WorldWideScience

Sample records for anisotropic cosmological models

  1. Anisotropic Cosmological Model with Variable G and Lambda

    CERN Document Server

    Tripathy, S K; Routray, T R

    2015-01-01

    Anisotropic Bianchi-III cosmological model is investigated with variable gravitational and cosmological constants in the framework of Einstein's general relativity. The shear scalar is considered to be proportional to the expansion scalar. The dynamics of the anisotropic universe with variable G and Lambda are discussed. Without assuming any specific forms for Lambda and the metric potentials, we have tried to extract the time variation of G and Lambda from the anisotropic model. The extracted G and Lambda are in conformity with the present day observation. Basing upon the observational limits, the behaviour and range of the effective equation of state parameter are discussed.

  2. Anisotropic cosmological models and generalized scalar tensor theory

    Indian Academy of Sciences (India)

    Subenoy Chakraborty; Batul Chandra Santra; Nabajit Chakravarty

    2003-10-01

    In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been studied and some assumptions among the physical parameters and solutions have been discussed.

  3. Anisotropic models are unitary: A rejuvenation of standard quantum cosmology

    CERN Document Server

    Pal, Sridip

    2016-01-01

    The present work proves that the folk-lore of the pathology of non-conservation of probability in quantum anisotropic models is wrong. It is shown in full generality that all operator ordering can lead to a Hamiltonian with a self-adjoint extension as long as it is constructed to be a symmetric operator, thereby making the problem of non-unitarity in context of anisotropic homogeneous model a ghost. Moreover, it is indicated that the self-adjoint extension is not unique and this non-uniqueness is suspected not to be a feature of Anisotropic model only, in the sense that there exists operator orderings such that Hamiltonian for an isotropic homogeneous cosmological model does not have unique self-adjoint extension, albeit for isotropic model, there is a special unique extension associated with quadratic form of Hamiltonian i.e {\\it Friedrichs extension}. Details of calculations are carried out for a Bianchi III model.

  4. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    B B Bhowmik; A Rajput

    2004-06-01

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  5. Averaging anisotropic cosmologies

    International Nuclear Information System (INIS)

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of anisotropic pressure-free models. Adopting the Buchert scheme, we recast the averaged scalar equations in Bianchi-type form and close the standard system by introducing a propagation formula for the average shear magnitude. We then investigate the evolution of anisotropic average vacuum models and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. The presence of nonzero average shear in our equations also allows us to examine the constraints that a phase of backreaction-driven accelerated expansion might put on the anisotropy of the averaged domain. We close by assessing the status of these and other attempts to define and calculate 'average' spacetime behaviour in general relativity

  6. Anisotropic Open Cosmological Models of Spin Matter with Magnetic Moment

    Institute of Scientific and Technical Information of China (English)

    SHENLi-ming; SUNNai-jiang; 等

    2001-01-01

    We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interacton among the spinning particles prevailling in spatially homogeneous,but anisotropically cosmological models of Bianchi type V based on Einstein-Cartan theory.We analyze the field equations in three different equations of states specified by p=1(1/3)ρand p=0,The analytical solutions found are non-singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe,We have also deduced that the minimum particle numers for the radiation(p=(1/3)ρ) and matter(p=0) epochs are 1088 and 10108 respectively.the minimum particle number for the state p=ρ is 1096,leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti-particles under torsion and strong gravitational field in the early Universe.

  7. Anisotropic Cosmological Model in Modified Brans--Dicke Theory

    OpenAIRE

    Rasouli, S. M. M.; Farhoudi, Mehrdad; Sepangi, Hamid R.

    2011-01-01

    It has been shown that four dimensional Brans-Dicke theory with effective matter field and self interacting potential can be achieved from vacuum 5D BD field equations, where we refer to as modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing obtained formalism, we derive induced-matter on any 4D hypersurface in context of the MBDT. We illustrate that if the usual spatial scale factors are functions of time whi...

  8. Inhomogeneous Anisotropic Cosmology

    CERN Document Server

    Kleban, Matthew

    2016-01-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that ${\\it arbitrarily}$ inhomogeneous and anisotropic cosmologies with "flat" (including toroidal) and "open" (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are "flat" or "open". Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potenti...

  9. Averaging anisotropic cosmologies

    CERN Document Server

    Barrow, J D; Barrow, John D.; Tsagas, Christos G.

    2006-01-01

    We examine the effects of spatial inhomogeneities on irrotational anisotropic cosmologies by looking at the average properties of pressure-free Bianchi-type models. Adopting the Buchert averaging scheme, we identify the kinematic backreaction effects by focussing on spacetimes with zero or isotropic spatial curvature. This allows us to close the system of the standard scalar formulae with a propagation equation for the shear magnitude. We find no change in the already known conditions for accelerated expansion. The backreaction terms are expressed as algebraic relations between the mean-square fluctuations of the models' irreducible kinematical variables. Based on these we investigate the early evolution of averaged vacuum Bianchi type $I$ universes and those filled with pressureless matter. In the latter case we show that the backreaction effects can modify the familiar Kasner-like singularity and potentially remove Mixmaster-type oscillations. We also discuss the possibility of accelerated expansion due to ...

  10. Anisotropic cosmological models in $f (R, T)$ theory of gravitation

    Indian Academy of Sciences (India)

    Shri Ram; Priyanka; Manish Kumar Singh

    2013-07-01

    A class of non-singular bouncing cosmological models of a general class of Bianchi models filled with perfect fluid in the framework of $f (R, T)$ gravity is presented. The model initially accelerates for a certain period of time and decelerates thereafter. The physical behaviour of the model is also studied.

  11. Inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kleban, Matthew; Senatore, Leonardo

    2016-10-01

    In homogeneous and isotropic Friedmann-Robertson-Walker cosmology, the topology of the universe determines its ultimate fate. If the Weak Energy Condition is satisfied, open and flat universes must expand forever, while closed cosmologies can recollapse to a Big Crunch. A similar statement holds for homogeneous but anisotropic (Bianchi) universes. Here, we prove that arbitrarily inhomogeneous and anisotropic cosmologies with ``flat'' (including toroidal) and ``open'' (including compact hyperbolic) spatial topology that are initially expanding must continue to expand forever at least in some region at a rate bounded from below by a positive number, despite the presence of arbitrarily large density fluctuations and/or the formation of black holes. Because the set of 3-manifold topologies is countable, a single integer determines the ultimate fate of the universe, and, in a specific sense, most 3-manifolds are ``flat'' or ``open''. Our result has important implications for inflation: if there is a positive cosmological constant (or suitable inflationary potential) and initial conditions for the inflaton, cosmologies with ``flat'' or ``open'' topology must expand forever in some region at least as fast as de Sitter space, and are therefore very likely to begin inflationary expansion eventually, regardless of the scale of the inflationary energy or the spectrum and amplitude of initial inhomogeneities and gravitational waves. Our result is also significant for numerical general relativity, which often makes use of periodic (toroidal) boundary conditions.

  12. Homogeneous anisotropic cosmological models in the minimum quadratic Poincare gauge theory of gravity

    International Nuclear Information System (INIS)

    In the present article we resume some of our results on homogeneous anisotropic models of the Poincare gauge theory of gravity based on the Riemann-Cartan spacetime. Namely, within the framework of the minimum quadratic Poincare gauge theory of gravity the dynamics of homogeneous anisotropic Bianchi types I-IX spinning-fluid cosmological models is studied. A basic equation set for these models is obtained and analyzed. In particular, exact solutions for the Bianchi type-I spinning-fluid and Bianchi type-V perfect-fluid models are found in integral form. (author). 30 refs, 2 tabs

  13. Rainbow metric from quantum gravity: anisotropic cosmology

    OpenAIRE

    Assanioussi, Mehdi; Dapor, Andrea

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformatio...

  14. Anisotropic Inflation and Cosmological Observations

    CERN Document Server

    Emami, Razieh

    2015-01-01

    Recent observations opened up a new window on the inflationary model building. As it was firstly reported by the WMAP data, there may be some indications of statistical anisotropy on the CMB map, although the statistical significance of these findings are under debate. Motivated by these observations, people begun considering new inflationary models which may lead to statistical anisotropy. The simplest possible way to construct anisotropic inflation is to introduce vector fields. During the course of this thesis, we study models of anisotropic inflation and their observational implications such as power spectrum, bispectrum etc. Firstly we build a new model, which contains the gauge field which breaks the conformal invariance while preserving the gauge invariance. We show that in these kind of models, there can be an attractor phase in the evolution of the system when the back-reaction of the gauge field becomes important in the evolution of the inflaton field. We then study the cosmological perturbation the...

  15. How real-time cosmology can distinguish between different anisotropic models

    Energy Technology Data Exchange (ETDEWEB)

    Amendola, Luca [Institut für Theoretische Physik, Universität Heidelberg, Philosophenweg 16, D–69120 Heidelberg (Germany); Bjælde, Ole Eggers [Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, DK–8000 Aarhus C (Denmark); Valkenburg, Wessel [Instituut-Lorentz for Theoretical Physics, Universiteit Leiden, Niels Bohrweg 2, 2333 CA Leiden (Netherlands); Wong, Yvonne Y.Y., E-mail: l.amendola@thphys.uni-heidelberg.de, E-mail: oeb@phys.au.dk, E-mail: valkenburg@lorentz.leidenuniv.nl, E-mail: yvonne.y.wong@unsw.edu.au [School of Physics, The University of New South Wales, Sydney NSW 2052 (Australia)

    2013-12-01

    We present a new analysis on how to distinguish between isotropic and anisotropic cosmological models based on tracking the angular displacements of a large number of distant quasars over an extended period of time, and then performing a multipole-vector decomposition of the resulting displacement maps. We find that while the GAIA mission operating at its nominal specifications does not have sufficient angular resolution to resolve anisotropic universes from isotropic ones using this method within a reasonable timespan of ten years, a next-generation GAIA-like survey with a resolution ten times better should be equal to the task. Distinguishing between different anisotropic models is however more demanding. Keeping the observational timespan to ten years, we find that the angular resolution of the survey will need to be of order 0.1 μas in order for certain rotating anisotropic models to produce a detectable signature that is also unique to models of this class. However, should such a detection become possible, it would immediately allow us to rule out large local void models.

  16. A Class of LQC--inspired Models for Homogeneous, Anisotropic Cosmology in Higher Dimensional Early Universe

    CERN Document Server

    Rama, S Kalyana

    2016-01-01

    The dynamics of a (3 + 1) dimensional homogeneous anisotropic universe is modified by Loop Quantum Cosmology and, consequently, it has generically a big bounce in the past instead of a big-bang singularity. This modified dynamics can be well described by effective equations of motion. We generalise these effective equations of motion empirically to (d + 1) dimensions. The generalised equations involve two functions and may be considered as a class of LQC -- inspired models for (d + 1) dimensional early universe cosmology. As a special case, one can now obtain a universe which has neither a big bang singularity nor a big bounce but approaches asymptotically a `Hagedorn like' phase in the past where its density and volume remain constant. In a few special cases, we also obtain explicit solutions.

  17. Anisotropic cosmological models with bulk viscosity and particle creation in Saez–Ballester theory of gravitation

    Indian Academy of Sciences (India)

    Chandel S; Ram Shri

    2016-03-01

    The paper deals with the study of particle creation and bulk viscosity in the evolution of spatially homogeneous and anisotropic Bianchi type-V cosmological models in the framework of Saez–Ballester theory of gravitation. Particle creation and bulk viscosity are considered as separate irreversible processes. The energy–momentum tensor is modified to accommodate the viscous pressure and creation pressure which is associated with the creation of matter out of gravitational field. A special law of variation of Hubble parameter is applied to obtain exact solutions of field equations in two types of cosmologies, one with power-law expansion and the other with exponential expansion. Cosmological model with power-law expansion has a Big-Bang singularity at time $t = 0$, whereas the model with exponential expansion has no finite singularity. We study bulk viscosity and particle creation in each model in four different cases. The bulk viscosity coefficient is obtained for full causal, Eckart’s and truncated theories. All physical parameters are calculated and thoroughly discussed in both models.

  18. Rainbow metric from quantum gravity: anisotropic cosmology

    CERN Document Server

    Assanioussi, Mehdi

    2016-01-01

    In this paper we present a construction of effective cosmological models which describe the propagation of a massive quantum scalar field on a quantum anisotropic cosmological spacetime. Each obtained effective model is represented by a rainbow metric in which particles of distinct momenta propagate on different classical geometries. Our analysis shows that upon certain assumptions and conditions on the parameters determining such anisotropic models, we surprisingly obtain a unique deformation parameter $\\beta$ in the modified dispersion relation of the modes. Hence inducing an isotropic deformation despite the general starting considerations. We then ensure the recovery of the dispersion relation realized in the isotropic case, studied in [arXiv:1412.6000], when some proper symmetry constraints are imposed, and we estimate the value of the deformation parameter for this case in loop quantum cosmology context.

  19. Anisotropic 'hairs' in string cosmology

    OpenAIRE

    Kunze, Kerstin E.; Durrer, Ruth

    1999-01-01

    In this letter we investigate whether the isotropy problem is naturally solved in inflationary cosmologies inspired by string theory, so called pre-big-bang cosmologies. We find that, in contrast to what happens in the more common 'potential inflation' models, initial anisotropies do not decay during pre-big-bang inflation.

  20. Spin precession in anisotropic cosmologies

    Energy Technology Data Exchange (ETDEWEB)

    Kamenshchik, A.Yu. [Universita di Bologna, Dipartimento di Fisica e Astronomia, Bologna (Italy); L. D. Landau Institute for Theoretical Physics, Moscow (Russian Federation); INFN, Bologna (Italy); Teryaev, O.V. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Lomonosov Moscow State University, Moscow (Russian Federation)

    2016-05-15

    We consider the precession of a Dirac particle spin in some anisotropic Bianchi universes. This effect is present already in the Bianchi-I universe. We discuss in some detail the geodesics and the spin precession for both the Kasner and the Heckmann-Schucking solutions. In the Bianchi-IX universe the spin precession acquires the chaotic character due to the stochasticity of the oscillatory approach to the cosmological singularity. The related helicity flip of fermions in the very early universe may produce the sterile particles contributing to dark matter. (orig.)

  1. Remarks on inhomogeneous anisotropic cosmology

    Science.gov (United States)

    Kaya, Ali

    2016-08-01

    Recently a new no-global-recollapse argument was given for some inhomogeneous and anisotropic cosmologies that utilizes surface deformation by the mean curvature flow. In this paper we discuss important properties of the mean curvature flow of spacelike surfaces in Lorentzian manifolds. We show that singularities may form during cosmic evolution, and the theorems forbidding the global recollapse lose their validity. The time evolution of the spatial scalar curvature that may kinematically prevent the recollapse is determined in normal coordinates, which shows the impact of inhomogeneities explicitly. Our analysis indicates a caveat in numerical solutions that give rise to inflation.

  2. Anisotropic matter in cosmology: locally rotationally symmetric Bianchi I and VII o models

    Science.gov (United States)

    Sloan, David

    2016-05-01

    We examine the behaviour of homogeneous, anisotropic space-times, specifically the locally rotationally symmetric Bianchi types I and VII o in the presence of anisotropic matter. By finding an appropriate constant of the motion, and transforming the equations of motion we are able to provide exact solutions in the presence of perfect fluids with anisotropic pressures. The solution space covers matter consisting of a single perfect fluid which satisfies the weak energy condition and is rich enough to contain solutions which exhibit behaviour which is qualitatively distinct from the isotropic sector. Thus we find that there is more ‘matter that matters’ close to a homogeneous singularity than the usual stiff fluid. Example metrics are given for cosmologies whose matter sources are magnetic fields, relativistic particles, cosmic strings and domain walls.

  3. An anisotropic cosmological model in a modified Brans-Dicke theory

    Science.gov (United States)

    Rasouli, S. M. M.; Farhoudi, Mehrdad; Sepangi, Hamid R.

    2011-08-01

    Recently, it has been shown that a four-dimensional (4D) Brans-Dicke (BD) theory with an effective matter field and a self-interacting potential can be achieved from the vacuum 5D BD field equations, where we refer to as a modified Brans-Dicke theory (MBDT). We investigate a generalized Bianchi type I anisotropic cosmology in 5D BD theory, and by employing the obtained formalism, we derive the induced matter on any 4D hypersurface in the context of the MBDT. We illustrate that if the usual spatial scale factors are functions of the time while the scale factor of extra dimension is constant, and the scalar field depends on the time and the fifth coordinate, then, in general, one will encounter inconsistencies in the field equations. Then, we assume that the scale factors and the scalar field depend on the time and the extra coordinate as separated variables in the power-law forms. Hence, we find a few classes of solutions in 5D spacetime through which we probe the one which leads to a generalized Kasner relation among the Kasner parameters. The induced scalar potential is found to be in the power law or in the logarithmic form; however, for a constant scalar field and even when the scalar field only depends on the fifth coordinate, it vanishes. The conservation law is indeed valid in this MBDT approach for the derived induced energy-momentum tensor (EMT). We proceed our investigations for a few cosmological quantities, where for simplicity we assume that the metric and the scalar field are functions of the time. Hence, the EMT satisfies the barotropic equation of state, and the model indicates that the constant mean Hubble parameter is not allowed. Thus, by appealing to the variation of the Hubble parameter, we assume a fixed deceleration parameter, and set the evolution of the quantities with respect to the fixed deceleration, the BD coupling and the state parameters. The WEC allows a shrinking extra dimension for a decelerating expanding universe that, in the

  4. Anisotropic cosmological solutions in massive vector theories

    OpenAIRE

    Heisenberg, Lavinia; Kase, Ryotaro; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between...

  5. The Anisotropic Geometrodynamics For Cosmology

    Science.gov (United States)

    Siparov, Sergey V.

    2009-05-01

    The classical geometrodynamics (GRT) and its modern features based on the use of the Fridman-Robertson-Walker type metrics are still unable to explain several important issues of extragalactic observations like flat rotation curves of the spiral galaxies, Tully-Fisher law, globular clusters behavior in comparisson to that of the stars belonging to the galactic plane etc. The chalenging problem of the Universe expansion acceleration stemming from the supernovae observations demands the existence of the repulsion forces which brings one to the choice between the cosmological constant and some quintessence. The popular objects of discussion are now still dark (matter and energy), nevertheless, they are supposed to correspond to more than 95% of the Universe which seems to be far from satisfactory. According to the equivalence principle we can not experimentally distinguish between the inertial forces and the gravitational ones. Since there exist the inertial forces depending on velocity (Coriolis), it seems plausible to explore the velocity dependent gravitational forces. From the mathematical point of view it means that we should use the anisotropic metric. It immediately turns out that the expression for the Einstein-Hilbert action changes in a natural way - contrary to the cases of f(R)-theories, additional scalar fields, arbitrary MOND functions etc.. We use the linear approximation for the metric and derive the generalized geodesics and the equation for the gravity force that contains not only the Newton-Einstein term. The relation between the obtained results and those of Lense-Thirring approach are discussed. The resulting anisotropic geometrodynamics includes all the results of the GRT and is used to give the explanation to the problems mentioned above. One of the impressive consequences is the possibility to explain the observed Hubble red shift not by the Doppler effect as usually but by the gravitational red shift originating from the metric anisotropy.

  6. Phase Space of Anisotropic $R^n$ Cosmologies

    CERN Document Server

    Leon, Genly

    2014-01-01

    We construct general anisotropic cosmological scenarios governed by an $f(R)=R^n$ gravitational sector. Focusing then on some specific geometries, and modelling the matter content as a perfect fluid, we perform a phase-space analysis. We analyze the possibility of accelerating expansion at late times, and additionally, we determine conditions for the parameter $n$ for the existence of phantom behavior, contracting solutions as well as of cyclic cosmology. Furthermore, we analyze if the universe evolves towards the future isotropization without relying on a cosmic no-hair theorem. Our results indicate that anisotropic geometries in modified gravitational frameworks present radically different cosmological behaviors compared to the simple isotropic scenarios.

  7. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    Science.gov (United States)

    Shogin, Dmitry; Amund Amundsen, Per

    2016-10-01

    We test the physical relevance of the full and the truncated versions of the Israel–Stewart (IS) theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes with a viscous mathematical fluid, keeping track of the magnitude of the relative dissipative fluxes, which determines the applicability of the IS theory. We consider the situations where the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. It is demonstrated that the only case in the given model when the fluid asymptotically approaches local thermal equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated IS equations for shear viscosity are found to produce solutions which manifest pathological dynamical features and, in addition, to be strongly sensitive to the choice of initial conditions. Since these features are observed already in the case of an oversimplified mathematical fluid model, we have no reason to assume that the truncation of the IS transport equations will produce relevant results for physically more realistic fluids. The possible role of bulk and shear viscosity in cosmological evolution is also discussed.

  8. Anisotropic Bulk Viscous String Cosmological Model in a Scalar-Tensor Theory of Gravitation

    Directory of Open Access Journals (Sweden)

    D. R. K. Reddy

    2013-01-01

    Full Text Available Spatially homogeneous, anisotropic, and tilted Bianchi type-VI0 model is investigated in a new scalar-tensor theory of gravitation proposed by Saez and Ballester (1986 when the source for energy momentum tensor is a bulk viscous fluid containing one-dimensional cosmic strings. Exact solution of the highly nonlinear field equations is obtained using the following plausible physical conditions: (i scalar expansion of the space-time which is proportional to the shear scalar, (ii the barotropic equations of state for pressure and energy density, and (iii a special law of variation for Hubble’s parameter proposed by Berman (1983. Some physical and kinematical properties of the model are also discussed.

  9. Local equilibrium solutions in simple anisotropic cosmological models, as described by relativistic fluid dynamics

    CERN Document Server

    Shogin, Dmitry

    2015-01-01

    We test the physical relevance of the full and truncated versions of the Israel-Stewart theory of irreversible thermodynamics in a cosmological setting. Using a dynamical systems method, we determine the asymptotic future of plane symmetric Bianchi type I spacetimes filled with a viscous {\\gamma}-fluid, keeping track of the magnitude of relative dissipative fluxes, which determines the applicability of the Israel-Stewart theory. We consider the situations when the dissipative mechanisms of shear and bulk viscosity are involved separately and simultaneously. Also, we apply two different temperature models in the full version of the theory in order to compare the results. We demonstrate that the only case when the fluid asymptotically approaches local equilibrium, and the underlying assumptions of the IS theory are therefore not violated, is that of a dissipative fluid with vanishing bulk viscosity. The truncated Israel-Stewart equations for shear viscosity are found to produce solutions which manifest patholog...

  10. Anisotropic cosmological solutions in massive vector theories

    CERN Document Server

    Heisenberg, Lavinia; Tsujikawa, Shinji

    2016-01-01

    In beyond-generalized Proca theories including the extension to theories higher than second order, we study the role of a spatial component $v$ of a massive vector field on the anisotropic cosmological background. We show that, as in the case of the isotropic cosmological background, there is no additional ghostly degrees of freedom associated with the Ostrogradski instability. In second-order generalized Proca theories we find the existence of anisotropic solutions on which the ratio between the anisotropic expansion rate $\\Sigma$ and the isotropic expansion rate $H$ remains nearly constant in the radiation-dominated epoch. In the regime where $\\Sigma/H$ is constant, the spatial vector component $v$ works as a dark radiation with the equation of state close to $1/3$. During the matter era, the ratio $\\Sigma/H$ decreases with the decrease of $v$. As long as the conditions $|\\Sigma| \\ll H$ and $v^2 \\ll \\phi^2$ are satisfied around the onset of late-time cosmic acceleration, where $\\phi$ is the temporal vector ...

  11. Light propagation in inhomogeneous and anisotropic cosmologies

    CERN Document Server

    Fleury, Pierre

    2015-01-01

    The standard model of cosmology is based on the hypothesis that the Universe is spatially homogeneous and isotropic. When interpreting most observations, this cosmological principle is applied stricto sensu: the light emitted by distant sources is assumed to propagate through a Friedmann-Lema\\^itre spacetime. The main goal of the present thesis was to evaluate how reliable this assumption is, especially when small scales are at stake. After having reviewed the laws of geometric optics in curved spacetime, and the standard interpretation of cosmological observables, the dissertation reports a comprehensive analysis of light propagation in Swiss-cheese models, designed to capture the clumpy character of the Universe. The resulting impact on the interpretation of the Hubble diagram is quantified, and shown to be relatively small, thanks to the cosmological constant. When applied to current supernova data, the associated corrections tend however to improve the agreement between the cosmological parameters inferre...

  12. Anisotropic cosmology in S\\'aez-Ballester theory: classical and quantum solutions

    CERN Document Server

    Socorro, J; G., M A Sánchez; Palos, M G Frías

    2010-01-01

    We use the S\\'aez-Ballester theory on anisotropic Bianchi I cosmological model, with barotropic fluid and cosmological constant. We obtain the classical solution by using the Hamilton-Jacobi approach. Also the quantum regime is constructed and exact solutions to the Wheeler-DeWitt equation are found.

  13. Evolution of the density parameter in the anisotropic DGP cosmology

    CERN Document Server

    Ansari, Rizwan Ul Haq

    2011-01-01

    Evolution of the density parameter in the anisotropic DGP braneworld model is studied. The role of shear and cross-over scale in the evolution of $\\Omega_\\rho$ is examined for both the branches of solution in the DGP model. The evolution is modified significantly compared to the FRW model and further it does not depend on the value of $\\gamma$ alone. Behaviour of the cosmological density parameter $\\Omega_\\rho$ is unaltered in the late universe. The study of decceleration parameter shows that the entry of the universe into self accelerating phase is determined by the value of shear. We also obtain an estimate of the shear parameter $\\frac{\\Sigma}{H_0} \\sim 1.68 \\times 10^{-10}$, which is in agreement with the constraints obtained in the literature using data.

  14. Evolution of cosmological event horizons in anisotropic universes

    CERN Document Server

    Kim, Hyeong-Chan

    2012-01-01

    We study the evolution of cosmological event horizons in anisotropic Kasner universes in the presence of a positive cosmological constant by analyzing null geodesics. At later times, the asymptotic form of cosmological horizons is the same spherical surface as the de Sitter horizon. At the early times, however, it has non-spherical shape with its eccentricity decreases with time. The horizon area increases with time respecting the second law of thermodynamics. The initial shape of the cosmological horizon takes the form of a needle or pancake surface depending on the nature of the background spacetimes. We also briefly discuss that the presence of the holographic dark energy will modify significantly the initial evolution of the anisotropic universes.

  15. Anisotropic Four-Dimensional NS-NS String Cosmology

    CERN Document Server

    Chen, C M; Mak, M K; Chen, Chiang-Mei

    2001-01-01

    An anisotropic (Bianchi type I) cosmology is considered in the four-dimensional NS-NS sector of low-energy effective string theory coupled to a dilaton and an axion-like $H$-field within a de Sitter-Einstein frame background. The time evolution of this Universe is discussed in both the Einstein and string frames.

  16. Cosmological model favored by the holographic principle

    Science.gov (United States)

    Dymnikova, Irina; Dobosz, Anna; Sołtysek, Bożena

    2016-03-01

    We present a regular spherically symmetric cosmological model of the Lemaitre class distinguished by the holographic principle as the thermodynamically stable end-point of quantum evaporation of the cosmological horizon. A source term in the Einstein equations connects smoothly two de Sitter vacua with different values of cosmological constant and corresponds to anisotropic vacuum dark fluid defined by symmetry of its stress-energy tensor which is invariant under the radial boosts. Global structure of space-time is the same as for the de Sitter space-time. Cosmological evolution goes from a big initial value of the cosmological constant towards its presently observed value.

  17. Cosmological models and stability

    CERN Document Server

    Andersson, Lars

    2013-01-01

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiri Bicak at this conference Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed...

  18. Grand unified models and cosmology

    OpenAIRE

    Jeannerot, Rachel

    2006-01-01

    The cosmological consequences of particle physics grand unified theories (GUTs) are studied. Cosmological models are implemented in realistic particle physics models. Models consistent from both particle physics and cosmological considerations are selected. (...)

  19. Frequentist comparison of CMB local extrema statistics in the five-year WMAP data with two anisotropic cosmological models

    CERN Document Server

    Hou, Zhen; Górski, K M; Groeneboom, N E; Eriksen, H K

    2009-01-01

    We present local extrema studies of two models that introduce a preferred direction into the observed cosmic microwave background (CMB) temperature field. In particular, we make a frequentist comparison of the one- and two-point statistics for the dipole modulation and ACW models with data from the five-year Wilkinson Microwave Anisotropy Probe (WMAP). This analysis is motivated by previously revealed anomalies in the WMAP data, and particularly the difference in the statistical nature of the temperature anisotropies when analysed in hemispherical partitions. The analysis of the one-point statistics indicates that the previously determined hemispherical variance difficulties can be apparently overcome by a dipole modulation field, but new inconsistencies arise if the mean and the l-dependence of the statistics are considered. The two-point correlation functions of the local extrema, the temperature pair product and the point-point spatial pair-count, demonstrate that the impact of such a modulation is to over...

  20. Cosmological Models and Stability

    Science.gov (United States)

    Andersson, Lars

    Principles in the form of heuristic guidelines or generally accepted dogma play an important role in the development of physical theories. In particular, philosophical considerations and principles figure prominently in the work of Albert Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein formulated the equivalence principle, an essential step on the road to general relativity, during his time in Prague 1911-1912. In this talk, I would like to discuss some aspects of cosmological models. As cosmology is an area of physics where "principles" such as the "cosmological principle" or the "Copernican principle" play a prominent role in motivating the class of models which form part of the current standard model, I will start by comparing the role of the equivalence principle to that of the principles used in cosmology. I will then briefly describe the standard model of cosmology to give a perspective on some mathematical problems and conjectures on cosmological models, which are discussed in the later part of this paper.

  1. Model anisotropic quantum Hall states

    OpenAIRE

    Qiu, R. -Z.; Haldane, F.D.M.; Wan, Xin; Yang, Kun; Yi, Su

    2012-01-01

    Model quantum Hall states including Laughlin, Moore-Read and Read-Rezayi states are generalized into appropriate anisotropic form. The generalized states are exact zero-energy eigenstates of corresponding anisotropic two- or multi-body Hamiltonians, and explicitly illustrate the existence of geometric degrees of in the fractional quantum Hall effect. These generalized model quantum Hall states can provide a good description of the quantum Hall system with anisotropic interactions. Some numeri...

  2. Anisotropic Model Colloids

    Science.gov (United States)

    van Kats, C. M.

    2008-10-01

    The driving forces for fundamental research in colloid science are the ability to manage the material properties of colloids and to unravel the forces that play a role between colloids to be able to control and understand the processes where colloids play an important role. Therefore we are searching for colloidal materials with specific physical properties to better understand our surrounding world.Until recently research in colloid science was mainly focused on spherical (isotropic) particles. Monodisperse spherical colloids serve as a model system as they exhibit similar phase behaviour as molecular and atomic systems. Nevertheless, in many cases the spherical shape is not sufficient to reach the desired research goals. Recently the more complex synthesis methods of anisotropic model colloids has strongly developed. This thesis should be regarded as a contribution to this research area. Anisotropic colloids can be used as a building block for complex structures and are expected not only to lead to the construction of full photonic band gap materials. They will also serve as new, more realistic, models systems for their molecular analogues. Therefore the term ‘molecular colloids” is sometimes used to qualify these anisotropic colloidal particles. In the introduction of this thesis, we give an overview of the main synthesis techniques for anisotropic colloids. Chapter 2 describes the method of etching silicon wafers to construct monodisperse silicon rods. They subsequently were oxidized and labeled (coated) with a fluorescent silica layer. The first explorative phase behaviour of these silica rods was studied. The particles showed a nematic ordering in charge stabilized suspensions. Chapter 3 describes the synthesis of colloidal gold rods and the (mesoporous) silica coating of gold rods. Chapter 4 describes the physical and optical properties of these particles when thermal energy is added. This is compared to the case where the particles are irradiated with

  3. Instability of anisotropic cosmological solutions supported by vector fields.

    Science.gov (United States)

    Himmetoglu, Burak; Contaldi, Carlo R; Peloso, Marco

    2009-03-20

    Models with vector fields acquiring a nonvanishing vacuum expectation value along one spatial direction have been proposed to sustain a prolonged stage of anisotropic accelerated expansion. Such models have been used for realizations of early time inflation, with a possible relation to the large scale cosmic microwave background anomalies, or of the late time dark energy. We show that, quite generally, the concrete realizations proposed so far are plagued by instabilities (either ghosts or unstable growth of the linearized perturbations) which can be ultimately related to the longitudinal vector polarization present in them. Phenomenological results based on these models are therefore unreliable.

  4. 具有磁矩自旋物质的开放的各向异性宇宙模型%Anisotropic Open Cosmological Models of Spin Matter with Magnetic Moment

    Institute of Scientific and Technical Information of China (English)

    沈利明; 孙迺疆; 吉桂芳; 陆惠卿

    2001-01-01

    We have derived a set of field equations for a Weyssenhoff spin fluid including magnetic interaction among the spinning particles prevailing in spatially homogeneous, but anisotropically cosmological models of Bianchi type V based on Einstein-Cartan theory. We analyze the field equations in three different equations of states specified by p = (1/3) ρ, p = ρ and p = 0. The analytical solutions found are non-singular provided that the combined energy arising from matter spin and magnetic interaction among particles overcomes the anisotropy energy in the Universe. We have also deduced that the minimum particle numbers for the radiation (p = (1/3)ρ) and matter (p = 0) epochs are 10s8 and 10108 respectively, the minimum particle number for the state p = p is 1096, leading to the conclusion that we must consider the existence of neutrinos and other creation of particles and anti-particles under torsion and strong gravitational field in the early Universe.

  5. Bayesian analysis of anisotropic cosmologies: Bianchi VII_h and WMAP

    CERN Document Server

    McEwen, J D; Feeney, S M; Peiris, H V; Lasenby, A N

    2013-01-01

    We perform a definitive analysis of Bianchi VII_h cosmologies with WMAP observations of the cosmic microwave background (CMB) temperature anisotropies. Bayesian analysis techniques are developed to study anisotropic cosmologies using full-sky and partial-sky, masked CMB temperature data. We apply these techniques to analyse the full-sky internal linear combination (ILC) map and a partial-sky, masked W-band map of WMAP 9-year observations. In addition to the physically motivated Bianchi VII_h model, we examine phenomenological models considered in previous studies, in which the Bianchi VII_h parameters are decoupled from the standard cosmological parameters. In the two phenomenological models considered, Bayes factors of 1.7 and 1.1 units of log-evidence favouring a Bianchi component are found in full-sky ILC data. The corresponding best-fit Bianchi maps recovered are similar for both phenomenological models and are very close to those found in previous studies using earlier WMAP data releases. However, no evi...

  6. Improved cosmological model

    Science.gov (United States)

    Tsamis, N. C.; Woodard, R. P.

    2016-08-01

    We study a class of nonlocal, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the Universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense Universe the nonlocal screening terms become constant as the Universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller antiscreening effect that could explain the current phase of acceleration.

  7. An Improved Cosmological Model

    CERN Document Server

    Tsamis, N C

    2016-01-01

    We study a class of non-local, action-based, and purely gravitational models. These models seek to describe a cosmology in which inflation is driven by a large, bare cosmological constant that is screened by the self-gravitation between the soft gravitons that inflation rips from the vacuum. Inflation ends with the universe poised on the verge of gravitational collapse, in an oscillating phase of expansion and contraction that should lead to rapid reheating when matter is included. After the attainment of a hot, dense universe the nonlocal screening terms become constant as the universe evolves through a conventional phase of radiation domination. The onset of matter domination triggers a much smaller anti-screening effect that could explain the current phase of acceleration.

  8. The fractal cosmological model

    OpenAIRE

    Rozgacheva, I. K.; Agapov, A. A.

    2011-01-01

    The fractal cosmological model which accounts for observable fractal properties of the Universe's large-scale structure is constructed. In this framework these properties are consequences of the rotary symmetry of charged scalar meson matter field (complex field). They may be explained through a conception of the Universe as an assembly of self-similar space-time domains. We have found the scale invariant solutions of Einstein's equation and Lagrange's field equation. For the solution the spa...

  9. Anisotropic Bianchi-I universe with phantom field and cosmological constant

    Indian Academy of Sciences (India)

    Bikash Chandra Paul; Dilip Paul

    2008-12-01

    We study an anisotropic Bianchi-I universe in the presence of a phantom field and a cosmological constant. Cosmological solutions are obtained when the kinetic energy of the phantom field is of the order of anisotropy and dominates over the potential energy of the field. The anisotropy of the universe decreases and the universe transits to an isotropic flat FRW universe accommodating the present acceleration. A class of new cosmological solutions is obtained for an anisotropic universe in case an initial anisotropy exists which is bigger than the value determined by the parameter of the kinetic part of the field. Later, an autonomous system of equations for an axially symmetric Bianchi-I universe with phantom field in an exponential potential is studied. We discuss the stability of the cosmological solutions.

  10. FLRW viscous cosmological models

    CERN Document Server

    Khadekar, G S; Meng, X -H

    2016-01-01

    In this paper we solve Friedmann equations by considering a universal media as a non-perfect fluid with bulk viscosity and is described by a general "gamma law" equation of state of the form $p= (\\gamma -1) \\rho + \\Lambda(t)$, where the adiabatic parameter $\\gamma$ varies with scale factor $R$ of the metric and $\\Lambda$ is the time dependent cosmological constant. A unified description of the early evolution of the universe is presented by assuming the bulk viscosity and cosmological parameter in a linear combination of two terms of the form: $\\Lambda(t)=\\Lambda_{0} + \\Lambda_{1}\\frac{\\dot{R}}{R}$ and $\\zeta = \\zeta_{0} + \\zeta_{1} \\frac{\\dot{R}}{R}$, where $\\Lambda_{0},\\;\\Lambda_{1},\\, \\zeta_{0}$ and $ \\zeta_{1}$ are constants, in which an inflationary phase is followed by the radiation dominated phase. For this general gamma law equation of state, an entirely integrable dynamical equation to the scale factor $R$ is obtained along with its exact solutions. In this framework we demonstrate that the model can...

  11. Quantum cosmological metroland model

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Edward [DAMTP, Cambridge (United Kingdom); Franzen, Anne, E-mail: ea212@cam.ac.u, E-mail: a.t.franzen@uu.n [Spinoza Institute, Utrecht (Netherlands)

    2010-02-21

    Relational particle mechanics is useful for modelling whole-universe issues such as quantum cosmology or the problem of time in quantum gravity, including some aspects outside the reach of comparably complex mini-superspace models. In this paper, we consider the mechanics of pure shape and not scale of four particles on a line, so that the only physically significant quantities are ratios of relative separations between the constituents' physical objects. Many of our ideas and workings extend to the N-particle case. As such models' configurations resemble depictions of metro lines in public transport maps, we term them 'N-stop metrolands'. This 4-stop model's configuration space is a 2-sphere, from which our metroland mechanics interpretation is via the 'cubic' tessellation. This model yields conserved quantities which are mathematically SO(3) objects like angular momenta but are physically relative dilational momenta (i.e. coordinates dotted with momenta). We provide and interpret various exact and approximate classical and quantum solutions for 4-stop metroland; from these results one can construct expectations and spreads of shape operators that admit interpretations as relative sizes and the 'homogeneity of the model universe's contents', and also objects of significance for the problem of time in quantum gravity (e.g. in the naive Schroedinger and records theory timeless approaches).

  12. Creation of scalar particles in the presence of a constant electric field in an anisotropic cosmological universe

    OpenAIRE

    Villalba, Victor M.

    1999-01-01

    In the present article we analyze the phenomenon of particle creation in a cosmological anisotropic universe when a constant electric field is present. We compute, via the Bogoliubov transformations, the density number of particles created.

  13. Anisotropic models for compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Dayanandan, Baiju

    2015-01-01

    In the present paper we obtain an anisotropic analogue of Durgapal-Fuloria (1985) perfect fluid solution. The methodology consists of contraction of anisotropic factor $\\Delta$ by the help of both metric potentials $e^{\

  14. New charged anisotropic compact models

    Science.gov (United States)

    Kileba Matondo, D.; Maharaj, S. D.

    2016-07-01

    We find new exact solutions to the Einstein-Maxwell field equations which are relevant in the description of highly compact stellar objects. The relativistic star is charged and anisotropic with a quark equation of state. Exact solutions of the field equations are found in terms of elementary functions. It is interesting to note that we regain earlier quark models with uncharged and charged matter distributions. A physical analysis indicates that the matter distributions are well behaved and regular throughout the stellar structure. A range of stellar masses are generated for particular parameter values in the electric field. In particular the observed mass for a binary pulsar is regained.

  15. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  16. Warm Anisotropic Inflationary Universe Model

    CERN Document Server

    Sharif, M

    2014-01-01

    This paper is devoted to study the warm inflation using vector fields in the background of locally rotationally symmetric Bianchi type I universe model. We formulate the field equations, slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) under slow-roll approximation. We evaluate all these parameters in terms of directional Hubble parameter during intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., tensor-scalar ratio in terms of inflation. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and Planck observational data.

  17. Cosmolog\\'ia Cu\\'antica de Lazos: Anisotrop\\'ias e Inhomogeneidades

    CERN Document Server

    Martín-Benito, Mercedes

    2011-01-01

    Loop Quantum Cosmology adapts the techniques of Loop Quantum Gravity in the quantization of homogeneous cosmological models obtained from General Relativity by symmetry reduction. As a necessary step towards the extraction of realistic results from Loop Quantum Cosmology, we should consider the inclusion of inhomogeneities, which play a central role in current cosmology. The main goal of this thesis is to progress in this direction. With this aim we have studied a natural test bed to incorporate inhomogeneities in Loop Quantum Cosmology: the linearly polarized Gowdy T3 model. This model can be regarded as a homogeneous Bianchi I background filled with inhomogeneities propagating in one direction. We have completed its quantization by means of a hybrid approach, that combines the loop quantization of the homogeneous sector, within the so-called improved dynamics scheme, with a Fock quantization for the inhomogeneities. In order to perform this quantization as thorough as possible, we have also reviewed the (im...

  18. Anisotropic loop quantum cosmology with self-dual variables

    CERN Document Server

    Wilson-Ewing, Edward

    2015-01-01

    A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual connection variables is presented in this paper. The basic operators in the quantum theory correspond to areas and generalized holonomies of the Ashtekar connection and the reality conditions are implemented via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian constraint operator is given explicitly for the case when the matter content is a massless scalar field (in which case the scalar field can be used as a relational clock), and it is shown that the big-bang and big-crunch singularities are resolved in the sense that singular and non-singular states decouple under the action of the Hamiltonian constraint operator.

  19. Anisotropic loop quantum cosmology with self-dual variables

    Science.gov (United States)

    Wilson-Ewing, Edward

    2016-04-01

    A loop quantization of the diagonal class A Bianchi models starting from the complex-valued self-dual connection variables is presented in this paper. The basic operators in the quantum theory correspond to areas and generalized holonomies of the Ashtekar connection, and the reality conditions are implemented via the choice of the inner product on the kinematical Hilbert space. The action of the Hamiltonian constraint operator is given explicitly for the case when the matter content is a massless scalar field (in which case the scalar field can be used as a relational clock), and it is shown that the big bang and big crunch singularities are resolved in the sense that singular and nonsingular states decouple under the action of the Hamiltonian constraint operator.

  20. Chiral Cosmological Models: Dark Sector Fields Description

    CERN Document Server

    Chervon, S V

    2014-01-01

    The present review is devoted to a Chiral Cosmological Model as the self-gravitating nonlinear sigma model with the potential of (self)interactions employed in cosmology. The chiral cosmological model has successive applications in descriptions of the inflationary epoch of the Universe evolution; the present accelerated expansion of the Universe also can be described by the chiral fields multiplet as the dark energy in wide sense. To be more illustrative we are often addressed to the two-component chiral cosmological model. Namely, the two-component chiral cosmological model describing the phantom field with interaction to a canonical scalar field is analyzed in details. New generalized model of quintom character is proposed and exact solutions are founded out. In the review we represented the perturbation theory for chiral cosmological model with the aim to describe the structure formation using the progress achieved in the inflation theory. It was shown that cosmological perturbations from chiral fields can...

  1. SNe Ia tests of quintessence tracker cosmology in an anisotropic background

    Science.gov (United States)

    Miranda, W.; Carneiro, S.; Pigozzo, C.

    2014-07-01

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ψ, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ΩM = 0.29 and Ωk= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.

  2. SNe Ia Tests of Quintessence Tracker Cosmology in an Anisotropic Background

    CERN Document Server

    Miranda, W; Pigozzo, C

    2014-01-01

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Godel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters $\\Omega_M = 0.29$ and $\\Omega_k= 0.01$ respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos.

  3. SNe Ia tests of quintessence tracker cosmology in an anisotropic background

    International Nuclear Information System (INIS)

    We investigate the observational effects of a quintessence model in an anisotropic spacetime. The anisotropic metric is a non-rotating particular case of a generalized Gödel's metric and is classified as Bianchi III. This metric is an exact solution of the Einstein-Klein-Gordon field equations with an anisotropic scalar field ψ, which is responsible for the anisotropy of the spacetime geometry. We test the model against observations of type Ia supernovae, analyzing the SDSS dataset calibrated with the MLCS2k2 fitter, and the results are compared to standard quintessence models with Ratra-Peebles potentials. We obtain a good agreement with observations, with best values for the matter and curvature density parameters ΩM = 0.29 and Ωk= 0.01 respectively. We conclude that present SNe Ia observations cannot, alone, distinguish a possible anisotropic axis in the cosmos

  4. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    CERN Document Server

    Singh, Parampreet

    2013-01-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaitre-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaitre-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  5. Looking for signs of Anisotropic Cosmological Expansion in the High-z Supernova data

    CERN Document Server

    Bochner, B

    2007-01-01

    Several problematical epochs in cosmology, including the recent period of structure formation (and acceleration), require us to understand cosmic evolution during times when the basis of FRW expansion, the cosmological principle, does not completely hold true. We consider that the breakdown of isotropy and homogeneity at such times may be an important key towards understanding cosmic evolution. To study this, we examine fluctuations in the high-z supernova data to search for signs of large-scale anisotropy in the Hubble expansion. Using a cosmological-model-independent statistical analysis, we find mild evidence of real anisotropy in various circumstances. We consider the significance of these results, and the importance of further searches for violations of the cosmological principle.

  6. Post-Newtonian cosmological models

    CERN Document Server

    Sanghai, Viraj A A

    2015-01-01

    We construct a framework to probe the effect of non-linear structure formation on the large-scale expansion of the universe. We take a bottom-up approach to cosmological modelling by splitting our universe into cells. The matter content within each cell is described by the post-Newtonian formalism. We assume that most of the cell is in the vicinity of weak gravitational fields, so that it can be described using a perturbed Minkowski metric. Our cells are patched together using the Israel junction conditions. We impose reflection symmetry across the boundary of these cells. This allows us to calculate the equation of motion for the boundary of the cell and, hence, the expansion rate of the universe. At Newtonian order, we recover the standard Friedmann-like equations. At post-Newtonian orders, we obtain a correction to the large-scale expansion of the universe. Our framework does not depend on the process of averaging in cosmology. As an example, we use this framework to investigate the cosmological evolution ...

  7. $\\Lambda$CDM-type cosmological model and observational constraints

    CERN Document Server

    Goswami, G K; Mishra, Mandwi

    2014-01-01

    In the present work, we have searched the existence of $\\Lambda$CDM-type cosmological model in anisotropic Heckmann-Schucking space-time. The matter source that is responsible for the present acceleration of the universe consist of cosmic fluid with $p = \\omega\\rho$, where $\\omega$ is the equation of state parameter. The Einstein's field equations have been solved explicitly under some specific choice of parameters that isotropizes the model under consideration. It has been found that the derived model is in good agreement with recent SN Ia observations. Some physical aspects of the model has been discussed in detail.

  8. Matrix model approach to cosmology

    Science.gov (United States)

    Chaney, A.; Lu, Lei; Stern, A.

    2016-03-01

    We perform a systematic search for rotationally invariant cosmological solutions to toy matrix models. These models correspond to the bosonic sector of Lorentzian Ishibashi, Kawai, Kitazawa and Tsuchiya (IKKT)-type matrix models in dimensions d less than ten, specifically d =3 and d =5 . After taking a continuum (or commutative) limit they yield d -1 dimensional Poisson manifolds. The manifolds have a Lorentzian induced metric which can be associated with closed, open, or static space-times. For d =3 , we obtain recursion relations from which it is possible to generate rotationally invariant matrix solutions which yield open universes in the continuum limit. Specific examples of matrix solutions have also been found which are associated with closed and static two-dimensional space-times in the continuum limit. The solutions provide for a resolution of cosmological singularities, at least within the context of the toy matrix models. The commutative limit reveals other desirable features, such as a solution describing a smooth transition from an initial inflation to a noninflationary era. Many of the d =3 solutions have analogues in higher dimensions. The case of d =5 , in particular, has the potential for yielding realistic four-dimensional cosmologies in the continuum limit. We find four-dimensional de Sitter d S4 or anti-de Sitter AdS4 solutions when a totally antisymmetric term is included in the matrix action. A nontrivial Poisson structure is attached to these manifolds which represents the lowest order effect of noncommutativity. For the case of AdS4 , we find one particular limit where the lowest order noncommutativity vanishes at the boundary, but not in the interior.

  9. Axially Symmetric Bianchi Type-I Bulk-Viscous Cosmological Models with Time-Dependent and

    Indian Academy of Sciences (India)

    Nawsad Ali

    2013-09-01

    The present study deals with spatially homogeneous and anisotropic axially symmetric Bianchi type-I cosmological model with time variable cosmological term in the presence of bulk viscous fluid. The Einstein’s field equations are solved explicitly by time varying deceleration parameter . Consequences of the four cases of phenomenological decay of have been discussed which are consistent with observations. Physical and kinematical parameters of the models are discussed.

  10. LRS Bianchi Type-I Dark Energy Cosmological Models in General Scalar Tensor Theory of Gravitation

    OpenAIRE

    D. Neelima; V. U. M. Rao

    2013-01-01

    Locally rotationally symmetric (LRS) Bianchi type-I dark energy cosmological model with variable equation of state (EoS) parameter in (Nordtvedt 1970) general scalar tensor theory of gravitation with the help of a special case proposed by (Schwinger 1970) is obtained. It is observed that these anisotropic and isotropic dark energy cosmological models always represent an accelerated universe and are consistent with the recent observations of type-Ia supernovae. Some important features of the m...

  11. Simple inhomogeneous cosmological (toy) models

    CERN Document Server

    I., Eddy G Chirinos; Zimdahl, Winfried

    2016-01-01

    Based on the Lema\\^itre-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump provides a better description of the observations than a local void. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the $\\Lambda$CDM model.

  12. Cosmology with decaying cosmological constant -- exact solutions and model testing

    CERN Document Server

    Szydlowski, Marek

    2015-01-01

    We study dynamics of $\\Lambda(t)$ cosmological models which are a natural generalization of the standard cosmological model (the $\\Lambda$CDM model). We consider a class of models: the ones with a prescribed form of $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$. This type of a $\\Lambda(t)$ parametrization is motivated by different cosmological approaches. To guarantee the covariance principle in general relativity we interpreted $\\Lambda(t)$ relation as $\\Lambda(\\phi(t))$, where $\\phi(t)$ is a scalar field with a self-interacting potential $V(\\phi)$. For the $\\Lambda(t)$ cosmology with a prescribed form of $\\Lambda(t)$ we have found the exact solution in the form of Bessel functions. We have also constrained the model parameters for this class of models using the astronomical data such as SNIa data, BAO, CMB, measurements of $H(z)$ and the Alcock-Paczy{\\'n}ski test. In this context we formulate a simple criterion of variability of $\\Lambda$ with respect to $t$ in terms of variability of the jerk or ...

  13. Cosmological models with running cosmological term and decaying dark matter

    CERN Document Server

    Szydlowski, Marek

    2015-01-01

    We are investigating dynamics of the generalized $\\Lambda$CDM model, which the $\\Lambda$ term is running with the cosmological time. We demonstrate that this model of $\\Lambda(t)$CDM cosmology can easily interpret in the interacting cosmology. Time, which is depended on $\\Lambda$ term, is emerging from the covariant theory of the scalar field $\\phi$ with the self-interacting potential $V(\\phi)$. On the example of the model $\\Lambda(t)=\\Lambda_{\\text{bare}}+\\frac{\\alpha^2}{t^2}$ we show the existence of a mechanism of the modification of the scaling law for energy density of dark matter: $\\rho_{\\text{dm}}\\propto a^{-3+\\delta(t)}$. We also present the idea of the testing $\\Lambda(t)$CDM model with dark energy and dark matter not as an isolated hypothesis but as integral part of the concordance cosmological model. At the $2\\sigma$ confidence level, we find $\\delta<0$, which is an evidence that the energy transfer from decaying dark matter is favored. This effect gives rise to lowering a mass of dark matter pa...

  14. Cosmological model with dynamical curvature

    CERN Document Server

    Stichel, Peter C

    2016-01-01

    We generalize the recently introduced relativistic Lagrangian darkon fluid model (EPJ C (2015) 75:9) by starting with a self-gravitating geodesic fluid whose energy-momentum tensor is dust-like with a nontrivial energy flow. The corresponding covariant propagation and constraint equations are considered in a shear-free nonrelativistic limit whose analytic solutions determine the 1st-order relativistic correction to the spatial curvature. This leads to a cosmological model where the accelerated expansion of the Universe is driven by a time-dependent spatial curvature without the need for introducing any kind of dark energy. We derive the differential equation to be satisfied by the area distance for this model.

  15. Adiabatic models of the cosmological radiative era

    CERN Document Server

    Sussman, R A; Sussman, Roberto A.; Ishak, Mustapha

    2001-01-01

    We consider a generalization of the Lemaitre-Tolman-Bondi (LTB) solutions by keeping the LTB metric but replacing its dust matter source by an imperfect fluid with anisotropic pressure $\\Pi_{ab} $. Assuming that total matter-energy density $\\rho$ is the sum of a rest mass term, $\\rhom$, plus a radiation $\\rhor=3p$ density where $p$ is the isotropic pressure, Einstein's equations are fully integrated without having to place any previous assumption on the form of $\\Pi_{ab} $. Three particular cases of interest are contained: the usual LTB dust solutions (the dust limit), a class of FLRW cosmologies (the homogeneous limit) and of the Vaydia solution (the vacuum limit). Initial conditions are provided in terms of suitable averages and contrast functions of the initial densities of $\\rhom, \\rhor$ and the 3-dimensional Ricci scalar along an arbitrary initial surface $t=t_i$. We consider the source of the models as an interactive radiation-matter mixture in local thermal equilibrium that must be consistent with caus...

  16. Evolution of initially contracting Bianchi class A models in the presence of an ultra-stiff anisotropic pressure fluid

    Science.gov (United States)

    Barrow, John D.; Ganguly, Chandrima

    2016-06-01

    We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropization on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialize to consider the closed Bianchi type IX universe, and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionless particles in an anisotropically expanding universe is therefore essential for a full analysis of the consequences of a cosmological bounce or singularity in cyclic universes.

  17. Quantization ambiguities and bounds on geometric scalars in anisotropic loop quantum cosmology

    Science.gov (United States)

    Singh, Parampreet; Wilson-Ewing, Edward

    2014-02-01

    We study quantization ambiguities in loop quantum cosmology that arise for space-times with non-zero spatial curvature and anisotropies. Motivated by lessons from different possible loop quantizations of the closed Friedmann-Lemaître-Robertson-Walker cosmology, we find that using open holonomies of the extrinsic curvature, which due to gauge-fixing can be treated as a connection, leads to the same quantum geometry effects that are found in spatially flat cosmologies. More specifically, in contrast to the quantization based on open holonomies of the Ashtekar-Barbero connection, the expansion and shear scalars in the effective theories of the Bianchi type II and Bianchi type IX models have upper bounds, and these are in exact agreement with the bounds found in the effective theories of the Friedmann-Lemaître-Robertson-Walker and Bianchi type I models in loop quantum cosmology. We also comment on some ambiguities present in the definition of inverse triad operators and their role.

  18. Simple inhomogeneous cosmological (toy) models

    Science.gov (United States)

    Chirinos Isidro, Eddy G.; Zuñiga Vargas, Cristofher; Zimdahl, Winfried

    2016-05-01

    Based on the Lemaître-Tolman-Bondi (LTB) metric we consider two flat inhomogeneous big-bang models. We aim at clarifying, as far as possible analytically, basic features of the dynamics of the simplest inhomogeneous models and to point out the potential usefulness of exact inhomogeneous solutions as generalizations of the homogeneous configurations of the cosmological standard model. We discuss explicitly partial successes but also potential pitfalls of these simplest models. Although primarily seen as toy models, the relevant free parameters are fixed by best-fit values using the Joint Light-curve Analysis (JLA)-sample data. On the basis of a likelihood analysis we find that a local hump with an extension of almost 2 Gpc provides a better description of the observations than a local void for which we obtain a best-fit scale of about 30 Mpc. Future redshift-drift measurements are discussed as a promising tool to discriminate between inhomogeneous configurations and the ΛCDM model.

  19. Will Quantum Cosmology Resurrect Chaotic Inflation Model?

    Science.gov (United States)

    Kim, Sang Pyo; Kim, Won

    2016-07-01

    The single field chaotic inflation model with a monomial power greater than one seems to be ruled out by the recent Planck and WMAP CMB data while Starobinsky model with a higher curvature term seems to be a viable model. Higher curvature terms being originated from quantum fluctuations, we revisit the quantum cosmology of the Wheeler-DeWitt equation for the chaotic inflation model. The semiclassical cosmology emerges from quantum cosmology with fluctuations of spacetimes and matter when the wave function is peaked around the semiclassical trajectory with quantum corrections a la the de Broglie-Bohm pilot theory.

  20. A discrete anisotropic model for Scheibe aggregates

    Directory of Open Access Journals (Sweden)

    O. Bang

    1991-05-01

    Full Text Available A discrete anisotropic nonlinear model for the dynamics of Scheibe aggregates is investigated. The collapse of the collective excitations found by Möbius and Kuhn is described as a shrinking ring wave, which is eventually absorbed by an acceptor molecule. An optimal acceptor loss is found.

  1. Cosmological Models and Renormalization Group Flow

    OpenAIRE

    Kristjansson, K. R.; Thorlacius, L.

    2002-01-01

    We study cosmological solutions of Einstein gravity with a positive cosmological constant in diverse dimensions. These include big-bang models that re-collapse, big-bang models that approach de Sitter acceleration at late times, and bounce models that are both past and future asymptotically de Sitter. The re-collapsing and the bounce geometries are all tall in the sense that entire spatial slices become visible to a comoving observer before the end of conformal time, while the accelerating bi...

  2. Cosmological parametrization of $\\gamma$ ray burst models

    CERN Document Server

    Linder, E V

    1996-01-01

    Using three parametrizations of the gamma ray burst count data comparison is made to cosmological source models. While simple models can fit and faint end slope constraints, the addition of a logarithmic count range variable describing the curvature of the counts shows that models with no evolution or evolution power law in redshift with index less than 10 fail to satisfy simultaneously all three descriptors of the burst data. The cosmological source density that would be required for a fit is illustrated.

  3. Friction forces in cosmological models

    CERN Document Server

    Bini, Donato; Gregoris, Daniele; Succi, Sauro

    2014-01-01

    We investigate the dynamics of test particles undergoing friction forces in a Friedmann-Robertson-Walker (FRW) spacetime. The interaction with the background fluid is modeled by introducing a Poynting-Robertson-like friction force in the equations of motion, leading to measurable (at least in principle) deviations of the particle trajectories from geodesic motion. The effect on the peculiar velocities of the particles is investigated for various equations of state of the background fluid and different standard cosmological models. The friction force is found to have major effects on particle motion in closed FRW universes, where it turns the time-asymptotic value (approaching the recollapse) of the peculiar particle velocity from ultra-relativistic (close to light speed) to a co-moving one, i.e., zero peculiar speed. On the other hand, for open or flat universes the effect of the friction is not so significant, because the time-asymptotic peculiar particle speed is largely non-relativistic also in the geodesi...

  4. Isotropic cosmological singularities other matter models

    CERN Document Server

    Tod, K P

    2003-01-01

    Isotropic cosmological singularities are singularities which can be removed by rescaling the metric. In some cases already studied (gr-qc/9903008, gr-qc/9903009, gr-qc/9903018) existence and uniqueness of cosmological models with data at the singularity has been established. These were cosmologies with, as source, either perfect fluids with linear equations of state or massless, collisionless particles. In this article we consider how to extend these results to a variety of other matter models. These are scalar fields, massive collisionless matter, the Yang-Mills plasma of Choquet-Bruhat, or matter satisfying the Einstein-Boltzmann equation.

  5. Cosmological Models and Renormalization Group Flow

    CERN Document Server

    Kristjansson, K R

    2002-01-01

    We study cosmological solutions of Einstein gravity with a positive cosmological constant and perfect fluid matter in diverse dimensions. These include big-bang models that re-collaspse, big-bang models that approach de Sitter acceleration at late times, and bounce models that are both past and future asymptotically de Sitter. The re-collapsing and the bounce geometries are all tall in the sense that entire spatial slices become visible to a comoving observer before the end of conformal time, while the accelerating big-bang geometries can be either short or tall. We consider the interpretation of these cosmological solutions as renormalization group flows in a dual field theory and give a geometric interpretation of the associated c-function as the area of the apparent cosmological horizon in Planck units. We find that the covariant entropy bound is violated in certain of our solutions and thus holography may be used to restrict the model parameters.

  6. Homogeneous cosmological models in Yang's gravitation theory

    Science.gov (United States)

    Fennelly, A. J.; Pavelle, R.

    1979-01-01

    We present a dynamic, spatially homogeneous solution of Yang's pure space gravitational field equations which is non-Einsteinian. The predictions of this cosmological model seem to be at variance with observations.

  7. Standard Model Background of the Cosmological Collider

    CERN Document Server

    Chen, Xingang; Xianyu, Zhong-Zhi

    2016-01-01

    The inflationary universe can be viewed as a "Cosmological Collider" with energy of Hubble scale, producing very massive particles and recording their characteristic signals in primordial non-Gaussianities. To utilize this collider to explore any new physics at very high scales, it is a prerequisite to understand the background signals from the particle physics Standard Model. In this paper we describe the Standard Model background of the Cosmological Collider.

  8. Isotropic and anisotropic pointing models

    CERN Document Server

    Pál, András; Mészáros, László; Mező, György

    2015-01-01

    This paper describes an alternative approach for generating pointing models for telescopes equipped with serial kinematics, esp. equatorial or alt-az mounts. Our model construction does not exploit any assumption for the underlying physical constraints of the mount, however, one can assign various effects to the respective components of the equations. In order to recover the pointing model parameters, classical linear least squares fitting procedures can be applied. This parameterization also lacks any kind of parametric singularity. We demonstrate the efficiency of this type of model on real measurements with meter-class telescopes where the results provide a root mean square accuracy of 1.5-2 arcseconds.

  9. Tests of cosmological models constrained by inflation

    International Nuclear Information System (INIS)

    The inflationary scenario requires that the universe have negligible curvature along constant-density surfaces. In the Friedmann-Lemaitre cosmology that leaves us with two free parameters, Hubble's constant H0 and the density parameter Ω0 (or, equivalently, the cosmological constant Λ). I discuss here tests of this set of models from local and high-redshift observations. The data agree reasonably well with Ω0approx.0.2

  10. Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor (CAFFE)

    CERN Document Server

    Placidi, Luca; Seddik, Hakime; Faria, Sergio H

    2009-01-01

    A complete theoretical presentation of the CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is given. The CAFFE model is an application of the theory of mixtures with continuous diversity for the case of large ice masses in which the induced anisotropy can not be neglected. The anisotropic response of the material is considered via a simple anisotropic generalization of Glen's flow law based on a scalar anisotropic enhancement factor. Such an enhancement factor depends upon the orientation mass density, that corresponds to the distribution of lattice orientations or simply to the orientation distribution function. The evolution of anisotropy is assumed to be modeled by the evolution of the orientation mass density, that is governed by the balance of mass of the present mixture with continuous diversity and explicitly depends upon four distinct effects interpreted, respectively, with grain rotation, local rigid body rotation, grain boundary migration (...

  11. Generalized model for anisotropic compact stars

    CERN Document Server

    Maurya, S K; Ray, Saibal; Deb, Debabrata

    2016-01-01

    In the present investigation an exact generalized model for anisotropic compact stars of embedding class one is sought for under general relativistic background. The generic solutions are verified by exploring different physical aspects, viz. energy conditions, mass-radius relation, stability of the models, in connection to their validity. It is observed that the model present here for compact stars is compatible with all these physical tests and thus physically acceptable as far as the compact star candidates $RXJ~1856-37$, $SAX~J~1808.4-3658~(SS1)$ and $SAX~J~1808.4-3658~(SS2)$ are concerned.

  12. Some Exact Solutions of Magnetized viscous model in String Cosmology

    CERN Document Server

    Singh, C P

    2012-01-01

    In this paper we study anisotropic Bianchi-V universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state for a cloud of strings and a relationship between bulk viscous coefficient and expansion scalar. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of the evolution of the universe. This paper investigates the different string models like geometrical(Nambu string), Takabayashi (p-string) and Reddy string models by taking certain physical conditions. The introduction of magnetic field or bulk viscosity or both results in rapid change in scale factors as well as in the classical potential. The presence of viscosity prevents the universe to be empty in its future evolution. The physical and geometrical aspects of each string model are discussed in detail.

  13. Cosmological perturbations in mimetic matter model

    CERN Document Server

    Matsumoto, Jiro; Sushkov, Sergey V

    2015-01-01

    We investigate the cosmological evolution of mimetic matter model with arbitrary scalar potential. The cosmological reconstruction is explicitly done for different choices of potential. The cases that mimetic matter model shows the evolution as Cold Dark Matter(CDM), wCDM model, dark matter and dark energy with dynamical $Om(z)$ or phantom dark energy with phantom-non-phantom crossing are presented in detail. The cosmological perturbations for such evolution are studied in mimetic matter model. For instance, the evolution behavior of the matter density contrast which is different from usual one, i.e. $\\ddot \\delta + 2 H \\dot \\delta - \\kappa ^2 \\rho \\delta /2 = 0$ is investigated. The possibility of peculiar evolution of $\\delta$ in the model under consideration is shown. Special attention is paid to the behavior of matter density contrast near to future singularity where decay of perturbations may occur much earlier the singularity.

  14. Isotropic singularity in inhomogeneous brane cosmological models

    International Nuclear Information System (INIS)

    We discuss the asymptotic dynamical evolution of spatially inhomogeneous brane-world cosmological models close to the initial singularity. By introducing suitable scale-invariant dependent variables and a suitable gauge, we write the evolution equations of the spatially inhomogeneous G2 brane cosmological models with one spatial degree of freedom as a system of autonomous first-order partial differential equations. We study the system numerically, and we find that there always exists an initial singularity, which is characterized by the fact that spatial derivatives are dynamically negligible. More importantly, from the numerical analysis we conclude that there is an initial isotropic singularity in all these spatially inhomogeneous brane cosmologies for a range of parameter values which include the physically important cases of radiation and a scalar field source. The numerical results are supported by a qualitative dynamical analysis and a calculation of the past asymptotic decay rates. Although the analysis is local in nature, the numerics indicate that the singularity is isotropic for all relevant initial conditions. Therefore this analysis, and a preliminary investigation of general inhomogeneous (G0) models, indicates that it is plausible that the initial singularity is isotropic in spatially inhomogeneous brane-world cosmological models and consequently that brane cosmology naturally gives rise to a set of initial data that provide the conditions for inflation to subsequently take place

  15. Bianchi type-VIh string cloud cosmological models with bulk viscosity

    Science.gov (United States)

    Tripathy, Sunil K.; Behera, Dipanjali

    2010-11-01

    String cloud cosmological models are studied using spatially homogeneous and anisotropic Bianchi type VIh metric in the frame work of general relativity. The field equations are solved for massive string cloud in presence of bulk viscosity. A general linear equation of state of the cosmic string tension density with the proper energy density of the universe is considered. The physical and kinematical properties of the models have been discussed in detail and the limits of the anisotropic parameter responsible for different phases of the universe are explored.

  16. Evolution of initially contracting Bianchi Class A models in the presence of an ultra-stiff anisotropic pressure fluid

    CERN Document Server

    Barrow, John D

    2015-01-01

    We study the behaviour of Bianchi class A universes containing an ultra-stiff isotropic ghost field and a fluid with anisotropic pressures which is also ultra-stiff on the average. This allows us to investigate whether cyclic universe scenarios, like the ekpyrotic model, do indeed lead to isotropisation on approach to a singularity (or bounce) in the presence of dominant ultra-stiff pressure anisotropies. We specialise to consider the closed Bianchi type IX universe and show that when the anisotropic pressures are stiffer on average than any isotropic ultra-stiff fluid then, if they dominate on approach to the singularity, it will be anisotropic. We include an isotropic ultra-stiff ghost fluid with negative energy density in order to create a cosmological bounce at finite volume in the absence of the anisotropic fluid. When the dominant anisotropic fluid is present it leads to an anisotropic cosmological singularity rather than an isotropic bounce. The inclusion of anisotropic stresses generated by collisionl...

  17. `Standard' Cosmological model & beyond with CMB

    CERN Document Server

    Souradeep, Tarun

    2011-01-01

    Observational Cosmology has indeed made very rapid progress in the past decade. The ability to quantify the universe has largely improved due to observational constraints coming from structure formation Measurements of CMB anisotropy and, more recently, polarization have played a very important role. Besides precise determination of various parameters of the `standard' cosmological model, observations have also established some important basic tenets that underlie models of cosmology and structure formation in the universe -- `acausally' correlated initial perturbations in a flat, statistically isotropic universe, adiabatic nature of primordial density perturbations. These are consistent with the expectation of the paradigm of inflation and the generic prediction of the simplest realization of inflationary scenario in the early universe. Further, gravitational instability is the established mechanism for structure formation from these initial perturbations. The signature of primordial perturbations observed a...

  18. Hamiltonian Dynamics of Cosmological Quintessence Models

    CERN Document Server

    Ivanov, Rossen I

    2016-01-01

    The time-evolution dynamics of two nonlinear cosmological real gas models has been reexamined in detail with methods from the theory of Hamiltonian dynamical systems. These examples are FRWL cosmologies, one based on a gas, satisfying the van der Waals equation and another one based on the virial expansion gas equation. The cosmological variables used are the expansion rate, given by the Hubble parameter, and the energy density. The analysis is aided by the existence of global first integral as well as several special (second) integrals in each case. In addition, the global first integral can serve as a Hamiltonian for a canonical Hamiltonian formulation of the evolution equations. The conserved quantities lead to the existence of stable periodic solutions (closed orbits) which are models of a cyclic Universe. The second integrals allow for explicit solutions as functions of time on some special trajectories and thus for a deeper understanding of the underlying physics. In particular, it is shown that any pos...

  19. LRS Bianchi type-I string cosmological models in f (R, T) gravity

    Science.gov (United States)

    Kanakavalli, T.; Ananda Rao, G.

    2016-07-01

    Spatially homogeneous and anisotropic LRS Bianchi type-I space time is investigated in the presence of cosmic string source in a modified theory of gravitation formulated by Harko et al. (Phys. Rev. D 84:024020, 2011). We have solved the field equations using the equations of state for strings and presented cosmological models which describe geometric string, Takabayasi string and Reddy string in this particular theory. Some physical and kinematical parameters of the models are computed and discussed their physical significance.

  20. Cosmological model without big-bang

    International Nuclear Information System (INIS)

    The modified field equations are transferred onto an isotropic homogeneous universe. In contrast to the Robertson-Walker model the cosmological equations are deducted by means of metric components. Assuming the total gravitational charge being constant in time positive mean densities of matter are only compatible with a spherical space. The solutions do not have any cosmological singularity in finite times, and they demonstrate that the universal red shift may not be explained by the Doppler effect but as a gravitational red shift. (orig.)

  1. Anisotropic Cloth Modeling for Material Fabric

    Science.gov (United States)

    Zhang, Mingmin; Pan, Zhigengx; Mi, Qingfeng

    Physically based cloth simulation has been challenging the graphics community for more than three decades. With the developing of virtual reality and clothing CAD, it has become the key technique of virtual garment and try-on system. Although it has received considerable attention in computer graphics, due to its flexible property and realistic feeling that the textile engineers pay much attention to, there is not a successful methodology to simulate cloth both in visual realism and physical accuracy. We present a new anisotropic textile modeling method based on physical mass-spring system, which models the warps and wefts separately according to the different material fabrics. The simulation process includes two main steps: firstly the rigid object simulation and secondly the flexible mass simulation near to be equilibrium. A multiresolution modeling is applied to enhance the tradeoff fruit of the realistic presentation and computation cost. Finally, some examples and the analysis results show the efficiency of the proposed method.

  2. A model for anisotropic strange stars

    CERN Document Server

    Deb, Debabrata; Ray, Saibal; Rahaman, Farook; Guha, B K

    2016-01-01

    We attempt to find a singularity free interior solution for a neutral and static stellar model. We consider that (i) the star is made up of anisotropic fluid and (ii) the MIT bag model can be used. The total system is defined by assuming the density profile given by Mak and Harko \\cite{Mak2002}, which satisfies all the physical conditions of a stellar system and is stable by nature. We find that those stellar systems which obey such a non-linear density function must have maximum anisotropy at the surface. We also perform several tests for physical features of the proposed model and show that these are mostly acceptable within certain range. As a special mention, from our investigation we find that the maximum mass and radius of the quark star are $11.811 km$ and $3.53 {M}_{\\odot}$ respectively.

  3. An Anisotropic Hardening Model for Springback Prediction

    Science.gov (United States)

    Zeng, Danielle; Xia, Z. Cedric

    2005-08-01

    As more Advanced High-Strength Steels (AHSS) are heavily used for automotive body structures and closures panels, accurate springback prediction for these components becomes more challenging because of their rapid hardening characteristics and ability to sustain even higher stresses. In this paper, a modified Mroz hardening model is proposed to capture realistic Bauschinger effect at reverse loading, such as when material passes through die radii or drawbead during sheet metal forming process. This model accounts for material anisotropic yield surface and nonlinear isotropic/kinematic hardening behavior. Material tension/compression test data are used to accurately represent Bauschinger effect. The effectiveness of the model is demonstrated by comparison of numerical and experimental springback results for a DP600 straight U-channel test.

  4. A model with cosmological Bell inequalities

    CERN Document Server

    Maldacena, Juan

    2015-01-01

    We discuss the possibility of devising cosmological observables which violate Bell's inequalities. Such observables could be used to argue that cosmic scale features were produced by quantum mechanical effects in the very early universe. As a proof of principle, we propose a somewhat elaborate inflationary model where a Bell inequality violating observable can be constructed.

  5. Realistic coasting cosmology from the Milne model

    CERN Document Server

    John, Moncy V

    2016-01-01

    In the context of the recent synchronicity problem in $\\Lambda$CDM cosmology, coasting models such as the classic Milne model and the $R_h=ct$ model have attracted much attention. Also, a very recent analysis of supernovae Ia data is reported to favour models with constant expansion rates. We point out that the nonempty $R_h=ct$ model has some known antecedents in the literature. Some of these are published even before the discovery of the accelerated expansion and were shown to have none of the cosmological problems and also that $H_0t_0=1$ and $\\Omega_m/\\Omega_{dark \\; energy}$ = some constant of the order of unity. In this paper, we also derive such a model by a complex extension of scale factor in the Milne model.

  6. Effective orthorhombic anisotropic models for wavefield extrapolation

    KAUST Repository

    Ibanez-Jacome, W.

    2014-07-18

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, we generate effective isotropic inhomogeneous models that are capable of reproducing the firstarrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, we develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic ones, is represented by a sixth order polynomial equation with the fastest solution corresponding to outgoing P waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, and using them to explicitly evaluate the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. We extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the more expensive anisotropic extrapolator.

  7. Galaxy Bias in Quintessence Cosmological Models

    CERN Document Server

    Basilakos, S

    2003-01-01

    We derive the evolution of the linear bias factor, $b(z)$, in cosmological models driven by an exotic fluid with an equation of state: $p_{x}=w\\rho_{x}$, where $-1\\le w<0$ (quintessence). Our aim is to put constrains on different cosmological and biasing models by combining the recent observational clustering results of optical ({\\em 2dF}) galaxies (Hawkings et al.) with those predicted by the models. We find that our bias model when fitted to the {\\em 2dF} clustering results predicts different bias evolution for different values of $w$. The models that provide the weak biasing ($b_{\\circ} \\sim 1.1$) of optical galaxies found in many recent observational studies are flat, $\\Omega_{\\rm m}=0.3$ with $w\\le -0.9$. These models however, predict a weak redshift evolution of $b(z)$, not corroborated by N-body simulations.

  8. Bianchi Type Ⅲ Bulk Viscous Barotropic Fluid Cosmological Models with Variable G and A

    Institute of Scientific and Technical Information of China (English)

    Raj Ba-li; Seema Tinker

    2009-01-01

    Bianchi type-Ⅲ bulk viscous barotropic fluid cosmological model with variables G and A is investigated. To obtainthe realistic model, we assume the conditions between the metric potentials A, B, C as A/A = B/B = m1/tnand C/C = m2/tn, P = p - 3ηH, η= ηops, p =γp, 0 γ 1, where p is isotropic pressure, η the coefficient of bulk viscosity, ηo and S the constants, H the Hubble constant, m1= 2m2 where m1 0, m2 0. The solutions obtained lead to inflationary phase and the results obtained match with the observations. The case n = 1 for S = 1 is also discussed, relating the results with the observations.PACS: 98. 80. Hω, 04.50. +h, 98.80. CqSpatially homogeneous and anisotropic cosmologi-cal models play a significant role in description of the large scale behaviour of the universe. The choice of anisotropic model in the Einstein system of field equa-tions permits us to obtain cosmological model more general than the Robertson-Walker model. Tikekar and Patel[1] have investigated some exact solutions of massive string for Bianchi type-Ⅲ spacetime in the presence and absence of magnetic field. They have also discussed the behaviour of the model in the ab-sence of magnetic field. Bali and Dave[2] investigated the Bianchi type-Ⅲ string cosmological model with bulk viscosity. Recently Bali and Pradhan[3] investi-gated the Bianchi type-Ⅲ string cosmological models with time-dependent bulk viscosity.

  9. Relativistic modelling of stable anisotropic super-dense star

    CERN Document Server

    Maurya, S K; Jasim, M K

    2015-01-01

    In the present article we have obtained new set of exact solutions of Einstein field equations for anisotropic fluid spheres by using the Herrera et al.[1] algorithm. The anisotropic fluid spheres so obtained join continuously to Schwarzschild exterior solution across the pressure free boundary.It is observed that most of the new anisotropic solutions are well behaved and utilized to construct the super-dense star models such as neutron star and pulsars.

  10. Cosmological Models with Time Dependent G and A Coupling Scalars

    Institute of Scientific and Technical Information of China (English)

    N.Ibotombi Singh; S.Kiranmla Chanu; S.Surendra Singh

    2009-01-01

    A cosmological model in which the universe has its critical density and gravitational constants generalized as coupling scalars in Einstein's theory is considered.A general method of solving the field equations is given.An exact solution for matter distribution in cosmological models satisfying G = Go(R/Ro)n is presented.Corresponding physical interpretations of the cosmological solutions are also discussed.

  11. Homogeneous cosmological models and new inflation

    Science.gov (United States)

    Turner, Michael S.; Widrow, Lawrence M.

    1986-01-01

    The promise of the inflationary-universe scenario is to free the present state of the universe from extreme dependence upon initial data. Paradoxically, inflation is usually analyzed in the context of the homogeneous and isotropic Robertson-Walker cosmological models. It is shown that all but a small subset of the homogeneous models undergo inflation. Any initial anisotropy is so strongly damped that if sufficient inflation occurs to solve the flatness and horizon problems, the universe today would still be very isotropic.

  12. Cosmological models in the generalized Einstein action

    International Nuclear Information System (INIS)

    We have studied the evolution of the Universe in the generalized Einstein action of the form R + β R2, where R is the scalar curvature and β = const. We have found exact cosmological solutions that predict the present cosmic acceleration. These models predict an inflationary de-Sitter era occurring in the early Universe. The cosmological constant (Λ) is found to decay with the Hubble constant (H) as, Λ ∝ H4. In this scenario the cosmological constant varies quadratically with the energy density (ρ), i.e., Λ ∝ ρ2. Such a variation is found to describe a two-component cosmic fluid in the Universe. One of the components accelerated the Universe in the early era, and the other in the present era. The scale factor of the Universe varies as a ∼ tn = 1/2 in the radiation era. The cosmological constant vanishes when n = 4/3 and n =1/2. We have found that the inclusion of the term R2 mimics a cosmic matter that could substitute the ordinary matter. (author)

  13. Cosmological perturbations in a mimetic matter model

    Science.gov (United States)

    Matsumoto, Jiro; Odintsov, Sergei D.; Sushkov, Sergey V.

    2015-03-01

    We investigate the cosmological evolution of a mimetic matter model with arbitrary scalar potential. The cosmological reconstruction—which is the method for constructing a model for an arbitrary evolution of the scale factor—is explicitly performed for different choices of potential. The cases where the mimetic matter model shows the evolution as cold dark matter (CDM), the w CDM model, dark matter and dark energy with a dynamical O m (z ) [where O m (z )≡[(H (z )/H0)2-1 ]/[(1 +z )3-1 ] ], and phantom dark energy with a phantom-nonphantom crossing are presented in detail. The cosmological perturbations for such evolutions are studied in the mimetic matter model. For instance, the evolution behavior of the matter density contrast (which is different than the usual one, i.e., δ ¨+2 H δ ˙-κ2ρ δ /2 =0 ) is investigated. The possibility of a peculiar evolution of δ in the model under consideration is shown. Special attention is paid to the behavior of the matter density contrast near the future singularity, where the decay of perturbations may occur much earlier than the singularity.

  14. Quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model

    Science.gov (United States)

    Meitei, Irom Ablu; Singh, T. Ibungochouba; Singh, K. Yugindro

    2014-08-01

    Using the Hamilton-Jacobi method a study of quantum nonthermal radiation of nonstationary rotating de Sitter cosmological model is carried out. It is shown that there exist seas of positive and negative energy states in the vicinity of the cosmological event horizon and there also exists a forbidden energy gap between the two seas. The forbidden energy gap vanishes on the surface of the cosmological event horizon so that the positive and negative energy levels overlap. The width of the forbidden energy gap and the energy of the particle at the cosmological event horizon are found to depend on the cosmological constant, the rotation parameter, positions of the particle and the cosmological event horizon, angular momentum of the particle, evaporation rate and shape of the cosmological event horizon. The tunneling probability of the emitted particles constituting Hawking radiation is also deduced for stationary nonrotating de Sitter cosmological model and the standard Hawking temperature is recovered.

  15. $C$-field cosmological models: revisited

    CERN Document Server

    Yadav, A K; Ray, Saibal; Rahaman, F; Sardar, I H

    2015-01-01

    We investigate plane symmetric space-time filled with perfect fluid in the $C$-field cosmology of Hoyle and Narlikar. A new class of exact solutions have been obtained by considering the creation field $C$ as a function of time only. To get the deterministic solution, it has been assumed that the rate of creation of matter-energy density is proportional to the strength of the existing $C$-field energy density. Several physical aspects and geometrical properties of the models are discussed in detail, especially it is shown that some of our solutions of $C$-field cosmology are free from singularity in contrast to the Big Bang cosmology. A comparative study has been carried out between two models, one singular and the other nonsingular, by contrasting the behaviour of the physical parameters and noted that the model in a unique way represents both the features of the accelerating as well as decelerating Universe depending on the parameters and thus seems provides glimpses of the oscillating or cyclic model of th...

  16. Starobinsky cosmological model in Palatini formalism

    CERN Document Server

    Stachowski, Aleksander; Borowiec, Andrzej

    2016-01-01

    We classify singularities in FRW cosmologies, which dynamics can be reduced to the dynamical system of the Newtonian type. This classification is performed in terms of geometry of a potential function if it has poles. At the sewn singularity, which is of a type of the finite scale factor, the singularity in the past meets the singularity in the future. We show, that such singularities appear in the Starobinsky model in $f(\\hat{R})=\\hat{R}+\\gamma \\hat{R}^2$ in the Palatini formalism, when dynamics is determined by the corresponding piece-wise smooth dynamical system. As an effect we obtain a degenerated singularity, which can be interpreted as a place, when history of the Universe ends and originates simultaneously. Detailed analytical calculations are given for the cosmological model with matter and the cosmological constant in the Starobinsky model. In this case we obtain an exact formula for values of redshift at the singularity points. The dynamics of model is also studied using dynamical system methods wh...

  17. The simplest possible bouncing quantum cosmological model

    CERN Document Server

    Peter, Patrick

    2016-01-01

    We present and expand the simplest possible quantum cosmological model already discussed in a previous work: the trajectory formulation of quantum mechanics applied to cosmology in the FLRW minisuperspace without spatial curvature. The initial conditions that were assumed there were such that the wave function would not change its functional form but instead provide a dynamics to its parameters. Here, we consider a more general situation, in practice consisting of modified Gaussian wave functions, aiming at obtaining a bounce from a contracting phase. Whereas previous works consistently obtain very symmetric bounces, we find that it is possible to produce highly non symmetric solutions, and even cases for which multiple bounces naturally occur. We also introduce a means of treating the shear in this category of models by quantizing in the Bianchi I minisuperpace.

  18. Past Eras In Cyclic Cosmological Models

    CERN Document Server

    Frampton, Paul H

    2009-01-01

    In infinitely cyclic cosmology past eras are discussed using set theory and transfinite numbers. One consistent scenario, already in the literature, is where there is always a countably infinite number, $\\aleph_0$, of universes and no big bang. I describe here an alternative where the present number of universes is $\\aleph_0$ and in the infinite past there was only a finite number of universes. In this alternative model it is also possible that there was no big bang.

  19. On the geometry of cosmological model building

    OpenAIRE

    Scholz, Erhard

    2005-01-01

    This article analyzes the present anomalies of cosmology from the point of view of integrable Weyl geometry. It uses P.A.M. Dirac's proposal for a weak extension of general relativity, with some small adaptations. Simple models with interesting geometrical and physical properties, not belonging to the Friedmann-Lema\\^{\\i}tre class, are studied in this frame. Those with positive spatial curvature (Einstein-Weyl universes) go well together with observed mass density $\\Omega_m$, CMB, supernovae ...

  20. Conceptual Problems of the Standard Cosmological Model

    OpenAIRE

    Baryshev, Yurij

    2005-01-01

    The physics of the expansion of the universe is still a poorly studied subject of the standard cosmological model. This because the concept of expanding space can not be tested in the laboratory and because ``expansion'' means continuous creation of space, something that leads to several paradoxes. We re-consider and expand here the discussion of conceptual problems, already noted in the literature, linked to the expansion of space. In particular we discuss the problem of the violation of ene...

  1. Inextendibility of expanding cosmological models with symmetry

    Energy Technology Data Exchange (ETDEWEB)

    Dafermos, Mihalis [University of Cambridge, Department of Pure Mathematics and Mathematical Statistics, Wilberforce Road, Cambridge CB3 0WB (United Kingdom); Rendall, Alan D [Max Planck Institute for Gravitational Physics, Albert Einstein Institute, Am Muehlenberg 1, D-14476 Golm (Germany)

    2005-12-07

    A new criterion for inextendibility of expanding cosmological models with symmetry is presented. It is applied to derive a number of new results and to simplify the proofs of existing ones. In particular, it shows that the solutions of the Einstein-Vlasov system with T{sup 2} symmetry, including the vacuum solutions, are inextendible in the future. The technique introduced adds a qualitatively new element to the available tool-kit for studying strong cosmic censorship. (letter to the editor)

  2. The best-fit universe. [cosmological models

    Science.gov (United States)

    Turner, Michael S.

    1991-01-01

    Inflation provides very strong motivation for a flat Universe, Harrison-Zel'dovich (constant-curvature) perturbations, and cold dark matter. However, there are a number of cosmological observations that conflict with the predictions of the simplest such model: one with zero cosmological constant. They include the age of the Universe, dynamical determinations of Omega, galaxy-number counts, and the apparent abundance of large-scale structure in the Universe. While the discrepancies are not yet serious enough to rule out the simplest and most well motivated model, the current data point to a best-fit model with the following parameters: Omega(sub B) approximately equal to 0.03, Omega(sub CDM) approximately equal to 0.17, Omega(sub Lambda) approximately equal to 0.8, and H(sub 0) approximately equal to 70 km/(sec x Mpc) which improves significantly the concordance with observations. While there is no good reason to expect such a value for the cosmological constant, there is no physical principle that would rule out such.

  3. Critical exponents of the anisotropic Bak-Sneppen model

    OpenAIRE

    Maslov, Sergei; Rios, Paolo De Los; Marsili, Matteo; Zhang, Yi-Cheng

    1998-01-01

    We analyze the behavior of spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial relation between critical exponents tau and mu=d/D, recently derived for the isotropic Bak-Sneppen model, holds for its anisotropic version as well. For one-dimensional anisotropic Bak-Sneppen model we derive a novel exact equation for the distribution of avalanche spatial sizes, and extract the value gamma=2 for one of the critical exponents of the model. Other critical exponents are then det...

  4. Magnetized Anisotropic Dark Energy Models in Barber’s Second Self-Creation Theory

    Directory of Open Access Journals (Sweden)

    D. D. Pawar

    2014-01-01

    Full Text Available The present paper deals with Bianchi type IX cosmological model with magnetized anisotropic dark energy by using Barber’s self-creation theory. The energy momentum tensor consists of anisotropic fluid with EoS parameter ω and a uniform magnetic field of energy density ρB. In order to obtain the exact solution we have assumed that dark energy components and the components of magnetic field interact minimally and obey the law of conservation of energy momentum tensors. We have also used the special law of variation for the mean generalized Hubble parameter and power law relation between scalar field and scale factor. Some physical and kinematical properties of the models have been discussed.

  5. Exhaustive investigation of the duration of inflation in effective anisotropic loop quantum cosmology

    CERN Document Server

    Linsefors, Linda

    2014-01-01

    This article addresses the issue of estimating the duration in inflation in bouncing cosmology when anisotropies, inevitably playing and important role, are taken into account. It is shown that in Bianchi-I loop quantum cosmology, the higher the shear, the shorter the period of inflation. For a wide range of parameters, the probability distribution function of the duration of inflation is however peaked at values compatible with data, but not much higher. This makes the whole bounce/inflationary scenario consistent and phenomenologically appealing as all the information from the bounce might then not have been fully washed out.

  6. Hybrid models in loop quantum cosmology

    Science.gov (United States)

    Elizaga Navascués, Beatriz; Martín-Benito, Mercedes; Mena Marugán, Guillermo A.

    2016-06-01

    In the framework of Loop Quantum Cosmology (LQC), inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first proposed for the simplest cosmological midisuperspaces: the Gowdy models, and it has been later applied to the case of cosmological perturbations. This paper reviews the construction and main applications of hybrid LQC.

  7. Cosmology

    International Nuclear Information System (INIS)

    An extensive first part on a wealth of observational results relevant to cosmology lays the foundation for the second and central part of the book; the chapters on general relativity, the various cosmological theories, and the early universe. The authors present in a complete and almost non-mathematical way the ideas and theoretical concepts of modern cosmology including the exciting impact of high-energy particle physics, e.g. in the concept of the ''inflationary universe''. The final part addresses the deeper implications of cosmology, the arrow of time, the universality of physical laws, inflation and causality, and the anthropic principle

  8. Cosmology

    CERN Document Server

    Rubakov, V A

    2014-01-01

    In these lectures we first concentrate on the cosmological problems which, hopefully, have to do with the new physics to be probed at the LHC: the nature and origin of dark matter and generation of matter-antimatter asymmetry. We give several examples showing the LHC cosmological potential. These are WIMPs as cold dark matter, gravitinos as warm dark matter, and electroweak baryogenesis as a mechanism for generating matter-antimatter asymmetry. In the remaining part of the lectures we discuss the cosmological perturbations as a tool for studying the epoch preceeding the conventional hot stage of the cosmological evolution.

  9. Scrutinizing Exotic Cosmological Models Using ESSENCE Supernova Data Combined With Other Cosmological Probes

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Tamara M.; Mortsell, E.; Sollerman, J.; Becker, A.C.; Blondin, S.; Challis, P.; Clocchiatti, A.; Filippenko, A.V.; Foley, R.J.; Garnavich, P.M.; Jha, S.; Krisciunas, K.; Kirshner, R.P.; Leibundgut, B.; Li, W.; Matheson, T.; Miknaitis, G.; Pignata, G.; Rest, A.; Riess, A.G.; Schmidt, B.P.; /Bohr Inst. /Stockholm U. /Washington U.,

    2007-01-25

    The first cosmological results from the ESSENCE supernova survey (Wood-Vasey et al. 2007) are extended to a wider range of cosmological models including dynamical dark energy and non-standard cosmological models. We fold in a greater number of external data sets such as the recent Higher-z release of high-redshift supernovae (Riess et al. 2007) as well as several complementary cosmological probes. Model comparison statistics such as the Bayesian and Akaike information criteria are applied to gauge the worth of models. These statistics favor models that give a good fit with fewer parameters. Based on this analysis, the preferred cosmological model is the flat cosmological constant model, where the expansion history of the universe can be adequately described with only one free parameter describing the energy content of the universe. Amongst the more exotic models that provide good fits to the data, we note a preference for models whose best-fit parameters reduce them to the cosmological constant model.

  10. On Robertson-Walker universe model with variable cosmological term and gravitational constant in cosmological relativity theory

    OpenAIRE

    SINGH, Kangujam Priyokumar

    2010-01-01

    This paper presents cosmological models in which the gravitational and cosmological constants G and L are time-dependent. We find a variety of solutions for the variation of cosmological parameters. It is also found that, in the case of matter dominated Robertson-Walker Universe, if the cosmological constant L \

  11. Cosmological models in general relativity

    Indian Academy of Sciences (India)

    B B Paul

    2003-12-01

    LRS Bianchi type-I space-time filled with perfect fluid is considered here with deceleration parameter as variable. The metric potentials and are functions of as well as . Assuming '/=(), where prime denotes differentiation with respect to , it was found that =('/) and =(), where =() and is the scale factor which is a function of only. The value of Hubble’s constant 0 was found to be less than half for non-flat model and is equal to 1.3 for a flat model.

  12. Modelling anisotropic damage and permeability of mortar under dynamic loads

    OpenAIRE

    Chen, W.; MAUREL, O.; REESS, T.; MATALLAH, M.; FERRON, A.; C. La Borderie; G. Pijaudier-Cabot

    2011-01-01

    This paper deals with the development of a model for concrete subjected to dynamic loads. Shock waves are generated by Pulsed Arc Electro-hydraulic Discharges (PAED) in water and applied to mortar samples. A diphasic model (liquid water and vapour) is implemented in order to describe the electrical discharge and the propagation of shock waves in water. An anisotropic damage model is devised, which takes account of the strain rate effect and the crack closure effect. Coupling between anisotrop...

  13. Beyond the Cosmological Standard Model

    CERN Document Server

    Joyce, Austin; Khoury, Justin; Trodden, Mark

    2014-01-01

    After a decade and a half of research motivated by the accelerating universe, theory and experiment have a reached a certain level of maturity. The development of theoretical models beyond \\Lambda, or smooth dark energy, often called modified gravity, has led to broader insights into a path forward, and a host of observational and experimental tests have been developed. In this review we present the current state of the field and describe a framework for anticipating developments in the next decade. We identify the guiding principles for rigorous and consistent modifications of the standard model, and discuss the prospects for empirical tests. We begin by reviewing attempts to consistently modify Einstein gravity in the infrared, focusing on the notion that additional degrees of freedom introduced by the modification must screen themselves from local tests of gravity. We categorize screening mechanisms into three broad classes: mechanisms which become active in regions of high Newtonian potential, those in wh...

  14. Particle production in string cosmology models

    CERN Document Server

    Brustein, Ram; Brustein, Ram; Hadad, Merav

    1998-01-01

    We compute spectra of particles produced during a dilaton-driven kinetic inflation phase within string cosmology models. The resulting spectra depend on the parameters of the model and on the type of particle and are quite varied, some increasing and some decreasing with frequency. We use an approximation scheme in which all spectra can be expressed in a nice symmetric form, perhaps hinting at a deeper symmetry of the underlying physics. Our results may serve as a starting point for detailed studies of relic abundances, dark matter candidates, and possible sources of large scale anisotropy.

  15. Density contrast indicators in cosmological dust models

    Indian Academy of Sciences (India)

    Filipe C Mena; Reza Tavakol

    2000-10-01

    We discuss ways of quantifying structuration in relativistic cosmological settings, by employing a family of covariant density constrast indicators. We study the evolution of these indicators with time in the context of inhomogeneous Szekeres models. We find that different observers (having either different spatial locations or different indicators) see different evolutions for the density contrast, which may or may not be monotonically increasing with time. We also find that monotonicity seems to be related to the initial conditions of the model, which may be of potential interest in connection with debates regarding gravitational entropy and the arrow of time.

  16. Dynamical system approach to running $\\Lambda$ cosmological models

    CERN Document Server

    Stachowski, Aleksander

    2016-01-01

    We discussed the dynamics of cosmological models in which the cosmological constant term is a time dependent function through the scale factor $a(t)$, Hubble function $H(t)$, Ricci scalar $R(t)$ and scalar field $\\phi(t)$. We considered five classes of models; two non-covariant parametrization of $\\Lambda$: 1) $\\Lambda(H)$CDM cosmologies where $H(t)$ is the Hubble parameter, 2) $\\Lambda(a)$CDM cosmologies where $a(t)$ is the scale factor, and three covariant parametrization of $\\Lambda$: 3) $\\Lambda(R)$CDM cosmologies, where $R(t)$ is the Ricci scalar, 4) $\\Lambda(\\phi)$-cosmologies with diffusion, 5) $\\Lambda(X)$-cosmologies, where $X=\\frac{1}{2}g^{\\alpha\\beta}\

  17. Cosmological modelling with Regge calculus

    CERN Document Server

    Liu, Rex G

    2015-01-01

    The late universe's matter distribution obeys the Copernican principle at only the coarsest of scales. The relative importance of such inhomogeneity is still not well understood. Because of the Einstein field equations' non-linear nature, some argue a non-perturbative approach is necessary to correctly model inhomogeneities and may even obviate any need for dark energy. We shall discuss an approach based on Regge calculus, a discrete approximation to general relativity: we shall discuss the Collins--Williams formulation of Regge calculus and its application to two toy universes. The first is a universe for which the continuum solution is well-established, the $\\Lambda$-FLRW universe. The second is an inhomogeneous universe, the `lattice universe' wherein matter consists solely of a lattice of point masses with pure vacuum in between, a distribution more similar to that of the actual universe compared to FLRW universes. We shall discuss both regular lattices and one where one mass gets perturbed.

  18. Inflation in the standard cosmological model

    International Nuclear Information System (INIS)

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multi-verse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. (author)

  19. Inflation in the standard cosmological model

    Science.gov (United States)

    Uzan, Jean-Philippe

    2015-12-01

    The inflationary paradigm is now part of the standard cosmological model as a description of its primordial phase. While its original motivation was to solve the standard problems of the hot big bang model, it was soon understood that it offers a natural theory for the origin of the large-scale structure of the universe. Most models rely on a slow-rolling scalar field and enjoy very generic predictions. Besides, all the matter of the universe is produced by the decay of the inflaton field at the end of inflation during a phase of reheating. These predictions can be (and are) tested from their imprint of the large-scale structure and in particular the cosmic microwave background. Inflation stands as a window in physics where both general relativity and quantum field theory are at work and which can be observationally studied. It connects cosmology with high-energy physics. Today most models are constructed within extensions of the standard model, such as supersymmetry or string theory. Inflation also disrupts our vision of the universe, in particular with the ideas of chaotic inflation and eternal inflation that tend to promote the image of a very inhomogeneous universe with fractal structure on a large scale. This idea is also at the heart of further speculations, such as the multiverse. This introduction summarizes the connections between inflation and the hot big bang model and details the basics of its dynamics and predictions. xml:lang="fr"

  20. Some exact solutions of magnetized viscous model in string cosmology

    Indian Academy of Sciences (India)

    C P Singh

    2014-07-01

    In this paper, we study anisotropic Bianchi-V Universe with magnetic field and bulk viscous fluid in string cosmology. Exact solutions of the field equations are obtained by using the equation of state (EoS) for a cloud of strings, and a relationship between bulk viscous coefficient and scalar expansion. The bulk viscous coefficient is assumed to be inversely proportional to the expansion scalar. It is interesting to examine the effects of magnetized bulk viscous string model in early and late stages of evolution of the Universe. This paper presents different string models like geometrical (Nambu string), Takabayasi (p-string) and Reddy string models by taking certain physical conditions. We discuss the nature of classical potential for viscous fluid with and without magnetic field. The presence of bulk viscosity stops the Universe from becoming empty in its future evolution. It is observed that the Universe expands with decelerated rate in the presence of viscous fluid with magnetic field whereas, it expands with marginal inflation in the presence of viscous fluid without magnetic field. The other physical and geometrical aspects of each string model are discussed in detail.

  1. Cosmological models with linearly varying deceleration parameter

    OpenAIRE

    Akarsu, Özgür; Dereli, Tekin; Oflaz, Neslihan

    2011-01-01

    arXiv:1102.0915v3 [gr-qc] 8 Sep 2011 Cosmological models with linearly varying deceleration parameter ¨O zg¨ur Akarsu Tekin Dereli † Department of Physics, Ko¸c University, 34450 ˙Istanbul/Turkey. Abstract We propose a new law for the deceleration parameter that varies linearly with time and covers Berman’s law where it is constant. Our law not only allows one to generalize many exact solutions that were obtained assuming constant deceleration parameter, but al...

  2. Standard cosmological evolution in the f(R) model to Kaluza-Klein cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Aghmohammadi, A; Abolhassani, M R [Plasma Physics Research Center, Science and Research Branch, Islamic Azad University of Tehran (Iran, Islamic Republic of); Saaidi, Kh; Vajdi, A [Department of Physics, Faculty of Science, University of Kurdistan, Pasdaran Ave., Sanandaj (Iran, Islamic Republic of)], E-mail: agha35484@yahoo.com, E-mail: ksaaidi@uok.ac.ir, E-mail: mrhasani@modares.ac.ir, E-mail: Avajdi@uok.ac.ir

    2009-12-15

    In this paper, using f(R) theory of gravity we explicitly calculate cosmological evolution in the presence of a perfect fluid source in four- and five-dimensional space-time in which this cosmological evolution in self-creation is presented by Reddy et al (2009 Int. J. Theor. Phys. 48 10). An exact cosmological model is presented using a relation between Einstein's gravity field equation components due to a metric with the same component from f(R) theory of gravity. Some physics and kinematical properties of the model are also discussed.

  3. Spatially Homogeneous Bianchi Type V Cosmological Model in the Scale-Covariant Theory of Gravitation

    Institute of Scientific and Technical Information of China (English)

    Shri Ram; M.K.Verma; Mohd.Zeyauddin

    2009-01-01

    We discuss spatially homogeneous and anisotropic Bianchi type-V spacetime filled with a perfect fluid in the framework of the scaie-covariant theory of gravitation proposed by Canuto et al.By applying the law of variation for Hubble's parameter,exact solutions of the field equations are obtained,which correspond to the model of the universe having a big-bang type singularity at the initial time t=0.The cosmological model,evolving from the initial singularity,expands with power-law expansion and gives essentially an empty space for a large time.The physical and dynamical properties of the model are also discussed.

  4. Accelerating dark energy models with anisotropic fluid in Bianchi type Ⅵ0 space-time

    Institute of Scientific and Technical Information of China (English)

    Anirudh Pradhan

    2013-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data,we have discussed some features of Bianchi type Ⅵ0 universes in the presence of a fluid that has an anisotropic equation of state (EoS) parameter in general relativity.We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type Ⅵ0 space-time.To ensure a deterministic solution,we choose the scale factor a(t) =(√tnet),which yields a time-dependent deceleration parameter,representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase.Under suitable conditions,the anisotropic models approach an isotropic scenario.The EoS for DE ω is found to be time-dependent and its existing range for derived models is in good agreement with data from recent observations of type Ⅰa supernovae (SNe Ⅰa) (Knop et al.2003),SNe Ⅰa data combined with cosmic microwave background (CMB) anisotropy and galaxy clustering statistics (Tegmark et al.2004a),as well as the latest combination of cosmological datasets coming from CMB anisotropies,luminosity distances of high redshift SNe Ⅰa and galaxy clustering.For different values of n,we can generate a class of physically viable DE models.The cosmological constant Λ is found to be a positive decreasing function of time and it approaches a small positive value at late time (i.e.the present epoch),which is corroborated by results from recent SN Ⅰa observations.We also observe that our solutions are stable.The physical and geometric aspects of both models are also discussed in detail.

  5. Modeling and Measurements of CMUTs with Square Anisotropic Plates

    DEFF Research Database (Denmark)

    la Cour, Mette Funding; Christiansen, Thomas Lehrmann; Dahl-Petersen, Christian;

    2013-01-01

    The conventional method of modeling CMUTs use the isotropic plate equation to calculate the deflection, leading to deviations from FEM simulations including anisotropic effects of around 10% in center deflection. In this paper, the deflection is found for square plates using the full anisotropic...... plate equation and the Galerkin method. Utilizing the symmetry of the silicon crystal, a compact and accurate expression for the deflection can be obtained. The deviation from FEM in center deflection is light interferometer. Fitting...... the anisotropic calculated deflection to the measurement a deviation of 0.5-1.5% is seen for the fitted values. Finally it was also measured how the device behaved under increasing bias voltage and it is observed that the model including anisotropic effects is within the uncertainty interval of the measurements....

  6. Modeling operations back extrusion billets thick-walled anisotropic

    OpenAIRE

    ПЛАТОНОВ В.И.; Яковлев, С. С.

    2014-01-01

    The mathematical model is an inverse extrusion thick-walled tube blanks of material having anisotropic mechanical properties cylindrical. Relations are given to assess the kinematics of course materials la, stress and strain states, power operation modes reverse extrusion. The results of theoretical investigations of power modes. You are the manifest effects of process parameters on the power mode of operation isothermal reverse extrusion billets of high anisotropic materials in the short-ter...

  7. Anisotropic static solutions in modelling highly compact bodies

    Indian Academy of Sciences (India)

    M Chaisi; S D Maharaj

    2006-03-01

    Einstein field equations for static anisotropic spheres are solved and exact interior solutions obtained. This paper extends earlier treatments to include anisotropic models which accommodate a wider variety of physically viable energy densities. Two classes of solutions are possible. The first class contains the limiting case ∝ -2 for the energy density which arises in many astrophysical applications. In the second class the singularity at the centre of the star is not present in the energy density

  8. Scale Factor Self-Dual Cosmological Models

    CERN Document Server

    dS, U Camara; Sotkov, G M

    2015-01-01

    We implement a conformal time scale factor duality for Friedmann-Robertson-Walker cosmological models, which is consistent with the weak energy condition. The requirement for self-duality determines the equations of state for a broad class of barotropic fluids. We study the example of a universe filled with two interacting fluids, presenting an accelerated and a decelerated period, with manifest UV/IR duality. The associated self-dual scalar field interaction turns out to coincide with the "radiation-like" modified Chaplygin gas models. We present an equivalent realization of them as gauged K\\"ahler sigma models (minimally coupled to gravity) with very specific and interrelated K\\"ahler- and super-potentials. Their applications in the description of hilltop inflation and also as quintessence models for the late universe are discussed.

  9. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in f(R)-modified, massive and Einstein gravity

    CERN Document Server

    Vacaru, Sergiu I

    2015-01-01

    We re-investigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. There are constructed new classes of locally anisotropic and (in) homogeneous cosmological metrics with open and closed spatial geometries. By resorting such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related St\\" uckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lama\\^{\\i}tre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass and other effective sources modelling nonlinear gravitational and matter fields interactions with polarization of physical constants and deformations of metrics, which may explain dark ene...

  10. Cosmological constraint on Brans-Dicke Model

    Science.gov (United States)

    Li, Ji-Xia; Wu, Feng-Quan; Li, Yi-Chao; Gong, Yan; Chen, Xue-Lei

    2015-12-01

    We combine new Cosmic Microwave Background (CMB) data from Planck with Baryon Acoustic Oscillation (BAO) data to constrain the Brans-Dicke (BD) theory, in which the gravitational constant G evolves with time. Observations of type Ia supernovae (SNeIa) provide another important set of cosmological data, as they may be regarded as standard candles after some empirical corrections. However, in theories that include modified gravity like the BD theory, there is some risk and complication when using the SNIa data because their luminosity may depend on G. In this paper, we assume a power law relation between the SNIa luminosity and G, but treat the power index as a free parameter. We then test whether the difference in distances measured with SNIa data and BAO data can be reduced in such a model. We also constrain the BD theory and cosmological parameters by making a global fit with the CMB, BAO and SNIa data set. For the CMB+BAO+SNIa data set, we find 0.08 × 10-2 < ζ < 0.33 × 10-2 at the 68% confidence level (CL) and -0.01 × 10-2 < ζ < 0.43 × 10-2 at the 95% CL, where ζ is related to the BD parameter ω by ζ = ln(1 + 1/ω).

  11. Cosmological constraint on Brans-Dicke Model

    CERN Document Server

    Li, Ji-Xia; Li, Yi-Chao; Gong, Yan; Chen, Xue-Lei

    2015-01-01

    We combine new Cosmic Microwave Background (CMB) data from Planck with Baryon Acoustic Oscillation (BAO) data to constrain the Brans-Dicke (BD) theory, in which the gravitational constant $G$ evolves with time. Observations of type Ia supernovae (SNeIa) provide another important set of cosmological data, as they may be regarded as standard candles after some empirical corrections. However, in theories that include modified gravity like the BD theory, there is some risk and complication when using the SNIa data because their luminosity may depend on $G$. In this paper, we assume a power law relation between the SNIa luminosity and $G$, but treat the power index as a free parameter. We then test whether the difference in distances measured with SNIa data and BAO data can be reduced in such a model. We also constrain the BD theory and cosmological parameters by making a global fit with the CMB, BAO and SNIa data set. For the CMB+BAO+SNIa data set, we find $0.08\\times10^{-2} < \\zeta <0.33\\times10^{-2} $ at ...

  12. Preon model and cosmological quantum-hyperchromodynamic phase transition

    Science.gov (United States)

    Nishimura, H.; Hayashi, Y.

    1987-05-01

    From the cosmological viewpoint, we investigate whether or not recent preon models are compatible with the picture of the first-order phase transition from the preon phase to the composite quark-lepton phase. It is shown that the current models accepting the 't Hooft anomaly-matching condition together with quantum hyperchromodynamics are consistent with the cosmological first-order phase transition.

  13. Cosmological Models with Fractional Derivatives and Fractional Action Functional

    Institute of Scientific and Technical Information of China (English)

    V.K. Shchigolev

    2011-01-01

    Cosmological models of a scalar field with dynamical equations containing fractional derivatives or derived from the Einstein-Hilbert action of fractional order, are constructed. A number of exact solutions to those equations of fractional cosmological models in both eases is given.

  14. A CP violetion model of cosmological origin

    International Nuclear Information System (INIS)

    It's presented a model of spontaneous violation of the CP symmetry whose mechanism of symmetry breaking is of cosmological nature. The main feature is the conformal coupling of the field of a λφ4 theory with a background gravitational field. We show that, for the open Friedmann model of the universe, the reason of the critical temperaTure for the symmetry restoration to the equilibrium temperature of the universe rrmains constant, so that either the symmetry breaking never happened or, if happened, it can't be reverted by means of thermal effects. Upon coupling the boson to a fermion, this symmetry breaking id related to the CP non-conservation in two distinct ways: violating the P and T symmetries, and violating the C and T symmetries. (author)

  15. Scaled Triangleland Model of Quantum Cosmology

    CERN Document Server

    Anderson, Edward

    2010-01-01

    Scaled relational particle mechanics is a mechanics in which only relative times, relative angles and relative separations are meaningful. It arose in the study of the absolute versus relative motion debate, and furthermore turned out to be useful toy models of classical and quantum general relativity, such as for investigating conceptual strategies for the problem of time. This paper studies the 3 particle 2-$d$ relational particle model, for which the configurations are scaled triangles. The configuration space for these is $\\mathbb{R}^3$ with a conformally flat metric thereupon (it is the cone over the corresponding shape space S^2). I furthermore use multiple harmonic oscillator type potentials and other potentials inspired by analogy with cosmology. I solve these by using a partial analogy with the atom in spherical and parabolic coordinates. Spherical coordinates are here the total moment of inertia $I$ for radius and two pure-shape coordinates: \\Theta a function of the ratio of the two relative separat...

  16. Improving lognormal models for cosmological fields

    CERN Document Server

    Xavier, Henrique S; Joachimi, Benjamin

    2016-01-01

    It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimises either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine ...

  17. Critical exponents of the anisotropic Bak-Sneppen model

    Energy Technology Data Exchange (ETDEWEB)

    Maslov, S. [Department of Physics, Brookhaven National Laboratory, Upton, New York 11973 (United States); De Los Rios, P.; Marsili, M.; Zhang, Y. [Institut de Physique Theorique, Universite de Fribourg Perolles, Fribourg CH-1700 (Switzerland); Marsili, M. [International School for Advanced Studies (SISSA) and INFM Unit, Trieste I-34014 (Italy)

    1998-12-01

    We analyze the behavior of the spatially anisotropic Bak-Sneppen model. We demonstrate that a nontrivial relation between critical exponents {tau} and {mu}=d/D, recently derived for the isotropic Bak-Sneppen model, holds for its anisotropic version as well. For the one-dimensional anisotropic Bak-Sneppen model, we derive an exact equation for the distribution of avalanche spatial sizes, and extract the value {gamma}=2 for one of the critical exponents of the model. Other critical exponents are then determined from previously known exponent relations. Our results are in excellent agreement with Monte Carlo simulations of the model as well as with direct numerical integration of the new equation. {copyright} {ital 1998} {ital The American Physical Society}

  18. A four-dimensional lambda CDM-type cosmological model induced from higher dimensions using a kinematical constraint

    OpenAIRE

    Dereli, Tekin; Akarsu, Özgür

    2013-01-01

    arXiv:1201.4545v3 [gr-qc] 31 Mar 2013 A four-dimensional CDM-type cosmological model induced from higher dimensions using a kinematical constraint Özgür Akarsu, Tekin Dereli Department of Physics, Koç University, 34450 Sarıyer, İstanbul, Turkey Abstract A class of cosmological solutions of higher dimensional Einstein field equations with the energy-momentum tensor of a homogeneous, isotropic fluid as the source are considered with an anisotropic metric that includes t...

  19. Introduction to particle cosmology the standard model of cosmology and its open problems

    CERN Document Server

    Bambi, Cosimo

    2016-01-01

    This book introduces the basic concepts of particle cosmology and covers all the main aspects of the Big Bang Model (expansion of the Universe, Big Bang Nucleosynthesis, Cosmic Microwave Background, large scale structures) and the search for new physics (inflation, baryogenesis, dark matter, dark energy). It also includes the majority of recent discoveries, such as the precise determination of cosmological parameters using experiments like WMAP and Planck, the discovery of the Higgs boson at LHC, the non-discovery to date of supersymmetric particles, and the search for the imprint of gravitational waves on the CMB polarization by Planck and BICEP.   This textbook is based on the authors’ courses on Cosmology, and aims at introducing Particle Cosmology to senior undergraduate and graduate students. It has been especially written to be accessible even for those students who do not have a strong background in General Relativity and quantum field theory. The content of this book is organized in an easy-to-use ...

  20. Non-standard Models and the Sociology of Cosmology

    CERN Document Server

    Lopez-Corredoira, Martin

    2013-01-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  1. Non-standard models and the sociology of cosmology

    Science.gov (United States)

    López-Corredoira, Martín

    2014-05-01

    I review some theoretical ideas in cosmology different from the standard "Big Bang": the quasi-steady state model, the plasma cosmology model, non-cosmological redshifts, alternatives to non-baryonic dark matter and/or dark energy, and others. Cosmologists do not usually work within the framework of alternative cosmologies because they feel that these are not at present as competitive as the standard model. Certainly, they are not so developed, and they are not so developed because cosmologists do not work on them. It is a vicious circle. The fact that most cosmologists do not pay them any attention and only dedicate their research time to the standard model is to a great extent due to a sociological phenomenon (the "snowball effect" or "groupthink"). We might well wonder whether cosmology, our knowledge of the Universe as a whole, is a science like other fields of physics or a predominant ideology.

  2. Hysteresis modeling of anisotropic and isotropic nanocrystalline hard magnetic films

    Science.gov (United States)

    Cornejo, D. R.; Azevedo, A.; Rezende, S. M.

    2003-05-01

    In the Hauser model, the magnetic state of a system is obtained by minimizing the so-called total energy function for a statistical set of magnetic domains. In this article, this energetic model of ferromagnetic materials is used in order to calculate hysteresis loops of isotropic and anisotropic nanocrystalline SmCo films at room temperature. A qualitative very good agreement between the calculated and experimental curves is obtained, mainly in the anisotropic case. Also, it has been verified that, under suitable approximations, the free parameters of the model can tie with intrinsic characteristics of the reversal magnetization process.

  3. The anisotropic \\lambda-deformed SU(2) model is integrable

    CERN Document Server

    Sfetsos, Konstantinos

    2014-01-01

    The all-loop anisotropic Thirring model interpolates between the WZW model and the non-Abelian T-dual of the anisotropic principal chiral model. We focus on the SU(2) case and we prove that it is classically integrable by providing its Lax pair formulation. We derive its underlying symmetry current algebra and use it to show that the Poisson brackets of the spatial part of the Lax pair, assume the Maillet form. In this way we procure the corresponding r and s matrices which provide non-trivial solutions to the modified Yang-Baxter equation.

  4. Hybrid Models in Loop Quantum Cosmology

    CERN Document Server

    Navascués, B Elizaga; Marugán, G A Mena

    2016-01-01

    In the framework of Loop Quantum Cosmology, inhomogeneous models are usually quantized by means of a hybrid approach that combines loop quantization techniques with standard quantum field theory methods. This approach is based on a splitting of the phase space in a homogeneous sector, formed by global, zero-modes, and an inhomogeneous sector, formed by the remaining, infinite number of modes, that describe the local degrees of freedom. Then, the hybrid quantization is attained by adopting a loop representation for the homogeneous gravitational sector, while a Fock representation is used for the inhomogeneities. The zero-mode of the Hamiltonian constraint operator couples the homogeneous and inhomogeneous sectors. The hybrid approach, therefore, is expected to provide a suitable quantum theory in regimes where the main quantum effects of the geometry are those affecting the zero-modes, while the inhomogeneities, still being quantum, can be treated in a more conventional way. This hybrid strategy was first prop...

  5. Precision cosmology defeats void models for acceleration

    International Nuclear Information System (INIS)

    The suggestion that we occupy a privileged position near the center of a large, nonlinear, and nearly spherical void has recently attracted much attention as an alternative to dark energy. Putting aside the philosophical problems with this scenario, we perform the most complete and up-to-date comparison with cosmological data. We use supernovae and the full cosmic microwave background spectrum as the basis of our analysis. We also include constraints from radial baryonic acoustic oscillations, the local Hubble rate, age, big bang nucleosynthesis, the Compton y distortion, and for the first time include the local amplitude of matter fluctuations, σ8. These all paint a consistent picture in which voids are in severe tension with the data. In particular, void models predict a very low local Hubble rate, suffer from an ''old age problem,'' and predict much less local structure than is observed.

  6. Oscillatory models in Kaluza-Klein cosmology

    International Nuclear Information System (INIS)

    We investigate the dynamical behaviour of a 7-dimensional, homogeneous, cosmological model. Anisotropy is prevailed all over the spatial dimensions constituting a manifold of a direct product of two three-spheres (S3xS3). It is found that the universe evolves from an initial Kasner epoch towards a final one through repetitious oscillations of the scale factors, and on the way of the evolution its total volume turns to decrease. No chaotic behaviour is present near the singularities. For the vacuum case its spatial sections in the final state are not always split into expanding S3 and contracting S3. However, the effect of matter which tends to isotropise each S3 can resolve this difficulty. (author)

  7. The Derived Equivalent Circuit Model for Magnetized Anisotropic Graphene

    CERN Document Server

    Cao, Ying S; Ruehli, Albert E

    2015-01-01

    Due to the static magnetic field, the conductivity for graphene becomes a dispersive and anisotropic tensor, which complicates most modeling methodologies. In this paper, a novel equivalent circuit model is proposed for graphene with the magnetostatic bias based on the electric field integral equation (EFIE). To characterize the anisotropic property of the biased graphene, the resistive part of the unit circuit is replaced by a resistor in series with current control voltage sources (CCVSs). The CCVSs account for the off-diagonal parts of the surface conductivity tensor for the magnetized graphene. Furthermore, the definitions of the absorption cross section and the scattering cross section are revisited to make them feasible for derived circuit analysis. This proposed method is benchmarked with several numerical examples. This paper also provides a new equivalent circuit model to deal with dispersive and anisotropic materials.

  8. A Conceptual Tour About the Standard Cosmological Model

    CERN Document Server

    Maroto, A L; Maroto, Antonio L.; Ramirez, Juan

    2004-01-01

    With the beginning of the XXIst century, a physical model of our Universe, usually called the Standard Cosmological Model (SCM), is reaching an important level of consolidation, based on accurate astrophysical data and also on theoretical developments. In this paper we review the interplay between the basic concepts and observations underlying this model. The SCM is a complex and beautiful building, recieving inputs from many branches of physics. Major topics reviewed are: General Relativity and the cosmological constant, the Cosmological Principle and Friedmann-Robertson-Walker-Lemaitre models, Hubble diagrams and dark energy, large scale structure and dark matter, the cosmic microwave background, Big Bang nucleosynthesis, and inflation.

  9. Power law cosmology model comparison with CMB scale information

    CERN Document Server

    Tutusaus, Isaac; Blanchard, Alain; Dupays, Arnaud; Zolnierowski, Yves; Cohen-Tanugi, Johann; Ealet, Anne; Escoffier, Stéphanie; Fèvre, Olivier Le; Ilić, Stéphane; Piazza, Federico; Pisani, Alice; Plaszczynski, Stéphane; Sakr, Ziad; Salvatelli, Valentina; Schücker, Thomas; Tilquin, André; Virey, Jean-Marc

    2016-01-01

    Despite the ability of the cosmological concordance model ($\\Lambda$CDM) to describe the cosmological observations exceedingly well, power law expansion of the Universe scale radius has been proposed as an alternative framework. We examine here these models, analyzing their ability to fit cosmological data using robust model comparison criteria. Type Ia supernovae (SNIa), baryonic acoustic oscillations (BAO) and acoustic scale information from the cosmic microwave background (CMB) have been used. We find that SNIa data either alone or combined with BAO, can be well reproduced by both $\\Lambda$CDM and power law expansion models with $n \\sim 1.5$, while the constant expansion rate model ($n = 1$) is clearly disfavored. Allowing for some redshift evolution in the SNIa luminosity essentially removes any clear preference for a specific model. The CMB data is well known to provide the most stringent constraints on standard cosmological models, in particular through the position of the first peak of the temperature ...

  10. Nonlinear analysis of traffic jams in an anisotropic continuum model

    Institute of Scientific and Technical Information of China (English)

    Arvind Kumar Gupta; Sapna Sharma

    2010-01-01

    This paper presents our study of the nonlinear stability of a new anisotropic continuum traffic flow model in which the dimensionless parameter or anisotropic factor controls the non-isotropic character and diffusive influence. In order to establish traffic flow stability criterion or to know the critical parameters that lead, on one hand, to a stable response to perturbations or disturbances or, on the other hand, to an unstable response and therefore to a possible congestion, a nonlinear stability criterion is derived by using a wavefront expansion technique. The stability criterion is illustrated by numerical results using the finite difference method for two different values of anisotropic parameter. It is also been observed that the newly derived stability results are consistent with previously reported results obtained using approximate linearisation methods. Moreover, the stability criterion derived in this paper can provide more refined information from the perspective of the capability to reproduce nonlinear traffic flow behaviors observed in real traffic than previously established methodologies.

  11. Improving lognormal models for cosmological fields

    Science.gov (United States)

    Xavier, Henrique S.; Abdalla, Filipe B.; Joachimi, Benjamin

    2016-07-01

    It is common practice in cosmology to model large-scale structure observables as lognormal random fields, and this approach has been successfully applied in the past to the matter density and weak lensing convergence fields separately. We argue that this approach has fundamental limitations which prevent its use for jointly modelling these two fields since the lognormal distribution's shape can prevent certain correlations to be attainable. Given the need of ongoing and future large-scale structure surveys for fast joint simulations of clustering and weak lensing, we propose two ways of overcoming these limitations. The first approach slightly distorts the power spectra of the fields using one of two algorithms that minimizes either the absolute or the fractional distortions. The second one is by obtaining more accurate convergence marginal distributions, for which we provide a fitting function, by integrating the lognormal density along the line of sight. The latter approach also provides a way to determine directly from theory the skewness of the convergence distribution and, therefore, the parameters for a lognormal fit. We present the public code Full-sky Lognormal Astro-fields Simulation Kit (FLASK) which can make tomographic realizations on the sphere of an arbitrary number of correlated lognormal or Gaussian random fields by applying either of the two proposed solutions, and show that it can create joint simulations of clustering and lensing with sub-per-cent accuracy over relevant angular scales and redshift ranges.

  12. Numerical modelling of tunnel construction in anisotropic foliated soft rock

    OpenAIRE

    Markovič, Jernej

    2009-01-01

    The present work focuses on the influence on tunnelling in the anisotropic foliated soft rock. The excavation initiates stress redistribution around an opening and thus causes the deformation to occur. The numerical problem of the tunnel excavation was modelled in the Plaxis 2D code using different soil constitutive models for modelling the rock mass behaviour. A parametric study was performed to obtain the model response to alteration of the rock mass parameters. The analysis was divided int...

  13. Two scalar field cosmology from coupled one-field models

    CERN Document Server

    Moraes, P H R S

    2014-01-01

    One possible description for the current accelerated expansion of the universe is quintessence dynamics. The basic idea of quintessence consists of analyzing cosmological scenarios driven by scalar fields. In this work we present some interesting features on the cosmological scenario obtained from the solutions of an effective two scalar field model in a flat space-time. This effective model was constructed by coupling two single scalar field systems in a nontrivial way via an extension method. The solutions related to the fields allowed us to compute analytical cosmological parameters. The behavior of these parameters are highlighted, as well as the different epochs obtained from them.

  14. Testing cosmological models with the Integrated Sachs-Wolfe effect

    Energy Technology Data Exchange (ETDEWEB)

    Raccanelli, Alvise, E-mail: alvise.raccanelli@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Dennis Sciama Building, Portsmouth, PO1 3FX (United Kingdom)

    2011-02-01

    The cross correlation between the Cosmic Microwave Background and the Large Scale Structure of the Universe is a powerful probe to test our cosmological models. This correlation can be used to detect the Integrated Sachs-Wolfe effect, and it depends on both the geometry of the Universe and the properties of the clustering and evolution of structures; for this reason it can be used to test and constrain cosmological models and parameters as well as theories of gravity. In this proceeding we briefly introduce the ISW effect and present some of the recent cosmological tests done using it.

  15. Graviton mass and cosmological constant: a toy model

    CERN Document Server

    Metaxas, Dimitrios

    2010-01-01

    I consider a simple model where the graviton mass and the cosmological constant depend on a scalar field with appropriate couplings and I calculate the graviton propagator and the induced effective action for the scalar field.

  16. Graviton mass and cosmological constant: a toy model

    OpenAIRE

    Metaxas, Dimitrios

    2010-01-01

    I consider a simple model where the graviton mass and the cosmological constant depend on a scalar field with appropriate couplings and I calculate the graviton propagator and the resulting effective action for the scalar field.

  17. Bianchi-IX string cosmological model in Lyra geometry

    Indian Academy of Sciences (India)

    F Rahaman; S Chakraborty; N Begum; M Hossain; M Kalam

    2003-06-01

    A class of cosmological solutions of massive strings for the Bianchi-IX space-time are obtained within the framework of Lyra geometry. Various physical and kinematical properties of the models are discussed.

  18. The bulk viscous string cosmology in an anisotropic universe with late time acceleration

    Institute of Scientific and Technical Information of China (English)

    Hassan Amirhashchi

    2013-01-01

    A model of a cloud formed by massive strings is used as a source of Bianchi type Ⅱ cases.We assume that the expansion (θ) in the model is proportional to the shear (σ).To get an exact solution,we consider the equation of state of the fluid to be in the stiff form.It is found that the bulk viscosity played a very important role in the history of the universe.In the presence of bulk viscosity the particles dominate over strings whereas in the absence of it,strings dominate over the particles,which is not consistent with recent observations.Also we observe that the viscosity causes the expansion of the universe to be accelerating.Our models are evolving from an early decelerating phase to a late time accelerating phase.The physical and geometrical behaviors of these models are discussed.

  19. Cosmological Model with a Local Void: New Supernova Constraints

    OpenAIRE

    Ho, Le Tuan Anh; Ng, Shao Chin Cindy

    2009-01-01

    A simple inhomogeneous cosmological model with a local void is constrained with the latest Union supernova compilation. To fit the supernova data, a large local void on the scales of 1 Gpc is found, contrary to the small scales of 200 Mpc in the previous finding. A more realistic inhomogeneous cosmological model may be required to fit the supernova data. Alternatively, a clumpy universe with clumpiness parameter < 1 can fit the supernova data with reduced local void scales.

  20. Prestack exploding reflector modelling and migration for anisotropic media

    KAUST Repository

    Alkhalifah, Tariq Ali

    2014-10-09

    The double-square-root equation is commonly used to image data by downward continuation using one-way depth extrapolation methods. A two-way time extrapolation of the double-square-root-derived phase operator allows for up and downgoing wavefields but suffers from an essential singularity for horizontally travelling waves. This singularity is also associated with an anisotropic version of the double-square-root extrapolator. Perturbation theory allows us to separate the isotropic contribution, as well as the singularity, from the anisotropic contribution to the operator. As a result, the anisotropic residual operator is free from such singularities and can be applied as a stand alone operator to correct for anisotropy. We can apply the residual anisotropy operator even if the original prestack wavefield was obtained using, for example, reverse-time migration. The residual correction is also useful for anisotropic parameter estimation. Applications to synthetic data demonstrate the accuracy of the new prestack modelling and migration approach. It also proves useful in approximately imaging the Vertical Transverse Isotropic Marmousi model.

  1. A Time-Dependent Λ and G Cosmological Model Consistent with Cosmological Constraints

    Directory of Open Access Journals (Sweden)

    L. Kantha

    2016-01-01

    Full Text Available The prevailing constant Λ-G cosmological model agrees with observational evidence including the observed red shift, Big Bang Nucleosynthesis (BBN, and the current rate of acceleration. It assumes that matter contributes 27% to the current density of the universe, with the rest (73% coming from dark energy represented by the Einstein cosmological parameter Λ in the governing Friedmann-Robertson-Walker equations, derived from Einstein’s equations of general relativity. However, the principal problem is the extremely small value of the cosmological parameter (~10−52 m2. Moreover, the dark energy density represented by Λ is presumed to have remained unchanged as the universe expanded by 26 orders of magnitude. Attempts to overcome this deficiency often invoke a variable Λ-G model. Cosmic constraints from action principles require that either both G and Λ remain time-invariant or both vary in time. Here, we propose a variable Λ-G cosmological model consistent with the latest red shift data, the current acceleration rate, and BBN, provided the split between matter and dark energy is 18% and 82%. Λ decreases (Λ~τ-2, where τ is the normalized cosmic time and G increases (G~τn with cosmic time. The model results depend only on the chosen value of Λ at present and in the far future and not directly on G.

  2. Efficient anisotropic wavefield extrapolation using effective isotropic models

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-06-10

    Isotropic wavefield extrapolation is more efficient than anisotropic extrapolation, and this is especially true when the anisotropy of the medium is tilted (from the vertical). We use the kinematics of the wavefield, appropriately represented in the high-frequency asymptotic approximation by the eikonal equation, to develop effective isotropic models, which are used to efficiently and approximately extrapolate anisotropic wavefields using the isotropic, relatively cheaper, operators. These effective velocity models are source dependent and tend to embed the anisotropy in the inhomogeneity. Though this isotropically generated wavefield theoretically shares the same kinematic behavior as that of the first arrival anisotropic wavefield, it also has the ability to include all the arrivals resulting from a complex wavefield propagation. In fact, the effective models reduce to the original isotropic model in the limit of isotropy, and thus, the difference between the effective model and, for example, the vertical velocity depends on the strength of anisotropy. For reverse time migration (RTM), effective models are developed for the source and receiver fields by computing the traveltime for a plane wave source stretching along our source and receiver lines in a delayed shot migration implementation. Applications to the BP TTI model demonstrates the effectiveness of the approach.

  3. A new model for spherically symmetric anisotropic compact star

    CERN Document Server

    Maurya, S K; Dayanandan, Baiju; Ray, Saibal

    2016-01-01

    In this article we obtain a new anisotropic solution for Einstein's field equation of embedding class one metric. The solution is representing the realistic objects such as $Her~X-1$ and $RXJ~1856-37$. We perform detailed investigation of both objects by solving numerically the Einstein field equations under with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if anisotropy is zero everywhere inside the star then the density and pressures will become zero and metric turns out to be flat. We report our results and compare with the above mentioned two compact objects on a number of key aspects: the central density, the surface density onset and the critical scaling behavior, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications...

  4. A new model for spherically symmetric anisotropic compact star

    Science.gov (United States)

    Maurya, S. K.; Gupta, Y. K.; Dayanandan, Baiju; Ray, Saibal

    2016-05-01

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star.

  5. A new model for spherically symmetric anisotropic compact star

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K.; Dayanandan, Baiju [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2016-05-15

    In this article we obtain a new anisotropic solution for Einstein's field equations of embedding class one metric. The solution represents realistic objects such as Her X-1 and RXJ 1856-37. We perform a detailed investigation of both objects by solving numerically the Einstein field equations with anisotropic pressure. The physical features of the parameters depend on the anisotropic factor i.e. if the anisotropy is zero everywhere inside the star then the density and pressures will become zero and the metric turns out to be flat. We report our results and compare with the above mentioned two compact objects as regards a number of key aspects: the central density, the surface density onset and the critical scaling behaviour, the effective mass and radius ratio, the anisotropization with isotropic initial conditions, adiabatic index and red shift. Along with this we have also made a comparison between the classical limit and theoretical model treatment of the compact objects. Finally we discuss the implications of our findings for the stability condition in a relativistic compact star. (orig.)

  6. Bianchi Type I Cosmological Models in Eddington-inspired Born–Infeld Gravity

    Directory of Open Access Journals (Sweden)

    Tiberiu Harko

    2014-10-01

    Full Text Available We consider the dynamics of a barotropic cosmological fluid in an anisotropic, Bianchi type I space-time in Eddington-inspired Born–Infeld (EiBI gravity. By assuming isotropic pressure distribution, we obtain the general solution of the field equations in an exact parametric form. The behavior of the geometric and thermodynamic parameters of the Bianchi type I Universe is studied, by using both analytical and numerical methods, for some classes of high density matter, described by the stiff causal, radiation, and pressureless fluid equations of state. In all cases the study of the models with different equations of state can be reduced to the integration of a highly nonlinear second order ordinary differential equation for the energy density. The time evolution of the anisotropic Bianchi type I Universe strongly depends on the initial values of the energy density and of the Hubble function. An important observational parameter, the mean anisotropy parameter, is also studied in detail, and we show that for the dust filled Universe the cosmological evolution always ends into isotropic phase, while for high density matter filled universes the isotropization of Bianchi type I universes is essentially determined by the initial conditions of the energy density.

  7. Effective Elliptic Models for Efficient Wavefield Extrapolation in Anisotropic Media

    KAUST Repository

    Waheed, Umair bin

    2014-05-01

    Wavefield extrapolation operator for elliptically anisotropic media offers significant cost reduction compared to that of transversely isotropic media (TI), especially when the medium exhibits tilt in the symmetry axis (TTI). However, elliptical anisotropy does not provide accurate focusing for TI media. Therefore, we develop effective elliptically anisotropic models that correctly capture the kinematic behavior of the TTI wavefield. Specifically, we use an iterative elliptically anisotropic eikonal solver that provides the accurate traveltimes for a TI model. The resultant coefficients of the elliptical eikonal provide the effective models. These effective models allow us to use the cheaper wavefield extrapolation operator for elliptic media to obtain approximate wavefield solutions for TTI media. Despite the fact that the effective elliptic models are obtained by kinematic matching using high-frequency asymptotic, the resulting wavefield contains most of the critical wavefield components, including the frequency dependency and caustics, if present, with reasonable accuracy. The methodology developed here offers a much better cost versus accuracy tradeoff for wavefield computations in TTI media, considering the cost prohibitive nature of the problem. We demonstrate the applicability of the proposed approach on the BP TTI model.

  8. Modeling of plates with multiple anisotropic layers and residual stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Pedersen, Thomas; Thomsen, Erik Vilain

    2016-01-01

    Usually the analytical approach for modeling of plates uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. Based on the stress–strain relation of each layer and balancing stress resultants and bending moments, a general...... multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular clamped plate of anisotropic materials with residual bi-axial stress.From the deflection shape the critical stress for buckling is calculated......, and an excellent agreement between the two models is seen with a relative difference of less than 2% for all calculations. The model was also used to extract the cell capacitance, the parasitic capacitance and the residual stress of a pressure sensor composed of a multilayered plate of silicon and silicon oxide...

  9. Anisotropic dark energy model with a hybrid scale factor

    CERN Document Server

    Mishra, B

    2015-01-01

    Anisotropic dark energy model with dynamic pressure anisotropies along different spatial directions is constructed at the backdrop of a spatially homogeneous diagonal Bianchi type $V$ $(BV)$ space-time in the framework of General Relativity. A time varying deceleration parameter generating a hybrid scale factor is considered to simulate a cosmic transition from early deceleration to late time acceleration. We found that the pressure anisotropies along the $y-$ and $z-$ axes evolve dynamically and continue along with the cosmic expansion without being subsided even at late times. The anisotropic pressure along the $x-$axis becomes equal to the mean fluid pressure. At a late phase of cosmic evolution, the model enters into a phantom region. From a state finder diagnosis, it is found that the model overlaps with $\\Lambda$CDM at late phase of cosmic time.

  10. Bianchi type-V cosmological models with perfect fluid and heat flow in Saez–Ballester theory

    Indian Academy of Sciences (India)

    Shri Ram; M Zeyauddin; C P Singh

    2009-02-01

    In this paper we discuss the variation law for Hubble's parameter with average scale factor in a spatially homogeneous and anisotropic Bianchi type-V space-time model, which yields constant value of the deceleration parameter. We derive two laws of variation of the average scale factor with cosmic time, one is of power-law type and the other is of exponential form. Exact solutions of Einstein field equations with perfect fluid and heat conduction are obtained for Bianchi type-V space-time in these two types of cosmologies. In the cosmology with the power-law, the solutions correspond to a cosmological model which starts expanding from the singular state with positive deceleration parameter. In the case of exponential cosmology, we present an accelerating non-singular model of the Universe. We find that the constant value of deceleration parameter is reasonable for the present day Universe and gives an appropriate description of evolution of Universe. We have also discussed different types of physical and kinematical behaviour of the models in these two types of cosmologies.

  11. Modelling of ultrasonic nondestructive testing in anisotropic materials - Rectangular crack

    International Nuclear Information System (INIS)

    Nondestructive testing with ultrasound is a standard procedure in the nuclear power industry when searching for defects, in particular cracks. To develop and qualify testing procedures extensive experimental work on test blocks is usually required. This can take a lot of time and therefore be quite costly. A good mathematical model of the testing situation is therefore of great value as it can reduce the experimental work to a great extent. A good model can be very useful for parametric studies and as a pedagogical tool. A further use of a model is as a tool in the qualification of personnel. In anisotropic materials, e.g. austenitic welds, the propagation of ultrasound becomes much more complicated as compared to isotropic materials. Therefore, modelling is even more useful for anisotropic materials, and it in particular has a greater pedagogical value. The present project has been concerned with a further development of the anisotropic capabilities of the computer program UTDefect, which has so far only contained a strip-like crack as the single defect type for anisotropic materials. To be more specific, the scattering by a rectangular crack in an anisotropic component has been studied and the result is adapted to include transmitting and receiving ultrasonic probes. The component under study is assumed to be anisotropic with arbitrary anisotropy. On the other hand, it is assumed to be homogeneous, and this in particular excludes most welds, where it is seldom an adequate approximation to assume homogeneity. The anisotropy may be arbitrarily oriented and the same is true of the rectangular crack. The crack may also be located near a backside of the component. To solve the scattering problem for the crack an integral equation method is used. The probe model has been developed in an earlier project and to compute the signal response in the receiving probe an electromechanical reciprocity argument is employed. As a rectangle is a truly 3D scatterer the sizes of the

  12. A New Cosmological Model: Black Hole Universe

    Directory of Open Access Journals (Sweden)

    Zhang T. X.

    2009-07-01

    Full Text Available A new cosmological model called black hole universe is proposed. According to this model, the universe originated from a hot star-like black hole with several solar masses, and gradually grew up through a supermassive black hole with billion solar masses to the present state with hundred billion-trillion solar masses by accreting ambient mate- rials and merging with other black holes. The entire space is structured with infinite layers hierarchically. The innermost three layers are the universe that we are living, the outside called mother universe, and the inside star-like and supermassive black holes called child universes. The outermost layer is infinite in radius and limits to zero for both the mass density and absolute temperature. The relationships among all layers or universes can be connected by the universe family tree. Mathematically, the entire space can be represented as a set of all universes. A black hole universe is a subset of the en- tire space or a subspace. The child universes are null sets or empty spaces. All layers or universes are governed by the same physics - the Einstein general theory of relativity with the Robertson-walker metric of spacetime - and tend to expand outward physically. The evolution of the space structure is iterative. When one universe expands out, a new similar universe grows up from its inside. The entire life of a universe begins from the birth as a hot star-like or supermassive black hole, passes through the growth and cools down, and expands to the death with infinite large and zero mass density and absolute temperature. The black hole universe model is consistent with the Mach principle, the observations of the universe, and the Einstein general theory of relativity. Its various aspects can be understood with the well-developed physics without any difficulty. The dark energy is not required for the universe to accelerate its expansion. The inflation is not necessary because the black hole universe

  13. Modeling of CMUTs with Multiple Anisotropic Layers and Residual Stress

    DEFF Research Database (Denmark)

    Engholm, Mathias; Thomsen, Erik Vilain

    2014-01-01

    Usually the analytical approach for modeling CMUTs uses the single layer plate equation to obtain the deflection and does not take anisotropy and residual stress into account. A highly accurate model is developed for analytical characterization of CMUTs taking an arbitrary number of layers...... and residual stress into account. Based on the stress-strain relation of each layer and balancing stress resultants and bending moments, a general multilayered anisotropic plate equation is developed for plates with an arbitrary number of layers. The exact deflection profile is calculated for a circular...... clamped plate of anisotropic materials with residual bi-axial stress. From the deflection shape the critical stress for buckling is calculated and by using the Rayleigh-Ritz method the natural frequency is estimated....

  14. Holographic transports and stability in anisotropic linear axion model

    CERN Document Server

    Ge, Xian-Hui; Niu, Chao; Sin, Sang-Jin

    2014-01-01

    We study thermoelectric conductivities and shear viscosities in a holographically anisotropic model. Momentum relaxation is realized through perturbing the linear axion field. AC conductivity exhibits a conherent/incoherent metal transition. The longitudinal shear viscosity for prolate anisotropy violates the bound conjectured by Kovtun-Son-Starinets. We also find that thermodynamic and dynamical instabilities are not always equivalent, which provides a counter example of the Gubser-Mitra conjecture.

  15. The Anisotropic Bak-Sneppen Model

    OpenAIRE

    Head, DA; Rodgers, GJ

    1998-01-01

    The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multi-trait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law ``tail'' which pas...

  16. Bianchi-Type Ⅱ String Cosmological Models with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2004-01-01

    The locally rotationally symmetric Bianchi-type Ⅱ string cosmological models with bulk viscosity are obtained, where an equation of state, p = kλ, and a relation between metric potentials, R = ASn, are adopted. The physical features of the models are also discussed. In special cases the model reduces to the string models without viscosity that was previously given in the literatures.

  17. Anisotropic Mesoscale Eddy Transport in Ocean General Circulation Models

    Science.gov (United States)

    Reckinger, S. J.; Fox-Kemper, B.; Bachman, S.; Bryan, F.; Dennis, J.; Danabasoglu, G.

    2014-12-01

    Modern climate models are limited to coarse-resolution representations of large-scale ocean circulation that rely on parameterizations for mesoscale eddies. The effects of eddies are typically introduced by relating subgrid eddy fluxes to the resolved gradients of buoyancy or other tracers, where the proportionality is, in general, governed by an eddy transport tensor. The symmetric part of the tensor, which represents the diffusive effects of mesoscale eddies, is universally treated isotropically in general circulation models. Thus, only a single parameter, namely the eddy diffusivity, is used at each spatial and temporal location to impart the influence of mesoscale eddies on the resolved flow. However, the diffusive processes that the parameterization approximates, such as shear dispersion, potential vorticity barriers, oceanic turbulence, and instabilities, typically have strongly anisotropic characteristics. Generalizing the eddy diffusivity tensor for anisotropy extends the number of parameters to three: a major diffusivity, a minor diffusivity, and the principal axis of alignment. The Community Earth System Model (CESM) with the anisotropic eddy parameterization is used to test various choices for the newly introduced parameters, which are motivated by observations and the eddy transport tensor diagnosed from high resolution simulations. Simply setting the ratio of major to minor diffusivities to a value of five globally, while aligning the major axis along the flow direction, improves biogeochemical tracer ventilation and reduces global temperature and salinity biases. These effects can be improved even further by parameterizing the anisotropic transport mechanisms in the ocean.

  18. Inflationary Weak Anisotropic Model with General Dissipation Coefficient

    CERN Document Server

    Sharif, M

    2015-01-01

    This paper explores the dynamics of warm intermediate and logamediate inflationary models during weak dissipative regime with a general form of dissipative coefficient. We analyze these models within the framework of locally rotationally symmetric Bianchi type I universe. In both cases, we evaluate solution of inflaton, effective scalar potential, dissipative coefficient, slow-roll parameters, scalar and tensor power spectra, scalar spectral index and tensor to scalar ratio under slow-roll approximation. We constrain the model parameters using recent data and conclude that anisotropic inflationary universe model with generalized dissipation coefficient remains compatible with WMAP9, Planck and BICEP2 data.

  19. Cosmological Model Based on Gauge Theory of Gravity

    Institute of Scientific and Technical Information of China (English)

    WU Ning

    2005-01-01

    A cosmological model based on gauge theory of gravity is proposed in this paper. Combining cosmological principle and field equation of gravitational gauge field, dynamical equations of the scale factor R(t) of our universe can be obtained. This set of equations has three different solutions. A prediction of the present model is that, if the energy density of the universe is not zero and the universe is expanding, the universe must be space-flat, the total energy density must be the critical density ρc of the universe. For space-flat case, this model gives the same solution as that of the Friedmann model. In other words, though they have different dynamics of gravitational interactions, general relativity and gauge theory of gravity give the same cosmological model.

  20. Five-Dimensional Cosmological Model with Variable G and Λ

    Institute of Scientific and Technical Information of China (English)

    H. Baysal; (I). Yilmaz

    2007-01-01

    @@ Einstein's field equations with G and Λ both varying with time are considered in the presence of a perfect fluid for five-dimensional cosmological model in a way which conserves the energy momentum tensor of the matter content. Several sets of explicit solutions in the five-dimensional Kaluza-Klein type cosmological models with variable G and Λ are obtained. The diminishment of extra dimension with the evolution of the universe for the five-dimensional model is exhibited. The physical properties of the models are examined.

  1. Dvali-Gabadadze-Porrati Cosmology in Bianchi I brane

    CERN Document Server

    Ansari, Rizwan Ul Haq

    2008-01-01

    The dynamics of Dvali-Gabadadze-Porrati Cosmology (DGP) braneworld with an anisotropic brane is studied. The Friedmann equations and their solutions are obtained for two branches of anisotropic DGP model. The late time behavior in DGP cosmology is examined in the presence of anisotropy which shows that universe enters a self-accelerating phase much later compared to the isotropic case. The acceleration conditions and slow-roll conditions for inflation are obtained.

  2. A New Type of Isotropic Cosmological Model

    CERN Document Server

    Naboulsi, R

    2003-01-01

    The Einstein equations with quantum one-loop contributions of conformally covariant matter fields in the poresence of frac{1}{t^2} decaying matter density and decaying cosmological constant is used to study an isotropic homogenous FRW space-time. We show that scale factor depends on the sums of contributions from quantum fields with different spin values. For some specific values of this later, the Universe could be in an accelerated regime.

  3. Critical state model with anisotropic critical current density

    CERN Document Server

    Bhagwat, K V; Ravikumar, G

    2003-01-01

    Analytical solutions of Bean's critical state model with critical current density J sub c being anisotropic are obtained for superconducting cylindrical samples of arbitrary cross section in a parallel geometry. We present a method for calculating the flux fronts and magnetization curves. Results are presented for cylinders with elliptical cross section with a specific form of the anisotropy. We find that over a certain range of the anisotropy parameter the flux fronts have shapes similar to those for an isotropic sample. However, in general, the presence of anisotropy significantly modifies the shape of the flux fronts. The field for full flux penetration also depends on the anisotropy parameter. The method is extended to the case of anisotropic J sub c that also depends on the local field B, and magnetization hysteresis curves are presented for typical values of the anisotropy parameter for the case of |J sub c | that decreases exponentially with |B|.

  4. Modeling anisotropic elasticity of fluid membranes

    CERN Document Server

    Ramakrishnan, N; Ipsen, John H; 10.1002/mats.201100002

    2011-01-01

    The biological membrane, which compartmentalizes the cell and its organelles, exhibit wide variety of macroscopic shapes of varying morphology and topology. A systematic understanding of the relation of membrane shapes to composition, external field, environmental conditions etc. have important biological relevance. Here we review the triangulated surface model, used in the macroscopic simulation of membranes and the associated Monte Carlo (DTMC) methods. New techniques to calculate surface quantifiers, that will facilitate the study of additional in-plane orientational degrees of freedom, has been introduced. The mere presence of a polar and nematic fields in the ordered phase drives the ground state conformations of the membrane to a cylinder and tetrahedron respectively.

  5. Bianchi type string cosmological models in f(R,T) gravity

    Science.gov (United States)

    Sahoo, P. K.; Mishra, B.; Sahoo, Parbati; Pacif, S. K. J.

    2016-09-01

    In this work we have studied Bianchi-III and - VI 0 cosmological models with string fluid source in f( R, T) gravity (T. Harko et al., Phys. Rev. D 84, 024020 (2011)), where R is the Ricci scalar and T the trace of the stress energy-momentum tensor in the context of late time accelerating expansion of the universe as suggested by the present observations. The exact solutions of the field equations are obtained by using a time-varying deceleration parameter. The universe is anisotropic and free from initial singularity. Our model initially shows acceleration for a certain period of time and then decelerates consequently. Several dynamical and physical behaviors of the model are also discussed in detail.

  6. A fresh view of cosmological models describing very early Universe: general solution of the dynamical equations

    CERN Document Server

    Filippov, A T

    2016-01-01

    The dynamics of any spherical cosmology with a scalar field (`scalaron') coupling to gravity is described by the nonlinear second-order differential equations for two metric functions and the scalaron depending on the `time' parameter. The equations depend on the scalaron potential and on arbitrary gauge function that describes time parameterizations. This dynamical system can be integrated for flat, isotropic models with very special potentials. But, somewhat unexpectedly, replacing the independent variable $t$ by one of the metric functions allows us to completely integrate the general spherical theory in any gauge and with arbitrary potentials. In this approach, inflationary solutions can be easily identified, explicitly derived, and compared to the standard approximate expressions. This approach is also applicable to intrinsically anisotropic models with a massive vector field (`vecton') as well as to some non-inflationary models.

  7. Cosmological models with Gurzadyan-Xue dark energy

    International Nuclear Information System (INIS)

    The formula for dark energy density derived by Gurzadyan and Xue is the only formula which provides (without a free parameter) a value for dark energy density in remarkable agreement with current cosmological datasets, unlike numerous phenomenological scenarios where the corresponding value is postulated. This formula suggests the possibility of variation of physical constants such as the speed of light and the gravitational constant. Considering several cosmological models based on that formula and deriving the cosmological equations for each case, we show that in all models source terms appear in the continuity equation. So, on one hand, GX models make up a rich set covering a lot of currently proposed models of dark energy; on the other hand, they reveal hidden symmetries, with a particular role of the separatrix Ωm = 2/3, and link with the issue of the content of physical constants

  8. Cosmological and astrophysical constraints on tachyon dark energy models

    CERN Document Server

    Martins, C J A P

    2016-01-01

    Rolling tachyon field models are among the candidates suggested as explanations for the recent acceleration of the Universe. In these models the field is expected to interact with gauge fields and lead to variations of the fine-structure constant $\\alpha$. Here we take advantage of recent observational progress and use a combination of background cosmological observations of Type Ia supernovas and astrophysical and local measurements of $\\alpha$ to improve constraints on this class of models. We show that the constraints on $\\alpha$ imply that the field dynamics must be extremely slow, leading to a constraint of the present-day dark energy equation of state $(1+w_0)<2.4\\times10^{-7}$ at the $99.7\\%$ confidence level. Therefore current and forthcoming standard background cosmology observational probes can't distinguish this class of models from a cosmological constant, while detections of $\\alpha$ variations could possibly do so since they would have a characteristic redshift dependence.

  9. On Radiative Fluids in Anisotropic Spacetimes

    CERN Document Server

    Shogin, Dmitry

    2016-01-01

    We apply the second-order Israel-Stewart theory of relativistic fluid- and thermodynamics to a physically realistic model of a radiative fluid in a simple anisotropic cosmological background. We investigate the asymptotic future of the resulting cosmological model and review the role of the dissipative phenomena in the early Universe. We demonstrate that the transport properties of the fluid alone, if described appropriately, do not explain the presently observed accelerated expansion of the Universe. Also, we show that, in constrast to the mathematical fluid models widely used before, the radiative fluid does approach local thermal equilibrium at late times, although very slowly, due to the cosmological expansion.

  10. Magnetostriction simulation using anisotropic vector Preisach-type models

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. [Cairo Univ., Giza (Egypt). Electric Power and Machines Dept.; Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.

    1996-09-01

    Magnetic materials exhibiting gigantic magnetostriction, especially Terfenol, are currently being widely used in fine positioning and active vibration damping devices. By involving accurate magnetostriction models during design stages, precision of such devices may be significantly enhanced. In this paper a straight-forward approach that employs anisotropic vector Preisach-type hysteresis models in simulating field-stress effects on magnetic materials is presented. Formulation of the proposed model is given and its identification problem is solved. The presented approach has been numerically implemented and numerous digital computer simulations have been performed for Terfenol material. Sample simulation results as well as comparisons with experimentally observed magnetostriction curves are reported in the paper.

  11. Decaying Domain Walls in an Extended Gravity Model and Cosmology

    CERN Document Server

    Shiraishi, Kiyoshi

    2013-01-01

    We investigate cosmological consequences of an extended gravity model which belongs to the same class studied by Accetta and Steinhardt in an extended inflationary scenario. But we do not worry about inflation in our model; instead, we focus on a topological object formed during cosmological phase transitions. Although domain walls appear during first-order phase transitions such as QCD transition, they decay at the end of the phase transition. Therefore the "domain wall problem" does not exist in the suitable range of pameters and, on the contrary, the "fragments" of walls may become seeds of dark matter. A possible connection to "oscillating universe" model offered by Morikawa et al. is also discussed.

  12. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  13. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in f(R)-modified, massive, and einstein gravity

    International Nuclear Information System (INIS)

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stueckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaitre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painleve-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed. (orig.)

  14. Equivalent off-diagonal cosmological models and ekpyrotic scenarios in f(R)-modified, massive, and einstein gravity

    Energy Technology Data Exchange (ETDEWEB)

    Vacaru, Sergiu I. [University ' ' Al. I. Cuza' ' Iasi, Rector' s Department, Iasi (Romania)

    2015-04-01

    We reinvestigate how generic off-diagonal cosmological solutions depending, in general, on all spacetime coordinates can be constructed in massive and f-modified gravity using the anholonomic frame deformation method. New classes of locally anisotropic and (in-) homogeneous cosmological metrics are constructed with open and closed spatial geometries. By resorting to such solutions, we show that they describe the late time acceleration due to effective cosmological terms induced by nonlinear off-diagonal interactions, possible modifications of the gravitational action and graviton mass. The cosmological metrics and related Stueckelberg fields are constructed in explicit form up to nonholonomic frame transforms of the Friedmann-Lamaitre-Robertson-Walker (FLRW) coordinates. The solutions include matter, graviton mass, and other effective sources modeling nonlinear gravitational and matter field interactions with polarization of physical constants and deformations of metrics, which may explain dark energy and dark matter effects. However, we argue that it is not always necessary to modify gravity if we consider the effective generalized Einstein equations with nontrivial vacuum and/or non-minimal coupling with matter. Indeed, we state certain conditions when such configurations mimic interesting solutions in general relativity and modifications, for instance, when we can extract the general Painleve-Gullstrand and FLRW metrics. In a more general context, we elaborate on a reconstruction procedure for off-diagonal cosmological solutions which describe cyclic and ekpyrotic universes. Finally, open issues and further perspectives are discussed. (orig.)

  15. Secondary Cosmic Positrons in an Anisotropic Diffusion Model

    CERN Document Server

    Kappl, Rolf

    2016-01-01

    One aim of cosmic ray measurements is the search for possible signatures of annihilating or decaying dark matter. The so-called positron excess has attracted a lot of attention in this context. On the other hand it has been proposed that the data might challenge the established diffusion model for cosmic ray propagation. We investigate an anisotropic diffusion model by solving the corresponding equations analytically. Depending on the propagation parameters we find that the spectral features of the positron spectrum are affected significantly. We also discuss the influence of the anisotropy on hadronic spectra.

  16. The anisotropic material constitutive models for the human cornea.

    Science.gov (United States)

    Li, Long-yuan; Tighe, Brian

    2006-03-01

    This paper presents an anisotropic analysis model for the human cornea. The model is based on the assumption that the fibrils in the cornea are organised into lamellae, which may have preferential orientation along the superior-inferior and nasal-temporal directions, while the alignment of lamellae with different orientations is assumed to be random. Hence, the cornea can be regarded as a laminated composite shell. The constitutive equation describing the relationships between membrane forces, bending moments, and membrane strains, bending curvatures are derived. The influences of lamella orientations and the random alignment of lamellae on the stiffness coefficients of the constitutive equation are discussed. PMID:16426861

  17. Bianchi type IX string cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Shuchi Dave

    2001-04-01

    We have investigated Bianchi type IX string cosmological models in general relativity. To get a determinate solution, we have assumed a condition ρ= i.e. rest energy density for a cloud of strings is equal to the string tension density. The various physical and geometrical aspects of the models are also discussed.

  18. Phase-space dynamics of Bianchi IX cosmological models

    International Nuclear Information System (INIS)

    The complex phase-space dynamical behaviour of a class of Biachi IX cosmological models is discussed, as the chaotic gravitational collapse due Poincare's homoclinic phenomena, and the n-furcation of periodic orbits and tori in the phase space of the models. Poincare maps which show this behaviour are constructed merically and applications are discussed. (Author)

  19. Cosmological constant in SUGRA models and the multiple point principle

    International Nuclear Information System (INIS)

    The tiny order of magnitude of the cosmological constant is sought to be explained in a model involving the following ingredients: supersymmetry breaking in N=1 supergravity and the multiple point principle. We demonstrate the viability of this scenario in the minimal SUGRA model. (author)

  20. Dynamic of exact perturbations in Bianchi IX type cosmological models

    International Nuclear Information System (INIS)

    The dynamic of Bianchi IX type cosmological models is studied, after reducing Einstein equations to Hamiltonian system. Using the Melnikov method, the existence of chaos in the dynamic of these models is proved, and some numerical experiments are carried out. (M.C.K.)

  1. Cosmological models in Weyl geometrical scalar-tensor theory

    Science.gov (United States)

    Pucheu, M. L.; Alves Junior, F. A. P.; Barreto, A. B.; Romero, C.

    2016-09-01

    We investigate cosmological models in a recently proposed geometrical theory of gravity, in which the scalar field appears as part of the spacetime geometry. We extend the previous theory to include a scalar potential in the action. We solve the vacuum field equations for different choices of the scalar potential and give a detailed analysis of the solutions. We show that, in some cases, a cosmological scenario is found that seems to suggest the appearance of a geometric phase transition. We build a toy model, in which the accelerated expansion of the early Universe is driven by pure geometry.

  2. KINEMATIC WAVE PROPERTIES OF ANISOTROPIC DYNAMICS MODEL FOR TRAFFIC FLOW

    Institute of Scientific and Technical Information of China (English)

    姜锐; 吴清松; 朱祚金

    2002-01-01

    The analyses of kinematic wave properties of a new dynamics model for traffic flow are carried out. The model does not exhibit the problem that one characteristic speed is always greater than macroscopic traffic speed, and therefore satisfies the requirement that traffic flow is anisotropic. Linear stability analysis shows that the model is stable under certain condition and the condition is obtained. The analyses also indicate that the model has a hierarchy of first-and second-order waves, and allows the existence of both smooth traveling wave and shock wave. However, the model has a distinctive criterion of shock wave compared with other dynamics models, and the distinction makes the model more realistic in dealing with some traffic problems such as wrong-way travel analysis.

  3. Critical dynamics of anisotropic Bak-Sneppen model

    Science.gov (United States)

    Tirnakli, Ugur; Lyra, Marcelo L.

    2004-10-01

    A new damage spreading algorithm, which was introduced very recently in (Int. J. Mod. Phys. C 14 (2003) 85) has been applied to anisotropic Bak-Sneppen model of biological evolution. Since this new algorithm is able to capture both the short-time and long-time dynamics of extended systems which exhibits self-organized criticality, this analysis is expected to shed further light to the recent claim that the dynamics of such systems is similar to the one observed at the usual critical point of continuous phase-transitions and at the chaos threshold of low-dimensional dissipative maps.

  4. Anisotropic Third-Order Regularization for Sparse Digital Elevation Models

    KAUST Repository

    Lellmann, Jan

    2013-01-01

    We consider the problem of interpolating a surface based on sparse data such as individual points or level lines. We derive interpolators satisfying a list of desirable properties with an emphasis on preserving the geometry and characteristic features of the contours while ensuring smoothness across level lines. We propose an anisotropic third-order model and an efficient method to adaptively estimate both the surface and the anisotropy. Our experiments show that the approach outperforms AMLE and higher-order total variation methods qualitatively and quantitatively on real-world digital elevation data. © 2013 Springer-Verlag.

  5. Cosmological Dynamics of Interacting Logarithmic Entropy Corrected Holographic Dark Energy Model

    OpenAIRE

    Darabi, F.; Felegary, F.; Setare, M. R.

    2016-01-01

    We investigate the cosmological dynamics of interacting Logarithmic Entropy Corrected Holographic Dark Energy model with Cold Dark Matter. Fixed points are determined and their corresponding cosmological models are presented. Moreover, the dynamical properties of these fixed points are derived.

  6. Modeling Kleinian cosmology with electronic metamaterials

    CERN Document Server

    Figueiredo, David; Fumeron, Sébastien; Berche, Betrand; Moraes, Fernando

    2016-01-01

    This paper deals with the propagation of Klein-Gordon particles in flat background spacetime exhibiting discontinuous metric changes from a Lorentzian signature (-,+,+,+) to a Kleinian signature (-,+,+,-). A formal analogy with the propagation of electrons at a junction between an anisotropic semiconductor and an electronic metamaterial is presented. From that analogy, we study the dynamics of these particles falling onto planar boundary interfaces between these two families of media and show a mirror-like behavior for the particle flux. Finally, the case of a double junction of finite thickness is examined and the possibility of tunneling through it is discussed. A physical link between the metamaterial and the Kleinian slabs is found by calculating the time of flight of the respective traversing particles.

  7. Modeling Kleinian cosmology with electronic metamaterials

    Science.gov (United States)

    Figueiredo, David; Gomes, Felipe A.; Fumeron, Sébastien; Berche, Bertrand; Moraes, Fernando

    2016-08-01

    This paper deals with the propagation of Klein-Gordon particles in flat background spacetime exhibiting discontinuous metric changes from a Lorentzian signature (-,+,+,+) to a Kleinian signature (-,+,+,-) . A formal analogy with the propagation of electrons at a junction between an anisotropic semiconductor and an electronic metamaterial is presented. From that analogy, we study the dynamics of these particles falling onto planar boundary interfaces between these two families of media and show a mirror-like behavior for the particle flux. Finally, the case of a double junction of finite thickness is examined and the possibility of tunneling through it is discussed. A physical link between the metamaterial and the Kleinian slabs is found by calculating the time of flight of the respective traversing particles.

  8. Scale invariant cosmology II: model equations and properties

    CERN Document Server

    Maeder, Andre

    2016-01-01

    We want to establish the basic properties of a scale invariant cosmology, that also accounts for the hypothesis of scale invariance of the empty space at large scales. We write the basic analytical properties of the scale invariant cosmological models. The hypothesis of scale invariance of the empty space at large scale brings interesting simplifications in the scale invariant equations for cosmology. There is one new term, depending on the scale factor of the scale invariant cosmology, that opposes to gravity and favours an accelerated expansion. We first consider a zero-density model and find an accelerated expansion, going like t square. In models with matter present, the displacements due to the new term make a significant contribution Omega_l to the energy-density of the Universe, satisfying an equation of the form Omega_m + Omega_k + Omega_l = 1. Unlike the Friedman's models, there is a whole family of flat models (k=0) with different density parameters Omega_m smaller than 1. We examine the basic relat...

  9. A Dynamical System Analysis of Three Fluid cosmological Model

    CERN Document Server

    Mahata, Nilanjana

    2015-01-01

    In Friedman-Robertson-Walker flat spacetime, we consider a three fluid cosmological model which contains dark matter, dark energy and baryonic matter in the form of perfect fluid with a barotropic equation of state. Dark matter is taken in form of dust and dark energy is described by a scalar field with a potential $V(\\phi)$. Einstein's field equations are reduced to an autonomous dynamical system by suitable redefinition of basic variables. Considering exponential potential for the scalar field, critical points are obtained for the autonomous system. Finally stability of the critical points and cosmological implications are analyzed.

  10. Anisotropic Models for Globular Clusters, Galactic Bulges and Dark Halos

    CERN Document Server

    Nguyen, P H

    2013-01-01

    Spherical systems with a polytropic equation of state are of great interest in astrophysics. They are widely used to describe neutron stars, red giants, white dwarfs, brown dwarfs, main sequence stars, galactic halos and globular clusters of diverse sizes. In this paper we construct analytically a family of self-gravitating spherical models in the post-Newtonian approximation of general relativity. These models present interesting cusps in their density profiles which are appropriate for the modeling of galaxies and dark matter halos. The systems described here are anisotropic in the sense that their equiprobability surfaces in velocity space are non-spherical, leading to an overabundance of radial or circular orbits, depending on the parameters of the model in consideration. Among the family, we find the post-Newtonian generalization of the Plummer and Hernquist models. A close inspection of their equation of state reveals that these solutions interpolate smoothly between a polytropic sphere in the asymptoti...

  11. Comparison of cosmological models using standard rulers and candles

    Science.gov (United States)

    Li, Xiao-Lei; Cao, Shuo; Zheng, Xiao-Gang; Li, Song; Biesiada, Marek

    2016-05-01

    In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under the assumption of the spatial flatness of the Universe. As standard rulers, we used a data set comprised of 118 galactic scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Type Ia supernovae served as standard candles. Unlike most previous statistical studies involving strong lensing systems, we relaxed the assumption of a singular isothermal sphere (SIS) in favor of its generalization: the power-law mass density profile. Therefore, along with cosmological model parameters, we fitted the power law index and its first derivative with respect to the redshift (thus allowing for mass density profile evolution). It turned out that the best fitted γ parameters are in agreement with each other, irrespective of the cosmological model considered. This demonstrates that galactic strong lensing systems may provide a complementary probe to test the properties of dark energy. The fits for cosmological model parameters which we obtained are in agreement with alternative studies performed by other researchers. Because standard rulers and standard candles have different parameter degeneracies, a combination of standard rulers and standard candles gives much more restrictive results for cosmological parameters. Finally, we attempted an analysis based on model selection using information theoretic criteria (AIC and BIC). Our results support the claim that the cosmological constant model is still best and there is no (at least statistical) reason to prefer any other more complex model.

  12. Alternative Solutions to Bianchi Type-Ⅰ Cosmology

    Institute of Scientific and Technical Information of China (English)

    YI Ying; LI Fang-Yu

    2007-01-01

    @@ We present a class of new exact solutions in string cosmology theory, and the solutions describe a homogeneous but anisotropic plane-symmetric string universe within the framework of Bianchi type-Ⅰ cosmology. Some solutions previously discussed are included in the class of exact solutions as the special cases. Our result may provide further quantitative description and theoretical basis for the string cosmology model.

  13. Testing Cosmological Models with Type Ic Super Luminous Supernovae

    CERN Document Server

    Wei, Jun-Jie; Melia, Fulvio

    2015-01-01

    The use of type Ic Super Luminous Supernovae (SLSN Ic) to examine the cosmological expansion introduces a new standard ruler with which to test theoretical models. The sample suitable for this kind of work now includes 11 SLSNe Ic, which have thus far been used solely in tests involving $\\Lambda$CDM. In this paper, we broaden the base of support for this new, important cosmic probe by using these observations to carry out a one-on-one comparison between the $R_{\\rm h}=ct$ and $\\Lambda$CDM cosmologies. We individually optimize the parameters in each cosmological model by minimizing the $\\chi^{2}$ statistic. We also carry out Monte Carlo simulations based on these current SLSN Ic measurements to estimate how large the sample would have to be in order to rule out either model at a $\\sim 99.7\\%$ confidence level. The currently available sample indicates a likelihood of $\\sim$$70-80\\%$ that the $R_{\\rm h}=ct$ Universe is the correct cosmology versus $\\sim$$20-30\\%$ for the standard model. These results are suggest...

  14. TESTING NONSTANDARD COSMOLOGICAL MODELS WITH SNLS3 SUPERNOVA DATA AND OTHER COSMOLOGICAL PROBES

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhengxiang; Yu Hongwei [Department of Physics and Key Laboratory of Low Dimensional Quantum Structures and Quantum Control of the Ministry of Education, Hunan Normal University, Changsha, Hunan 410081 (China); Wu Puxun, E-mail: hwyu@hunnu.edu.cn [Center of Nonlinear Science and Department of Physics, Ningbo University, Ningbo, Zhejiang 315211 (China)

    2012-01-10

    We investigate the implications for some nonstandard cosmological models using data from the first three years of the Supernova Legacy Survey (SNLS3), assuming a spatially flat universe. A comparison between the constraints from the SNLS3 and those from other SN Ia samples, such as the ESSENCE, Union2, SDSS-II, and Constitution samples, is given and the effects of different light-curve fitters are considered. We find that analyzing SNe Ia with SALT2 or SALT or SiFTO can give consistent results and the tensions between different data sets and different light-curve fitters are obvious for fewer-free-parameters models. At the same time, we also study the constraints from SNLS3 along with data from the cosmic microwave background and the baryonic acoustic oscillations (CMB/BAO), and the latest Hubble parameter versus redshift (H(z)). Using model selection criteria such as {chi}{sup 2}/dof, goodness of fit, Akaike information criterion, and Bayesian information criterion, we find that, among all the cosmological models considered here ({Lambda}CDM, constant w, varying w, Dvali-Gabadadze-Porrati (DGP), modified polytropic Cardassian, and the generalized Chaplygin gas), the flat DGP is favored by SNLS3 alone. However, when additional CMB/BAO or H(z) constraints are included, this is no longer the case, and the flat {Lambda}CDM becomes preferred.

  15. Magnetized cosmological models in bimetric theory of gravitation

    Indian Academy of Sciences (India)

    S D Katore; R S Rane

    2006-08-01

    Bianchi type-III magnetized cosmological model when the field of gravitation is governed by either a perfect fluid or cosmic string is investigated in Rosen's [1] bimetric theory of gravitation. To complete determinate solution, the condition, viz., = (), where is a constant, between the metric potentials is used. We have assumed different equations of state for cosmic string [2] for the complete solution of the model. Some physical and geometrical properties of the exhibited model are discussed and studied.

  16. Efficient Multigrid Preconditioners for Anisotropic Problems in Geophysical Modelling

    CERN Document Server

    Dedner, Andreas; Scheichl, Robert

    2014-01-01

    Many problems in geophysical modelling require the efficient solution of highly anisotropic elliptic partial differential equations (PDEs) in "flat" domains. For example, in numerical weather- and climate-prediction an elliptic PDE for the pressure correction has to be solved at every time step in a thin spherical shell representing the global atmosphere. This elliptic solve can be one of the computationally most demanding components in semi-implicit semi-Lagrangian time stepping methods which are very popular as they allow for larger model time steps and better overall performance. With increasing model resolution, algorithmically efficient and scalable algorithms are essential to run the code under tight operational time constraints. We discuss the theory and practical application of bespoke geometric multigrid preconditioners for equations of this type. The algorithms deal with the strong anisotropy in the vertical direction by using the tensor-product approach originally analysed by B\\"{o}rm and Hiptmair ...

  17. Physical Models of Galaxy Formation in a Cosmological Framework

    CERN Document Server

    Somerville, Rachel S

    2014-01-01

    Modeling galaxy formation in a cosmological context presents one of the greatest challenges in astrophysics today, due to the vast range of scales and numerous physical processes involved. Here we review the current status of models that employ two leading techniques to simulate the physics of galaxy formation: semi-analytic models and numerical hydrodynamic simulations. We focus on a set of observational targets that describe the evolution of the global and structural properties of galaxies from roughly Cosmic High Noon ($z\\sim 2-3$) to the present. Although minor discrepancies remain, overall, models show remarkable convergence between different methods and make predictions that are in qualitative agreement with observations. Modelers seem to have converged on a core set of physical processes that are critical for shaping galaxy properties. This core set includes cosmological accretion, strong stellar-driven winds that are more efficient at low masses, black hole feedback that preferentially suppresses star...

  18. Evolution of Interacting Viscous Dark Energy Model in Einstein Cosmology

    Institute of Scientific and Technical Information of China (English)

    CHEN Ju-Hua; ZHOU Sheng; WANG Yong-Jiu

    2011-01-01

    We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model. By using the linearizing theory of the dynamical system, we find that, in our model,there exists a stable late time scaling solution which corresponds to the accelerating universe. We also find the unstable solution under some appropriate parameters. In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter. However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model. That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.%@@ We investigate the evolution of the viscous dark energy (DE) interacting with the dark matter (DM) in the Einstein cosmology model.By using the linearizing theory of the dynamical system, we find that, in our model, there exists a stable late time scaling solution which corresponds to the accelerating universe.We also find the unstable solution under some appropriate parameters.In order to alleviate the coincidence problem, some authors considered the effect of quantum correction due to the conform anomaly and the interacting dark energy with the dark matter.However, if we take into account the bulk viscosity of the cosmic fluid, the coincidence problem will be softened just like the interacting dark energy cosmology model.That is to say, both the non-perfect fluid model and the interacting the dark energy cosmic model can alleviate or soften the singularity of the universe.

  19. The models of cosmological inflation in the context of kinetic approximation

    Science.gov (United States)

    Fomin, I.

    2016-07-01

    In this work the building of models of cosmological inflation with approximate linear dependence of the scalar field kinetic energy on the state parameter is considered. The key parameters of cosmological perturbations are also calculated.

  20. Effective Orthorhombic Anisotropic Models for Wave field Extrapolation

    KAUST Repository

    Ibanez Jacome, Wilson

    2013-05-01

    Wavefield extrapolation in orthorhombic anisotropic media incorporates complicated but realistic models, to reproduce wave propagation phenomena in the Earth\\'s subsurface. Compared with the representations used for simpler symmetries, such as transversely isotropic or isotropic, orthorhombic models require an extended and more elaborated formulation that also involves more expensive computational processes. The acoustic assumption yields more efficient description of the orthorhombic wave equation that also provides a simplified representation for the orthorhombic dispersion relation. However, such representation is hampered by the sixth-order nature of the acoustic wave equation, as it also encompasses the contribution of shear waves. To reduce the computational cost of wavefield extrapolation in such media, I generate effective isotropic inhomogeneous models that are capable of reproducing the first-arrival kinematic aspects of the orthorhombic wavefield. First, in order to compute traveltimes in vertical orthorhombic media, I develop a stable, efficient and accurate algorithm based on the fast marching method. The derived orthorhombic acoustic dispersion relation, unlike the isotropic or transversely isotropic one, is represented by a sixth order polynomial equation that includes the fastest solution corresponding to outgoing P-waves in acoustic media. The effective velocity models are then computed by evaluating the traveltime gradients of the orthorhombic traveltime solution, which is done by explicitly solving the isotropic eikonal equation for the corresponding inhomogeneous isotropic velocity field. The inverted effective velocity fields are source dependent and produce equivalent first-arrival kinematic descriptions of wave propagation in orthorhombic media. I extrapolate wavefields in these isotropic effective velocity models using the more efficient isotropic operator, and the results compare well, especially kinematically, with those obtained from the

  1. Cosmological viability conditions for f(T) dark energy models

    Energy Technology Data Exchange (ETDEWEB)

    Setare, M.R.; Mohammadipour, N., E-mail: rezakord@ipm.ir, E-mail: N.Mohammadipour@uok.ac.ir [Department of Science, University of Kurdistan, Sanandaj (Iran, Islamic Republic of)

    2012-11-01

    Recently f(T) modified teleparallel gravity where T is the torsion scalar has been proposed as the natural gravitational alternative for dark energy. We perform a detailed dynamical analysis of these models and find conditions for the cosmological viability of f(T) dark energy models as geometrical constraints on the derivatives of these models. We show that in the phase space exists two cosmologically viable trajectory which (i) The universe would start from an unstable radiation point, then pass a saddle standard matter point which is followed by accelerated expansion de sitter point. (ii) The universe starts from a saddle radiation epoch, then falls onto the stable matter era and the system can not evolve to the dark energy dominated epoch. Finally, for a number of f(T) dark energy models were proposed in the more literature, the viability conditions are investigated.

  2. Anisotropic rock physics models for interpreting pore structures in carbonate reservoirs

    Institute of Scientific and Technical Information of China (English)

    Li Sheng-Jie; Shao Yu; Chen Xu-Qiang

    2016-01-01

    We developed an anisotropic effective theoretical model for modeling the elastic behavior of anisotropic carbonate reservoirs by combining the anisotropic self-consistent approximation and differential effective medium models. By analyzing the measured data from carbonate samples in the TL area, a carbonate pore-structure model for estimating the elastic parameters of carbonate rocks is proposed, which is a prerequisite in the analysis of carbonate reservoirs. A workfl ow for determining elastic properties of carbonate reservoirs is established in terms of the anisotropic effective theoretical model and the pore-structure model. We performed numerical experiments and compared the theoretical prediction and measured data. The result of the comparison suggests that the proposed anisotropic effective theoretical model can account for the relation between velocity and porosity in carbonate reservoirs. The model forms the basis for developing new tools for predicting and evaluating the properties of carbonate reservoirs.%♦Corresponding author: Li Sheng-Jie (Email: Richard@cup.edu.cn)

  3. Anisotropic damage coupled modeling of saturated porous rock

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    It is widely acknowledged that the natural rock mass is anisotropic and its failing type is also non-isotropic. An orthotropic elastic damaged model has been proposed in which the elastic deformation,the damaged deformation and irreversible deformation can be identified respectively. A second rank damage tensor is employed to characterize the induced damage and damage evolution related to the propagation conditions of microcracks. A specific form of the Gibbs free energy function is used to obtain the effective elastic stiffness and the limited scopes of damage parameters are suggested. The model’s parameter determination is proposed by virtue of conventional tri-axial test. Then,the proposed model is developed to simulate the coupled hydraulic mechanical responses and traction behaviors in different loading paths of porous media.

  4. Heterogeneous anisotropic complex structure gradual model and constitutive relation

    Institute of Scientific and Technical Information of China (English)

    李永; 宋健; 张志民

    2003-01-01

    Four new gradually delaminate models of the three-dimensional macro-/mesoscopic structure and delamination of the heterogeneous anisotropic composite (HAC) are set up by conducting research into its structure and performance. A general theory, which demonstrates the three-dimensional constitutive relation of the macro-/mesoscopic performance of this structure is further developed. The macroscopic expression of HAC is presented in terms of a Tanigawa delaminate homogeneous equivalent approach, the mesoscopic problems are analysed utilizing Eshelby-Mori-Tanaka theory, with the introduction of the representative volume elements of monolayer single unit cell and interlaminar double unit cells.According to the gradual continuity of the structure as a whole, great attention is given to the modelling and research of the interlaminar macroscopic and mesoscopic problems of HAC structure. Comparison with the existing solutions is made through calculation of typical cases.

  5. On black hole solutions in model with anisotropic fluid

    CERN Document Server

    Dehnen, H; Melnikov, V N

    2003-01-01

    A family of spherically symmetric solutions in the model with 1-component anisotropic fluid is considered. The metric of the solution depends on a parameter q > 0 relating radial pressure and the density and contains n -1 parameters corresponding to Ricci-flat ``internal space'' metrics. For q = 1 and certain equations of state the metric coincides with the metric of black brane solutions in the model with antisymmetric form. A family of black hole solutions corresponding to natural numbers q = 1,2, ... is singled out. Certain examples of solutions (e.g. containing for q =1 Reissner-Nordstr\\"{o}m, M2 and M5 black brane metrics) are considered. The post-Newtonian parameters beta and gamma corresponding to the 4-dimensional section of the metric are calculated.

  6. A Dark Energy Model in Kaluza-Klein Cosmology

    Science.gov (United States)

    Mukhopadhyay, Utpal; Chakraborty, Ipsita; Ray, Saibal; Usmani, A. A.

    2016-01-01

    We study a dynamic Λ model with varying gravitational constant G under the Kaluza-Klein cosmology. Physical features and the limitations of the present model have been explored and discussed. Solutions are found mostly in accordance with the observed features of the accelerating universe. Interestingly, signature flipping of the deceleration parameter is noticed and the present age of the Universe is also attainable under certain stringent conditions. We find that the time variation of gravitational constant is not permitted without vintage Λ.

  7. A Dark Energy Model in Kaluza-Klein Cosmology

    CERN Document Server

    Mukhopadhyay, Utpal; Ray, Saibal; Usmani, A A

    2014-01-01

    We study a dynamic $\\Lambda$ model with varying gravitational constant $G$ under the Kaluza-Klein cosmology. Physical features and the limitations of the present model have been explored and discussed. Solutions are found mostly in accordance with the observed features of the accelerating universe. Interestingly, signature flipping of the deceleration parameter is noticed and the present age of the Universe is also attainable under certain stringent conditions. We find that the time variation of gravitational constant is not permitted without vintage $\\Lambda$.

  8. Cosmological Gravitino Production in Gauge Mediated Supersymmetry Breaking Models

    OpenAIRE

    Choi, Kiwoon; Hwang, Kyuwan; Kim, Hang Bae; Lee, Taekoon

    1999-01-01

    We study the cosmological gravitino production in gauge mediated supersymmetry breaking models, while properly taking into account the existence of the messenger mass scale. It is found that for sizable parameter range of the model the messenger sector contribution leads to more stringent upper bound on the reheat temperature obtained from the condition that the universe should not be overclosed by relic gravitinos. However it turns out that in the limit of relatively low messenger scale and ...

  9. Cosmological model in 5D, stationarity, yes or no

    CERN Document Server

    Belayev, W B

    1999-01-01

    We consider cosmological model in 4+1 dimensions with variable scale factor in extra dimension and static external space. The time scale factor is changing. Variations of light velocity, gravity constant, mass and pressure are determined with four-dimensional projection of this space-time. Data obtained by space probes Viking on mission to Mars, Pioneer 10/11 and Ulysses are analyzed within the framework of this model.

  10. Bianchi type-V string cosmological models in general relativity

    Indian Academy of Sciences (India)

    Anil Kumar Yadav; Vineet Kumar Yadav; Lallan Yadav

    2011-04-01

    Bianchi type-V string cosmological models in general relativity are investigated. To get the exact solution of Einstein’s field equations, we have taken some scale transformations used by Camci et al [Astrophys. Space Sci. 275, 391 (2001)]. It is shown that Einstein’s field equations are solvable for any arbitrary cosmic scale function. Solutions for particular forms of cosmic scale functions are also obtained. Some physical and geometrical aspects of the models are discussed.

  11. Comparison of cosmological models using standard rulers and candles

    CERN Document Server

    Li, Xiaolei; Zheng, Xiaogang; Biesiada, Marek; Zhu, Zong-Hong

    2015-01-01

    In this paper, we used standard rulers and standard candles (separately and jointly) to explore five popular dark energy models under assumption of spatial flatness of the Universe. As standard rulers, we used a data set comprising 118 galactic-scale strong lensing systems (individual standard rulers if properly calibrated for the mass density profile) combined with BAO diagnostics (statistical standard ruler). Supernovae Ia served asstandard candles. Unlike in the most of previous statistical studies involving strong lensing systems, we relaxed the assumption of singular isothermal sphere (SIS) in favor of its generalization: the power-law mass density profile. Therefore, along with cosmological model parameters we fitted the power law index and its first derivative with respect to the redshift (thus allowing for mass density profile evolution). It turned out that the best fitted $\\gamma$ parameters are in agreement with each other irrespective of the cosmological model considered. This demonstrates that gal...

  12. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, M.S.; Wisselink, H.H.; Meinders, V.T.; Boogaard, van den A.H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  13. New Cosmological Model and Its Implications on Observational Data Interpretation

    Directory of Open Access Journals (Sweden)

    Vlahovic Branislav

    2013-09-01

    Full Text Available The paradigm of ΛCDM cosmology works impressively well and with the concept of inflation it explains the universe after the time of decoupling. However there are still a few concerns; after much effort there is no detection of dark matter and there are significant problems in the theoretical description of dark energy. We will consider a variant of the cosmological spherical shell model, within FRW formalism and will compare it with the standard ΛCDM model. We will show that our new topological model satisfies cosmological principles and is consistent with all observable data, but that it may require new interpretation for some data. Considered will be constraints imposed on the model, as for instance the range for the size and allowed thickness of the shell, by the supernovae luminosity distance and CMB data. In this model propagation of the light is confined along the shell, which has as a consequence that observed CMB originated from one point or a limited space region. It allows to interpret the uniformity of the CMB without inflation scenario. In addition this removes any constraints on the uniformity of the universe at the early stage and opens a possibility that the universe was not uniform and that creation of galaxies and large structures is due to the inhomogeneities that originated in the Big Bang.

  14. Reentrance of disorder in the anisotropic shuriken Ising model

    Science.gov (United States)

    Pohle, Rico; Benton, Owen; Jaubert, L. D. C.

    2016-07-01

    Frustration is often a key ingredient for reentrance mechanisms. Here we study the frustrated anisotropic shuriken Ising model, where it is possible to extend the notion of reentrance between disordered phases, i.e., in absence of phase transitions. By tuning the anisotropy of the lattice, we open a window in the phase diagram where magnetic disorder prevails down to zero temperature, in a classical analogy with a quantum critical point. In this region, the competition between multiple disordered ground states gives rise to a double crossover where both the low- and high-temperature regimes are less correlated than the intervening classical spin liquid. This reentrance of disorder is characterized by an entropy plateau and a multistep Curie law crossover. Our theory is developed based on Monte Carlo simulations, analytical Husimi-tree calculations and an exact decoration-iteration transformation. Its relevance to experiments, in particular, artificial lattices, is discussed.

  15. Constraints on cosmological models from lens redshift data

    CERN Document Server

    Cao, Shuo

    2011-01-01

    Strong lensing has developed into an important astrophysical tool for probing both cosmology and galaxies (their structures, formations, and evolutions). Now several hundreds of strong lens systems produced by massive galaxies have been discovered, which may form well-defined samples useful for statistical analyses. To collect a relatively complete lens redshift data from various large systematic surveys of gravitationally lensed quasars and check the possibility to use it as a future complementarity to other cosmological probes. We use the distribution of gravitationally-lensed image separations observed in the Cosmic Lens All-Sky Survey (CLASS), the PMN-NVSS Extragalactic Lens Survey (PANELS), the Sloan Digital Sky Survey (SDSS) and other surveys, considering a singular isothermal ellipsoid (SIE) model for galactic potentials as well as improved new measurements of the velocity dispersion function of galaxies based on the SDSS DR5 data and recent semi-analytical modeling of galaxy formation, to constrain tw...

  16. First cosmological constraints on the Superfluid Chaplygin gas model

    CERN Document Server

    Lazkoz, Ruth; Salzano, Vincenzo

    2012-01-01

    In this work we set observational constraints of the Superfluid Chaplygin gas model, which gives a unified description of the dark sector of the Universe as a Bose-Einstein condensate (BEC) that behaves as dark energy (DE) while it is in the ground state and as dark matter (DM) when it is in the excited state. We first show and perform the various steps leading to a form of the equations suitable for the observational tests to be carried out. Then, by using a Markov Chain Monte Carlo (MCMC) code, we constrain the model with a sample of cosmology-independent long gamma-ray bursts (LGRBs) calibrated using their Type I Fundamental Plane, as well as the Union2.1 set and observational Hubble parameter data. In this analysis, using our cosmological constraints, we sketch the effective equation of state parameter and deceleration parameter, and we also obtain the redshift of the transition from deceleration to acceleration: $z_t$.

  17. A cosmological concordance model with dynamical vacuum term

    Energy Technology Data Exchange (ETDEWEB)

    Alcaniz, J.S., E-mail: alcaniz@on.br [Observatorio Nacional, Rio de Janeiro, RJ (Brazil); Borges, H.A., E-mail: humberto@ufba.br [Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA (Brazil); Carneiro, S., E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA (Brazil); Fabris, J.C., E-mail: fabris@pq.cnpq.br [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitoria, ES (Brazil); Pigozzo, C., E-mail: kssiobr@gmail.com [Instituto de Fisica, Universidade Federal da Bahia, Salvador, BA (Brazil); Zimdahl, W., E-mail: zimdahl@online.de [Departamento de Fisica, Universidade Federal do Espirito Santo, Vitoria, ES (Brazil)

    2012-09-17

    We demonstrate that creation of dark-matter particles at a constant rate implies the existence of a cosmological term that decays linearly with the Hubble rate. We discuss the cosmological model that arises in this context and test it against observations of the first acoustic peak in the cosmic microwave background (CMB) anisotropy spectrum, the Hubble diagram for supernovas of type Ia (SNIa), the distance scale of baryonic acoustic oscillations (BAO) and the distribution of large scale structures (LSS). We show that a good concordance is obtained, albeit with a higher value of the present matter abundance than in the {Lambda}CDM model. We also comment on general features of the CMB anisotropy spectrum and on the cosmic coincidence problem.

  18. Hamiltonian BFV-BRST theory of closed quantum cosmological models

    CERN Document Server

    Kamenshchik, A Yu

    1996-01-01

    We introduce and study a new discrete basis of gravity constraints by making use of harmonic expansion for closed cosmological models. The full set of constraints is splitted into area-preserving spatial diffeomorphisms, forming closed subalgebra, and Virasoro-like generators. Operatorial Hamiltonian BFV-BRST quantization is performed in the framework of perturbative expansion in the dimensionless parameter which is a positive power of the ratio of Planckian volume to the volume of the Universe. For the (N+1) - dimensional generalization of stationary closed Bianchi-I cosmology the nilpotency condition for the BRST operator is examined in the first quantum approximation. It turns out, that certain relationship between dimensionality of the space and the spectrum of matter fields emerges from the requirement of quantum consistency of the model.

  19. On multidimensional solutions in the Einstein-Gauss-Bonnet model with a cosmological term

    CERN Document Server

    Kobtsev, A A; Ernazarov, K K

    2016-01-01

    A D-dimensional gravitational model with Gauss-Bonnet and cosmological term is considered. When ansatz with diagonal cosmological metrics is adopted, we overview recent solutions for zero cosmological term and find new examples of solutions for non-zero cosmological term and D = 8 with exponential dependence of scale factors which describe an expansion of our 3-dimensional factor-space and contraction of 4-dimensional internal space.

  20. Perturbations of Kantowski-Sachs models with a cosmological constant

    CERN Document Server

    Keresztes, Zoltán; Bradley, Michael; Dunsby, Peter K S; Gergely, László Á

    2013-01-01

    We investigate perturbations of Kantowski-Sachs models with a positive cosmological constant, using the gauge invariant 1+3 and 1+1+2 covariant splits of spacetime together with a harmonic decomposition. The perturbations are assumed to be vorticity-free and of perfect fluid type, but otherwise include general scalar, vector and tensor modes. In this case the set of equations can be reduced to six evolution equations for six harmonic coefficients.

  1. Canonical and path integral quantization of string cosmology models

    OpenAIRE

    Cavaglia, M; Ungarelli, C.

    1999-01-01

    We discuss the quantisation of a class of string cosmology models that are characterized by scale factor duality invariance. We compute the amplitudes for the full set of classically allowed and forbidden transitions by applying the reduce phase space and the path integral methods. We show that these approaches are consistent. The path integral calculation clarifies the meaning of the instanton-like behaviour of the transition amplitudes that has been first pointed out in previous investigati...

  2. Wave functions in SUSY cosmological models with matter

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz, C. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Rosales, J.J. [Facultad de Ingenieria Mecanica Electrica y Electronica, Universidad de Guanajuato, Prolongacion Tampico 912, Bellavista, Salamanca, Guanajuato (Mexico); Socorro, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)]. E-mail: socorro@fisica.ugto.mx; Torres, J. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico); Tkach, V.I. [Instituto de Fisica de la Universidad de Guanajuato, A.P. E-143, C.P. 37150, Leon, Guanajuato (Mexico)

    2005-06-06

    In this work we consider the n=2 supersymmetric superfield approach for the FRW cosmological model and the corresponding term of matter content, perfect fluid with barotropic state equation p={gamma}{rho}. We are able to obtain a normalizable wave function (at zero energy) of the universe. Besides, the mass parameter spectrum is found for the closed FRW case in the Schrodinger picture, being similar to those obtained by other methods, using a black hole system.

  3. Cosmological Structure Formation in Decaying Dark Matter Models

    CERN Document Server

    Cheng, Dalong; Tang, Jiayu

    2015-01-01

    The standard cold dark matter (CDM) model predicts too many and too dense small structures. We consider an alternative model that the dark matter undergoes two-body decays with cosmological lifetime $\\tau$ into only one type of massive daughters with non-relativistic recoil velocity $V_k$. This decaying dark matter model (DDM) can suppress the structure formation below its free-streaming scale at time scale comparable to $\\tau$. Comparing with warm dark matter (WDM), DDM can better reduce the small structures while being consistent with high redshfit observations. We study the cosmological structure formation in DDM by performing self-consistent N-body simulations and point out that cosmological simulations are necessary to understand the DDM structures especially on non-linear scales. We propose empirical fitting functions for the DDM suppression of the mass function and the mass-concentration relation, which depend on the decay parameters lifetime $\\tau$ and recoil velocity $V_k$, and redshift. The fitting ...

  4. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANGXing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtain a determinate model, an equation of state ρ=kλ and a relation between metric potentials B = Cn are assumed. The physical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuously expanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy density is ζ∝ρ1/2.

  5. Bianchi Type Ⅲ String Cosmological Model with Bulk Viscosity

    Institute of Scientific and Technical Information of China (English)

    WANG Xing-Xiang

    2004-01-01

    The Bianchi type Ⅲ cosmological model for a cloud string with bulk viscosity are presented. To obtaina determinate model, an equation of state p = κλ and a relation between metric potentials B = Cn are assumed. Thephysical and geometric aspects of the model are also discussed. The model describes a shearing non-rotating continuouslyexpanding universe with a big-bang start, and the relation between the coefficient of bulk viscosity and the energy densityis ζ∝1 p1/2.

  6. Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models

    CERN Document Server

    Nwankwo, Anthony; Ishak, Mustapha

    2010-01-01

    The Szekeres inhomogeneous models can be used to model the true lumpy universe that we observe. This family of exact solutions to Einstein's equations was originally derived with a general metric that has no symmetries. In this work, we perform analytical integrations of the non-radial null geodesics and derive new expressions for the affinely parameterized null tangent vector components, the area (and luminosity) distance and the redshift in these models. This work does not assume spherical or axial symmetry. The general results should be useful for comparisons of the general Szekeres inhomogeneous models to current and future cosmological data.

  7. On spherically symmetric singularity-free models in relativistic cosmology

    Indian Academy of Sciences (India)

    Ramesh Tikekar

    2000-10-01

    The introduction of time dependence through a scale factor in a non-conformally flat static cosmological model whose spacetime can be embedded in a five demensional flat spacetime is shown to give rise to two spherical models of universe filled with perfect fluid acompannied with radial heat flux without any Big Bang type singularity. The first model describes an ever existing universe which witnesses a transition from state of contraction to that of ever expansion. The second model represents a universe oscillating between two regular states.

  8. Antiproton Flux in Cosmic Ray Propagation Models with Anisotropic Diffusion

    CERN Document Server

    Grajek, Phillip

    2010-01-01

    Recently a cosmic ray propagation model has been introduced, where anisotropic diffusion is used as a mechanism to allow for $\\mathcal{O}(100)$ km/s galactic winds. This model predicts a reduced antiproton background flux, suggesting an excess is being observed. We implement this model in GALPROP v50.1 and perform a $\\chi^2$ analysis for B/C, $^{10}$Be/$^{9}$Be, and the recent PAMELA $\\bar{p}/p$ datasets. By introducing a power-index parameter $\\alpha$ that dictates the dependence of the diffusion coefficient $D_{xx}$ on height $|z|$ away from the galactic plane, we confirm that isotropic diffusion models with $\\alpha=0$ cannot accommodate high velocity convective winds suggested by ROSAT, while models with $\\alpha=1$ ($D_{xx}\\propto |z|$) can give a very good fit. A fit to B/C and $^{10}$Be/$^{9}$Be data predicts a lower $\\bar{p}/p$ flux ratio than the PAMELA measurement at energies between approximately 2 GeV to 20 GeV. A combined fit including in addition the $\\bar{p}/p$ data is marginal, suggesting only a...

  9. Cosmology of generalized modified gravity models

    Science.gov (United States)

    Carroll, Sean M.; de Felice, Antonio; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-03-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the Universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  10. The Cosmology of Generalized Modified Gravity Models

    CERN Document Server

    Carroll, S M; Duvvuri, V; Easson, D A; Trodden, M; Turner, M S; Carroll, Sean M.; Felice, Antonio De; Duvvuri, Vikram; Easson, Damien A.; Trodden, Mark; Turner, Michael S.

    2005-01-01

    We consider general curvature-invariant modifications of the Einstein-Hilbert action that become important only in regions of extremely low space-time curvature. We investigate the far future evolution of the universe in such models, examining the possibilities for cosmic acceleration and other ultimate destinies. The models generically possess de Sitter space as an unstable solution and exhibit an interesting set of attractor solutions which, in some cases, provide alternatives to dark energy models.

  11. Renormalization group approach to causal bulk viscous cosmological models

    International Nuclear Information System (INIS)

    The renormalization group method is applied to the study of homogeneous and flat Friedmann-Robertson-Walker type universes, filled with a causal bulk viscous cosmological fluid. The starting point of the study is the consideration of the scaling properties of the gravitational field equations, the causal evolution equation of the bulk viscous pressure and the equations of state. The requirement of scale invariance imposes strong constraints on the temporal evolution of the bulk viscosity coefficient, temperature and relaxation time, thus leading to the possibility of obtaining the bulk viscosity coefficient-energy density dependence. For a cosmological model with bulk viscosity coefficient proportional to the Hubble parameter, we perform the analysis of the renormalization group flow around the scale-invariant fixed point, thereby obtaining the long-time behaviour of the scale factor

  12. SN1987A-Neutrino emission from Supernova': in Dynamic universe model of cosmology

    Science.gov (United States)

    Naga Parameswara Gupta, Satyavarapu

    SN1987A-Neutrino emission from supernova before the star bursts' is an important discovery, when viewed from `Dynamic universe model of cosmology' point of view. In OMEG05, we have successfully presented the reasons for calculation error called `missing mass' in an inhomoge-neous, anisotropic and multi-body Dynamic universe Model, where this error is not occurring. But there are some new voices that say about generation of some flavors of neutrinos during Bigbang. We find from SN1987A Neutrino generation covers all flavors. Remaining flavors of Neutrinos are generated from sun and stars. This covers the whole spectrum. This paper covers all these aspects. And other earlier results by Dynamic Universe Model 1. Offers Singularity free solutions 2. Non-collapsing Galaxy structures 3. Solving Missing mass in Galaxies, and it finds reason for Galaxy circular velocity curves. . . . 4. Blue shifted and red shifted Galaxies co-existence. . . 5. Explains the force behind expansion of universe. 6. Explains the large voids and non-uniform matter densities. 7. Explains the Pioneer anomaly 8. Predicts the trajectory of New Horizons satellite. 9 Jeans swindle test 10. Existence of large number of blue shifted Galaxies `SITA Simulations' software was developed about 18 years back for Dynamic Universe Model of Cosmology. It is based on Newtonian physics. It is Classical singularity free N-body tensor solution to the old problem announced by King Oscar II and tried by Poincare in year AD1888 for 133 masses, tested extensively for so many years. This was developed on 486 based PC of those days; the same software was used repeatedly for so many years for solving different Physical problems on Different PCs and Laptops. It is based on Dynamic Universe Model's mathematical back ground.

  13. The Qualitative and Numerical Analysis of the Cosmological Model Based on Phantom Scalar Field with Self

    CERN Document Server

    Ignat'ev, Yu G

    2016-01-01

    In this paper we investigate the asymptotic behavior of the cosmological model based on phantom scalar field on the ground of qualitative analysis of the system of the cosmological model's differential equations and show that as opposed to models with classical scalar field, such models have stable asymptotic solutions with constant value of the potential both in infinite past and infinite future. We also develop numerical models of the cosmological evolution models with phantom scalar field in this paper. {\\bf keywords}: cosmological model, phantom scalar field, quality analysis, asymptotic behavior, numerical simulation, numerical gravitation.\\\\ {\\bf PACS}: 04.20.Cv, 98.80.Cq, 96.50.S 52.27.Ny

  14. Anisotropic solutions in f(R) Gravity

    CERN Document Server

    Tripathy, S K

    2016-01-01

    Anisotropic cosmological models are investigated in the frame work of $f(R)$ gravity in the metric formalism. Plane symmetric models are considered to incorporate anisotropy in the expansion rates along different spatial directions. The anisotropy in expansion rates are assumed to be maintained throughout the cosmic evolution. Two accelerating models are constructed by considering different functional forms for f(R). The viability of these models are tested through a stability analysis.

  15. Anisotropic Effects on Constitutive Model Parameters of Aluminum Alloys

    Science.gov (United States)

    Brar, Nachhatter; Joshi, Vasant

    2011-06-01

    Simulation of low velocity impact on structures or high velocity penetration in armor materials heavily rely on constitutive material models. The model constants are required input to computer codes (LS-DYNA, DYNA3D or SPH) to accurately simulate fragment impact on structural components made of high strength 7075-T651 aluminum alloys. Johnson-Cook model constants determined for Al7075-T651 alloy bar material failed to simulate correctly the penetration into 1' thick Al-7075-T651plates. When simulations go well beyond minor parameter tweaking and experimental results are drastically different it is important to determine constitutive parameters from the actual material used in impact/penetration experiments. To investigate anisotropic effects on the yield/flow stress of this alloy we performed quasi-static and high strain rate tensile tests on specimens fabricated in the longitudinal, transverse, and thickness directions of 1' thick Al7075-T651 plate. Flow stresses at a strain rate of ~1100/s in the longitudinal and transverse direction are similar around 670MPa and decreases to 620 MPa in the thickness direction. These data are lower than the flow stress of 760 MPa measured in Al7075-T651 bar stock.

  16. Anisotropic magnetoresistivity in structured elastomer composites: modelling and experiments.

    Science.gov (United States)

    Mietta, José Luis; Tamborenea, Pablo I; Martin Negri, R

    2016-08-14

    A constitutive model for the anisotropic magnetoresistivity in structured elastomer composites (SECs) is proposed. The SECs considered here are oriented pseudo-chains of conductive-magnetic inorganic materials inside an elastomer organic matrix. The pseudo-chains are formed by fillers which are simultaneously conductive and magnetic dispersed in the polymer before curing or solvent evaporation. The SEC is then prepared in the presence of a uniform magnetic field, referred to as Hcuring. This procedure generates the pseudo-chains, which are preferentially aligned in the direction of Hcuring. Electrical conduction is present in that direction only. The constitutive model for the magnetoresistance considers the magnetic pressure, Pmag, induced on the pseudo-chains by an external magnetic field, H, applied in the direction of the pseudo-chains. The relative changes in conductivity as a function of H are calculated by evaluating the relative increase of the electron tunnelling probability with Pmag, a magneto-elastic coupling which produces an increase of conductivity with magnetization. The model is used to adjust experimental results of magnetoresistance in a specific SEC where the polymer is polydimethylsiloxane, PDMS, and fillers are microparticles of magnetite-silver (referred to as Fe3O4[Ag]). Simulations of the expected response for other materials in both superparamagnetic and blocked magnetic states are presented, showing the influence of the Young's modulus of the matrix and filler's saturation magnetization. PMID:27418417

  17. 2+1 dimensional loop quantum cosmology of Bianchi I models

    CERN Document Server

    Ding, You

    2016-01-01

    We study the anisotropic Bianchi I loop quantum cosmology in 2+1 dimensions. Both the $\\mubar$ and $\\mubar'$ schemes are considered in the present paper and the following expected results are established: (i) the massless scalar field again play the role of emergent time variables and serves as an internal clock; (ii) By imposing the fundamental discreteness of length operator, the total Hamiltonian constraint is obtained and gives rise the evolution as a difference equation; and (iii) the exact solutions of Friedmann equation are constructed rigorously for both classical and effective level. The investigation extends the domain of validity of loop quantum cosmology to beyond the four dimensions.

  18. Models for Type Ia Supernovae and Cosmology

    CERN Document Server

    Höflich, P

    1997-01-01

    From the spectra and light curves it is clear that SNIa events are thermonuclear explosions of white dwarfs. However, details of the explosion are highly under debate. Here, we present detailed models which are consistent with respect to the explosion mechanism, the optical and infrared light curves, and the spectral evolution. This leaves the description of the burning front and the structure of the white dwarf as the only free parameters. The explosions are calculated using one-dimensional Lagrangian codes including nuclear networks. Subsequently, optical and IR-LCs are constructed. Detailed NLTE-spectra are computed for several instants of time using the density, chemical and luminosity structure resulting from the LCs. Different models for the thermonuclear explosion are discussed including detonations, deflagrations, delayed detonations, pulsating delayed detonations (PDD) and helium detonations. Comparisons between theoretical and observed LCs and spectra provide an insight into details of the explosion...

  19. Constraining interacting dark energy models with latest cosmological observations

    Science.gov (United States)

    Xia, Dong-Mei; Wang, Sai

    2016-11-01

    The local measurement of H0 is in tension with the prediction of Λ cold dark matter model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on cosmic microwave background, the baryon acoustic oscillation, large-scale structure, supernovae, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  20. Constraining interacting dark energy models with latest cosmological observations

    Science.gov (United States)

    Xia, Dong-Mei; Wang, Sai

    2016-08-01

    The local measurement of H0 is in tension with the prediction of ΛCDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, H(z) and H0 to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The H0 tension can be moderately alleviated, but not totally released.

  1. Constraining interacting dark energy models with latest cosmological observations

    CERN Document Server

    Xia, Dong-Mei

    2016-01-01

    The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not totally released.

  2. Theoretical aspects in the study of inhomogeneous cosmological models

    International Nuclear Information System (INIS)

    A covariant formalism based on the existence of a 4-velocity vector field is developed in order to understand the geometric and physical properties of inhomogeneous cosmological models. We discuss local kinematics and observations along neighboring fundamental observers comoving along this field. The formalism yields a nice derivation of the standard homogeneous Friedmann-Lemaitre-Robertson-Walker models based on demanding local isotropy for all fundamental observers. We also examine various energy-momentum tensors, corresponding to thermodynamical fluids and to general fluid mixtures with different 4-velocities. (Author)

  3. Constraining interacting dark energy models with latest cosmological observations

    OpenAIRE

    Xia, Dong-Mei; Wang, Sai

    2016-01-01

    The local measurement of $H_0$ is in tension with the prediction of $\\Lambda$CDM model based on the Planck data. This tension may imply that dark energy is strengthened in the late-time Universe. We employ the latest cosmological observations on CMB, BAO, LSS, SNe, $H(z)$ and $H_0$ to constrain several interacting dark energy models. Our results show no significant indications for the interaction between dark energy and dark matter. The $H_0$ tension can be moderately alleviated, but not tota...

  4. Redshift remapping and cosmic acceleration in dark-matter-dominated cosmological models

    CERN Document Server

    Wojtak, Radosław

    2016-01-01

    The standard relation between the cosmological redshift and cosmic scale factor underlies cosmological inference from virtually all kinds of cosmological observations, leading to the emergence of the LambdaCDM cosmological model. This relation is not a fundamental theory and thus observational determination of this function (redshift remapping) should be regarded as an insightful alternative to holding its standard form in analyses of cosmological data. Here we present non-parametric reconstructions of redshift remapping in dark-matter-dominated models and constraints on cosmological parameters from a joint analysis of all primary cosmological probes including the local measurement of the Hubble constant, Type Ia supernovae, baryonic acoustic oscillations (BAO), Planck observations of the cosmic microwave background (CMB) radiation (temperature power spectrum) and cosmic chronometers. The reconstructed redshift remapping points to an additional boost of redshift operating in late epoch of cosmic evolution, bu...

  5. Qualitative Analysis and Numerical Simulation of Equations of the Standard Cosmological Model: $\\Lambda\

    CERN Document Server

    Ignat'ev, Yurii

    2016-01-01

    On the basis of qualitative analysis of the system of differential equations of the standard cosmological model it is shown that in the case of zero cosmological constant this system has a stable center corresponding to zero values of potential and its derivative at infinity. Thus, the cosmological model based on single massive classical scalar field in infinite future would give a flat Universe. The carried out numerical simulation of the dynamic system corresponding to the system of Einstein - Klein - Gordon equations showed that at great times of the evolution the invariant cosmological acceleration has an oscillating character and changes from $-2$ (braking), to $+1$ (acceleration). Average value of the cosmological acceleration is negative and is equal to $-1/2$. Oscillations of the cosmological acceleration happen on the background of rapidly falling Hubble constant. In the case of nonzero value of the cosmological constant depending on its value there are possible three various qualitative behavior typ...

  6. Constraining the $\\Lambda$CDM and Galileon models with recent cosmological data

    CERN Document Server

    Neveu, J; Astier, P; Besançon, M; Guy, J; Möller, A; Babichev, E

    2016-01-01

    The Galileon theory belongs to the class of modified gravity models that can explain the late-time accelerated expansion of the Universe. In previous works, cosmological constraints on the Galileon model were derived, both in the uncoupled case and with a disformal coupling of the Galileon field to matter. There, we showed that these models agree with the most recent cosmological data. In this work, we used updated cosmological data sets to derive new constraints on Galileon models, including the case of a constant conformal Galileon coupling to matter. We also explored the tracker solution of the uncoupled Galileon model. After updating our data sets, especially with the latest \\textit{Planck} data and BAO measurements, we fitted the cosmological parameters of the $\\Lambda$CDM and Galileon models. The same analysis framework as in our previous papers was used to derive cosmological constraints, using precise measurements of cosmological distances and of the cosmic structure growth rate. We showed that all te...

  7. Scale invariant cosmology III: dynamical models and comparisons with observations

    CERN Document Server

    Maeder, Andre

    2016-01-01

    We examine the properties of the scale invariant cosmological models, also making the specific hypothesis of the scale invariance of the empty space at large scales. Numerical integrations of the cosmological equations for different values of the curvature parameter k and of the density parameter Omega_m are performed. We compare the dynamical properties of the models to the observations at different epochs. The main numerical data and graphical representations are given for models computed with different curvatures and density parameters. The models with non-zero density start explosively with first a braking phase followed by a continuously accelerating expansion. The comparison of the models with the recent observations from supernovae SN Ia, BAO and CMB data from Planck 2015 shows that the scale invariant model with k=0 and Omega_m=0.30 very well fits the observations in the usual Omega_m vs. Omega_Lambda plane and consistently accounts for the accelerating expansion or dark energy. The expansion history ...

  8. Modelling of Charged anisotropic compact stars with EOS $\\rho=f(p)$

    CERN Document Server

    Maurya, S K

    2016-01-01

    Charged compact star models have been determined for anisotropic fluid distribution. We have solved the Einstein's- Maxwell field equations to construct the charged compact star models by using radial pressure, metric function $e^{\\lambda}$ and electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like, causality condition, mass-radius relation and stability of the solution (via. adiabatic index, TOV equations and Herrera cracking concept). It is observed that the present charged anisotropic compact star is compatible with the star PSR 1937+21. However we also presented the EOS $\\rho=f(p)$ for present charged compact star model.

  9. A comparison of cosmological models using strong gravitational lensing galaxies

    International Nuclear Information System (INIS)

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the Rh=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out Rh=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead Rh=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the Rh=ct universe eventually emerge as the correct

  10. A comparison of cosmological models using strong gravitational lensing galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Melia, Fulvio; Wei, Jun-Jie; Wu, Xue-Feng, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn, E-mail: fmelia@email.arizona.edu, E-mail: jjwei@pmo.ac.cn, E-mail: xfwu@pmo.ac.cn [Purple Mountain Observatory, Chinese Academy of Sciences, Nanjing 210008 (China)

    2015-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems from the Sloan Lens ACS and Lens Structure and Dynamics surveys suitable for this analysis, and carry out a one-on-one comparison between the standard model, ΛCDM, and the R{sub h}=ct universe, which has thus far been favored by the application of model selection tools to other kinds of data. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution modeled as a singular isothermal ellipsoid, though with some scatter among individual sources. Future work can greatly improve the precision of these measurements by focusing on lensing systems with galaxies as close as possible to the background sources. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule out either model at a ∼99.7% confidence level. We find that if the real cosmology is ΛCDM, a sample of ∼200 strong gravitational lenses would be sufficient to rule out R{sub h}=ct at this level of accuracy, while ∼300 strong gravitational lenses would be required to rule out ΛCDM if the real universe were instead R{sub h}=ct. The difference in required sample size reflects the greater number of free parameters available to fit the data with ΛCDM. We point out that, should the R{sub h}=ct universe eventually

  11. Anisotropic universe with anisotropic sources

    Energy Technology Data Exchange (ETDEWEB)

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha, E-mail: aluri@iucaa.ernet.in, E-mail: sukanta@iiserb.ac.in, E-mail: manabendra@iiserb.ac.in, E-mail: snigdha@iiserb.ac.in [Department of Physics, IISER Bhopal, Bhopal - 462023 (India)

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  12. Experimental Characterization and Micromechanical Modelling of Anisotropic Slates

    Science.gov (United States)

    Chen, Yi-Feng; Wei, Kai; Liu, Wu; Hu, Shao-Hua; Hu, Ran; Zhou, Chuang-Bing

    2016-09-01

    Laboratory tests were performed in this study to examine the anisotropic physical and mechanical properties of the well-foliated Jiujiang slate. The P-wave velocity and the apparent Young's modulus were found to increase remarkably with the foliation angle θ, and the compressive strength at any confining pressure varies in a typical U-shaped trend, with the maximum strength consistently attained at θ = 90° and the minimum strength at θ = 45°. The slate samples failed in three typical patterns relevant to the foliation angle, i.e. shear failure across foliation planes for θ ≤ 15°, sliding along foliation planes for 30° ≤ θ ≤ 60° and axial splitting along foliation planes for θ = 90°. The stress-strain curves at any given foliation angle and confining pressure display an initial nonlinear phase, a linear elastic phase, a crack initiation and growth phase, as well as a rapid stress drop phase and a residual stress phase. Based on the experimental evidences, a micromechanical damage-friction model was proposed for the foliated slate by simply modelling the foliation planes as a family of elastic interfaces and by characterizing the interaction between the foliation planes and the rock matrix with a nonlinear damage evolution law associated with the inclination angle. The proposed model was applied to predict the deformational and strength behaviours of the foliated slate under triaxial compressive conditions using the material parameters calibrated with the uniaxial and/or triaxial test data, with good agreement between the model predictions and the laboratory measurements.

  13. A robust absorbing layer method for anisotropic seismic wave modeling

    Energy Technology Data Exchange (ETDEWEB)

    Métivier, L., E-mail: ludovic.metivier@ujf-grenoble.fr [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Brossier, R. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France); Labbé, S. [LJK, CNRS, Université de Grenoble, BP 53, 38041 Grenoble Cedex 09 (France); Operto, S. [Géoazur, Université de Nice Sophia-Antipolis, CNRS, IRD, OCA, Villefranche-sur-Mer (France); Virieux, J. [ISTerre, Université de Grenoble I, BP 53, 38041 Grenoble Cedex 09 (France)

    2014-12-15

    When applied to wave propagation modeling in anisotropic media, Perfectly Matched Layers (PML) exhibit instabilities. Incoming waves are amplified instead of being absorbed. Overcoming this difficulty is crucial as in many seismic imaging applications, accounting accurately for the subsurface anisotropy is mandatory. In this study, we present the SMART layer method as an alternative to PML approach. This method is based on the decomposition of the wavefield into components propagating inward and outward the domain of interest. Only outgoing components are damped. We show that for elastic and acoustic wave propagation in Transverse Isotropic media, the SMART layer is unconditionally dissipative: no amplification of the wavefield is possible. The SMART layers are not perfectly matched, therefore less accurate than conventional PML. However, a reasonable increase of the layer size yields an accuracy similar to PML. Finally, we illustrate that the selective damping strategy on which is based the SMART method can prevent the generation of spurious S-waves by embedding the source in a small zone where only S-waves are damped.

  14. Anisotropic distributions in a multi-phase transport model

    CERN Document Server

    Zhou, You; Feng, Zhao; Liu, Feng; Snellings, Raimond

    2015-01-01

    With A Multi-Phase Transport (AMPT) model we investigate the relation between the magnitude, fluctuations and correlations of the initial state spatial anisotropy $\\varepsilon_{n}$ and the final state anisotropic flow coefficients $v_{n}$ in Au+Au collisions at $\\sqrt{s_{_{\\rm NN}}}=$ 200 GeV. It is found that the relative eccentricity fluctuations in AMPT account for the observed elliptic flow fluctuations, in agreement with measurements of the STAR collaboration. In addition, the studies based on 2- and multi-particle correlations and event-by-event distributions of the anisotropies suggest that the Elliptic-Power function is a promising candidate of the underlying probability density function of the event-by-event distributions of $\\varepsilon_{n}$ as well as $v_{n}$. Furthermore, the correlations between different order symmetry planes and harmonics in the initial coordinate space and final state momentum space are presented. Non-zero values of these correlations have been observed. The comparison between...

  15. An anisotropic minijets model for the GRB prompt emission

    CERN Document Server

    Duran, Rodolfo Barniol; Giannios, Dimitrios

    2015-01-01

    In order to explain rapid light curve variability in the context of gamma-ray bursts (GRBs) and jets from active galactic nuclei (AGNs), several authors have proposed the existence of "blobs" or "minijets" that move with relativistic speed relative to the main flow of the jet. Here we consider the possibility that these minijets, instead of being isotropically distributed in the co-moving frame of the jet, form primarily perpendicular to the direction of the flow. This anisotropic collection of minijets yields two robust features. First, the main burst of emission is significantly delayed compared with the isotropic case. This delay allows for the peak of the afterglow emission to appear during the prompt emission, in contrast to the simplest isotropic model, where the afterglow peak appears at or after the end of the main burst. Second, the flux decline following the end of the main burst of emission will be steeper than the isotropic case. We find that these two features are realized in the case of GRBs: 1....

  16. Modeling the anisotropic shock response of single-crystal RDX

    Science.gov (United States)

    Luscher, Darby

    Explosives initiate under impacts whose energy, if distributed homogeneously throughout the material, translates to temperature increases that are insufficient to drive the rapid chemistry observed. Heterogeneous thermomechanical interactions at the meso-scale (i.e. between single-crystal and macroscale) leads to the formation of localized hot spots. Direct numerical simulations of mesoscale response can contribute to our understanding of hot spots if they include the relevant deformation mechanisms that are essential to the nonlinear thermomechanical response of explosive molecular crystals. We have developed a single-crystal model for the finite deformation thermomechanical response of cyclotrimethylene trinitramine (RDX). Because of the low symmetry of RDX, a complete description of nonlinear thermoelasticity requires a careful decomposition of free energy into components that represent the pressure-volume-temperature (PVT) response and the coupling between isochoric deformation and both deviatoric and hydrostatic stresses. An equation-of-state (EOS) based on Debye theory that defines the PVT response was constructed using experimental data and density functional theory calculations. This EOS replicates the equilibrium states of phase transformation from alpha to gamma polymorphs observed in static high-pressure experiments. Lattice thermoelastic parameters defining the coupled isochoric free energy were obtained from molecular dynamics calculations and previous experimental data. Anisotropic crystal plasticity is modeled using Orowan's expression relating slip rate to dislocation density and velocity. Details of the theory will be presented followed by discussion of simulations of flyer plate impact experiments, including recent experiments diagnosed with in situ X-ray diffraction at the Advanced Photon Source. Impact conditions explored within the experimental effort have spanned shock pressures ranging from 1-10 GPa for several crystallographic orientations

  17. Testing coupled dark energy models with their cosmological background evolution

    CERN Document Server

    van de Bruck, Carsten; Morrice, Jack

    2016-01-01

    We consider a cosmology in which dark matter and a quintessence scalar field responsible for the acceleration of the Universe are allowed to interact. Allowing for both conformal and disformal couplings, we perform a global analysis of the constraints on our model using Hubble parameter measurements, baryon acoustic oscillation distance measurements, and a Supernovae Type Ia data set. We find that the additional disformal coupling relaxes the conformal coupling constraints. Moreover we show that, at the background level, a disformal interaction within the dark sector is preferred to both $\\Lambda$CDM and uncoupled quintessence, hence favouring interacting dark energy.

  18. Kinematic equivalence between models driven by DBI field with constant $\\gamma$ and exotic holographic quintessence cosmological models

    CERN Document Server

    Forte, Mónica

    2016-01-01

    We show the kinematic equivalence between cosmological models driven by Dirac-Born-Infeld fields $\\phi$ with constant proper velocity of the brane and exponential potential $V=V_0e^{-B\\phi}$ and interactive cosmological systems with Modified Holographic Ricci type fluids as dark energy in flat Friedmann-Robertson-Walker cosmologies.

  19. 3D time-domain airborne EM modeling for an arbitrarily anisotropic earth

    Science.gov (United States)

    Yin, Changchun; Qi, Yanfu; Liu, Yunhe

    2016-08-01

    Time-domain airborne EM data is currently interpreted based on an isotropic model. Sometimes, it can be problematic when working in the region with distinct dipping stratifications. In this paper, we simulate the 3D time-domain airborne EM responses over an arbitrarily anisotropic earth with topography by edge-based finite-element method. Tetrahedral meshes are used to describe the abnormal bodies with complicated shapes. We further adopt the Backward Euler scheme to discretize the time-domain diffusion equation for electric field, obtaining an unconditionally stable linear equations system. We verify the accuracy of our 3D algorithm by comparing with 1D solutions for an anisotropic half-space. Then, we switch attentions to effects of anisotropic media on the strengths and the diffusion patterns of time-domain airborne EM responses. For numerical experiments, we adopt three typical anisotropic models: 1) an anisotropic anomalous body embedded in an isotropic half-space; 2) an isotropic anomalous body embedded in an anisotropic half-space; 3) an anisotropic half-space with topography. The modeling results show that the electric anisotropy of the subsurface media has big effects on both the strengths and the distribution patterns of time-domain airborne EM responses; this effect needs to be taken into account when interpreting ATEM data in areas with distinct anisotropy.

  20. Luminosity distance and redshift in the Szekeres inhomogeneous cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Nwankwo, Anthony; Ishak, Mustapha; Thompson, John, E-mail: Anthony@utdallas.edu, E-mail: mishak@utdallas.edu, E-mail: jpt043000@utdallas.edu [Department of Physics, The University of Texas at Dallas, Richardson, TX 75083 (United States)

    2011-05-01

    The Szekeres inhomogeneous models can be used to model the true lumpy universe that we observe. This family of exact solutions to Einstein's equations was originally derived with a general metric that has no symmetries. In this work, we develop and use a framework to integrate the angular diameter and luminosity distances in the general Szekeres models. We use the affine null geodesic equations in order to derive a set of first-order ordinary differential equations that can be integrated numerically to calculate the partial derivatives of the null vector components. These equations allow the integration in all generality of the distances in the Szekeres models and some examples are given. The redshift is determined from simultaneous integration of the null geodesic equations. This work does not assume spherical or axial symmetry, and the results will be useful for comparisons of the general Szekeres inhomogeneous models to current and future cosmological data.

  1. Constraints On Holographic Cosmological Models From Gamma Ray Bursts

    CERN Document Server

    Rivera, Alexander Bonilla

    2016-01-01

    We use Gamma Ray Bursts (GRBs) data to put additional constraints on a set of holographic dark energy models. GRBs are the most energetic events in the Universe and provide a complementary probe of dark energy by allowing the measurement of cosmic expansion history that extends to redshifts greater than 6 and they are complementary to SNIa test. We found that the LCDM model is the best fit to the data, although a preliminary statistical analysis seems to indicate that the holographic models studied show interesting agreement with observations, except Ricci Scale CPL model. These results show the importance of GRBs measurements to provide additional observational constraints to alternative cosmological models, which are necessary to clarify the way in the paradigm of dark energy or potential alternatives.

  2. The Use of Consolidated Expansions in Modeling Anisotropic Turbulence in a Channel Flow

    Science.gov (United States)

    Smith, Sonya; Santy-Ateyaba, Kokomahha

    1999-11-01

    The diagram expansion method, first applied to isotropic turbulence,is extended to model anisotropic turbulence. Leonard and Cross stresses resulting from the filtering operation are evaluated from the Gaussian property of the filter functions used. The combination of the gradient of these stresses is considered as the anisotropic forcing term. The turbulence model is then assumed to originate from the contribution of the isotropic and anisotropic parts. The model results from a perturbation expansion using diagrams similar to those used in quantum field theory. After identifying new rules for the consolidation to account for anisotropy, all diagrams are summed and the result is a set of consolidated diagrams for the diffusion operator, the pressure effects, and the correlation functions. In this approach all the statistical properties are the function of the second moment only and the model is derived from an analytical approximation of isotropic and anisotropic correlation functions.

  3. The cosmological constant from the ghost. A toy model

    CERN Document Server

    Urban, Federico R

    2009-01-01

    We suggest that the solution to the cosmological vacuum energy puzzle is linked to the infrared sector of the effective theory of gravity interacting with standard model fields. We propose a specific solvable two dimensional model where our proposal can be explicitly tested. We analyse the 2d Schwinger model on a 2-torus and in curved 2d space, mostly exploiting the properties of its topological susceptibility, its links with the non-trivial topology or deviations from spacetime flatness, and its relations to the real 4d world. The Kogut-Susskind ghost (which is a direct analogue of the Veneziano ghost in 4d) on a 2-torus and in curved 2d space plays a crucial r\\^ole in the computation of the vacuum energy. The departure from Minkowski flatness, which is defined as the cosmological constant in our framework, is found to scale as $1/L$, where $L$ is the linear size of the torus. Therefore, in spite of the fact that the physical sector of 2d QED is represented by a single massive scalar particle, the deviation ...

  4. Cosmological constant from the ghost: A toy model

    Science.gov (United States)

    Urban, Federico R.; Zhitnitsky, Ariel R.

    2009-09-01

    We suggest that the solution to the cosmological vacuum energy puzzle is linked to the infrared sector of the effective theory of gravity interacting with standard model fields. We propose a specific solvable two dimensional model where our proposal can be explicitly tested. We analyze the 2d Schwinger model on a 2-torus and in curved 2d space, mostly exploiting the properties of its topological susceptibility, its links with the nontrivial topology or deviations from spacetime flatness, and its relations to the real 4d world. The Kogut-Susskind ghost (which is a direct analogue of the Veneziano ghost in 4d) on a 2-torus and in curved 2d space plays a crucial role in the computation of the vacuum energy. The departure from Minkowski flatness, which is defined as the cosmological constant in our framework, is found to scale as 1/L, where L is the linear size of the torus. Therefore, in spite of the fact that the physical sector of 2d QED is represented by a single massive scalar particle, the deviation from Minkowski space is linear in L rather than exponentially suppressed as one could naïvely expect.

  5. A Comparison of Cosmological Models Using Strong Gravitational Lensing Galaxies

    CERN Document Server

    Melia, Fulvio; Wu, Xue-Feng

    2014-01-01

    Strongly gravitationally lensed quasar-galaxy systems allow us to compare competing cosmologies as long as one can be reasonably sure of the mass distribution within the intervening lens. In this paper, we assemble a catalog of 69 such systems, and carry out a one-on-one comparison between the standard model, LCDM, and the R_h=ct Universe. We find that both models account for the lens observations quite well, though the precision of these measurements does not appear to be good enough to favor one model over the other. Part of the reason is the so-called bulge-halo conspiracy that, on average, results in a baryonic velocity dispersion within a fraction of the optical effective radius virtually identical to that expected for the whole luminous-dark matter distribution. Given the limitations of doing precision cosmological testing using the current sample, we also carry out Monte Carlo simulations based on the current lens measurements to estimate how large the source catalog would have to be in order to rule o...

  6. New model of axion monodromy inflation and its cosmological implications

    Science.gov (United States)

    Cai, Yi-Fu; Chen, Fang; Ferreira, Elisa G. M.; Quintin, Jerome

    2016-06-01

    We propose a new realization of axion monodromy inflation in which axion monodromy arises from torsional cycles in a type IIB compactification. A class of monomial potentials is obtained with specific values for the power index. Moreover, the inflaton mass changes profile due to the couplings between various fields after compactification. Consequently, the potential obtains a step-like profile at some critical scale. We study the cosmological implications of one concrete realization of this model. At the background level, it realizes a sufficiently long inflationary stage, which allows for the violation of the slow-roll conditions for a short period of time when the inflaton is close to the critical scale. Accordingly, the Hubble horizon is perturbed and affects the dynamics of primordial cosmological perturbations. In particular, we analyze the angular power spectrum of B-mode polarization and find a boost on very large scales. We also find that the amplitude of scalar perturbations is suppressed near the critical scale. Thus our model provides an interpretation for the low-l suppression of temperature anisotropies in the CMB power spectrum. We examine these effects and confront the model to observations.

  7. Investigation of dark matter-dark energy interaction cosmological model

    CERN Document Server

    Wang, J S

    2014-01-01

    In this paper, we test the dark matter-dark energy interacting cosmological model with a dynamic equation of state $w_{DE}(z)=w_{0}+w_{1}z/(1+z)$, using type Ia supernovae (SNe Ia), Hubble parameter data, baryonic acoustic oscillation (BAO) measurements, and the cosmic microwave background (CMB) observation. This interacting cosmological model has not been studied before. The best-fitted parameters with $1 \\sigma$ uncertainties are $\\delta=-0.022 \\pm 0.006$, $\\Omega_{DM}^{0}=0.213 \\pm 0.008$, $w_0 =-1.210 \\pm 0.033$ and $w_1=0.872 \\pm 0.072$ with $\\chi^2_{min}/dof = 0.990$. At the $1 \\sigma$ confidence level, we find $\\delta<0$, which means that the energy transfer prefers from dark matter to dark energy. We also find that the SNe Ia are in tension with the combination of CMB, BAO and Hubble parameter data. The evolution of $\\rho_{DM}/\\rho_{DE}$ indicates that this interacting model is a good approach to solve the coincidence problem, because the $\\rho_{DE}$ decrease with scale factor $a$. The transition r...

  8. Quantum cosmology of (loop) quantum gravity condensates: An example

    CERN Document Server

    Gielen, Steffen

    2014-01-01

    Spatially homogeneous universes can be described in (loop) quantum gravity as condensates of elementary excitations of space. Their treatment is easiest in the second-quantised group field theory formalism which allows the adaptation of techniques from the description of Bose-Einstein condensates in condensed matter physics. Dynamical equations for the states can be derived directly from the underlying quantum gravity dynamics. The analogue of the Gross-Pitaevskii equation defines an anisotropic quantum cosmology model, in which the condensate wavefunction becomes a quantum cosmology wavefunction on minisuperspace. To illustrate this general formalism, we give a mapping of the gauge-invariant geometric data for a tetrahedron to a minisuperspace of homogeneous anisotropic 3-metrics. We then study an example for which we give the resulting quantum cosmology model in the general anisotropic case and derive the general analytical solution for isotropic universes. We discuss the interpretation of these solutions a...

  9. Notes on shear viscosity bound violation in anisotropic models

    CERN Document Server

    Ge, Xian-Hui

    2015-01-01

    The shear viscosity bound violation in Einstein gravity for anisotropic black branes is discussed, with the aim of constraining the deviation of the shear viscosity-entropy density ratio from the shear viscosity bound using causality and thermodynamics analysis. The results show that no stringent constraints can be imposed. The diffusion bound in anisotropic phases is also studied. Ultimately, it is concluded that shear viscosity violation always occurs in cases where the equation of motion of the metric fluctuations cannot be written in a form identical to that of the minimally coupled massless scalar fields.

  10. DGP cosmological model with generalized Ricci dark energy

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, Yeremy [Universidad de Santiago, Departamento de Matematicas y Ciencia de la Computacion, Santiago (Chile); Avelino, Arturo [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA (United States); Cruz, Norman [Universidad de Santiago, Departamento de Fisica, Facultad de Ciencia, Santiago (Chile); Lepe, Samuel [Pontificia Universidad Catolica de Valparaiso, Facultad de Ciencias, Instituto de Fisica, Valparaiso (Chile); Pena, Francisco [Universidad de La Frontera, Departamento de Ciencias Fisicas, Facultad de Ingenieria y Ciencias, Temuco (Chile)

    2014-11-15

    The brane-world model proposed by Dvali, Gabadadze and Porrati (DGP) leads to an accelerated universe without cosmological constant or other form of dark energy for the positive branch (element of = +1). For the negative branch (element of = -1) we have investigated the behavior of a model with an holographic Ricci-like dark energy and dark matter, where the IR cutoff takes the form αH{sup 2} + βH, H being the Hubble parameter and α, β positive constants of the model. We perform an analytical study of the model in the late-time dark energy dominated epoch, where we obtain a solution for r{sub c}H(z), where r{sub c} is the leakage scale of gravity into the bulk, and conditions for the negative branch on the holographic parameters α and β, in order to hold the conditions of weak energy and accelerated universe. On the other hand, we compare the model versus the late-time cosmological data using the latest type Ia supernova sample of the Joint Light-curve Analysis (JLA), in order to constrain the holographic parameters in the negative branch, as well as r{sub c}H{sub 0} in the positive branch, where H{sub 0} is the Hubble constant. We find that the model has a good fit to the data and that the most likely values for (r{sub c}H{sub 0}, α, β) lie in the permitted region found from an analytical solution in a dark energy dominated universe. We give a justification to use a holographic cutoff in 4D for the dark energy in the 5-dimensional DGP model. Finally, using the Bayesian Information Criterion we find that this model is disfavored compared with the flat ΛCDM model. (orig.)

  11. Effects of Staggered Magnetic Field on Entanglement in the Anisotropic XY Model

    Institute of Scientific and Technical Information of China (English)

    SUN Zhe; WANG Xiao-Guang

    2006-01-01

    We investigate effects of staggered magnetic field on thermal entanglement in the anisotropic XY model.The analytic results of entanglement for the two-site cases are obtained. For the general case of even sites, we show that when the anisotropic parameter is zero, the entanglement in the XY model with a staggered magnetic field is the same as that with a uniform magnetic field.

  12. Modeling color-dependent galaxy clustering in cosmological simulations

    CERN Document Server

    Masaki, Shogo; Yoshida, Naoki

    2013-01-01

    We extend the subhalo abundance matching method to assign galaxy color to subhalos. We separate a luminosity-binned subhalo sample into two groups by a secondary subhalo property which is presumed to be correlated with galaxy color. The two subsamples then represent red and blue galaxy populations. We explore two models for the secondary propertty; subhalo assembly time and local dark matter density around each subhalo. The model predictions for the galaxy two-point correlation functions are compared with the recent results from the Sloan Digital Sky Survey. We show that the observed color dependence of galaxy clustering can be reproduced well by our method applied to cosmological N-body simulations without baryonic components. We then compare the model predictions for the color-dependent galaxy-mass cross correlation functions with the results from gravitational lensing observations. The comparison allows us to distinguish the models, and also to discuss what subhalo property should be used to assign color t...

  13. Generalized statistical models of voids and hierarchical structure in cosmology

    CERN Document Server

    Mekjian, Aram Z

    2007-01-01

    Generalized statistical models of voids and hierarchical structure in cosmology are developed. The often quoted negative binomial model and frequently used thermodynamic model are shown to be special cases of a more general distribution which contains a parameter "a". The parameter is related to the Levy index alpha and the Fisher critical exponent tau, the latter describing the power law fall off of clumps of matter around a phase transition. The parameter"a", exponent tau, or index alpha can be obtained from properties of a void scaling function. A stochastic probability variable "p" is introduced into a statistical model which represent the adhesive growth of galaxy structure. For p1/2, an adhesive growth can go on indefinitely thereby forming an infinite supercluster. At p=1/2 a scale free power law distribution for the galaxy count distribution is present. The stochastic description also leads to consequences that have some parallels with cosmic string results, percolation theory and phase transitions.

  14. An analytical model of anisotropic low-field electron mobility in wurtzite indium nitride

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Shulong; Liu, Hongxia; Song, Xin; Guo, Yulong; Yang, Zhaonian [Xidian University, School of Microelectronics, Key Laboratory of Wide Band-Gap Semiconductor Materials and Devices, Xi' an (China)

    2014-03-15

    This paper presents a theoretical analysis of anisotropic transport properties and develops an anisotropic low-field electron analytical mobility model for wurtzite indium nitride (InN). For the different effective masses in the Γ-A and Γ-M directions of the lowest valley, both the transient and steady state transport behaviors of wurtzite InN show different transport characteristics in the two directions. From the relationship between velocity and electric field, the difference is more obvious when the electric field is low in the two directions. To make an accurate description of the anisotropic transport properties under low field, for the first time, we present an analytical model of anisotropic low-field electron mobility in wurtzite InN. The effects of different ionized impurity scattering models on the low-field mobility calculated by Monte Carlo method (Conwell-Weisskopf and Brooks-Herring method) are also considered. (orig.)

  15. Stable and unstable cosmological models in bimetric massive gravity

    CERN Document Server

    Könnig, Frank; Amendola, Luca; Motta, Mariele; Solomon, Adam R

    2014-01-01

    Nonlinear, ghost-free massive gravity has two tensor fields; when both are dynamical, the mass of the graviton can lead to cosmic acceleration that agrees with background data, even in the absence of a cosmological constant. Here the question of the stability of linear perturbations in this theory is examined. Instabilities are presented for several classes of models, and simple criteria for the cosmological stability of massive bigravity are derived. In this way, we identify a particular self-accelerating bigravity model, infinite-branch bigravity (IBB), which exhibits both viable background evolution and stable linear perturbations. We discuss the modified gravity parameters for IBB, which do not reduce to the standard $\\Lambda$CDM result at early times, and compute the combined likelihood from measured growth data and type Ia supernovae. IBB predicts a present matter density $\\Omega_{m0}=0.18$ and an equation of state $w(z)=-0.79+0.21z/(1+z)$. The growth rate of structure is well-approximated at late times...

  16. Sequestered String Models: Supersymmetry Breaking and Cosmological Applications

    CERN Document Server

    Muia, Francesco

    2016-01-01

    In the present thesis I studied the phenomenology arising from a class of string models called sequestered compactifications, which were born with the aim of getting low-energy SUSY from strings. This is not an easy task if combined with cosmological constraints, since the mechanism of moduli stabilization fixes both the scale of supersymmetric particles and the scale of moduli, which tend to be of the same order. However, if on the one hand supersymmetric particles with TeV mass are desired in order to address the hierarchy problem, on the other hand the cosmological moduli problem requires the moduli to be heavier than 100 TeV. The specific setup of sequestered compactifications makes this hierarchy achievable, at least in principle: as in these models the visible sector is located on a stack of D3-branes at singularities, a physical separation between the visible degrees of freedom and the SUSY-breaking sources takes place. Such decoupling translates into a hierarchy between the scale of SUSY-breaking and ...

  17. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: Vacuum case

    Science.gov (United States)

    Pavluchenko, Sergey A.

    2016-07-01

    In this paper we perform a systematic study of vacuum spatially flat anisotropic [(3 +D )+1 ]-dimensional Einstein-Gauss-Bonnet cosmological models. We consider models that topologically are the product of two flat isotropic submanifolds with different scale factors. One of these submanifolds is three dimensional and represents our 3D space and the other is D dimensional and represents extra dimensions. We consider no Ansatz on the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play and with the symmetry involved, the cases with D =1 , D =2 , D =3 , and D ≥4 have different dynamics due to the different structures of the equations of motion. We analytically analyze equations of motion in all cases and describe all possible regimes. It appears that the only regimes with nonsingular future asymptotes are the Kasner regime in general relativity and exponential regimes. As of the past asymptotes, for a smooth transition only the Kasner regime in Gauss-Bonnet is an option. With this at hand, we are down to only two viable regimes: the "pure" Kasner regime [transition from a high-energy (Gauss-Bonnet) to a low-energy (general relativity) Kasner regime] and a transition from a high-energy Kasner regime to an anisotropic exponential solution. It appears that these regimes take place for different signs of the Gauss-Bonnet coupling α : the "pure" Kasner regime occurs for α >0 at low D and α 0 . So if we restrain ourselves with α >0 solutions (which would be the case, say, if we identify α with inverse string tension in heterotic string theory), the only late-time regimes are Kasner for D =1 , 2 and anisotropic exponential for D ≥2 . Also, low-energy Kasner regimes [a (t )∝tp] have expansion rates for (3 +1 )-dimensional subspace ("our Universe") ranging from p =0.5 (D =1 ) to p =1 /√{3 }≈0.577 (D →∞ ), which contradicts the dust-dominated Friedmann prediction (p =2 /3 ).

  18. Generalized anisotropic strange star models for compact stars

    CERN Document Server

    Mauryaa, S K; Dayanandan, Baiju; Jasim, M K; Al-Jamel, Ahmed

    2015-01-01

    We present new anisotropic generalization of Buchdahl [1] type perfect fluid solution by using the method of earlier work [2]. In similar approach we have constructed the new pressure anisotropy factor {\\Delta} by the help both the metric potential e^{\\lambda} and e^{\

  19. Revisiting the modified Starobinsky model with cosmological constant

    CERN Document Server

    Pelinson, Ana

    2009-01-01

    The Starobinsky model is a natural inflationary scenario in which inflation arises due to quantum effects of the massless matter fields. A modified version of the Starobinsky (MSt) model takes the masses of matter fields and the cosmological constant, $\\Lambda$, into account. The equations of motion become much more complicated however approximate analytic and numeric solutions are possible. In the MSt model, inflation starts due to the supersymmetric (SUSY) particle content of the underlying theory and the transition to the radiation dominated epoch occurs due to the relatively heavy s-particles decoupling. For $\\Lambda=0$ the inflationary solution is stable until the last stage, just before decoupling. In the present paper we generalize this result for $\\Lambda\

  20. A Caveat on Building Nonlocal Models of Cosmology

    CERN Document Server

    Tsamis, N C

    2014-01-01

    Nonlocal models of cosmology might derive from graviton loop corrections to the effective field equations from the epoch of primordial inflation. Although the Schwinger-Keldysh formalism would automatically produce causal and conserved effective field equations, the models so far proposed have been purely phenomenological. Two techniques have been employed to generate causal and conserved field equations: either varying an invariant nonlocal effective action and then enforcing causality by the ad hoc replacement of any advanced Green's function with its retarded counterpart, or else introducing causal nonlocality into a general ansatz for the field equations and then enforcing conservation. We point out here that the two techniques access very different classes of models, and that neither one of them may represent what would actually arise from fundamental theory.

  1. Self-Consistent Modeling of Reionization in Cosmological Hydrodynamical Simulations

    CERN Document Server

    Oñorbe, Jose; Lukić, Zarija

    2016-01-01

    The ultraviolet background (UVB) emitted by quasars and galaxies governs the ionization and thermal state of the intergalactic medium (IGM), regulates the formation of high-redshift galaxies, and is thus a key quantity for modeling cosmic reionization. The vast majority of cosmological hydrodynamical simulations implement the UVB via a set of spatially uniform photoionization and photoheating rates derived from UVB synthesis models. We show that simulations using canonical UVB rates reionize, and perhaps more importantly, spuriously heat the IGM, much earlier z ~ 15 than they should. This problem arises because at z > 6, where observational constraints are non-existent, the UVB amplitude is far too high. We introduce a new methodology to remedy this issue, and generate self-consistent photoionization and photoheating rates to model any chosen reionization history. Following this approach, we run a suite of hydrodynamical simulations of different reionization scenarios, and explore the impact of the timing of ...

  2. Quintessence models and the cosmological evolution of α

    Science.gov (United States)

    Lee, Seokcheon; Olive, Keith A.; Pospelov, Maxim

    2004-10-01

    The cosmological evolution of a quintessencelike scalar field ϕ coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(ϕ) and the couplings to matter B(ϕ) admit common extremum in ϕ, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(ϕ), the observational constraints on Δα/α coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.

  3. Quintessence Models and the Cosmological Evolution of alpha

    CERN Document Server

    Lee, S; Pospelov, M; Lee, Seokcheon; Olive, Keith A.; Pospelov, Maxim

    2004-01-01

    The cosmological evolution of a quintessence-like scalar field, phi, coupled to matter and gauge fields leads to effective modifications of the coupling constants and particle masses over time. We analyze a class of models where the scalar field potential V(phi) and the couplings to matter B(phi) admit common extremum in phi, as in the Damour-Polyakov ansatz. We find that even for the simplest choices of potentials and B(phi), the observational constraints on delta alpha/alpha coming from quasar absorption spectra, the Oklo phenomenon and Big Bang nucleosynthesis provide complementary constraints on the parameters of the model. We show the evolutionary history of these models in some detail and describe the effects of a varying mass for dark matter.

  4. Heat Flow Pattern and Thermal Resistance Modeling of Anisotropic Heat Spreaders

    Science.gov (United States)

    Falakzaadeh, F.; Mehryar, R.

    2016-08-01

    To ensure safe operating temperatures of the ever smaller heat generating electronic devices, drastic measures should be taken. Heat spreaders are used to increase surface area, by spreading the heat without necessarily transferring it to the ambient in the first place. The heat flow pattern is investigated in heat spreaders and the fundamental differences regarding how heat conducts in different materials is addressed. Isotropic materials are compared with anisotropic ones having a specifically higher in-plane thermal conductivity than through plane direction. Thermal resistance models are proposed for anisotropic and isotropic heat spreaders in compliance with the order of magnitude of dimensions used in electronics packaging. After establishing thermal resistance models for both the isotropic and anisotropic cases, numerical results are used to find a correlation for predicting thermal resistance in anisotropic heat spreaders with high anisotropy ratios.

  5. Signatures of Explosion Models for SN ~Ia & Cosmology

    CERN Document Server

    Höflich, P

    2004-01-01

    We give an overview of the current understanding of Type Ia supernovae relevant for their use as cosmological distance indicators. We present the physical basis to understand their homogeneity of the observed light curves and spectra and the observed correlations. SNe Ia have been well established as distance indicators on the 10 % level. However, the quest for the nature of the dark energy requires improvements in the accuracy to the 2 to 3 % level, we must understand the diversity within the SNe Ia population, and its evolution with redshift. Based on detailed models for the progenitors, explosions, light curves and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. We emphasize the relation between LC properties and spectra because, for local SNe~Ia, the diversity becomes apparent the combination of spectra and LCs whereas, by enlarge, we have to for high-z objects. At some examples, we show how we can actually probe the properties of the progenitor, its environ...

  6. Inflation Cosmological Solutions in Two-Dimensional Brans-Dicke Gravity Model

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    The purpose of this paper is to study cosmological properties of two-dimensional Brans-Dicke gravity model. For massless scalar field, the new cosmological solutions are found by integration of field equation, these solutions correspond to the inflation solutions with positive cosmological constant. The result of this paper show that the inflation process of universe is controlled by the classical and quantum effect of the scalar field.

  7. Applied Models of Static Deformation of Anisotropic Micropolar Elastic Thin Bars

    OpenAIRE

    Alvajyan Sh. I.; Sargsyan S.H.

    2011-01-01

    In this paper, using the method of hypothesis, which has an asymptotic study, two dimension boundary problem of micropolar elasticity theory for an anisotropic surrounding in a thin rectangular aria is reduced to the applied one-dimensional problem and, depending on the values of the dimensionless physical parameters used to construct general models of micropolar anisotropic elastic thin bars with free rotation, with constrained rotation, ''with small shift rigidity'', in which fully takes in...

  8. Misorientation Effects in an Anisotropic Plasticity Finite Element Model of a Polycrystalline under Tensile Loading

    OpenAIRE

    Shawish, Samir El; CIZELJ Leon; SIMONOVSKI IGOR

    2012-01-01

    In this work we propose an anisotropic elasto-plastic finite element model to account for various observations in the tensile test experiments on stainless steel specimen. Using Voronoi construction for the grains, grain boundaries and anisotropic Hill’s plastic potential function, we find a clear correlation between the computed average misorientation angle, measuring the change of local crystal orientations, and the applied plastic strain, in agreement with the electron backscatter diffract...

  9. Cosmological constraints on induced gravity dark energy models

    Science.gov (United States)

    Ballardini, M.; Finelli, F.; Umiltà, C.; Paoletti, D.

    2016-05-01

    We study induced gravity dark energy models coupled with a simple monomial potential propto σn and a positive exponent n. These simple potentials lead to viable dark energy models with a weak dependence on the exponent, which characterizes the accelerated expansion in the asymptotic attractor, when ordinary matter becomes negligible. We use recent cosmological data to constrain the coupling γ to the Ricci curvature, under the assumptions that the scalar field starts at rest deep in the radiation era and that the gravitational constant in the Einstein equations is compatible with the one measured in a Cavendish-like experiment. By using Planck 2015 data only, we obtain the 95 % CL bound γ Baryonic Acoustic Oscillations (BAO) data. This latter bound improves by ~ 30 % the limit obtained with the Planck 2013 data and the same compilation of BAO data. We discuss the dependence of the γ and ˙ GN/GN (z=0) on n.

  10. Adiabatic density perturbations in a cosmological model with massive neutrinos

    Science.gov (United States)

    Jaroszynski, M.

    Lifshitz (1946) has investigated the gravitational instability of a Friedmann Universe model. He treated the matter content of the universe as a single perfect fluid. In other studies, a two fluid approach was used to represent neutrinos and other kinds of matter separately. A distribution function was used by Peebles and Yu (1970), and also by Silk and Wilson (1980) to describe photons of the black-body background during and after the recombination of the primeval plasma. The approach used in the present investigation is similar, except for two differences. No collisional term is used in the kinetic equation, and massive particles are considered. A detailed description is provided of the method used to investigate the gravitational instability of a cosmological model with massive neutrinos. It is pointed out that the obtained results are preliminary. The final spectrum of perturbations is similar to those of Peebles and Yu (1970), and Wilson and Silk (1981).

  11. An exotic k-essence interpretation of interactive cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Forte, Monica [Universidad de Buenos Aires, Departamento de Fisica, Facultad de ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2016-01-15

    We define a generalization of scalar fields with non-canonical kinetic term which we call exotic k-essence or, briefly, exotik. These fields are generated by the global description of cosmological models with two interactive fluids in the dark sector and under certain conditions they correspond to usual k-essences. The formalism is applied to the cases of constant potential and of inverse square potential and also we develop the purely exotik version for the modified holographic Ricci type (MHR) of dark energy, where the equations of state are not constant. With the kinetic function F = 1 + mx and the inverse square potential we recover, through the interaction term, the identification between k-essences and quintessences of an exponential potential, already known for Friedmann-Robertson-Walker and Bianchi type I geometries. Worked examples are shown that include the self-interacting MHR and also models with crossing of the phantom divide line (PDL). (orig.)

  12. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    CERN Document Server

    Heitmann, Katrin; White, Martin; Habib, Salman; Williams, Brian J; Wagner, Christian

    2009-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the "Coyote Universe" suite -- can be used to predict the nonlinear matter pow...

  13. Spherical collapse model in $f(T)$ cosmologies

    CERN Document Server

    Malekjani, M

    2016-01-01

    In this work, we extend the spherical collapse model (SCM) in the $f(T)$ gravity models. In the context of a specific form of $f(T)$ model, the so-called power law model, we first investigate the background evolution of the universe using the Friedmann Robertson Walker (FRW) metric in a flat geometry. We then follow the linear and non-linear evolutions of the growth of spherical overdensities in perturbation levels. In the linear phase of perturbations, we show that the growth factor of fluctuations depends strongly on the power-law parameter of $f(T)$ model, $b$. We also observe that in the non-linear regime the parameters of SCM depend on the model parameter $b$. We finally compare the predicted number of virialized haloes in the $f(T)$ cosmologies with respect to a concordance $\\Lambda$CDM model and find out that in general the $f(T)$ model with positive (negative) model parameter $b$ has more (less) abundant objects compare to the standard $\\Lambda$CDM universe.

  14. Magnetic phase diagram of the anisotropic double-exchange model: a Monte Carlo study

    International Nuclear Information System (INIS)

    The magnetic phase diagram of highly anisotropic double-exchange model systems is investigated as a function of the ratio of the anisotropic hopping integrals, i.e., tc/tab, on a three-dimensional lattice by using Monte Carlo calculations. The magnetic domain structure at low temperature is found to be a generic property of the strong anisotropy region. Moreover, the tc/tab ratio is crucial in determining the anisotropic charge transport due to the relative spin orientation of the magnetic domains. As a result, we show the anisotropic hopping integral is the most likely cause of the magnetic domain structure. It is noted that the competition between the reduced interlayer double-exchange coupling and the thermal frustration of the ordered two-dimensional ferromagnetic layer seems to be crucial in understanding the properties of layered manganites

  15. A cosmological model with compact space sections and low mass density

    International Nuclear Information System (INIS)

    A general relativistic cosmological model is presented, which has closed space sections and mass density below a critical density similar to that of Friedmann's models. The model may predict double images of cosmic sources. (Author)

  16. Gaussian covariance matrices for anisotropic galaxy clustering measurements

    CERN Document Server

    Grieb, Jan Niklas; Salazar-Albornoz, Salvador; Vecchia, Claudio dalla

    2015-01-01

    Measurements of the redshift-space galaxy clustering have been a prolific source of cosmological information in recent years. In the era of precision cosmology, accurate covariance estimates are an essential step for the validation of galaxy clustering models of the redshift-space two-point statistics. For cases where only a limited set of simulations is available, assessing the data covariance is not possible or only leads to a noisy estimate. Also, relying on simulated realisations of the survey data means that tests of the cosmology dependence of the covariance are expensive. With these two points in mind, this work aims at presenting a simple theoretical model for the linear covariance of anisotropic galaxy clustering observations with synthetic catalogues. Considering the Legendre moments (`multipoles') of the two-point statistics and projections into wide bins of the line-of-sight parameter (`clustering wedges'), we describe the modelling of the covariance for these anisotropic clustering measurements f...

  17. Deficiencies in numerical models of anisotropic nonlinearly elastic materials.

    Science.gov (United States)

    Ní Annaidh, A; Destrade, M; Gilchrist, M D; Murphy, J G

    2013-08-01

    Incompressible nonlinearly hyperelastic materials are rarely simulated in finite element numerical experiments as being perfectly incompressible because of the numerical difficulties associated with globally satisfying this constraint. Most commercial finite element packages therefore assume that the material is slightly compressible. It is then further assumed that the corresponding strain-energy function can be decomposed additively into volumetric and deviatoric parts. We show that this decomposition is not physically realistic, especially for anisotropic materials, which are of particular interest for simulating the mechanical response of biological soft tissue. The most striking illustration of the shortcoming is that with this decomposition, an anisotropic cube under hydrostatic tension deforms into another cube instead of a hexahedron with non-parallel faces. Furthermore, commercial numerical codes require the specification of a 'compressibility parameter' (or 'penalty factor'), which arises naturally from the flawed additive decomposition of the strain-energy function. This parameter is often linked to a 'bulk modulus', although this notion makes no sense for anisotropic solids; we show that it is essentially an arbitrary parameter and that infinitesimal changes to it result in significant changes in the predicted stress response. This is illustrated with numerical simulations for biaxial tension experiments of arteries, where the magnitude of the stress response is found to change by several orders of magnitude when infinitesimal changes in 'Poisson's ratio' close to the perfect incompressibility limit of 1/2 are made. PMID:23011411

  18. Confronting Lemaitre-Tolman-Bondi models with observational cosmology

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Bellido, Juan; Haugbolle, Troels, E-mail: juan.garciabellido@uam.es, E-mail: haugboel@phys.au.dk [Instituto de Fisica Teorica UAM-CSIC, Universidad Autonoma de Madrid, Cantoblanco, 28049 Madrid (Spain)

    2008-04-15

    The possibility that we live in a special place in the universe, close to the centre of a large void, seems an appealing alternative to the prevailing interpretation of the acceleration of the universe in terms of a {Lambda}CDM model with a dominant dark energy component. In this paper we confront the asymptotically flat Lemaitre-Tolman-Bondi (LTB) models with a series of observations, from type Ia supernovae to cosmic microwave background and baryon acoustic oscillations data. We propose two concrete LTB models describing a local void in which the only arbitrary functions are the radial dependence of the matter density {Omega}{sub M} and the Hubble expansion rate H. We find that all observations can be accommodated within 1 sigma, for our models with four or five independent parameters. The best fit models have a {chi}{sup 2} very close to that of the {Lambda}CDM model. A general Fortran program for comparing LTB models with cosmological observations, that has been used to make the parameter scan in this paper, has been made public, and can be downloaded at http://www.phys.au.dk/{approx}haugboel/software.shtml together with IDL routines for creating the likelihood plots. We perform a simple Bayesian analysis and show that one cannot exclude the hypothesis that we live within a large local void of an otherwise Einstein-de Sitter model.

  19. Confronting Lemaitre–Tolman–Bondi models with observational cosmology

    International Nuclear Information System (INIS)

    The possibility that we live in a special place in the universe, close to the centre of a large void, seems an appealing alternative to the prevailing interpretation of the acceleration of the universe in terms of a ΛCDM model with a dominant dark energy component. In this paper we confront the asymptotically flat Lemaitre–Tolman–Bondi (LTB) models with a series of observations, from type Ia supernovae to cosmic microwave background and baryon acoustic oscillations data. We propose two concrete LTB models describing a local void in which the only arbitrary functions are the radial dependence of the matter density ΩM and the Hubble expansion rate H. We find that all observations can be accommodated within 1 sigma, for our models with four or five independent parameters. The best fit models have a χ2 very close to that of the ΛCDM model. A general Fortran program for comparing LTB models with cosmological observations, that has been used to make the parameter scan in this paper, has been made public, and can be downloaded at http://www.phys.au.dk/~haugboel/software.shtml together with IDL routines for creating the likelihood plots. We perform a simple Bayesian analysis and show that one cannot exclude the hypothesis that we live within a large local void of an otherwise Einstein–de Sitter model

  20. Preon models, relativity, quantum mechanics and cosmology (I)

    CERN Document Server

    Gonzalez-Mestres, Luis

    2009-01-01

    Preons are hypothetic constituents of the standard particles. They were initially assumed to have basically similar properties to those of conventional matter. But this is not necessarily the case: the ultimate constituents of matter may feel a different space-time from that of special relativity and exhibit mechanical properties different from those predicted by standard quantum mechanics. They can also play an important cosmological role (inflation, dark matter, dark energy...). It is even not obvious that energy and momentum would have to be conserved in such a scenario. In this series of papers, we review the subject using the superbradyon model as an example, and suggest new ways to explore possible tests of the preon hypothesis.

  1. A continuum-mechanical model for the flow of anisotropic polar ice

    CERN Document Server

    Greve, Ralf; Seddik, Hakime

    2009-01-01

    In order to study the mechanical behaviour of polar ice masses, the method of continuum mechanics is used. The newly developed CAFFE model (Continuum-mechanical, Anisotropic Flow model, based on an anisotropic Flow Enhancement factor) is described, which comprises an anisotropic flow law as well as a fabric evolution equation. The flow law is an extension of the isotropic Glen's flow law, in which anisotropy enters via an enhancement factor that depends on the deformability of the polycrystal. The fabric evolution equation results from an orientational mass balance and includes constitutive relations for grain rotation and recrystallization. The CAFFE model fulfills all the fundamental principles of classical continuum mechanics, is sufficiently simple to allow numerical implementations in ice-flow models and contains only a limited number of free parameters. The applicability of the CAFFE model is demonstrated by a case study for the site of the EPICA (European Project for Ice Coring in Antarctica) ice core ...

  2. Torsion gravity with non-minimally coupled fermionic field: some cosmological models

    CERN Document Server

    Vignolo, Stefano; Fabbri, Luca

    2014-01-01

    We investigate some cosmological models arising from a non-minimal coupling of a fermionic field to gravity in the geometrical setting of Einstein-Cartan-Sciama-Kibble gravity. The role played by the non-minimal coupling together with torsion in facing problems such as cosmological singularity, inflation and dark energy is discussed.

  3. nIFTy Cosmology: Comparison of Galaxy Formation Models

    CERN Document Server

    Knebe, Alexander; Thomas, Peter A; Benson, Andrew; Blaizot, Jeremy; Bower, Richard; Carretero, Jorge; Castander, Francisco J; Cattaneo, Andrea; Cora, Sofia A; Croton, Darren J; Cui, Weiguang; Cunnama, Daniel; De Lucia, Gabriella; Devriendt, Julien E; Elahi, Pascal J; Font, Andreea; Fontanot, Fabio; Garcia-Bellido, Juan; Gargiulo, Ignacio D; Gonzalez-Perez, Violeta; Helly, John; Henriques, Bruno; Hirschmann, Michaela; Lee, Jaehyun; Mamon, Gary A; Monaco, Pierluigi; Onions, Julian; Padilla, Nelson D; Power, Chris; Pujol, Arnau; Skibba, Ramin A; Somerville, Rachel S; Srisawat, Chaichalit; Vega-Martinez, Cristian A; Yi, Sukyoung K

    2015-01-01

    We present a comparison of 14 galaxy formation models: 12 different semi-analytical models and 2 halo-occupation distribution models for galaxy formation based upon the same cosmological simulation and merger tree information derived from it. The participating codes have proven to be very successful in their own right but they have all been calibrated independently using various observational data sets, stellar models, and merger trees. In this paper we apply them without recalibration and this leads to a wide variety of predictions for the stellar mass function, specific star formation rates, stellar-to- halo mass ratios, and the abundance of orphan galaxies. The scatter is much larger than seen in previous comparison studies primarily because the codes have been used outside of their native environment within which they are well tested and calibrated. The purpose of the `nIFTy comparison of galaxy formation models' is to bring together as many different galaxy formation modellers as possible and to investig...

  4. Modelling the Growth of Supermassive Black Holes in Cosmological Simulations

    CERN Document Server

    Muldrew, Stuart I; Power, Chris

    2013-01-01

    There is strong evidence that supermassive black holes reside in all galaxies that contain a stellar spheroid and their mass is tightly correlated with properties such as stellar bulge mass and velocity dispersion. There are also strong theoretical arguments that feedback from supermassive black holes plays an important role in shaping the high mass end of the galaxy mass function, hence to accurately model galaxies we also need to model the black holes. We present a comparison of two black hole growth models implemented within a large-scale, cosmological SPH simulation including star formation and feedback. One model is a modified Bondi-Hoyle prescription that grows black holes based on the smooth density of local gas, while the other is the recently proposed Accretion Disc Particle (ADP) method. This model swallows baryonic particles that pass within an accretion radius of the black hole and adds them to a subgrid accretion disc. Black holes are then grown by material from this disc. We find that both model...

  5. 3D constitutive model of anisotropic damage for unidirectional ply based on physical failure mechanisms

    DEFF Research Database (Denmark)

    Qing, Hai; Mishnaevsky, Leon

    2010-01-01

    A 3D anisotropic continuum damage model is developed for the computational analysis of the elastic–brittle behaviour of fibre-reinforced composite. The damage model is based on a set of phenomenological failure criteria for fibre-reinforced composite, which can distinguish the matrix and fibre...... failure under tensile and compressive loading. The homogenized continuum theory is adopted for the anisotropic elastic damage constitutive model. The damage modes occurring in the longitudinal and transverse directions of a ply are represented by a damage vector. The elastic damage model is implemented...

  6. Non-gaussianity and Statistical Anisotropy in Cosmological Inflationary Models

    CERN Document Server

    Valenzuela-Toledo, Cesar A

    2010-01-01

    We study the statistical descriptors for some cosmological inflationary models that allow us to get large levels of non-gaussianity and violations of statistical isotropy. Basically, we study two different class of models: a model that include only scalar field perturbations, specifically a subclass of small-field slow-roll models of inflation with canonical kinetic terms, and models that admit both vector and scalar field perturbations. We study the former to show that it is possible to attain very high, including observable, values for the levels of non-gaussianity f_{NL} and \\tao_{NL} in the bispectrum B_\\zeta and trispectrum T_\\zeta of the primordial curvature perturbation \\zeta respectively. Such a result is obtained by taking care of loop corrections in the spectrum P_\\zeta, the bispectrum B_\\zeta and the trispectrum T_\\zeta . Sizeable values for f_{NL} and \\tao_{NL} arise even if \\zeta is generated during inflation. For the latter we study the spectrum P_\\zeta, bispectrum B_\\zeta and trispectrum $T_\\ze...

  7. The Local Group as a test of cosmological models

    CERN Document Server

    Governato, F; Cen, R; Stadel, J; Lake, G; Quinn, T

    1996-01-01

    The dynamics of the Local Group and its environment provide a unique challenge to cosmological models. The velocity field within 5h-1 Mpc of the Local Group (LG) is extremely ``cold''. The deviation from a pure Hubble flow, characterized by the observed radial peculiar velocity dispersion, is measured to be about 60km/s. We compare the local velocity field with similarly defined regions extracted from N-body simulations of Universes dominated by cold dark matter (CDM). This test is able to strongly discriminate between models that have different mean mass densities. We find that neither the Omega=1 (SCDM) nor Omega=0.3 (OCDM) cold dark matter models can produce a single candidate Local Group that is embedded in a region with such small peculiar velocities. For these models, we measure velocity dispersions between 500-700km/s and 150-300km/s respectively, more than twice the observed value. Although both CDM models fail to produce environments similar to those of our Local Group on a scale of a few Mpc, they c...

  8. Modeling effective FRW cosmologies with perfect fluids from states of the hybrid quantum Gowdy model

    CERN Document Server

    Navascués, Beatriz Elizaga; Marugán, Guillermo A Mena

    2014-01-01

    We employ recently developed approximation methods in the hybrid quantization of the Gowdy $T^3$ model with linear polarization and a massless scalar field to obtain physically interesting solutions of this inhomogeneous cosmology. More specifically, we propose approximate solutions of the quantum Gowdy model constructed in such a way that, for the Hamiltonian constraint, they effectively behave as those corresponding to a flat homogeneous and isotropic universe filled with a perfect fluid, even though these quantum states are far from being homogeneous and isotropic. We analyze how one can get different perfect fluid effective behaviors, including the cases of dust, radiation, and cosmological constant.

  9. Modeling anisotropic flow and heat transport by using mimetic finite differences

    Science.gov (United States)

    Chen, Tao; Clauser, Christoph; Marquart, Gabriele; Willbrand, Karen; Büsing, Henrik

    2016-08-01

    Modeling anisotropic flow in porous or fractured rock often assumes that the permeability tensor is diagonal, which means that its principle directions are always aligned with the coordinate axes. However, the permeability of a heterogeneous anisotropic medium usually is a full tensor. For overcoming this shortcoming, we use the mimetic finite difference method (mFD) for discretizing the flow equation in a hydrothermal reservoir simulation code, SHEMAT-Suite, which couples this equation with the heat transport equation. We verify SHEMAT-Suite-mFD against analytical solutions of pumping tests, using both diagonal and full permeability tensors. We compare results from three benchmarks for testing the capability of SHEMAT-Suite-mFD to handle anisotropic flow in porous and fractured media. The benchmarks include coupled flow and heat transport problems, three-dimensional problems and flow through a fractured porous medium with full equivalent permeability tensor. It shows firstly that the mimetic finite difference method can model anisotropic flow both in porous and in fractured media accurately and its results are better than those obtained by the multi-point flux approximation method in highly anisotropic models, secondly that the asymmetric permeability tensor can be included and leads to improved results compared the symmetric permeability tensor in the equivalent fracture models, and thirdly that the method can be easily implemented in existing finite volume or finite difference codes, which has been demonstrated successfully for SHEMAT-Suite.

  10. Bianchi Type-I cosmological mesonic stiff fluid models in Lyra's geometry

    Indian Academy of Sciences (India)

    S D Katore; S V Thakare; K S Adhao

    2008-07-01

    Bianchi Type-I cosmological models in Lyra's geometry are obtained when the source of gravitational field is a perfect fluid coupled with massless mesonic scalar field. Some physical and kinematical properties of the models are also discussed.

  11. Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models

    Science.gov (United States)

    Bakar, B.; Tirnakli, U.

    2008-03-01

    We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent α for the Hamming distance and the dynamical exponent z are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions of the Bak-Sneppen model. Moreover, it is shown that the growth exponent of the distance in the isotropic and anisotropic Bak-Sneppen models is strongly affected by the choice of the transient time.

  12. Generalized Statistical Models of Voids and Hierarchical Structure in Cosmology

    Science.gov (United States)

    Mekjian, Aram Z.

    2007-01-01

    Generalized statistical models of voids and hierarchical structure in cosmology are developed. The often quoted negative binomial model and the frequently used thermodynamic model are shown to be special cases of a more general distribution that contains a parameter a. This parameter is related to the Lévy index α and the Fisher critical exponent τ, the latter of which describes the power-law falloff of clumps of matter around a phase transition. The parameter a, exponent τ, or index α can be obtained from properties of a void scaling function. A stochastic probability variable p is introduced into a statistical model, which represents the adhesive growth of galaxy structure. The galaxy count distribution decays exponentially quickly with size for p1/2, adhesive growth can go on indefinitely, thereby forming an infinite supercluster. At p=1/2, a scale-free power-law distribution for the galaxy count distribution is present. The stochastic description also leads to consequences that have some parallels with cosmic string results, percolation theory, and phase transitions.

  13. Lagrangian theory of structure formation in relativistic cosmology II: average properties of a generic evolution model

    CERN Document Server

    Buchert, Thomas; Wiegand, Alexander

    2013-01-01

    Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model `irrotational dust'. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the `Relativistic Zel'dovich Approximation'. In this model we investigate the effect of `kinematical backreaction' on the evolution of cosmological parameters as they are defined in an averaged inhomogenous cosmology, and we show that the backreaction model interpolates between orthogonal symmetry properties by covering subcases of the plane-symmetric solution, the Lemaitre-Tolman-Bondi solution and the Szekeres solution. We so obtain a powerful model that lays the foundations for quantitatively addressing curvature inhomogeneities as they would be interpreted as `Dark Energy' or `Dark Matter' in a quasi-Newtonian cosmology. The present model, havi...

  14. C-field cosmological model in higher dimensions

    CERN Document Server

    Chatterjee, S

    2004-01-01

    Hoyle and Narlikar's $C$-field cosmology is extended in the framework of higher dimensional spacetime and a class of exact solutions is obtained. Adjusting the arbitrary constants of integration one can show that our model is amenable to the desirable property of dimensional reduction so that the universe ends up in an effective 4D one.Further with matter creation from the $C$-field the mass density steadies with time and the usual bigbang singularity is avoided. An alternative mechanism is also suggested which seems to provide matter creation in the 4D spacetime although total matter in the 5D world remains conserved. Quintessence phenomenon and energy conditions are also discussed and it is found that in line with the physical requirements our model admits a solution with a decelerating phase in the early era followed by an accelerated expansion later. Moreover, as the contribution from the $C$-field is made negligible a class of our solutions reduces to the previously known higher dimensional models in the...

  15. Bulk viscous cosmological model with interacting dark fluids

    Energy Technology Data Exchange (ETDEWEB)

    Kremer, Gilberto M.; Sobreiro, Octavio A.S., E-mail: kremer@fisica.ufpr.br [Departamento de Fisica, Universidade Federal do Parana, Curitiba, PR (Brazil)

    2012-04-15

    We study a cosmological model for a spatially flat Universe whose constituents are a dark energy field and a matter field comprising baryons and dark matter. The constituents are assumed to interact with each other, and a non-equilibrium pressure is introduced to account for irreversible processes. We take the nonequilibrium pressure to be proportional to the Hubble parameter within the framework of a first-order thermodynamic theory. The dark energy and matter fields are coupled by their barotropic indexes, which depend on the ratio between their energy densities. We adjust the free parameters of the model to optimize the fits to the Hubble parameter data. We compare the viscous model with the non-viscous one, and show that the irreversible processes cause the dark-energy and matter-density parameters to become equal and the decelerated-accelerated transition to occur at earlier times. Furthermore, the density and deceleration parameters and the distance modulus have the correct behavior, consistent with a viable scenario of the present status of the Universe . (author)

  16. An outline of Weyl geometric models in cosmology

    CERN Document Server

    Scholz, E E

    2004-01-01

    Already the simplest examples of Weyl geometry, the static space-time models of general relativity modified by an additional time-homogeneous Weylian length connection lead to beautiful cosmological models (Weyl universes) . The magnitude-redshift relation of recent supernovae Ia measurements is in perfect agreement with the prediction of decrease of energy flux in the Weyl models. These data allow to estimate the (ex-ante) spacelike curvature of Weyl universes. Quasar frequency data from the SDSS provide strong evidence of a positive ex-ante curvature. Thus an Einstein-Weyl universe, i.e., an Einstein universe endowed with a Weylian length connection, is in good agreement with supernovae and quasar data. The relative mass-energy density with respect to the critical density of the standard approach, and the relative contribution of the ``vacuum term'' are time-independent in Weyl gauge. Thus the time-evolution anomaly of vacuum energy does not arise. The intervals given in the literature for the dynamically d...

  17. Possible evolution of a bouncing universe in cosmological models with non-minimally coupled scalar fields

    CERN Document Server

    Pozdeeva, Ekaterina O; Toporensky, Alexey V; Vernov, Sergey Yu

    2016-01-01

    We explore dynamics of cosmological models with bounce solutions evolving on a spatially flat Friedmann-Lemaitre-Robertson-Walker background. We consider cosmological models that contain the Hilbert-Einstein curvature term, the induced gravity term with a negative coupled constant, and even polynomial potentials of the scalar field. Bounce solutions with non-monotonic Hubble parameters have been obtained and analyzed. The case when the scalar field has the conformal coupling and the Higgs potential with an opposite sign is studied in detail. In this model the evolution of the Hubble parameter of the bounce solution essentially depends on the sign of the cosmological constant.

  18. Age Estimates of Universe: from Globular Clusters to Cosmological Models and Probes

    CERN Document Server

    Fatima, Hira; Rahman, Syed Faisal Ur

    2016-01-01

    We performed the photometric analysis of M2 and M92 globular clusters in g and r bands of SLOAN photometric system. We transformed these g and r bands into BV bands of Johnson-Cousins photometric system and built the color magnitude diagram (CMD). We estimated the age, and metallicity of both the clusters, by fitting Padova isochrones of different age and metallicities onto the CMD. We studied Einstein and de Sitter model, bench mark model, the cosmological parameters by WMAP and Planck surveys. Finally, we compared estimated age of globular clusters to the ages from the cosmological models and cosmological parameters values of WMAP and Planck surveys.

  19. Signatures of Explosion Models of Type Ia Supernovae and Cosmology

    Science.gov (United States)

    Höflich, P.

    2005-12-01

    Based on detailed models for the progenitors, explosions, light curves (LCs) and spectra, we discuss signatures of thermonuclear explosions, and the implications for cosmology. Consistency is needed to link observables and explosion physics. Type Ia supernovae (SNe Ia) most probably result from the explosion of a degenerate C/O-White Dwarf (WD) close to the Chandrasekhar mass. There is strong evidence that most of the WD is burned with an extended outer layer of explosive C-burning products (O, Ne, Mg) and very little C remaining. Overall, the chemical structure is radially stratified. This leads to the currently favored delayed detonation model in which a phase of slow nuclear burning as a deflagration front is followed by a detonation phase. The importance of pre-conditioning became obvious. Within an unified scenario, spherical models allow to understand both the homogeneity and basic properties of LCs and spectra, and they allow to probe for their diversity which is a key for high precision cosmology by SNe Ia. For local SNe Ia, the diversity becomes apparent by the combination of high-quality spectra and LCs whereas, for high-z objects, we will rely mostly on information from light curves. Therefore, we emphasize the relation between LC and spectral features. We show how we can actually probe the properties of the progenitor, its environment, and details of the explosion physics. We demonstrate the influence of the metallicity Z on the progenitors, explosion physics and the combined effect on light curves. By and large, a change of Z causes a shift of along the brightness-decline relation because Z shifts the balance between ^{56}Ni and non-radioactive isotopes but hardly changes the energetics or the ^{56}Ni distribution. However, the diversity of the progenitors produces an intrinsic dispersion in B-V which may pose a problem for reddening corrections. We discuss the nature of subluminous SN1999by, and how it can be understood in the same framework as

  20. Explicit analytical solutions of the anisotropic Brinkman model for the natural convection in porous media

    Institute of Scientific and Technical Information of China (English)

    蔡睿贤; 张娜

    2002-01-01

    Some algebraically explicit analytical solutions are derived for the anisotropic Brinkman model an improved Darcy model describing the natural convection in porous media. Besides their important theoretical meaning (for example, to analyze the non-Darcy and anisotropic effects on the convection), such analytical solutions can be the benchmark solutions to promoting the develop ment of computational heat and mass transfer. For instance, we can use them to check the accuracy,convergence and effectiveness of various numerical computational methods and to improve numerical calculation skills such as differential schemes and grid generation ways.

  1. Modeling Cometary Coma with a Three Dimensional, Anisotropic Multiple Scattering Distributed Processing Code

    Science.gov (United States)

    Luchini, Chris B.

    1997-01-01

    Development of camera and instrument simulations for space exploration requires the development of scientifically accurate models of the objects to be studied. Several planned cometary missions have prompted the development of a three dimensional, multi-spectral, anisotropic multiple scattering model of cometary coma.

  2. Validation of Modified Lemaitre’s Anisotropic Damage Model with the Cross Die Drawing Test

    NARCIS (Netherlands)

    Niazi, M.S.; Wisselink, H.H.; Meinders, T.

    2012-01-01

    Dual Phase (DP) steels are widely replacing the traditional forming steels in automotive industry. Advanced damage models are required to accurately predict the formability of DP steels. In this work, Lemaitre’s anisotropic damage model has been slightly modified for sheet metal forming applications

  3. Finite states in four dimensional quantized gravity. The anisotropic Klein--Gordon--Ashtekar model: Part I

    CERN Document Server

    Ita, Eyo Eyo

    2008-01-01

    In this paper we construct the generalized Kodama state for gravity coupled to a Klein--Gordon scalar field in the homogeneous anisotropic case. The basic method is to generate an asymptotic expansion about the pure Kodama state, viewed as a vacuum with respect to third-quantized fluctuations of the CDJ matrix. A result stemming from the semiclassical-quantum correspondence is a new effect, termed `cosmological constant renormalization', which we allude should have observational consequences. Another main result of this work is to demonstrate a link through our new quantization procedure a direct link from Minkwoski spacetime physics to the Planck scale and vice versa by way of these states. While the main focus of this paper is to illustrate some of the specifics of the algorithm for constructing the states and associated issues, we relegate a thorough analysis of the observational implications and phenomenology to Part II and subsequent works.

  4. Modelling anisotropic water transport in polymer composite reinforced with aligned triangular bars

    Indian Academy of Sciences (India)

    Bryan Pajarito; Masatoshi Kubouchi; Saiko Aoki

    2014-02-01

    This work reports anisotropic water transport in a polymer composite consisting of an epoxy matrix reinforced with aligned triangular bars made of vinyl ester. By gravimetric experiments, water diffusion in resin and polymer composites were characterized. Parameters for Fickian diffusion and polymer relaxation models were determined by least-square curve fitting to the experimental data. Diffusion parameters of epoxy and vinyl ester resin were used as input during development of finite element (FE) model of polymer composite. Through transient FE diffusion analysis, anisotropic water transport in thickness direction of the polymer composite was numerically predicted and validated against experimental results. The case of using impermeable triangular bars was also numerically simulated. The diffusivity of reinforced aligned triangular bars was confirmed to affect anisotropic water transport in the composite. The results of this work suggest possible use of polymer composite for barrier and fluid removal applications.

  5. Exact solutions of a Flat Full Causal Bulk viscous FRW cosmological model through factorization

    OpenAIRE

    Cornejo-Pérez, O.; Belinchón, J. A.

    2012-01-01

    We study the classical flat full causal bulk viscous FRW cosmological model through the factorization method. The method shows that there exists a relationship between the viscosity parameter $s$ and the parameter $\\gamma$ entering the equations of state of the model. Also, the factorization method allows to find some new exact parametric solutions for different values of the viscous parameter $s$. Special attention is given to the well known case $s=1/2$, for which the cosmological model adm...

  6. On the semiclassical approach to quantum cosmology: relational particle model

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Edward, E-mail: edward.anderson@uam.es, E-mail: edward.anderson@apc.univ-paris7.fr [Departamento de Fisica Teorica, Universidad Autonoma de Madrid, Madrid (Spain)

    2011-09-21

    The emergent semiclassical time approach to resolving the problem of time in quantum gravity involves heavy slow degrees of freedom providing via an approximately Hamilton-Jacobi equation an approximate time standard with respect to which the quantum mechanics of light fast degrees of freedom can run. More concretely, this approach involves Born-Oppenheimer and WKB ansaetze and some accompanying approximations. In this paper, I investigate this approach for concrete scaled relational particle mechanics models, i.e. models featuring only relative separations, relative angles and relative times. I consider the heavy-light interaction term in the light quantum equation-necessary for the semiclassical approach to work, first as an emergent-time-dependent perturbation of the emergent-time-dependent Schroedinger equation for the light subsystem. Secondly, I consider a scheme in which the backreaction is small but non-negligible, so that the l-subsystem also affects the form of the emergent time. I also suggest that the many terms involving expectation values of the light wavefunctions in both the (unapproximated) heavy and light equations might require treatment in parallel to the Hartree-Fock self-consistent approach rather than merely being discarded; for the moment this paper provides a counterexample to such terms being smaller than their unaveraged counterparts. Investigation of these ideas and methods will give us a more robust understanding of the suggested quantum-cosmological origin of microwave background inhomogeneities and galaxies.

  7. Observational constraints on dark energy cosmological model parameters

    OpenAIRE

    Farooq, Muhammad Omer

    2013-01-01

    The expansion rate of the Universe changes with time, initially slowing (decelerating) when the universe was matter dominated, because of the mutual gravitational attraction of all the matter in it, and more recently speeding up (accelerating). A number of cosmological observations now strongly support the idea that the Universe is spatially flat (provided the dark energy density is at least approximately time independent) and is currently undergoing an accelerated cosmological expansion. A m...

  8. Cosmology with a time dependent cosmological constant

    International Nuclear Information System (INIS)

    In the context of the scalar-tensor theories we consider cosmological models with a time dependent cosmological constant. Several toy models are obtained among them there are solutions without singularity and accelerating. (Author)

  9. Cosmological perturbations in coherent oscillating scalar field models

    Science.gov (United States)

    Cembranos, J. A. R.; Maroto, A. L.; Jareño, S. J. Núñez

    2016-03-01

    The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials V( ϕ) = λ| ϕ| n /n. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained c eff 2 = ω = ( n - 2)/( n + 2) with ω the effective equation of state. We also obtain the first order correction in k 2/ ω eff 2 , when the wavenumber k of the perturbations is much smaller than the background oscillation frequency, ω eff. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the natural ansatz for δϕ; and for sub-Hubble modes, exploiting Floquet's theorem.

  10. Cosmological perturbations in coherent oscillating scalar field models

    CERN Document Server

    Cembranos, J A R; Jareño, S J Núñez

    2015-01-01

    The fact that fast oscillating homogeneous scalar fields behave as perfect fluids in average and their intrinsic isotropy have made these models very fruitful in cosmology. In this work we will analyse the perturbations dynamics in these theories assuming general power law potentials $V(\\phi)=\\lambda \\vert\\phi\\vert^{n}/n$. At leading order in the wavenumber expansion, a simple expression for the effective sound speed of perturbations is obtained $c_{\\text{eff}}^2 = \\omega=(n-2)/(n+2)$ with $\\omega$ the effective equation of state. We also obtain the first order correction in $k^2/\\omega_{\\text{eff}}^2$, when the wavenumber $k$ of the perturbations is much smaller than the background oscillation frequency, $\\omega_{\\text{eff}}$. For the standard massive case we have also analysed general anharmonic contributions to the effective sound speed. These results are reached through a perturbed version of the generalized virial theorem and also studying the exact system both in the super-Hubble limit, deriving the nat...

  11. Fluid-structure interaction simulations of cerebral arteries modeled by isotropic and anisotropic constitutive laws

    Science.gov (United States)

    Tricerri, Paolo; Dedè, Luca; Deparis, Simone; Quarteroni, Alfio; Robertson, Anne M.; Sequeira, Adélia

    2015-03-01

    This paper considers numerical simulations of fluid-structure interaction (FSI) problems in hemodynamics for idealized geometries of healthy cerebral arteries modeled by both nonlinear isotropic and anisotropic material constitutive laws. In particular, it focuses on an anisotropic model initially proposed for cerebral arteries to characterize the activation of collagen fibers at finite strains. In the current work, this constitutive model is implemented for the first time in the context of an FSI formulation. In this framework, we investigate the influence of the material model on the numerical results and, in the case of the anisotropic laws, the importance of the collagen fibers on the overall mechanical behavior of the tissue. With this aim, we compare our numerical results by analyzing fluid dynamic indicators, vessel wall displacement, Von Mises stress, and deformations of the collagen fibers. Specifically, for an anisotropic model with collagen fiber recruitment at finite strains, we highlight the progressive activation and deactivation processes of the fibrous component of the tissue throughout the wall thickness during the cardiac cycle. The inclusion of collagen recruitment is found to have a substantial impact on the intramural stress, which will in turn impact the biological response of the intramural cells. Hence, the methodology presented here will be particularly useful for studies of mechanobiological processes in the healthy and diseased vascular wall.

  12. Polarization-tailored Fano interference in plasmonic crystals: A Mueller matrix model of anisotropic Fano resonance

    CERN Document Server

    Ray, S K; Singh, A K; Kumar, A; Misra, A Mandal S; Mitra, P; Ghosh, N

    2016-01-01

    We present a simple yet elegant Mueller matrix approach for controlling the Fano interference effect and engineering the resulting asymmetric spectral line shape in anisotropic optical system. The approach is founded on a generalized model of anisotropic Fano resonance, which relates the spectral asymmetry to two physically meaningful and experimentally accessible parameters of interference, namely, the Fano phase shift and the relative amplitudes of the interfering modes. The differences in these parameters between orthogonal linear polarizations in an anisotropic system are exploited to desirably tune the Fano spectral asymmetry using pre- and post-selection of optimized polarization states. Experimental control on the Fano phase and the relative amplitude parameters and resulting tuning of spectral asymmetry is demonstrated in waveguided plasmonic crystals using Mueller matrix-based polarization analysis. The approach enabled tailoring of several exotic regimes of Fano resonance including the complete reve...

  13. Early universe cosmology. In supersymmetric extensions of the standard model

    International Nuclear Information System (INIS)

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) η-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss the

  14. Early universe cosmology. In supersymmetric extensions of the standard model

    Energy Technology Data Exchange (ETDEWEB)

    Baumann, Jochen Peter

    2012-03-19

    In this thesis we investigate possible connections between cosmological inflation and leptogenesis on the one side and particle physics on the other side. We work in supersymmetric extensions of the Standard Model. A key role is played by the right-handed sneutrino, the superpartner of the right-handed neutrino involved in the type I seesaw mechanism. We study a combined model of inflation and non-thermal leptogenesis that is a simple extension of the Minimal Supersymmetric Standard Model (MSSM) with conserved R-parity, where we add three right-handed neutrino super fields. The inflaton direction is given by the imaginary components of the corresponding scalar component fields, which are protected from the supergravity (SUGRA) {eta}-problem by a shift symmetry in the Kaehler potential. We discuss the model first in a globally supersymmetric (SUSY) and then in a supergravity context and compute the inflationary predictions of the model. We also study reheating and non-thermal leptogenesis in this model. A numerical simulation shows that shortly after the waterfall phase transition that ends inflation, the universe is dominated by right-handed sneutrinos and their out-of-equilibrium decay can produce the desired matter-antimatter asymmetry. Using a simplified time-averaged description, we derive analytical expressions for the model predictions. Combining the results from inflation and leptogenesis allows us to constrain the allowed parameter space from two different directions, with implications for low energy neutrino physics. As a second thread of investigation, we discuss a generalisation of the inflationary model discussed above to include gauge non-singlet fields as inflatons. This is motivated by the fact that in left-right symmetric, supersymmetric Grand Unified Theories (SUSY GUTs), like SUSY Pati-Salam unification or SUSY SO(10) GUTs, the righthanded (s)neutrino is an indispensable ingredient and does not have to be put in by hand as in the MSSM. We discuss

  15. Cosmological-constant cold dark matter models and the cobe two-year Sky maps

    CERN Document Server

    Bunn, E F; Emory F Bunn; Naoshi Sugiyama

    1994-01-01

    Abstract. We compare the two-year COBE DMR sky maps with the predictions of cosmological-constant cold dark matter models. Using a Bayesian analysis, we find that the most likely value of the cosmological constant in such a model is Lambda = 0. The data set an upper limit on Lambda of 0.71 (0.78) at 90% confidence, and 0.78 (0.86) at 95% confidence with (without) the quadrupole anisotropy.

  16. Baryon isocurvature scenario in inflationary cosmology - A particle physics model and its astrophysical implications

    Science.gov (United States)

    Yokoyama, Jun'ichi; Suto, Yasushi

    1991-01-01

    A phenomenological model to produce isocurvature baryon-number fluctuations is proposed in the framework of inflationary cosmology. The resulting spectrum of density fluctuation is very different from the conventional Harrison-Zel'dovich shape. The model, with the parameters satisfying several requirements from particle physics and cosmology, provides an appropriate initial condition for the minimal baryon isocurvature scenario of galaxy formation discussed by Peebles.

  17. Anisotropic seismic-waveform inversion: Application to a seismic velocity model from Eleven-Mile Canyon in Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Yu [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Gao, Kai [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Huang, Lianjie [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sabin, Andrew [Geothermal Program Office, China Lake, CA (United States)

    2016-03-31

    Accurate imaging and characterization of fracture zones is crucial for geothermal energy exploration. Aligned fractures within fracture zones behave as anisotropic media for seismic-wave propagation. The anisotropic properties in fracture zones introduce extra difficulties for seismic imaging and waveform inversion. We have recently developed a new anisotropic elastic-waveform inversion method using a modified total-variation regularization scheme and a wave-energy-base preconditioning technique. Our new inversion method uses the parameterization of elasticity constants to describe anisotropic media, and hence it can properly handle arbitrary anisotropy. We apply our new inversion method to a seismic velocity model along a 2D-line seismic data acquired at Eleven-Mile Canyon located at the Southern Dixie Valley in Nevada for geothermal energy exploration. Our inversion results show that anisotropic elastic-waveform inversion has potential to reconstruct subsurface anisotropic elastic parameters for imaging and characterization of fracture zones.

  18. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    Science.gov (United States)

    Okada, Nobuchika; Okada, Satomi

    2016-06-01

    In light of the recent Planck 2015 results for the measurement of the cosmic microwave background (CMB) anisotropy, we study simple inflationary models in the context of the Gauss-Bonnet (GB) brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index (n s) and the tensor-to-scalar ratio (r) from those obtained in the standard cosmology. In particular, the predicted r values in the inflationary models favored by the Planck 2015 results are suppressed due to the GB brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology, where the r values are enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the GB brane-world cosmology can be tested by more precise measurements of n s and future observations of the CMB B-mode polarization.

  19. Cosmological constraints on parameters of one-brane models with extra dimension

    CERN Document Server

    Iofa, Mikhail Z

    2009-01-01

    We study some aspects of cosmologies in 5D models with one infinite extra dimension. Matter is confined to the brane, gravity extends to the bulk. Models with positive and negative tension of the brane are considered. Cosmological evolution of the 4D world is described by warped solutions of the generalized Friedmann equation. Cosmological solutions on the brane are obtained with the input of the present-time observational cosmological parameters. We estimate the age of the Universe and abundance of ${}^4 He$ produced in primordial nucleosynthesis in different models. Using these estimates we find constraints on dimensionless combinations of the 5D gravitational scale, scale of the warp factor and coupling at the 4D curvature term in the action.

  20. Observational Constraints on Cosmological Models with the Updated Long Gamma-Ray Bursts

    CERN Document Server

    Wei, Hao

    2010-01-01

    In the present work, by the help of the newly released Union2 compilation which consists of 557 Type Ia supernovae (SNIa), we calibrate 109 long Gamma-Ray Bursts (GRBs) with the well-known Amati relation, using the cosmology-independent calibration method proposed by Liang {\\it et al.}. We have obtained 59 calibrated high-redshift GRBs which can be used to constrain cosmological models without the circularity problem (we call them "Hymnium" GRBs sample for convenience). Then, we consider the joint constraints on 7 cosmological models from the latest observational data, namely, the combination of 557 Union2 SNIa dataset, 59 calibrated Hymnium GRBs dataset (obtained in this work), the shift parameter $R$ from the WMAP 7-year data, and the distance parameter $A$ of the measurement of the baryon acoustic oscillation (BAO) peak in the distribution of SDSS luminous red galaxies. We also briefly consider the comparison of these 7 cosmological models.

  1. Implementation of an anisotropic damage material model using general second order damage tensor

    NARCIS (Netherlands)

    Niazi, Muhammad; Wisselink, Harm; Meinders, Timo; Horn, ten Carel; Mori, K.; Pietrzyk, M.; Kusiak, J.; Majta, J.; Hartley, P.; Lin, J.

    2010-01-01

    Damage in metals is mainly the process of the initiation and growth of voids. With the growing complexity in materials and forming proc-esses, it becomes inevitable to include anisotropy in damage (tensorial damage variable). Most of the anisotropic damage models define the damage tensor in the prin

  2. Modeling anisotropic plasmon excitations in self-assembled fullerenes

    Science.gov (United States)

    Iurov, Andrii; Gumbs, Godfrey; Gao, Bo; Huang, Danhong

    2014-05-01

    The plasmon excitations in Coulomb-coupled spherical two-dimensional electron gases (S2DEGs) reveal an interesting dependence on the displacement vector between the centers of the spheres with respect to the axis of quantization for the angular momentum quantum number L. Specifically, plasmon modes for a bundle of three S2DEGs have been obtained within the random-phase approximation. The inter-sphere Coulomb interaction matrix elements and their symmetry properties were also investigated in detail. The case of a bundle gives an adequate picture of the way in which the Coulomb interaction depends on the orbital angular momentum quantum number L and its projection M. We concluded that the interaction between the S2DEGs aligned at an angle of 45° with the axis of quantization is negligible compared to the interaction along and perpendicular to the quantization axis, which are themselves unequal to each other. Consequently, the plasmon excitation frequencies reveal an interesting orientational anisotropic coupling to an external electromagnetic field probing the charge density oscillations. Our result on the spatial correlation may be experimentally observable. In this connection, there have already been some experimental reports pointing to a similar effect in nanoparticles.

  3. Inhomogeneity-induced variance of cosmological parameters

    Science.gov (United States)

    Wiegand, A.; Schwarz, D. J.

    2012-02-01

    Context. Modern cosmology relies on the assumption of large-scale isotropy and homogeneity of the Universe. However, locally the Universe is inhomogeneous and anisotropic. This raises the question of how local measurements (at the ~102 Mpc scale) can be used to determine the global cosmological parameters (defined at the ~104 Mpc scale)? Aims: We connect the questions of cosmological backreaction, cosmic averaging and the estimation of cosmological parameters and show how they relate to the problem of cosmic variance. Methods: We used Buchert's averaging formalism and determined a set of locally averaged cosmological parameters in the context of the flat Λ cold dark matter model. We calculated their ensemble means (i.e. their global value) and variances (i.e. their cosmic variance). We applied our results to typical survey geometries and focused on the study of the effects of local fluctuations of the curvature parameter. Results: We show that in the context of standard cosmology at large scales (larger than the homogeneity scale and in the linear regime), the question of cosmological backreaction and averaging can be reformulated as the question of cosmic variance. The cosmic variance is found to be highest in the curvature parameter. We propose to use the observed variance of cosmological parameters to measure the growth factor. Conclusions: Cosmological backreaction and averaging are real effects that have been measured already for a long time, e.g. by the fluctuations of the matter density contrast averaged over spheres of a certain radius. Backreaction and averaging effects from scales in the linear regime, as considered in this work, are shown to be important for the precise measurement of cosmological parameters.

  4. On an Alternative Cosmology

    CERN Document Server

    Vankov, A

    1998-01-01

    The suggested alternative cosmology is based on the idea of barion symmetric universe, in which our home universe is a representative of multitude of typical matter and antimatter universes. This alternative concept gives a physically reasonable explanation of all major problems of the Standard Cosmological Model. Classification Code MSC: Cosmology 524.8 Key words: standard cosmological model, alternative cosmology, barionic symmetry, typical universe, quasars, cosmic rays.

  5. The Coyote Universe II: Cosmological Models and Precision Emulation of the Nonlinear Matter Power Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Heitmann, Katrin [Los Alamos National Laboratory; Habib, Salman [Los Alamos National Laboratory; Higdon, David [Los Alamos National Laboratory; Williams, Brian J [Los Alamos National Laboratory; White, Martin [Los Alamos National Laboratory; Wagner, Christian [Los Alamos National Laboratory

    2008-01-01

    The power spectrum of density fluctuations is a foundational source of cosmological information. Precision cosmological probes targeted primarily at investigations of dark energy require accurate theoretical determinations of the power spectrum in the nonlinear regime. To exploit the observational power of future cosmological surveys, accuracy demands on the theory are at the one percent level or better. Numerical simulations are currently the only way to produce sufficiently error-controlled predictions for the power spectrum. The very high computational cost of (precision) N-body simulations is a major obstacle to obtaining predictions in the nonlinear regime, while scanning over cosmological parameters. Near-future observations, however, are likely to provide a meaningful constraint only on constant dark energy equation of state 'wCDM' cosmologies. In this paper we demonstrate that a limited set of only 37 cosmological models -- the 'Coyote Universe' suite -- can be used to predict the nonlinear matter power spectrum at the required accuracy over a prior parameter range set by cosmic microwave background observations. This paper is the second in a series of three, with the final aim to provide a high-accuracy prediction scheme for the nonlinear matter power spectrum for wCDM cosmologies.

  6. Jacobi stability analysis of scalar field models with minimal coupling to gravity in a cosmological background

    CERN Document Server

    Dănilă, Bogdan; Mak, Man Kwong; Pantaragphong, Praiboon; Sabau, Sorin

    2016-01-01

    We perform the study of the stability of the cosmological scalar field models, by using the Jacobi stability analysis, or the Kosambi-Cartan-Chern (KCC) theory. In the KCC approach we describe the time evolution of the scalar field cosmologies in geometric terms, by performing a "second geometrization", by considering them as paths of a semispray. By introducing a non-linear connection and a Berwald type connection associated to the Friedmann and Klein-Gordon equations, five geometrical invariants can be constructed, with the second invariant giving the Jacobi stability of the cosmological model. We obtain all the relevant geometric quantities, and we formulate the condition of the Jacobi stability for scalar field cosmologies in the second order formalism. As an application of the developed methods we consider the Jacobi stability properties of the scalar fields with exponential and Higgs type potential. We find that the Universe dominated by a scalar field exponential potential is in Jacobi unstable state, ...

  7. Spurious Small-Scale Structure & Discreteness-Driven Relaxation in Cosmological Simulations

    OpenAIRE

    Power, Chris; Robotham, Aaron S. G.; Obreschkow, Danail; Hobbs, Alexander; Lewis, Geraint F.

    2016-01-01

    There is strong evidence that cosmological N-body simulations dominated by Warm Dark Matter (WDM) contain spurious or unphysical haloes, most readily apparent as regularly spaced low-mass haloes strung along filaments. We show that spurious haloes are a feature of traditional N-body simulations of cosmological structure formation models, including WDM and Cold Dark Matter (CDM) models, in which gravitational collapse proceeds in an initially anisotropic fashion, and arises naturally as a cons...

  8. Evaluation of Springback for DP980 S Rail Using Anisotropic Hardening Models

    Science.gov (United States)

    Choi, Jisik; Lee, Jinwoo; Bae, Gihyun; Barlat, Frederic; Lee, Myoung-Gyu

    2016-07-01

    The effect of anisotropic hardening models on springback of an S-rail part was investigated. Two advanced constitutive models based on distortional and kinematic hardening, which captured the Bauschinger effect, transient hardening, and permanent softening during strain path change, were implemented in a finite element (FE) code. In-plane compression-tension tests were performed to identify the model parameters. The springback of the S-rail after forming a 980 MPa dual-phase steel sheet sample was measured and analyzed using different hardening models. The comparison between experimental and FE results demonstrated that the advanced anisotropic hardening models, which are particularly suitable for non-proportional loading, significantly improved the springback prediction capability of an advanced high strength steel.

  9. Anisotropic thermal conduction in galaxy clusters with MHD in Gadget

    CERN Document Server

    Arth, Alexander; Beck, Alexander M; Petkova, Margarita; Lesch, Harald

    2014-01-01

    We present an implementation of thermal conduction including the anisotropic effects of magnetic fields for SPH. The anisotropic thermal conduction is mainly proceeding parallel to magnetic fields and suppressed perpendicular to the fields. We derive the SPH formalism for the anisotropic heat transport and solve the corresponding equation with an implicit conjugate gradient scheme. We discuss several issues of unphysical heat transport in the cases of extreme ansiotropies or unmagnetized regions and present possible numerical workarounds. We implement our algorithm into the GADGET code and study its behaviour in several test cases. In general, we reproduce the analytical solutions of our idealised test problems, and obtain good results in cosmological simulations of galaxy cluster formations. Within galaxy clusters, the anisotropic conduction produces a net heat transport similar to an isotropic Spitzer conduction model with an efficiency of one per cent. In contrast to isotropic conduction our new formalism ...

  10. Cosmological Perturbations

    Science.gov (United States)

    Lesgourges, J.

    2013-08-01

    We present a self-contained summary of the theory of linear cosmological perturbations. We emphasize the effect of the six parameters of the minimal cosmological model, first, on the spectrum of Cosmic Microwave Background temperature anisotropies, and second, on the linear matter power spectrum. We briefly review at the end the possible impact of a few non-minimal dark matter and dark energy models.

  11. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion

    OpenAIRE

    Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H.; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick

    2014-01-01

    The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computat...

  12. Magnetohydrodynamics and Plasma Cosmology

    CERN Document Server

    Kleidis, K; Papadopoulos, D B; Vlahos, L

    2005-01-01

    We study the linear magnetohydrodynamic (MHD) equations, both in the Newtonian and the general-relativistic limit, as regards a viscous magnetized fluid of finite conductivity and discuss instability criteria. In addition, we explore the excitation of cosmological perturbations in anisotropic spacetimes, in the presence of an ambient magnetic field. Acoustic, electromagnetic (e/m) and fast-magnetosonic modes, propagating normal to the magnetic field, can be excited, resulting in several implications of cosmological significance.

  13. An anisotropic thermomechanical damage model for concrete at transient elevated temperatures.

    Science.gov (United States)

    Baker, Graham; de Borst, René

    2005-11-15

    The behaviour of concrete at elevated temperatures is important for an assessment of integrity (strength and durability) of structures exposed to a high-temperature environment, in applications such as fire exposure, smelting plants and nuclear installations. In modelling terms, a coupled thermomechanical analysis represents a generalization of the computational mechanics of fracture and damage. Here, we develop a fully coupled anisotropic thermomechanical damage model for concrete under high stress and transient temperature, with emphasis on the adherence of the model to the laws of thermodynamics. Specific analytical results are given, deduced from thermodynamics, of a novel interpretation on specific heat, evolution of entropy and the identification of the complete anisotropic, thermomechanical damage surface. The model is also shown to be stable in a computational sense, and to satisfy the laws of thermodynamics. PMID:16243703

  14. Characterisation and modelling of anisotropic thermo-mechanical behaviour of oriented polyethylene terephthalate

    International Nuclear Information System (INIS)

    The long-term and short-term anisotropic mechanical behaviour of a biaxially stretched polyethylene terephthalate foil is measured. The orientation of the crystalline phase is characterized and the representative foil microstructure is discussed. Using the obtained information, a mean-field model is used to simulate the elasto-viscoplastic behaviour of the oriented polymer foil, taking into account the different constitutive behaviour of the phases. The material is modelled as an aggregate of connected two-phase domains. The parameters of the constitutive behaviour of the crystalline and non-crystalline phases have been determined, and the ability to simulate the large-strain anisotropic behaviour of polyethylene terephthalate in the strain-rate-controlled regime and the long-term creep has been demonstrated. The model is extended to include pre-orientation of the non-crystalline phase. In addition, deformation at the microscopic level is analysed using the model results. (paper)

  15. Dynamics of gravitating hadron matter in Bianchi-IX cosmological model

    CERN Document Server

    Pavluchenko, Sergey A

    2016-01-01

    We perform an analysis of the Einstein-Skyrme cosmological model in Bianchi-IX background. We analytically describe asymptotic regimes and semi-analytically -- generic regimes. It appears that depending on the product of Newtonian constant $\\kappa$ with Skyrme coupling $K$, in absence of the cosmological term there are three regimes possible -- recollapse with $\\kK 2$. In presence of the positive cosmological term, power-law regimes turn to exponential (de Sitter) ones while recollapse regime turn to exponential if the value for $\\Lambda$-term is sufficiently large, otherwise the regime remains recollapse. Negative cosmological term leads to the recollapse regardless of $\\kK$. All nonsingular regimes have the squashing coefficient $a(t) \\to 1$ at late times, which is associated with restoring symmetry dynamics. Also all nonsingular regimes appear to be linearly stable -- exponential solutions always while power-law for an open region of initial conditions.

  16. Dynamics of gravitating hadron matter in a Bianchi-IX cosmological model

    Science.gov (United States)

    Pavluchenko, Sergey A.

    2016-08-01

    We perform an analysis of the Einstein-Skyrme cosmological model in the Bianchi-IX background. We analytically describe asymptotic regimes and semianalytically describe generic regimes. It appears that depending on the product of the Newtonian constant κ with Skyrme coupling K , in the absence of the cosmological term, there are three possible regimes: recollapse with κ K 2 . In the presence of the positive cosmological term, power-law regimes turn to the exponential (de Sitter) ones, while the recollapse regime turns to the exponential if the value for the Λ -term is sufficiently large, otherwise the regime remains recollapse. The negative cosmological term leads to the recollapse regardless of κ K . All nonsingular regimes have the squashing coefficient a (t )→1 at late times, which is associated with restoring symmetry dynamics. Also all nonsingular regimes appear to be linearly stable exponential solutions always, while power-law regimes for an open region of the initial conditions.

  17. Bianchi Type-IX viscous fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Mahesh Kumar Yadav

    2005-02-01

    Bianchi Type-IX viscous fluid cosmological model is investigated. To get a deterministic model, we have assumed the condition = ( is a constant) between metric potentials and where is the coefficient of shear viscosity and the scalar of expansion in the model. The coefficient of bulk viscosity () is taken as constant. The physical and geometrical aspects of the model are also discussed.

  18. Gravitomagnetic Instabilities in Anisotropically Expanding Fluids

    Science.gov (United States)

    Kleidis, Kostas; Kuiroukidis, Apostolos; Papadopoulos, Demetrios B.; Vlahos, Loukas

    Gravitational instabilities in a magnetized Friedman-Robertson-Walker (FRW) universe, in which the magnetic field was assumed to be too weak to destroy the isotropy of the model, are known and have been studied in the past. Accordingly, it became evident that the external magnetic field disfavors the perturbations' growth, suppressing the corresponding rate by an amount proportional to its strength. However, the spatial isotropy of the FRW universe is not compatible with the presence of large-scale magnetic fields. Therefore, in this paper we use the general-relativistic version of the (linearized) perturbed magnetohydrodynamic equations with and without resistivity, to discuss a generalized Jeans criterion and the potential formation of density condensations within a class of homogeneous and anisotropically expanding, self-gravitating, magnetized fluids in curved space-time. We find that, for a wide variety of anisotropic cosmological models, gravitomagnetic instabilities can lead to subhorizontal, magnetized condensations. In the nonresistive case, the power spectrum of the unstable cosmological perturbations suggests that most of the power is concentrated on large scales (small k), very close to the horizon. On the other hand, in a resistive medium, the critical wave-numbers so obtained, exhibit a delicate dependence on resistivity, resulting in the reduction of the corresponding Jeans lengths to smaller scales (well bellow the horizon) than the nonresistive ones, while increasing the range of cosmological models which admit such an instability.

  19. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    Energy Technology Data Exchange (ETDEWEB)

    Hallez, Hans; Staelens, Steven; Lemahieu, Ignace [Department of Electronics and Information Systems, Institute of Broadband Technology (IBBT) Medical Image and Signal Processing (MEDISIP), Ghent University, Sint-Pietersnieuwstraat 41, 9000 Ghent (Belgium)], E-mail: hans.hallez@ugent.be

    2009-10-21

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10 deg. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  20. Dipole estimation errors due to not incorporating anisotropic conductivities in realistic head models for EEG source analysis

    International Nuclear Information System (INIS)

    EEG source analysis is a valuable tool for brain functionality research and for diagnosing neurological disorders, such as epilepsy. It requires a geometrical representation of the human head or a head model, which is often modeled as an isotropic conductor. However, it is known that some brain tissues, such as the skull or white matter, have an anisotropic conductivity. Many studies reported that the anisotropic conductivities have an influence on the calculated electrode potentials. However, few studies have assessed the influence of anisotropic conductivities on the dipole estimations. In this study, we want to determine the dipole estimation errors due to not taking into account the anisotropic conductivities of the skull and/or brain tissues. Therefore, head models are constructed with the same geometry, but with an anisotropically conducting skull and/or brain tissue compartment. These head models are used in simulation studies where the dipole location and orientation error is calculated due to neglecting anisotropic conductivities of the skull and brain tissue. Results show that not taking into account the anisotropic conductivities of the skull yields a dipole location error between 2 and 25 mm, with an average of 10 mm. When the anisotropic conductivities of the brain tissues are neglected, the dipole location error ranges between 0 and 5 mm. In this case, the average dipole location error was 2.3 mm. In all simulations, the dipole orientation error was smaller than 10 deg. We can conclude that the anisotropic conductivities of the skull have to be incorporated to improve the accuracy of EEG source analysis. The results of the simulation, as presented here, also suggest that incorporation of the anisotropic conductivities of brain tissues is not necessary. However, more studies are needed to confirm these suggestions.

  1. A rock physics model for analysis of anisotropic parameters in a shale reservoir in Southwest China

    Science.gov (United States)

    Qian, Keran; Zhang, Feng; Chen, Shuangquan; Li, Xiangyang; Zhang, Hui

    2016-02-01

    A rock physics model is a very effective tool to describe the anisotropy and mechanical properties of rock from a seismology perspective. Compared to a conventional reservoir, modelling a shale reservoir requires us to face two main challenges in modelling: the existence of organic matter and strong anisotropy. We construct an anisotropic rock physics workflow for a typical shale reservoir in Southwest China, in which the organic matter is treated separately from other minerals by using a combination of anisotropic self-consistent approximation and the differential effective medium method. The standard deviation of the distribution function is used to model the degree of lamination of clay and kerogen. A double scan workflow is introduced to invert the probability of pore aspect ratio and lamination simultaneously, which can give us a better understanding of the shale formation. The anisotropic properties of target formation have been analysed based on the proposed model. Inverted Thomsen parameters, especially the sign of delta, are analysed in terms of the physical properties of rock physics modelling.

  2. Short-time dynamics of isotropic and anisotropic Bak-Sneppen model: extensive simulation results

    Science.gov (United States)

    Tirnakli, Ugur; Lyra, Marcelo L.

    2004-12-01

    In this work, the short-time dynamics of the isotropic and anisotropic versions of the Bak-Sneppen (BS) model has been investigated using the standard damage spreading technique. Since the system sizes attained in our simulations are larger than the ones employed in previous studies, our results for the dynamic scaling exponents are expected to be more accurate than the results of the existing literature. The obtained scaling exponents of both versions of the BS model are found to be greater than the ones given in previous works. These findings are in agreement with the recent claim of Cafiero et al. (Eur. Phys. J. B7 (1999) 505). Moreover, it is found that the short-time dynamics of the anisotropic model is only slightly affected by finite-size effects and the reported estimate of α≃0.53 can be considered as a good estimate of the true exponent in the thermodynamic limit.

  3. Does the diffusion DM-DE interaction model solve cosmological puzzles?

    OpenAIRE

    Szydlowski, Marek; Stachowski, Aleksander

    2016-01-01

    We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter $(\\rho_{dm,0}a^{-3}(t))$ is modified by an additive $\\epsilon(t)=\\gamma t a^{-3}(t)$ to the form $\\rho_{dm}=\\rho_{dm,0}a^{-3}(t)+\\epsilon(t)$. We reduced this model to the autonomous dynamical system and investigate it using dynamical sy...

  4. Observing the inflation potential. [in models of cosmological inflation

    Science.gov (United States)

    Copeland, Edmund J.; Kolb, Edward W.; Liddle, Andrew R.; Lidsey, James E.

    1993-01-01

    We show how observations of the density perturbation (scalar) spectrum and the gravitational wave (tensor) spectrum allow a reconstruction of the potential responsible for cosmological inflation. A complete functional reconstruction or a perturbative approximation about a single scale are possible; the suitability of each approach depends on the data available. Consistency equations between the scalar and tensor spectra are derived, which provide a powerful signal of inflation.

  5. Simple inflationary models in Gauss-Bonnet brane-world cosmology

    CERN Document Server

    Okada, Nobuchika

    2014-01-01

    In light of the recent measurements of the CMB anisotropy by the WMAP and Planck satellite experiments and the observation of CMB $B$-mode polarization announced by the BICEP2 collaboration, we study simple inflationary models in the context of the Gauss-Bonnet brane-world cosmology. The brane-world cosmological effect modifies the power spectra of scalar and tensor perturbations generated by inflation and causes a dramatic change for the inflationary predictions of the spectral index ($n_s$) and the tensor-to-scalar ratio ($r$) from those obtained in the standard cosmology. In particular, the power spectrum of tensor perturbation is suppressed due to the Gauss-Bonnet brane-world cosmological effect, which is in sharp contrast with inflationary scenario in the Randall-Sundrum brane-world cosmology where the power spectrum is enhanced. Hence, these two brane-world cosmological scenarios are distinguishable. With the dramatic change of the inflationary predictions, the inflationary scenario in the Gauss-Bonnet ...

  6. Newtonian cosmology - Problems of cosmological didactics

    Energy Technology Data Exchange (ETDEWEB)

    Skarzynski, E.

    1983-03-01

    The article presents different methods of model construction in Newtonian cosmology. Newtonian cosmology is very convenient for discussion of local problems, so the problems presented are of great didactic importance. The constant k receives a new interpretation in relativistic cosmology as the curvature of the space in consequence of the greater informational capacity of Riemann space in comparison to Euclidean space. 11 references.

  7. Anisotropically Inflating Universes

    CERN Document Server

    Barrow, J D; Barrow, John D.; Hervik, Sigbjorn

    2008-01-01

    We show that in theories of gravity that add quadratic curvature invariants to the Einstein-Hilbert action there exist expanding vacuum cosmologies with positive cosmological constant which do not approach the de Sitter universe. Exact solutions are found which inflate anisotropically. This behaviour is driven by the Ricci curvature invariant and has no counterpart in the general relativistic limit. These examples show that the cosmic no-hair theorem does not hold in these higher-order extensions of general relativity and raises new questions about the ubiquity of inflation in the very early universe and the thermodynamics of gravitational fields.

  8. Implementation of an anisotropic mechanical model for shale in Geodyn

    Energy Technology Data Exchange (ETDEWEB)

    Attia, A; Vorobiev, O; Walsh, S

    2015-05-15

    The purpose of this report is to present the implementation of a shale model in the Geodyn code, based on published rock material models and properties that can help a petroleum engineer in his design of various strategies for oil/gas recovery from shale rock formation.

  9. Accelerating dark energy models with anisotropic fluid in Bianchi type-$VI_{0}$ space-time

    CERN Document Server

    Pradhan, Anirudh

    2012-01-01

    Motivated by the increasing evidence for the need of a geometry that resembles Bianchi morphology to explain the observed anisotropy in the WMAP data, we have discussed some features of the Bianchi type-$VI_{0}$ universes in the presence of a fluid that wields an anisotropic equation of state (EoS) parameter in general relativity. We present two accelerating dark energy (DE) models with an anisotropic fluid in Bianchi type-$VI_{0}$ space-time. To prevail the deterministic solution we choose the scale factor $a(t) = \\sqrt{t^{n}e^{t}}$, which yields a time-dependent deceleration parameter (DP), representing a class of models which generate a transition of the universe from the early decelerating phase to the recent accelerating phase. Under the suitable condition, the anisotropic models approach to isotropic scenario. The EoS for dark energy $\\omega$ is found to be time-dependent and its existing range for derived models is in good agreement with the recent observations of SNe Ia data (Knop et al. 2003), SNe Ia...

  10. Evaluation of three-dimensional anisotropic head model for mapping realistic electromagnetic fields of brain tissues

    Directory of Open Access Journals (Sweden)

    Woo Chul Jeong

    2015-08-01

    Full Text Available Electromagnetic fields provide fundamental data for the imaging of electrical tissue properties, such as conductivity and permittivity, in recent magnetic resonance (MR-based tissue property mapping. The induced voltage, current density, and magnetic flux density caused by externally injected current are critical factors for determining the image quality of electrical tissue conductivity. As a useful tool to identify bio-electromagnetic phenomena, precise approaches are required to understand the exact responses inside the human body subject to an injected currents. In this study, we provide the numerical simulation results of electromagnetic field mapping of brain tissues using a MR-based conductivity imaging method. First, we implemented a realistic three-dimensional human anisotropic head model using high-resolution anatomical and diffusion tensor MR images. The voltage, current density, and magnetic flux density of brain tissues were imaged by injecting 1 mA of current through pairs of electrodes on the surface of our head model. The current density map of anisotropic brain tissues was calculated from the measured magnetic flux density based on the linear relationship between the water diffusion tensor and the electrical conductivity tensor. Comparing the current density to the previous isotropic model, the anisotropic model clearly showed the differences between the brain tissues. This originates from the enhanced signals by the inherent conductivity contrast as well as the actual tissue condition resulting from the injected currents.

  11. Tilted Bianchi type I dust fluid cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Keshav Sharma

    2002-03-01

    In this paper, we have investigated a tilted Bianchi type I cosmological model filled with dust of perfect fluid in general relativity. To get a determinate solution, we have assumed a condition = between metric potentials. The physical and geometrical aspects of the model together with singularity in the model are also discussed.

  12. Higher-dimensional cosmological model with variable gravitational constant and bulk viscosity in Lyra geometry

    Indian Academy of Sciences (India)

    G P Singh; R V Deshpande; T Singh

    2004-11-01

    We have studied five-dimensional homogeneous cosmological models with variable and bulk viscosity in Lyra geometry. Exact solutions for the field equations have been obtained and physical properties of the models are discussed. It has been observed that the results of new models are well within the observational limit.

  13. Numerical Models of Cosmological Evolution of the Degenerated Fermi-system of Scalar Charged Particles

    CERN Document Server

    Ignatyev, Yu G

    2014-01-01

    Based on mathematical model of the statistical Fermi system with the interparticle interaction which was constructed in the previous articles, this work offers the construction and analysis of the numerical models of cosmological evolution of the single-component degenerated Fermi system of the scalar particles. The applied mathematics package Mathematica 9 is used for the numerical model construction.

  14. Nonparametric test of consistency between cosmological models and multiband CMB measurements

    CERN Document Server

    Aghamousa, Amir

    2015-01-01

    We present a novel approach to test the consistency of the cosmological models with multiband CMB data using a nonparametric approach. In our analysis we calibrate the REACT (Risk Estimation and Adaptation after Coordinate Transformation) confidence levels associated with distances in function space (confidence distances) based on the Monte Carlo simulations in order to test the consistency of an assumed cosmological model with observation. To show the applicability of our algorithm, we confront Planck 2013 temperature data with concordance model of cosmology considering two different Planck spectra combination. In order to have an accurate quantitative statistical measure to compare between the data and the theoretical expectations, we calibrate REACT confidence distances and perform a bias control using many realizations of the data. Our results in this work using Planck 2013 temperature data put the best fit $\\Lambda$CDM model at $95\\% (\\sim 2\\sigma)$ confidence distance from the center of the nonparametri...

  15. Utilizing anisotropic Preisach-type models in the accurate simulation of magnetostriction

    Energy Technology Data Exchange (ETDEWEB)

    Adly, A.A. [Cairo Univ., Giza (Egypt). Electrical Power and Machines Dept.; Mayergoyz, I.D. [Univ. of Maryland, College Park, MD (United States). Electrical Engineering Dept.; Bergqvist, A. [Royal Inst. of Tech., Stockholm (Sweden). Dept. of Electrical Power Engineering

    1997-09-01

    Magnetostriction models are being widely used in the development of fine positioning and active vibration damping devices. This paper presents a new approach for simulating 1-D magnetostriction using 2-D anisotropic Preisach-type models. In this approach, identification of the model takes into account measured flux density versus field and strain versus field curves for different stress values. Consequently, a more accurate magnetostriction model may be obtained. Details of the identification procedure as well as experimental testing of the proposed model are given.

  16. V cosmological models in f (R, T) modified gravity with Λ (T) by using generation technique

    Science.gov (United States)

    Ahmed, Nasr; Pradhan, Anirudh; Fekry, M.; Alamri, Sultan Z.

    2016-06-01

    A new class of cosmological models in f (R, T) modified theories of gravity proposed by Harko et al. (2011), where the gravitational Lagrangian is given by an arbitrary function of Ricci scalar R and the trace of the stress-energy tensor T, has been investigated for a specific choice of f (R, T) =f1 (R) +f2 (T) by generation of new solutions. Motivated by recent work of Pradhan et al. (2015) we have revisited the recent work of Ahmed and Pradhan (2014) by using a generation technique, it is shown that f (R, T) modified field equations are solvable for any arbitrary cosmic scale function. A class of new solutions for particular forms of cosmic scale functions have been investigated. In the present study we consider the cosmological constant Λ as a function of the trace of the stress energy-momentum-tensor, and dub such a model " Λ (T) gravity" where we specified a certain form of Λ (T) . Such models may exhibit better equability with the cosmological observations. The cosmological constant Λ is found to be a positive decreasing function of time which is supported by results from recent supernovae Ia observations. Expressions for Hubble's parameter in terms of redshift, luminosity distance redshift, distance modulus redshift and jerk parameter are derived and their significances are described in detail. The physical and geometric properties of the cosmological models are also discussed.

  17. An Anisotropic Model for Magnetostriction and Magnetization Computing for Noise Generation in Electric Devices

    OpenAIRE

    Serigne Saliou Mbengue; Nicolas Buiron; Vincent Lanfranchi

    2016-01-01

    During the manufacturing process and use of ferromagnetic sheets, operations such as rolling, cutting, and tightening induce anisotropy that changes the material’s behavior. Consequently for more accuracy in magnetization and magnetostriction calculations in electric devices such as transformers, anisotropic effects should be considered. In the following sections, we give an overview of a macroscopic model which takes into account the magnetic and magnetoelastic anisotropy of the material for...

  18. Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models

    OpenAIRE

    Bakar, Burhan; Tirnakli, Ugur

    2008-01-01

    The conventional Hamming distance measurement captures only the short-time dynamics of the displacement between the uncorrelated random configurations. The minimum difference technique introduced by Tirnakli and Lyra [Int. J. Mod. Phys. C 14, 805 (2003)] is used to study the short-time and long-time dynamics of the two distinct random configurations of the isotropic and anisotropic Bak-Sneppen models on a square lattice. Similar to 1-dimensional case, the time evolution of the displacement is...

  19. Damage spreading in 2-dimensional isotropic and anisotropic Bak-Sneppen models

    OpenAIRE

    Bakar, Burhan; Tirnakli, Ugur

    2007-01-01

    We implement the damage spreading technique on 2-dimensional isotropic and anisotropic Bak-Sneppen models. Our extensive numerical simulations show that there exists a power-law sensitivity to the initial conditions at the statistically stationary state (self-organized critical state). Corresponding growth exponent $\\alpha$ for the Hamming distance and the dynamical exponent $z$ are calculated. These values allow us to observe a clear data collapse of the finite size scaling for both versions...

  20. Discontinuous Galerkin Immersed Finite Volume Element Method for Anisotropic Flow Models in Porous Medium

    OpenAIRE

    Zhong-yan Liu; Huan-zhen Chen

    2014-01-01

    By choosing the trial function space to the immersed finite element space and the test function space to be piecewise constant function space, we develop a discontinuous Galerkin immersed finite volume element method to solve numerically a kind of anisotropic diffusion models governed by the elliptic interface problems with discontinuous tensor-conductivity. The existence and uniqueness of the discrete scheme are proved, and an optimal-order energy-norm estimate and ${L}^{2}$ -norm estimate f...

  1. Effect of anisotropic Dzyaloshinskii-Moriya interactions on phase diagrams of the Ashkin-Teller model

    Science.gov (United States)

    Dani, I.; Tahiri, N.; Ez-Zahraouy, H.; Benyoussef, A.

    2016-08-01

    In this paper we study, using mean field theory (MFT), the effect of the anisotropic Dzyaloshinskii-Moriya (DM) interaction on the phase diagrams of the spin-half Ashkin-Teller model on hypercubic lattice. Different new phase diagrams are found by varying the anisotropy of DM interaction. The multicritical behavior is studied as a function of four-spin interaction coefficient J4 /J1 and for two fixed values of spin interaction coefficient J2 /J1.

  2. Entanglement in Anisotropic Heisenberg Model with Non-Uniform External Fields

    Institute of Scientific and Technical Information of China (English)

    WANG Yuan-Feng; CAO Jun-Peng; WANG Yu-Peng

    2005-01-01

    @@ We study entanglement properties of the three-qubit anisotropic Heisenberg model with both uniform and nonuniform external magnetic fields. Analytic expressions for the measures of entanglement at the ground state are obtained. We show that the pairwise entanglement and global entanglement of the system at the ground state clearly depend on the strength and configuration of external fields. The entanglement between some pairs can be enhanced by non-uniform external fields.

  3. Anisotropic Hubbard model on a triangular lattice - spin dynamics in HoMnO3

    Indian Academy of Sciences (India)

    Saptarshi Ghosh; Avinash Singh

    2008-01-01

    The recent neutron scattering data for spin-wave dispersion in HoMnO3 are well-described by an anisotropic Hubbard model on a triangular lattice with a planar (XY) spin anisotropy. Best fit indicates that magnetic excitations in HoMnO3 correspond to the strong-coupling limit / > ∼ 15, with planar exchange energy = 42/ ≃ 2.5 meV and planar anisotropy ≃ 0.35 meV.

  4. Model of anisotropic nonlinearity in self-defocusing photorefractive media.

    Science.gov (United States)

    Barsi, C; Fleischer, J W

    2015-09-21

    We develop a phenomenological model of anisotropy in self-defocusing photorefractive crystals. In addition to an independent term due to nonlinear susceptibility, we introduce a nonlinear, non-separable correction to the spectral diffraction operator. The model successfully describes the crossover between photovoltaic and photorefractive responses and the spatially dispersive shock wave behavior of a nonlinearly spreading Gaussian input beam. It should prove useful for characterizing internal charge dynamics in complex materials and for accurate image reconstruction through nonlinear media.

  5. Integrable cosmological models in the Einstein and in the Jordan frames and Bianchi - I cosmology

    CERN Document Server

    Kamenshchik, A Yu; Tronconi, A; Venturi, G; Vernov, S Yu

    2016-01-01

    We study the integrable models with a minimally and a non-minimally coupled scalar field and the correspondence between their general solutions. Using the model with a minimally coupled scalar field and a constant potential as an example, we demonstrate the way to obtain the general solutions of the corresponding models in the Einstein and Jordan frames.

  6. Propagator with Positive Cosmological Constant in the 3D Euclidian Quantum Gravity Toy Model

    CERN Document Server

    Bunting, William

    2014-01-01

    We study the propagator on a single tetrahedron in a three dimensional toy model of quantum gravity with positive cosmological constant. The cosmological constant is included in the model via q-deformation of the spatial symmetry algebra, that is, we use the Tuarev-Viro amplitude. The expected repulsive effect of dark energy is recovered in numerical and analytic calculations of the propagator at large scales comparable to the infrared cutoff. However, due to the simplicity of the model we do not obtain the exact Newton limit of the propagator. This is a first step toward the similar calculation in the full 3+1 dimensional theory with larger numbers of simplicies.

  7. Anisotropic perturbations due to dark energy

    CERN Document Server

    Battye, R A; Battye, Richard A.; Moss, Adam

    2006-01-01

    A variety of observational tests seem to suggest that the universe is anisotropic. This is incompatible with the standard dogma based on adiabatic, rotationally invariant perturbations. We point out that this is a consequence of the standard decomposition of the stress-energy tensor for the cosmological fluids, and that rotational invariance need not be assumed, if there is elastic rigidity in the dark energy. The dark energy required to achieve this might be provided by point symmetric domain wall network with $P/\\rho=-2/3$, although the concept is more general. We illustrate this with reference to a model with cubic symmetry and discuss various aspects of the model.

  8. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Energy Technology Data Exchange (ETDEWEB)

    Ayissi, Raoul Domingo, E-mail: raoulayissi@yahoo.fr; Noutchegueme, Norbert, E-mail: nnoutch@yahoo.fr [Department of Mathematics, Faculty of Science, University of Yaounde I, P.O. Box 812, Yaounde (Cameroon)

    2015-01-15

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  9. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    International Nuclear Information System (INIS)

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  10. Bianchi type-I magnetized cosmological models for the Einstein-Boltzmann equation with the cosmological constant

    Science.gov (United States)

    Ayissi, Raoul Domingo; Noutchegueme, Norbert

    2015-01-01

    Global solutions regular for the Einstein-Boltzmann equation on a magnetized Bianchi type-I cosmological model with the cosmological constant are investigated. We suppose that the metric is locally rotationally symmetric. The Einstein-Boltzmann equation has been already considered by some authors. But, in general Bancel and Choquet-Bruhat [Ann. Henri Poincaré XVIII(3), 263 (1973); Commun. Math. Phys. 33, 83 (1973)], they proved only the local existence, and in the case of the nonrelativistic Boltzmann equation. Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] obtained a global existence result, for the relativistic Boltzmann equation coupled with the Einstein equations and using the Yosida operator, but confusing unfortunately with the nonrelativistic case. Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)] and Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], have obtained a global solution in time, but still using the Yosida operator and considering only the uncharged case. Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)] also proved a global existence of solutions to the Maxwell-Boltzmann system using the characteristic method. In this paper, we obtain using a method totally different from those used in the works of Noutchegueme and Dongho [Classical Quantum Gravity 23, 2979 (2006)], Noutchegueme, Dongho, and Takou [Gen. Relativ. Gravitation 37, 2047 (2005)], Noutchegueme and Ayissi [Adv. Stud. Theor. Phys. 4, 855 (2010)], and Mucha [Global existence of solutions of the Einstein-Boltzmann equation in the spatially homogeneous case. Evolution equation, existence, regularity and singularities (Banach Center Publications, Institute of Mathematics, Polish Academy of Science, 2000), Vol. 52] the

  11. Testing anthropic reasoning for the cosmological constant with a realistic galaxy formation model

    CERN Document Server

    Sudoh, Takahiro; Makiya, Ryu; Nagashima, Masahiro

    2016-01-01

    The anthropic principle is one of the possible explanations for the cosmological constant ($\\Lambda$) problem. In previous studies, a dark halo mass threshold comparable with our Galaxy must be assumed in galaxy formation to get a reasonably large probability of finding the observed small value, $P(<$$\\Lambda_{\\rm obs})$, though stars are found in much smaller galaxies as well. Here we examine the anthropic argument by using a semi-analytic model of cosmological galaxy formation, which can reproduce many observations such as galaxy luminosity functions. We calculate the probability distribution of $\\Lambda$ by running the model code for a wide range of $\\Lambda$, while other cosmological parameters and model parameters for baryonic processes of galaxy formation are kept constant. Assuming that the prior probability distribution is flat per unit $\\Lambda$, and that the number of observers is proportional to stellar mass, we find $P(<$$\\Lambda_{\\rm obs}) = 6.7 \\%$ without introducing any galaxy mass thres...

  12. Composite dark energy cosmon models with running cosmological term and gravitational coupling

    CERN Document Server

    Grande, J; Stefancic, H; Grande, Javier; Sola, Joan; Stefancic, Hrvoje

    2007-01-01

    In the recent literature on dark energy (DE) model building we have learnt that cosmologies with variable cosmological parameters can mimic more traditional DE pictures exclusively based on scalar fields (e.g. quintessence and phantom). In a previous work we have illustrated this situation within the context of a renormalization group running cosmological term, Lambda. Here we analyze the possibility that both the cosmological term and the gravitational coupling, G, are running parameters within a more general framework (a variant of the so-called ``LXCDM models'') in which the DE fluid can be a mixture of a running Lambda and another dynamical entity X (the ``cosmon'') which may behave quintessence-like or phantom-like. We compute the effective EOS parameter, w, of this composite fluid and show that the LXCDM can mimic to a large extent the standard LCDM model while retaining features hinting at its potential composite nature (such as the smooth crossing of the cosmological constant boundary w=-1). We furthe...

  13. Cosmological dynamics of spatially flat Einstein-Gauss-Bonnet models in various dimensions: Low-dimensional $\\Lambda$-term case

    CERN Document Server

    Pavluchenko, Sergey A

    2016-01-01

    In this paper we perform a systematic study of spatially flat [(3+D)+1]-dimensional Einstein-Gauss-Bonnet cosmological models with $\\Lambda$-term. We consider models that topologically are the product of two flat isotropic subspaces with different scale factors. One of these subspaces is three-dimensional and represents our space and the other is D-dimensional and represents extra dimensions. We consider no {\\it Ansatz} on the scale factors, which makes our results quite general. With both Einstein-Hilbert and Gauss-Bonnet contributions in play, the cases with $D=1$ and $D=2$ have different dynamics due to the different structure of the equations of motion. We analytically study equations of motion in both cases and describe all possible regimes. It is demonstrated that $D=1$ case does not have physically viable regimes while $D=2$ has smooth transition from high-energy Kasner to anisotropic exponential regime. This transition occurs for two ranges of $\\alpha$ and $\\Lambda$: $\\alpha > 0$, $\\Lambda > 0$ with $...

  14. Spreading and wandering of Gaussian-Schell model laser beams in an anisotropic turbulent ocean

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian-Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens-Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  15. Spreading and wandering of Gaussian–Schell model laser beams in an anisotropic turbulent ocean

    Science.gov (United States)

    Wu, Yuqian; Zhang, Yixin; Zhu, Yun; Hu, Zhengda

    2016-09-01

    The effect of anisotropic turbulence on the spreading and wandering of Gaussian–Schell model (GSM) laser beams propagating in an ocean is studied. The long-term spreading of a GSM beam propagating through the paraxial channel of a turbulent ocean is also developed. Expressions of random wander for such laser beams are derived in an anisotropic turbulent ocean based on the extended Huygens–Fresnel principle. We investigate the influence of parameters in a turbulent ocean on the beam wander and spreading. Our results indicate that beam spreading and random beam wandering are smaller without considering the anisotropy of turbulence in the oceanic channel. Salinity fluctuation has a greater contribution to both the beam spreading and beam wander than that of temperature fluctuations in a turbulent ocean. Our results could be helpful for designing a free-space optical wireless communication system in an oceanic environment.

  16. Stable cosmological models driven by a free quantum scalar field

    Energy Technology Data Exchange (ETDEWEB)

    Dappiaggi, C.; Pinamonti, N. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik]|[Citta Univ., Roma (Italy). Istituto Nazionale di Alta Matematica ' ' F. Severi' ' - GNFM; Fredenhagen, K. [Hamburg Univ. (Germany). 2. Inst. fuer Theoretische Physik

    2008-01-15

    In the mathematically rigorous analysis of semiclassical Einstein's equations, the renormalisation of the stress-energy tensor plays a crucial role. We address such a topic in the case of a scalar field with both arbitrary mass and coupling with gravity in the hypothesis that the underlying algebraic quantum state is of Hadamard type. Particularly, if we focus on highly symmetric solutions of the semiclassical Einstein's equations, the envisaged method displays a de Sitter type behaviour even without an a priori introduced cosmological constant. As a further novel result we shall show that these solutions turn out to be stable. (orig.)

  17. Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity

    Science.gov (United States)

    Sharif, M.; Sehrish, Azeem

    2014-04-01

    This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models.

  18. Dark Energy Models and Cosmic Acceleration with Anisotropic Universe in f(T) Gravity

    International Nuclear Information System (INIS)

    This paper is devoted to studing the accelerated expansion of the universe in context of f(T) theory of gravity. For this purpose, we construct different f(T) models and investigate their cosmological behavior through equation of state parameter by using holographic, new agegraphic and their power-law entropy corrected dark energy models. We discuss the graphical behavior of this parameter versus redshift for particular values of constant parameters in Bianchi type I universe model. It is shown that the universe lies in different forms of dark energy, namely quintessence, phantom, and quintom corresponding to the chosen scale factors, which depend upon the constant parameters of the models

  19. Model-size reduction technique for the analysis of symmetric anisotropic structures

    Science.gov (United States)

    Noor, A. K.; Peters, J. M.

    1985-01-01

    A two-step computational procedure is presented for reducing the size of the analysis model for an anisotropic symmetric structure to that of the corresponding orthotropic structure. The key elements of the procedure are: (1) decomposition of the stiffness matrix into the sum of an orthotropic and nonorthotropic (anisotropic) parts; and (2) successive application of the finite element method and the classical Rayleigh-Ritz technique. The finite element method is first used to generate few global approximation vectors (or modes). Then the amplitudes of these modes are computed by using the Rayleigh-Ritz technique. The global approximation vectors are selected to be the solution corresponding to zero nonorthotropic matrix and its various-order derivatives with respect to an anisotropic tracing parameter (identifying the nonorthotropic material coefficients). The size of the analysis model used in generating the global approximation vectors is identical to that of the corresponding orthotropic structure. The effectiveness of the proposed technique is demonstrated by means of numerical examples and its potential for solving other quasi-symmetric problems is discussed.

  20. Negative Energy Cosmology and the Cosmological Constant

    CERN Document Server

    Prokopec, Tomislav

    2011-01-01

    It is well known that string theories naturally compactify on anti-de Sitter spaces, and yet cosmological observations show no evidence of a negative cosmological constant in the early Universe's evolution. In this letter we present two simple nonlocal modifications of the standard Friedmann cosmology that can lead to observationally viable cosmologies with an initial (negative) cosmological constant. The nonlocal operators we include are toy models for the quantum cosmological backreaction. In Model I an initial quasiperiodic oscillatory epoch is followed by inflation and a late time matter era, representing a dark matter candidate. The backreaction in Model II quickly compensates the negative cosmological term such that the Ricci curvature scalar rapidly approaches zero, and the Universe ends up in a late time radiation era.

  1. Probing cosmology with weak lensing selected clusters II: Dark energy and f(R) gravity models

    CERN Document Server

    Shirasaki, Masato; Yoshida, Naoki

    2015-01-01

    Ongoing and future wide-field galaxy surveys can be used to locate a number of clusters of galaxies with cosmic shear measurement alone. We study constraints on cosmological models using statistics of weak lensing selected galaxy clusters. We extend our previous theoretical framework to model the statistical properties of clusters in variants of cosmological models as well as in the standard LCDM model. Weak lensing selection of clusters does not rely on the conventional assumption such as the relation between luminosity and mass and/or hydrostatic equilibrium, but a number of observational effects compromise robust identification. We use a large set of realistic mock weak-lensing catalogs as well as analytic models to perform a Fisher analysis and make forecast for constraining two competing cosmological models, wCDM model and f(R) model proposed by Hu & Sawicki, with our lensing statistics. We show that weak lensing selected clusters are excellent probe of cosmology when combined with cosmic shear power...

  2. Inhomogeneous Bianchi Type I Cosmological Model with Electromagnetic Field in Lyra Geometry

    CERN Document Server

    Abdel-Megied, M; Hegazy, E A

    2014-01-01

    We have investigated an inhomogeneous Bianchi type-I cosmological model with electromagnetic field based on Lyra geometry. A new class of exact solutions have been obtained by considering the potentials of metric and displacement field are functions of coordinates t and x. The physical behavior of the obtained model is discussed.

  3. A First Principles Warm Inflation Model that Solves the Cosmological Horizon/Flatness Problems

    CERN Document Server

    Berera, A; Ramos, R O; Berera, Arjun; Gleiser, Marcelo; Ramos, Rudnei O.

    1999-01-01

    A quantum field theory warm inflation model is presented that solves the horizon/flatness problems. The model obtains, from the elementary dynamics of particle physics, cosmological scale factor trajectories that begin in a radiation dominated regime, enter an inflationary regime and then smoothly exit back into a radiation dominated regime, with nonnegligible radiation throughout the evolution.

  4. Dark Energy Model with Non-Minimal Coupling and Cosmological Constant Boundary

    Institute of Scientific and Technical Information of China (English)

    张晓菲

    2011-01-01

    In this paper, we study a kind of dark energy models in the framework of the non-minimal coupling. With this kind of models, dark energy could cross the cosmological constant boundary, and at early time, dark energy could have "tracking" behavior.

  5. Beyond Standard Model Physics: At the Frontiers of Cosmology and Particle Physics

    Science.gov (United States)

    Lopez-Suarez, Alejandro O.

    I begin to write this thesis at a time of great excitement in the field of cosmology and particle physics. The aim of this thesis is to study and search for beyond the standard model (BSM) physics in the cosmological and high energy particle fields. There are two main questions, which this thesis aims to address: 1) what can we learn about the inflationary epoch utilizing the pioneer gravitational wave detector Adv. LIGO?, and 2) what are the dark matter particle properties and interactions with the standard model particles?. This thesis will focus on advances in answering both questions.

  6. Towards an Anisotropic Whole Mantle 3D Elastic Velocity Model

    Science.gov (United States)

    Panning, M. P.; Romanowicz, B.; Gung, Y.

    2001-12-01

    Many studies have documented the existence of anisotropy in the earth's upper mantle, concentrated in the top 200 km. This evidence comes from the study of surface waves as well as shear wave splitting. There is also evidence for shear wave splitting in D", at least in well sampled regions. There are some hints of anisotropy at the base of the transition zone. Tomographic models of the upper mantle have been developed with simplifying assumptions about the nature of the anisotropy, in order to minimize the number of free parameters in the inversions. Some assume transverse isotropy (e.g Ekström and Dziewonski, 1997), others include additional degrees of freedom with some realistic constraints on mineralogy (e.g. Montagner and Tanimoto, 1991). Our goal is to investigate anisotropy in the whole mantle, using the framework of waveform inversion, and the nonlinear asymptotic mode coupling theory (NACT), previously developed and applied to the construction of whole-mantle SH velocity models (Li and Romanowicz, 1996; Mégnin and Romanowicz, 2000). For this we require a 3 component dataset, and we have extended our automatic transverse (T) component wavepicking procedures to the vertical (Z) and longitudinal (L) component - a non-trivial task given the large number of phases present in the coupled P-SV system. A useful initial assumption, for which the theory has been readily adapted, is that of transverse isotropy. As a first step towards this, we have been investigating inversions using T component and Z,L component data separately. In particular, this allows us to explore the sampling that can be achieved with Z,L component data alone in the deepest part of the mantle. Indeed, D" is in general much better sampled in SH than in SV, owing to the availability of SHdiff at large distances, while SVdiff decays more rapidly due to mantle-core coupling. We present the results of our resolution experiments and discuss the differences between the 3D SV model obtained in well

  7. Anisotropic creep modeling for f.c.c. single crystals

    International Nuclear Information System (INIS)

    The one-dimensional behavior of single crystal superalloys at high temperatures under constant and cyclic creep conditions is described by means of a 4-parameter rheological model based on linear viscoelasticity. Tertiary creep is taken into account by reducing the effective cross section by means of an additional damage parameter. Tensile creep tests have been used for the identification of the material constants by a non-linear optimization procedure. For the generalization to threee dimensions, a complete tensor-representation of cubic material symmetry is given. It contains twelve (temperature dependent) material parameters. Some results by finite element analysis will be presented. (orig.)

  8. Tachyon cosmology with non-vanishing minimum potential: a unified model

    Energy Technology Data Exchange (ETDEWEB)

    Li, Huiquan, E-mail: hqli@ustc.edu.cn [Interdisciplinary Center for Theoretical Study, University of Science and Technology of China, Hefei, Anhui 230026 (China)

    2012-07-01

    We investigate the tachyon condensation process in the effective theory with non-vanishing minimum potential and its implications to cosmology. It is shown that the tachyon condensation on an unstable three-brane described by this modified tachyon field theory leads to lower-dimensional branes (defects) forming within a stable three-brane. Thus, in the cosmological background, we can get well-behaved tachyon matter after tachyon inflation, (partially) avoiding difficulties encountered in the original tachyon cosmological models. This feature also implies that the tachyon inflated and reheated universe is followed by a Chaplygin gas dark matter and dark energy universe. Hence, such an unstable three-brane behaves quite like our universe, reproducing the key features of the whole evolutionary history of the universe and providing a unified description of inflaton, dark matter and dark energy in a very simple single-scalar field model.

  9. No compelling cosmological models come out of magnetic universes which are based in nonlinear electrodynamics

    CERN Document Server

    Garcia-Salcedo, Ricardo; Quiros, Israel

    2013-01-01

    Here we investigate the cosmic dynamics of Friedmann-Robertson-Walker universes -- flat spatial sections -- which are driven by nonlinear electrodynamics (NLED) Lagrangians. We pay special attention to the check of the sign of the square sound speed since, whenever the latter quantity is negative, the corresponding cosmological model is classically unstable against small perturbations of the background energy density. Besides, based on causality arguments, one has to require that the mentioned small perturbations of the background should propagate at most at the local speed of light. We also look for the occurrence of curvature singularities. Our results indicate that several cosmological models which are based in known NLED Lagrangians, either are plagued by curvature singularities of the sudden and/or big rip type, or are violently unstable against small perturbations of the cosmological background -- due to negative sign of the square sound speed -- or both. In addition, causality issues associated with su...

  10. Models of quintessence coupled to the electromagnetic field and the cosmological evolution of alpha

    CERN Document Server

    Copeland, E J; Pospelov, M E

    2004-01-01

    We study the change of the effective fine structure constant in the cosmological models of a scalar field with a non-vanishing coupling to the electromagnetic field. Combining cosmological data and terrestrial observations we place empirical constraints on the size of the possible coupling and explore a large class of models that exhibit tracking behavior. The change of the fine structure constant implied by the quasar absorption spectra together with the requirement of tracking behavior impose a lower bound of the size of this coupling. Furthermore, the transition to the quintessence regime implies a narrow window for this coupling around $10^{-5}$ in units of the inverse Planck mass. We also propose a non-minimal coupling between electromagnetism and quintessence which has the effect of leading only to changes of alpha determined from atomic physics phenomena, but leaving no observable consequences through nuclear physics effects. In doing so we are able to reconcile the claimed cosmological evidence for a ...

  11. Hubble space telescope counts of elliptical galaxies constraints on cosmological models?

    CERN Document Server

    Driver, S P; Phillipps, S; Bristow, P D; Driver, Simon P; Windhorst, Rogier A; Phillipps, Steven; Bristow, Paul D

    1995-01-01

    The interpretation of galaxy number counts in terms of cosmological models is fraught with difficulty due to uncertainties in the overall galaxy population (mix of morphological types, luminosity functions etc.) and in the observations (loss of low surface brightness images, image blending etc.). Many of these can be overcome if we use deep high resolution imaging of a single class of high surface brightness galaxies, whose evolution is thought to be fairly well understood. This is now possible by selecting elliptical and S0 galaxies using Hubble Space Telescope images from the Medium Deep Survey and other ultradeep WFPC2 images. In the present paper, we examine whether such data can be used to discriminate between open and closed universes, or between conventional cosmological models and those dominated by a cosmological constant. We find, based on the currently available data, that unless elliptical galaxies undergo very strong merging since z \\sim 1 (and/or very large errors exist in the morphological clas...

  12. Elliptical Solutions to the Standard Cosmology Model with Realistic Values of Matter Density

    CERN Document Server

    Oztas, Ahmet Mecit

    2015-01-01

    We have examined a solution to the FRW model of the Einstein and de Sitter Universe, often termed the standard model of cosmology, using wide values for the normalized cosmological constant Omega_L and spacetime curvature Omega_k with proposed values of normalized matter density. These solutions were evaluated using a combination of the third type of elliptical equations and were found to display critical points for redshift z, between 1 and 3, when Omega_L is positive. These critical points occur at values for normalized cosmological constant higher than those currently thought important, though we find this solution interesting because the Omega_L term may increase in dominance as the Universe evolves bringing this discontinuity into importance. We also find positive Omega_L tends towards attractive at values of z which are commonly observed for distant galaxies.

  13. Are cosmological data sets consistent with each other within the Λ cold dark matter model?

    Science.gov (United States)

    Raveri, Marco

    2016-02-01

    We use a complete and rigorous statistical indicator to measure the level of concordance between cosmological data sets, without relying on the inspection of the marginal posterior distribution of some selected parameters. We apply this test to state of the art cosmological data sets, to assess their agreement within the Λ cold dark matter model. We find that there is a good level of concordance between all the experiments with one noticeable exception. There is substantial evidence of tension between the cosmic microwave background temperature and polarization measurements of the Planck satellite and the data from the CFHTLenS weak lensing survey even when applying ultraconservative cuts. These results robustly point toward the possibility of having unaccounted systematic effects in the data, an incomplete modeling of the cosmological predictions or hints toward new physical phenomena.

  14. Stochastic cosmology, theories of perturbations and Lifshitz gravity

    OpenAIRE

    Khalatnikov, I. M.; Kamenshchik, A. Yu.

    2015-01-01

    We review some works of E M Lifshitz connected with gravity and cosmology and also some later works, connected with his ideas. The main topics of this review are the stochastic cosmology of an anisotropic universe and of an isotropic universe with the scalar field, the quasi-isotropic (gradient) expansion in cosmology and Horava-Lifshitz gravity and cosmology.

  15. Anisotropic Heisenberg model for a semi-infinite crystal

    International Nuclear Information System (INIS)

    A semi-infinite Heisenberg model with exchange interactions between nearest and next-nearest neighbors in a simple cubic lattice. The free surface from the other layers of magnetic ions, by choosing a single ion uniaxial anisotropy in the surface (Ds) different from the anisotropy in the other layers (D). Using the Green function formalism, the behavior of magnetization as a function of the temperature for each layer, as well as the spectrum localized magnons for several values of ratio Ds/D for surface magnetization. Above this critical ratio, a ferromagnetic surface layer is obtained white the other layers are already in the paramagnetic phase. In this situation the critical temperature of surface becomes larger than the critical temperature of the bulk. (Author)

  16. BCS-Hubbard model applied to anisotropic superconductors

    Energy Technology Data Exchange (ETDEWEB)

    Millan, J.S., E-mail: smillan@pampano.unacar.mx [Facultad de Ingenieria, Universidad Autonoma del Carmen, Cd. del Carmen, 24180 Campeche (Mexico); Perez, L.A. [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, A.P. 20-364, 01000, Mexico D.F. (Mexico); Wang, C. [Instituto de Investigaciones en Materiales, Universidad Nacional Autonoma de Mexico, A.P. 70-360, 04510, Mexico D.F. (Mexico)

    2011-11-15

    The BCS formalism applied to a Hubbard model, including correlated hoppings, is used to study d-wave superconductors. The theoretical T{sub c} vs. n relationship is compared with experimental data from BiSr{sub 2-x}La{sub x}CuO{sub 6+{delta}} and La{sub 2-x}Sr{sub x}CuO{sub 4}. The results suggest a nontrivial correlation between the hole and the doping concentrations. Based on the BCS formalism, we study the critical temperature (T{sub c}) as a function of electron density (n) in a square lattice by means of a generalized Hubbard model, in which first ({Delta}t) and second neighbors ({Delta}t{sub 3}) correlated-hopping interactions are included in addition to the repulsive Coulomb ones. We compare the theoretical T{sub c} vs. n relationship with experimental data of cuprate superconductors BiSr{sub 2-x}La{sub x}CuO{sub 6+{delta}} (BSCO) and La{sub 2-x}Sr{sub x}CuO{sub 4}, (LSCO). The theory agrees very well with BSCO data even though the complicated association between Sr concentration (x) and hole doping (p). For the LSCO system, it is observed that in the underdoped regime, the T{sub c} vs. n behavior can be associated to different systems with small variations of t'. For the overdoped regime, a more complicated dependence n = 1 - p/2 fits better than n = 1 - p. On the other hand, it is proposed that the second neighbor hopping ratio (t'/t) should be replaced by the effective mean field hopping ratio t{sub MF}{sup '}/t{sub MF}, which can be very sensitive to small changes of t' due to the doping.

  17. Perfect Quantum Cosmological Bounce

    Science.gov (United States)

    Gielen, Steffen; Turok, Neil

    2016-07-01

    We study quantum cosmology with conformal matter comprising a perfect radiation fluid and a number of conformally coupled scalar fields. Focusing initially on the collective coordinates (minisuperspace) associated with homogeneous, isotropic backgrounds, we are able to perform the quantum gravity path integral exactly. The evolution describes a "perfect bounce", in which the Universe passes smoothly through the singularity. We extend the analysis to spatially flat, anisotropic universes, treated exactly, and to generic inhomogeneous, anisotropic perturbations treated at linear and nonlinear order. This picture provides a natural, unitary description of quantum mechanical evolution across a cosmological bounce. We provide evidence for a semiclassical description in which all fields pass "around" the cosmological singularity along complex classical paths.

  18. Affine Coherent States in Quantum Cosmology

    CERN Document Server

    Malkiewicz, Przemyslaw

    2015-01-01

    A brief summary of the application of coherent states in the examination of quantum dynamics of cosmological models is given. We discuss quantization maps, phase space probability distributions and semiclassical phase spaces. The implementation of coherent states based on the affine group resolves the hardest singularities, renders self-adjoint Hamiltonians without boundary conditions and provides a completely consistent semi-classical description of the involved quantum dynamics. We consider three examples: the closed Friedmann model, the anisotropic Bianchi Type I model and the deep quantum domain of the Bianchi Type IX model.

  19. Bianchi Type-I bulk viscous fluid string dust magnetized cosmological model in general relativity

    Indian Academy of Sciences (India)

    Raj Bali; Anjali

    2004-09-01

    Bianchi Type-I magnetized bulk viscous fluid string dust cosmological model is investigated. To get a determinate model, we have assumed the conditions and = constant where is the shear, the expansion in the model and the coefficient of bulk viscosity. The behaviour of the model in the presence and absence of magnetic field together with physical and geometrical aspects of the model are also discussed.

  20. Background of relic gravitons in a perfect fluid in quantum cosmological models

    Energy Technology Data Exchange (ETDEWEB)

    Siffert, Beatriz B. [Centro Brasileiro de Pesquisas Fisicas (ICRA/CBPF), Rio de Janeiro, RJ (Brazil). Inst. de Cosmologia, Relatividade e Astrofisica; Bessada, Dennis [Instituto Nacional de Pesquisas Espaciais (INPE), SP (Brazil). Divisao de Astrofisica

    2011-07-01

    Full text: We studied the evolution of tensor cosmological perturbations of quantum origin in cosmological scenarios that predict a contracting phase prior to the present expansion phase. These bouncing models constitute a very plausible alternative to the current cosmological paradigm since they may be able to solve some of the cosmological puzzles present in the standard model, such as the horizon and flatness problems, without the requirement of an initial singularity or special initial conditions. While conventional inflationary models give rise to a relic background of gravitational waves that cannot be detected with present experiments, no such prediction had been made so far using quantum bouncing models. We have obtained analytically the graviton's energy density parameter as a function of time and frequency interval - which is the physical quantity to be confronted with observations - predicted by such models with a perfect fluid equation of state. To obtain the final spectrum, we numerically solved the expression for the density parameter for the time variable. The results can then be compared with the predictions from inflationary models and with the sensitivity curves of gravitational waves current detectors, such as the Virgo and Ligo interferometers, and upcoming detectors, like the LISA space mission, to determine the possibility of detection. (author)

  1. Evolving Lorentzian wormholes supported by phantom matter and cosmological constant

    International Nuclear Information System (INIS)

    In this paper we study the possibility of sustaining an evolving wormhole via exotic matter made of phantom energy in the presence of a cosmological constant. We derive analytical evolving wormhole geometries by supposing that the radial tension of the phantom matter, which is negative to the radial pressure, and the pressure measured in the tangential directions have barotropic equations of state with constant state parameters. In this case the presence of a cosmological constant ensures accelerated expansion of the wormhole configurations. More specifically, for positive cosmological constant we have wormholes which expand forever and, for negative cosmological constant we have wormholes which expand to a maximum value and then recollapse. At spatial infinity the energy density and the pressures of the anisotropic phantom matter threading the wormholes vanish; thus these evolving wormholes are asymptotically vacuum Λ-Friedmann models with either open or closed or flat topologies.

  2. Cosmological Black Holes

    OpenAIRE

    Stornaiolo, Cosimo

    2001-01-01

    In this paper we propose a model for the formation of the cosmological voids. We show that cosmological voids can form directly after the collapse of extremely large wavelength perturbations into low-density black holes or cosmological black holes (CBH). Consequently the voids are formed by the comoving expansion of the matter that surrounds the collapsed perturbation. It follows that the universe evolves, in first approximation, according to the Einstein-Straus cosmological model. We discuss...

  3. Introduction to cosmology

    CERN Document Server

    Roos, Matts

    2015-01-01

    The Fourth Edition of Introduction to Cosmology provides a concise, authoritative study of cosmology at an introductory level. Starting from elementary principles and the early history of cosmology, the text carefully guides the student on to curved spacetimes, special and general relativity, gravitational lensing, the thermal history of the Universe, and cosmological models, including extended gravity models, black holes and Hawking's recent conjectures on the not-so-black holes.

  4. Does the diffusion DM-DE interaction model solve cosmological puzzles?

    CERN Document Server

    Szydlowski, Marek

    2016-01-01

    We study dynamics of cosmological models with diffusion effects modeling dark matter and dark energy interactions. We show the simple model with diffusion between the cosmological constant sector and dark matter, where the canonical scaling law of dark matter $(\\rho_{dm,0}a^{-3}(t))$ is modified by an additive $\\epsilon(t)=\\gamma t a^{-3}(t)$ to the form $\\rho_{dm}=\\rho_{dm,0}a^{-3}(t)+\\epsilon(t)$. We reduced this model to the autonomous dynamical system and investigate it using dynamical system methods. This system possesses a two-dimensional invariant submanifold on which the DM-DE interaction can be analyzed on the phase plane. The state variables are density parameter for matter (dark and visible) and parameter $\\delta$ characterizing the rate of growth of energy transfer between the dark sectors. A corresponding dynamical system belongs to a general class of jungle type of cosmologies represented by coupled cosmological models in a Lotka-Volterra framework. We demonstrate that the de Sitter solution is ...

  5. Anisotropic Beam Model for the Spectral Observations of Radio Burst Fine Structures on 1998 April 15

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    A fine structure consisting of three almost equidistant frequency bands was observed in the high frequency part of a solar burst on 1998 April 15 by the spectrometer of Beijing Astronomical Observatory in the range 2.6-3.8 GHz. A model for this event based on beam-anisotropic instability in the solar corona is presented. Longitudinal plasma waves are excited at cyclotron resonance and then transformed into radio emission at their second harmonic. The model is in accordance with the observations if we suppose a magnetic field strength in the region of emission generation of about 200 G.

  6. Spin superfluidity in the anisotropic XY model in the triangular lattice

    Science.gov (United States)

    Lima, L. S.

    2016-07-01

    We use the SU(3) Schwinger's boson theory to study the spin transport properties in the two-dimensional anisotropic frustrated Heisenberg model in the triangular lattice at T=0. We have investigated the behavior of the spin conductivity for this model which presents an single-ion anisotropy. We study the spin transport in the Bose-Einstein condensation regime where we have that the tz bosons are condensed and the following condition is valid: = = t . Our results show a metallic spin transport for ω > 0 and a superfluid spin transport in the limit of DC conductivity, ω → 0 , where σ(ω) tends to infinity in this limit of ω.

  7. Cosmology and Particle Physics beyond Standard Models Ten Years of the SEENET-MTP Network

    CERN Document Server

    Álvarez-Gaumé, Luis; Stojkovic, Dejan

    2014-01-01

    This publication - "Cosmology and Particle Physics beyond Standard Models" - is dedicated to the celebration of the tenth anniversary of the Southeastern European Network in Mathematical and Theoretical Physics (SEENET-MTP). As a Theme Collection, rather than a Monograph or Proceedings, this volume presents a number of reports and overviews, a few research papers and a short note. However, some of them are excellent examples of a nowadays increasingly deep interplay between particle physics and cosmology. Contributions span a wide range of topics in cosmology, particle physics, but also gravity, including the interface of these fields. The presented work is of both theoretical and experimental/ observational nature. The contributions represent recent progress in their respective fields: inflation, dark matter, neutrino physics, supersymmetry, collider physics, string theory, quantum gravity, black hole physics and massive gravity.

  8. Qualitative Analysis and Numerical Simulation of Equations of the Standard Cosmological Model

    CERN Document Server

    Ignat'ev, Yurii

    2016-01-01

    On the basis of qualitative theory of differential equations it is shown that dynamic system based on the system of Einstein - Klein - Gordon equations with regard to Friedman Universe has a stable center corresponding to zero values of scalar potential and its derivative at infinity. Thus, the cosmological model based on single massive classical scalar field in infinite future would give a flat Universe. The carried out numerical simulation of the dynamic system corresponding to the system of Einstein - Klein - Gordon equations showed that at great times of the evolution the invariant cosmological acceleration has a microscopic oscillating character ($T\\sim 2\\pi mt$), while macroscopic value of the cosmological acceleration varies from $+1$ at inflation stage after which if decreases fast to $-1/2$ (non-relativistic stage), and then slowly tends to $-1$ (ultrarelativistic stage).

  9. Propagation of Partially Coherent Twisted Anisotropic Gaussian-Schell Model Beams in the Spatial-Frequency Domain

    Institute of Scientific and Technical Information of China (English)

    蔡阳健; 林强

    2002-01-01

    The generalized Collins formula for partially coherent beams through axially non-symmetrical optical systems in the spatial-frequency domain is derived by means of the tensor method. Based on this formula, the tensor ABCD law in the spatial-frequency domain for partially coherent twisted anisotropic Gaussian-Schell model (GSM) beams is derived, which governs the transformation of the twisted anisotropic GSM beams in the spatialfrequency domain. An example of an application is provided.

  10. Terrestrial implications of cosmological gamma-ray burst models

    CERN Document Server

    Thorsett, S E

    1995-01-01

    The observation by the BATSE instrument on the Compton Gamma Ray Observatory that gamma-ray bursts (GRBs) are distributed isotropically around the Earth but nonuniformly in distance has led to the widespread conclusion that GRBs are most likely to be at cosmological distances, making them the most luminous sources known in the Universe. If bursts arise from events that occur in normal galaxies, such as neutron star binary inspirals, then they will also occur in our Galaxy about every hundred thousand to million years. The gamma-ray flux at the Earth due to a Galactic GRB would far exceed that from even the largest solar flares. The absorption of this radiation in the atmosphere would substantially increase the stratospheric nitric oxide concentration through photodissociation of N_2, greatly reducing the ozone concentration for several years through NO_x catalysis, with important biospheric effects due to increased solar ultraviolet flux. A nearby GRB may also leave traces in anomalous radionuclide abundances...

  11. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion.

    Science.gov (United States)

    Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick

    2014-01-01

    The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions. PMID:23237543

  12. A 3D porous media liver lobule model: the importance of vascular septa and anisotropic permeability for homogeneous perfusion.

    Science.gov (United States)

    Debbaut, Charlotte; Vierendeels, Jan; Siggers, Jennifer H; Repetto, Rodolfo; Monbaliu, Diethard; Segers, Patrick

    2014-01-01

    The hepatic blood circulation is complex, particularly at the microcirculatory level. Previously, 2D liver lobule models using porous media and a 3D model using real sinusoidal geometries have been developed. We extended these models to investigate the role of vascular septa (VS) and anisotropic permeability. The lobule was modelled as a hexagonal prism (with or without VS) and the tissue was treated as a porous medium (isotropic or anisotropic permeability). Models were solved using computational fluid dynamics. VS inclusion resulted in more spatially homogeneous perfusion. Anisotropic permeability resulted in a larger axial velocity component than isotropic permeability. A parameter study revealed that results are most sensitive to the lobule size and radial pressure drop. Our model provides insight into hepatic microhaemodynamics, and suggests that inclusion of VS in the model leads to perfusion patterns that are likely to reflect physiological reality. The model has potential for applications to unphysiological and pathological conditions.

  13. Nonlinear inversion for arbitrarily-oriented anisotropic models II: Inversion techniques

    Science.gov (United States)

    Bremner, P. M.; Panning, M. P.

    2011-12-01

    We present output models from inversion of a synthetic surface wave dataset. We implement new 3-D finite-frequency kernels, based on the Born approximation, to invert for upper mantle structure beneath western North America. The kernels are formulated based on a hexagonal symmetry with an arbitrary orientation. Numerical tests were performed to achieve a robust inversion scheme. Four synthetic input models were created, to include: isotropic, constant strength anisotropic, variable strength anisotropic, and both anisotropic and isotropic together. The reference model was a simplified version of PREM (dubbed PREM LIGHT) in which the crust and 220 km discontinuity have been removed. Output models from inversions of calculated synthetic data are compared against these input models to test for accurate reproduction of input model features, and the resolution of those features. The object of this phase of the study was to determine appropriate nonlinear inversion schemes that adequately recover the input models. The synthetic dataset consists of collected seismic waveforms of 126 earthquake mechanisms, of magnitude 6-7 from Dec 2006 to Feb 2009, from the IRIS database. Events were selected to correlate with USArray deployments, and to have as complete an azimuthal coverage as possible. The events occurred within a circular region of radius 150o centered about 44o lat, -110o lon (an arbitrary location within USArray coverage). Synthetic data were calculated utilizing a spectral element code (SEM) coupled to a normal mode solution. The mesh consists of a 3-D heterogeneous outer shell, representing the upper mantle above 450 km depth, coupled to a spherically symmetric inner sphere. From the synthetic dataset, multi-taper fundamental mode surface wave phase delay measurements are taken. The orthogonal 2.5π -prolate spheroidal wave function eigentapers (Slepian tapers) reduce noise biasing, and can provide error estimates in phase delay measurements. This study is a

  14. Lagrangian theory of structure formation in relativistic cosmology II: average properties of a generic evolution model

    OpenAIRE

    Buchert, T.; Nayet, C.; Wiegand, A.

    2013-01-01

    Kinematical and dynamical properties of a generic inhomogeneous cosmological model, spatially averaged with respect to free-falling (generalized fundamental) observers, are investigated for the matter model irrotational dust. Paraphrasing a previous Newtonian investigation, we present a relativistic generalization of a backreaction model based on volume-averaging the Relativistic Zeldovich Approximation. In this model we investigate the effect of kinematical backreaction on the evolution of c...

  15. Interacting agegraphic dark energy model in tachyon cosmology coupled to matter

    OpenAIRE

    Farajollahi, H.; Ravanpak, A.; Fadakar, G. F.

    2012-01-01

    Scalar-field dark energy models for tachyon fields are often regarded as an effective description of an underlying theory of dark energy. In this paper, we propose the agegraphic dark energy model in tachyon cosmology by interaction between the components of the dark sectors. In the formalism, the interaction term emerges from the tachyon field nonminimally coupled to the matter Lagrangian in the model rather than being inserted into the formalism as an external source. The model is constrain...

  16. An improved cosmological model fitting of Planck data with a dark energy spike

    CERN Document Server

    Park, Chan-Gyung

    2015-01-01

    The $\\Lambda$ cold dark matter ($\\Lambda\\textrm{CDM}$) model is currently known as the simplest cosmology model that best describes observations with minimal number of parameters. Here we introduce a cosmology model that is preferred over the conventional $\\Lambda\\textrm{CDM}$ one by constructing dark energy as the sum of the cosmological constant $\\Lambda$ and the additional fluid that is designed to have an extremely short transient spike in energy density during the radiation-matter equality era and the early scaling behavior with radiation and matter densities. The density parameter of the additional fluid is defined as a Gaussian function plus a constant in logarithmic scale-factor space. Searching for the best-fit cosmological parameters in the presence of such a dark energy spike gives a far smaller chi-square value by about five times the number of additional parameters introduced and narrower constraints on matter density and Hubble constant compared with the best-fit $\\Lambda\\textrm{CDM}$ model. The...

  17. Non-linear structure formation in the `Running FLRW' cosmological model

    Science.gov (United States)

    Bibiano, Antonio; Croton, Darren J.

    2016-07-01

    We present a suite of cosmological N-body simulations describing the `Running Friedmann-Lemaïtre-Robertson-Walker' (R-FLRW) cosmological model. This model is based on quantum field theory in a curved space-time and extends Lambda cold dark matter (ΛCDM) with a time-evolving vacuum density, Λ(z), and time-evolving gravitational Newton's coupling, G(z). In this paper, we review the model and introduce the necessary analytical treatment needed to adapt a reference N-body code. Our resulting simulations represent the first realization of the full growth history of structure in the R-FLRW cosmology into the non-linear regime, and our normalization choice makes them fully consistent with the latest cosmic microwave background data. The post-processing data products also allow, for the first time, an analysis of the properties of the halo and sub-halo populations. We explore the degeneracies of many statistical observables and discuss the steps needed to break them. Furthermore, we provide a quantitative description of the deviations of R-FLRW from ΛCDM, which could be readily exploited by future cosmological observations to test and further constrain the model.

  18. Entropy - Some Cosmological Questions Answered by Model of Expansive Nondecelerative Universe

    Directory of Open Access Journals (Sweden)

    Miroslav Sukenik

    2003-01-01

    Full Text Available Abstract: The paper summarizes the background of Expansive Nondecelerative Universe model and its potential to offer answers to some open cosmological questions related to entropy. Three problems are faced in more detail, namely that of Hawkings phenomenon of black holes evaporation, maximum entropy of the Universe during its evolution, and time evolution of specific entropy.

  19. Submanifolds in space-time with unphysical extra dimensions, cosmology and warped brane world models

    CERN Document Server

    Smolyakov, Mikhail N

    2008-01-01

    The explicit coordinate transformations which show the equivalence between a four-dimensional spatially flat cosmology and an appropriate submanifold in the flat five-dimensional Minkowski space-time are presented. Analogous procedure is made for the case of five-dimensional warped brane world models. Several examples are presented.

  20. A New Viable f(R) Model in the Light of Local Gravity Test and Late-time Cosmology

    OpenAIRE

    Nautiyal, Akhilesh; Panda, Sukanta; Patel, Avani

    2016-01-01

    We propose a new model of f (R) gravity containing Arctan function in the lagrangian. We show here that this model satisfies fifth force constraint unlike a similar model [1]. In addition to this, we carry out the fixed point analysis as well as comment on the existence of curvature singularity in this model. The cosmological evolution for this f (R) gravity model is also analyzed in the Friedmann Robertson Walker background. To understand observational significance of the model, cosmological...

  1. Searching for Cosmological Preferred Axis using cosmographic approach

    CERN Document Server

    Salehi, Amin

    2016-01-01

    Recent released Planck data and other astronomical observations show that the universe may be anisotropic on large scales. This hints a cosmological privileged axis in our anisotropic expanding universe. This paper proceeds a modified redshift in anisotropic cosmological model as $ 1+\\tilde{z}(t,\\hat{\\textbf{p}})=\\frac{a(t_{0)}}{a(t)}(1-A(\\hat{\\textbf{n}}.\\hat{\\textbf{p}}))$ (where $A$ is the magnitude of anisotropy ,$\\hat{\\textbf{n}}$ is the direction of privileged axis, and $\\hat{\\textbf{p}}$ is the direction of each SNe Ia sample to galactic coordinates) along with anisotropic parameter $\\delta=\\frac{A(\\hat{\\textbf{n}}.\\hat{\\textbf{p}})}{1+A(\\hat{\\textbf{n}}.\\hat{\\textbf{p}})}$. The luminosity distance is expanded with model-independent cosmographic parameters as a function of modified redshift $\\tilde{z}$. As the transformation matrix $M(n\\times n)$ is obtained to convert the Taylor series coefficients of isotropic luminosity distance to corresponding anisotropic parameters. These results culminate the ma...

  2. Gravitational baryogenesis after anisotropic inflation

    Science.gov (United States)

    Fukushima, Mitsuhiro; Mizuno, Shuntaro; Maeda, Kei-ichi

    2016-05-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence, it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  3. Gravitational Baryogenesis after Anisotropic Inflation

    CERN Document Server

    Fukushima, Mitsuhiro; Maeda, Kei-ichi

    2016-01-01

    The gravitational baryogensis may not generate a sufficient baryon asymmetry in the standard thermal history of the Universe when we take into account the gravitino problem. Hence it has been suggested that anisotropy of the Universe can enhance the generation of the baryon asymmetry through the increase of the time change of the Ricci scalar curvature. We study the gravitational baryogenesis in the presence of anisotropy, which is produced at the end of an anisotropic inflation. Although we confirm that the generated baryon asymmetry is enhanced compared with the original isotropic cosmological model, taking into account the constraint on the anisotropy by the recent CMB observations, we find that it is still difficult to obtain the observed baryon asymmetry only through the gravitational baryogenesis without suffering from the gravitino problem.

  4. Dimensionless cosmology

    CERN Document Server

    Narimani, Ali; Scott, Douglas

    2011-01-01

    Although it is possible that some fundamental physical constants could vary in time, it is important to only consider dimensionless combinations, such as the fine structure constant or the equivalent coupling constant for gravity. Once all such dimensionless numbers have been given, then we can be sure that our cosmological picture is governed by the same physical laws as that of another civilization with an entirely different set of units. An additional feature of the standard model of cosmology raises an extra complication, namely that the epoch at which we live is a crucial part of the model. This can be defined by giving the value of any one of the evolving cosmological parameters. It takes some care to avoid inconsistent results for constraints on variable constants, which could be caused by effectively fixing more than one parameter today. We show examples of this effect by considering in some detail the physics of Big Bang nucleosynthesis, recombination and microwave background anisotropies, being care...

  5. The growth of structure in the Szekeres inhomogeneous cosmological models and the matter-dominated era

    CERN Document Server

    Ishak, Mustapha

    2012-01-01

    This study belongs to a series devoted to using the Szekeres inhomogeneous models in order to develop a theoretical framework where cosmological observations can be investigated with a wider range of possible interpretations. While our previous work addressed the question of cosmological distances versus redshift in these models, the current study is a start at looking into the growth rate of large scale structure. The Szekeres models are exact solutions to Einstein's equations that were originally derived with no symmetries. We use here a formulation of the Szekeres models that is due to Goode and Wainwright who considered the models as exact perturbations of a Friedmann-Lemaitre-Robertson-Walker (FLRW) background. Using the Raychaudhuri equation, we write an exact growth equation in a form that splits into two informative parts. The first part, while exact, is identical to the growth equation in the usual linearly perturbed FLRW models. The second part constitutes exact second-order perturbations. We integr...

  6. Extended Cosmologies

    CERN Document Server

    Capozziello, S; Fatibene, L; Ferraris, M; Garruto, S

    2016-01-01

    We shall discuss cosmological models in extended theories of gravitation. We shall define a surface, called the model surface, in the space of observable parameters which characterises families of theories. We also show how this surface can be used to compare with observations. The model surface can potentially be used to falsify whole families of models instead reasoning on a single model basis as it is usually done by best fit arguments with observations.

  7. 2.5-D/3-D resistivity modelling in anisotropic media using Gaussian quadrature grids

    Science.gov (United States)

    Zhou, Bing; Greenhalgh, Mark; Greenhalgh, S. A.

    2009-01-01

    We present a new numerical scheme for 2.5-D/3-D direct current resistivity modelling in heterogeneous, anisotropic media. This method, named the `Gaussian quadrature grid' (GQG) method, cooperatively combines the solution of the Variational Principle of the partial differential equation, Gaussian quadrature abscissae and local cardinal functions so that it has the main advantages of the spectral element method. The formulation shows that the GQG method is a modification of the spectral element method but does not employ the constant elements or require the mesh generator to match the Earth's surface. This makes it much easier to deal with geological models having a 2-D/3-D complex topography than using traditional numerical methods. The GQG technique can achieve a similar convergence rate to the spectral element method. We show it transforms the 2.5-D/3-D resistivity modelling problem into a sparse and symmetric linear equation system that can be solved by an iterative or matrix inversion method. Comparison with analytic solutions for homogeneous isotropic and anisotropic models shows that the error depends on the Gaussian quadrature order (abscissa number) and the subdomain size. The higher the order or the smaller the subdomain size that is employed, the more accurate are the results obtained. Several other synthetic examples, both homogeneous and inhomogeneous, incorporating sloping, undulating and severe topography, are presented and found to yield results comparable to finite element solutions involving a dense mesh.

  8. An anisotropic numerical model for thermal hydraulic analyses: application to liquid metal flow in fuel assemblies

    Science.gov (United States)

    Vitillo, F.; Vitale Di Maio, D.; Galati, C.; Caruso, G.

    2015-11-01

    A CFD analysis has been carried out to study the thermal-hydraulic behavior of liquid metal coolant in a fuel assembly of triangular lattice. In order to obtain fast and accurate results, the isotropic two-equation RANS approach is often used in nuclear engineering applications. A different approach is provided by Non-Linear Eddy Viscosity Models (NLEVM), which try to take into account anisotropic effects by a nonlinear formulation of the Reynolds stress tensor. This approach is very promising, as it results in a very good numerical behavior and in a potentially better fluid flow description than classical isotropic models. An Anisotropic Shear Stress Transport (ASST) model, implemented into a commercial software, has been applied in previous studies, showing very trustful results for a large variety of flows and applications. In the paper, the ASST model has been used to perform an analysis of the fluid flow inside the fuel assembly of the ALFRED lead cooled fast reactor. Then, a comparison between the results of wall-resolved conjugated heat transfer computations and the results of a decoupled analysis using a suitable thermal wall-function previously implemented into the solver has been performed and presented.

  9. On the Tidal Evolution of the Earth-Moon System: A Cosmological Model

    Directory of Open Access Journals (Sweden)

    Arbab A. I.

    2009-01-01

    Full Text Available We have presented a cosmological model for the tidal evolution of the Earth-Moon system. We have found that the expansion of the universe has immense consequences on our local systems. The model can be compared with the present observational data. The close approach problem inflicting the known tidal theory is averted in this model. We have also shown that the astronomical and geological changes of our local systems are of the order of Hubble constant.

  10. Bianchi type VI1 cosmological model with wet dark fluid in scale invariant theory of gravitation

    CERN Document Server

    Mishra, B

    2014-01-01

    In this paper, we have investigated Bianchi type VIh, II and III cosmological model with wet dark fluid in scale invariant theory of gravity, where the matter field is in the form of perfect fluid and with a time dependent gauge function (Dirac gauge). A non-singular model for the universe filled with disorder radiation is constructed and some physical behaviors of the model are studied for the feasible VIh (h = 1) space-time.

  11. Multiscale Gaussian network model (mGNM) and multiscale anisotropic network model (mANM).

    Science.gov (United States)

    Xia, Kelin; Opron, Kristopher; Wei, Guo-Wei

    2015-11-28

    Gaussian network model (GNM) and anisotropic network model (ANM) are some of the most popular methods for the study of protein flexibility and related functions. In this work, we propose generalized GNM (gGNM) and ANM methods and show that the GNM Kirchhoff matrix can be built from the ideal low-pass filter, which is a special case of a wide class of correlation functions underpinning the linear scaling flexibility-rigidity index (FRI) method. Based on the mathematical structure of correlation functions, we propose a unified framework to construct generalized Kirchhoff matrices whose matrix inverse leads to gGNMs, whereas, the direct inverse of its diagonal elements gives rise to FRI method. With this connection, we further introduce two multiscale elastic network models, namely, multiscale GNM (mGNM) and multiscale ANM (mANM), which are able to incorporate different scales into the generalized Kirchhoff matrices or generalized Hessian matrices. We validate our new multiscale methods with extensive numerical experiments. We illustrate that gGNMs outperform the original GNM method in the B-factor prediction of a set of 364 proteins. We demonstrate that for a given correlation function, FRI and gGNM methods provide essentially identical B-factor predictions when the scale value in the correlation function is sufficiently large. More importantly, we reveal intrinsic multiscale behavior in protein structures. The proposed mGNM and mANM are able to capture this multiscale behavior and thus give rise to a significant improvement of more than 11% in B-factor predictions over the original GNM and ANM methods. We further demonstrate the benefits of our mGNM through the B-factor predictions of many proteins that fail the original GNM method. We show that the proposed mGNM can also be used to analyze protein domain separations. Finally, we showcase the ability of our mANM for the analysis of protein collective motions. PMID:26627949

  12. Primordial cosmology

    Science.gov (United States)

    Montani, Giovanni

    1. Historical picture. 1.1. The concept of universe through the centuries. 1.2. The XIX century knowledge. 1.3. Birth of scientific cosmology. 1.4. The genesis of the hot big bang model. 1.5. Guidelines to the literature -- 2. Fundamental tools. 2.1. Einstein equations. 2.2. Matter fields. 2.3. Hamiltonian formulation of the dynamics. 2.4. Synchronous reference system. 2.5. Tetradic formalism. 2.6. Gauge-like formulation of GR. 2.7. Singularity theorems. 2.8. Guidelines to the literature -- 3. The structure and dynamics of the isotropic universe. 3.1. The RW geometry. 3.2. The FRW cosmology. 3.3. Dissipative cosmologies. 3.4. Inhomogeneous fluctuations in the universe. 3.5. General relativistic perturbation theory. 3.6. The Lemaitre-Tolmann-Bondi spherical solution. 3.7. Guidelines to the literature -- 4. Features of the observed universe. 4.1. Current status: The concordance model. 4.2. The large-scale structure. 4.3. The acceleration of the universe. 4.4. The cosmic microwave background. 4.5. Guidelines to the literature -- 5. The theory of inflation. 5.1. The shortcomings of the standard cosmology. 5.2. The inflationary paradigm. 5.3. Presence of a self-interacting scalar field. 5.4. Inflationary dynamics. 5.5. Solution to the shortcomings of the standard cosmology. 5.6. General features. 5.7. Possible explanations for the present acceleration of the universe. 5.8. Guidelines to the literature -- 6. Inhomogeneous quasi-isotropic cosmologies. 6.1. Quasi-isotropic solution. 6.2. The presence of ultrarelativistic matter. 6.3. The role of a massless scalar field. 6.4. The role of an electromagnetic field. 6.5. Quasi-isotropic inflation. 6.6. Quasi-isotropic viscous solution. 6.7. Guidelines to the literature -- 7. Homogeneous universes. 7.1. Homogeneous cosmological models. 7.2. Kasner solution. 7.3. The dynamics of the Bianchi models. 7.4. Bianchi types VIII and IX models. 7.5. Dynamical systems approach. 7.6. Multidimensional homogeneous universes. 7.7. Guidelines

  13. Inhomogeneity-induced variance of cosmological parameters

    CERN Document Server

    Wiegand, Alexander

    2011-01-01

    Modern cosmology relies on the assumption of large-scale isotropy and homogeneity of the Universe. However, locally the Universe is inhomogeneous and anisotropic. So, how can local measurements (at the 100 Mpc scale) be used to determine global cosmological parameters (defined at the 10 Gpc scale)? We use Buchert's averaging formalism and determine a set of locally averaged cosmological parameters in the context of the flat Lambda cold dark matter model. We calculate their ensemble means (i.e. their global values) and variances (i.e. their cosmic variances). We apply our results to typical survey geometries and focus on the study of the effects of local fluctuations of the curvature parameter. By this means we show, that in the linear regime cosmological backreaction and averaging can be reformulated as the issue of cosmic variance. The cosmic variance is found largest for the curvature parameter and discuss some of its consequences. We further propose to use the observed variance of cosmological parameters t...

  14. Quantum cosmological Friedman models with an initial singularity

    CERN Document Server

    Gerhardt, Claus

    2008-01-01

    Using a new ansatz for the quantization of the Einstein-Hilbert functional, we obtain a regular Lagrangian to define a Hamilton function $H$. A solution of the Euler-Lagrange equation of our functional satisfies the Einstein equations iff it is also a solution of the Friedman equation which is equivalent to the condition H=0 in phase space. After quantization we have a selfadjoint Hamilton operator $H$ in a suitable Hilbert space and consider only those wave functions $\\psi$ that satisfy $H\\psi=0$. It turns out that this equation has countably many solutions $\\psi_i$ which can be considered as eigenfunctions of a Hamilton operator implicitly defined by $H$ with corresponding eigenvalues $\\Lam_i$. The $\\Lam_i$ are the values of the cosmological constant which we used in the Einstein-Hilbert functional, and they can be looked at as the possible energy levels of the gravitational field in quantum gravity. The $\\psi_i$ form a basis of the underlying Hilbert space and the $\\Lam_i$ tend to $\\infty$. All solutions h...

  15. Warps and waves in fully cosmological models of galactic discs

    CERN Document Server

    Gómez, Facundo A; Grand, Robert J J; Marinacci, Federico; Springel, Volker; Pakmor, Rüdiger

    2016-01-01

    Recent studies have revealed an oscillating asymmetry in the vertical structure of the Milky Way's disc. Here we analyze 16 high-resolution, fully cosmological simulations of the evolution of individual Milky Way-sized galaxies, carried out with the MHD code AREPO. At redshift zero, about $70\\%$ of our galactic discs show strong vertical patterns, with amplitudes that can exceed 2 kpc. Half of these are typical `integral sign' warps. The rest are oscillations similar to those observed in the Milky Way. Such structures are thus expected to be common. The associated mean vertical motions can be as large as 30 km/s. Cold disc gas typically follows the vertical patterns seen in the stars. These perturbations have a variety of causes: close encounters with satellites, distant flybys of massive objects, accretion of misaligned cold gas from halo infall or from mergers. Tidally induced vertical patterns can be identified in both young and old stellar populations, whereas those originating from cold gas accretion are...

  16. A fully cosmological model of a Monoceros-like ring

    CERN Document Server

    Gómez, Facundo A; Marinacci, Federico; Slater, Colin T; Grand, Robert J J; Springel, Volker; Pakmor, Rüdiger

    2015-01-01

    We study the vertical structure of a stellar disk obtained from a fully cosmological high-resolution hydrodynamical simulation of the formation of a Milky Way-like galaxy. At the present day, the disk's mean vertical height shows a well-defined and strong pattern, with amplitudes as large as 3 kpc in its outer regions. This pattern is the result of a satellite - host halo - disk interaction and reproduces, qualitatively, many of the observable properties of the Monoceros Ring. In particular we find disk material at the distance of Monoceros extending far above the mid plane (30$^{\\circ}$) in both hemispheres, as well as well-defined arcs of disk material at heliocentric distances $\\gtrsim 5$ kpc. The pattern was first excited $\\approx 3$ Gyr ago as an $m=1$ mode that later winds up into a leading spiral pattern. Interestingly, the main driver behind this perturbation is a low-mass low-velocity fly-by encounter. The satellite has total mass, pericentre distance and pericentric velocity of $\\sim 5\\%$ of the hos...

  17. Evolution of stress-induced borehole breakout in inherently anisotropic rock: Insights from discrete element modeling

    Science.gov (United States)

    Duan, K.; Kwok, C. Y.

    2016-04-01

    The aim of this study is to better understand the mechanisms controlling the initiation, propagation, and ultimate pattern of borehole breakouts in shale formation when drilled parallel with and perpendicular to beddings. A two-dimensional discrete element model is constructed to explicitly represent the microstructure of inherently anisotropic rocks by inserting a series of individual smooth joints into an assembly of bonded rigid discs. Both isotropic and anisotropic hollow square-shaped samples are generated to represent the wellbores drilled perpendicular to and parallel with beddings at reduced scale. The isotropic model is validated by comparing the stress distribution around borehole wall and along X axis direction with analytical solutions. Effects of different factors including the particle size distribution, borehole diameter, far-field stress anisotropy, and rock anisotropy are systematically evaluated on the stress distribution and borehole breakout propagation. Simulation results reveal that wider particle size distribution results in the local stress perturbations which cause localization of cracks. Reduction of borehole diameter significantly alters the crack failure from tensile to shear and raises the critical pressure. Rock anisotropy plays an important role on the stress state around wellbore which lead to the formation of preferred cracks under hydrostatic stress. Far-field stress anisotropy plays a dominant role in the shape of borehole breakout when drilled perpendicular to beddings while a secondary role when drilled parallel with beddings. Results from this study can provide fundamental insights on the underlying particle-scale mechanisms for previous findings in laboratory and field on borehole stability in anisotropic rock.

  18. Cosmological evolution of the interacting phantom (quintessence) model in loop quantum gravity

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Puxun; Zhang, Shuang Nan, E-mail: wpx0227@gmail.com, E-mail: zhangsn@tsinghua.edu.cn [Department of Physics and Tsinghua Center for Astrophysics, Tsinghua University, Beijing 100084 (China)

    2008-06-15

    The dynamics of the interacting dark energy model in loop quantum cosmology (LQC) is studied in this paper. The dark energy has a constant equation of state w{sub x} and interacts with dark matter through a form 3cH({rho}{sub x}+{rho}{sub m}). We find that for the quintessence model (w{sub x}>-1) the cosmological evolution in LQC is the same as that in classical Einstein cosmology, whereas for phantom dark energy (w{sub x}<-1), although there are the same critical points in LQC and classical Einstein cosmology, the loop quantum effect significantly reduces the parameter spacetime (c,w{sub x}) required by stability. If parameters c and w{sub x} satisfy the conditions that the critical points are existing and stable, the universe will enter an era dominated by dark energy and dark matter with a constant energy ratio between them, and accelerate forever; otherwise it will enter an oscillatory regime. Comparing our results with the observations we find at 1{sigma} confidence level that the universe will accelerate forever.

  19. Analysis of elastic wave propagation through anisotropic stainless steel using elastodynamic FEM and ultrasonic beam model

    International Nuclear Information System (INIS)

    The wave propagation problem in anisotropic media is modeled by the Gauss-Hermite beam and tile finite element method and their results are compared. Gauss-Hermite mettled is computationally fast and simple, and explicitly incorporates beam spreading. In the 2-D model problem chosen, the ultrasonic beam leaves a transducer, propagates through a layer of ferritic steel and through a planar interface into a region of columnar cast stainless steel with two directions. After propagation to a reference plane, comparison .if made of the time-domain waveforms predicted by tile two models. The predictions of the two models are found to be in good agreement near the center of the beam, with deviations developing as one moves away from tile central ray. These are interpreted to be a consequence of the Fresnel approximation, made in the Gauss-Hermite model.

  20. Brittleness index and seismic rock physics model for anisotropic tight-oil sandstone reservoirs

    Institute of Scientific and Technical Information of China (English)

    Huang Xin-Rui; Huang Jian-Ping; Li Zhen-Chun; Yang Qin-Yong; Sun Qi-Xing; Cui Wei

    2015-01-01

    Brittleness analysis becomes important when looking for sweet spots in tight-oil sandstone reservoirs. Hence, appropriate indices are required as accurate brittleness evaluation criteria. We construct a seismic rock physics model for tight-oil sandstone reservoirs with vertical fractures. Because of the complexities in lithology and pore structure and the anisotropic characteristics of tight-oil sandstone reservoirs, the proposed model is based on the solid components, pore connectivity, pore type, and fractures to better describe the sandstone reservoir microstructure. Using the model, we analyze the brittleness sensitivity of the elastic parameters in an anisotropic medium and establish a new brittleness index. We show the applicability of the proposed brittleness index for tight-oil sandstone reservoirs by considering the brittleness sensitivity, the rock physics response characteristics, and cross-plots. Compared with conventional brittleness indexes, the new brittleness index has high brittleness sensitivity and it is the highest in oil-bearing brittle zones with relatively high porosity. The results also suggest that the new brittleness index is much more sensitive to elastic properties variations, and thus can presumably better predict the brittleness characteristics of sweet spots in tight-oil sandstone reservoirs.