a significant stiffening impact of Mg atoms on calcite crystals in agreement with the experimental findings. Our analysis also shows that it is not advantageous to use a higher-scale two-phase mix of stoichiometric calcite and magnesite instead of substituting Ca atoms by Mg ones on the atomic scale. Such two-phase composites are not significantly thermodynamically favorable and do not provide any strong additional stiffening effect. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Simultaneous reconstruction of thermal degradation properties for anisotropic scattering fibrous insulation after high temperature thermal exposures

    International Nuclear Information System (INIS)

    Zhao, Shuyuan; Zhang, Wenjiao; He, Xiaodong; Li, Jianjun; Yao, Yongtao; Lin, Xiu

    2015-01-01

    To probe thermal degradation behavior of fibrous insulation for long-term service, an inverse analysis model was developed to simultaneously reconstruct thermal degradation properties of fibers after thermal exposures from the experimental thermal response data, by using the measured infrared spectral transmittance and X-ray phase analysis data as direct inputs. To take into account the possible influence of fibers degradation after thermal exposure on the conduction heat transfer, we introduced a new parameter in the thermal conductivity model. The effect of microstructures on the thermal degradation parameters was evaluated. It was found that after high temperature thermal exposure the decay rate of the radiation intensity passing through the material was weakened, and the probability of being scattered decreased during the photons traveling in the medium. The fibrous medium scattered more radiation into the forward directions. The shortened heat transfer path due to possible mechanical degradation, along with the enhancement of mean free path of phonon scattering as devitrification after severe heat treatment, made the coupled solid/gas thermal conductivities increase with the rise of heat treatment temperature. - Highlights: • A new model is developed to probe conductive and radiative properties degradation of fibers. • To characterize mechanical degradation, a new parameter is introduced in the model. • Thermal degradation properties are reconstructed from experiments by L–M algorithm. • The effect of microstructures on the thermal degradation parameters is evaluated. • The analysis provides a powerful tool to quantify thermal degradation of fiber medium

  2. Refinement of elastic, poroelastic, and osmotic tissue properties of intervertebral disks to analyze behavior in compression.

    Science.gov (United States)

    Stokes, Ian A F; Laible, Jeffrey P; Gardner-Morse, Mack G; Costi, John J; Iatridis, James C

    2011-01-01

    Intervertebral disks support compressive forces because of their elastic stiffness as well as the fluid pressures resulting from poroelasticity and the osmotic (swelling) effects. Analytical methods can quantify the relative contributions, but only if correct material properties are used. To identify appropriate tissue properties, an experimental study and finite element analytical simulation of poroelastic and osmotic behavior of intervertebral disks were combined to refine published values of disk and endplate properties to optimize model fit to experimental data. Experimentally, nine human intervertebral disks with adjacent hemi-vertebrae were immersed sequentially in saline baths having concentrations of 0.015, 0.15, and 1.5 M and the loss of compressive force at constant height (force relaxation) was recorded over several hours after equilibration to a 300-N compressive force. Amplitude and time constant terms in exponential force-time curve-fits for experimental and finite element analytical simulations were compared. These experiments and finite element analyses provided data dependent on poroelastic and osmotic properties of the disk tissues. The sensitivities of the model to alterations in tissue material properties were used to obtain refined values of five key material parameters. The relaxation of the force in the three bath concentrations was exponential in form, expressed as mean compressive force loss of 48.7, 55.0, and 140 N, respectively, with time constants of 1.73, 2.78, and 3.40 h. This behavior was analytically well represented by a model having poroelastic and osmotic tissue properties with published tissue properties adjusted by multiplying factors between 0.55 and 2.6. Force relaxation and time constants from the analytical simulations were most sensitive to values of fixed charge density and endplate porosity.

  3. First-principles calculations for the elastic properties of Ni-base model superalloys: Ni/Ni3Al multilayers

    International Nuclear Information System (INIS)

    Yun-Jiang, Wang; Chong-Yu, Wang

    2009-01-01

    A model system consisting of Ni[001](100)/Ni 3 Al[001](100) multi-layers are studied using the density functional theory in order to explore the elastic properties of single crystal Ni-based superalloys. Simulation results are consistent with the experimental observation that rafted Ni-base superalloys virtually possess a cubic symmetry. The convergence of the elastic properties with respect to the thickness of the multilayers are tested by a series of multilayers from 2γ'+2γ to 10γ'+10γ atomic layers. The elastic properties are found to vary little with the increase of the multilayer's thickness. A Ni/Ni 3 Al multilayer with 10γ'+10γ atomic layers (3.54 nm) can be used to simulate the mechanical properties of Ni-base model superalloys. Our calculated elastic constants, bulk modulus, orientation-dependent shear modulus and Young's modulus, as well as the Zener anisotropy factor are all compatible with the measured results of Ni-base model superalloys R1 and the advanced commercial superalloys TMS-26, CMSX-4 at a low temperature. The mechanical properties as a function of the γ' phase volume fraction are calculated by varying the proportion of the γ and γ' phase in the multilayers. Besides, the mechanical properties of two-phase Ni/Ni 3 Al multilayer can be well predicted by the Voigt–Reuss–Hill rule of mixtures. (classical areas of phenomenology)

  4. Temperature effect on elastic properties of yttrium ferrite garnet Y3Fe5O12

    International Nuclear Information System (INIS)

    Burenkov, Yu.A.; Nikanorov, S.P.

    2002-01-01

    One studied temperature dependence of all independent elastic constants describing comprehensively elastic anisotropy of yttrium ferrite garnet within temperature wide range covering T c . One measured the Young modules for [100] and [110] crystallographic directions and the module of shift for [100] direction of specially pure single crystal of yttrium ferrite garnet within 20-600 deg C temperature range. One analyzed behavior of elastic modules and of elastic anisotropy factor near the critical temperature of magnetic phase transition [ru

  5. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Science.gov (United States)

    Borg, M.; Bertarelli, A.; Carra, F.; Gradassi, P.; Guardia-Valenzuela, J.; Guinchard, M.; Izquierdo, G. Arnau; Mollicone, P.; Sacristan-de-Frutos, O.; Sammut, N.

    2018-03-01

    The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  6. Elastic properties of a material composed of alternating layers of negative and positive Poisson's ratio

    International Nuclear Information System (INIS)

    Kocer, C.; McKenzie, D.R.; Bilek, M.M.

    2009-01-01

    The theory of elasticity predicts a variety of phenomena associated with solids that possess a negative Poisson's ratio. The fabrication of metamaterials with a 'designed' microstructure that exhibit a Poisson's ratio approaching the thermodynamic limits of 1/2 and -1 increases the likelihood of realising these phenomena for applications. In this work, we investigate the properties of a layered composite, with alternating layers of materials with negative and positive Poisson's ratio approaching the thermodynamic limits. Using the finite element method to simulate uniaxial loading and indentation of a free standing composite, we observed an increase in the resistance to mechanical deformation above the average value of the two materials. Even though the greatest increase in stiffness is gained as the thermodynamic limits are approached, a significant amount of added stiffness can be attained, provided that the Young's modulus of the negative Poisson's ratio material is not less than that of the positive Poisson's ratio material

  7. Calculated Changes in the Elastic Properties of MgCNi3 at the Superconducting Transition

    Directory of Open Access Journals (Sweden)

    R. Abd-Shukor

    2013-01-01

    Full Text Available We calculated the elastic properties of MgCNi3 at the superconducting transition ( using various thermodynamic and acoustic data. From the calculations, a step discontinuity of 8 ppm in the bulk modulus, 7 ppm in the Young’s modulus, and 3 ppm in the longitudinal sound velocity ( is expected at . The step discontinuities at the transition temperature indicated the importance of lattice changes to the superconducting mechanism of MgCNi3. The Debye temperature was calculated to be 460 K. The electron-phonon coupling constants calculated in the weak and strong coupling limits of the BCS theory and the van Hove scenario showed that MgCNi3 is a moderately strong coupled superconductor.

  8. Thermostructural characterization and structural elastic property optimization of novel high luminosity LHC collimation materials at CERN

    Directory of Open Access Journals (Sweden)

    M. Borg

    2018-03-01

    Full Text Available The CERN Large Hadron Collider is currently being upgraded to operate at a stored beam energy of 680 MJ through the High Luminosity upgrade. The LHC performance is dependent on the functionality of beam collimation systems, essential for safe beam cleaning and machine protection. A dedicated beam experiment at the CERN High Radiation to Materials facility is created under the HRMT-23 experimental campaign. This experiment investigates the behavior of three collimation jaws having novel composite absorbers made of copper diamond, molybdenum carbide graphite, and carbon fiber carbon, experiencing accidental scenarios involving the direct beam impact on the material. Material characterization is imperative for the design, execution, and analysis of such experiments. This paper presents new data and analysis of the thermostructural characteristics of some of the absorber materials commissioned within CERN facilities. In turn, characterized elastic properties are optimized through the development and implementation of a mixed numerical-experimental optimization technique.

  9. Removal properties of low-thermal-expansion materials with rotating-sphere elastic emission machining

    Directory of Open Access Journals (Sweden)

    Masahiko Kanaoka et al

    2007-01-01

    Full Text Available Optical mirrors used in extreme ultraviolet lithography systems require a figure accuracy and a roughness of about 0.1 nm rms. In addition, mirror substrates must be low-thermal-expansion materials. Thus, in this study, we processed two low-thermal-expansion materials, ULE [K. Hrdina, B. Hanson, P. Fenn, R. Sabia, Proc. SPIE 4688 (2002 454.] (Corning Inc. and Zerodur [I. Mitra, M.J. Davis, J. Alkemper, Rolf Müller, H. Kohlmann, L. Aschke, E. Mörsen, S. Ritter, H. Hack, W. Pannhorst, Proc. SPIE 4688 (2002 462.] (SCHOTT AG, with elastic emission machining (EEM in order to evaluate the removal properties. Consequently, we successfully calculated the respective removal rates, because removal volumes were found to be proportional to process times in EEM. Moreover, we demonstrated that the surface roughness of Zerodur is reduced to 0.1 nm rms in the spatial wavelength range from 100 μm to 1 mm.

  10. Elasticity, electronic properties and hardness of MoC investigated by first principles calculations

    International Nuclear Information System (INIS)

    Liu, YangZhen; Jiang, YeHua; Feng, Jing; Zhou, Rong

    2013-01-01

    The crystal structure, cohesive energy, formation enthalpy, mechanical anisotropy, electronic properties and hardness of α−MoC, β−MoC and γ−MoC are investigated by the first-principles calculations. The elastic constants and the bulk moduli, shear moduli, Young's moduli are calculated. The Young's modulus values of α−MoC, β−MoC and γ−MoC are 395.6 GPa, 551.2 GPa and 399.5 GPa, respectively. The surface constructions of Young's moduli identify the mechanical anisotropy of molybdenum carbide, and the results show that anisotropy of α−MoC is stronger than others. The electronic structure indicates that the bonding behaviors of MoC are the combinations of covalent and metallic bonds. The hardness of β−MoC is obviously higher than those of α−MoC and γ−MoC

  11. First principle electronic, structural, elastic, and optical properties of strontium titanate

    Directory of Open Access Journals (Sweden)

    Chinedu E. Ekuma

    2012-03-01

    Full Text Available We report self-consistent ab-initio electronic, structural, elastic, and optical properties of cubic SrTiO3 perovskite. Our non-relativistic calculations employed a generalized gradient approximation (GGA potential and the linear combination of atomic orbitals (LCAO formalism. The distinctive feature of our computations stem from solving self-consistently the system of equations describing the GGA, using the Bagayoko-Zhao-Williams (BZW method. Our results are in agreement with experimental ones where the later are available. In particular, our theoretical, indirect band gap of 3.24 eV, at the experimental lattice constant of 3.91 Å, is in excellent agreement with experiment. Our predicted, equilibrium lattice constant is 3.92 Å, with a corresponding indirect band gap of 3.21 eV and bulk modulus of 183 GPa.

  12. Structural, electronic, magnetic, elastic, and thermal properties of Co-based equiatomic quaternary Heusler alloys

    Science.gov (United States)

    Paudel, Ramesh; Zhu, Jingchuan

    2018-05-01

    In this research work, we have predicted the physical properties of CoFeZrGe and CoFeZrSb for the first time by utilizing first principle calculations based on density functional theory. The exchange-correlation potentials are treated within the generalized-gradient approximation of Perdew-Burke and Ernzerhof (GGA-PBE). The investigated equilibrium lattice parameters of CoFeCrSi are in agreement with available theoretical data and for CoFeZrZ(Z = Ge,Sb) are 6.0013 and 6.2546 Å respectively. The calculated magnetic moments are 1.01μB /fu , 2μB /fu and 1μB /fu for CoFeZrZ(Z = Ge, Sb and Si) respectively, and agree with the Slater-Pauling rule, Mt =Zt - 24 . The CoFeZrGe, CoFeZrSb and CoFeZrSi composites showed half-metallic behaviour with 100 % spin polarization at equilibrium lattice parameters with band gap of 0.43, 0.70 and 0.59 eV for GGA and an improved band gap of 0.86, 1.01 and 1.08 for GGA + U respectively. Elastic properties are also discussed in this paper and it is found that all the materials are mechanically stable and ductile in nature. The CoFeZrSi alloy is found to be stiffer than CoFeZrZ(Z = Ge and Sb) alloys. The Debye temperatures are predicted by using calculated elastic constants. Moreover, the volume heat capacities (Cv) are investigated by utilizing the quasi-harmonic Debye model.

  13. Elastic properties of the aorta and factors affecting aortic stiffness in patients with

    Directory of Open Access Journals (Sweden)

    Derya Tok

    2012-09-01

    Full Text Available Objectives: In this study, we evaluated aortic stiffnessand echocardiographic and laboratory factors affectingaortic stiffness in patients with metabolic syndrome(MetS.Materials and methods: Forty-six patients (25 male,mean age 47.3±6.5 years with the diagnosis of MetS accordingto the Adult Treatment Panel III Final Report criteriawere included. Forty-four age and gender matchedhealthy subjects (18 male, mean age 46.0±6.1 yearswere recruited as the control group. Aortic strain, distensibilityand stiffness index were calculated by M-modeechocardiography and diastolic parameters were measured.Results: Left ventricular mass index (LVMI, decelerationtime (DT, isovolumic relaxation time (IVRT wereincreased and mitral E/A ratio was decreased in patientswith MetS compared to controls. In the MetS patients,aortic distensibility was significantly decreased (10.4±3.5cm2.dyn-1.10-6 vs. 12.7±3.4 cm2.dyn-1.10-6, p=0.002,and ASI was significantly increased (6.5±2.0 vs. 3.2±0.8,p<0.001. ASI was positively correlated with triglycerides,fasting glucose, uric acid, hsCRP, LVMI, DT, IVRT andsystolic blood pressure level, and was negatively correlatedwith HDL-cholesterol and mitral E/A ratio. In regressionanalysis, hsCRP (p=0.05 and systolic blood pressurelevel (p<0.001 were independent predictors of ASI.Conclusions: ASI is increased in patients with MetS. Inthese patients; decrease in aortic elasticity properties wasassociated with left ventricular diastolic dysfunction. Highsystolic pressure and hsCRP levels were found to be independentpredictors of ASI.Key words: Metabolic syndrome, Echocardiography,elastic properties of aorta, hsCRP

  14. Computational study of structural, elastic and electronic properties of lithium disilicate (Li(2)Si(2)O(5)) glass-ceramic.

    Science.gov (United States)

    Biskri, Zine Elabidine; Rached, Habib; Bouchear, Merzoug; Rached, Djamel

    2014-04-01

    The objective of this study is to investigate theoretically the structural, elastic and electronic properties of Lithium Disilicate (LD) crystal (Li2Si2O5), using the pseudo potential method based on Density Functional Theory (DFT) with the Local Density Approximation (LDA) and the Generalized Gradient Approximation (GGA). The calculated structural properties namely the equilibrium lattice parameters and cell volume are in good agreement with the available experimental results. However, for the LD crystal elastic moduli: Shear modulus G, Young's modulus E and Poisson's ratio ν we have found a discrepancy between our theoretical values and experimental ones reported in polycrystalline sample containing LD crystals. The calculated elastic properties show that LD is more rigid compared with other components. We also investigated the mechanical stability of Li2Si2O5 compound and we have noticed that this compound is stable against elastic deformations. On the basis of shear to bulk modulus ratio analysis, we inferred that Li2Si2O5 compound is brittle in nature. In order to complete the fundamental characteristics of this compound we have measured the elastic anisotropy. Our results for the energy band structure and Density of States (DOS) show that Li2Si2O5 compound has an insulator characteristic. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The structural, elastic, electronic properties and Debye temperature of Ni3Mo under pressure from first-principles

    International Nuclear Information System (INIS)

    Qi, Lei; Jin, Yuchun; Zhao, Yuhong; Yang, Xiaomin; Zhao, Hui; Han, Peide

    2015-01-01

    Highlights: • Structural, elastic, electronic properties and Debye temperature under pressure. • Higher hardness of Ni 3 Mo compound may be obtained when pressure increases. • Proper pressure can improve the ductility but excess pressure was just the opposite. • Ni 3 Mo compound has no structural phase transformation under pressure up to 30 GPa. • Debye temperatures increase with increasing pressure. - Abstract: With the help of first principles method based on density functional theory, the structural, elastic, electronic properties and Debye temperature of Ni 3 Mo binary compound under pressure are investigated. Our calculated structural parameters are in good agreement with experimental and previous theoretical results. The obtained elastic constants show that Ni 3 Mo compound is mechanically stable. Elastic properties such as bulk modulus B, shear modulus G, Young’s modulus E and Poisson’s ratio υ are calculated by the Voigt–Reuss–Hill method. The results of B/G under various pressures show that proper pressure can improve the ductility of Ni 3 Mo but excess pressure will make the ductility decrease. In addition, the density of states as a function of pressure is analyzed. The Debye temperature Θ D calculated from elastic constants increases along with the pressure

  16. Quantifying the Elastic Property of Nine Thigh Muscles Using Magnetic Resonance Elastography.

    Science.gov (United States)

    Chakouch, Mashhour K; Charleux, Fabrice; Bensamoun, Sabine F

    2015-01-01

    Pathologies of the muscles can manifest different physiological and functional changes. To adapt treatment, it is necessary to characterize the elastic property (shear modulus) of single muscles. Previous studies have used magnetic resonance elastography (MRE), a technique based on MRI technology, to analyze the mechanical behavior of healthy and pathological muscles. The purpose of this study was to develop protocols using MRE to determine the shear modulus of nine thigh muscles at rest. Twenty-nine healthy volunteers (mean age = 26 ± 3.41 years) with no muscle abnormalities underwent MRE tests (1.5 T MRI). Five MRE protocols were developed to quantify the shear moduli of the nine following thigh muscles at rest: rectus femoris (RF), vastus medialis (VM), vastus intermedius (VI), vastus lateralis (VL), sartorius (Sr), gracilis (Gr), semimembranosus (SM), semitendinosus (ST), and biceps (BC). In addition, the shear modulus of the subcutaneous adipose tissue was analyzed. The gracilis, sartorius, and semitendinosus muscles revealed a significantly higher shear modulus (μ_Gr = 6.15 ± 0.45 kPa, μ_ Sr = 5.15 ± 0.19 kPa, and μ_ ST = 5.32 ± 0.10 kPa, respectively) compared to other tissues (from μ_ RF = 3.91 ± 0.16 kPa to μ_VI = 4.23 ± 0.25 kPa). Subcutaneous adipose tissue had the lowest value (μ_adipose tissue = 3.04 ± 0.12 kPa) of all the tissues tested. The different elasticities measured between the tissues may be due to variations in the muscles' physiological and architectural compositions. Thus, the present protocol could be applied to injured muscles to identify their behavior of elastic property. Previous studies on muscle pathology found that quantification of the shear modulus could be used as a clinical protocol to identify pathological muscles and to follow-up effects of treatments and therapies. These data could also be used for modelling purposes.

  17. First-principles prediction of the structural, elastic, thermodynamic, electronic and optical properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride

    Energy Technology Data Exchange (ETDEWEB)

    Boudrifa, O. [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Bouhemadou, A., E-mail: a_bouhemadou@yahoo.fr [Laboratory for Developing New Materials and their Characterization, University of Setif 1, 19000 Setif (Algeria); Guechi, N. [Department of Physics, Faculty of Science, University of Setif 1, 19000 Setif (Algeria); Bin-Omran, S. [Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451 (Saudi Arabia); Department of Physics, Faculty of Science and Humanitarian Studies, Salman Bin Abdalaziz University, Alkharj 11942 (Saudi Arabia); Al-Douri, Y. [Institute of Nano Electronic Engineering, Universiti Malaysia Perlis, 01000 Kangar, Perlis (Malaysia); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique (LPQ3M), Département de Technologie, Université de Mascara, 29000 Mascara (Algeria)

    2015-01-05

    Highlights: • Some physical properties of the quaternary nitride Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} have been predicted. • Elastic parameters reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropi. • Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is an indirect semiconductor. • The fundamental indirect band gap changes to direct one under pressure effect. • The optical properties exhibit noticeable anisotropy. - Abstract: Structural parameters, elastic constants, thermodynamic properties, electronic structure and optical properties of the monoclinic Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} quaternary nitride are investigated theoretically for the first time using the pseudopotential plane-wave based first-principles calculations. The calculated structural parameters are in excellent agreement with the experimental data. This serves as a proof of reliability of the used theoretical method and gives confidence in the predicted results on aforementioned properties of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The predicted elastic constants C{sub ij} reveal that Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} is mechanically stable but anisotropic. The elastic anisotropy is further illustrated by the direction-dependent of the linear compressibility and Young’s modulus. Macroscopic elastic parameters, including the bulk and shear moduli, the Young’s modulus, the Poisson ratio, the velocities of elastic waves and the Debye temperature are numerically estimated. The pressure and temperature dependence of the unit cell volume, isothermal bulk modulus, volume expansion coefficient, specific heat and Debye temperature are investigated through the quasiharmonic Debye model. The band structure and the density of states of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6} are analyzed, which reveals the semiconducting character of Li{sub 4}Sr{sub 3}Ge{sub 2}N{sub 6}. The complex dielectric function, refractive index, extinction coefficient, absorption coefficient, reflectivity

  18. Elasticity, biodegradability and cell adhesive properties of chitosan/hyaluronan multilayer films

    Energy Technology Data Exchange (ETDEWEB)

    Schneider, Aurore; Richert, Ludovic; Francius, Gregory; Voegel, Jean-Claude; Picart, Catherine [Present address: Universite de Montpellier II, CNRS-UMR 5539, cc107, Place Eugene Bataillon, 34 095 Montpellier Cedex 5 (France)

    2007-03-01

    In the bioengineering field, a recent and promising approach to modifying biomaterial surfaces is the layer-by-layer (LbL) technique used to build thin polyelectrolyte multilayer films. In this work, we focused on polyelectrolyte multilayer films made of two polysaccharides, chitosan (CHI) and hyaluronan (HA), and on the control of their physico-chemical and cell adhesive properties by chemical cross-linking. CHI/HA films were cross-linked using a water soluble carbodiimide and observed by confocal laser scanning microscopy (CLSM) with a fluorescently labeled CHI. Film thicknesses were similar for native and cross-linked films. The film nanometer roughness was measured by atomic force microscopy and was found to be higher for cross-linked films. Cross-linking the films also leads to a drastic change in film stiffness. The elastic modulus of the films (Young's modulus) as measured by AFM nano-indentation was about tenfold increased for cross-linked films as compared to native ones. From a biological point of view, cross-liked films are more resistant to enzymatic degradation by hyaluronidase. Furthermore, the increase in film stiffness has a favorable effect on the adhesion and spreading of chondrosarcoma cells. Thus, the CHI/HA cross-linked films could be used for various applications due to their adhesive properties and to their mechanical properties (including stability in enzymatic media)

  19. Temperature-dependent elastic properties of Ti{sub 1−x}Al{sub x}N alloys

    Energy Technology Data Exchange (ETDEWEB)

    Shulumba, Nina [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Functional Materials, Saarland University, D-66123 Saarbrücken (Germany); Hellman, Olle [Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California 91125 (United States); Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Rogström, Lina; Raza, Zamaan; Tasnádi, Ferenc; Odén, Magnus [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Abrikosov, Igor A. [Department of Physics, Chemistry, and Biology (IFM), Linköping University, SE-581 83 Linköping (Sweden); Materials Modeling and Development Laboratory, NUST “MISIS,” 119049 Moscow (Russian Federation); LACOMAS Laboratory, Tomsk State University, 634050 Tomsk (Russian Federation)

    2015-12-07

    Ti{sub 1−x}Al{sub x}N is a technologically important alloy that undergoes a process of high temperature age-hardening that is strongly influenced by its elastic properties. We have performed first principles calculations of the elastic constants and anisotropy using the symmetry imposed force constant temperature dependent effective potential method, which include lattice vibrations and therefore the effects of temperature, including thermal expansion and intrinsic anharmonicity. These are compared with in situ high temperature x-ray diffraction measurements of the lattice parameter. We show that anharmonic effects are crucial to the recovery of finite temperature elasticity. The effects of thermal expansion and intrinsic anharmonicity on the elastic constants are of the same order, and cannot be considered separately. Furthermore, the effect of thermal expansion on elastic constants is such that the volume change induced by zero point motion has a significant effect. For TiAlN, the elastic constants soften non-uniformly with temperature: C{sub 11} decreases substantially when the temperature increases for all compositions, resulting in an increased anisotropy. These findings suggest that an increased Al content and annealing at higher temperatures will result in a harder alloy.

  20. Damage of the Interface Between an Orthodontic Bracket and Enamel - the Effect of Some Elastic Properties of the Adhesive Material

    Science.gov (United States)

    Durgesh, B. H.; Alkheraif, A. A.; Al Sharawy, M.; Varrela, J.; Vallittu, P. K.

    2016-01-01

    The aim of this study was to investigate the magnitude of debonding stress of an orthodontic bracket bonded to the enamel with resin systems having different elastic properties. For the same purpose, sixty human premolars were randomly divided into four groups according to the adhesive system used for bonding brackets: G Fix flowable resin (GFI) with Everstick NET (ESN), GFI, G Aenial Universal Flow (GAU) with ESN, and GAU. The brackets were stressed in the occlusogingival direction on a universal testing machine. The values of debonding load and displacement were determined at the point of debonding. The elastic modulus of the tested materials was determined using nanoindentation. An analysis of variance showed a significant difference in the loads required to debond the bracket among the groups tested. The GAU group had the highest elastic modulus, followed by the GFI and ESN groups. ARI (Adhesive Remnant Index) scores demonstrated more remnants of the adhesive material on the bracket surface with adhesives having a higher elastic modulus. Taking into consideration results of the present in-vitro study, it can be concluded that the incorporation of a glass-fiber-reinforced composite resin (FRC) with a low elastic modulus between the orthodontic bracket and enamel increases the debonding force and strain more than with adhesive systems having a higher elastic modulus.

  1. Anisotropic hypersonic phonon propagation in films of aligned ellipsoids.

    Science.gov (United States)

    Beltramo, Peter J; Schneider, Dirk; Fytas, George; Furst, Eric M

    2014-11-14

    A material with anisotropic elastic mechanical properties and a direction-dependent hypersonic band gap is fabricated using ac electric field-directed convective self-assembly of colloidal ellipsoids. The frequency of the gap, which is detected in the direction perpendicular to particle alignment and entirely absent parallel to alignment, and the effective sound velocities can be tuned by the particle aspect ratio. We hypothesize that the band gap originates from the primary eigenmode peak, the m-splitted (s,1,2) mode, of the particle resonating with the effective medium. These results reveal the potential for powerful control of the hypersonic phononic band diagram by combining anisotropic particles and self-assembly.

  2. Pristine Basal- and Edge-Plane-Oriented Molybdenite MoS2 Exhibiting Highly Anisotropic Properties.

    Science.gov (United States)

    Tan, Shu Min; Ambrosi, Adriano; Sofer, Zdenĕk; Huber, Štěpán; Sedmidubský, David; Pumera, Martin

    2015-05-04

    The layered structure of molybdenum disulfide (MoS2 ) is structurally similar to that of graphite, with individual sheets strongly covalently bonded within but held together through weak van der Waals interactions. This results in two distinct surfaces of MoS2 : basal and edge planes. The edge plane was theoretically predicted to be more electroactive than the basal plane, but evidence from direct experimental comparison is elusive. Herein, the first study comparing the two surfaces of MoS2 by using macroscopic crystals is presented. A careful investigation of the electrochemical properties of macroscopic MoS2 pristine crystals with precise control over the exposure of one plane surface, that is, basal plane or edge plane, was performed. These crystals were characterized thoroughly by AFM, Raman spectroscopy, X-ray photoelectron spectroscopy, voltammetry, digital simulation, and DFT calculations. In the Raman spectra, the basal and edge planes show anisotropy in the preferred excitation of E2g and A1g phonon modes, respectively. The edge plane exhibits a much larger heterogeneous electron transfer rate constant k(0) of 4.96×10(-5) and 1.1×10(-3)  cm s(-1) for [Fe(CN)6 ](3-/4-) and [Ru(NH3 )6 ](3+/2+) redox probes, respectively, compared to the basal plane, which yielded k(0) tending towards zero for [Fe(CN)6 ](3-/4-) and about 9.3×10(-4)  cm s(-1) for [Ru(NH3 )6 ](3+/2+) . The industrially important hydrogen evolution reaction follows the trend observed for [Fe(CN)6 ](3-/4-) in that the basal plane is basically inactive. The experimental comparison of the edge and basal planes of MoS2 crystals is supported by DFT calculations. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Anisotropy and temperature dependence of structural, thermodynamic, and elastic properties of crystalline cellulose Iβ: a first-principles investigation

    Science.gov (United States)

    ShunLi Shang; Louis G. Hector Jr.; Paul Saxe; Zi-Kui Liu; Robert J. Moon; Pablo D. Zavattieri

    2014-01-01

    Anisotropy and temperature dependence of structural, thermodynamic and elastic properties of crystalline cellulose Iβ were computed with first-principles density functional theory (DFT) and a semi-empirical correction for van der Waals interactions. Specifically, we report the computed temperature variation (up to 500...

  4. Anisotropy of the elastic properties of crystalline cellulose Iß from first principles density functional theory with Van der Waals interactions

    Science.gov (United States)

    Fernando L. Dri; Louis G. Jr. Hector; Robert J. Moon; Pablo D. Zavattieri

    2013-01-01

    In spite of the significant potential of cellulose nanocrystals as functional nanoparticles for numerous applications, a fundamental understanding of the mechanical properties of defect-free, crystalline cellulose is still lacking. In this paper, the elasticity matrix for cellulose Iß with hydrogen bonding network A was calculated using ab initio...

  5. Modifying the MRI, elastic stiffness and electrical properties of polyvinyl alcohol cryogel using irradiation

    International Nuclear Information System (INIS)

    Goharian, Mehran; Moran, Gerald R.; Wilson, Kyle; Seymour, Colin; Jegatheesan, Aravinthan; Hill, Michael; Thompson, R. Terry; Campbell, Gordon

    2007-01-01

    The aim of this work was to study the effect of radiation on the elastic stiffness, electrical and MRI properties of polyvinyl alcohol (PVA)-based cryogel (PVA-C). The PVA-C samples were irradiated with a 60 C0 γ-source, at 2.18 x 10 6 Rads. The indentation measurements (an indication of elastic stiffness) reduced by about 14.6% for PVA-3C and 5.7% PVA-6C after irradiation, indicating that the material became harder/stiffer. It was found that MRI relaxation times provide an alternative and non-destructive method to evaluate the radiation effect on PVA-C. The T 1 of PVA-C that had undergone three freeze thaw cycles decreased with irradiation by 10%, 25% and 35% at 1 T, 1.89 T and 3 T respectively. The T 1 of PVA-C that had undergone six freeze thaw cycles decreased with irradiation by 18%, 15% and 11% at 1 T, 1.89 T and 3 T respectively. The T 2 of PVA-C decreased with irradiation only at 1T, however this change is hypothesized to be due to the interaction of two spin pools in the gel. The electrical conductivity (σ) and permittivity constant (ε) of the unirradiated and γ-irradiated PVA-C samples were measured at different frequencies in the range 40 Hz to 1 MHz. The results demonstrated that the conductivity increased with irradiation by 50% for PVA-3C (three freeze thaw cycles) and 75% for PVA-6C (six freeze thaw cycles) at frequencies greater than 1 KHz.The permittivity decreased with irradiation up to 25% for 3C and 35% for 6C at frequencies less than 1 KHz

  6. Measuring the linear and nonlinear elastic properties of brain tissue with shear waves and inverse analysis.

    Science.gov (United States)

    Jiang, Yi; Li, Guoyang; Qian, Lin-Xue; Liang, Si; Destrade, Michel; Cao, Yanping

    2015-10-01

    We use supersonic shear wave imaging (SSI) technique to measure not only the linear but also the nonlinear elastic properties of brain matter. Here, we tested six porcine brains ex vivo and measured the velocities of the plane shear waves induced by acoustic radiation force at different states of pre-deformation when the ultrasonic probe is pushed into the soft tissue. We relied on an inverse method based on the theory governing the propagation of small-amplitude acoustic waves in deformed solids to interpret the experimental data. We found that, depending on the subjects, the resulting initial shear modulus [Formula: see text] varies from 1.8 to 3.2 kPa, the stiffening parameter [Formula: see text] of the hyperelastic Demiray-Fung model from 0.13 to 0.73, and the third- [Formula: see text] and fourth-order [Formula: see text] constants of weakly nonlinear elasticity from [Formula: see text]1.3 to [Formula: see text]20.6 kPa and from 3.1 to 8.7 kPa, respectively. Paired [Formula: see text] test performed on the experimental results of the left and right lobes of the brain shows no significant difference. These values are in line with those reported in the literature on brain tissue, indicating that the SSI method, combined to the inverse analysis, is an efficient and powerful tool for the mechanical characterization of brain tissue, which is of great importance for computer simulation of traumatic brain injury and virtual neurosurgery.

  7. Influence of anisotropic strain relaxation on the magnetoresistance properties of epitaxial Fe3O4 (110) films

    Science.gov (United States)

    Sofin, R. G. S.; Wu, Han-Chun; Ramos, R.; Arora, S. K.; Shvets, I. V.

    2015-11-01

    We studied Fe3O4 (110) films grown epitaxially on MgO (110) substrates using oxygen plasma assisted molecular beam epitaxy. The films with thickness of 30-200 nm showed anisotropic in-plane partial strain relaxation. Magneto resistance (MR) measurements with current and magnetic field along ⟨001⟩ direction showed higher MR compared to ⟨1 ¯ 10 ⟩ direction. Maximum value of MR was measured at Verwey transition temperature for both directions. We explain the observed anisotropy in the MR on the basis of the effects of anisotropic misfit strain, and the difference between the density of antiferromagnetically coupled antiphase boundaries formed along ⟨001⟩ and ⟨1 ¯ 10 ⟩ crystallographic directions, suggesting the dependence of spin polarisation on the anisotropic strain relaxation along the said crystallographic directions.

  8. Laboratory ultrasonic pulse velocity logging for determination of elastic properties from rock core

    Science.gov (United States)

    Blacklock, Natalie Erin

    During the development of deep underground excavations spalling and rockbursting have been recognized as significant mechanisms of violent brittle failure. In order to predict whether violent brittle failure will occur, it is important to identify the location of stiffness transitions that are associated with geologic structure. One approach to identify the effect of geologic structures is to apply borehole geophysical tools ahead of the tunnel advance. Stiffness transitions can be identified using mechanical property analysis surveys that combine acoustic velocity and density data to calculate acoustic estimates of elastic moduli. However, logistical concerns arise since the approach must be conducted at the advancing tunnel face. As a result, borehole mechanical property analyses are rarely used. Within this context, laboratory ultrasonic pulse velocity testing has been proposed as a potential alternative to borehole mechanical property analysis since moving the analysis to the laboratory would remove logistical constraints and improve safety for the evaluators. In addition to the traditional method of conducting velocity testing along the core axis, two new methodologies for point-focused testing were developed across the core diameter, and indirectly along intact lengths of drill core. The indirect test procedure was implemented in a continuous ultrasonic velocity test program along 573m of drill core to identify key geologic structures that generated transitions in ultrasonic elastic moduli. The test program was successful at identifying the location of geologic contacts, igneous intrusions, faults and shear structures. Ultrasonic values of Young's modulus and bulk modulus were determined at locations of significant velocity transitions to examine the potential for energy storage and energy release. Comparison of results from different ultrasonic velocity test configurations determined that the indirect test configuration provided underestimates for values of

  9. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    Energy Technology Data Exchange (ETDEWEB)

    Leuning, N., E-mail: nora.leuning@iem.rwth-aachen.de [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Steentjes, S. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany); Schulte, M.; Bleck, W. [Steel Institute, RWTH Aachen University, D-52072 Aachen (Germany); Hameyer, K. [Institute of Electrical Machines, RWTH Aachen University, D-52062 Aachen (Germany)

    2016-11-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment. - Highlights: • A detailed look at magnetic anisotropy of FeSi NGO electrical steel. • Study of magnetic behavior under elastic as well as plastic tensile stresses. • Correlation of magnetic behavior with microscopic deformation mechanisms. • Discussion of detrimental and beneficial effects of external stresses. • Loss separation at different polarizations and frequencies under increasing stress.

  10. A comparative approach to predicting effective dielectric, piezoelectric and elastic properties of PZT/PVDF composites

    International Nuclear Information System (INIS)

    Ahmad, Zeeshan; Prasad, Ashutosh; Prasad, K.

    2009-01-01

    The present study addresses the problem of quantitative prediction of effective relative permittivity, dielectric loss factor, piezoelectric charge coefficient, and Young's modulus of PZT/PVDF diphasic ceramic-polymer composite as a function of volume fraction of PZT in the different compositions. Theoretical results for effective relative permittivity derived from several dielectric mixture equations like those of Knott, Rother-Lichtenecker, Bruggeman, Maxwell-Wagner-Webmann-Skipetrov or Dias-Dasgupta, Furukawa, Lewin, Wiener, Jayasundere-Smith, Modified Cule-Torquato, Taylor, Poon-Shin and Rao et al. were fitted to the experimental data taken from previous works of Yamada et al. Similarly, the results for effective piezoelectric coefficient and Young's modulus, derived from different appropriate equations were fitted to the corresponding experimental data taken from the literature. The study revealed that only a few equations like modified Rother-Lichtenecker equation, Dias-Dasgupta equation and Rao equation for dielectric and piezoelectric properties while the four new equations developed in the present study of elastic property (Young's modulus) well fitted the corresponding experimental results. Further, the acceptable data put to various regression analyses showed that in most of the cases the third order polynomial regression analysis provided more acceptable fits.

  11. Elastic properties of superconducting bulk metallic glasses; Elastische Eigenschaften von supraleitenden massiven metallischen Glaesern

    Energy Technology Data Exchange (ETDEWEB)

    Hempel, Marius

    2015-07-01

    Within the framework of this thesis the elastic properties of a superconducting bulk metallic glass between 10 mK and 300 K were first investigated. In order to measure the entire temperature range, in particular the low temperature part, new experimental techniques were developed. Using an inductive readout scheme for a double paddle oscillator it was possible to determine the internal friction and the relative change of sound velocity of bulk metallic glasses with high precision. This allowed for a detailed comparison of the data with different models. The analysis focuses on the low temperature regime where the properties of glassy materials are governed by atomic tunneling systems as described by the tunneling model. The influence of conduction electrons in the normal conducting state and quasiparticles in the superconducting state of the glass were accounted for in the theoretical description, resulting in a good agreement over a large temperature range between measured data and prediction of the tunneling model. This allowed for a direct determination of the coupling constant between electrons and tunneling systems. In the vicinity of the transition temperature Tc the data can only be described if a modified distribution function of the tunneling parameters is applied.

  12. The implicit effect of texturizing field on the elastic properties of magnetic elastomers revealed by SANS

    Energy Technology Data Exchange (ETDEWEB)

    Balasoiu, M., E-mail: balas@jinr.ru [Joint Institute of Nuclear Research, Dubna (Russian Federation); Horia Hulubei National Institute for Physics and Nuclear Engineering, Bucharest (Romania); Lebedev, V.T. [St.Petersburg Nuclear Physics Institute NRC KI, Gatchina (Russian Federation); Raikher, Yu.L. [Institute of Continuous Media Mechanics, Russian Academy of Sciences, Ural Branch, Perm (Russian Federation); Bica, I.; Bunoiu, M. [West University of Timisoara, Department of Physics (Romania)

    2017-06-01

    Small angle neutron scattering method (SANS) is used to characterize the structure properties of the polymer matrix of magnetic elastomers (MEs) of the same material content but with different magnetic textures. For that, series of silicone-rubber elastomers mixed with a ferrofluid and polymerized with/without external magnetic field were studied. In the species of pure rubber and the ME samples synthesized without field, SANS reveals a substantial number of large polymer coils (blobs) which are vertically prolate. The case of MEs polymerized under the magnetic field that is also vertically directed, is different. SANS data indicates that there the blobs are preferably elongated in the direction normal to the field. - Highlights: • SANS method is used to determine the structure of SR elastomers polymerized with ferrofluid in/no external magnetic field. • In the rubber and ME samples synthesized without field, SANS reveals a substantial number of vertically prolate blobs. • For MEs polymerized in vertical magnetic field, results that the blobs are elongated in the direction normal to the field. • Isotropic and texturized MEs differ by the filler structure and by intrinsic elastic properties of the matrix as well.

  13. Effect of elastic and plastic tensile mechanical loading on the magnetic properties of NGO electrical steel

    International Nuclear Information System (INIS)

    Leuning, N.; Steentjes, S.; Schulte, M.; Bleck, W.; Hameyer, K.

    2016-01-01

    The magnetic properties of non-grain-oriented (NGO) electrical steels are highly susceptible to mechanical stresses, i.e., residual, external or thermal ones. For rotating electrical machines, mechanical stresses are inevitable and originate from different sources, e.g., material processing, machine manufacturing and operating conditions. The efficiency and specific losses are largely altered by different mechanical stress states. In this paper the effect of tensile stresses and plastic deformations on the magnetic properties of a 2.9 wt% Si electrical steel are studied. Particular attention is paid to the effect of magnetic anisotropy, i.e., the influence of the direction of applied mechanical stress with respect to the rolling direction. Due to mechanical stress, the induced anisotropy has to be evaluated as it is related to the stress-dependent magnetostriction constant and the grain alignment. - Highlights: • A detailed look at magnetic anisotropy of FeSi NGO electrical steel. • Study of magnetic behavior under elastic as well as plastic tensile stresses. • Correlation of magnetic behavior with microscopic deformation mechanisms. • Discussion of detrimental and beneficial effects of external stresses. • Loss separation at different polarizations and frequencies under increasing stress.

  14. A finite element computer program for the calculation of the resonant frequencies of anisotropic materials

    International Nuclear Information System (INIS)

    Fleury, W.H.; Rosinger, H.E.; Ritchie, I.G.

    1975-09-01

    A set of computer programs for the calculation of the flexural and torsional resonant frequencies of rectangular section bars of materials of orthotropic or higher symmetry are described. The calculations are used in the experimental determination and verification of the elastic constants of anisotropic materials. The simple finite element technique employed separates the inertial and elastic properties of the beam element into station and field transfer matrices respectively. It includes the Timoshenko beam corrections for flexure and Lekhnitskii's theory for torsion-flexure coupling. The programs also calculate the vibration shapes and surface nodal contours or Chladni figures of the vibration modes. (author)

  15. Weighted anisotropic Korn's inequality for a junction of a plate and a rod

    International Nuclear Information System (INIS)

    Nazarov, S A

    2004-01-01

    Korn's inequality is proved for an elastic body obtained by attaching to a plate several rods with clamped farther ends. The thickness of the plate and the diameters of the rods are characterized by a single small parameter h, which also gauges the distinctions in the elastic properties of the elements of the junction. The selection of the weighted anisotropic norms distinguishing the longitudinal and transverse directions in the plate and in a rod ensures the asymptotic accuracy of the inequality, which is substantiated by examples of particular constructions. New results on single plates and rods are obtained in the course of the proof.

  16. Investigations of structural, elastic, electronic and thermodynamic properties of lutetium filled skutterudite LuFe4P12 under pressure effect: FP-LMTO method

    Directory of Open Access Journals (Sweden)

    Boudia Keltouma

    2015-12-01

    Full Text Available Structural, elastic, electronic and thermodynamic properties of ternary cubic filled skutterudite compound were calculated. We have computed the elastic modulus and its pressure dependence. From the elastic parameter behavior, it is inferred that this compound is elastically stable and ductile in nature. Through the quasi-harmonic Debye model, in which phononic effects are considered, the effect of pressure P (0 to 50 GPa and temperature T (0 to 3000 °C on the lattice constant, elastic parameters, bulk modulus B, heat capacity, thermal expansion coefficient α, internal energy U, entropy S, Debye temperature θD, Helmholtz free energy A, and Gibbs free energy G are investigated.

  17. Elastic properties of Cs2HgBr4 and Cs2CdBr4 crystals

    International Nuclear Information System (INIS)

    Kityk, A.V.; Zadorozhna, A.V.; Shchur, Y.I.; Martynyuk-Lototska, Y.I.; Burak, Y.; Vlokh, O.G.

    1998-01-01

    Using ultrasonic velocity measurements, all components of the elastic constant matrix C ij , elastic compliances matrix S ij , and linear compressibility constants matrix K ij of orthorhombic Cs 2 HgBr 4 and Cs 2 CdBr 4 crystals have been determined over a wide temperature range, including the region of the phase transition from the normal to the incommensurate phase. Results obtained are considered within the framework of the phenomenological theory. Preliminary analysis of the acoustical properties at room temperature clearly indicates that both crystals are relatively important materials for acousto-optical applications. Copyright (1998) CSIRO Australia

  18. Structural, elastic and electronic Properties of isotropic cubic crystals of carbon and silicon nanotubes : Density functional based tight binding calculations.

    Directory of Open Access Journals (Sweden)

    Alexander L. Ivanovskii

    2008-01-01

    Full Text Available Atomic models of cubic crystals (CC of carbon and graphene-like Si nanotubes are offered and their structural, cohesive, elastic and electronic properties are predicted by means of the DFTB method. Our main findings are that the isotropic crystals of carbon nanotubes adopt a very high elastic modulus B and low compressibility β, namely B = 650 GPa, β = 0.0015 1/GPa. In addition, these crystals preserve the initial conductivity type of their “building blocks”, i.e. isolated carbon and Si nanotubes. This feature may be important for design of materials with the selected conductivity type.

  19. FP-LAPW study of the elastic properties of Al2X (X=Sc,Y,La,Lu)

    International Nuclear Information System (INIS)

    Rajagopalan, M.; Praveen Kumar, S.; Anuthama, R.

    2010-01-01

    From the first principles total energy calculations based on full-potential linear augmented plane wave method (FP-LAPW), the elastic properties of Al 2 X (X=Sc,Y,La,Lu) are reported here. Theoretical values of Young's modulus, shear modulus, Poisson's ratio and Debye temperature are estimated from the computed elastic constants. From the analysis of the ratio of shear to bulk modulus, it is found that these intermetallic compounds are brittle in nature. The calculated results are compared with other reported values.

  20. Combined Determination of Elastic Properties and Structure of Coesite under Simulated Mantle Conditions

    Science.gov (United States)

    Mueller, H. J.; Schilling, F. R.; Lauterjung, J.; Lathe, C.

    2001-12-01

    The high pressure SiO2-polymorph coesite seems to be an important mineral in the subduction process including crustal material (Chopin, 1984; Schreyer, 1995). The quartz to coesite transition is thus of fundamental importance to understand the processes within a subducting crust. Furthermore, the nature of the quartz to coesite transition is discussed controversially, because high pressure XRD-studies suggest an intermediate phase during the transformation process (Zinn et al., 1997). For the combined determination of elastic properties and structure a cubic multi-anvil high pressure apparatus (MAX80) was used. For the maximum sample volume of 20 mm3 the pressure limit is about 7GPa. The pressure is measured by use of NaCl as an internal pressure marker with calibrated PVT-data. The maximum temperature of about 2,000K is generated by an internal graphite heater and controlled by a thermocouple. The synchrotron beam (100x100 microns) is guided by a collimator through the sample between the anvils. For energy-dispersive X-ray diffraction, a Ge-solid state detector analyses the diffracted white beam at a fixed angle. The compressional and shear wave velocities were determined simultaneously by ultrasonic interferometry inside MAX80. Two of the six anvils are equipped with overtone polished lithium niobate transducers at their rear side, outside the volume under pressure, for generation and detection of ultrasonic waves between 10 and 60 MHz. Different buffer - reflector combinations and transducer arrangements were used to optimize the critical interference between both sample echoes. Therefore MAX80 is equipped for asymmetrical and symmetrical interferometric set-ups, i.e. compressional and shear waves are generated from the same or from two anvils, opposite to each other. We used for our transient measurements 3 natural fine-grained quartzites from Turkey and Germany. As a first step the pressure was increased gradually up to 4GPa at ambient temperature. At each

  1. An anisotropic elastoplasticity model implemented in FLAG

    Energy Technology Data Exchange (ETDEWEB)

    Buechler, Miles Allen [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Canfield, Thomas R. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-10-12

    Many metals, including Tantalum and Zirconium, exhibit anisotropic elastoplastic behavior at the single crystal level, and if components are manufactured from these metals through forming processes the polycrystal (component) may also exhibit anisotropic elastoplastic behavior. This is because the forming can induce a preferential orientation of the crystals in the polycrystal. One example is a rolled plate of Uranium where the sti /strong orientation of the crystal (c-axis) tends to align itself perpendicular to the rolling direction. If loads are applied to this plate in di erent orientations the sti ness as well as the ow strength of the material will be greater in the through thickness direction than in other directions. To better accommodate simulations of such materials, an anisotropic elastoplasticity model has been implemented in FLAG. The model includes an anisotropic elastic stress model as well as an anisotropic plasticity model. The model could represent single crystals of any symmetry, though it should not be confused with a high- delity crystal plasticity model with multiple slip planes and evolutions. The model is most appropriate for homogenized polycrystalline materials. Elastic rotation of the material due to deformation is captured, so the anisotropic models are appropriate for arbitrary large rotations, but currently they do not account for signi cant change in material texture beyond the elastic rotation of the entire polycrystal.

  2. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq; Ma, Xuxin; Waheed, Umair bin; Zuberi, Mohammad Akbar Hosain

    2014-01-01

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  3. Efficient Wavefield Extrapolation In Anisotropic Media

    KAUST Repository

    Alkhalifah, Tariq

    2014-07-03

    Various examples are provided for wavefield extrapolation in anisotropic media. In one example, among others, a method includes determining an effective isotropic velocity model and extrapolating an equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. The effective isotropic velocity model can be based upon a kinematic geometrical representation of an anisotropic, poroelastic or viscoelastic wavefield. Extrapolating the equivalent propagation can use isotopic, acoustic or elastic operators based upon the determined effective isotropic velocity model. In another example, non-transitory computer readable medium stores an application that, when executed by processing circuitry, causes the processing circuitry to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield. In another example, a system includes processing circuitry and an application configured to cause the system to determine the effective isotropic velocity model and extrapolate the equivalent propagation of an anisotropic, poroelastic or viscoelastic wavefield.

  4. First-principles study of the structural, phonon, elastic, and thermodynamic properties of Al_3Ta compound under high pressure

    Directory of Open Access Journals (Sweden)

    W. Leini

    2018-03-01

    Full Text Available We have investigated the phonon, elastic and thermodynamic properties of L1_2 phase Al_3Ta by density functional theory approach combining with quasi-harmonic approximation model. The results of phonon band structure shows that L1_2 phase Al_3Ta possesses dynamical stability in the pressure range from 0 to 80 GPa due to the absence of imaginary frequencies. The pressure dependences of the elastic constants C_ij, bulk modulus B, shear modulus G, Young's modulus Y, B/G and Poisson's ratio ν have been analysed. The elastic constants are satisfied with mechanical stability criteria up to the external pressure of 80 GPa. The results of the elastic properties studies show that Al_3Ta compound possesses a higher hardness, improved ductility and plasticity under higher pressures. Further, we systematically investigate the thermodynamic properties, such as the Debye temperature Θ, heat capacity C_p, and thermal expansion coefficient α, and provide the relationships between thermal parameters and pressure.

  5. First-principles calculations of the electronic, vibrational, and elastic properties of the magnetic laminate Mn2GaC

    International Nuclear Information System (INIS)

    Thore, A.; Dahlqvist, M.; Alling, B.; Rosén, J.

    2014-01-01

    In this paper, we report the by first-principles predicted properties of the recently discovered magnetic MAX phase Mn 2 GaC. The electronic band structure and vibrational dispersion relation, as well as the electronic and vibrational density of states, have been calculated. The band structure close to the Fermi level indicates anisotropy with respect to electrical conductivity, while the distribution of the electronic and vibrational states for both Mn and Ga depend on the chosen relative orientation of the Mn spins across the Ga sheets in the Mn–Ga–Mn trilayers. In addition, the elastic properties have been calculated, and from the five elastic constants, the Voigt bulk modulus is determined to be 157 GPa, the Voigt shear modulus 93 GPa, and the Young's modulus 233 GPa. Furthermore, Mn 2 GaC is found relatively elastically isotropic, with a compression anisotropy factor of 0.97, and shear anisotropy factors of 0.9 and 1, respectively. The Poisson's ratio is 0.25. Evaluated elastic properties are compared to theoretical and experimental results for M 2 AC phases where M = Ti, V, Cr, Zr, Nb, Ta, and A = Al, S, Ge, In, Sn.

  6. Elastic Rock Heterogeneity Controls Brittle Rock Failure during Hydraulic Fracturing

    Science.gov (United States)

    Langenbruch, C.; Shapiro, S. A.

    2014-12-01

    For interpretation and inversion of microseismic data it is important to understand, which properties of the reservoir rock control the occurrence probability of brittle rock failure and associated seismicity during hydraulic stimulation. This is especially important, when inverting for key properties like permeability and fracture conductivity. Although it became accepted that seismic events are triggered by fluid flow and the resulting perturbation of the stress field in the reservoir rock, the magnitude of stress perturbations, capable of triggering failure in rocks, can be highly variable. The controlling physical mechanism of this variability is still under discussion. We compare the occurrence of microseismic events at the Cotton Valley gas field to elastic rock heterogeneity, obtained from measurements along the treatment wells. The heterogeneity is characterized by scale invariant fluctuations of elastic properties. We observe that the elastic heterogeneity of the rock formation controls the occurrence of brittle failure. In particular, we find that the density of events is increasing with the Brittleness Index (BI) of the rock, which is defined as a combination of Young's modulus and Poisson's ratio. We evaluate the physical meaning of the BI. By applying geomechanical investigations we characterize the influence of fluctuating elastic properties in rocks on the probability of brittle rock failure. Our analysis is based on the computation of stress fluctuations caused by elastic heterogeneity of rocks. We find that elastic rock heterogeneity causes stress fluctuations of significant magnitude. Moreover, the stress changes necessary to open and reactivate fractures in rocks are strongly related to fluctuations of elastic moduli. Our analysis gives a physical explanation to the observed relation between elastic heterogeneity of the rock formation and the occurrence of brittle failure during hydraulic reservoir stimulations. A crucial factor for understanding

  7. Probing the Effect of Hydrogen on Elastic Properties and Plastic Deformation in Nickel Using Nanoindentation and Ultrasonic Methods

    Science.gov (United States)

    Lawrence, S. K.; Somerday, B. P.; Ingraham, M. D.; Bahr, D. F.

    2018-04-01

    Hydrogen effects on small-volume plasticity and elastic stiffness constants are investigated with nanoindentation of Ni-201 and sonic velocity measurements of bulk Ni single crystals. Elastic modulus of Ni-201, calculated from indentation data, decreases 22% after hydrogen charging. This substantial decrease is independently confirmed by sonic velocity measurements of Ni single crystals; c 44 decreases 20% after hydrogen exposure. Furthermore, clear hydrogen-deformation interactions are observed. The maximum shear stress required to nucleate dislocations in hydrogen-charged Ni-201 is markedly lower than in as-annealed material, driven by hydrogen-reduced shear modulus. Additionally, a larger number of depth excursions are detected prior to general yielding in hydrogen-charged material, suggesting cross-slip restriction. Together, these data reveal a direct correlation between hydrogen-affected elastic properties and plastic deformation in Ni alloys.

  8. Structural, electronic and elastic properties of the cubic CaTiO{sub 3} under pressure: A DFT study

    Energy Technology Data Exchange (ETDEWEB)

    Tariq, Saad, E-mail: saadigi@hotmail.com; Ahmed, Afaq; Tariq, Samar [Centre of Excellence in Solid State Physics, University of Punjab, Lahore, 54000 (Pakistan); Saad, Saher [Centre for High Energy Physics, University of the Punjab, Lahore (Pakistan)

    2015-07-15

    Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO{sub 3} have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  9. Structural, electronic and elastic properties of the cubic CaTiO3 under pressure: A DFT study

    Directory of Open Access Journals (Sweden)

    Saad Tariq

    2015-07-01

    Full Text Available Using highly accurate FP-LAPW method with GGA approximation structural, electronic and elastic properties of cubic CaTiO3 have been calculated from 0-120 GPa range of pressure. It is observed that lattice constant, bond length and anisotropy factor decrease with increase in pressure. Also the brittle nature and indirect band-gap of the compound become ductile and direct band-gap respectively at 120 GPa. Moduli of elasticity, density of the material, Debye temperature and wave elastic wave velocities increase with increase in pressure. Spin dependent DOS’s plots show invariant anti-ferromagnetic nature of the compound under pressure. Our calculated results are in good agreement with available theoretical and experimental results.

  10. Effects of microstructure on the elastic properties of selected Ta2O5--Eu2O3 compositions

    International Nuclear Information System (INIS)

    Malarkey, C.J.

    1977-06-01

    Elastic properties and internal friction of selected compositions of tantala-doped monoclinic europia were studied at temperatures up to 1500 0 C using the sonic resonance technique. Unit cell parameters between 25C and 1000 0 C for monoclinic Eu 2 O 3 were calculated from high temperature x-ray diffractometer data. Large-grained monoclinic specimens having less than 6.0 Ta cation percent substitution exhibited anomalous elastic behavior when thermally cycled. Compositions above this addition level exhibited linear elastic behavior. Internal friction values also varied abnormally with grain size, composition, and temperature. The anomalous behavior was attributed to microcracking caused by thermal expansion anisotropies. The critical grain size was found to be approximately 14 μm. The high temperature diffractometry measurements supported the postulate that the grain coarsening effect associated with sintered monoclinic Eu 2 O 3 is the controlling factor for microcracking

  11. First-principles investigations on structural, elastic, electronic properties and Debye temperature of orthorhombic Ni3Ta under pressure

    Science.gov (United States)

    Li, Pan; Zhang, Jianxin; Ma, Shiyu; Jin, Huixin; Zhang, Youjian; Zhang, Wenyang

    2018-06-01

    The structural, elastic, electronic properties and Debye temperature of Ni3Ta under different pressures are investigated using the first-principles method based on density functional theory. Our calculated equilibrium lattice parameters at 0 GPa well agree with the experimental and previous theoretical results. The calculated negative formation enthalpies and elastic constants both indicate that Ni3Ta is stable under different pressures. The bulk modulus B, shear modulus G, Young's modulus E and Poisson's ratio ν are calculated by the Voigt-Reuss-Hill method. The bigger ratio of B/G indicates Ni3Ta is ductile and the pressure can improve the ductility of Ni3Ta. In addition, the results of density of states and the charge density difference show that the stability of Ni3Ta is improved by the increasing pressure. The Debye temperature ΘD calculated from elastic modulus increases along with the pressure.

  12. Elastic Properties of Novel Co- and CoNi-Based Superalloys Determined through Bayesian Inference and Resonant Ultrasound Spectroscopy

    Science.gov (United States)

    Goodlet, Brent R.; Mills, Leah; Bales, Ben; Charpagne, Marie-Agathe; Murray, Sean P.; Lenthe, William C.; Petzold, Linda; Pollock, Tresa M.

    2018-06-01

    Bayesian inference is employed to precisely evaluate single crystal elastic properties of novel γ -γ ' Co- and CoNi-based superalloys from simple and non-destructive resonant ultrasound spectroscopy (RUS) measurements. Nine alloys from three Co-, CoNi-, and Ni-based alloy classes were evaluated in the fully aged condition, with one alloy per class also evaluated in the solution heat-treated condition. Comparisons are made between the elastic properties of the three alloy classes and among the alloys of a single class, with the following trends observed. A monotonic rise in the c_{44} (shear) elastic constant by a total of 12 pct is observed between the three alloy classes as Co is substituted for Ni. Elastic anisotropy ( A) is also increased, with a large majority of the nearly 13 pct increase occurring after Co becomes the dominant constituent. Together the five CoNi alloys, with Co:Ni ratios from 1:1 to 1.5:1, exhibited remarkably similar properties with an average A 1.8 pct greater than the Ni-based alloy CMSX-4. Custom code demonstrating a substantial advance over previously reported methods for RUS inversion is also reported here for the first time. CmdStan-RUS is built upon the open-source probabilistic programing language of Stan and formulates the inverse problem using Bayesian methods. Bayesian posterior distributions are efficiently computed with Hamiltonian Monte Carlo (HMC), while initial parameterization is randomly generated from weakly informative prior distributions. Remarkably robust convergence behavior is demonstrated across multiple independent HMC chains in spite of initial parameterization often very far from actual parameter values. Experimental procedures are substantially simplified by allowing any arbitrary misorientation between the specimen and crystal axes, as elastic properties and misorientation are estimated simultaneously.

  13. Density functional calculations of elastic properties of portlandite, Ca(OH)(2)

    DEFF Research Database (Denmark)

    Laugesen, Jakob Lund

    2005-01-01

    The elastic constants of portlandite, Ca(OH)(2), are calculated by use of density functional theory. A lattice optimization of an infinite (periodic boundary conditions) lattice is performed on which strains are applied. The elastic constants are extracted by minimizing Hooke's law of linear...

  14. Direct mechanics assessment of elastic symmetries and properties of trabecular bone architecture

    NARCIS (Netherlands)

    Rietbergen, van B.; Odgaard, A.; Kabel, J.; Huiskes, H.W.J.

    1996-01-01

    A method is presented to find orthotropic elastic symmetries and constants directly from the elastic coefficients in the overall stiffness matrix of trabecular bone test specimens. Contrary to earlier developed techniques, this method does not require pure orthotropic behavior or additional fabric

  15. Dependence of Some Mechanical Properties of Elastic Bands on the Length and Load Time

    Science.gov (United States)

    Triana, C. A.; Fajardo, F.

    2012-01-01

    We present a study of the maximum stress supported by elastics bands of nitrile as a function of the natural length and the load time. The maximum tension of rupture and the corresponding variation in length were found by measuring the elongation of an elastic band when a mass is suspended from its free end until it reaches the breaking point. The…

  16. First-principles study on electronic, optic, elastic, dynamic and thermodynamic properties of RbH compound

    Directory of Open Access Journals (Sweden)

    Gulebaglan Sinem Erden

    2015-01-01

    Full Text Available We performed first-principles calculations to obtain the electronic, optical, elastic, lattice-dynamical and thermodynamic properties of RbH compound with rock salt structure. The ground-state properties, i.e., the lattice constant and the band gap were investigated using a plane wave pseudopotential method within density functional theory. The calculated lattice constant, bulk modulus, energy band gap and elastic constants are reported and compared with previous theoretical and experimental results. Our calculated results and the previous results which are obtained from literature are in a good agreement. Moreover, real and imaginary parts of complex dielectric function, reflectivity spectrum, absorption, extinction coefficient and loss function as a function of photon energy and refractive index with respect to photon wavelength were calculated. In addition, temperature dependent thermodynamic properties such as Helmholtz free energy, internal energy, entropy and specific heat have been studied.

  17. First-principles study of structural stability, electronic, optical and elastic properties of binary intermetallic: PtZr

    Energy Technology Data Exchange (ETDEWEB)

    Pagare, Gitanjali, E-mail: gita-pagare@yahoo.co.in [Department of Physics, Sarojini Naidu Government Girls P. G. Autonomous College, Bhopal-462016 (India); Jain, Ekta, E-mail: jainekta05@gmail.com [Department of Physics, Government M. L. B. Girls P. G. Autonomous College, Bhopal-462002 (India); Sanyal, S. P., E-mail: sps.physicsbu@gmail.com [Department of Physics, Barkatullah University, Bhopal-462026 (India)

    2016-05-06

    Structural, electronic, optical and elastic properties of PtZr have been studied using the full-potential linearized augmented plane wave (FP-LAPW) method within density functional theory (DFT). The energy against volume and enthalpy vs. pressure variation in three different structures i.e. B{sub 1}, B{sub 2} and B{sub 3} for PtZr has been presented. The equilibrium lattice parameter, bulk modulus and its pressure derivative have been obtained using optimization method for all the three phases. Furthermore, electronic structure was discussed to reveal the metallic character of the present compound. The linear optical properties are also studied under zero pressure for the first time. Results on elastic properties are obtained using generalized gradient approximation (GGA) for exchange correlation potentials. Ductile nature of PtZr compound is predicted in accordance with Pugh’s criteria.

  18. Some practical results for calculating the elastic properties of cubic polycrystals with texture measured by neutron diffraction

    International Nuclear Information System (INIS)

    Lychagina, T.A.; Brokmeier, H.G.

    1999-01-01

    Complete text of publication follows. It is well known that the elastic properties of a polycrystalline material are strongly dependent on the one hand the single crystal elastic properties and on the other hand its crystallographic texture [1]. The calculation of these properties needs the quantitative texture given by the orientation distribution function (ODF), which represents texture mathematically. By a given set of experimental pole figures a number of programs are available to calculate the ODF, which might have an influence on the resulting properties. The aim of this work is to compare elastic properties of cubic materials calculated with ODFs obtained by different methods. The calculations were carried out on a cold rolled Al-6%Mg alloy sheet and on a copper rod. Experimental pole figures were obtained by means of neutron diffraction [2] and used for ODF calculation. The conformity between different results will be discussed. (author) [1] H.J. Bunge 1982, Texture Analysis in Material Science - Mathematical Methods, Butterworth, London.; [2] H.G. Brokmeier, U. Zink, R. Schnieber, B. Witassek, Material Science Forum (1998), 273-275, 277

  19. Systematic study of the elastic properties of Mn3AC antiperovskite with A = Zn, Al, Ga, In, Tl, Ge and Sn

    International Nuclear Information System (INIS)

    Medkour, Y.; Roumili, A.; Maouche, D.; Saoudi, A.; Louail, L.

    2012-01-01

    Highlights: ► Single crystal elastic constants C 11 , C 12 and C 44 were calculated. ► Elastic moduli for polycrystalline aggregate were obtained. ► Increasing the atomic number of A element reduces B, G′, Y and v. ► Mn 3 AlC has a high melting point and light weight. - Abstract: First principle calculations were made to investigate the elastic properties of Mn 3 AC antiperovskites, A = Zn, Al, Ga, In, Tl, Ge and Sn. The estimated equilibrium lattice parameters are in agreement with the experimental ones. From the single crystal elastic constants we have calculated the polycrystalline elastic moduli: the bulk modulus B, shear modulus G, tetragonal shear modulus G′, Young’s modulus Y, Cauchy’s pressure CP, Poisson’s ratio v, elastic anisotropy factor and Pugh’s criterion G/B. Using Debye’s approximation we have deduced the elastic wave velocities and Debye’s temperature.

  20. Material and elastic properties of Al-tobermorite in ancient roman seawater concrete

    KAUST Repository

    Jackson, Marie D.

    2013-05-28

    The material characteristics and elastic properties of aluminum-substituted 11 Å tobermorite in the relict lime clasts of 2000-year-old Roman seawater harbor concrete are described with TG-DSC and 29Si MAS NMR studies, along with nanoscale tomography, X-ray microdiffraction, and high-pressure X-ray diffraction synchrotron radiation applications. The crystals have aluminum substitution for silicon in tetrahedral bridging and branching sites and 11.49(3) Å interlayer (002) spacing. With prolonged heating to 350°C, the crystals exhibit normal behavior. The experimentally measured isothermal bulk modulus at zero pressure, K0, 55 ±5 GPa, is less than ab initio and molecular dynamics models for ideal tobermorite with a double-silicate chain structure. Even so, K0, is substantially higher than calcium-aluminum-silicate-hydrate binder (C-A-S-H) in slag concrete. Based on nanoscale tomographic study, the crystal clusters form a well connected solid, despite having about 52% porosity. In the pumiceous cementitious matrix, Al-tobermorite with 11.27 Å interlayer spacing is locally associated with phillipsite, similar to geologic occurrences in basaltic tephra. The ancient concretes provide a sustainable prototype for producing Al-tobermorite in high-performance concretes with natural volcanic pozzolans. © 2013 The American Ceramic Society.

  1. High-pressure structural and elastic properties of Tl₂O₃

    Energy Technology Data Exchange (ETDEWEB)

    Gomis, O., E-mail: osgohi@fis.upv.es; Vilaplana, R. [Centro de Tecnologías Físicas, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); Santamaría-Pérez, D. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Earth Sciences Department, University College London, Gower Street, WC1E 6BT London (United Kingdom); Ruiz-Fuertes, J. [Departamento de Física Aplicada-ICMUV, MALTA Consolider Team, Universidad de Valencia, Edificio de Investigación, C/Dr. Moliner 50, 46100 Burjassot (Spain); Geowissenschaften, Goethe-Universität, Altenhöferallee 1, 60438 Frankfurt am Main (Germany); Sans, J. A.; Manjón, F. J.; Mollar, M. [Instituto de Diseño para la Fabricación y Producción Automatizada, MALTA Consolider Team, Universitat Politècnica de València, 46022 València (Spain); and others

    2014-10-07

    The structural properties of Thallium (III) oxide (Tl₂O₃) have been studied both experimentally and theoretically under compression at room temperature. X-ray powder diffraction measurements up to 37.7 GPa have been complemented with ab initio total-energy calculations. The equation of state of Tl₂O₃ has been determined and compared to related compounds. It has been found experimentally that Tl₂O₃ remains in its initial cubic bixbyite-type structure up to 22.0 GPa. At this pressure, the onset of amorphization is observed, being the sample fully amorphous at 25.2 GPa. The sample retains the amorphous state after pressure release. To understand the pressure-induced amorphization process, we have studied theoretically the possible high-pressure phases of Tl₂O₃. Although a phase transition is theoretically predicted at 5.8 GPa to the orthorhombic Rh₂O₂-II-type structure and at 24.2 GPa to the orthorhombic α-Gd₂S₃-type structure, neither of these phases were observed experimentally, probably due to the hindrance of the pressure-driven phase transitions at room temperature. The theoretical study of the elastic behavior of the cubic bixbyite-type structure at high-pressure shows that amorphization above 22 GPa at room temperature might be caused by the mechanical instability of the cubic bixbyite-type structure which is theoretically predicted above 23.5 GPa.

  2. Uncovering New Thermal and Elastic Properties of Nanostructured Materials Using Coherent EUV Light

    Science.gov (United States)

    Hernandez Charpak, Jorge Nicolas

    Advances in nanofabrication have pushed the characteristic dimensions of nanosystems well below 100nm, where physical properties are often significantly different from their bulk counterparts, and accurate models are lacking. Critical technologies such as thermoelectrics for energy harvesting, nanoparticle-mediated thermal therapy, nano-enhanced photovoltaics, and efficient thermal management in integrated circuits depend on our increased understanding of the nanoscale. However, traditional microscopic characterization tools face fundamental limits at the nanoscale. Theoretical efforts to build a fundamental picture of nanoscale thermal dynamics lack experimental validation and still struggle to account for newly reported behaviors. Moreover, precise characterization of the elastic behavior of nanostructured systems is needed for understanding the unique physics that become apparent in small-scale systems, such as thickness-dependent or fabrication-dependent elastic properties. In essence, our ability to fabricate nanosystems has outstripped our ability to understand and characterize them. In my PhD thesis, I present the development and refinement of coherent extreme ultraviolet (EUV) nanometrology, a novel tool used to probe material properties at the intrinsic time- and length-scales of nanoscale dynamics. By extending ultrafast photoacoustic and thermal metrology techniques to very short probing wavelengths using tabletop coherent EUV beams from high-harmonic upconversion (HHG) of femtosecond lasers, coherent EUV nanometrology allows for a new window into nanoscale physics, previously unavailable with traditional techniques. Using this technique, I was able to probe both thermal and acoustic dynamics in nanostructured systems with characteristic dimensions below 50nm with high temporal (sub-ps) and spatial (size and spacing of the nanoscale heat sources with the phonon spectrum of a material. This makes our technique one of the only experimental routes to

  3. Constraining properties of high-density matter in neutron stars with magneto-elastic oscillations

    Science.gov (United States)

    Gabler, Michael; Cerdá-Durán, Pablo; Stergioulas, Nikolaos; Font, José A.; Müller, Ewald

    2018-05-01

    We discuss torsional oscillations of highly magnetized neutron stars (magnetars) using two-dimensional, magneto-elastic-hydrodynamical simulations. Our model is able to explain both the low- and high-frequency quasi-periodic oscillations (QPOs) observed in magnetars. The analysis of these oscillations provides constraints on the breakout magnetic-field strength, on the fundamental QPO frequency, and on the frequency of a particularly excited overtone. By performing a new set of simulations, we are able to derive for the first time empirical relations for a self consistent model including a superfluid core which describe these constraints quantitatively. We use these relations to generically constrain properties of high-density matter in neutron stars, employing Bayesian analysis. In spite of current uncertainties and computational approximations, our model-dependent Bayesian posterior estimates for SGR 1806-20 yield a magnetic-field strength \\bar{B}˜ 2.1^{+1.3}_{-1.0}× 10^{15} G and a crust thickness of Δ r = 1.6^{+0.7}_{-0.6} km, which are both in remarkable agreement with observational and theoretical expectations, respectively (1σ error bars are indicated). Our posteriors also favour the presence of a superfluid phase in the core, a relatively low stellar compactness, M/R star, and high shear speeds at the base of the crust, cs > 1.4 × 108 cm s-1. Although the procedure laid out here still has large uncertainties, these constraints could become tighter when additional observations become available.

  4. Effect of elastic constants of liquid crystals in their electro-optical properties

    Science.gov (United States)

    Parang, Z.; Ghaffary, T.; Gharahbeigi, M. M.

    Recently following the success of the density functional theory (DFT) in obtaining the structure and thermodynamics of homogeneous and inhomogeneous classical systems such as simple fluids, dipolar fluid and binary hard spheres, this theory was also applied to obtain the density profile of a molecular fluid in between hard planar walls by Kalpaxis and Rickayzen. In the theory of molecular fluids, the direct correlation function (DCF) can be used to calculate the equation of state, free energy, phase transition, elastic constants, etc. It is well known that the hard core molecular models play an important role in understanding complex liquids such as liquid crystals. In this paper, a classical fluid of nonspherical molecules is studied. The required homogeneous (DCF) is obtained by solving Orenstein-Zernike (OZ) integral equation numerically. Some of the molecules in the liquid crystals have a sphere shape and this kind of molecular fluid is considered here. The DCF sphere of the molecular fluid is calculated and it will be shown that the results are in good agreement with the pervious works and the results of computer simulation. Finally the electro-optical properties of ellipsoid liquid crystal using DCF of these molecules are calculated.

  5. Elastic properties of woven bone: effect of mineral content and collagen fibrils orientation.

    Science.gov (United States)

    García-Rodríguez, J; Martínez-Reina, J

    2017-02-01

    Woven bone is a type of tissue that forms mainly during fracture healing or fetal bone development. Its microstructure can be modeled as a composite with a matrix of mineral (hydroxyapatite) and inclusions of collagen fibrils with a more or less random orientation. In the present study, its elastic properties were estimated as a function of composition (degree of mineralization) and fibril orientation. A self-consistent homogenization scheme considering randomness of inclusions' orientation was used for this purpose. Lacuno-canalicular porosity in the form of periodically distributed void inclusions was also considered. Assuming collagen fibrils to be uniformly oriented in all directions led to an isotropic tissue with a Young's modulus [Formula: see text] GPa, which is of the same order of magnitude as that of woven bone in fracture calluses. By contrast, assuming fibrils to have a preferential orientation resulted in a Young's modulus in the preferential direction of 9-16 GPa depending on the mineral content of the tissue. These results are consistent with experimental evidence for woven bone in foetuses, where collagen fibrils are aligned to a certain extent.

  6. Acoustic tests of elastic and microplastic properties of V-Ti-Cr alloys

    Energy Technology Data Exchange (ETDEWEB)

    Chernov, V.M. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Rezvoushkin, A.V. [Fiziko-Ehnergeticheskij Institut, Obninsk (Russian Federation); Kardashev, B.K. [Ioffe Physico-Technical Inst., St. Petersburg (Russian Federation)

    1996-10-01

    The non-linear acoustic properties of V-10Ti-5Cr alloy before and after proton irradiation (dose 2.2 x 10{sup 14} p/cm{sup 2}) were investigated using a composite oscillator technique at longitudinal vibration frequencies of about 100 kHz. Acoustic parameters (decrement and resonance frequency) of the samples demonstrated noticeable amplitude dependencies of hysteretic type both in undeformed and deformed states. An unusual influence of plastical pre-straining on irradiated sample was found which resulted in small decreases in damping and increases in resonance frequency, and hence, of the elastic modulus. Damping in an irradiated sample was higher and its resonant frequency was lower as compared with a non-irradiated sample. This acoustic effect correlated with the results of microhardness and yield strength measurements. The experimental results are discussed in the framework of a model which predicts the creation by proton irradiation of defects which aid the motion of dislocations in V-alloys. (orig.).

  7. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    International Nuclear Information System (INIS)

    Zhang Xiao-Lin; Wu Yuan-Yuan; Shao Xiao-Hong; Lu Yong; Zhang Ping

    2016-01-01

    The high pressure behaviors of Th 4 H 15 and ThH 2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy–volume relations, the bct phase of ThH 2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH 2 and bcc Th 4 H 15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH 2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th 4 H 15 and bct ThH 2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH 2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th 4 H 15 and ThH 2 . (paper)

  8. First-principles study of the elastic and thermodynamic properties of thorium hydrides at high pressure

    Science.gov (United States)

    Xiao-Lin, Zhang; Yuan-Yuan, Wu; Xiao-Hong, Shao; Yong, Lu; Ping, Zhang

    2016-05-01

    The high pressure behaviors of Th4H15 and ThH2 are investigated by using the first-principles calculations based on the density functional theory (DFT). From the energy-volume relations, the bct phase of ThH2 is more stable than the fcc phase at ambient conditions. At high pressure, the bct ThH2 and bcc Th4H15 phases are more brittle than they are at ambient pressure from the calculated elastic constants and the Poisson ratio. The thermodynamic stability of the bct phase ThH2 is determined from the calculated phonon dispersion. In the pressure domain of interest, the phonon dispersions of bcc Th4H15 and bct ThH2 are positive, indicating the dynamical stability of these two phases, while the fcc ThH2 is unstable. The thermodynamic properties including the lattice vibration energy, entropy, and specific heat are predicted for these stable phases. The vibrational free energy decreases with the increase of the temperature, and the entropy and the heat capacity are proportional to the temperature and inversely proportional to the pressure. As the pressure increases, the resistance to the external pressure is strengthened for Th4H15 and ThH2. Project supported by the Long-Term Subsidy Mechanism from the Ministry of Finance and the Ministry of Education of China.

  9. Elastic properties and seismic anisotropy of the Seve Nappe Complex - Laboratory core measurements from the International Continental Drilling Project COSC-1 well, Åre, Sweden

    Science.gov (United States)

    Wenning, Q. C.; Almqvist, B. S. G.; Zappone, A. S.

    2015-12-01

    The COSC-1 scientific borehole was drilled in the summer of 2014 to ~2.5 km depth to study the structure and composition of the Middle Allochthon of the Central Scandinavian Caledonides. It crosscuts the amphibolite-grade lower part of the Seve nappe and intersects a mylonite zone in the lower 800 m of the borehole. We selected six core samples representing the primary lithologies in the COSC-1 borehole for laboratory investigation of elastic properties. The cores consisted of two amphibolites with differing grain sizes, a calc-silicate gneiss, a felsic gneiss, a coarse grained amphibole bearing gneiss, and a garnet bearing mylonitic schist from the basal shear zone. Both P- and S-waves were measured at ultrasonic frequency (1 MHz), and room temperature hydrostatic pressure conditions up to 260 MPa. Measurements were made along three mutually perpendicular directions, one perpendicular to foliation and two parallel to the foliation with one aligned with mineral lineation. Vp and Vs, anisotropy, and elastic properties are reported as an extrapolation of the high-pressure portion of the ultrasonic measurements back to the intersection with the zero pressure axis. The Vp and Vs in the direction perpendicular to foliation ranges from 5.51-6.67 km/s and 3.18-4.13 km/s, respectively. In the direction parallel to foliation the Vp and Vs ranges from 6.31-7.25 km/s and 3.52-4.35 km/s, respectively. Vp anisotropy ranges from 3% in the calc-silicate gneiss to 18% in mylonitic schist. Acoustic impedance estimations at lithostatic pressure conditions at base of the borehole (70 MPa) show that acoustic impedance contrast generating reflection coefficients between the basal shear zone and overlying units are significant enough to cause seismic reflections. Above the mylonite zone/shear zone, the reflectivity within the lower Seve nappe is due to the impedance contrast between the felsic gneiss and the amphibolite. This result fits with 3D seismic reflection imaging in the area of

  10. Robust and Elastic Polymer Membranes with Tunable Properties for Gas Separation.

    Science.gov (United States)

    Cao, Peng-Fei; Li, Bingrui; Hong, Tao; Xing, Kunyue; Voylov, Dmitry N; Cheng, Shiwang; Yin, Panchao; Kisliuk, Alexander; Mahurin, Shannon M; Sokolov, Alexei P; Saito, Tomonori

    2017-08-09

    Polymer membranes with the capability to process a massive volume of gas are especially attractive for practical applications of gas separation. Although much effort has been devoted to develop novel polymer membranes with increased selectivity, the overall gas-separation performance and lifetime of membrane are still negatively affected by the weak mechanical performance, low plasticization resistance and poor physical aging tolerance. Recently, elastic polymer membranes with tunable mechanical properties have been attracting significant attentions due to their tremendous potential applications. Herein, we report a series of urethane-rich PDMS-based polymer networks (U-PDMS-NW) with improved mechanical performance for gas separation. The cross-link density of U-PDMS-NWs is tailored by varying the molecular weight (M n ) of PDMS. The U-PDMS-NWs show up to 400% elongation and tunable Young's modulus (1.3-122.2 MPa), ultimate tensile strength (1.1-14.3 MPa), and toughness (0.7-24.9 MJ/m 3 ). All of the U-PDMS-NWs exhibit salient gas-separation performance with excellent thermal resistance and aging tolerance, high gas permeability (>100 Barrer), and tunable gas selectivity (up to α[P CO 2 /P N 2 ] ≈ 41 and α[P CO 2 /P CH 4 ] ≈ 16). With well-controlled mechanical properties and gas-separation performance, these U-PDMS-NW can be used as a polymer-membrane platform not only for gas separation but also for other applications such as microfluidic channels and stretchable electronic devices.

  11. First-principles calculation of the structural and elastic properties of ternary metal nitrides TaxMo1-xN and TaxW1-xN

    Science.gov (United States)

    Bouamama, Kh.; Djemia, P.; Benhamida, M.

    2015-09-01

    First-principles pseudo-potentials calculations of the mixing enthalpy, of the lattice constants a0 and of the single-crystal elastic constants cij for ternary metal nitrides TaxMe1-xN (Me=Mo or W) alloys considering the cubic B1-rocksalt structure is carried out. For disordered ternary alloys, we employ the virtual crystal approximation VCA in which the alloy pseudopotentials are constructed within a first-principles VCA scheme. The supercell method SC is also used for ordered structures in order to evaluate clustering effects. We find that the mixing enthalpy still remains negative for TaxMe1-xN alloys in the whole composition range which implies these cubic TaxMo1-xN and TaxW1-xN ordered solid solutions are stable. We investigate the effect of Mo and W alloying on the trend of the mechanical properties of TaN. The effective shear elastic constant c44, the Cauchy pressure (c12-c44), and the shear to bulk modulus G/B ratio are used to discuss, respectively, the mechanical stability of the ternary structure and the brittle/ductile behavior in reference to TaN, MeN alloys. We determine the onset transition from the unstable structure to the stable one B1-rocksalt from the elastic stability criteria when alloying MeN with Ta. In a second stage, in the frame of anisotropic elasticity, we estimate by one homogenization method the averaged constants of the polycrystalline TaxMe1-xN alloys considering the special case of an isotropic medium with no crystallographic texture.

  12. An examination of the elastic properties of tissue-mimicking phantoms using vibro-acoustography and a muscle motor system

    Science.gov (United States)

    Maccabi, A.; Taylor, Z.; Bajwa, N.; Mallen-St. Clair, J.; St. John, M.; Sung, S.; Grundfest, W.; Saddik, G.

    2016-02-01

    Tissue hardness, often quantified in terms of elasticity, is an important differentiating criterion for pathological identity and is extensively used by surgeons for tumor localization. Delineation of malignant regions from benign regions is typically performed by visual inspection and palpation. Although practical, this method is highly subjective and does not provide quantitative metrics. We have previously reported on Vibro-Acoustography (VA) for tumor delineation. VA is unique in that it uses the specific, non-linear properties of tumor tissue in response to an amplitude modulated ultrasound beam to generate spatially resolved, high contrast maps of tissue. Although the lateral and axial resolutions (sub-millimeter and sub-centimeter, respectively) of VA have been extensively characterized, the relationship between static stiffness assessment (palpation) and dynamic stiffness characterization (VA) has not been explicitly established. Here we perform a correlative exploration of the static and dynamic properties of tissue-mimicking phantoms, specifically elasticity, using VA and a muscle motor system. Muscle motor systems, commonly used to probe the mechanical properties of materials, provide absolute, quantitative point measurements of the elastic modulus, analogous to Young's modulus, of a target. For phantoms of varying percent-by-weight concentrations, parallel VA and muscle motor studies conducted on 18 phantoms reveal a negative correlation (p < - 0.85) between mean signal amplitude levels observed with VA and calculated elastic modulus values from force vs. indentation depth curves. Comparison of these elasticity measurements may provide additional information to improve tissue modeling, system characterization, as well as offer valuable insights for in vivo applications, specifically surgical extirpation of tumors.

  13. Effect of magnetic soft phase on the magnetic properties of bulk anisotropic Nd2Fe14B/α-Fe nanocomposite permanent magnets

    Science.gov (United States)

    Li, Yuqing; Yue, Ming; Zhao, Guoping; Zhang, Hongguo

    2018-01-01

    The effects of soft phase with different particle sizes and distributions on the Nd2Fe14B/α-Fe nanocomposite magnets have been studied by the micro-magnetism simulation. The calculated results show that smaller and/or scattered distribution of soft phase can benefit to the coercivity (H ci) of the nanocomposite magnets. The magnetization moment evolution during magnetic reversal is systematically analyzed. On the other hand, magnetic properties of anisotropic Nd-Fe-B/α-Fe nanocomposite magnets prepared by hot pressing and hot deformation methods also provide evidences for the calculated results.

  14. Contact-resonance atomic force microscopy for nanoscale elastic property measurements: Spectroscopy and imaging

    International Nuclear Information System (INIS)

    Stan, G.; Krylyuk, S.; Davydov, A.V.; Vaudin, M.D.; Bendersky, L.A.; Cook, R.F.

    2009-01-01

    Quantitative measurements of the elastic modulus of nanosize systems and nanostructured materials are provided with great accuracy and precision by contact-resonance atomic force microscopy (CR-AFM). As an example of measuring the elastic modulus of nanosize entities, we used the CR-AFM technique to measure the out-of-plane indentation modulus of tellurium nanowires. A size-dependence of the indentation modulus was observed for the investigated tellurium nanowires with diameters in the range 20-150 nm. Over this diameter range, the elastic modulus of the outer layers of the tellurium nanowires experienced significant enhancement due to a pronounced surface stiffening effect. Quantitative estimations for the elastic moduli of the outer and inner parts of tellurium nanowires of reduced diameter are made with a core-shell structure model. Besides localized elastic modulus measurements, we have also developed a unique CR-AFM imaging capability to map the elastic modulus over a micrometer-scale area. We used this CR-AFM capability to construct indentation modulus maps at the junction between two adjacent facets of a tellurium microcrystal. The clear contrast observed in the elastic moduli of the two facets indicates the different surface crystallography of these facets.

  15. Optimizing Thermal-Elastic Properties of C/C–SiC Composites Using a Hybrid Approach and PSO Algorithm

    Science.gov (United States)

    Xu, Yingjie; Gao, Tian

    2016-01-01

    Carbon fiber-reinforced multi-layered pyrocarbon–silicon carbide matrix (C/C–SiC) composites are widely used in aerospace structures. The complicated spatial architecture and material heterogeneity of C/C–SiC composites constitute the challenge for tailoring their properties. Thus, discovering the intrinsic relations between the properties and the microstructures and sequentially optimizing the microstructures to obtain composites with the best performances becomes the key for practical applications. The objective of this work is to optimize the thermal-elastic properties of unidirectional C/C–SiC composites by controlling the multi-layered matrix thicknesses. A hybrid approach based on micromechanical modeling and back propagation (BP) neural network is proposed to predict the thermal-elastic properties of composites. Then, a particle swarm optimization (PSO) algorithm is interfaced with this hybrid model to achieve the optimal design for minimizing the coefficient of thermal expansion (CTE) of composites with the constraint of elastic modulus. Numerical examples demonstrate the effectiveness of the proposed hybrid model and optimization method. PMID:28773343

  16. Cell wall elasticity: I. A critique of the bulk elastic modulus approach and an analysis using polymer elastic principles

    Science.gov (United States)

    Wu, H. I.; Spence, R. D.; Sharpe, P. J.; Goeschl, J. D.

    1985-01-01

    The traditional bulk elastic modulus approach to plant cell pressure-volume relations is inconsistent with its definition. The relationship between the bulk modulus and Young's modulus that forms the basis of their usual application to cell pressure-volume properties is demonstrated to be physically meaningless. The bulk modulus describes stress/strain relations of solid, homogeneous bodies undergoing small deformations, whereas the plant cell is best described as a thin-shelled, fluid-filled structure with a polymer base. Because cell walls possess a polymer structure, an alternative method of mechanical analysis is presented using polymer elasticity principles. This initial study presents the groundwork of polymer mechanics as would be applied to cell walls and discusses how the matrix and microfibrillar network induce nonlinear stress/strain relationships in the cell wall in response to turgor pressure. In subsequent studies, these concepts will be expanded to include anisotropic expansion as regulated by the microfibrillar network.

  17. First-principles study of structural stabilities, elastic and electronic properties of transition metal monocarbides (TMCs) and mononitrides (TMNs)

    Energy Technology Data Exchange (ETDEWEB)

    Rached, H.; Rached, D.; Benalia, S. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Reshak, A.H., E-mail: maalidph@yahoo.co.uk [Institute of Complex Systems, FFPW, CENAKVA, University of South Bohemia in CB, Nove Hrady 37333 (Czech Republic); Center of Excellence Geopolymer and Green Technology, School of Material Engineering, University Malaysia Perlis, 01007 Kangar, Perlis (Malaysia); Rabah, M. [Laboratoire des Matériaux Magnétiques, Faculté des Sciences, Université Djillali Liabès de Sidi Bel-Abbès, Sidi Bel-Abbès 22000 (Algeria); Khenata, R. [Laboratoire de Physique Quantique et de Modélisation Mathématique de la Matière (LPQ3M), université de Mascara, Mascara 29000 (Algeria); Bin Omran, S. [Department of Physics and Astronomy, Faculty of Science, King Saud University, Riyadh 11451 (Saudi Arabia)

    2013-12-16

    The structural stabilities, elastic and electronic properties of 5d transition metal mononitrides (TMNs) XN with (X = Ir, Os, Re, W and Ta) and 5d transition metal monocarbides (TMCs) XC with (X = Ir, Os, Re and Ta) were investigated using the full-potential linear muffin-tin orbital (FP-LMTO) method, in the framework of the density functional theory (DFT) within the local density approximation (LDA) for the exchange correlation functional. The ground state quantities such as the lattice parameter, bulks modulus and its pressure derivatives for the six considered crystal structures, Rock-salt (B1), CsCl (B2), zinc-blend (B3), Wurtzite (B4), NiAs (B8{sub 1}) and the tungsten carbides (B{sub h}) are calculated. The elastic constants of TMNs and TMCs compounds in its different stable phases are determined by using the total energy variation with strain technique. The elastic modulus for polycrystalline materials, shear modulus (G), Young's modulus (E), and Poisson's ratio (ν) are calculated. The Debye temperature (θ{sub D}) and sound velocities (v{sub m}) were also derived from the obtained elastic modulus. The analysis of the hardness of the herein studied compounds classifies OsN – (B4 et B8{sub 1}), ReN – (B8{sub 1}), WN – (B8{sub 1}) and OsC – (B8{sub 1}) as superhard materials. Our results for the band structure and densities of states (DOS), show that TMNs and TMCs compounds in theirs energetically and mechanically stable phase has metallic characteristic with strong covalent nature Metal–Nonmetal elements. - Highlights: • Structural stabilities, elastic, electronic properties of 5d TMNs XN are investigated. • 5d TMCs XC with (X = Ir, Os, Re and Ta) were investigated. • The ground state properties for the six considered crystal structure are calculated. • The elastic constants of TMNs and TMCs in its different stable phases are determined. • The elastic modulus for polycrystalline materials, G, E, and ν are calculated.

  18. Structural, electronic and elastic properties of REIr{sub 2} (RE=La and Ce) Laves phase compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Fatima, Bushra; Sanyal, Sankar P. [Department of Physics, Barkatullah University, Bhopal, 462026 (India)

    2016-05-23

    REIr{sub 2} (RE = La and Ce) Laves phase intermetallic compounds were investigated with respect to their structural, electronic and elastic properties using full potential linearized augmented plane wave (FP-LAPW) method within generalized gradient approximation (GGA) as implemented in WIEN2k code. The ground state properties such as lattice constants (a{sub 0}), bulk modulus (B), pressure derivative of bulk modulus (B′) and density of state at Fermi level N(E{sub F}) have been obtained by optimization method. The electronic structure (BS, TDOS and PDOS) reveals that these Laves phase compounds are metallic in nature. The calculated elastic constants indicate that these compounds are mechanically stable at ambient pressure and found to be ductile in nature.

  19. Structural, electronic and elastic properties of RERu{sub 2} (RE=Pr and Nd) Laves phase intermetallic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Shrivastava, Deepika, E-mail: deepika89shrivastava@gmail.com; Sanyal, Sankar P. [Department of Physics, Barkatullah university, Bhopal, 462026 (India)

    2016-05-06

    We have performed the first-principles calculations to study the structural, electronic and elastic properties of RERu{sub 2} (RE = Pr and Nd) Laves phase intermetallic compounds using full-potential linearized augmented plane wave (FP-LAPW) method based on density functional theory (DFT) within the generalized gradient approximation (GGA) for exchange and correlation potential. The optimized lattices constant are in reasonable agreement with available experimental data. The electronic properties are analyzed in terms of band structures, total and partial density of states, which confirm their metallic character. The calculated elastic constants infer that these compounds are mechanically stable in C15 (MgCu{sub 2} type) structure and found to be ductile in nature.

  20. Ab-initio thermodynamic and elastic properties of AlNi and AlNi3 intermetallic compounds

    Science.gov (United States)

    Yalameha, Shahram; Vaez, Aminollah

    2018-04-01

    In this paper, thermodynamic and elastic properties of the AlNi and AlNi3 were investigated using density functional theory (DFT). The full-potential linearized augmented plane-wave (APW) in the framework of the generalized gradient approximation as used as implemented in the Wien2k package. The temperature dependence of thermal expansion coefficient, bulk modulus and heat capacity in a wide range of temperature (0-1600 K) were investigated. The calculated elastic properties of the compounds show that both intermetallic compounds of AlNi and AlNi3 have surprisingly negative Poisson’s ratio (NPR). The results were compared with other experimental and computational data.