WorldWideScience

Sample records for anisotropic correlation function

  1. Relationship between specific surface area and spatial correlation functions for anisotropic porous media

    Energy Technology Data Exchange (ETDEWEB)

    Berryman, J.G.

    1987-01-01

    A result of Debye, Anderson, and Brumberger (P. Debye, H. R. Anderson, Jr., and H. Brumberger, J. Appl. Phys. 28, 679 (1957)) for isotropic porous media states that the derivative of the two-point spatial correlation at the origin is equal to minus one-quarter of the specific surface area. This result is generalized for nonisotropic media by noting that the angular average of the anisotropic two-point spatial correlation function has the same relationship to the specific surface area.

  2. THE ANISOTROPIC TWO-POINT CORRELATION FUNCTIONS OF THE NONLINEAR TRACELESS TIDAL FIELD IN THE PRINCIPAL-AXIS FRAME

    International Nuclear Information System (INIS)

    Lee, Jounghun; Hahn, Oliver; Porciani, Cristiano

    2009-01-01

    Galaxies on the largest scales of the universe are observed to be embedded in the filamentary cosmic web, which is shaped by the nonlinear tidal field. As an efficient tool to quantitatively describe the statistics of this cosmic web, we present the anisotropic two-point correlation functions of the nonlinear traceless tidal field in the principal-axis frame, which are measured using numerical data from an N-body simulation. We show that both the nonlinear density and traceless tidal fields are more strongly correlated along the directions perpendicular to the eigenvectors associated with the largest eigenvalues of the local tidal field. The correlation length scale of the traceless tidal field is found to be ∼20 h -1 Mpc, which is much larger than that of the density field ∼5 h -1 Mpc. We also provide analytic fitting formulae for the anisotropic correlation functions of the traceless tidal field, which turn out to be in excellent agreement with the numerical results. We expect that our numerical results and analytical formula are useful to disentangle cosmological information from the filamentary network of the large-scale structures.

  3. Spectral functions from anisotropic lattice QCD

    Science.gov (United States)

    Aarts, G.; Allton, C.; Amato, A.; Evans, W.; Giudice, P.; Harris, T.; Kelly, A.; Kim, S. Y.; Lombardo, M. P.; Praki, K.; Ryan, S. M.; Skullerud, J.-I.

    2016-12-01

    The FASTSUM collaboration has been carrying out lattice simulations of QCD for temperatures ranging from one third to twice the crossover temperature, investigating the transition region, as well as the properties of the Quark Gluon Plasma. In this contribution we concentrate on quarkonium correlators and spectral functions. We work in a fixed scale scheme and use anisotropic lattices which help achieving the desirable fine resolution in the temporal direction, thus facilitating the (ill posed) integral transform from imaginary time to frequency space. We contrast and compare results for the correlators obtained with different methods, and different temporal spacings. We observe robust features of the results, confirming the sequential dissociation scenario, but also quantitative differences indicating that the methods' systematic errors are not yet under full control. We briefly outline future steps towards accurate results for the spectral functions and their associated statistical and systematic errors.

  4. Anisotropic nanomaterials: structure, growth, assembly, and functions

    Science.gov (United States)

    Sajanlal, Panikkanvalappil R.; Sreeprasad, Theruvakkattil S.; Samal, Akshaya K.; Pradeep, Thalappil

    2011-01-01

    Comprehensive knowledge over the shape of nanomaterials is a critical factor in designing devices with desired functions. Due to this reason, systematic efforts have been made to synthesize materials of diverse shape in the nanoscale regime. Anisotropic nanomaterials are a class of materials in which their properties are direction-dependent and more than one structural parameter is needed to describe them. Their unique and fine-tuned physical and chemical properties make them ideal candidates for devising new applications. In addition, the assembly of ordered one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D) arrays of anisotropic nanoparticles brings novel properties into the resulting system, which would be entirely different from the properties of individual nanoparticles. This review presents an overview of current research in the area of anisotropic nanomaterials in general and noble metal nanoparticles in particular. We begin with an introduction to the advancements in this area followed by general aspects of the growth of anisotropic nanoparticles. Then we describe several important synthetic protocols for making anisotropic nanomaterials, followed by a summary of their assemblies, and conclude with major applications. PMID:22110867

  5. Polar Functions for Anisotropic Gaussian Random Fields

    Directory of Open Access Journals (Sweden)

    Zhenlong Chen

    2014-01-01

    Full Text Available Let X be an (N, d-anisotropic Gaussian random field. Under some general conditions on X, we establish a relationship between a class of continuous functions satisfying the Lipschitz condition and a class of polar functions of X. We prove upper and lower bounds for the intersection probability for a nonpolar function and X in terms of Hausdorff measure and capacity, respectively. We also determine the Hausdorff and packing dimensions of the times set for a nonpolar function intersecting X. The class of Gaussian random fields that satisfy our conditions includes not only fractional Brownian motion and the Brownian sheet, but also such anisotropic fields as fractional Brownian sheets, solutions to stochastic heat equation driven by space-time white noise, and the operator-scaling Gaussian random field with stationary increments.

  6. Correlation theory of crystal field and anisotropic exchange effects

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1985-01-01

    A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds. The the......A general theory for including correlation effects in static and dynamic properties is presented in terms of Raccah or Stevens operators. It is explicitly developed for general crystal fields and anisotropic interactions and systems with several sublattices, like the rare earth compounds...... on the susceptibility, the first and second moment frequencies and the line shape are calculated self-consistently....

  7. Incommensurate correlations in the anisotropic triangular Heisenberg lattice

    Science.gov (United States)

    Weichselbaum, Andreas; White, Steven R.

    2011-12-01

    We study the anisotropic spin-1/2 antiferromagnetic triangular Heisenberg lattice in two dimensions, seen as a set of chains with couplings J (J') along (in-between) chains, respectively. Our focus is on the incommensurate correlation that emerges in this system in a wide parameter range due to the intrinsic frustration of the spins. We study this system with traditional density matrix renormalization group using cylindrical boundary conditions to least constrain possible incommensurate order. Despite that the limit of essentially decoupled chains J'/J≲0.5 is not very accessible numerically, it appears that the spin-spin correlations remain incommensurate for any finite 0JC', where JC'/J>1. The incommensurate wave vector qJ, however, approaches the commensurate value corresponding to the antiferromagnetic correlation of a single chain very rapidly with decreasing J'/J, roughly as qJ˜π-c1(J'/J)ne-c2J/J'.

  8. Determination of two-dimensional correlation lengths in an anisotropic two-component flow

    International Nuclear Information System (INIS)

    Thomson, O.

    1994-05-01

    Former studies have shown that correlation methods can be used for determination of various two-component flow parameters, among these the correlation length. In cases where the flow can be described as a mixture, in which the minority component forms spatially limited perturbations within the majority component, this parameter gives a good indication of the maximum extension of these perturbations. In the former studies, spherical symmetry of the perturbations has been assumed, and the correlation length has been measured in the direction of the flow (axially) only. However, if the flow structure is anisotropic, the correlation length will be different in different directions. In the present study, the method has been developed further, allowing also measurements perpendicular to the flow direction (radially). The measurements were carried out using laser beams and the two-component flows consisted of either glass beads and air or air and water. In order to make local measurements of both the axial and radial correlation length simultaneously, it is necessary to use 3 laser beams and to form the triple cross-covariance. This lead to some unforeseen complications, due to the character of this function. The experimental results are generally positive and size determinations with an accuracy of better than 10% have been achieved in most cases. Less accurate results appeared only for difficult conditions (symmetrical signals), when 3 beams were used. 5 refs, 13 figs, 3 tabs

  9. Pair Correlation Function Integrals

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O'Connell, John P.; Peters, Günther H.J.

    2011-01-01

    We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long-d...... distribution function has structure beyond the sampling limit imposed by the system size, the integration is more reliable, and usually more accurate, than simple integral truncation.......We describe a method for extending radial distribution functions obtained from molecular simulations of pure and mixed molecular fluids to arbitrary distances. The method allows total correlation function integrals to be reliably calculated from simulations of relatively small systems. The long......, and J. Abildskov, Mol. Simul. 36, 1243 (2010); Fluid Phase Equilib. 302, 32 (2011)], but describe here its theoretical basis more thoroughly and derive long-distance approximations for the direct correlation functions. We describe the numerical implementation of the method in detail, and report...

  10. Nuclear quadrupole deformations and anisotropic angular correlations between K x rays and gamma rays

    International Nuclear Information System (INIS)

    Khalil, A.E.

    1983-01-01

    Anisotropic angular correlation between gamma rays and the K x rays following the K conversion from nuclei with large static deformations has been studied. A complete theoretical expression for 181 Ta, the second known case of this phenomenon, is presented. This case involves several mixed nuclear transitions which result in 62% of the x rays arising from magnetic dipole internal-conversion processes and 38% arising from electric-quadrupole internal-conversion processes

  11. Quantum correlation dynamics subjected to critical spin environment with short-range anisotropic interaction.

    Science.gov (United States)

    Guo, J L; Zhang, X Z

    2016-09-06

    Short-range interaction among the spins can not only results in the rich phase diagram but also brings about fascinating phenomenon both in the contexts of quantum computing and information. In this paper, we investigate the quantum correlation of the system coupled to a surrounding environment with short-range anisotropic interaction. It is shown that the decay of quantum correlation of the central spins measured by pairwise entanglement and quantum discord can serve as a signature of quantum phase transition. In addition, we study the decoherence factor of the system when the environment is in the vicinity of the phase transition point. In the strong coupling regime, the decay of the decoherence factor exhibits Gaussian envelop in the time domain. However, in weak coupling limit, the quantum correlation of the system is robust against the disturbance of the magnetic field through optimal control of the anisotropic short-range interaction strength. Based on this, the effects of the short-range anisotropic interaction on the sudden transition from classical to quantum decoherence are also presented.

  12. Confinement from correlation functions

    Science.gov (United States)

    Fister, Leonard; Pawlowski, Jan M.

    2013-08-01

    We compute the Polyakov loop potential in Yang-Mills theory from the fully dressed primitively divergent correlation functions only. This is done in a variety of functional approaches ranging from functional renormalization group equations over Dyson-Schwinger equations to two-particle irreducible functionals. We present a confinement criterion that links the infrared behavior of propagators and vertices to the Polyakov loop expectation value. The present work extends the works of [J. Braun , Phys. Lett. B 684, 262 (2010)PYLBAJ0370-2693; F. Marhauser and J. M. Pawlowski, arXiv:0812.1144; J. Braun , Eur. Phys. J. C 70, 689 (2010)EPCFFB1434-6044] to general functional methods and sharpens the confinement criterion presented there. The computations are based on the thermal correlation functions in the Landau gauge calculated in [L. Fister and J. M. Pawlowski, arXiv:1112.5440; L. Fister and J. M. Pawlowski, arXiv:1112.5429; L. Fister, Ph.D. thesis, Heidelberg University, 2012].

  13. Process chain for fabrication of anisotropic optical functional surfaces on polymer components

    DEFF Research Database (Denmark)

    Li, Dongya; Zhang, Yang; Regi, Francesco

    2017-01-01

    This paper aims to introduce a process chain for fabrication of anisotropic optical functional surfaces on polymer products. Thesurface features under investigation are composed of micro serrated ridges. The scope was to maximize the visible contrast betweenhorizontally orthogonal textured surfaces...

  14. Effect of anisotropic yield function evolution on formability of sheet metal

    Science.gov (United States)

    Choi, H. J.; Choi, Y.; Lee, K. J.; Lee, J. Y.; Bandyopadhyay, K.; Lee, M.-G.

    2017-10-01

    For the evaluation of anisotropic yield functions and hardening models, formability has been often investigated in the forming of sheet metals. The formability has been investigated in many ways, but a common conclusion is that it is significantly influenced by sheet anisotropy, especially the directional differences in yield stress and r-value along the material direction. Therefore, numerous works have been presented in terms of the accurate modeling of anisotropic behavior of sheet metals and its implementation into the finite element simulations. The previous efforts include the effects of quadratic or non-quadratic yield functions, their associated or non-associated flow rules and isotropic or non-isotropic hardening laws on formability. However, most of these works assumed that the anisotropic yield functions maintain their initial shapes, while they evolve by isotropic expansion or kinematic translation. Then, they could not consider the anisotropic evolution under monotonic loading with different deformation modes. In the present work, various anisotropic constitutive models were comparatively evaluated for the performance in predicting the earing profile in the cup drawing and the forming limit diagram. The constitutive models include the Hill48 quadratic yield function with associated and non-associated flow rules, and the non-quadratic Yld2000-2d function with associated flow rule. For both yield functions, the evolution of anisotropy was employed by considering the anisotropic coefficients as a function of equivalent plastic strain. The influence of the anisotropy evolution was comparatively evaluated by the computational simulations.

  15. Hexagonalization of correlation functions

    International Nuclear Information System (INIS)

    Fleury, Thiago; Komatsu, Shota

    2017-01-01

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  16. Hexagonalization of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Fleury, Thiago [Instituto de Física Teórica, UNESP - University Estadual Paulista,ICTP South American Institute for Fundamental Research,Rua Dr. Bento Teobaldo Ferraz 271, 01140-070, São Paulo, SP (Brazil); Komatsu, Shota [Perimeter Institute for Theoretical Physics,31 Caroline St N Waterloo, Ontario N2L 2Y5 (Canada)

    2017-01-30

    We propose a nonperturbative framework to study general correlation functions of single-trace operators in N=4 supersymmetric Yang-Mills theory at large N. The basic strategy is to decompose them into fundamental building blocks called the hexagon form factors, which were introduced earlier to study structure constants using integrability. The decomposition is akin to a triangulation of a Riemann surface, and we thus call it hexagonalization. We propose a set of rules to glue the hexagons together based on symmetry, which naturally incorporate the dependence on the conformal and the R-symmetry cross ratios. Our method is conceptually different from the conventional operator product expansion and automatically takes into account multi-trace operators exchanged in OPE channels. To illustrate the idea in simple set-ups, we compute four-point functions of BPS operators of arbitrary lengths and correlation functions of one Konishi operator and three short BPS operators, all at one loop. In all cases, the results are in perfect agreement with the perturbative data. We also suggest that our method can be a useful tool to study conformal integrals, and show it explicitly for the case of ladder integrals.

  17. Anisotropic multi-resolution analysis in 2D, application to long-range correlations in cloud mm-radar fields

    Energy Technology Data Exchange (ETDEWEB)

    Davis, A.B. [Los Alamos National Lab., NM (United States). Space and Remote Sensing Science Group; Clothiaux, E. [Pennsylvania State Univ., University Park, PA (United States). Dept. of Meteorology

    1999-03-01

    Because of Earth`s gravitational field, its atmosphere is strongly anisotropic with respect to the vertical; the effect of the Earth`s rotation on synoptic wind patterns also causes a more subtle form of anisotropy in the horizontal plane. The authors survey various approaches to statistically robust anisotropy from a wavelet perspective and present a new one adapted to strongly non-isotropic fields that are sampled on a rectangular grid with a large aspect ratio. This novel technique uses an anisotropic version of Multi-Resolution Analysis (MRA) in image analysis; the authors form a tensor product of the standard dyadic Haar basis, where the dividing ratio is {lambda}{sub z} = 2, and a nonstandard triadic counterpart, where the dividing ratio is {lambda}{sub x} = 3. The natural support of the field is therefore 2{sup n} pixels (vertically) by 3{sup n} pixels (horizontally) where n is the number of levels in the MRA. The natural triadic basis includes the French top-hat wavelet which resonates with bumps in the field whereas the Haar wavelet responds to ramps or steps. The complete 2D basis has one scaling function and five wavelets. The resulting anisotropic MRA is designed for application to the liquid water content (LWC) field in boundary-layer clouds, as the prevailing wind advects them by a vertically pointing mm-radar system. Spatial correlations are notoriously long-range in cloud structure and the authors use the wavelet coefficients from the new MRA to characterize these correlations in a multifractal analysis scheme. In the present study, the MRA is used (in synthesis mode) to generate fields that mimic cloud structure quite realistically although only a few parameters are used to control the randomness of the LWC`s wavelet coefficients.

  18. Spin-density functional for exchange anisotropic Heisenberg model

    International Nuclear Information System (INIS)

    Prata, G.N.; Penteado, P.H.; Souza, F.C.; Libero, Valter L.

    2009-01-01

    Ground-state energies for antiferromagnetic Heisenberg models with exchange anisotropy are estimated by means of a local-spin approximation made in the context of the density functional theory. Correlation energy is obtained using the non-linear spin-wave theory for homogeneous systems from which the spin functional is built. Although applicable to chains of any size, the results are shown for small number of sites, to exhibit finite-size effects and allow comparison with exact-numerical data from direct diagonalization of small chains.

  19. The clustering of the SDSS-IV extended Baryon Oscillation Spectroscopic Survey DR14 quasar sample: measurement of the growth rate of structure from the anisotropic correlation function between redshift 0.8 and 2.2

    Science.gov (United States)

    Zarrouk, Pauline; Burtin, Etienne; Gil-Marín, Héctor; Ross, Ashley J.; Tojeiro, Rita; Pâris, Isabelle; Dawson, Kyle S.; Myers, Adam D.; Percival, Will J.; Chuang, Chia-Hsun; Zhao, Gong-Bo; Bautista, Julian; Comparat, Johan; González-Pérez, Violeta; Habib, Salman; Heitmann, Katrin; Hou, Jiamin; Laurent, Pierre; Le Goff, Jean-Marc; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Ruggeri, Rossana; Sánchez, Ariel G.; Schneider, Donald P.; Tinker, Jeremy L.; Wang, Yuting; Yèche, Christophe; Baumgarten, Falk; Brownstein, Joel R.; de la Torre, Sylvain; du Mas des Bourboux, Hélion; Kneib, Jean-Paul; Mariappan, Vivek; Palanque-Delabrouille, Nathalie; Peacock, John; Petitjean, Patrick; Seo, Hee-Jong; Zhao, Cheng

    2018-02-01

    We present the clustering measurements of quasars in configuration space based on the Data Release 14 (DR14) of the Sloan Digital Sky Survey IV extended Baryon Oscillation Spectroscopic Survey. This dataset includes 148,659 quasars spread over the redshift range 0.8 ≤ z ≤ 2.2 and spanning 2112.9 square degrees. We use the Convolution Lagrangian Perturbation Theory (CLPT) approach with a Gaussian Streaming (GS) model for the redshift space distortions of the correlation function and demonstrate its applicability for dark matter halos hosting eBOSS quasar tracers. At the effective redshift zeff = 1.52, we measure the linear growth rate of structure fσ8(zeff) = 0.426 ± 0.077, the expansion rate H(z_eff)= 159^{+12}_{-13}(rs^fid/r_s)km.s^{-1}.Mpc^{-1}, and the angular diameter distance DA(z_eff)=1850^{+90}_{-115} (r_s/rs^fid)Mpc, where rs is the sound horizon at the end of the baryon drag epoch and rs^fid is its value in the fiducial cosmology. The quoted uncertainties include both systematic and statistical contributions. The results on the evolution of distances are consistent with the predictions of flat Λ-Cold Dark Matter (Λ-CDM) cosmology with Planck parameters, and the measurement of fσ8 extends the validity of General Relativity (GR) to higher redshifts(z > 1) This paper is released with companion papers using the same sample. The results on the cosmological parameters of the studies are found to be in very good agreement, providing clear evidence of the complementarity and of the robustness of the first full-shape clustering measurements with the eBOSS DR14 quasar sample.

  20. Anisotropic spin-spin correlations in Mn1/X(111) (X= Pd, Pt, Ag, and Au)

    Science.gov (United States)

    Dos Santos Dias, M.; Staunton, J. B.; Deak, A.; Szunyogh, L.

    2011-02-01

    We present a finite-temperature theory of the anisotropic spin-spin correlations in magnetic metallic monolayers deposited on a suitable substrate. The spins are the local moments set up by the itinerant electrons, and the key concept is the relativistic disordered local moment state, which represents the paramagnetic state of a set of local moments. The spin-spin correlations between these local moments are then extracted using the linear-response formalism. The anisotropy is included in a fully relativistic treatment, based on the Dirac equation, and has a qualitative impact on noncollinear magnetic states by lifting their chiral degeneracy. The theory is applied to Mn monolayers on the hexagonal (111) surfaces of Pd, Pt, Ag, and Au. The presence of competing exchange interactions is highlighted by choosing different substrates, which favor either the row-wise antiferromagnetic state or the chiral triangular Néel state. We correlate the electronic structure with the magnetic properties by comparing filled with partially filled substrate d bands, and low versus high atomic number. The disagreement between theory and experiment for Mn1/Ag(111) is addressed, and the nature of the magnetic domains found experimentally is suggested to be chiral.

  1. Anisotropic diffusion of fluorescently labeled ATP in rat cardiomyocytes determined by raster image correlation spectroscopy.

    Science.gov (United States)

    Vendelin, Marko; Birkedal, Rikke

    2008-11-01

    A series of experimental data points to the existence of profound diffusion restrictions of ADP/ATP in rat cardiomyocytes. This assumption is required to explain the measurements of kinetics of respiration, sarcoplasmic reticulum loading with calcium, and kinetics of ATP-sensitive potassium channels. To be able to analyze and estimate the role of intracellular diffusion restrictions on bioenergetics, the intracellular diffusion coefficients of metabolites have to be determined. The aim of this work was to develop a practical method for determining diffusion coefficients in anisotropic medium and to estimate the overall diffusion coefficients of fluorescently labeled ATP in rat cardiomyocytes. For that, we have extended raster image correlation spectroscopy (RICS) protocols to be able to discriminate the anisotropy in the diffusion coefficient tensor. Using this extended protocol, we estimated diffusion coefficients of ATP labeled with the fluorescent conjugate Alexa Fluor 647 (Alexa-ATP). In the analysis, we assumed that the diffusion tensor can be described by two values: diffusion coefficient along the myofibril and that across it. The average diffusion coefficients found for Alexa-ATP were as follows: 83 +/- 14 microm(2)/s in the longitudinal and 52 +/- 16 microm(2)/s in the transverse directions (n = 8, mean +/- SD). Those values are approximately 2 (longitudinal) and approximately 3.5 (transverse) times smaller than the diffusion coefficient value estimated for the surrounding solution. Such uneven reduction of average diffusion coefficient leads to anisotropic diffusion in rat cardiomyocytes. Although the source for such anisotropy is uncertain, we speculate that it may be induced by the ordered pattern of intracellular structures in rat cardiomyocytes.

  2. Correlation Functions and Power Spectra

    DEFF Research Database (Denmark)

    Larsen, Jan

    2006-01-01

    The present lecture note is a supplement to the textbook Digital Signal Processing by J. Proakis and D.G. Manolakis used in the IMM/DTU course 02451 Digital Signal Processing and provides an extended discussion of correlation functions and power spectra. The definitions of correlation functions....... It is possible to define correlation functions and associated spectra for aperiodic, periodic and random signals although the interpretation is different. Moreover, we will discuss correlation functions when mixing these basic signal types. In addition, the note include several examples for the purpose...

  3. A plane stress yield function for anisotropic sheet material by interpolation of biaxial stress states

    NARCIS (Netherlands)

    Vegter, H.; van den Boogaard, Antonius H.

    2006-01-01

    An anisotropic plane stress yield function based on interpolation by second order Bézier curves is proposed. The parameters for the model are readily derived by four mechanical tests: a uniaxial, an equi-biaxial and a plane strain tensile test and a shear test. In case of planar anisotropy, this set

  4. Intermediate scattering function of an anisotropic Brownian circle swimmer.

    Science.gov (United States)

    Kurzthaler, Christina; Franosch, Thomas

    2017-09-27

    Microswimmers exhibit noisy circular motion due to asymmetric propulsion mechanisms, their chiral body shape, or by hydrodynamic couplings in the vicinity of surfaces. Here, we employ the Brownian circle swimmer model and characterize theoretically the dynamics in terms of the directly measurable intermediate scattering function. We derive the associated Fokker-Planck equation for the conditional probabilities and provide an exact solution in terms of generalizations of the Mathieu functions. Different spatiotemporal regimes are identified reflecting the bare translational diffusion at large wavenumbers, the persistent circular motion at intermediate wavenumbers and an enhanced effective diffusion at small wavenumbers. In particular, the circular motion of the particle manifests itself in characteristic oscillations at a plateau of the intermediate scattering function for wavenumbers probing the radius.

  5. Asymptotic Green's function in homogeneous anisotropic viscoelastic media

    Czech Academy of Sciences Publication Activity Database

    Vavryčuk, Václav

    2007-01-01

    Roč. 463, č. 2086 (2007), s. 2689-2707 ISSN 1364-5021 Institutional research plan: CEZ:AV0Z30120515 Keywords : anisotropy * attenuation * Green's function * viscoelasticity Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.523, year: 2007

  6. On the Green function for the anisotropic simple cubic lattice

    International Nuclear Information System (INIS)

    Delves, R.T.; Joyce, G.S.

    2001-01-01

    The analytical properties of the lattice Green function G(α, w)=((1)/(π 3 ))∫ π 0 ∫ π 0 ∫ π 0 ((dθ 1 dθ 2 dθ 3 )/(w-cosθ 1 -cosθ 2 -αcosθ 3 ))are investigated, where w=u+iv is a complex variable in the (u, v) plane and α is a real parameter in the interval (0, ∞). In particular, it is shown that the function y G (α, z)≡wG(α, w), where z=1/w 2 , is a solution of a fourth-order linear differential equation of the type Σ(j=0)/4f j (α, z)D 4-j y=0,where f j (α, z) is a polynomial in the variables α and z and D≡d/dz. It is then proved that the solutions of this differential equation can all be expressed in terms of a product of two functions H 1 (α, z) and H 2 (α, z) which satisfy second-order linear differential equations of the normal type[D 2 +U + (α, z)]y=0,[D 2 +U - (α, z)]y=0,respectively, where U ± (α, z) are complicated algebraic functions of α and z. Next Schwarzian transformation theory is used to reduce both these second-order differential equations to the standard Gauss hypergeometric differential equation. From this result it is deduced that wG(α, w)=((2)/(√1-(2-α) 2 z+√1-(2+α) 2 z))[((2)/(π))K(k + )][((2)/(π))K(k - )],wherek 2 ± ≡ k 2 ± (α, z)=((1)/(2))-((1)/(2))[√1-(2-α) 2 z+√1-(2+α) 2 z] -3 [}1+(2-αz1-(2+α)√z+√1-(2-α)√ z1+(2+α)√z]{±16z+√1-α 2 z[√1+(2-α)z√1+(2+α)√z+√1-(2-α)√z√1-(2+α)] 2 }and K(k) denotes the complete elliptic integral of the first kind with a modulus k. This basic formula is valid for all values of w=u+iv which lie in the (u, v) plane, provided that a cut is made along the real axis from w=-2-α to w=2+α. In the remainder of the paper exact series expansions for G(α, w) are derived which are valid in a sufficiently small neighbourhood of the branch-point singularities at w=2+α, w=α, and w=vertical bar2-αvertical bar. In all cases it is shown that the real and imaginary parts of the coefficients in the analytic part of these expansions can be

  7. Anisotropically functionalized carbon nanotube array based hygroscopic scaffolds.

    Science.gov (United States)

    Ozden, Sehmus; Ge, Liehui; Narayanan, Tharangattu N; Hart, Amelia H C; Yang, Hyunseung; Sridhar, Srividya; Vajtai, Robert; Ajayan, Pulickel M

    2014-07-09

    Creating ordered microstructures with hydrophobic and hydrophilic moieties that enable the collection and storage of small water droplets from the atmosphere, mimicking structures that exist in insects, such as the Stenocara beetle, which live in environments with limited amounts of water. Inspired by this approach, vertically aligned multiwalled carbon nanotube forests (NTFs) are asymmetrically end-functionalized to create hygroscopic scaffolds for water harvesting and storage from atmospheric air. One side of the NTF is made hydrophilic, which captures water from the atmosphere, and the other side is made superhydrophobic, which prevents water from escaping and the forest from collapsing. To understand how water penetrates into the NTF, the fundamentals of water/NTF surface interaction are discussed.

  8. Scattering function S (Q, w), correlation functions

    International Nuclear Information System (INIS)

    Binder, K.

    1978-01-01

    The following subjects are dealt with in this paper: 1) Two-Particle problem in quantum mechanics and inelastic scattering 2) The doubly differential cross section for many-particle systems 3) The van Hove transformation and the scattering funktion S (Q, w) 4) Relation between scattering functions and correlation functions 5) Examples: ideal gas, liquids 6) Differential cross section, sum rules, convolution approximation. (orig.) [de

  9. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    Science.gov (United States)

    Boukraa, S.; Hassani, S.; Maillard, J.-M.

    2012-12-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard-Fuchs systems of two-variables ‘above’ Calabi-Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ(n), corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ(3) and χ(4), that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ(n)s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi-Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non-holonomic anisotropic full

  10. Holonomic functions of several complex variables and singularities of anisotropic Ising n-fold integrals

    International Nuclear Information System (INIS)

    Boukraa, S; Hassani, S; Maillard, J-M

    2012-01-01

    Focusing on examples associated with holonomic functions, we try to bring new ideas on how to look at phase transitions, for which the critical manifolds are not points but curves depending on a spectral variable, or even fill higher dimensional submanifolds. Lattice statistical mechanics often provides a natural (holonomic) framework to perform singularity analysis with several complex variables that would, in the most general mathematical framework, be too complex, or simply could not be defined. In a learn-by-example approach, considering several Picard–Fuchs systems of two-variables ‘above’ Calabi–Yau ODEs, associated with double hypergeometric series, we show that D-finite (holonomic) functions are actually a good framework for finding properly the singular manifolds. The singular manifolds are found to be genus-zero curves. We then analyze the singular algebraic varieties of quite important holonomic functions of lattice statistical mechanics, the n-fold integrals χ (n) , corresponding to the n-particle decomposition of the magnetic susceptibility of the anisotropic square Ising model. In this anisotropic case, we revisit a set of so-called Nickelian singularities that turns out to be a two-parameter family of elliptic curves. We then find the first set of non-Nickelian singularities for χ (3) and χ (4) , that also turns out to be rational or elliptic curves. We underline the fact that these singular curves depend on the anisotropy of the Ising model, or, equivalently, that they depend on the spectral parameter of the model. This has important consequences on the physical nature of the anisotropic χ (n) s which appear to be highly composite objects. We address, from a birational viewpoint, the emergence of families of elliptic curves, and that of Calabi–Yau manifolds on such problems. We also address the question of singularities of non-holonomic functions with a discussion on the accumulation of these singular curves for the non

  11. Anisotropic dark matter distribution functions and impact on WIMP direct detection

    International Nuclear Information System (INIS)

    Bozorgnia, Nassim; Schwetz, Thomas; Catena, Riccardo

    2013-01-01

    Dark matter N-body simulations suggest that the velocity distribution of dark matter is anisotropic. In this work we employ a mass model for the Milky Way whose parameters are determined from a fit to kinematical data. Then we adopt an ansatz for the dark matter phase space distribution which allows to construct self-consistent halo models which feature a degree of anisotropy as a function of the radius such as suggested by the simulations. The resulting velocity distributions are then used for an analysis of current data from dark matter direct detection experiments. We find that velocity distributions which are radially biased at large galactocentric distances (up to the virial radius) lead to an increased high velocity tail of the local dark matter distribution. This affects the interpretation of data from direct detection experiments, especially for dark matter masses around 10 GeV, since in this region the high velocity tail is sampled. We find that the allowed regions in the dark matter mass-cross section plane as indicated by possible hints for a dark matter signal reported by several experiments as well as conflicting exclusion limits from other experiments shift in a similar way when the halo model is varied. Hence, it is not possible to improve the consistency of the data by referring to anisotropic halo models of the type considered in this work

  12. A unified inelastic constitutive equation in terms of anisotropic yield function

    International Nuclear Information System (INIS)

    Inoue, T.; Imatani, S.

    1989-01-01

    In order to describe the material behavior under complicated loading conditions, inelastic constitutive equations accounting for the plasticity-creep interaction have been proposed by several researchers. However, these models are developed to predict the hardening and/or softening phenomena during the inelastic deformation processes, and two important features still remain to be considered; material anisotropy induced by the prior deformation history and inelastic flow or, in another word, directionality of the inelastic strain rate. This paper deals with a unified constitutive model capable of expressing both the deformation-induced anisotropy and the anisotropic flow. In the first part of the paper, an anisotropic yield function which can simulate both the Bauschinger effect and the cross effect is proposed. Then, the excess stress theory is applied to a viscoplastic constitutive relationship so as to describe the plasticity-creep interaction behavior. The experimental verification is carried out for SUS304 stainless steel at 650 degrees C in a biaxial stress state. Moreover, a generalized flow rule of the inelastic strain rate is also developed, by which the description of the ratcheting process can be improved

  13. Short time behaviour of density correlation functions

    NARCIS (Netherlands)

    Konijnendijk, H.H.U.

    1977-01-01

    In this thesis the dynamical behaviour of the atoms in a fluid or gas is studied with time dependent correlation functions as the density-density correlation function and the velocity autocorrelation function. Theoretically it is not possible to calculate these correlation functions exactly for the

  14. Site-specific functionalization of anisotropic nanoparticles: from colloidal atoms to colloidal molecules

    DEFF Research Database (Denmark)

    Li, Fan; Yoo, Won Cheol; Beernink, Molly B

    2009-01-01

    Multipodal nanoparticles (NPs) with controlled tethers are promising principal building blocks, useful for constructing more complex materials, much like atoms are connected into more complex molecules. Here we report colloidal sphere templating as a viable means to create tetrapodal NPs with site......-specific tethers. Amorphous sol-gel materials were molded by the template into shaped NPs that mimic tetravalent atoms but on the length scale of colloids. Synthetic methods were developed to modify only the tips of the tetrapods with a range of possible functional groups to generate anisotropic NPs capable...... are applicable to many compositions regardless of crystal structure, therefore lending themselves to the fabrication of complex assemblies, analogous to those found in the molecular regime....

  15. Fast reversible learning based on neurons functioning as anisotropic multiplex hubs

    Science.gov (United States)

    Vardi, Roni; Goldental, Amir; Sheinin, Anton; Sardi, Shira; Kanter, Ido

    2017-05-01

    Neural networks are composed of neurons and synapses, which are responsible for learning in a slow adaptive dynamical process. Here we experimentally show that neurons act like independent anisotropic multiplex hubs, which relay and mute incoming signals following their input directions. Theoretically, the observed information routing enriches the computational capabilities of neurons by allowing, for instance, equalization among different information routes in the network, as well as high-frequency transmission of complex time-dependent signals constructed via several parallel routes. In addition, this kind of hubs adaptively eliminate very noisy neurons from the dynamics of the network, preventing masking of information transmission. The timescales for these features are several seconds at most, as opposed to the imprint of information by the synaptic plasticity, a process which exceeds minutes. Results open the horizon to the understanding of fast and adaptive learning realities in higher cognitive brain's functionalities.

  16. Propagation of elastic waves in an anisotropic functionally graded hollow cylinder in vacuum.

    Science.gov (United States)

    Baron, Cécile

    2011-02-01

    As a non-destructive, non-invasive and non-ionizing evaluation technique for heterogeneous media, the ultrasonic method is of major interest in industrial applications but especially in biomedical fields. Among the unidirectionally heterogeneous media, the continuously varying media are a particular but widespread case in natural materials. The first studies on laterally varying media were carried out by geophysicists on the Ocean, the atmosphere or the Earth, but the teeth, the bone, the shells and the insects wings are also functionally graded media. Some of them can be modeled as planar structures but a lot of them are curved media and need to be modeled as cylinders instead of plates. The present paper investigates the influence of the tubular geometry of a waveguide on the propagation of elastic waves. In this paper, the studied structure is an anisotropic hollow cylinder with elastic properties (stiffness coefficients c(ij) and mass density ρ) functionally varying in the radial direction. An original method is proposed to find the eigenmodes of this waveguide without using a multilayered model for the cylinder. This method is based on the sextic Stroh's formalism and an analytical solution, the matricant, explicitly expressed under the Peano series expansion form. This approach has already been validated for the study of an anisotropic laterally-graded plate (Baron et al., 2007; Baron and Naili, 2010) [6,5]. The dispersion curves obtained for the radially-graded cylinder are compared to the dispersion curves of a corresponding laterally-graded plate to evaluate the influence of the curvature. Preliminary results are presented for a tube of bone in vacuum modelling the in vitro conditions of bone strength evaluation. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Determination of the Shortwave Anisotropic Function for Clear-Sky Desert Scenes from Meteosat Data.

    Science.gov (United States)

    Capderou, Michel; Kandel, Robert

    1995-06-01

    Determination of planetary albedo on the basis of satellite observations of reflected shortwave (SW) radiances requires taking into account the anisotropic (non-Lambertian) reflectance properties of the earth atmosphere system, depending both on the cloud cover and the nature of the underlying, surface. One approach frequently used has been to represent these properties by a limited set of normalized bidirectional reflectance functions (BDRF) for different scene types. The construction of the normalized BDRFs used to process the Earth Radiation Budget Experiment (ERBE) measurements was based mostly on data from the sun-synchronous Nimbus-7 mission, observing close to local noon. Consequently, because desert zones are fairly restricted in latitude, only a small range of solar zenith angles was sampled. Here the authors consider, for clear-sky desert areas, the improvements that can be made using data from the geostationary satellite Meteosat, which samples all solar zenith angles that occur.The authors define BDRF ratios (between two instants on the same day for the same area) that depend on viewing geometry (five angles for a geostationary satellite) and that together with infrared window radiance measurements allow to distinguish clear and cloudy desert scenes. Using three to five Meteosat images per day over the year 1985, and considering 42 areas in desert zones, the authors compute roughly 12 500 clear-sky BDRF ratios (representing 4.5 million B2 pixels), and sort these into bins in five-dimensional angular space. Values of the BDRF ratio are well defined and stable in each of these bins. Application of the Helmholtz reciprocity principle yields data for angular bins not directly observed. After spectral corrections and normalizations, the authors obtain a completely defined SW angular model (i.e., normalized anisotropic function and directional albedo) for clear-sky desert scenes. This model is quite different from that used in the ERBE analyses. The authors

  18. A new macroscopically anisotropic pressure dependent yield function for metal matrix composite based on strain gradient plasticity for the microstructure

    DEFF Research Database (Denmark)

    Azizi, Reza; Legarth, Brian Nyvang; Niordson, Christian Frithiof

    2013-01-01

    in addition to the elastic strain. Hill's classical anisotropic yield criterion is extended to cover the composite such that hydrostatic pressure dependency, Bauschinger stress and size-effects are considered. It is found that depending on the fiber volume fraction, the anisotropic yield surface......Metal matrix composites with long aligned elastic fibers are studied using an energetic rate independent strain gradient plasticity theory with an isotropic pressure independent yield function at the microscale. The material response is homogenized to obtain a conventional macroscopic model...... that exhibits anisotropic yield properties with a pressure dependence. At the microscale free energy includes both elastic strains and plastic strain gradients, and the theory demands higher order boundary conditions in terms of plastic strain or work conjugate higher order tractions. The mechanical response...

  19. Highly Anisotropic Conductors.

    Science.gov (United States)

    Wan, Jiayu; Song, Jianwei; Yang, Zhi; Kirsch, Dylan; Jia, Chao; Xu, Rui; Dai, Jiaqi; Zhu, Mingwei; Xu, Lisha; Chen, Chaoji; Wang, Yanbin; Wang, Yilin; Hitz, Emily; Lacey, Steven D; Li, Yongfeng; Yang, Bao; Hu, Liangbing

    2017-11-01

    Composite materials with ordered microstructures often lead to enhanced functionalities that a single material can hardly achieve. Many biomaterials with unusual microstructures can be found in nature; among them, many possess anisotropic and even directional physical and chemical properties. With inspiration from nature, artificial composite materials can be rationally designed to achieve this anisotropic behavior with desired properties. Here, a metallic wood with metal continuously filling the wood vessels is developed, which demonstrates excellent anisotropic electrical, thermal, and mechanical properties. The well-aligned metal rods are confined and separated by the wood vessels, which deliver directional electron transport parallel to the alignment direction. Thus, the novel metallic wood composite boasts an extraordinary anisotropic electrical conductivity (σ || /σ ⊥ ) in the order of 10 11 , and anisotropic thermal conductivity (κ || /κ ⊥ ) of 18. These values exceed the highest reported values in existing anisotropic composite materials. The anisotropic functionality of the metallic wood enables it to be used for thermal management applications, such as thermal insulation and thermal dissipation. The highly anisotropic metallic wood serves as an example for further anisotropic materials design; other composite materials with different biotemplates/hosts and fillers can achieve even higher anisotropic ratios, allowing them to be implemented in a variety of applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Green function as an integral superposition of Gaussian beams in inhomogeneous anisotropic layered structures in Cartesian coordinates

    Czech Academy of Sciences Publication Activity Database

    Červený, V.; Pšenčík, Ivan

    2016-01-01

    Roč. 26 (2016), s. 131-153 ISSN 2336-3827 R&D Projects: GA ČR(CZ) GA16-05237S Institutional support: RVO:67985530 Keywords : elastodynamic Green function * inhomogeneous anisotropic media * integral superposition of Gaussian beams Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  1. Using correlation functions as free decays

    DEFF Research Database (Denmark)

    Brincker, Rune; Amador, Sandro; Juul, Martin

    It is a general assumption in OMA that correlation functions are free decays. In multiple input OMA this assumption also implies that any column in the correlation function matrix is to be considered as multiple output free decays. This assumption is discussed in this paper together with issues...... concerning estimation and application of correlations functions in OMA....

  2. Energy Correlation Functions for Jet Substructure

    CERN Document Server

    Larkoski, Andrew J; Thaler, Jesse

    2013-01-01

    We show how generalized energy correlation functions can be used as a powerful probe of jet substructure. These correlation functions are based on the energies and pair-wise angles of particles within a jet, with (N+1)-point correlators sensitive to N-prong substructure. Unlike many previous jet substructure methods, these correlation functions do not require the explicit identification of subjet regions. In addition, the correlation functions are better probes of certain soft and collinear features that are masked by other methods. We present three Monte Carlo case studies to illustrate the utility of these observables: 2-point correlators for quark/gluon discrimination, 3-point correlators for boosted W/Z/Higgs boson identification, and 4-point correlators for boosted top quark identification. For quark/gluon discrimination, the 2-point correlator is particularly powerful, as can be understood via a next-to-leading logarithmic calculation. For boosted 2-prong resonances the benefit depends on the mass of th...

  3. Shear-induced pressure anisotropization and correlation with fluid vorticity in a low collisionality plasma

    Science.gov (United States)

    Del Sarto, Daniele; Pegoraro, Francesco

    2018-03-01

    The momentum anisotropy contained in a sheared flow may be transferred to a pressure anisotropy, both gyrotropic and non-gyrotropic, via the action of the fluid strain on the pressure tensor components. In particular, it is the traceless symmetric part of the strain tensor (i.e. the so-called shear tensor) that drives the mechanism, the fluid vorticity just inducing rotations of the pressure tensor components. This possible mechanism of anisotropy generation from an initially isotropic pressure is purely dynamical and can be described in a fluid framework where the full pressure tensor evolution is retained. Here, we interpret the correlation between vorticity and anisotropy, often observed in numerical simulations of solar wind turbulence, as due to the correlation between shear rate tensor and fluid vorticity. We then discuss some implications of this analysis for the onset of the Kelvin-Helmholtz instability in collisionless plasmas where a full pressure tensor evolution is allowed, and for the modelling of secondary reconnection in turbulence.

  4. Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications for 3D Isotropic Inversion

    Science.gov (United States)

    Löwer, Alexander; Junge, Andreas

    2017-05-01

    The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly's boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.

  5. Orientation-dependent proton double-quantum NMR build-up function for soft materials with anisotropic mobility.

    Science.gov (United States)

    Naumova, Anna; Tschierske, Carsten; Saalwächter, Kay

    In recent years, the analysis of proton double-quantum NMR build-up curves has become an important tool to quantify anisotropic mobility in different kinds of soft materials such as polymer networks or liquid crystals. In the former case, such data provides a measure of orientation-dependent residual (time-averaged) dipolar couplings arising from anisotropic segmental motions, informing about the length and the state of local stretching of the network chains. Previous studies of macroscopically ordered, i.e. stretched, networks were subject to the limitation that a detailed build-up curve analysis on the basis of a universal "Abragam-like" (A-l) build-up function valid for a proton multi-spin system was only possible for an isotropic orientation-averaged response. This situation is here remedied by introducing a generic orientation-dependent build-up function for an anisotropically mobile protonated molecular segment. We discuss an application to the modeling of data for a stretched network measured at different orientations with respect to the magnetic field, and present a validation by fitting data of different liquid-crystal molecules oriented in the magnetic field. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. From correlation functions to event shapes

    CERN Document Server

    Belitsky, A V; Korchemsky, G P; Sokatchev, E; Zhiboedov, A

    2014-01-01

    We present a new approach to computing event shape distributions or, more precisely, charge flow correlations in a generic conformal field theory (CFT). These infrared finite observables are familiar from collider physics studies and describe the angular distribution of global charges in outgoing radiation created from the vacuum by some source. The charge flow correlations can be expressed in terms of Wightman correlation functions in a certain limit. We explain how to compute these quantities starting from their Euclidean analogues by means of a non-trivial analytic continuation which, in the framework of CFT, can elegantly be performed in Mellin space. The relation between the charge flow correlations and Euclidean correlation functions can be reformulated directly in configuration space, bypassing the Mellin representation, as a certain Lorentzian double discontinuity of the correlation function integrated along the cuts. We illustrate the general formalism in N=4 SYM, making use of the well-known results...

  7. Bootstrapping correlation functions in N=4 SYM

    CERN Document Server

    Chicherin, Dmitry; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P; Sokatchev, Emery

    2016-01-01

    We describe a new approach to computing the chiral part of correlation functions of stress-tensor supermultiplets in N=4 SYM that relies on symmetries, analytic properties and the structure of the OPE only. We demonstrate that the correlation functions are given by a linear combination of chiral N=4 superconformal invariants accompanied by coefficient functions depending on the space-time coordinates only. We present the explicit construction of these invariants and show that the six-point correlation function is fixed in the Born approximation up to four constant coefficients by its symmetries. In addition, the known asymptotic structure of the correlation function in the light-like limit fixes unambiguously these coefficients up to an overall normalization. We demonstrate that the same approach can be applied to obtain a representation for the six-point NMHV amplitude that is free from any auxiliary gauge fixing parameters, does not involve spurious poles and manifests half of the dual superconformal symmet...

  8. Correlation of dosimetric parameters obtained with the analytical anisotropic algorithm and toxicity of chest chemoradiation in lung carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Cartier, Lysian; Auberdiac, Pierre; Khodri, Mustapha; Malkoun, Nadia [Departement de Radiotherapie, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); Chargari, Cyrus [Service d' Oncologie Radiotherapie, Hopital d' Instruction des Armees du Val-de-Grace, Paris (France); Thorin, Julie [Departement de Sante Publique, Unite de Statistique, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); Melis, Adrien [Departement d' Oncologie Medicale, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); Talabard, Jean-Noeel; Laroche, Guy de [Departement de Radiotherapie, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); Fournel, Pierre [Departement d' Oncologie Medicale, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); Tiffet, Olivier [Service de Chirurgie Thoracique, Centre Hospitalier Universitaire de Saint Etienne, Saint Etienne (France); Schmitt, Thierry [Departement de Radiotherapie, Institut de Cancerologie de la Loire, St-Priest en Jarez (France); and others

    2012-07-01

    The purpose of this study was to analyze and revisit toxicity related to chest chemoradiotherapy and to correlate these side effects with dosimetric parameters obtained using analytical anisotropic algorithm (AAA) in locally unresectable advanced lung cancer. We retrospectively analyzed data from 47 lung cancer patients between 2005 and 2008. All received conformal 3D radiotherapy using high-energy linear accelerator plus concomitant chemotherapy. All treatment planning data were transferred into Eclipse 8.05 (Varian Medical Systems, Palo Alto, CA) and dosimetric calculations were performed using AAA. Thirty-three patients (70.2%) developed acute pneumopathy after radiotherapy (grades 1 and 2). One patient (2.1%) presented with grade 3 pneumopathy. Thirty-one (66%) presented with grades 1-2 lung fibrosis, and 1 patient presented with grade 3 lung fibrosis. Thirty-four patients (72.3%) developed grade 1-2 acute oesophagic toxicity. Four patients (8.5%) presented with grades 3 and 4 dysphagia, necessitating prolonged parenteral nutrition. Median prescribed dose was 64 Gy (range 50-74) with conventional fractionation (2 Gy per fraction). Dose-volume constraints were respected with a median V20 of 23.5% (maximum 34%) and a median V30 of 17% (maximum 25%). The median dose delivered to healthy contralateral lung was 13.1 Gy (maximum 18.1 Gy). At univariate analysis, larger planning target volume and V20 were significantly associated with the probability of grade {>=}2 radiation-induced pneumopathy (p = 0.022 and p = 0.017, respectively). No relation between oesophagic toxicity and clinical/dosimetric parameters could be established. Using AAA, the present results confirm the predictive value of the V20 for lung toxicity as already demonstrated with the conventional pencil beam convolution approach.

  9. Noninvasive measurement of dynamic correlation functions

    CSIR Research Space (South Africa)

    Uhrich, P

    2017-08-01

    Full Text Available )spin systems and arbitrary equilibrium or nonequilibrium initial states. Different choices of the coupling operator give access to the real and imaginary parts of the dynamic correlation function. This protocol reduces disturbances due to the early...

  10. Depolarized light scattering from prolate anisotropic particles: The influence of the particle shape on the field autocorrelation function.

    Science.gov (United States)

    Passow, Christopher; ten Hagen, Borge; Löwen, Hartmut; Wagner, Joachim

    2015-07-28

    We provide a theoretical analysis for the intermediate scattering function typically measured in depolarized dynamic light scattering experiments. We calculate the field autocorrelation function g1(VH)(Q,t) in dependence on the wave vector Q and the time t explicitly in a vertical-horizontal scattering geometry for differently shaped solids of revolution. The shape of prolate cylinders, spherocylinders, spindles, and double cones with variable aspect ratio is expanded in rotational invariants flm(r). By Fourier transform of these expansion coefficients, a formal multipole expansion of the scattering function is obtained, which is used to calculate the weighting coefficients appearing in the depolarized scattering function. In addition to translational and rotational diffusion, especially the translational-rotational coupling of shape-anisotropic objects is considered. From the short-time behavior of the intermediate scattering function, the first cumulants Γ(Q) are calculated. In a depolarized scattering experiment, they deviate from the simple proportionality to Q(2). The coefficients flm(Q) strongly depend on the geometry and aspect ratio of the particles. The time dependence, in addition, is governed by the translational and rotational diffusion tensors, which are calculated by means of bead models for differently shaped particles in dependence on their aspect ratio. Therefore, our analysis shows how details of the particle shape--beyond their aspect ratio--can be determined by a precise scattering experiment. This is of high relevance in understanding smart materials which involve suspensions of anisotropic colloidal particles.

  11. Correlation functions of two-matrix models

    International Nuclear Information System (INIS)

    Bonora, L.; Xiong, C.S.

    1993-11-01

    We show how to calculate correlation functions of two matrix models without any approximation technique (except for genus expansion). In particular we do not use any continuum limit technique. This allows us to find many solutions which are invisible to the latter technique. To reach our goal we make full use of the integrable hierarchies and their reductions which were shown in previous papers to naturally appear in multi-matrix models. The second ingredient we use, even though to a lesser extent, are the W-constraints. In fact an explicit solution of the relevant hierarchy, satisfying the W-constraints (string equation), underlies the explicit calculation of the correlation functions. The correlation functions we compute lend themselves to a possible interpretation in terms of topological field theories. (orig.)

  12. Rapid, Efficient and Versatile Strategies for Functionally Sophisticated Polymers and Nanoparticles: Degradable Polyphosphoesters and Anisotropic Distribution of Chemical Functionalities

    Science.gov (United States)

    Zhang, Shiyi

    The overall emphasis of this dissertation research included two kinds of asymmetrically-functionalized nanoparticles with anisotropic distributions of chemical functionalities, three degradable polymers synthesized by organocatalyzed ring-opening polymerizations, and two polyphosphoester-based nanoparticle systems for various biomedical applications. Inspired by the many hierarchical assembly processes that afford complex materials in Nature, the construction of asymmetrically-functionalized nanoparticles with efficient surface chemistries and the directional organization of those building blocks into complex structures have attracted much attention. The first method generated a Janus-faced polymer nanoparticle that presented two orthogonally click-reactive surface chemistries, thiol and azido. This robust method involved reactive functional group transfer by templating against gold nanoparticle substrates. The second method produced nanoparticles with sandwich-like distribution of crown ether functionalities through a stepwise self-assembly process that utilized crown ether-ammonium supramolecular interactions to mediate inter-particle association and the local intra-particle phase separation of unlike hydrophobic polymers. With the goal to improve the efficiency of the production of degradable polymers with tunable chemical and physical properties, a new type of reactive polyphosphoester was synthesized bearing alkynyl groups by an organocatalyzed ring-opening polymerization, the chemical availability of the alkyne groups was investigated by employing "click" type azide-alkyne Huisgen cycloaddition and thiol-yne radical-mediated reactions. Based on this alkyne-functionalized polyphosphoester polymer and its two available "click" type reactions, two degradable nanoparticle systems were developed. To develop the first system, the well defined poly(ethylene oxide)-block-polyphosphester diblock copolymer was transformed into a multifunctional Paclitaxel drug

  13. Correlation functions of Coulomb branch operators

    Energy Technology Data Exchange (ETDEWEB)

    Gerchkovitz, Efrat [Weizmann Institute of Science,Rehovot 76100 (Israel); Gomis, Jaume [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Ishtiaque, Nafiz [Perimeter Institute for Theoretical Physics,Waterloo, ON N2L 2Y5 (Canada); Department of Physics, University of Waterloo,Waterloo, ON N2L 3G1 (Canada); Karasik, Avner; Komargodski, Zohar [Weizmann Institute of Science,Rehovot 76100 (Israel); Pufu, Silviu S. [Joseph Henry Laboratories, Princeton University,Princeton, NJ 08544 (United States)

    2017-01-24

    We consider the correlation functions of Coulomb branch operators in four-dimensional N=2 Superconformal Field Theories (SCFTs) involving exactly one anti-chiral operator. These extremal correlators are the “minimal' non-holomorphic local observables in the theory. We show that they can be expressed in terms of certain determinants of derivatives of the four-sphere partition function of an appropriate deformation of the SCFT. This relation between the extremal correlators and the deformed four-sphere partition function is non-trivial due to the presence of conformal anomalies, which lead to operator mixing on the sphere. Evaluating the deformed four-sphere partition function using supersymmetric localization, we compute the extremal correlators explicitly in many interesting examples. Additionally, the representation of the extremal correlators mentioned above leads to a system of integrable differential equations. We compare our exact results with previous perturbative computations and with the four-dimensional tt{sup ∗} equations. We also use our results to study some of the asymptotic properties of the perturbative series expansions we obtain in N=2 SQCD.

  14. From correlation functions to scattering amplitudes

    Science.gov (United States)

    Eden, Burkhard; Korchemsky, Gregory P.; Sokatchev, Emery

    2011-12-01

    We study the correlation functions of half-BPS protected operators in mathcal{N} = {4} super-Yang-Mills theory, in the limit where the positions of adjacent operators become light-like separated. We compute the loop corrections by means of Lagrangian insertions. The divergences resulting from the light-cone limit are regularized by changing the dimension of the integration measure over the insertion points. Switching from coordinates to dual momenta, we show that the logarithm of the correlation function is identical with twice the logarithm of the matching MHV gluon scattering amplitude. We present a number of examples of this new relation, at one and two loops.

  15. Non-Parametric Estimation of Correlation Functions

    DEFF Research Database (Denmark)

    Brincker, Rune; Rytter, Anders; Krenk, Steen

    In this paper three methods of non-parametric correlation function estimation are reviewed and evaluated: the direct method, estimation by the Fast Fourier Transform and finally estimation by the Random Decrement technique. The basic ideas of the techniques are reviewed, sources of bias are point...... out, and methods to prevent bias are presented. The techniques are evaluated by comparing their speed and accuracy on the simple case of estimating auto-correlation functions for the response of a single degree-of-freedom system loaded with white noise....

  16. Locality of correlation in density functional theory.

    Science.gov (United States)

    Burke, Kieron; Cancio, Antonio; Gould, Tim; Pittalis, Stefano

    2016-08-07

    The Hohenberg-Kohn density functional was long ago shown to reduce to the Thomas-Fermi (TF) approximation in the non-relativistic semiclassical (or large-Z) limit for all matter, i.e., the kinetic energy becomes local. Exchange also becomes local in this limit. Numerical data on the correlation energy of atoms support the conjecture that this is also true for correlation, but much less relevant to atoms. We illustrate how expansions around a large particle number are equivalent to local density approximations and their strong relevance to density functional approximations. Analyzing highly accurate atomic correlation energies, we show that EC → -AC ZlnZ + BCZ as Z → ∞, where Z is the atomic number, AC is known, and we estimate BC to be about 37 mhartree. The local density approximation yields AC exactly, but a very incorrect value for BC, showing that the local approximation is less relevant for the correlation alone. This limit is a benchmark for the non-empirical construction of density functional approximations. We conjecture that, beyond atoms, the leading correction to the local density approximation in the large-Z limit generally takes this form, but with BC a functional of the TF density for the system. The implications for the construction of approximate density functionals are discussed.

  17. Integral equations of hadronic correlation functions a functional- bootstrap approach

    CERN Document Server

    Manesis, E K

    1974-01-01

    A reasonable 'microscopic' foundation of the Feynman hadron-liquid analogy is offered, based on a class of models for hadron production. In an external field formalism, the equivalence (complementarity) of the exclusive and inclusive descriptions of hadronic reactions is specifically expressed in a functional-bootstrap form, and integral equations between inclusive and exclusive correlation functions are derived. Using the latest CERN-ISR data on the two-pion inclusive correlation function, and assuming rapidity translational invariance for the exclusive one, the simplest integral equation is solved in the 'central region' and an exclusive correlation length in rapidity predicted. An explanation is also offered for the unexpected similarity observed between pi /sup +/ pi /sup -/ and pi /sup -/ pi /sup -/ inclusive correlations. (31 refs).

  18. Anisotropic ray trace

    Science.gov (United States)

    Lam, Wai Sze Tiffany

    throughout the stressed optical component and its effects on the point spread function and modulation transfer function for different incident polarizations. The anisotropic extension of the P matrix also applies to other anisotropic optical components, such as anisotropic diffractive optical elements and anisotropic thin films. It systematically keeps track of polarization transformation in 3D global Cartesian coordinates of a ray propagating through series of anisotropic and isotropic optical components with arbitrary orientations. The polarization ray tracing calculus with this generalized P matrix provides a powerful tool for optical ray trace and allows comprehensive analysis of complex optical system. (Abstract shortened by UMI.).

  19. On soft limits of large-scale structure correlation functions

    International Nuclear Information System (INIS)

    Sagunski, Laura

    2016-08-01

    Large-scale structure surveys have the potential to become the leading probe for precision cosmology in the next decade. To extract valuable information on the cosmological evolution of the Universe from the observational data, it is of major importance to derive accurate theoretical predictions for the statistical large-scale structure observables, such as the power spectrum and the bispectrum of (dark) matter density perturbations. Hence, one of the greatest challenges of modern cosmology is to theoretically understand the non-linear dynamics of large-scale structure formation in the Universe from first principles. While analytic approaches to describe the large-scale structure formation are usually based on the framework of non-relativistic cosmological perturbation theory, we pursue another road in this thesis and develop methods to derive generic, non-perturbative statements about large-scale structure correlation functions. We study unequal- and equal-time correlation functions of density and velocity perturbations in the limit where one of their wavenumbers becomes small, that is, in the soft limit. In the soft limit, it is possible to link (N+1)-point and N-point correlation functions to non-perturbative 'consistency conditions'. These provide in turn a powerful tool to test fundamental aspects of the underlying theory at hand. In this work, we first rederive the (resummed) consistency conditions at unequal times by using the so-called eikonal approximation. The main appeal of the unequal-time consistency conditions is that they are solely based on symmetry arguments and thus are universal. Proceeding from this, we direct our attention to consistency conditions at equal times, which, on the other hand, depend on the interplay between soft and hard modes. We explore the existence and validity of equal-time consistency conditions within and beyond perturbation theory. For this purpose, we investigate the predictions for the soft limit of the

  20. Logarithmic two-point correlation functions from a z=2 Lifshitz model

    Energy Technology Data Exchange (ETDEWEB)

    Zingg, T. [Institute for Theoretical Physics and Spinoza Institute, Universiteit Utrecht,Leuvenlaan 4, 3584 CE Utrecht (Netherlands)

    2014-01-21

    The Einstein-Proca action is known to have asymptotically locally Lifshitz spacetimes as classical solutions. For dynamical exponent z=2, two-point correlation functions for fluctuations around such a geometry are derived analytically. It is found that the retarded correlators are stable in the sense that all quasinormal modes are situated in the lower half-plane of complex frequencies. Correlators in the longitudinal channel exhibit features that are reminiscent of a structure usually obtained in field theories that are logarithmic, i.e. contain an indecomposable but non-diagonalizable highest weight representation. This provides further evidence for conjecturing the model at hand as a candidate for a gravity dual of a logarithmic field theory with anisotropic scaling symmetry.

  1. Matrix elements from moments of correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Chia Cheng [SLAC National Accelerator Lab., Menlo Park, CA (United States); Bouchard, Chris [College of William and Mary, Williamsburg, VA (United States); Orginos, Konstantinos [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States); College of William and Mary, Williamsburg, VA (United States); Richards, David G. [Thomas Jefferson National Accelerator Facility (TJNAF), Newport News, VA (United States)

    2016-10-01

    Momentum-space derivatives of matrix elements can be related to their coordinate-space moments through the Fourier transform. We derive these expressions as a function of momentum transfer Q2 for asymptotic in/out states consisting of a single hadron. We calculate corrections to the finite volume moments by studying the spatial dependence of the lattice correlation functions. This method permits the computation of not only the values of matrix elements at momenta accessible on the lattice, but also the momentum-space derivatives, providing {\\it a priori} information about the Q2 dependence of form factors. As a specific application we use the method, at a single lattice spacing and with unphysically heavy quarks, to directly obtain the slope of the isovector form factor at various Q2, whence the isovector charge radius. The method has potential application in the calculation of any hadronic matrix element with momentum transfer, including those relevant to hadronic weak decays.

  2. Probing multimode squeezing with correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Christ, Andreas; Silberhorn, Christine [Applied Physics, University of Paderborn, Warburger Strasse 100, 33098 Paderborn (Germany); Laiho, Kaisa; Eckstein, Andreas; Cassemiro, Katiuscia N, E-mail: Andreas.Christ@uni-paderborn.de [Max Planck Institute for the Science of Light, Guenther-Scharowsky Strasse 1/Bau 24, 91058 Erlangen (Germany)

    2011-03-15

    Broadband multimode squeezers constitute a powerful quantum resource with promising potential for different applications in quantum information technologies such as information coding in quantum communication networks or quantum simulations in higher-dimensional systems. However, the characterization of a large array of squeezers that coexist in a single spatial mode is challenging. In this paper, we address this problem and propose a straightforward method for determining the number of squeezers and their respective squeezing strengths by using broadband multimode correlation function measurements. These measurements employ the large detection windows of the state of the art avalanche photodiodes in order to simultaneously probe the full Hilbert space of the generated state, which enables us to benchmark the squeezed states. Moreover, due to the structure of correlation functions, our measurements are not affected by losses. This is a significant advantage, since detectors with low efficiencies are sufficient. Our approach is less costly than tomographic methods relying on multimode homodyne detection, which is based on much more demanding measurement and analysis tools and appear to be impractical for large Hilbert spaces.

  3. Two-point correlation function for Dirichlet L-functions

    Science.gov (United States)

    Bogomolny, E.; Keating, J. P.

    2013-03-01

    The two-point correlation function for the zeros of Dirichlet L-functions at a height E on the critical line is calculated heuristically using a generalization of the Hardy-Littlewood conjecture for pairs of primes in arithmetic progression. The result matches the conjectured random-matrix form in the limit as E → ∞ and, importantly, includes finite-E corrections. These finite-E corrections differ from those in the case of the Riemann zeta-function, obtained in Bogomolny and Keating (1996 Phys. Rev. Lett. 77 1472), by certain finite products of primes which divide the modulus of the primitive character used to construct the L-function in question.

  4. Meson's correlation functions in a nuclear medium

    Directory of Open Access Journals (Sweden)

    Chanyong Park

    2016-09-01

    Full Text Available We investigate meson's spectrum, decay constant and form factor in a nuclear medium through holographic two- and three-point correlation functions. To describe a nuclear medium composed of protons and neutrons, we consider a hard wall model on the thermal charged AdS geometry and show that due to the isospin interaction with a nuclear medium, there exist splittings of the meson's spectrum, decay constant and form factor relying on the isospin charge. In addition, we show that the ρ-meson's form factor describing an interaction with pseudoscalar fluctuation decreases when the nuclear density increases, while the interaction with a longitudinal part of an axial vector meson increases.

  5. Structure–function correlations in tyrosinases

    Science.gov (United States)

    Kanteev, Margarita; Goldfeder, Mor; Fishman, Ayelet

    2015-01-01

    Tyrosinases are metalloenzymes belonging to the type-3 copper protein family which contain two copper ions in the active site. They are found in various prokaryotes as well as in plants, fungi, arthropods, and mammals and are responsible for pigmentation, wound healing, radiation protection, and primary immune response. Tyrosinases perform two sequential enzymatic reactions: hydroxylation of monophenols and oxidation of diphenols to form quinones which polymerize spontaneously to melanin. Two other members of this family are catechol oxidases, which are prevalent mainly in plants and perform only the second oxidation step, and hemocyanins, which lack enzymatic activity and are oxygen carriers. In the last decade, several structures of plant and bacterial tyrosinases were determined, some with substrates or inhibitors, highlighting features and residues which are important for copper uptake and catalysis. This review summarizes the updated information on structure–function correlations in tyrosinases along with comparison to other type-3 copper proteins. PMID:26104241

  6. FUNCTIONAL CORRELATION OF FP AND DC METHODS

    Directory of Open Access Journals (Sweden)

    Marin Kaluža

    2013-02-01

    Full Text Available Most of organizations today use information-communication technologies (ICT for building an information system (IS. IS is assembled of hardware, software, network resources, organizational and human resources. In IS development process, complexity is crucial for evaluating quantities of resources needed (time, people, money, equipment. Complexity of an IS can be evaluated and/or measured in different phases of development. There are many methods for measuring complexity, but mostly used and thoroughly described method is Function Point Analysis (FP. The opposite method, Database Complexity (DC, does not measure all the aspects of IS, but it could evaluate system complexity depending on the database complexity. DC method is intended to be used for measuring semantic complexity of the IS database, and can be shown by counting attributes A and foreign keys F. This paper describes a very high correlation between FP and DC methods, and defines a function which can in 95% of accuracy express FP values from measured DC values.

  7. A unified theoretical and experimental study of anisotropic hardening

    International Nuclear Information System (INIS)

    Boehler, J.P.; Raclin, J.

    1981-01-01

    The purpose of this work is to develop a consistent formulation of the constitutive relations regarding anisotropic hardening materials. Attention is focused on the appearance and the evolution of mechanical anisotropies during irreversible processes, such as plastic forming and inelastic deformation of structures. The representation theorems for anisotropic tensor functions constitute a theoretical basis, allowing to reduce arbitrariness and to obtain a unified formulation of anisotropic hardening. In this approach, a general three-dimensional constitutive law is developed for prestrained initially orthotropic materials. Introduction of the plastic behavior results in the general forms of both the flow-law and the yield criterion. The developed theory is then specialized for the case of plane stress and different modes of anisotropic hardening are analyzed. A new generalization of the Von Mises criterion is proposed, in considering a homogeneous form of order two in stress and employing the simplest combinations of the basic invariants entering the general form of the yield condition. The proposed criterion involves specific terms accounting for the initial anisotropy, the deformation induced anisotropy and correlative terms between initial and induced anisotropy. The effects of prestrainings result in both isotropic and anisotropic hardening. An adequate experimental program, consisting of uniaxial tensile tests on oriented specimens of prestrained sheet-metal, was performed, in order to determine the specific form and the evolution of the anisotropic failure criterion for soft-steel subjected to different irreversible prestrainings. (orig.)

  8. Anomalously large anisotropic magnetoresistance in a perovskite manganite.

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X Z; Matsui, Y; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E Ward; Zhang, Jiandi

    2009-08-25

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La(0.69)Ca(0.31)MnO(3), leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a "colossal" AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings.

  9. Anomalously large anisotropic magnetoresistance in a perovskite manganite

    Science.gov (United States)

    Li, Run-Wei; Wang, Huabing; Wang, Xuewen; Yu, X. Z.; Matsui, Y.; Cheng, Zhao-Hua; Shen, Bao-Gen; Plummer, E. Ward; Zhang, Jiandi

    2009-01-01

    The signature of correlated electron materials (CEMs) is the coupling between spin, charge, orbital and lattice resulting in exotic functionality. This complexity is directly responsible for their tunability. We demonstrate here that the broken symmetry, through cubic to orthorhombic distortion in the lattice structure in a prototype manganite single crystal, La0.69Ca0.31MnO3, leads to an anisotropic magneto-elastic response to an external field, and consequently to remarkable magneto-transport behavior. An anomalous anisotropic magnetoresistance (AMR) effect occurs close to the metal-insulator transition (MIT) in the system, showing a direct correlation with the anisotropic field-tuned MIT in the system and can be understood by means of a simple phenomenological model. A small crystalline anisotropy stimulates a “colossal” AMR near the MIT phase boundary of the system, thus revealing the intimate interplay between magneto- and electronic-crystalline couplings. PMID:19706504

  10. Search for Anisotropic Light Propagation as a Function of Laser Beam Alignment Relative to the Earth's Velocity Vector

    Directory of Open Access Journals (Sweden)

    Navia C. E.

    2007-01-01

    Full Text Available A laser diffraction experiment was conducted to study light propagation in air. The experiment is easy to reproduce and it is based on simple optical principles. Two optical sensors (segmented photo-diodes are used for measuring the position of diffracted light spots with a precision better than 0.1 μ m. The goal is to look for signals of anisotropic light propagation as function of the laser beam alignment to the Earth’s motion (solar barycenter motion obtained by COBE. Two raster search techniques have been used. First, a laser beam fixed in the laboratory frame scans in space due to Earth’s rotation. Second, a laser beam mounted on a turntable system scans actively in space by turning the table. The results obtained with both methods show that the course of light rays are affected by the motion of the Earth, and a predominant first order quantity with a Δ c/c = − β (1 + 2 a cos θ signature with ˉ a = − 0.393 ± 0.032 describes well the experimental results. This result differs in amount of 21% from the Special Relativity Theory prediction and that supplies the value of a = − 1 2 (isotropy.

  11. Material Induced Anisotropic Damage

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.; Hora, P.

    2012-01-01

    The anisotropy in damage can be driven by two different phenomena; anisotropic defor-mation state named Load Induced Anisotropic Damage (LIAD) and anisotropic (shape and/or distribution) second phase particles named Material Induced Anisotropic Damage (MIAD). Most anisotropic damage models are based

  12. Anisotropic universe with anisotropic sources

    Science.gov (United States)

    Aluri, Pavan K.; Panda, Sukanta; Sharma, Manabendra; Thakur, Snigdha

    2013-12-01

    We analyze the state space of a Bianchi-I universe with anisotropic sources. Here we consider an extended state space which includes null geodesics in this background. The evolution equations for all the state observables are derived. Dynamical systems approach is used to study the evolution of these equations. The asymptotic stable fixed points for all the evolution equations are found. We also check our analytic results with numerical analysis of these dynamical equations. The evolution of the state observables are studied both in cosmic time and using a dimensionless time variable. Then we repeat the same analysis with a more realistic scenario, adding the isotropic (dust like dark) matter and a cosmological constant (dark energy) to our anisotropic sources, to study their co-evolution. The universe now approaches a de Sitter space asymptotically dominated by the cosmological constant. The cosmic microwave background anisotropy maps due to shear are also generated in this scenario, assuming that the universe contains anisotropic matter along with the usual (dark) matter and vacuum (dark) energy since decoupling. We find that they contribute dominantly to the CMB quadrupole. We also constrain the current level of anisotropy and also search for any cosmic preferred axis present in the data. We use the Union 2 Supernovae data to this extent. An anisotropy axis close to the mirror symmetry axis seen in the cosmic microwave background data from Planck probe is found.

  13. Determination of Anisotropic Ion Velocity Distribution Function in Intrinsic Gas Plasma. Theory.

    Science.gov (United States)

    Mustafaev, A.; Grabovskiy, A.; Murillo, O.; Soukhomlinov, V.

    2018-02-01

    The first seven coefficients of the expansion of the energy and angular distribution functions in Legendre polynomials for Hg+ ions in Hg vapor plasma with the parameter E/P ≈ 400 V/(cm Torr) are measured for the first time using a planar one-sided probe. The analytic solution to the Boltzmann kinetic equation for ions in the plasma of their parent gas is obtained in the conditions when the resonant charge exchange is the predominant process, and ions acquire on their mean free path a velocity much higher than the characteristic velocity of thermal motion of atoms. The presence of an ambipolar field of an arbitrary strength is taken into account. It is shown that the ion velocity distribution function is determined by two parameters and differs substantially from the Maxwellian distribution. Comparison of the results of calculation of the drift velocity of He+ ions in He, Ar+ in Ar, and Hg+ in Hg with the available experimental data shows their conformity. The results of the calculation of the ion distribution function correctly describe the experimental data obtained from its measurement. Analysis of the result shows that in spite of the presence of the strong field, the ion velocity distribution functions are isotropic for ion velocities lower than the average thermal velocity of atoms. With increasing ion velocity, the distribution becomes more and more extended in the direction of the electric field.

  14. Generating function rationality for anisotropic vicious walk configurations on the directed square lattice

    Energy Technology Data Exchange (ETDEWEB)

    Bhatti, F M [Department of Mathematics, Lahore University of Management Sciences, Sector U, DHA, Lahore (Pakistan); Essam, J W [Department of Mathematics and Statistics, Royal Holloway College, University of London, Egham, Surrey TW20 0EX (United Kingdom)

    2006-06-15

    Guttmann and Voege introduced a model of f-friendly walkers and argued that a generating function for the number of n-walker configurations making a total of k left steps is a rational function with denominator (1 - x{sup n}){sup k+1}. They also found that for f = 0, 1 and 2 the sums of the numerator coefficients for watermelon configurations in which each of 3 walkers made w left steps were 3-dimensional Catalan numbers. Here it is shown that for n vicious walker (f = 0) watermelon configurations the m{sup th} coefficient of the numerator is the generalised Naryana number N(w, n, m) of Sulanke which is symmetric under interchange of w and n. The sums, C{sub w,n}, of these coefficients as a sequence indexed by w are n-dimensional Catalan numbers or w-dimensional Catalan numbers if indexed by n. The unexpected symmetry in n and w is seen to follow from duality. Inui and Katori introduced Fermi walk configurations which are non-crossing subsets of the directed random walks between opposite corners of a rectangular l x w grid. They related these to Bose configurations which biject to vicious walker watermelon configurations. Bose configurations include multisets. Here we consider generating functions for the numbers of configurations in which l and w are fixed. It is found that the maximum number of walks in a Fermi configuration is lw + 1 and the number of configurations corresponding to this number of walks is C{sub l,w}. This limit on the number of walks in a Fermi configuration leads to the rationality of the Bose generating function and by duality to the rationality of the generating function of Guttmann and Voege.

  15. Generating function rationality for anisotropic vicious walk configurations on the directed square lattice

    International Nuclear Information System (INIS)

    Bhatti, F M; Essam, J W

    2006-01-01

    Guttmann and Voege introduced a model of f-friendly walkers and argued that a generating function for the number of n-walker configurations making a total of k left steps is a rational function with denominator (1 - x n ) k+1 . They also found that for f = 0, 1 and 2 the sums of the numerator coefficients for watermelon configurations in which each of 3 walkers made w left steps were 3-dimensional Catalan numbers. Here it is shown that for n vicious walker (f = 0) watermelon configurations the m th coefficient of the numerator is the generalised Naryana number N(w, n, m) of Sulanke which is symmetric under interchange of w and n. The sums, C w,n , of these coefficients as a sequence indexed by w are n-dimensional Catalan numbers or w-dimensional Catalan numbers if indexed by n. The unexpected symmetry in n and w is seen to follow from duality. Inui and Katori introduced Fermi walk configurations which are non-crossing subsets of the directed random walks between opposite corners of a rectangular l x w grid. They related these to Bose configurations which biject to vicious walker watermelon configurations. Bose configurations include multisets. Here we consider generating functions for the numbers of configurations in which l and w are fixed. It is found that the maximum number of walks in a Fermi configuration is lw + 1 and the number of configurations corresponding to this number of walks is C l,w . This limit on the number of walks in a Fermi configuration leads to the rationality of the Bose generating function and by duality to the rationality of the generating function of Guttmann and Voege

  16. A study on the effective hydraulic conductivity of an anisotropic porous medium

    International Nuclear Information System (INIS)

    Seong, Kwan Jae

    2002-01-01

    Effective hydraulic conductivity of a statistically anisotropic heterogeneous medium is obtained for steady two-dimensional flows employing stochastic analysis. Flow equations are solved up to second order and the effective conductivity is obtained in a semi-analytic form depending only on the spatial correlation function and the anisotropy ratio of the hydraulic conductivity field, hence becoming a true intrinsic property independent of the flow field. Results are obtained using a statistically anisotropic Gaussian correlation function where the anisotropic is defined as the ratio of integral scales normal and parallel to the mean flow direction. Second order results indicate that the effective conductivity of an anisotropic medium is greater than that of an isotropic one when the anisotropy ratio is less than one and vice versa. It is also found that the effective conductivity has upper and lower bounds of the arithmetic and the harmonic mean conductivities

  17. Programmable and functional electrothermal bimorph actuators based on large-area anisotropic carbon nanotube paper

    Science.gov (United States)

    Li, Qingwei; Liu, Changhong; Fan, Shoushan

    2018-04-01

    Electro-active polymer (EAP) actuators, such as electronic, ionic and electrothermal (ET) actuators, have become an important branch of next-generation soft actuators in bionic robotics. However, most reported EAP actuators could realize only simple movements, being restricted by the small area of flexible electrodes and simple designs. We prepared large-area flexible electrodes of high anisotropy, made of oriented carbon nanotube (CNT) paper, and carried out artful graphic designs and processing on the electrodes to make functional ET bimorph actuators which can realize large bending deformations (over 220°, curvature > 1.5 cm-1) and bionic movements driven by electricity. The anisotropy of CNT paper benefits electrode designs and multiform actuations for complex actuators. Based on the large-area CNT paper, more interesting and functional actuators can be designed and prepared which will have practical applications in the fields of artificial muscles, complicated actuations, and soft and bionic robotics.

  18. Cosmological signatures of anisotropic spatial curvature

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Thiago S. [Departamento de Física, Universidade Estadual de Londrina, 86057-970, Londrina – PR (Brazil); Marugán, Guillermo A. Mena [Instituto de Estructura de la Materia, IEM-CSIC, Serrano 121, 28006, Madrid (Spain); Carneiro, Saulo, E-mail: tspereira@uel.br, E-mail: mena@iem.cfmac.csic.es, E-mail: saulo.carneiro@pq.cnpq.br [Instituto de Física, Universidade Federal da Bahia, 40210-340, Salvador – BA (Brazil)

    2015-07-01

    If one is willing to give up the cherished hypothesis of spatial isotropy, many interesting cosmological models can be developed beyond the simple anisotropically expanding scenarios. One interesting possibility is presented by shear-free models in which the anisotropy emerges at the level of the curvature of the homogeneous spatial sections, whereas the expansion is dictated by a single scale factor. We show that such models represent viable alternatives to describe the large-scale structure of the inflationary universe, leading to a kinematically equivalent Sachs-Wolfe effect. Through the definition of a complete set of spatial eigenfunctions we compute the two-point correlation function of scalar perturbations in these models. In addition, we show how such scenarios would modify the spectrum of the CMB assuming that the observations take place in a small patch of a universe with anisotropic curvature.

  19. Stable evaluation of Green's functions in cylindrically stratified regions with uniaxial anisotropic layers

    Energy Technology Data Exchange (ETDEWEB)

    Moon, H., E-mail: haksu.moon@gmail.com [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States); Donderici, B., E-mail: burkay.donderici@halliburton.com [Sensor Physics & Technology, Halliburton Energy Services, Houston, TX 77032 (United States); Teixeira, F.L., E-mail: teixeira@ece.osu.edu [ElectroScience Laboratory, The Ohio State University, Columbus, OH 43212 (United States)

    2016-11-15

    We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.

  20. Stable evaluation of Green's functions in cylindrically stratified regions with uniaxial anisotropic layers

    Science.gov (United States)

    Moon, H.; Donderici, B.; Teixeira, F. L.

    2016-11-01

    We present a robust algorithm for the computation of electromagnetic fields radiated by point sources (Hertzian dipoles) in cylindrically stratified media where each layer may exhibit material properties (permittivity, permeability, and conductivity) with uniaxial anisotropy. Analytical expressions are obtained based on the spectral representation of the tensor Green's function based on cylindrical Bessel and Hankel eigenfunctions, and extended for layered uniaxial media. Due to the poor scaling of these eigenfunctions for extreme arguments and/or orders, direct numerical evaluation of such expressions can produce numerical instability, i.e., underflow, overflow, and/or round-off errors under finite precision arithmetic. To circumvent these problems, we develop a numerically stable formulation through suitable rescaling of various expressions involved in the computational chain, to yield a robust algorithm for all parameter ranges. Numerical results are presented to illustrate the robustness of the formulation including cases of practical interest.

  1. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...... correlation to the curing time. The experiments show no correlation between the anisotropy and the curing time and a small strength difference between the two drilling directions. The literature shows variations on which drilling direction that is strongest. Based on a Monto Carlo simulation of the expected...

  2. A cumulant functional for static and dynamic correlation

    International Nuclear Information System (INIS)

    Hollett, Joshua W.; Hosseini, Hessam; Menzies, Cameron

    2016-01-01

    A functional for the cumulant energy is introduced. The functional is composed of a pair-correction and static and dynamic correlation energy components. The pair-correction and static correlation energies are functionals of the natural orbitals and the occupancy transferred between near-degenerate orbital pairs, rather than the orbital occupancies themselves. The dynamic correlation energy is a functional of the statically correlated on-top two-electron density. The on-top density functional used in this study is the well-known Colle-Salvetti functional. Using the cc-pVTZ basis set, the functional effectively models the bond dissociation of H 2 , LiH, and N 2 with equilibrium bond lengths and dissociation energies comparable to those provided by multireference second-order perturbation theory. The performance of the cumulant functional is less impressive for HF and F 2 , mainly due to an underestimation of the dynamic correlation energy by the Colle-Salvetti functional.

  3. A Coupled Crystal Plasticity and Anisotropic Yield Function Model to Identify the Anisotropic Plastic Properties and Friction Behavior of an AA 3003 Alloy

    Science.gov (United States)

    Bong, Hyuk Jong; Leem, Dohyun; Lee, Jinwoo; Ha, Jinjin; Lee, Myoung-Gyu

    2018-01-01

    A multi-scale simulation of the tip test, developed to determine the tribological characteristics of the back-extrusion process, was conducted on an AA 3003 alloy. A microstructure-level simulation, coupled with crystal plasticity finite element (CPFE) analysis, was utilized to characterize the macro-mechanical properties of the AA 3003. Owing to the limited size of the material provided, we performed CPFE analyses rather than multiple mechanical tests to determine the plastic anisotropy characteristics of the AA 3003 alloy. A three-dimensional finite element (FE) model of the tip test was developed using two different yield functions, namely the generalized von Mises yield function and Hill's (1948) yield function, with material parameters identified from the CPFE analyses. The results revealed the following: 1. The directionality observed during the tip test is governed by the plastic anisotropy, rather than the frictional conditions. 2. The plastic anisotropy results in different Coulomb friction values. Therefore, the anisotropy should be carefully addressed in the tip test.

  4. Peculiar motions of galaxy clusters: correlation function approach

    Science.gov (United States)

    Iqbal, Naseer; Masood, Tabasum; Hamid, Mubashir; Ahmad, Naveel; Maqbool, Bari

    2014-10-01

    The correlation function theory on the basis of prescribed boundary conditions provides a deeper understanding in studying the dynamical parameters of galaxy clusters. The approach approximates that the moderate dense systems discussed by a two point correlation function is helpful for describing the dynamical nature of galaxy clusters. The projected theory of two point correlation function for point mass and extended mass structures can be used an alternative tool in measuring the average peculiar motion and temperature profile of galaxy clusters.

  5. Anisotropic elliptic optical fibers

    Science.gov (United States)

    Kang, Soon Ahm

    1991-05-01

    The exact characteristic equation for an anisotropic elliptic optical fiber is obtained for odd and even hybrid modes in terms of infinite determinants utilizing Mathieu and modified Mathieu functions. A simplified characteristic equation is obtained by applying the weakly guiding approximation such that the difference in the refractive indices of the core and the cladding is small. The simplified characteristic equation is used to compute the normalized guide wavelength for an elliptical fiber. When the anisotropic parameter is equal to unity, the results are compared with the previous research and they are in close agreement. For a fixed value normalized cross-section area or major axis, the normalized guide wavelength lambda/lambda(sub 0) for an anisotropic elliptic fiber is small for the larger value of anisotropy. This condition indicates that more energy is carried inside of the fiber. However, the geometry and anisotropy of the fiber have a smaller effect when the normalized cross-section area is very small or very large.

  6. Synthesis and pH-dependent assembly of isotropic and anisotropic gold nanoparticles functionalized with hydroxyl-bearing amino acids

    Science.gov (United States)

    Swami, Anuradha; Mittal, Sherry; Chopra, Adity; Sharma, Rohit K.; Wangoo, Nishima

    2018-03-01

    In recent years, the synthesis of gold nanostructures of controllable shapes and dimensions has become a subject of intensive and interesting studies. Especially, anisotropic gold nanostructures such as nanoplates, nanoribbons, nanoprisms and nanorods have attracted much attention due to their striking optical properties and promising applications in electronics, photonics, sensing and biomedicine. Keeping this in mind, in the present report, an unprecedented, facile and one pot synthesis of isotropic (spherical) and anisotropic (triangular, pentagonal, hexagonal, rod shaped) gold nanomaterials via pH controlled shape modulation using hydroxyl moeity containing α-amino acids (Serine, Threonine, Tyrosine) as both reducing and capping agents is reported. The synthesized nanostructures have been further characterized by UV-Vis spectroscopy and transmission electron microscopy. It was deduced from these studies that pH played a key role in the anisotropic growth of gold nanostructures. These gold nanoparticles can be further used for applications in biosensing, plasmonics, and electrocatalysis and others involving surface enhanced raman scattering. This study is therefore, important from the point of view of using amino acids for the synthesis of gold nanoparticles of different shapes and sizes leading towards the development of inventive biosensors and biocompatible nanoconstructs.

  7. A Comuputerized DRBEM model for generalized magneto-thermo-visco-elastic stress waves in functionally graded anisotropic thin film/substrate structures

    Directory of Open Access Journals (Sweden)

    Mohamed Abdelsabour Fahmy

    Full Text Available A numerical computer model, based on the dual reciprocity boundary element method (DRBEM for studying the generalized magneto-thermo-visco-elastic stress waves in a rotating functionally graded anisotropic thin film/substrate structure under pulsed laser irradiation is established. An implicit-implicit staggered algorithm was proposed and implemented for use with the DRBEM to get the solution for the temperature, displacement components and thermal stress components through the structure thickness. A comparison of the results for different theories is presented in the presence and absence of rotation. Some numerical results that demonstrate the validity of the proposed method are also presented.

  8. On the application of correlation function matrices in OMA

    DEFF Research Database (Denmark)

    Brincker, Rune

    2017-01-01

    In this paper the theoretical solution for the correlation function matrix of the random response of a structural system is re-visited. It is shown that using the classical definition of the correlation functions, the row space is defined by the mode shapes of the system, whereas the column space...

  9. Holographic correlation functions in Critical Gravity

    Science.gov (United States)

    Anastasiou, Giorgos; Olea, Rodrigo

    2017-11-01

    We compute the holographic stress tensor and the logarithmic energy-momentum tensor of Einstein-Weyl gravity at the critical point. This computation is carried out performing a holographic expansion in a bulk action supplemented by the Gauss-Bonnet term with a fixed coupling. The renormalization scheme defined by the addition of this topological term has the remarkable feature that all Einstein modes are identically cancelled both from the action and its variation. Thus, what remains comes from a nonvanishing Bach tensor, which accounts for non-Einstein modes associated to logarithmic terms which appear in the expansion of the metric. In particular, we compute the holographic 1-point functions for a generic boundary geometric source.

  10. Correlations and functional connections in a population of grid cells

    OpenAIRE

    Dunn, Benjamin; Mørreaunet, Maria; Roudi, Yasser

    2014-01-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firi...

  11. TreeCorr: Two-point correlation functions

    Science.gov (United States)

    Jarvis, Mike

    2015-08-01

    TreeCorr efficiently computes two-point correlation functions. It can compute correlations of regular number counts, weak lensing shears, or scalar quantities such as convergence or CMB temperature fluctuations. Two-point correlations may be auto-correlations or cross-correlations, including any combination of shear, kappa, and counts. Two-point functions can be done with correct curved-sky calculation using RA, Dec coordinates, on a Euclidean tangent plane, or in 3D using RA, Dec and a distance. The front end is written in Python, which can be used as a Python module or as a standalone executable using configuration files; the actual computation of the correlation functions is done in C++ using ball trees (similar to kd trees), making the calculation extremely efficient, and when available, OpenMP is used to run in parallel on multi-core machines.

  12. Estimation of Correlation Functions by the Random Decrement Technique

    DEFF Research Database (Denmark)

    Brincker, Rune; Krenk, Steen; Jensen, Jacob Laigaard

    1991-01-01

    The Random Decrement (RDD) Technique is a versatile technique for characterization of random signals in the time domain. In this paper a short review of the theoretical basis is given, and the technique is illustrated by estimating auto-correlation functions and cross-correlation functions on modal...... responses simulated by two SDOF ARMA models loaded by the same band-limited white noise. The speed and the accuracy of the RDD technique is compared to the Fast Fourier Transform (FFT) technique. The RDD technique does not involve multiplications, but only additions. Therefore, the technique is very fast...... - in some cases up to 100 times faster than the FFT technique. Another important advantage is that if the RDD technique is implemented correctly, the correlation function estimates are unbiased. Comparison with exact solutions for the correlation functions shows that the RDD auto-correlation estimates...

  13. Understanding volatility correlation behavior with a magnitude cross-correlation function

    Science.gov (United States)

    Jun, Woo Cheol; Oh, Gabjin; Kim, Seunghwan

    2006-06-01

    We propose an approach for analyzing the basic relation between correlation properties of the original signal and its magnitude fluctuations by decomposing the original signal into its positive and negative fluctuation components. We use this relation to understand the following phenomenon found in many naturally occurring time series: the magnitude of the signal exhibits long-range correlation, whereas the original signal is short-range correlated. The applications of our approach to heart rate variability signals and high-frequency foreign exchange rates reveal that the difference between the correlation properties of the original signal and its magnitude fluctuations is induced by the time organization structure of the correlation function between the magnitude fluctuations of positive and negative components. We show that this correlation function can be described well by a stretched-exponential function and is related to the nonlinearity and the multifractal structure of the signals.

  14. Use of anisotropic modelling in electrical impedance tomography: description of method and preliminary assessment of utility in imaging brain function in the adult human head.

    Science.gov (United States)

    Abascal, Juan-Felipe P J; Arridge, Simon R; Atkinson, David; Horesh, Raya; Fabrizi, Lorenzo; De Lucia, Marzia; Horesh, Lior; Bayford, Richard H; Holder, David S

    2008-11-01

    Electrical Impedance Tomography (EIT) is an imaging method which enables a volume conductivity map of a subject to be produced from multiple impedance measurements. It has the potential to become a portable non-invasive imaging technique of particular use in imaging brain function. Accurate numerical forward models may be used to improve image reconstruction but, until now, have employed an assumption of isotropic tissue conductivity. This may be expected to introduce inaccuracy, as body tissues, especially those such as white matter and the skull in head imaging, are highly anisotropic. The purpose of this study was, for the first time, to develop a method for incorporating anisotropy in a forward numerical model for EIT of the head and assess the resulting improvement in image quality in the case of linear reconstruction of one example of the human head. A realistic Finite Element Model (FEM) of an adult human head with segments for the scalp, skull, CSF, and brain was produced from a structural MRI. Anisotropy of the brain was estimated from a diffusion tensor-MRI of the same subject and anisotropy of the skull was approximated from the structural information. A method for incorporation of anisotropy in the forward model and its use in image reconstruction was produced. The improvement in reconstructed image quality was assessed in computer simulation by producing forward data, and then linear reconstruction using a sensitivity matrix approach. The mean boundary data difference between anisotropic and isotropic forward models for a reference conductivity was 50%. Use of the correct anisotropic FEM in image reconstruction, as opposed to an isotropic one, corrected an error of 24 mm in imaging a 10% conductivity decrease located in the hippocampus, improved localisation for conductivity changes deep in the brain and due to epilepsy by 4-17 mm, and, overall, led to a substantial improvement on image quality. This suggests that incorporation of anisotropy in

  15. Gauge-invariant correlation functions in light-cone superspace

    Science.gov (United States)

    Ananth, Sudarshan; Kovacs, Stefano; arikh, Sarthak

    2012-05-01

    We initiate a study of correlation functions of gauge-invariant operators in {N} = 4 super Yang-Mills theory using the light-cone superspace formalism. Our primary aim is to develop efficient methods to compute perturbative corrections to correlation functions. This analysis also allows us to examine potential subtleties which may arise when calculating off-shell quantities in light-cone gauge. We comment on the intriguing possibility that the manifest {N} = 4 supersymmetry in this approach may allow for a compact description of entire multiplets and their correlation functions.

  16. Correlation functions of atomic nuclei in lattice QCD

    Energy Technology Data Exchange (ETDEWEB)

    Fodor, Zoltan [Department of Physics, Bergische Universitaet Wuppertal (Germany); Institute for Theoretical Physics, Eoetvoes University, Budapest (Hungary); Juelich Supercomputing Centre, Forschungszentrum Juelich (Germany); Guenther, Jana; Toth, Balint; Varnhorst, Lukas [Department of Physics, Bergische Universitaet Wuppertal (Germany)

    2012-07-01

    To determine the mass of the atomic nuclei in lattice QCD one has to calculate the correlation function of suitable combinations of quark field operators. However the calculation of this correlation functions requires to evaluate a large number of Wick contractions which scales as the factorial of the number of nucleons in the system. We explore the possibilities to reduce the computational effort for such evaluations by exploiting certain symmetries of the systems. We discuss a recursive approach which respects these symmetries and may allow the determination of the correlation function in significantly less computer time.

  17. Universality of correlation functions in random matrix models of QCD

    International Nuclear Information System (INIS)

    Jackson, A.D.; Sener, M.K.; Verbaarschot, J.J.M.

    1997-01-01

    We demonstrate the universality of the spectral correlation functions of a QCD inspired random matrix model that consists of a random part having the chiral structure of the QCD Dirac operator and a deterministic part which describes a schematic temperature dependence. We calculate the correlation functions analytically using the technique of Itzykson-Zuber integrals for arbitrary complex supermatrices. An alternative exact calculation for arbitrary matrix size is given for the special case of zero temperature, and we reproduce the well-known Laguerre kernel. At finite temperature, the microscopic limit of the correlation functions are calculated in the saddle-point approximation. The main result of this paper is that the microscopic universality of correlation functions is maintained even though unitary invariance is broken by the addition of a deterministic matrix to the ensemble. (orig.)

  18. Spectral Green’s function nodal method for multigroup SN problems with anisotropic scattering in slab-geometry non-multiplying media

    International Nuclear Information System (INIS)

    Menezes, Welton A.; Filho, Hermes Alves; Barros, Ricardo C.

    2014-01-01

    Highlights: • Fixed-source S N transport problems. • Energy multigroup model. • Anisotropic scattering. • Slab-geometry spectral nodal method. - Abstract: A generalization of the spectral Green’s function (SGF) method is developed for multigroup, fixed-source, slab-geometry discrete ordinates (S N ) problems with anisotropic scattering. The offered SGF method with the one-node block inversion (NBI) iterative scheme converges numerical solutions that are completely free from spatial truncation errors for multigroup, slab-geometry S N problems with scattering anisotropy of order L, provided L < N. As a coarse-mesh numerical method, the SGF method generates numerical solutions that generally do not give detailed information on the problem solution profile, as the grid points can be located considerably away from each other. Therefore, we describe in this paper a technique for the spatial reconstruction of the coarse-mesh solution generated by the multigroup SGF method. Numerical results are given to illustrate the method’s accuracy

  19. Magnetic relaxation in anisotropic magnets

    DEFF Research Database (Denmark)

    Lindgård, Per-Anker

    1971-01-01

    The line shape and the kinematic and thermodynamic slowing down of the critical and paramagnetic relaxation in axially anisotropic materials are discussed. Kinematic slowing down occurs only in the longitudinal relaxation function. The thermodynamic slowing down occurs in either the transverse...

  20. The asymptotic behaviour of the maximum likelihood function of Kriging approximations using the Gaussian correlation function

    CSIR Research Space (South Africa)

    Kok, S

    2012-07-01

    Full Text Available This study reports on the asymptotic behavior of the maximum likelihood function, encountered when constructing Kriging approximations using the Gaussian correlation function. Of specific interest is a maximum likelihood function that decreases...

  1. Efficient quantum algorithm for computing n-time correlation functions.

    Science.gov (United States)

    Pedernales, J S; Di Candia, R; Egusquiza, I L; Casanova, J; Solano, E

    2014-07-11

    We propose a method for computing n-time correlation functions of arbitrary spinorial, fermionic, and bosonic operators, consisting of an efficient quantum algorithm that encodes these correlations in an initially added ancillary qubit for probe and control tasks. For spinorial and fermionic systems, the reconstruction of arbitrary n-time correlation functions requires the measurement of two ancilla observables, while for bosonic variables time derivatives of the same observables are needed. Finally, we provide examples applicable to different quantum platforms in the frame of the linear response theory.

  2. Correlation of Thyroid Functions with Severity and Outcome of ...

    African Journals Online (AJOL)

    Background: During normal pregnancy, changes in thyroid function are well documented; however, information regarding thyroid function in preeclampsia is scanty. Aim: The present study was planned to study thyroid hormones in mild and severe preeclamptic women and normotensive women and correlate them with ...

  3. Gluon 2- and 3-Point Correlation Functions on the Lattice

    OpenAIRE

    Parrinello, Claudio

    1993-01-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex.

  4. 2- and 3-point gluon correlation functions on the lattice

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, C. (Dept. of Physics, Univ. of Edinburgh (United Kingdom))

    1994-04-01

    I present some preliminary results, obtained in collaboration with C. Bernard and A. Soni, for the lattice evaluation of 2- and 3-point gluon correlation functions in momentum space, with emphasis on the amputated 3-gluon vertex function. The final goal of this approach is the study of the running QCD coupling constant as defined from the amputated 3-gluon vertex. (orig.)

  5. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    The diamagnetic susceptibility as a function of temperature has also been obtained from transverse current correlation function as its long wave- length and static limit, which smoothly cross over from known quantum values to the classical limit with increase in temperature. Keywords. Fermi gas; diamagnetic susceptibility; ...

  6. IMPROVING CORRELATION FUNCTION FITTING WITH RIDGE REGRESSION: APPLICATION TO CROSS-CORRELATION RECONSTRUCTION

    Energy Technology Data Exchange (ETDEWEB)

    Matthews, Daniel J.; Newman, Jeffrey A., E-mail: djm70@pitt.edu, E-mail: janewman@pitt.edu [Department of Physics and Astronomy, University of Pittsburgh, 3941 O' Hara Street, Pittsburgh, PA 15260 (United States)

    2012-02-01

    Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30%-50% or more of the galaxies targeted). In this paper, we improve on the redshift distribution reconstruction methods from our previous work by incorporating full covariance information into our correlation function fits. Correlation function measurements are strongly covariant between angular or spatial bins, and accounting for this in fitting can yield substantial reduction in errors. However, frequently the covariance matrices used in these calculations are determined from a relatively small set (dozens rather than hundreds) of subsamples or mock catalogs, resulting in noisy covariance matrices whose inversion is ill-conditioned and numerically unstable. We present here a method of conditioning the covariance matrix known as ridge regression which results in a more well behaved inversion than other techniques common in large-scale structure studies. We demonstrate that ridge regression significantly improves the determination of correlation function parameters. We then apply these improved techniques to the problem of reconstructing redshift distributions. By incorporating full covariance information, applying ridge regression, and changing the weighting of fields in obtaining average correlation functions, we obtain reductions in the mean redshift distribution reconstruction error of as much as {approx}40% compared to previous methods. We provide a description of POWERFIT, an IDL code for performing power-law fits to correlation functions with ridge regression conditioning that we are making publicly available.

  7. Electron Correlation from the Adiabatic Connection for Multireference Wave Functions

    Science.gov (United States)

    Pernal, Katarzyna

    2018-01-01

    An adiabatic connection (AC) formula for the electron correlation energy is derived for a broad class of multireference wave functions. The AC expression recovers dynamic correlation energy and assures a balanced treatment of the correlation energy. Coupling the AC formalism with the extended random phase approximation allows one to find the correlation energy only from reference one- and two-electron reduced density matrices. If the generalized valence bond perfect pairing model is employed a simple closed-form expression for the approximate AC formula is obtained. This results in the overall M5 scaling of the computation cost making the method one of the most efficient multireference approaches accounting for dynamic electron correlation also for the strongly correlated systems.

  8. Current correlation functions of ideal Fermi gas at finite temperature

    Indian Academy of Sciences (India)

    wave vector k. ω and q are the transferred energy and momentum in scattering, respec- tively, and nk =1/(1+e´ ωk µµ kBT ) is the Fermi function with µ and kB as the chemical potential and the Boltzmann constant, respectively. On the other hand, using Green's function theory [14] the transverse current correlation function of ...

  9. Measurement of spatial correlation functions using image processing techniques

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1985-01-01

    A procedure for using digital image processing techniques to measure the spatial correlation functions of composite heterogeneous materials is presented. Methods for eliminating undesirable biases and warping in digitized photographs are discussed. Fourier transform methods and array processor techniques for calculating the spatial correlation functions are treated. By introducing a minimal set of lattice-commensurate triangles, a method of sorting and storing the values of three-point correlation functions in a compact one-dimensional array is developed. Examples are presented at each stage of the analysis using synthetic photographs of cross sections of a model random material (the penetrable sphere model) for which the analytical form of the spatial correlations functions is known. Although results depend somewhat on magnification and on relative volume fraction, it is found that photographs digitized with 512 x 512 pixels generally have sufficiently good statistics for most practical purposes. To illustrate the use of the correlation functions, bounds on conductivity for the penetrable sphere model are calculated with a general numerical scheme developed for treating the singular three-dimensional integrals which must be evaluated

  10. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory.

    Science.gov (United States)

    Foronda, F R; Lang, F; Möller, J S; Lancaster, T; Boothroyd, A T; Pratt, F L; Giblin, S R; Prabhakaran, D; Blundell, S J

    2015-01-09

    Although muon spin relaxation is commonly used to probe local magnetic order, spin freezing, and spin dynamics, we identify an experimental situation in which the measured response is dominated by an effect resulting from the muon-induced local distortion rather than the intrinsic behavior of the host compound. We demonstrate this effect in some quantum spin ice candidate materials Pr(2)B(2)O(7) (B=Sn, Zr, Hf), where we detect a static distribution of magnetic moments that appears to grow on cooling. Using density functional theory we show how this effect can be explained via a hyperfine enhancement arising from a splitting of the non-Kramers doublet ground states on Pr ions close to the muon, which itself causes a highly anisotropic distortion field. We provide a quantitative relationship between this effect and the measured temperature dependence of the muon relaxation and discuss the relevance of these observations to muon experiments in other magnetic materials.

  11. Long-time tails of correlation and memory functions

    Science.gov (United States)

    Sawada, Isao

    2002-11-01

    We review the generalized Langevin equation, which is a transformation and reformulation of equation of motion, from the two viewpoints: the projection operator method developed by Mori and the recurrence relations method developed by Lee. The fluctuating forces acting on the Bloch electrons’ current are clarified the strongly colored quantum fluctuations with the spontaneous interband transitions leading to a long-time tail of 1/ t for the envelope of the memory function. The velocity autocorrelation functions in the coupled harmonic oscillator on the Bethe lattice have a long-time tail of 1/t t. The oscillation and the form of decay found in correlation functions affect transport coefficients given by the integrated intensity up to infinity. We also study the force-force correlation functions often used as an approximation to the memory function.

  12. Correlation between HRCT and pulmonary functional tests in cystic fibrosis

    International Nuclear Information System (INIS)

    Mastellari, Paola; Biggi, Simona; Lombardi, Alfonsa; Zompatori, Maurizio; Grzincich, Gianluigi; Pisi, Giovanna; Spaggiari, Cinzia

    2005-01-01

    Purpose. To compare the HRCT score by Oikonottlou and air trapping in expiratory scans with pulmonary functional tests and evaluate which radiological criteria are more useful to predict clinical impairment. Materials and methods. From January to September 2003, pulmonary HRCT study was performed in 37 patients (23 males), aged between 7 and 41 years, with cystic fibrosis. In the same day of CT examination they also received a complete functional evaluation. HRCT studies were evaluated by three radiologists blinded to the clinical data and were correlated with the lung function tests. Results. We obtained a high correlation (p=0.01) for two of the HRCT signs: extent of mucus plugging and mosaic perfusion pattern and all function tests. Discussion. Previous studies have demonstrated good correlation between lung function tests, in particular with FEV1 and HRCT signs. Our study differed from previous ones in that we analysed the correlation between lung function tests and with both single and combined CT criteria. Conclusion. Our results suggest that a simplified HRCT store could be useful to evaluate patients with cystic fibrosis [it

  13. Correlation Functions in Open Quantum-Classical Systems

    Directory of Open Access Journals (Sweden)

    Chang-Yu Hsieh

    2013-12-01

    Full Text Available Quantum time correlation functions are often the principal objects of interest in experimental investigations of the dynamics of quantum systems. For instance, transport properties, such as diffusion and reaction rate coefficients, can be obtained by integrating these functions. The evaluation of such correlation functions entails sampling from quantum equilibrium density operators and quantum time evolution of operators. For condensed phase and complex systems, where quantum dynamics is difficult to carry out, approximations must often be made to compute these functions. We present a general scheme for the computation of correlation functions, which preserves the full quantum equilibrium structure of the system and approximates the time evolution with quantum-classical Liouville dynamics. Several aspects of the scheme are discussed, including a practical and general approach to sample the quantum equilibrium density, the properties of the quantum-classical Liouville equation in the context of correlation function computations, simulation schemes for the approximate dynamics and their interpretation and connections to other approximate quantum dynamical methods.

  14. Correlation Function Analysis of Fiber Networks: Implications for Thermal Conductivity

    Science.gov (United States)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    The heat transport in highly porous fiber structures is investigated. The fibers are supposed to be thin, but long, so that the number of the inter-fiber connections along each fiber is large. We show that the effective conductivity of such structures can be found from the correlation length of the two-point correlation function of the local conductivities. Estimation of the parameters, determining the conductivity, from the 2D images of the structures is analyzed.

  15. Dynamic polarization in paramagnetic solids and microscopic correlation functions

    International Nuclear Information System (INIS)

    Boucher, Jean-Paul

    1972-01-01

    The different effects of Dynamic Nuclear Polarization in paramagnetic solids are described by means of a single thermodynamic formalism. In the case of large exchange interactions, the Overhauser effect correlated with nuclear relaxation time measurements can provide a way of studying correlation functions between electronic spins. This method is used to study the low-frequency behaviour of the microscopic spectral density which should diverge as ω → 0, in the case of a linear exchange chain. (author) [fr

  16. N=4 superconformal Ward identities for correlation functions

    Directory of Open Access Journals (Sweden)

    A.V. Belitsky

    2016-03-01

    Full Text Available In this paper we study the four-point correlation function of the energy–momentum supermultiplet in theories with N=4 superconformal symmetry in four dimensions. We present a compact form of all component correlators as an invariant of a particular abelian subalgebra of the N=4 superconformal algebra. This invariant is unique up to a single function of the conformal cross-ratios which is fixed by comparison with the correlation function of the lowest half-BPS scalar operators. Our analysis is independent of the dynamics of a specific theory, in particular it is valid in N=4 super Yang–Mills theory for any value of the coupling constant. We discuss in great detail a subclass of component correlators, which is a crucial ingredient for the recent study of charge-flow correlations in conformal field theories. We compute the latter explicitly and elucidate the origin of the interesting relations among different types of flow correlations previously observed in arXiv:1309.1424.

  17. Correlation function of null polygonal Wilson loops with local operators

    OpenAIRE

    Alday, L. F.; Buchbinder, E. I.; Tseytlin, A. A.

    2011-01-01

    We consider the correlator of a light-like polygonal Wilson loop with n cusps with a local operator (like the dilaton or the chiral primary scalar) in planar N =4 super Yang-Mills theory. As a consequence of conformal symmetry, the main part of such correlator is a function F of 3n-11 conformal ratios. The first non-trivial case is n=4 when F depends on just one conformal ratio \\zeta. This makes the corresponding correlator one of the simplest non-trivial observables that one would like to c...

  18. Functional correlation approach to operational risk in banking organizations

    Science.gov (United States)

    Kühn, Reimer; Neu, Peter

    2003-05-01

    A Value-at-Risk-based model is proposed to compute the adequate equity capital necessary to cover potential losses due to operational risks, such as human and system process failures, in banking organizations. Exploring the analogy to a lattice gas model from physics, correlations between sequential failures are modeled by as functionally defined, heterogeneous couplings between mutually supportive processes. In contrast to traditional risk models for market and credit risk, where correlations are described as equal-time-correlations by a covariance matrix, the dynamics of the model shows collective phenomena such as bursts and avalanches of process failures.

  19. Improving Correlation Function Fitting with Ridge Regression: Application to Cross-Correlation Reconstruction

    OpenAIRE

    Matthews, Daniel J.; Newman, Jeffrey A.

    2011-01-01

    Cross-correlation techniques provide a promising avenue for calibrating photometric redshifts and determining redshift distributions using spectroscopy which is systematically incomplete (e.g., current deep spectroscopic surveys fail to obtain secure redshifts for 30-50% or more of the galaxies targeted). In this paper we improve on the redshift distribution reconstruction methods presented in Matthews & Newman (2010) by incorporating full covariance information into our correlation function ...

  20. Neutron depolarization in ferromagnets in terms of correlation functions

    International Nuclear Information System (INIS)

    Valk, H.J.L. van der; Rekveldt, M.T.

    1982-01-01

    The change of the polarization vector of monochromatic neutron beam after transmitting a ferromagnet can be described by a depolarization matrix. The contributions of different domain structure parameters to the depolarization can be obtained by considering neutron trajectories either passing a number of domains or passing a magnetization distribution described in terms of correlation functions. Both approaches are compared with each other and it is found that they deliver about the same results for ferromagnets composed by small domains. The method of analysing depolarization measurements in terms of domain structure parameters based on correlation functions is useful for ferromagnets close to magnetic saturation. (orig.)

  1. Correlation functions of the spin chains. Algebraic Bethe Ansatz approach

    International Nuclear Information System (INIS)

    Kitanine, N.

    2007-09-01

    Spin chains are the basic elements of integrable quantum models. These models have direct applications in condense matter theory, in statistical physics, in quantum optics, in field theory and even in string theory but they are also important because they enable us to solve, in an exact manner, non-perturbative phenomena that otherwise would stay unresolved. The method described in this work is based on the algebraic Bethe Ansatz. It is shown how this method can be used for the computation of null temperature correlation functions of the Heisenberg 1/2 spin chain. The important point of this approach is the solution of the inverse quantum problem given by the XXZ spin chain. This solution as well as a simple formulae for the scalar product of the Bethe states, have enabled us to get the most basic correlation functions under the form of multiple integrals. The formalism of multiple integrals open the way for asymptotic analysis for a few physical quantities like the probability of vacuum formation. It is worth noticing that this formalism can give exact results for two-point functions that are the most important correlation functions for applications. A relationship has been discovered between these multiple integrals and the sum of the form factors. The results have been extended to dynamical correlation functions. (A.C.)

  2. Correlation between thoracolumbar curvatures and respiratory function in older adults

    Directory of Open Access Journals (Sweden)

    Rahman NNAA

    2017-03-01

    Full Text Available Nor Najwatul Akmal Ab Rahman,1 Devinder Kaur Ajit Singh,1 Raymond Lee2 1Physiotherapy Programme, School of Rehabilitation Sciences, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia; 2School of Applied Sciences, London South Bank University, London, UK Abstract: Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation age of 66.63 (5.16 years participated in this cross-sectional study. The results showed that mean (standard deviation thoracic curvature angle and lumbar curvature angles were -46.30° (14.66° and 14.10° (10.58°, respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r=-0.23, P<0.05; forced vital capacity: r=-0.32, P<0.05, quiet expiration intercostal thickness (r=-0.22, P<0.05 and deep expiration diaphragm muscle thickness (r=-0.21, P<0.05. The lumbar curvature angle had a significant negative correlation with respiratory muscle strength (r=-0.29, P<0.05 and diaphragm muscle thickness at deep inspiration (r=-0.22, P<0.05. However, respiratory rate

  3. [Structure-function correlation in early diagnosis of glaucoma progression].

    Science.gov (United States)

    Dascălu, Ana-Maria; Alexandrescu, Cristina; Popa-Cherecheanu, Alina; Stana, Daniela; Panca, Aida; Pascu, Ruxandra; Voinea, Liliana

    2011-01-01

    The study investigates the correlations between structure and function in early detection of glaucoma progression. A prospective study was carried on 204 patients diagnosed with POAG and a follow-up period of 4 years. All the patients underwent complex ophthalmological examination, C/D ratio, Disk Damage Likelyhood Scale (DDLS), automated perimetry and Heidelberg retina tomography The relations between structure and function were investigated for all patients, but also according to clinical stage of glaucomatous damage. Structural progression was more frequently associated with perimetric progression for patients with moderate advanced glaucoma. For patients with preperimetric glaucoma and early glaucoma, the progression was present more often for structural test (19,04% and 29,3%), while perimetric progression was less frequent objectivated and weak correlated with structural progression (16,66%). For the 15 cases diagosed with both structural and functional progression, the locations of the structural lesion and functional defect were better correlated in cases involving the poles of the optic disc. Structure-function relation depends on clinical stage of glaucoma and the location of the glaucomatous defects. In early stages, structural investigations can detect progression before perimetry, while in advanced stages, the functional tests are more useful for early detection of progression.

  4. Correlation between thoracolumbar curvatures and respiratory function in older adults.

    Science.gov (United States)

    Rahman, Nor Najwatul Akmal Ab; Singh, Devinder Kaur Ajit; Lee, Raymond

    2017-01-01

    Aging is associated with alterations in thoracolumbar curvatures and respiratory function. Research information regarding the correlation between thoracolumbar curvatures and a comprehensive examination of respiratory function parameters in older adults is limited. The aim of the present study was to examine the correlation between thoracolumbar curvatures and respiratory function in community-dwelling older adults. Thoracolumbar curvatures (thoracic and lumbar) were measured using a motion tracker. Respiratory function parameters such as lung function, respiratory rate, respiratory muscle strength and respiratory muscle thickness (diaphragm and intercostal) were measured using a spirometer, triaxial accelerometer, respiratory pressure meter and ultrasound imaging, respectively. Sixty-eight community-dwelling older males and females from Kuala Lumpur, Malaysia, with mean (standard deviation) age of 66.63 (5.16) years participated in this cross-sectional study. The results showed that mean (standard deviation) thoracic curvature angle and lumbar curvature angles were -46.30° (14.66°) and 14.10° (10.58°), respectively. There was a significant negative correlation between thoracic curvature angle and lung function (forced expiratory volume in 1 second: r =-0.23, P <0.05; forced vital capacity: r =-0.32, P <0.05), quiet expiration intercostal thickness ( r =-0.22, P <0.05) and deep expiration diaphragm muscle thickness ( r =-0.21, P <0.05). The lumbar curvature angle had a significant negative correlation with respiratory muscle strength ( r =-0.29, P <0.05) and diaphragm muscle thickness at deep inspiration ( r =-0.22, P <0.05). However, respiratory rate was correlated neither with thoracic nor with lumbar curvatures. The findings of this study suggest that increase in both thoracic and lumbar curvatures is correlated with decrease in respiratory muscle strength, respiratory muscle thickness and some parameters of lung function. Clinically, both thoracic and

  5. Upper Limb Assessment in Tetraplegia: Clinical, Functional and Kinematic Correlations

    Science.gov (United States)

    Cacho, Enio Walker Azevedo; de Oliveira, Roberta; Ortolan, Rodrigo L.; Varoto, Renato; Cliquet, Alberto

    2011-01-01

    The aim of this study was to correlate clinical and functional evaluations with kinematic variables of upper limp reach-to-grasp movement in patients with tetraplegia. Twenty chronic patients were selected to perform reach-to-grasp kinematic assessment using a target placed at a distance equal to the arm's length. Kinematic variables (hand peak…

  6. The pair correlation function of spatial Hawkes processes

    DEFF Research Database (Denmark)

    Møller, Jesper; Torrisi, Giovanni Luca

    2007-01-01

    Spatial Hawkes processes can be considered as spatial versions of classical Hawkes processes. We derive the pair correlation function of stationary spatial Hawkes processes and discuss the connection to the Bartlett spectrum and other summary statistics. Particularly, results for Gaussian fertility...... rates and the extension to spatial Hawkes processes with random fertility rates are discussed....

  7. Statistics of baryon correlation functions in lattice QCD

    Science.gov (United States)

    Wagman, Michael L.; Savage, Martin J.; Nplqcd Collaboration

    2017-12-01

    A systematic analysis of the structure of single-baryon correlation functions calculated with lattice QCD is performed, with a particular focus on characterizing the structure of the noise associated with quantum fluctuations. The signal-to-noise problem in these correlation functions is shown, as long suspected, to result from a sign problem. The log-magnitude and complex phase are found to be approximately described by normal and wrapped normal distributions respectively. Properties of circular statistics are used to understand the emergence of a large time noise region where standard energy measurements are unreliable. Power-law tails in the distribution of baryon correlation functions, associated with stable distributions and "Lévy flights," are found to play a central role in their time evolution. A new method of analyzing correlation functions is considered for which the signal-to-noise ratio of energy measurements is constant, rather than exponentially degrading, with increasing source-sink separation time. This new method includes an additional systematic uncertainty that can be removed by performing an extrapolation, and the signal-to-noise problem reemerges in the statistics of this extrapolation. It is demonstrated that this new method allows accurate results for the nucleon mass to be extracted from the large-time noise region inaccessible to standard methods. The observations presented here are expected to apply to quantum Monte Carlo calculations more generally. Similar methods to those introduced here may lead to practical improvements in analysis of noisier systems.

  8. Equilibrium time correlation functions in the low density limit

    NARCIS (Netherlands)

    Beijeren, H. van; Lanford, O.E.; Lebowitz, J.L.; Spohn, H.

    1980-01-01

    We consider a system of hard spheres in thermal equilibrium. Using Lanford's result about the convergence of the solutions of the BBGKY hierarchy to the solutions of the Boltzmann hierarchy, we show that in the low-density limit (Boltzmann-Grad limit): (i) the total time correlation function is

  9. A two-point correlation function for Galactic halo stars

    NARCIS (Netherlands)

    Cooper, A. P.; Cole, S.; Frenk, C. S.; Helmi, A.

    2011-01-01

    We describe a correlation function statistic that quantifies the amount of spatial and kinematic substructure in the stellar halo. We test this statistic using model stellar halo realizations constructed from the Aquarius suite of six high-resolution cosmological N-body simulations, in combination

  10. Ignoring Functionality as a Correlate of the Underutilization of ...

    African Journals Online (AJOL)

    Ignoring Functionality as a Correlate of the Underutilization of Computer and Information Technology in Rwandan Higher Education Institutions. ... Data were collected on the institutions' expenditure on components of the TCO and the findings contrasted with documented experiences from CIT-savvy settings, to establish ...

  11. A Correlation of Symptomatology with Lung Function in Patients with ...

    African Journals Online (AJOL)

    2017-06-28

    Jun 28, 2017 ... How to cite this article: Ajiya A, Salisu AD, Nwaorgu O. A correlation of symptomatology with lung function in patients with allergic rhinosinusitis. Niger J Clin Pract 2017;20:647-51. Access this article online. Quick Response Code: Website: www.njcponline.com. DOI: 10.4103/1119-3077.187321. PMID: XXX.

  12. All genus correlation functions for the hermitian 1-matrix model

    OpenAIRE

    Eynard, B.

    2004-01-01

    We rewrite the loop equations of the hermitian matrix model, in a way which allows to compute all the correlation functions, to all orders in the topological $1/N^2$ expansion, as residues on an hyperelliptical curve. Those residues, can be represented diagrammaticaly as Feynmann graphs of a cubic interaction field theory on the curve.

  13. Correlation functions formed by a femtosecond pulse interferometer

    NARCIS (Netherlands)

    Cui, M.; Bhattacharya, N.; Urbach, H.P.; Van den berg, S.A.

    2008-01-01

    We experimentally demonstrate that a stabilized femtosecond frequency comb can be applied as a tool for distance measurement. The scheme is based on optical interference between individual pulses in a Michelson type interferometer. The cross-correlation functions between individual pulses with a

  14. Correlations and functional connections in a population of grid cells.

    Science.gov (United States)

    Dunn, Benjamin; Mørreaunet, Maria; Roudi, Yasser

    2015-02-01

    We study the statistics of spike trains of simultaneously recorded grid cells in freely behaving rats. We evaluate pairwise correlations between these cells and, using a maximum entropy kinetic pairwise model (kinetic Ising model), study their functional connectivity. Even when we account for the covariations in firing rates due to overlapping fields, both the pairwise correlations and functional connections decay as a function of the shortest distance between the vertices of the spatial firing pattern of pairs of grid cells, i.e. their phase difference. They take positive values between cells with nearby phases and approach zero or negative values for larger phase differences. We find similar results also when, in addition to correlations due to overlapping fields, we account for correlations due to theta oscillations and head directional inputs. The inferred connections between neurons in the same module and those from different modules can be both negative and positive, with a mean close to zero, but with the strongest inferred connections found between cells of the same module. Taken together, our results suggest that grid cells in the same module do indeed form a local network of interconnected neurons with a functional connectivity that supports a role for attractor dynamics in the generation of grid pattern.

  15. A local dynamic correlation function from inelastic neutron scattering

    International Nuclear Information System (INIS)

    McQueeney, R.J.

    1997-01-01

    Information about local and dynamic atomic correlations can be obtained from inelastic neutron scattering measurements by Fourier transform of the Q-dependent intensity oscillations at a particular frequency. A local dynamic structure function, S(r,ω), is defined from the dynamic scattering function, S(Q,ω), such that the elastic and frequency-integrated limits correspond to the average and instantaneous pair-distribution functions, respectively. As an example, S(r,ω) is calculated for polycrystalline aluminum in a model where atomic motions are entirely due to harmonic phonons

  16. Correlation between hypertension and cognitive function in elderly

    Science.gov (United States)

    Fitri, F. I.; Rambe, A. S.

    2018-03-01

    Hypertension and cognitive impairment are common disorders among elderly adults, and their prevalences tend to rise as the population ages. This study aimed to determine the correlation between hypertension and cognitive function in elderly. It was a cross-sectional study involving 62 elderly subjects. All subjects underwent physical and neurologic examination and Montreal Cognitive Assessment-Indonesian Version (MoCA-INA) to assess cognitive function. This study included 62 subjects consisted of 26 males (41.9%) and 36 females (58.1%). There were 24 subjects (38.2%) with hypertension and 38 (61.3%) normal elderly subjects. The mean age was 65.71±4.49 years old. There were no significant differences in demographic characteristics, total MoCA-INA scores, and scores based on cognitive domains between two groups, except for visuospatial and executive function (p=0.026). There was a significant correlation between hypertension and visuospatial and executive function (r=0.301, p=0.017). Hypertension is correlated with cognitive impairment mainly on visuospatial and executive function in elderly.

  17. Nutritional, functional and psychosocial correlates of disability among older adults.

    Science.gov (United States)

    Johnson, C S J; Mahon, A; McLeod, W

    2006-01-01

    The purpose of the present study was to examine the nutritional, functional and psychosocial correlates of disability among 54 older adults aged 65 years of age or older. Using validated questionnaires and tests, nutritional risk (Mini-Nutritional Assessment), functional capacity (mobility, balance, endurance, grip strength and lower extremity strength), the psychosocial factors (life satisfaction, depression, and social support) and level of disability of the participants were examined. The study showed that functional mobility was the strongest correlate of disability, even after controlling for age, gender and residential living status (pnutrition risk had marginal significance as being related to disability. The results of the present study have implications for the development of evidence-based health promotion interventions for older adults.

  18. Functional correlates of detailed body composition in healthy elderly subjects.

    Science.gov (United States)

    Geisler, Corinna; Schweitzer, Lisa; Müller, Manfred James

    2018-01-01

    Methods of body composition analysis are now widely used to characterize health status, i.e., nutritional status, metabolic rates, and cardiometabolic risk factors. However, the functional correlates of individual body components have not been systematically analyzed. In this study, we have used a two-compartment model, which was assessed by air displacement plethysmography. Detailed body composition was measured by whole body magnetic resonance imaging in a healthy population of 40 Caucasians, aged 65-81 yr (20 men; body mass index range: 18.6-37.2 kg/m 2 ). Physical, metabolic, as well as endocrine functions included pulmonary function, handgrip strength, gait speed, sit-to-stand test, physical activity, blood pressure, body temperature, resting energy expenditure (REE), liver and kidney functions (glomerular filtration rate), insulin sensitivity [homeostasis model assessment (HOMA)], plasma lipids, plasma leptin, testosterone, dehydroepiandrosterone, insulin-like growth factor I levels, thyroid status, vitamins, and inflammation. Individual body compartments were intercorrelated, e.g., skeletal muscle mass (SM) correlated with visceral adipose tissue ( r = 0.53) and kidneys ( r = 0.62). For the functional correlates, SM ( r = 0.58) and liver volume ( r = 0.63) were associated with REE, SM correlated with handgrip strength ( r = 0.57), and kidneys with glomerular filtration rate ( r = 0.57). While visceral adipose tissue correlated with HOMA ( r = 0.59), subcutaneous adipose tissue was related to plasma leptin levels ( r = 0.84). The subcutaneous adipose tissue-to-leptin relationship was moderated by inflammation increasing the explained variance of leptin levels by 4.0%. In linear regression analysis, detailed body composition explained variances in REE (75.0%), HOMA (41.0%), and leptin (78.0%) compared with a body mass index-based model (REE 16.0%, HOMA 31.0%, leptin 45.0%). In addition, detailed body composition explained 39

  19. Two-body correlation functions in dilute nuclear matter

    International Nuclear Information System (INIS)

    Isayev, A A

    2006-01-01

    Finding the distinct features of the crossover from the regime of large overlapping Cooper pairs to the limit of non-overlapping pairs of fermions (Shafroth pairs) in multicomponent Fermi systems remains one of the actual problems in a quantum many-body theory. Here this transition is studied by calculating the two-body density, spin and isospin correlation functions in dilute asymmetric nuclear matter. It is shown that criterion of the crossover (Phys. Rev. Lett. 95, 090402 (2005)), consisting in the change of the sign of the density correlation function at low momentum transfer, fails to describe correctly the density-driven BEC-BCS transition at finite isospin asymmetry or finite temperature. As an unambiguous signature of the BEC-BCS transition, there can be used the presence (BCS regime) or absence (BEC regime) of the singularity in the momentum distribution of the quasiparticle density of states

  20. Temporal correlation functions of concentration fluctuations: an anomalous case.

    Science.gov (United States)

    Lubelski, Ariel; Klafter, Joseph

    2008-10-09

    We calculate, within the framework of the continuous time random walk (CTRW) model, multiparticle temporal correlation functions of concentration fluctuations (CCF) in systems that display anomalous subdiffusion. The subdiffusion stems from the nonstationary nature of the CTRW waiting times, which also lead to aging and ergodicity breaking. Due to aging, a system of diffusing particles tends to slow down as time progresses, and therefore, the temporal correlation functions strongly depend on the initial time of measurement. As a consequence, time averages of the CCF differ from ensemble averages, displaying therefore ergodicity breaking. We provide a simple example that demonstrates the difference between these two averages, a difference that might be amenable to experimental tests. We focus on the case of ensemble averaging and assume that the preparation time of the system coincides with the starting time of the measurement. Our analytical calculations are supported by computer simulations based on the CTRW model.

  1. CCFpams: Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, Luca; Lovis, Christophe; Pepe, Francesco; Sneden, Christopher; Udry, Stephane

    2017-07-01

    CCFpams allows the measurement of stellar temperature, metallicity and gravity within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, the technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. Literature stellar parameters of high signal-to-noise (SNR) and high-resolution HARPS spectra of FGK Main Sequence stars are used to calibrate the stellar parameters as a function of CCF areas.

  2. An improved method for estimating the frequency correlation function

    KAUST Repository

    Chelli, Ali

    2012-04-01

    For time-invariant frequency-selective channels, the transfer function is a superposition of waves having different propagation delays and path gains. In order to estimate the frequency correlation function (FCF) of such channels, the frequency averaging technique can be utilized. The obtained FCF can be expressed as a sum of auto-terms (ATs) and cross-terms (CTs). The ATs are caused by the autocorrelation of individual path components. The CTs are due to the cross-correlation of different path components. These CTs have no physical meaning and leads to an estimation error. We propose a new estimation method aiming to improve the estimation accuracy of the FCF of a band-limited transfer function. The basic idea behind the proposed method is to introduce a kernel function aiming to reduce the CT effect, while preserving the ATs. In this way, we can improve the estimation of the FCF. The performance of the proposed method and the frequency averaging technique is analyzed using a synthetically generated transfer function. We show that the proposed method is more accurate than the frequency averaging technique. The accurate estimation of the FCF is crucial for the system design. In fact, we can determine the coherence bandwidth from the FCF. The exact knowledge of the coherence bandwidth is beneficial in both the design as well as optimization of frequency interleaving and pilot arrangement schemes. © 2012 IEEE.

  3. Charmonium correlators and spectral functions at finite temperature

    Energy Technology Data Exchange (ETDEWEB)

    Ding,H.T.; Kaczmarek, O.; Karsch, F.; Satz, H.

    2008-09-01

    We present an operational approach to address the in-medium behavior of charmonium and analyze the reliability of maximum entropy method (MEM). We study the dependences of the ratio of correlators to the reconstructed one and the free one on the resonance's width and the continuum's threshold. Furthermore, we discuss the issue of the default model dependence of the spectral function obtained from MEM.

  4. Quantum electrodynamics and light rays. [Two-point correlation functions

    Energy Technology Data Exchange (ETDEWEB)

    Sudarshan, E.C.G.

    1978-11-01

    Light is a quantum electrodynamic entity and hence bundles of rays must be describable in this framework. The duality in the description of elementary optical phenomena is demonstrated in terms of two-point correlation functions and in terms of collections of light rays. The generalizations necessary to deal with two-slit interference and diffraction by a rectangular slit are worked out and the usefulness of the notion of rays of darkness illustrated. 10 references.

  5. mTransport: Two-point-correlation function calculator

    Science.gov (United States)

    Dias, Mafalda; Frazer, Jonathan; Seery, David

    2017-10-01

    mTransport computes the 2-point-correlation function of the curvature and tensor perturbations in multifield models of inflation in the presence of a curved field space. It is a Mathematica implementation of the transport method which encompasses scenarios with violations of slow-roll conditions and turns of the trajectory in field space. It can be used for an arbitrary mass spectrum, including massive modes, particle production and models with quasi-single-field dynamics.

  6. Total Correlation Function Integrals and Isothermal Compressibilities from Molecular Simulations

    DEFF Research Database (Denmark)

    Wedberg, Rasmus; Peters, Günther H.j.; Abildskov, Jens

    2008-01-01

    Generation of thermodynamic data, here compressed liquid density and isothermal compressibility data, using molecular dynamics simulations is investigated. Five normal alkane systems are simulated at three different state points. We compare two main approaches to isothermal compressibilities: (1......) fluctuation solution theory analysis of trajectories obtained from simulations to yield total correlation function integrals; and (2) the more commonly used fluctuation formula. The results show that the two approaches yield consistent values and consistent uncertainties. Also, the computations converge...

  7. Voronoi Tessellation for reducing the processing time of correlation functions

    Science.gov (United States)

    Cárdenas-Montes, Miguel; Sevilla-Noarbe, Ignacio

    2018-01-01

    The increase of data volume in Cosmology is motivating the search of new solutions for solving the difficulties associated with the large processing time and precision of calculations. This is specially true in the case of several relevant statistics of the galaxy distribution of the Large Scale Structure of the Universe, namely the two and three point angular correlation functions. For these, the processing time has critically grown with the increase of the size of the data sample. Beyond parallel implementations to overcome the barrier of processing time, space partitioning algorithms are necessary to reduce the computational load. These can delimit the elements involved in the correlation function estimation to those that can potentially contribute to the final result. In this work, Voronoi Tessellation is used to reduce the processing time of the two-point and three-point angular correlation functions. The results of this proof-of-concept show a significant reduction of the processing time when preprocessing the galaxy positions with Voronoi Tessellation.

  8. Trait correlates and functional significance of heteranthery in flowering plants.

    Science.gov (United States)

    Vallejo-Marín, Mario; Da Silva, Elizabeth M; Sargent, Risa D; Barrett, Spencer C H

    2010-10-01

    • Flowering plants display extraordinary diversity in the morphology of male sexual organs, yet the functional significance of this variation is not well understood. Here, we conducted a comparative analysis of floral correlates of heteranthery - the morphological and functional differentiation of anthers within flowers - among angiosperm families to identify traits associated with this condition. • We performed a phylogenetic analysis of correlated evolution between heteranthery and several floral traits commonly reported from heterantherous taxa. In addition, we quantified the effect of phylogenetic uncertainty in the observed patterns of correlated evolution by comparing trees in which polytomous branches were randomly resolved. • Heteranthery is reported from 12 angiosperm orders and is phylogenetically associated with the absence of floral nectaries, buzz-pollination and enantiostyly (mirror-image flowers). These associations are robust to particularities of the underlying phylogenetic hypothesis. • Heteranthery has probably evolved as a result of pollinator-mediated selection and appears to function to reduce the conflict of relying on pollen both as food to attract pollinators and as the agent of male gamete transfer. The relative scarcity of heteranthery among angiosperm families suggests that the conditions permitting its evolution are not easily met despite the abundance of pollen-collecting bees and nectarless flowers. © The Authors (2010). Journal compilation © New Phytologist Trust (2010).

  9. Correlates of cognitive function scores in elderly outpatients.

    Science.gov (United States)

    Mangione, C M; Seddon, J M; Cook, E F; Krug, J H; Sahagian, C R; Campion, E W; Glynn, R J

    1993-05-01

    To determine medical, ophthalmologic, and demographic predictors of cognitive function scores as measured by the Telephone Interview for Cognitive Status (TICS), an adaptation of the Folstein Mini-Mental Status Exam. A secondary objective was to perform an item-by-item analysis of the TICS scores to determine which items correlated most highly with the overall scores. Cross-sectional cohort study. The Glaucoma Consultation Service of the Massachusetts Eye and Ear Infirmary. 472 of 565 consecutive patients age 65 and older who were seen at the Glaucoma Consultation Service between November 1, 1987 and October 31, 1988. Each subject had a standard visual examination and review of medical history at entry, followed by a telephone interview that collected information on demographic characteristics, cognitive status, health status, accidents, falls, symptoms of depression, and alcohol intake. A multivariate linear regression model of correlates of TICS score found the strongest correlates to be education, age, occupation, and the presence of depressive symptoms. The only significant ocular condition that correlated with lower TICS score was the presence of surgical aphakia (model R2 = .46). Forty-six percent (216/472) of patients fell below the established definition of normal on the mental status scale. In a logistic regression analysis, the strongest correlates of an abnormal cognitive function score were age, diabetes, educational status, and occupational status. An item analysis using step-wise linear regression showed that 85 percent of the variance in the TICS score was explained by the ability to perform serial sevens and to repeat 10 items immediately after hearing them. Educational status correlated most highly with both of these items (Kendall Tau R = .43 and Kendall Tau R = .30, respectively). Education, occupation, depression, and age were the strongest correlates of the score on this new screening test for assessing cognitive status. These factors were

  10. Characterization of maximally random jammed sphere packings. III. Transport and electromagnetic properties via correlation functions

    Science.gov (United States)

    Klatt, Michael A.; Torquato, Salvatore

    2018-01-01

    In the first two papers of this series, we characterized the structure of maximally random jammed (MRJ) sphere packings across length scales by computing a variety of different correlation functions, spectral functions, hole probabilities, and local density fluctuations. From the remarkable structural features of the MRJ packings, especially its disordered hyperuniformity, exceptional physical properties can be expected. Here we employ these structural descriptors to estimate effective transport and electromagnetic properties via rigorous bounds, exact expansions, and accurate analytical approximation formulas. These property formulas include interfacial bounds as well as universal scaling laws for the mean survival time and the fluid permeability. We also estimate the principal relaxation time associated with Brownian motion among perfectly absorbing traps. For the propagation of electromagnetic waves in the long-wavelength limit, we show that a dispersion of dielectric MRJ spheres within a matrix of another dielectric material forms, to a very good approximation, a dissipationless disordered and isotropic two-phase medium for any phase dielectric contrast ratio. We compare the effective properties of the MRJ sphere packings to those of overlapping spheres, equilibrium hard-sphere packings, and lattices of hard spheres. Moreover, we generalize results to micro- and macroscopically anisotropic packings of spheroids with tensorial effective properties. The analytic bounds predict the qualitative trend in the physical properties associated with these structures, which provides guidance to more time-consuming simulations and experiments. They especially provide impetus for experiments to design materials with unique bulk properties resulting from hyperuniformity, including structural-color and color-sensing applications.

  11. Exact anisotropic polytropic cylindrical solutions

    Science.gov (United States)

    Sharif, M.; Sadiq, Sobia

    2018-03-01

    In this paper, we study anisotropic compact stars with static cylindrically symmetric anisotropic matter distribution satisfying polytropic equation of state. We formulate the field equations as well as the corresponding mass function for the particular form of gravitational potential z(x)=(1+bx)^{η } (η =1, 2, 3) and explore exact solutions of the field equations for different values of the polytropic index. The values of arbitrary constants are determined by taking mass and radius of compact star (Her X-1). We find that resulting solutions show viable behavior of physical parameters (density, radial as well as tangential pressure, anisotropy) and satisfy the stability condition. It is concluded that physically acceptable solutions exist only for η =1, 2.

  12. Structural and functional neural correlates of music perception.

    Science.gov (United States)

    Limb, Charles J

    2006-04-01

    This review article highlights state-of-the-art functional neuroimaging studies and demonstrates the novel use of music as a tool for the study of human auditory brain structure and function. Music is a unique auditory stimulus with properties that make it a compelling tool with which to study both human behavior and, more specifically, the neural elements involved in the processing of sound. Functional neuroimaging techniques represent a modern and powerful method of investigation into neural structure and functional correlates in the living organism. These methods have demonstrated a close relationship between the neural processing of music and language, both syntactically and semantically. Greater neural activity and increased volume of gray matter in Heschl's gyrus has been associated with musical aptitude. Activation of Broca's area, a region traditionally considered to subserve language, is important in interpreting whether a note is on or off key. The planum temporale shows asymmetries that are associated with the phenomenon of perfect pitch. Functional imaging studies have also demonstrated activation of primitive emotional centers such as ventral striatum, midbrain, amygdala, orbitofrontal cortex, and ventral medial prefrontal cortex in listeners of moving musical passages. In addition, studies of melody and rhythm perception have elucidated mechanisms of hemispheric specialization. These studies show the power of music and functional neuroimaging to provide singularly useful tools for the study of brain structure and function.

  13. Anisotropic light diffusion: an oxymoron?

    Science.gov (United States)

    Kienle, Alwin

    2007-05-25

    Light propagation in anisotropic random media is studied in the steady-state and time domains. Solutions of the anisotropic diffusion equation are compared to results obtained by the Monte Carlo method. Contrary to what has been reported so far, we find that even in the "diffusive regime" the anisotropic diffusion equation does not describe correctly the light propagation in anisotropic random media.

  14. Correlation of Local Structure and Diffusion Pathways in the Modulated Anisotropic Oxide Ion Conductor CeNbO4.25

    KAUST Repository

    Pramana, Stevin S.

    2016-01-15

    CeNbO is reported to exhibit fast oxygen ion diffusion at moderate temperatures, making this the prototype of a new class of ion conductor with applications in a range of energy generation and storage devices. To date, the mechanism by which this ion transport is achieved has remained obscure, in part due to the long-range commensurately modulated structural motif. Here we show that CeNbO forms with a unit cell 12 times larger than the stoichiometric tetragonal parent phase of CeNbO as a result of the helical ordering of Ce and Ce ions along z. Interstitial oxygen ion incorporation leads to a cooperative displacement of the surrounding oxygen species, creating interlayer NbO connectivity by extending the oxygen coordination number to 7 and 8. Molecular dynamic simulations suggest that fast ion migration occurs predominantly within the xz plane. It is concluded that the oxide ion diffuses anisotropically, with the major migration mechanism being intralayer; however, when obstructed, oxygen can readily move to an adjacent layer along y via alternate lower energy barrier pathways.

  15. Fast methods for spatially correlated multilevel functional data

    KAUST Repository

    Staicu, A.-M.

    2010-01-19

    We propose a new methodological framework for the analysis of hierarchical functional data when the functions at the lowest level of the hierarchy are correlated. For small data sets, our methodology leads to a computational algorithm that is orders of magnitude more efficient than its closest competitor (seconds versus hours). For large data sets, our algorithm remains fast and has no current competitors. Thus, in contrast to published methods, we can now conduct routine simulations, leave-one-out analyses, and nonparametric bootstrap sampling. Our methods are inspired by and applied to data obtained from a state-of-the-art colon carcinogenesis scientific experiment. However, our models are general and will be relevant to many new data sets where the object of inference are functions or images that remain dependent even after conditioning on the subject on which they are measured. Supplementary materials are available at Biostatistics online.

  16. Reduced density-matrix functional theory: Correlation and spectroscopy.

    Science.gov (United States)

    Di Sabatino, S; Berger, J A; Reining, L; Romaniello, P

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  17. Reduced density-matrix functional theory: Correlation and spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Di Sabatino, S.; Romaniello, P. [Laboratoire de Physique Théorique, CNRS, IRSAMC, Université Toulouse III–Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse Cedex, France and ETSF (France); Berger, J. A. [Laboratoire de Chimie et Physique Quantiques, IRSAMC, Université Toulouse III–Paul Sabatier, CNRS, 118 Route de Narbonne, 31062 Toulouse Cedex, France and ETSF (France); Reining, L. [Laboratoire des Solides Irradiés, École Polytechnique, CNRS, CEA-DSM, 91128 Palaiseau, France and ETSF (France)

    2015-07-14

    In this work, we explore the performance of approximations to electron correlation in reduced density-matrix functional theory (RDMFT) and of approximations to the observables calculated within this theory. Our analysis focuses on the calculation of total energies, occupation numbers, removal/addition energies, and spectral functions. We use the exactly solvable Hubbard dimer at 1/4 and 1/2 fillings as test systems. This allows us to analyze the underlying physics and to elucidate the origin of the observed trends. For comparison, we also report the results of the GW approximation, where the self-energy functional is approximated, but no further hypothesis is made concerning the approximations of the observables. In particular, we focus on the atomic limit, where the two sites of the dimer are pulled apart and electrons localize on either site with equal probability, unless a small perturbation is present: this is the regime of strong electron correlation. In this limit, using the Hubbard dimer at 1/2 filling with or without a spin-symmetry-broken ground state allows us to explore how degeneracies and spin-symmetry breaking are treated in RDMFT. We find that, within the used approximations, neither in RDMFT nor in GW, the signature of strong correlation is present, when looking at the removal/addition energies and spectral function from the spin-singlet ground state, whereas both give the exact result for the spin-symmetry broken case. Moreover, we show how the spectroscopic properties change from one spin structure to the other.

  18. Approximate models for the analysis of laser velocimetry correlation functions

    International Nuclear Information System (INIS)

    Robinson, D.P.

    1981-01-01

    Velocity distributions in the subchannels of an eleven pin test section representing a slice through a Fast Reactor sub-assembly were measured with a dual beam laser velocimeter system using a Malvern K 7023 digital photon correlator for signal processing. Two techniques were used for data reduction of the correlation function to obtain velocity and turbulence values. Whilst both techniques were in excellent agreement on the velocity, marked discrepancies were apparent in the turbulence levels. As a consequence of this the turbulence data were not reported. Subsequent investigation has shown that the approximate technique used as the basis of Malvern's Data Processor 7023V is restricted in its range of application. In this note alternative approximate models are described and evaluated. The objective of this investigation was to develop an approximate model which could be used for on-line determination of the turbulence level. (author)

  19. The ion-electron correlation function in liquid metals

    International Nuclear Information System (INIS)

    Takeda, S.; Tamaki, S.; Waseda, Y.

    1985-01-01

    The structure factors of liquid Zn at 723 K, Sn at 523 K and Bi at 573 K have been determined by neutron diffraction with sufficient accuracy and compared with those of X-ray diffraction. A remarkable difference in the structural information between the two methods is clearly found around the first peak region as well as in the slightly varied peak positions, and it is apparently larger than the experimental errors. With these facts in mind, a new method evaluating the ion-electron correlation function in liquid metals has been proposed by using the measured structural data of X-rays and neutrons, with the help of theoretical values of the electron-electron correlation function by he Utsumi-Ichimaru scheme. This method has been applied to liquid Zn, Sn and Bi, and the radial distribution function of valence electrons around an ion has been estimated, from which the ionic radius and the schematic diagram of the electron distribution map are obtained. The ionic radii evaluated in this work have been found to agree well with those proposed by Pauling. (author)

  20. Magnetocompositonal correlation function for FeV13.5%

    International Nuclear Information System (INIS)

    Robinson, D.J.; Hicks, T.J.

    2000-01-01

    Full text: Many properties of alloys are dependent upon the type of atomic order present and as such, for future development of metallic alloys, it is imperative that an intricate understanding of the ordering processes is obtained. Of particular importance for the transition metal series is the presence of localised magnetic moments which can have a profound effect on the electronic structure, and hence the types of atomic order observed. A first principles ab initio theory has been developed which incorporates these localised moments, and leads to the determination of correlation functions which indicate the type of short-range order present in the high temperature disordered state. The magnetocompositional correlation function, which measures the local magnetic moments dependence on the local atomic environment, has been calculated for an FeV13.5% crystal below the ferromagnetic ordering temperature. This function is observable using polarised neutron scattering allowing a determination of the validity of the theory. Recently obtained results for a single FeV13.5% crystal will be presented for comparison

  1. Study of microinstabilities due to an anisotropic velocity distribution function of the particles of a homogeneous plasma

    International Nuclear Information System (INIS)

    Hennion, F.

    1966-06-01

    A study is made of instabilities in a plasma with an ion velocity distribution function of the form: f oi = 1 / (2*π*α p e i *α p a i ) * λ(ν p e - α p e i ) * e -(v p a 2 /α p a i 2 ) . The plasma is assumed to have finite dimensions limited by infinitely conductive boundary surfaces. A theoretical and numerical analysis of marginal stability locates the regions of stability as a function of several parameters; i.e. plasma length, ion anisotropy (τ) and electron temperature (T e ). A limiting plasma length is found, below which the plasma is stable regardless of its density. For the parameters of the injection experiment M.M.I.I. at Fontenay-aux-roses it is found that the type of instabilities studied here should not occur. (author) [fr

  2. Finite-temperature correlation functions of Heisenberg antiferromagnet

    International Nuclear Information System (INIS)

    Izergin, A.G.; Korepin, V.E.; Slavnov, N.A.

    1988-01-01

    The finite-temperature correlation functions in the one-dimensional Heisenberg XXZ magnet are investigated in the framework of the quantum inverse scattering method. On the transition to nonzero temperatures, it is necessary in this case to solve a number of basically new problems. The main one of these is related to the fact that the ground state of the Hamiltonian (physical vacuum) at nonzero temperature (more precisely, the state of thermodynamic equilibrium) includes many species of particles - not only elementary particles but also bound states of them. We give an appropriate generalization of the method

  3. Summability of Connected Correlation Functions of Coupled Lattice Fields

    Science.gov (United States)

    Lukkarinen, Jani; Marcozzi, Matteo; Nota, Alessia

    2018-03-01

    We consider two nonindependent random fields ψ and φ defined on a countable set Z. For instance, Z=Z^d or Z=Z^d× I , where I denotes a finite set of possible "internal degrees of freedom" such as spin. We prove that, if the cumulants of ψ and φ enjoy a certain decay property, then all joint cumulants between ψ and φ are ℓ_2 -summable in the precise sense described in the text. The decay assumption for the cumulants of ψ and φ is a restricted ℓ_1 summability condition called ℓ_1 -clustering property. One immediate application of the results is given by a stochastic process ψ _t(x) whose state is ℓ_1 -clustering at any time t: then the above estimates can be applied with ψ =ψ _t and φ =ψ _0 and we obtain uniform in t estimates for the summability of time-correlations of the field. The above clustering assumption is obviously satisfied by any ℓ_1 -clustering stationary state of the process, and our original motivation for the control of the summability of time-correlations comes from a quest for a rigorous control of the Green-Kubo correlation function in such a system. A key role in the proof is played by the properties of non-Gaussian Wick polynomials and their connection to cumulants

  4. Pair correlation functions of strongly coupled two-temperature plasma

    Science.gov (United States)

    Shaffer, Nathaniel R.; Tiwari, Sanat Kumar; Baalrud, Scott D.

    2017-09-01

    Using molecular dynamics simulations, we perform the first direct tests of three proposed models for the pair correlation functions of strongly coupled plasmas with species of unequal temperature. The models are all extensions of the Ornstein-Zernike/hypernetted-chain theory used to good success for equilibrium plasmas. Each theory is evaluated at several coupling strengths, temperature ratios, and mass ratios for a model plasma in which the electrons are positively charged. We show that the model proposed by Seuferling et al. [Phys. Rev. A 40, 323 (1989)] agrees well with molecular dynamics over a wide range of mass and temperature ratios, as well as over a range of coupling strength similar to that of the equilibrium hypernetted-chain (HNC) theory. The SVT model also correctly predicts the strength of interspecies correlations and exhibits physically reasonable long-wavelength limits of the static structure factors. Comparisons of the SVT model with the Yukawa one-component plasma (YOCP) model are used to show that ion-ion pair correlations are well described by the YOCP model up to Γe≈1 , beyond which it rapidly breaks down.

  5. Pulmonary alveolar proteinosis: Quantitative CT and pulmonary functional correlations

    Energy Technology Data Exchange (ETDEWEB)

    Guan, Yubao, E-mail: yubaoguan@163.com [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zeng, Qingsi [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Yang, Haihong; Zheng, Jinping; Li, Shiyue; Gao, Yi [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Deng, Yu [Department of Radiology, the First Affiliated Hospital of Guangzhou Medical College, Guangzhou 510120 (China); Mei, Jiang [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); He, Jianxing, E-mail: jianxing63@163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China); Zhong, Nanshan, E-mail: nanshan@vip.163.com [State Key Laboratory of Respiratory Disease, Guangzhou 510120 (China)

    2012-09-15

    Objective: We assessed the relationship between quantitative computer tomography (qCT) and the pulmonary function test (PFT) or blood gas analysis in pulmonary alveolar proteinosis (PAP) patients, as well as the utility of these analyses to monitor responses to whole lung lavage (WLL) therapy. Methods: Thirty-eight PAP patients simultaneously received a CT scan and PFT. Fifteen of these patients, undergoing sequential WLL for a total of 20 lavages, also underwent chest CT scans and blood gas analysis before and after WLL, and 14 of 15 patients underwent simultaneous PFT analysis. Differences between the qCT and PFT results were analyzed by canonical correlation. Results: PAP patients with low predicted values for FVC, FEV1, D{sub LCO} and D{sub LCO}/VA indicated small airspace volume and mean lung inflation, low airspace volume/total lung volume ratio and high mean lung density. Correlation and regression analysis revealed a strong correlation between D{sub LCO} and PaO{sub 2} values with CT results. The qCT results indicated that WLL significantly decreased lung weights and mean lung densities, and improved the total airspace volume/total lung volume ratios and mean lung inflations. Conclusion: Quantitative CT may be a sensitive tool for measuring the response of PAP patients to medical interventions such as WLL.

  6. On form factors and correlation functions in twistor space

    Energy Technology Data Exchange (ETDEWEB)

    Koster, Laura [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Mitev, Vladimir [PRISMA Cluster of Excellence, Institut für Physik, WA THEP,Johannes Gutenberg-Universität Mainz,Staudingerweg 7, 55128 Mainz (Germany); Staudacher, Matthias [Institut für Mathematik, Institut für Physik und IRIS Adlershof,Humboldt-Universität zu Berlin,Zum Großen Windkanal 6, 12489 Berlin (Germany); Wilhelm, Matthias [Niels Bohr Institute, Copenhagen University,Blegdamsvej 17, 2100 Copenhagen Ø (Denmark)

    2017-03-24

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N{sup k}MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.

  7. Omega from the anisotropy of the redshift correlation function

    Science.gov (United States)

    Hamilton, A. J. S.

    1993-01-01

    Peculiar velocities distort the correlation function of galaxies observed in redshift space. In the large scale, linear regime, the distortion takes a characteristic quadrupole plus hexadecapole form, with the amplitude of the distortion depending on the cosmological density parameter omega. Preliminary measurements are reported here of the harmonics of the correlation function in the CfA, SSRS, and IRAS 2 Jansky redshift surveys. The observed behavior of the harmonics agrees qualitatively with the predictions of linear theory on large scales in every survey. However, real anisotropy in the galaxy distribution induces large fluctuations in samples which do not yet probe a sufficiently fair volume of the Universe. In the CfA 14.5 sample in particular, the Great Wall induces a large negative quadrupole, which taken at face value implies an unrealistically large omega 20. The IRAS 2 Jy survey, which covers a substantially larger volume than the optical surveys and is less affected by fingers-of-god, yields a more reliable and believable value, omega = 0.5 sup +.5 sub -.25.

  8. On form factors and correlation functions in twistor space

    International Nuclear Information System (INIS)

    Koster, Laura; Mitev, Vladimir; Staudacher, Matthias; Wilhelm, Matthias

    2017-01-01

    In this paper, we continue our study of form factors and correlation functions of gauge-invariant local composite operators in the twistor-space formulation of N=4 super Yang-Mills theory. Using the vertices for these operators obtained in our recent papers (DOI: 10.1103/PhysRevLett.117.011601; 10.1007/JHEP06(2016)162 ), we show how to calculate the twistor-space diagrams for general N k MHV form factors via the inverse soft limit, in analogy to the amplitude case. For general operators without α-dot indices, we then reexpress the NMHV form factors from the position-twistor calculation in terms of momentum twistors, deriving and expanding on a relation between the two twistor formalisms previously observed in the case of amplitudes. Furthermore, we discuss the calculation of generalized form factors and correlation functions as well as the extension to loop level, in particular providing an argument promised in https://www.doi.org/10.1002/prop.201400085.

  9. Correlating Function and Imaging Measures of the Medial Longitudinal Fasciculus.

    Directory of Open Access Journals (Sweden)

    Ken Sakaie

    Full Text Available To test the validity of diffusion tensor imaging (DTI measures of tissue injury by examining such measures in a white matter structure with well-defined function, the medial longitudinal fasciculus (MLF. Injury to the MLF underlies internuclear ophthalmoparesis (INO.40 MS patients with chronic INO and 15 healthy controls were examined under an IRB-approved protocol. Tissue integrity of the MLF was characterized by DTI parameters: longitudinal diffusivity (LD, transverse diffusivity (TD, mean diffusivity (MD and fractional anisotropy (FA. Severity of INO was quantified by infrared oculography to measure versional disconjugacy index (VDI.LD was significantly lower in patients than in controls in the medulla-pons region of the MLF (p < 0.03. FA was also lower in patients in the same region (p < 0.0004. LD of the medulla-pons region correlated with VDI (R = -0.28, p < 0.05 as did FA in the midbrain section (R = 0.31, p < 0.02.This study demonstrates that DTI measures of brain tissue injury can detect injury to a functionally relevant white matter pathway, and that such measures correlate with clinically accepted evaluation indices for INO. The results validate DTI as a useful imaging measure of tissue integrity.

  10. New real space correlated-basis-functions approach for the electron correlations of the semiconductor inversion layer

    International Nuclear Information System (INIS)

    Feng Weiguo; Wang Hongwei; Wu Xiang

    1989-12-01

    Based on the real space Correlated-Basis-Functions theory and the collective oscillation behaviour of the electron gas with effective Coulomb interaction, the many body wave function is obtained for the quasi-two-dimensional electron system in the semiconductor inversion layer. The pair-correlation function and the correlation energy of the system have been calculated by the integro-differential method in this paper. The comparison with the other previous theoretical results is also made. The new theoretical approach and its numerical results show that the pair-correlation functions are definitely positive and satisfy the normalization condition. (author). 10 refs, 2 figs

  11. Correlation functions from a unified variational principle: Trial Lie groups

    Energy Technology Data Exchange (ETDEWEB)

    Balian, R., E-mail: roger.balian@cea.fr [Institut de Physique Théorique, CEA Saclay, 91191 Gif-sur-Yvette cedex (France); Vénéroni, M. [Institut de Physique Nucléaire, Université Paris-Sud and IN2P3-CNRS, F-91406 Orsay cedex (France)

    2015-11-15

    Time-dependent expectation values and correlation functions for many-body quantum systems are evaluated by means of a unified variational principle. It optimizes a generating functional depending on sources associated with the observables of interest. It is built by imposing through Lagrange multipliers constraints that account for the initial state (at equilibrium or off equilibrium) and for the backward Heisenberg evolution of the observables. The trial objects are respectively akin to a density operator and to an operator involving the observables of interest and the sources. We work out here the case where trial spaces constitute Lie groups. This choice reduces the original degrees of freedom to those of the underlying Lie algebra, consisting of simple observables; the resulting objects are labeled by the indices of a basis of this algebra. Explicit results are obtained by expanding in powers of the sources. Zeroth and first orders provide thermodynamic quantities and expectation values in the form of mean-field approximations, with dynamical equations having a classical Lie–Poisson structure. At second order, the variational expression for two-time correlation functions separates–as does its exact counterpart–the approximate dynamics of the observables from the approximate correlations in the initial state. Two building blocks are involved: (i) a commutation matrix which stems from the structure constants of the Lie algebra; and (ii) the second-derivative matrix of a free-energy function. The diagonalization of both matrices, required for practical calculations, is worked out, in a way analogous to the standard RPA. The ensuing structure of the variational formulae is the same as for a system of non-interacting bosons (or of harmonic oscillators) plus, at non-zero temperature, classical Gaussian variables. This property is explained by mapping the original Lie algebra onto a simpler Lie algebra. The results, valid for any trial Lie group, fulfill

  12. Correlations between respiratory and functional variables in heart failure

    Directory of Open Access Journals (Sweden)

    Fábio Cangeri Di Naso

    2009-09-01

    Full Text Available Background: Respiratory alterations can impact on the functional performance of patients with heart failure. Aim: To correlate maximum inspiratory muscular force and lung function variables with functional capacity in heart failure patients. Methods: A transversal study January-July 2007 with 42 chronic heart disease patients (28 males with no prior pulmonary illness. The patients were in New York Heart Association Functional Class I, II and III. The variables used were maximum inspiratory pressure, forced vital capacity and forced expiratory volume in the first second. Respiratory variables measured were distance covered in the six-minute walk test, NYHA functional class and the physical functioning domain of the Short Form-36 Quality of Life Questionnaire. Results: Maximum inspiratory pressure correlated with the six-minute walk test (r = 0.543 and p < 0.001, functional capacity (r = −0.566 and p < 0.001 and the physical functioning domain score of the Short Form-36 (r = 0.459 and p = 0.002. The same was true of forced vital capacity and the six-minute walk test (r = 0.501 and p = 0.001, functional capacity (r = −0.477 and p = 0.001 and Short Form-36 (r = 0.314 and p = 0.043 variables. Forced expiratory volume correlated with the distance covered in the six-minute walk test (r = 0.514 and p < 0.001 and functional capacity (r = −0.383 and p = 0.012. Conclusion: Lung function and inspiratory muscular force respiratory variables correlated with functional variables in patients with heart failure. Resumo: Fundamento: Alterações respiratórias podem influenciar o desempenho funcional em doentes com insuficiência cardíaca (IC. Objectivo: Correlacionar a força muscular inspiratória máxima (PImax e as variáveis da função pulmonar com a capacidade funcional em doentes com IC. Métodos: Estudo transversal

  13. Singular value correlation functions for products of Wishart random matrices

    International Nuclear Information System (INIS)

    Akemann, Gernot; Kieburg, Mario; Wei, Lu

    2013-01-01

    We consider the product of M quadratic random matrices with complex elements and no further symmetry, where all matrix elements of each factor have a Gaussian distribution. This generalizes the classical Wishart–Laguerre Gaussian unitary ensemble with M = 1. In this paper, we first compute the joint probability distribution for the singular values of the product matrix when the matrix size N and the number M are fixed but arbitrary. This leads to a determinantal point process which can be realized in two different ways. First, it can be written as a one-matrix singular value model with a non-standard Jacobian, or second, for M ⩾ 2, as a two-matrix singular value model with a set of auxiliary singular values and a weight proportional to the Meijer G-function. For both formulations, we determine all singular value correlation functions in terms of the kernels of biorthogonal polynomials which we explicitly construct. They are given in terms of the hypergeometric and Meijer G-functions, generalizing the Laguerre polynomials for M = 1. Our investigation was motivated from applications in telecommunication of multi-layered scattering multiple-input and multiple-output channels. We present the ergodic mutual information for finite-N for such a channel model with M − 1 layers of scatterers as an example. (paper)

  14. Generalized Fractional Derivative Anisotropic Viscoelastic Characterization

    Directory of Open Access Journals (Sweden)

    Harry H. Hilton

    2012-01-01

    Full Text Available Isotropic linear and nonlinear fractional derivative constitutive relations are formulated and examined in terms of many parameter generalized Kelvin models and are analytically extended to cover general anisotropic homogeneous or non-homogeneous as well as functionally graded viscoelastic material behavior. Equivalent integral constitutive relations, which are computationally more powerful, are derived from fractional differential ones and the associated anisotropic temperature-moisture-degree-of-cure shift functions and reduced times are established. Approximate Fourier transform inversions for fractional derivative relations are formulated and their accuracy is evaluated. The efficacy of integer and fractional derivative constitutive relations is compared and the preferential use of either characterization in analyzing isotropic and anisotropic real materials must be examined on a case-by-case basis. Approximate protocols for curve fitting analytical fractional derivative results to experimental data are formulated and evaluated.

  15. Response and correlation functions of nonlinear systems in equilibrium states

    Science.gov (United States)

    Xu, Lubo; Wang, Lei

    2017-11-01

    In this paper, we study systematically a serial of correlation functions in some one-dimensional nonlinear lattices. Due to the energy conservation law, they are implicitly interdependent. Various transport coefficients are thus also connected. In the studies of the autocorrelations of local energy density and of local heat current, a general relation between diverging heat conduction and super heat diffusion has been proposed recently. We clarify that such a relation is valid only in systems without temperature pressure. In those with temperature pressure, a constant but nontrivial term appears. This term explains a previously observed fact that heat diffusion in such systems is always ballistic but heat conduction can diverge very slowly. Such a result not only disproves the existence of any general relation between diverging heat conduction and super heat diffusion, but it also breaks the long-term presumption that ballistic heat conduction and diffusion always coexist.

  16. Zigzag antiferromagnetic ground state with anisotropic correlation lengths in the quasi-two-dimensional honeycomb lattice compound N a2C o2Te O6

    Science.gov (United States)

    Bera, A. K.; Yusuf, S. M.; Kumar, Amit; Ritter, C.

    2017-03-01

    The crystal structure, magnetic ground state, and the temperature-dependent microscopic spin-spin correlations of the frustrated honeycomb lattice antiferromagnet N a2C o2Te O6 have been investigated by powder neutron diffraction. A long-range antiferromagnetic (AFM) ordering has been found below TN˜24.8 K . The magnetic ground state, determined to be zigzag antiferromagnetic and characterized by a propagation vector k =(1 /2 0 0 ) , occurs due to the competing exchange interactions up to third-nearest neighbors within the honeycomb lattice. The exceptional existence of a limited magnetic correlation length along the c axis (perpendicular to the honeycomb layers in the a b planes) has been found even at 1.8 K, well below the TN˜24.8 K . The observed limited correlation along the c axis is explained by the disorder distribution of the Na ions within the intermediate layers between honeycomb planes. The reduced ordered moments mCo (1 )=2.77 (3 ) μB/C o2 + and mCo (2 )=2.45 (2 ) μB/C o2 + at 1.8 K reflect the persistence of spin fluctuations in the ordered state. Above TN˜24.8 K , the presence of short-range magnetic correlations, manifested by broad diffuse magnetic peaks in the diffraction patterns, has been found. Reverse Monte Carlo analysis of the experimental diffuse magnetic scattering data reveals that the spin correlations are mainly confined within the two-dimensional honeycomb layers (a b plane) with a correlation length of ˜12 Å at 25 K. The nature of the spin arrangements is found to be similar in both the short-range and long-range ordered magnetic states. This implies that the short-range correlation grows with decreasing temperature and leads to the zigzag AFM ordering at T ≤TN . The present study provides a comprehensive picture of the magnetic correlations over the temperature range above and below the TN and their relation to the crystal structure. The role of intermediate soft Na layers on the magnetic coupling between honeycomb planes is

  17. Functional Cortical Network in Alpha Band Correlates with Social Bargaining

    Science.gov (United States)

    Billeke, Pablo; Zamorano, Francisco; Chavez, Mario; Cosmelli, Diego; Aboitiz, Francisco

    2014-01-01

    Solving demanding tasks requires fast and flexible coordination among different brain areas. Everyday examples of this are the social dilemmas in which goals tend to clash, requiring one to weigh alternative courses of action in limited time. In spite of this fact, there are few studies that directly address the dynamics of flexible brain network integration during social interaction. To study the preceding, we carried out EEG recordings while subjects played a repeated version of the Ultimatum Game in both human (social) and computer (non-social) conditions. We found phase synchrony (inter-site-phase-clustering) modulation in alpha band that was specific to the human condition and independent of power modulation. The strength and patterns of the inter-site-phase-clustering of the cortical networks were also modulated, and these modulations were mainly in frontal and parietal regions. Moreover, changes in the individuals’ alpha network structure correlated with the risk of the offers made only in social conditions. This correlation was independent of changes in power and inter-site-phase-clustering strength. Our results indicate that, when subjects believe they are participating in a social interaction, a specific modulation of functional cortical networks in alpha band takes place, suggesting that phase synchrony of alpha oscillations could serve as a mechanism by which different brain areas flexibly interact in order to adapt ongoing behavior in socially demanding contexts. PMID:25286240

  18. Functional neural correlates of social approval in schizophrenia.

    Science.gov (United States)

    Makowski, Carolina S; Lepage, Martin; Harvey, Philippe-Olivier

    2016-03-01

    Social approval is a reward that uses abstract social reinforcers to guide interpersonal interactions. Few studies have specifically explored social reward processing and its related neural substrates in schizophrenia. Fifteen patients with schizophrenia and fifteen healthy controls participated in a two-part study to explore the functional neural correlates of social approval. In the first session, participants were led to believe their personality would be assessed based on their results from various questionnaires and an interview. Participants were then presented with the results of their supposed evaluation in the scanner, while engaging in a relevant fMRI social approval task. Subjects provided subjective reports of pleasure associated with receiving self-directed positive or negative feedback. Higher activation of the right parietal lobe was found in controls compared with individuals with schizophrenia. Both groups rated traits from the high social reward condition as more pleasurable than the low social reward condition, while intergroup differences emerged in the low social reward condition. Positive correlations were found in patients only between subjective ratings of positive feedback and right insula activation, and a relevant behavioural measure. Evidence suggests potential neural substrates underlying the cognitive representation of social reputation in schizophrenia. © The Author (2015). Published by Oxford University Press. For Permissions, please email: journals.permissions@oup.com.

  19. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...

  20. Orthonormal bases for anisotropic α-modulation spaces

    DEFF Research Database (Denmark)

    Rasmussen, Kenneth Niemann

    2012-01-01

    In this article we construct orthonormal bases for bi-variate anisotropic α-modulation spaces. The construction is based on generating a nice anisotropic α-covering and using carefully selected tensor products of univariate brushlet functions with regards to this covering. As an application, we s...

  1. Correlation functions and susceptibilities of photonics band gap reservoirs

    International Nuclear Information System (INIS)

    Konopka, M.

    1998-01-01

    We investigate quantum statistical properties of photonic band gap reservoirs in terms of correlation functions and susceptibilities in time and spectral domains. Typical features are oscillations of the time-dependent correlation functions and susceptibilities. This is because photonic bad gap reservoirs are intrinsically non-Markovian reservoirs. The results help us to understand better how intrinsic quantum-statistical properties of a reservoir influence dynamics of an atom interacting with this reservoir. Boundary conditions influence time and spectral properties of the electromagnetic field. This well-known fact has a great importance in optics and generally in electromagnetism. Specific examples are resonators used in laser technique and cavity electrodynamics. In quantum optics high-Q micro cavities are used for single-atom experiments when an atom can interact in a coherent way with an electromagnetic field which has its mode structure totally different from those in free space. In particular, interaction of an (effectively) two-level atom with a single-mode cavity field was observed in the region of microwaves (with the wavelength about 1 cm). In 1987 Yablonovitch and John independently proposed that certain periodic dielectric structures can present forbidden frequency gaps (or pseudo gaps in partially disordered structures) for transverse modes. Such periodic structures were named 'photonic band structures' or 'photonic crystals', in analogy with electronic crystals which also have a (forbidden) gap for electronic energy. For true photonic crystals the basic property of blocking electromagnetic wave propagation must be fulfilled for all waves within some frequency range, i.e. for all wavevector and polarization directions

  2. Anisotropic contrast optical microscope.

    Science.gov (United States)

    Peev, D; Hofmann, T; Kananizadeh, N; Beeram, S; Rodriguez, E; Wimer, S; Rodenhausen, K B; Herzinger, C M; Kasputis, T; Pfaunmiller, E; Nguyen, A; Korlacki, R; Pannier, A; Li, Y; Schubert, E; Hage, D; Schubert, M

    2016-11-01

    An optical microscope is described that reveals contrast in the Mueller matrix images of a thin, transparent, or semi-transparent specimen located within an anisotropic object plane (anisotropic filter). The specimen changes the anisotropy of the filter and thereby produces contrast within the Mueller matrix images. Here we use an anisotropic filter composed of a semi-transparent, nanostructured thin film with sub-wavelength thickness placed within the object plane. The sample is illuminated as in common optical microscopy but the light is modulated in its polarization using combinations of linear polarizers and phase plate (compensator) to control and analyze the state of polarization. Direct generalized ellipsometry data analysis approaches permit extraction of fundamental Mueller matrix object plane images dispensing with the need of Fourier expansion methods. Generalized ellipsometry model approaches are used for quantitative image analyses. These images are obtained from sets of multiple images obtained under various polarizer, analyzer, and compensator settings. Up to 16 independent Mueller matrix images can be obtained, while our current setup is limited to 11 images normalized by the unpolarized intensity. We demonstrate the anisotropic contrast optical microscope by measuring lithographically defined micro-patterned anisotropic filters, and we quantify the adsorption of an organic self-assembled monolayer film onto the anisotropic filter. Comparison with an isotropic glass slide demonstrates the image enhancement obtained by our method over microscopy without the use of an anisotropic filter. In our current instrument, we estimate the limit of detection for organic volumetric mass within the object plane of ≈49 fg within ≈7 × 7 μm 2 object surface area. Compared to a quartz crystal microbalance with dissipation instrumentation, where contemporary limits require a total load of ≈500 pg for detection, the instrumentation demonstrated here improves

  3. Anisotropic Weyl invariance

    Energy Technology Data Exchange (ETDEWEB)

    Perez-Nadal, Guillem [Universidad de Buenos Aires, Buenos Aires (Argentina)

    2017-07-15

    We consider a non-relativistic free scalar field theory with a type of anisotropic scale invariance in which the number of coordinates ''scaling like time'' is generically greater than one. We propose the Cartesian product of two curved spaces, the metric of each space being parameterized by the other space, as a notion of curved background to which the theory can be extended. We study this type of geometries, and find a family of extensions of the theory to curved backgrounds in which the anisotropic scale invariance is promoted to a local, Weyl-type symmetry. (orig.)

  4. Elucidation of spin echo small angle neutron scattering correlation functions through model studies.

    Science.gov (United States)

    Shew, Chwen-Yang; Chen, Wei-Ren

    2012-02-14

    Several single-modal Debye correlation functions to approximate part of the overall Debey correlation function of liquids are closely examined for elucidating their behavior in the corresponding spin echo small angle neutron scattering (SESANS) correlation functions. We find that the maximum length scale of a Debye correlation function is identical to that of its SESANS correlation function. For discrete Debye correlation functions, the peak of SESANS correlation function emerges at their first discrete point, whereas for continuous Debye correlation functions with greater width, the peak position shifts to a greater value. In both cases, the intensity and shape of the peak of the SESANS correlation function are determined by the width of the Debye correlation functions. Furthermore, we mimic the intramolecular and intermolecular Debye correlation functions of liquids composed of interacting particles based on a simple model to elucidate their competition in the SESANS correlation function. Our calculations show that the first local minimum of a SESANS correlation function can be negative and positive. By adjusting the spatial distribution of the intermolecular Debye function in the model, the calculated SESANS spectra exhibit the profile consistent with that of hard-sphere and sticky-hard-sphere liquids predicted by more sophisticated liquid state theory and computer simulation. © 2012 American Institute of Physics

  5. Behavioral correlates of anxiety in well-functioning older adults.

    Science.gov (United States)

    Losada, Andrés; Márquez-González, María; Pachana, Nancy A; Wetherell, Julie L; Fernández-Fernández, Virginia; Nogales-González, Celia; Ruiz-Díaz, Miguel

    2015-07-01

    Research on the behavioral correlates of anxiety in older adults is sparse. The aim of this study was to explore the association of anxiety with behavioral patterns defined by health, activity, emotional and social variables. A convenience sample of 395 older adults completed measures of health, activity, emotions, social variables and experiential avoidance. Cross-sectional data were analysed using cluster analysis. Five clusters were identified: active healthy, healthy, active vulnerable, lonely inactive and frail lonely. Participants in the active healthy and healthy clusters showed the highest scores on health variables (vitality and physical function), and adaptive scores on the rest of variables. They also reported the lowest scores on anxiety and included the lowest number of cases with clinically significant anxiety levels. Active vulnerable showed high scores on social support, leisure activities and capitalization on them but low scores in vitality and physical functioning. Participants in the lonely inactive cluster reported the highest mean score in experiential avoidance and high scores on boredom and loneliness, and low scores on social support, leisure activities capitalizing on pleasant activities and health variables. Frail lonely represent a particularly vulnerable profile of participants, similar to that of lonely inactive, but with significantly lower scores on health variables and higher scores on boredom and hours watching TV. Anxiety in older adults is not only linked to poor health, but also to dysfunctional social behavior, loneliness, boredom and experiential avoidance. Maladaptive profiles of older adults with regard to these variables have been identified.

  6. Analyses of zonal atmospheric excitation functions and their correlation with polar motion excitation functions

    Directory of Open Access Journals (Sweden)

    J. Nastula

    1997-11-01

    Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ1 and χ2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.

  7. Analyses of zonal atmospheric excitation functions and their correlation with polar motion excitation functions

    Directory of Open Access Journals (Sweden)

    J. Nastula

    Full Text Available The atmospheric influence on the Earth's, rotation can be described by the effective atmospheric angular momentum (EAAM functions. In this study we focus on the analysis of short period variations of the equatorial components of the zonal EAAM excitation functions χ1 and χ2 and their influence on similar variations of polar motion. The global objective analysis data of the Japanese Meteorological Agency for the period 1986–1992 were used to compute the EAAM excitation functions in different latitude belts. Time- and latitude-variable amplitude spectra of variations of these functions with periods shorter than 150 days, containing pressure, pressure with the inverted barometric correction, and wind terms were computed. The spectra show distinct latitude and time variations of the prograde and retrograde oscillations which reach their maxima mainly in mid-latitudes. Prograde and retrograde oscillations with periods of about 40–60 days and about 110–120 days are seen in the spectra of pressure terms of the equatorial components of the zonal EAAM excitation functions. Additionally, correlation coefficients and cross-spectra between variations of the geodetic polar motion and equatorial components of the zonal EAAM excitation functions were computed to identify the latitude belts of the globe over which atmospheric circulation changes are correlated mostly with short period variations of the polar motion excitation functions. The correlation coefficients vary in time and latitude and reach maximum values in the northern latitudes from 50°N to 60°N. In the cross-spectra between the polar motion excitation functions and pressure terms of the zonal EAAM excitation functions there are peaks of common prograde oscillations with the periods around 20, 30, 40–50, 60 and 80–150 days and of common retrograde oscillations around 20, 30, 40 and 50–70 days.

  8. Multi-Physics MRI-Based Two-Layer Fluid-Structure Interaction Anisotropic Models of Human Right and Left Ventricles with Different Patch Materials: Cardiac Function Assessment and Mechanical Stress Analysis.

    Science.gov (United States)

    Tang, Dalin; Yang, Chun; Geva, Tal; Gaudette, Glenn; Del Nido, Pedro J

    2011-06-01

    Multi-physics right and left ventricle (RV/LV) fluid-structure interaction (FSI) models were introduced to perform mechanical stress analysis and evaluate the effect of patch materials on RV function. The FSI models included three different patch materials (Dacron scaffold, treated pericardium, and contracting myocardium), two-layer construction, fiber orientation, and active anisotropic material properties. The models were constructed based on cardiac magnetic resonance (CMR) images acquired from a patient with severe RV dilatation and solved by ADINA. Our results indicate that the patch model with contracting myocardium leads to decreased stress level in the patch area, improved RV function and patch area contractility.

  9. Temporal discrimination, a cervical dystonia endophenotype: penetrance and functional correlates.

    Science.gov (United States)

    Kimmich, Okka; Molloy, Anna; Whelan, Robert; Williams, Laura; Bradley, David; Balsters, Joshua; Molloy, Fiona; Lynch, Tim; Healy, Daniel G; Walsh, Cathal; O'Riordan, Seán; Reilly, Richard B; Hutchinson, Michael

    2014-05-01

    The pathogenesis of adult-onset primary dystonia remains poorly understood. There is variable age-related and gender-related expression of the phenotype, the commonest of which is cervical dystonia. Endophenotypes may provide insight into underlying genetic and pathophysiological mechanisms of dystonia. The temporal discrimination threshold (TDT)-the shortest time interval at which two separate stimuli can be detected as being asynchronous-is abnormal both in patients with cervical dystonia and in their unaffected first-degree relatives. Functional magnetic resonance imaging (fMRI) studies have shown that putaminal activation positively correlates with the ease of temporal discrimination between two stimuli in healthy individuals. We hypothesized that abnormal temporal discrimination would exhibit similar age-related and gender-related penetrance as cervical dystonia and that unaffected relatives with an abnormal TDT would have reduced putaminal activation during a temporal discrimination task. TDTs were examined in a group of 192 healthy controls and in 158 unaffected first-degree relatives of 84 patients with cervical dystonia. In 24 unaffected first-degree relatives, fMRI scanning was performed during a temporal discrimination task. The prevalence of abnormal TDTs in unaffected female relatives reached 50% after age 48 years; whereas, in male relatives, penetrance of the endophenotype was reduced. By fMRI, relatives who had abnormal TDTs, compared with relatives who had normal TDTs, had significantly less activation in the putamina and in the middle frontal and precentral gyri. Only the degree of reduction of putaminal activity correlated significantly with worsening of temporal discrimination. These findings further support abnormal temporal discrimination as an endophenotype of cervical dystonia involving disordered basal ganglia circuits. © 2014 International Parkinson and Movement Disorder Society.

  10. Transport through correlated systems with density functional theory.

    Science.gov (United States)

    Kurth, S; Stefanucci, G

    2017-10-18

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer-Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  11. The Galaxy Count Correlation Function in Redshift Space Revisited

    Science.gov (United States)

    Campagne, J.-E.; Plaszczynski, S.; Neveu, J.

    2017-08-01

    In the near future, cosmology will enter the wide and deep galaxy survey era, enabling high-precision studies of the large-scale structure of the universe in three dimensions. To test cosmological models and determine their parameters accurately, it is necessary to use data with exact theoretical expectations expressed in observational parameter space (angles and redshift). The data-driven, galaxy number count fluctuations on redshift shells can be used to build correlation functions ξ (θ ,{z}1,{z}2) on and between shells to probe the baryonic acoustic oscillations and distance-redshift distortions, as well as gravitational lensing and other relativistic effects. To obtain a numerical estimation of ξ (θ ,{z}1,{z}2) from a cosmological model, it is typical to use either a closed form derived from a tripolar spherical expansion or to compute the power spectrum {C}{\\ell }({z}1,{z}2) and perform a Legendre polynomial {P}{\\ell }(\\cos θ ) expansion. Here, we present a new derivation of a ξ (θ ,{z}1,{z}2) closed form using the spherical harmonic expansion and proceeding to an infinite sum over multipoles thanks to an addition theorem. We demonstrate that this new expression is perfectly compatible with the existing closed forms but is simpler to establish and manipulate. We provide formulas for the leading density and redshift-space contributions, but also show how Doppler-like and lensing terms can be easily included in this formalism. We have implemented and made publicly available software for computing those correlations efficiently, without any Limber approximation, and validated this software with the CLASSgal code. It is available at https://gitlab.in2p3.fr/campagne/AngPow.

  12. Spatial correlation function of galaxies confronted with the theoretical scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Dekel, A.; Aarseth, S.J.

    1984-08-01

    We study the two-point spatial corrlation function of galaxies, xi(r), in a series of numerical simulations of cosmological clustering scenarios in comparison with xi(r) obtained from redshift samples. The observed excess of correlation in the range 2--10 Mpc h/sup -1/, which does not agree with a pure hierarchial clustering scenario, is reproduced in a scenario where lambda = 30 +- 5 Mpc h/sup -1/ superclusters collapse first to flat (or elongated) ''pancakes.'' The flat slope of xi(r) in that region (..gamma..<1.8) is suggested to arise from this ''pancaking,'' i.e., the transition from a 3D distribution to a 2D (or a 1D) distribution in superclusters. The correlation below 2 Mpc h/sup -1/ reflects the presence of clusters that grow from perturbations on smaller scales which are either primordial or induced by nonlinear coupling of the large-scale perturbations. A concave break at 2--3 Mpc h/sup -1/ marks the present size of rich clusters, which continues to grow gradually in comoving coordinates. The shape of xi(r) is reproduced provided that the first pancaking occurred at z< or =0.5 if ..cap omega.. = 1 and at z<2 if ..cap omega../sub 0/ = 0.1. Later, its slope becomes too steep, and indistinguishable from the one obtained in the pure clustering scenario, because the gradual clustering approaches the scale of superclusters, causing the pancakes to break up into a few huge clusters.

  13. Transport through correlated systems with density functional theory

    Science.gov (United States)

    Kurth, S.; Stefanucci, G.

    2017-10-01

    We present recent advances in density functional theory (DFT) for applications in the field of quantum transport, with particular emphasis on transport through strongly correlated systems. We review the foundations of the popular Landauer–Büttiker(LB)  +  DFT approach. This formalism, when using approximations to the exchange-correlation (xc) potential with steps at integer occupation, correctly captures the Kondo plateau in the zero bias conductance at zero temperature but completely fails to capture the transition to the Coulomb blockade (CB) regime as the temperature increases. To overcome the limitations of LB  +  DFT, the quantum transport problem is treated from a time-dependent (TD) perspective using TDDFT, an exact framework to deal with nonequilibrium situations. The steady-state limit of TDDFT shows that in addition to an xc potential in the junction, there also exists an xc correction to the applied bias. Open shell molecules in the CB regime provide the most striking examples of the importance of the xc bias correction. Using the Anderson model as guidance we estimate these corrections in the limit of zero bias. For the general case we put forward a steady-state DFT which is based on one-to-one correspondence between the pair of basic variables, steady density on and steady current across the junction and the pair local potential on and bias across the junction. Like TDDFT, this framework also leads to both an xc potential in the junction and an xc correction to the bias. Unlike TDDFT, these potentials are independent of history. We highlight the universal features of both xc potential and xc bias corrections for junctions in the CB regime and provide an accurate parametrization for the Anderson model at arbitrary temperatures and interaction strengths, thus providing a unified DFT description for both Kondo and CB regimes and the transition between them.

  14. Anisotropic Lyra cosmology

    Indian Academy of Sciences (India)

    Anisotropic Bianchi Type-I cosmological models have been studied on the basis of Lyra's geometry. Two types of models, one with constant deceleration parameter and the other with variable deceleration parameter have been derived by considering a time-dependent displacement field.

  15. Anisotropic Concrete Compressive Strength

    DEFF Research Database (Denmark)

    Gustenhoff Hansen, Søren; Jørgensen, Henrik Brøner; Hoang, Linh Cao

    2017-01-01

    When the load carrying capacity of existing concrete structures is (re-)assessed it is often based on compressive strength of cores drilled out from the structure. Existing studies show that the core compressive strength is anisotropic; i.e. it depends on whether the cores are drilled parallel...

  16. Anisotropic nanomaterials preparation, properties, and applications

    CERN Document Server

    Li, Quan

    2015-01-01

    In this book anisotropic one-dimensional and two-dimensional nanoscale building blocks and their assembly into fascinating and qualitatively new functional structures embracing both hard and soft components are explained. Contributions from leading experts regarding important aspects like synthesis, assembly, properties and applications of the above materials are compiled into a reference book. The anisotropy, i.e. the direction-dependent physical properties, of materials is fascinating and elegant and has sparked the quest for anisotropic materials with useful properties. With such a curiosi

  17. A Unified Approach to Functional Principal Component Analysis and Functional Multiple-Set Canonical Correlation.

    Science.gov (United States)

    Choi, Ji Yeh; Hwang, Heungsun; Yamamoto, Michio; Jung, Kwanghee; Woodward, Todd S

    2017-06-01

    Functional principal component analysis (FPCA) and functional multiple-set canonical correlation analysis (FMCCA) are data reduction techniques for functional data that are collected in the form of smooth curves or functions over a continuum such as time or space. In FPCA, low-dimensional components are extracted from a single functional dataset such that they explain the most variance of the dataset, whereas in FMCCA, low-dimensional components are obtained from each of multiple functional datasets in such a way that the associations among the components are maximized across the different sets. In this paper, we propose a unified approach to FPCA and FMCCA. The proposed approach subsumes both techniques as special cases. Furthermore, it permits a compromise between the techniques, such that components are obtained from each set of functional data to maximize their associations across different datasets, while accounting for the variance of the data well. We propose a single optimization criterion for the proposed approach, and develop an alternating regularized least squares algorithm to minimize the criterion in combination with basis function approximations to functions. We conduct a simulation study to investigate the performance of the proposed approach based on synthetic data. We also apply the approach for the analysis of multiple-subject functional magnetic resonance imaging data to obtain low-dimensional components of blood-oxygen level-dependent signal changes of the brain over time, which are highly correlated across the subjects as well as representative of the data. The extracted components are used to identify networks of neural activity that are commonly activated across the subjects while carrying out a working memory task.

  18. Spline function fit for multi-sets of correlative data

    International Nuclear Information System (INIS)

    Liu Tingjin; Zhou Hongmo

    1992-01-01

    The Spline fit method for multi-sets of correlative data is developed. The properties of correlative data fit are investigated. The data of 23 Na(n, 2n) cross section are fitted in the cases with and without correlation

  19. Atmospheric stellar parameters from cross-correlation functions

    Science.gov (United States)

    Malavolta, L.; Lovis, C.; Pepe, F.; Sneden, C.; Udry, S.

    2017-08-01

    The increasing number of spectra gathered by spectroscopic sky surveys and transiting exoplanet follow-up has pushed the community to develop automated tools for atmospheric stellar parameters determination. Here we present a novel approach that allows the measurement of temperature (Teff), metallicity ([Fe/H]) and gravity (log g) within a few seconds and in a completely automated fashion. Rather than performing comparisons with spectral libraries, our technique is based on the determination of several cross-correlation functions (CCFs) obtained by including spectral features with different sensitivity to the photospheric parameters. We use literature stellar parameters of high signal-to-noise (SNR), high-resolution HARPS spectra of FGK main-sequence stars to calibrate Teff, [Fe/H] and log g as a function of CCF parameters. Our technique is validated using low-SNR spectra obtained with the same instrument. For FGK stars we achieve a precision of σ _{{T_eff}} = 50 K, σlog g = 0.09 dex and σ _{{{[Fe/H]}}} =0.035 dex at SNR = 50, while the precision for observation with SNR ≳ 100 and the overall accuracy are constrained by the literature values used to calibrate the CCFs. Our approach can easily be extended to other instruments with similar spectral range and resolution or to other spectral range and stars other than FGK dwarfs if a large sample of reference stars is available for the calibration. Additionally, we provide the mathematical formulation to convert synthetic equivalent widths to CCF parameters as an alternative to direct calibration. We have made our tool publicly available.

  20. Algebraic solution of an anisotropic nonquadratic potential

    International Nuclear Information System (INIS)

    Boschi Filho, H.; Vaidya, A.N.

    1990-06-01

    We show that an anisotropic nonquadratic potential, for which a path integral treatment had been recently discussed in the literature, possesses the (SO(2,1)xSO(2,1))ΛSO(2,1) dynamical symmetry and constructs its Green function algebraically. A particular case which generates new eigenvalues and eigenfunctions is also discussed. (author). 11 refs

  1. Integrable dissipative exclusion process: Correlation functions and physical properties

    Science.gov (United States)

    Crampe, N.; Ragoucy, E.; Rittenberg, V.; Vanicat, M.

    2016-09-01

    We study a one-parameter generalization of the symmetric simple exclusion process on a one-dimensional lattice. In addition to the usual dynamics (where particles can hop with equal rates to the left or to the right with an exclusion constraint), annihilation and creation of pairs can occur. The system is driven out of equilibrium by two reservoirs at the boundaries. In this setting the model is still integrable: it is related to the open XXZ spin chain through a gauge transformation. This allows us to compute the full spectrum of the Markov matrix using Bethe equations. We also show that the stationary state can be expressed in a matrix product form permitting to compute the multipoints correlation functions as well as the mean value of the lattice and the creation-annihilation currents. Finally, the variance of the lattice current is computed for a finite-size system. In the thermodynamic limit, it matches the value obtained from the associated macroscopic fluctuation theory.

  2. EEG correlates of time-varying BOLD functional connectivity

    Science.gov (United States)

    Chang, Catie; Liu, Zhongming; Chen, Michael C.; Liu, Xiao; Duyn, Jeff H.

    2013-01-01

    Recent resting-state fMRI studies have shown that the apparent functional connectivity (FC) between brain regions may undergo changes on time-scales of seconds to minutes, the basis and importance of which are largely unknown. Here, we examine the electrophysiological correlates of within-scan FC variations during a condition of eyes-closed rest. A sliding window analysis of simultaneous EEG-fMRI data was performed to examine whether temporal variations in coupling between three major networks (default mode; DMN, dorsal attention; DAN, and salience network; SN) are associated with temporal variations in mental state, as assessed from the amplitude of alpha and theta oscillations in the EEG. In our dataset, alpha power showed a significant inverse relationship with the strength of connectivity between DMN and DAN. In addition, alpha power covaried with the spatial extent of anticorrelation between DMN and DAN, with higher alpha power associated with larger anticorrelation extent. Results suggest an electrical signature of the time-varying FC between the DAN and DMN, potentially reflecting neural and state-dependent variations. PMID:23376790

  3. Local Approximation of the Correlation Energy Functional in the Density Matrix Functional Theory

    Science.gov (United States)

    Yasuda, Koji

    2002-02-01

    A local approximation formula of the correlation energy functional Ec in terms of the first-order reduced density matrix (1-RDM) is presented. With the contracted Schrödinger equation the principal dependence of Ec on the natural occupation numbers ni is identified. Using the effective mass theory, Ec is expressed as a functional of the local density and the local variable, J = Σi(ni(1-ni)) \\|ϕi\\|2, where ϕi are the natural spin orbitals. This local approximation satisfies the homogeneous coordinate scaling relation, gives the exact result for a one-electron system, and is almost free from the exchange energy error. It reproduced about 90% of the correlation energies of atoms and molecules.

  4. Effects of the molecular rotational dynamics on dielectric and far-infra-red spectra of anisotropic liquids

    International Nuclear Information System (INIS)

    Nordio, P.L.; Segre, U.

    1981-01-01

    Dielectric and far-infra-red spectra of uniaxial liquid-crystal phase are analysed in terms of correlation functions calculated by a memory function formalism. SAIL (strong anisotropic interaction limit) conditions are always found to apply, resulting in diffusional regime at low working frequencies. Dipole friction has been also included in the calculations to consider many-particle interactions, its effect being analogous to the introduction of slowly relaxing local structures. (author)

  5. A COSMIC COINCIDENCE: THE POWER-LAW GALAXY CORRELATION FUNCTION

    International Nuclear Information System (INIS)

    Watson, Douglas F.; Berlind, Andreas A.; Zentner, Andrew R.

    2011-01-01

    We model the evolution of galaxy clustering through cosmic time to investigate the nature of the power-law shape of ξ(r), the galaxy two-point correlation function. While ξ(r) at large scales is set by primordial fluctuations, departures from a power law are governed by galaxy pair counts at small scales, subject to nonlinear dynamics. We assume that galaxies reside within dark matter halos and subhalos. Therefore, the shape of the correlation function at small scales depends on the amount of halo substructure. We use a semi-analytic substructure evolution model to study subhalo populations within host halos. We find that tidal mass loss and, to a lesser extent, dynamical friction dramatically deplete the number of subhalos within larger host halos over time, resulting in a ∼90% reduction by z = 0 compared to the number of distinct mergers that occur during the assembly of a host halo. We show that these nonlinear processes resulting in this depletion are essential for achieving a power law ξ(r). We investigate how the shape of ξ(r) depends on subhalo mass (or luminosity) and redshift. We find that ξ(r) breaks from a power law at high masses, implying that only galaxies of luminosities ∼ * should exhibit power-law clustering. Moreover, we demonstrate that ξ(r) evolves from being far from a power law at high redshift, toward a near power-law shape at z = 0. We argue that ξ(r) will once again evolve away from a power law in the future. This is in large part caused by the evolving competition between the accretion and destruction rates of subhalos over time, which happen to strike just the right balance at z ∼ 0. We then investigate the conditions required for ξ(r) to be a power law in a general context. We use the halo model, along with simple parameterizations of the halo occupation distribution, to probe galaxy occupation at various masses and redshifts. We show that the key ingredients determining the shape of ξ(r) are the fraction of galaxies that

  6. Finite frequency traveltime sensitivity kernels for acoustic anisotropic media: Angle dependent bananas

    KAUST Repository

    Djebbi, Ramzi

    2013-08-19

    Anisotropy is an inherent character of the Earth subsurface. It should be considered for modeling and inversion. The acoustic VTI wave equation approximates the wave behavior in anisotropic media, and especially it\\'s kinematic characteristics. To analyze which parts of the model would affect the traveltime for anisotropic traveltime inversion methods, especially for wave equation tomography (WET), we drive the sensitivity kernels for anisotropic media using the VTI acoustic wave equation. A Born scattering approximation is first derived using the Fourier domain acoustic wave equation as a function of perturbations in three anisotropy parameters. Using the instantaneous traveltime, which unwraps the phase, we compute the kernels. These kernels resemble those for isotropic media, with the η kernel directionally dependent. They also have a maximum sensitivity along the geometrical ray, which is more realistic compared to the cross-correlation based kernels. Focusing on diving waves, which is used more often, especially recently in waveform inversion, we show sensitivity kernels in anisotropic media for this case.

  7. Partial structure factors and orientational correlations in liquid HI

    International Nuclear Information System (INIS)

    Andreani, C.; Nardone, M.; Ricci, F.P.

    1993-01-01

    The three atomic partial structure factors of orthobaric liquid HI at 253 K derived from neutron diffraction experiments are presented. The analysis of these structure factors and of the corresponding pair distribution functions indicates that the molecular center of mass distribution function is essentially that of a monoatomic Lennard-Jones fluid and that the anisotropic part of the intermolecular potential is able to build up orientational correlations between molecular axes without however giving rise to well defined correlations between the intermolecular axis and the molecular axis. These findings are consistent with an anisotropic part of the intermolecular potential due essentially to electric multipoles. (authors). 4 figs., 4 refs

  8. The semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet

    International Nuclear Information System (INIS)

    Benyoussef, A.; Boubekri, A.; Ez-Zahraouy, H.; Saber, M.

    1998-08-01

    Using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions, the phase transitions in the semi-infinite anisotropic spin-1/2 Heisenberg ferromagnet on a simple cubic lattice are examined. For fixed values of the reduced exchange anisotropic parameter, the critical temperature of the system is studied as a function of the ratio R of the surface exchange couplings to the bulk ones. It was found that if R ≤ R c , the system orders at the bulk critical temperature T B c /J and if R ≥ R c , the system exhibits two successive transitions. The surface orders at the surface critical temperature T S c /J which is higher than T B c /J and as the temperature is lowered, in the presence of ordered surface, the bulk orders at T B c /J. (author)

  9. An anisotropic tertiary creep damage constitutive model for anisotropic materials

    International Nuclear Information System (INIS)

    Stewart, Calvin M.; Gordon, Ali P.; Ma, Young Wha; Neu, Richard W.

    2011-01-01

    When an anisotropic material is subject to creep conditions and a complex state of stress, an anisotropic creep damage behavior is observed. Previous research has focused on the anisotropic creep damage behavior of isotropic materials but few constitutive models have been developed for anisotropic creeping solids. This paper describes the development of a new anisotropic tertiary creep damage constitutive model for anisotropic materials. An advanced tensorial damage formulation is implemented which includes both material orientation relative to loading and the degree of creep damage anisotropy in the model. A variation of the Norton-power law for secondary creep is implemented which includes the Hill's anisotropic analogy. Experiments are conducted on the directionally-solidified bucket material DS GTD-111. The constitutive model is implemented in a user programmable feature (UPF) in ANSYS FEA software. The ability of the constitutive model to regress to the Kachanov-Rabotnov isotropic tertiary creep damage model is demonstrated through comparison with uniaxial experiments. A parametric study of both material orientation and stress rotation are conducted. Results indicate that creep deformation is modeled accurately; however an improved damage evolution law may be necessary. - Highlights: → The deformation of anisotropic creeping solid is directionally dependent. → Few constitutive models have been developed to deal with anisotropic behavior. → A transversely-isotropic nickel base superalloy, DS GTD-111, is studied. → A vector constitutive model based on the Kachanov-Rabotnov formulation is developed. → The new model accurately models deformation at various orientations.

  10. Pair-correlation function in disordered β-brass as studied by neutron diffraction

    DEFF Research Database (Denmark)

    Als-Nielsen, Jens Aage; Dietrich, O.W.

    1967-01-01

    Critical neutron scattering around a superlattice reflection above Tc yields information on the pair correlation function for occupation of lattice sites. The Ornstein-Zernike correlation function e-k 1 r/r is proved to fit the data excellently, and at 8.9deg K above Tc the inverse correlation...

  11. Material Induced Anisotropic Damage in DP600

    NARCIS (Netherlands)

    Niazi, Muhammad Sohail; Wisselink, H.H.; Meinders, Vincent T.; van den Boogaard, Antonius H.

    2013-01-01

    Plasticity induced damage development in metals is anisotropic by nature. The anisotropy in damage is driven by two different phenomena; anisotropic deformation state i.e. Load Induced Anisotropic Damage (LIAD) and anisotropic microstructure i.e. Material Induced Anisotropic Damage (MIAD). The

  12. Warm anisotropic inflationary universe model

    International Nuclear Information System (INIS)

    Sharif, M.; Saleem, Rabia

    2014-01-01

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  13. Warm anisotropic inflationary universe model

    Energy Technology Data Exchange (ETDEWEB)

    Sharif, M.; Saleem, Rabia [University of the Punjab, Department of Mathematics, Lahore (Pakistan)

    2014-02-15

    This paper is devoted to the study of warm inflation using vector fields in the background of a locally rotationally symmetric Bianchi type I model of the universe. We formulate the field equations, and slow-roll and perturbation parameters (scalar and tensor power spectra as well as their spectral indices) in the slow-roll approximation. We evaluate all these parameters in terms of the directional Hubble parameter during the intermediate and logamediate inflationary regimes by taking the dissipation factor as a function of the scalar field as well as a constant. In each case, we calculate the observational parameter of interest, i.e., the tensor-scalar ratio in terms of the inflaton. The graphical behavior of these parameters shows that the anisotropic model is also compatible with WMAP7 and the Planck observational data. (orig.)

  14. Light scalar mesons and two-kaon correlation functions

    Science.gov (United States)

    Achasov, N. N.; Kiselev, A. V.

    2018-02-01

    It is shown that the recent data on the KS0K+ correlation in Pb-Pb interactions agree with the data on the γ γ →η π0 and ϕ →η π0γ reactions and support the four-quark model of the a0(980 ) meson. It is shown that the data does not contradict the validity of the Gaussian assumption. The study of two-kaon correlations could provide more information about light scalar mesons after increasing the accuracy of the experimental and theoretical descriptions.

  15. Structurofunctional resting-state networks correlate with motor function in chronic stroke

    Directory of Open Access Journals (Sweden)

    Benjamin T. Kalinosky

    2017-01-01

    Conclusion: The results demonstrate that changes after a stroke in both intrinsic and network-based structurofunctional correlations at rest are correlated with motor function, underscoring the importance of residual structural connectivity in cortical networks.

  16. Two Point Correlation Functions for a Periodic Box-Ball System

    Directory of Open Access Journals (Sweden)

    Jun Mada

    2011-03-01

    Full Text Available We investigate correlation functions in a periodic box-ball system. For the second and the third nearest neighbor correlation functions, we give explicit formulae obtained by combinatorial methods. A recursion formula for a specific N-point functions is also presented.

  17. Studies in the method of correlated basis functions. Pt. 3

    International Nuclear Information System (INIS)

    Krotscheck, E.; Clark, J.W.

    1980-01-01

    A variational theory of pairing phenomena is presented for systems like neutron matter and liquid 3 He. The strong short-range correlations among the particles in these systems are incorporated into the trial states describing normal and pair-condensed phases, via a correlation operator F. The resulting theory has the same basic structure as that ordinarily applied for weak two-body interactions; in place of the pairing matrix elements of the bare interaction one finds certain effective pairing matrix elements Psub(kl), and modified single particle energies epsilon (k) appear. Detailed prescriptions are given for the construction of the Psub(kl) and epsilon (k) in terms of off-diagonal and diagonal matrix elements of the Hamiltonian and unit operators in a correlated basis of normal states. An exact criterion for instability of the assumed normal phase with respect to pair condensation is derived for general F. This criterion is investigated numerically for the special case if Jastrow correlations, the required normal-state quantities being evaluated by integral equation techniques which extend the Fermi hypernetted-chain scheme. In neutron matter, an instability with respect to 1 S 0 pairing is found in the low-density region, in concert with the predictions of Yang and Clark. In liquid 3 He, there is some indication of a 3 P 0 pairing instability in the vicinity of the experimental equilibrium density. (orig.)

  18. Correlation between demographic characteristics, cognitive functioning and functional independence in stroke patients

    Directory of Open Access Journals (Sweden)

    Arsić Slađana

    2016-01-01

    Full Text Available Introduction. It has been assumed that there is causality of the achieved level of functional independence with the degree of preservation of cognitive function in stroke patients. Demographic characteristics may be important for monitoring the achieved level of functional independence. Objective. The aim of this study was to examine the relationship of demographic characteristics and functional independence in regard to the level of cognitive impairment in stroke patients. Methods. The study included 50 stroke patients after rehabilitation, as well as age- and gender-matched 50 subjects selected randomly, according to the demographic characteristics of the studied sample, who in their medical history had no neurological disorders. For the assessment of functional independence, the Functional Independence Measure (FIM test was used. The general cognition was estimated by the Mini-Mental State Examination (MMSE test. The statistical analyses included the Mann-Whitney test, for two independent samples, measures of canonical correlation, and χ2 test. Results. There was a statistically significant difference between the groups in relation to risk factors, hypertension and diabetes mellitus type II (p<0.001; There was a statistically significant difference within the groups in relation to the cognitive impairment in all the examined demographic characteristics (p<0.001; the differences within the groups in relation to the cognitive impairment are present on all subscales of the FIM test (p<0.05; the differences within the groups in relation to handedness, hemiparesis, show that mild cognitive impairment is more common among left hemiparesis, while a more severe one is more common among right-sided hemiparesis (p<0.05; More severe cognitive impairment is common among women, the elderly and in persons with lower education (p<0.05. Conclusion. By prevention of risk factors, and prevention of possible cognitive impairment, consequences of stroke can be

  19. Self-reported sleep correlates with prefrontal-amygdala functional connectivity and emotional functioning.

    Science.gov (United States)

    Killgore, William D S

    2013-11-01

    Prior research suggests that sleep deprivation is associated with declines in some aspects of emotional intelligence and increased severity on indices of psychological disturbance. Sleep deprivation is also associated with reduced prefrontal-amygdala functional connectivity, potentially reflecting impaired top-down modulation of emotion. It remains unknown whether this modified connectivity may be observed in relation to more typical levels of sleep curtailment. We examined whether self-reported sleep duration the night before an assessment would be associated with these effects. Participants documented their hours of sleep from the previous night, completed the Bar-On Emotional Quotient Inventory (EQ-i), Mayer-Salovey-Caruso Emotional Intelligence Test (MSCEIT), and Personality Assessment Inventory (PAI), and underwent resting-state functional magnetic resonance imaging (fMRI). Outpatient neuroimaging center at a private psychiatric hospital. Sixty-five healthy adults (33 men, 32 women), ranging in age from 18-45 y. N/A. Greater self-reported sleep the preceding night was associated with higher scores on all scales of the EQ-i but not the MSCEIT, and with lower symptom severity scores on half of the psychopathology scales of the PAI. Longer sleep was also associated with stronger negative functional connectivity between the right ventromedial prefrontal cortex and amygdala. Moreover, greater negative connectivity between these regions was associated with higher EQ-i and lower symptom severity on the PAI. Self-reported sleep duration from the preceding night was negatively correlated with prefrontal-amygdala connectivity and the severity of subjective psychological distress, while positively correlated with higher perceived emotional intelligence. More sleep was associated with higher emotional and psychological strength.

  20. Cluster expansions for the correlated basis functions theory

    Energy Technology Data Exchange (ETDEWEB)

    Guardiola, R. (Granada Univ. (Spain). Dept. de Fisica Nuclear)

    1982-08-16

    Four kinds of cluster expansions for the calculation of non-diagonal matrix elements of the hamiltonian between correlated states have been derived. The derivation is based on a linearization mechanism for the standard cluster expansions in a configuration mixed state. Particulary simple formulae result for the multiplicative Factor-Aviles-Hartog-Tolhoek expansion and for the exponential form of the Gaudin-Gillespie-Ripka cluster expansion. The resulting expansions are directly usable in finite nuclei.

  1. Anisotropic power-law k-inflation

    Science.gov (United States)

    Ohashi, Junko; Soda, Jiro; Tsujikawa, Shinji

    2013-11-01

    It is known that power-law k-inflation can be realized for the Lagrangian P=Xg(Y), where X=-(∂ϕ)2/2 is the kinetic energy of a scalar field ϕ and g is an arbitrary function in terms of Y=Xeλϕ/Mpl (λ is a constant and Mpl is the reduced Planck mass). In the presence of a vector field coupled to the inflaton with an exponential coupling f(ϕ)∝eμϕ/Mpl, we show that the models with the Lagrangian P=Xg(Y) generally give rise to anisotropic inflationary solutions with Σ/H=constant, where Σ is an anisotropic shear and H is an isotropic expansion rate. Provided these anisotropic solutions exist in the regime where the ratio Σ/H is much smaller than 1, they are stable attractors irrespective of the forms of g(Y). We apply our results to concrete models of k-inflation such as the generalized dilatonic ghost condensate and the Dirac-Born-Infeld model and we numerically show that the solutions with different initial conditions converge to the anisotropic power-law inflationary attractors. Even in the de Sitter limit (λ→0) such solutions can exist, but in this case the null energy condition is generally violated. The latter property is consistent with the Wald’s cosmic conjecture stating that the anisotropic hair does not survive on the de Sitter background in the presence of matter respecting the dominant/strong energy conditions.

  2. Tunneling anisotropic magnetoresistance driven by magnetic phase transition.

    Science.gov (United States)

    Chen, X Z; Feng, J F; Wang, Z C; Zhang, J; Zhong, X Y; Song, C; Jin, L; Zhang, B; Li, F; Jiang, M; Tan, Y Z; Zhou, X J; Shi, G Y; Zhou, X F; Han, X D; Mao, S C; Chen, Y H; Han, X F; Pan, F

    2017-09-06

    The independent control of two magnetic electrodes and spin-coherent transport in magnetic tunnel junctions are strictly required for tunneling magnetoresistance, while junctions with only one ferromagnetic electrode exhibit tunneling anisotropic magnetoresistance dependent on the anisotropic density of states with no room temperature performance so far. Here, we report an alternative approach to obtaining tunneling anisotropic magnetoresistance in α'-FeRh-based junctions driven by the magnetic phase transition of α'-FeRh and resultantly large variation of the density of states in the vicinity of MgO tunneling barrier, referred to as phase transition tunneling anisotropic magnetoresistance. The junctions with only one α'-FeRh magnetic electrode show a magnetoresistance ratio up to 20% at room temperature. Both the polarity and magnitude of the phase transition tunneling anisotropic magnetoresistance can be modulated by interfacial engineering at the α'-FeRh/MgO interface. Besides the fundamental significance, our finding might add a different dimension to magnetic random access memory and antiferromagnet spintronics.Tunneling anisotropic magnetoresistance is promising for next generation memory devices but limited by the low efficiency and functioning temperature. Here the authors achieved 20% tunneling anisotropic magnetoresistance at room temperature in magnetic tunnel junctions with one α'-FeRh magnetic electrode.

  3. Transient anisotropic magnetic field calculation

    International Nuclear Information System (INIS)

    Jesenik, Marko; Gorican, Viktor; Trlep, Mladen; Hamler, Anton; Stumberger, Bojan

    2006-01-01

    For anisotropic magnetic material, nonlinear magnetic characteristics of the material are described with magnetization curves for different magnetization directions. The paper presents transient finite element calculation of the magnetic field in the anisotropic magnetic material based on the measured magnetization curves for different magnetization directions. For the verification of the calculation method some results of the calculation are compared with the measurement

  4. The Bell inequality and correlation of spin projection functions

    International Nuclear Information System (INIS)

    Andreev, V A

    2009-01-01

    The Bell inequality two-particle spin states are considered. It is shown that violation of this inequality at experimental verifications is connected with the fact that it is proved for some arbitrary random variables, but in experimental verification random variables of special type are used. A new inequality is constructed. It contains a correlation coefficient of random variables, measured at the experiment, and does not have to be violated at experimental verification. For factorizable and separable states it coincides with the usual Bell inequality.

  5. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite medium

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1981-01-01

    Results are found for the dynamical correlation functions (or its corresponding Green's functions) among any combination including operator pairs of electronic and nuclear spins in an antiferromagnet semi-infinite medium, at low temperatures T [pt

  6. Potential Functional Embedding Theory at the Correlated Wave Function Level. 2. Error Sources and Performance Tests.

    Science.gov (United States)

    Cheng, Jin; Yu, Kuang; Libisch, Florian; Dieterich, Johannes M; Carter, Emily A

    2017-03-14

    Quantum mechanical embedding theories partition a complex system into multiple spatial regions that can use different electronic structure methods within each, to optimize trade-offs between accuracy and cost. The present work incorporates accurate but expensive correlated wave function (CW) methods for a subsystem containing the phenomenon or feature of greatest interest, while self-consistently capturing quantum effects of the surroundings using fast but less accurate density functional theory (DFT) approximations. We recently proposed two embedding methods [for a review, see: Acc. Chem. Res. 2014 , 47 , 2768 ]: density functional embedding theory (DFET) and potential functional embedding theory (PFET). DFET provides a fast but non-self-consistent density-based embedding scheme, whereas PFET offers a more rigorous theoretical framework to perform fully self-consistent, variational CW/DFT calculations [as defined in part 1, CW/DFT means subsystem 1(2) is treated with CW(DFT) methods]. When originally presented, PFET was only tested at the DFT/DFT level of theory as a proof of principle within a planewave (PW) basis. Part 1 of this two-part series demonstrated that PFET can be made to work well with mixed Gaussian type orbital (GTO)/PW bases, as long as optimized GTO bases and consistent electron-ion potentials are employed throughout. Here in part 2 we conduct the first PFET calculations at the CW/DFT level and compare them to DFET and full CW benchmarks. We test the performance of PFET at the CW/DFT level for a variety of types of interactions (hydrogen bonding, metallic, and ionic). By introducing an intermediate CW/DFT embedding scheme denoted DFET/PFET, we show how PFET remedies different types of errors in DFET, serving as a more robust type of embedding theory.

  7. Social cognition in schizophrenia: factor structure, clinical and functional correlates.

    Science.gov (United States)

    Buck, Benjamin E; Healey, Kristin M; Gagen, Emily C; Roberts, David L; Penn, David L

    2016-08-01

    Social cognition is consistently impaired in people with schizophrenia, separable from general neurocognition, predictive of real-world functioning and amenable to psychosocial treatment. Few studies have empirically examined its underlying factor structure. This study (1) examines the factor structure of social cognition in both a sample of individuals with schizophrenia-spectrum disorders and non-clinical controls and (2) explores relationships of factors to neurocognition, symptoms and functioning. A factor analysis was conducted on social cognition measures in a sample of 65 individuals with schizophrenia or schizoaffective disorder, and 50 control participants. The resulting factors were examined for their relationships to symptoms and functioning. Results suggested a two-factor structure in the schizophrenia sample (social cognition skill and hostile attributional style) and a three-factor structure in the non-clinical sample (hostile attributional style, higher-level inferential processing and lower-level cue detection). In the schizophrenia sample, the social cognition skill factor was significantly related to negative symptoms and social functioning, whereas hostile attributional style predicted positive and general psychopathology symptoms. The factor structure of social cognition in schizophrenia separates hostile attributional style and social cognition skill, and each show differential relationships to relevant clinical variables in schizophrenia.

  8. The MATRICS Consensus Cognitive Battery (MCCB): performance and functional correlates.

    Science.gov (United States)

    Lystad, June Ullevoldsæter; Falkum, Erik; Mohn, Christine; Haaland, Vegard Øksendal; Bull, Helen; Evensen, Stig; Rund, Bjørn Rishovd; Ueland, Torill

    2014-12-30

    Neurocognitive impairment is a core feature in psychotic disorders and the MATRICS Consensus Cognitive Battery (MCCB) is now widely used to assess neurocognition in this group. The MATRICS has been translated into several languages, including Norwegian; although this version has yet to be investigated in an adult clinical population. Further, the relationship between the MATRICS and different measures of functioning needs examination. The purpose of this study was to describe neurocognition assessed with the Norwegian version of the MATRICS battery in a sample of patients with psychotic disorders compared to age and gender matched healthy controls and to examine the association with educational-, occupational- and social-functioning in the patient group. One hundred and thirty one patients and 137 healthy controls completed the battery. The Norwegian version of the MATRICS was sensitive to the magnitude of neurocognitive impairments in patients with psychotic disorders, with patients displaying significant impairments on all domains relative to healthy controls. Neurocognition was also related to both self-rated and objective functional measures such as social functioning, educational- and employment-history. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  9. Hybrid exchange-correlation energy functionals for strongly correlated electrons. Applications to transition-metal monoxides

    Czech Academy of Sciences Publication Activity Database

    Tran, F.; Blaha, P.; Schwarz, K.; Novák, Pavel

    2006-01-01

    Roč. 74, č. 15 (2006), 155108/1-155108/10 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214 EU Projects: European Commission(XE) HPRN-CT-2002-00293 - SCOOTMO Grant - others:Austrian Science Fondation(AT) AURORA project SFB011 Institutional research plan: CEZ:AV0Z10100521 Keywords : density functional theory * hybrid functional * transition metal monoxides Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  10. Stoichiometric Correlation Analysis: Principles of Metabolic Functionality from Metabolomics Data

    Directory of Open Access Journals (Sweden)

    Kevin Schwahn

    2017-12-01

    Full Text Available Recent advances in metabolomics technologies have resulted in high-quality (time-resolved metabolic profiles with an increasing coverage of metabolic pathways. These data profiles represent read-outs from often non-linear dynamics of metabolic networks. Yet, metabolic profiles have largely been explored with regression-based approaches that only capture linear relationships, rendering it difficult to determine the extent to which the data reflect the underlying reaction rates and their couplings. Here we propose an approach termed Stoichiometric Correlation Analysis (SCA based on correlation between positive linear combinations of log-transformed metabolic profiles. The log-transformation is due to the evidence that metabolic networks can be modeled by mass action law and kinetics derived from it. Unlike the existing approaches which establish a relation between pairs of metabolites, SCA facilitates the discovery of higher-order dependence between more than two metabolites. By using a paradigmatic model of the tricarboxylic acid cycle we show that the higher-order dependence reflects the coupling of concentration of reactant complexes, capturing the subtle difference between the employed enzyme kinetics. Using time-resolved metabolic profiles from Arabidopsis thaliana and Escherichia coli, we show that SCA can be used to quantify the difference in coupling of reactant complexes, and hence, reaction rates, underlying the stringent response in these model organisms. By using SCA with data from natural variation of wild and domesticated wheat and tomato accession, we demonstrate that the domestication is accompanied by loss of such couplings, in these species. Therefore, application of SCA to metabolomics data from natural variation in wild and domesticated populations provides a mechanistic way to understanding domestication and its relation to metabolic networks.

  11. Development and testing of new exchange correlation functionals

    DEFF Research Database (Denmark)

    Lundgård, Keld Troen

    Catalysts are used in 90% of the world’s chemical processes to produce 60% of its chemical products, and they are thus very important to our modern society. We therefore seek to better understand current catalytic materials, so that we can find alternatives that will improve the energy efficiency......, selectivity or similar of current chemical processes, or to make new technologies economical feasible. Kohn-Sham density functional theory (KS-DFT) has proven to be a powerful theory to find trends in current catalytic materials, which can empower a more informed search for better alternatives. KS-DFT relies...... generally applicable models; a robust MM-estimator loss function, for ensuring resistance to outliers in data; and a hierarchical bootstrap resampling estimating prediction error validation method, for selecting the model complexity that provide best transferability outside the training data. Three new semi...

  12. Correlates of wellness among youth with functional disabilities.

    Science.gov (United States)

    Menear, K S; Preskitt, J K; Goldfarb, S S; Menachemi, N

    2015-04-01

    The literature is more informative on the impediments to wellness among youth with functional limitations and less instructive on the state of wellness for this population. To explore overall wellness, and each sub-dimension of wellness, in a national sample of youth with functional limitations and to determine how demographic characteristics are associated with wellness. Using a previously validated screening instrument, we identify youth with functional limitations aged 12 to 17 represented in the 2011/12 National Survey of Children's Health. Survey items were coded to operationalize an overall wellness score comprised of four sub-dimensions of wellness (i.e., physical, intellectual, emotional, and social). The mean overall wellness score was 26.7 (out of 40) and had an approximate normal distribution. Mean raw scores for each sub-dimension were as follows: social = 2.79 (out of 4; 69.7%); emotional = 4.09 (out of 6; 68.2%); intellectual = 3.79 (out of 8; 47.4%); and physical = 6.30 (out of 8; 78.7%). Lower wellness scores were associated with older age among youth, increasing number of chronic health conditions, lower income, single mother homes, and youth whose mother reported fair or poor mental health status (all p wellness scores were positively associated with mother's education (p wellness and promote family involvement and comprehensive supports, including maternal educational attainment, mental health screening, and referral. Copyright © 2015 Elsevier Inc. All rights reserved.

  13. Functional neural correlates of reduced physiological falls risk.

    Science.gov (United States)

    Nagamatsu, Lindsay S; Hsu, Chun Liang; Handy, Todd C; Liu-Ambrose, Teresa

    2011-08-16

    It is currently unclear whether the function of brain regions associated with executive cognitive processing are independently associated with reduced physiological falls risk. If these are related, it would suggest that the development of interventions targeted at improving executive neurocognitive function would be an effective new approach for reducing physiological falls risk in seniors. We performed a secondary analysis of 73 community-dwelling senior women aged 65 to 75 years old who participated in a 12-month randomized controlled trial of resistance training. Functional MRI data were acquired while participants performed a modified Eriksen Flanker Task - a task of selective attention and conflict resolution. Brain volumes were obtained using MRI. Falls risk was assessed using the Physiological Profile Assessment (PPA). After accounting for baseline age, experimental group, baseline PPA score, and total baseline white matter brain volume, baseline activation in the left frontal orbital cortex extending towards the insula was negatively associated with reduced physiological falls risk over the 12-month period. In contrast, baseline activation in the paracingulate gyrus extending towards the anterior cingulate gyrus was positively associated with reduced physiological falls risk. Baseline activation levels of brain regions underlying response inhibition and selective attention were independently associated with reduced physiological falls risk. This suggests that falls prevention strategies may be facilitated by incorporating intervention components - such as aerobic exercise - that are specifically designed to induce neurocognitive plasticity. ClinicalTrials.gov Identifier: NCT00426881.

  14. Hormonal regulation of alveolarization: structure-function correlation

    Directory of Open Access Journals (Sweden)

    Godinez Marye H

    2006-03-01

    Full Text Available Abstract Background Dexamethasone (Dex limits and all-trans-retinoic acid (RA promotes alveolarization. While structural changes resulting from such hormonal exposures are known, their functional consequences are unclear. Methods Neonatal rats were treated with Dex and/or RA during the first two weeks of life or were given RA after previous exposure to Dex. Morphology was assessed by light microscopy and radial alveolar counts. Function was evaluated by plethysmography at d13, pressure volume curves at d30, and exercise swim testing and arterial blood gases at both d15 and d30. Results Dex-treated animals had simplified lung architecture without secondary septation. Animals given RA alone had smaller, more numerous alveoli. Concomitant treatment with Dex + RA prevented the Dex-induced changes in septation. While the results of exposure to Dex + RA were sustained, the effects of RA alone were reversed two weeks after treatment was stopped. At d13, Dex-treated animals had increased lung volume, respiratory rate, tidal volume, and minute ventilation. On d15, both RA- and Dex-treated animals had hypercarbia and low arterial pH. By d30, the RA-treated animals resolved this respiratory acidosis, but Dex-treated animals continued to demonstrate blood gas and lung volume abnormalities. Concomitant RA treatment improved respiratory acidosis, but failed to normalize Dex-induced changes in pulmonary function and lung volumes. No differences in exercise tolerance were noted at either d15 or d30. RA treatment after the period of alveolarization also corrected the effects of earlier Dex exposure, but the structural changes due to RA alone were again lost two weeks after treatment. Conclusion We conclude that both RA- and corticosteroid-treatments are associated with respiratory acidosis at d15. While RA alone-induced changes in structure andrespiratory function are reversed, Dex-treated animals continue to demonstrate increased respiratory rate, minute

  15. The time-oriented boundary states and the Lorentzian-spinfoam correlation functions

    International Nuclear Information System (INIS)

    Bianchi, Eugenio; Ding You

    2012-01-01

    A time-oriented semiclassical boundary state is introduced to calculate the correlation function in the Lorentzian Engle-Pereira-Rovelli-Livine spinfoam model. The resulting semiclassical correlation function is shown to match with the one in Regge calculus in a proper limit.

  16. Genetic and Environmental Basis in Phenotype Correlation Between Physical Function and Cognition in Aging Chinese Twins

    DEFF Research Database (Denmark)

    Xu, Chunsheng; Zhang, Dongfeng; Tian, Xiaocao

    2017-01-01

    Although the correlation between cognition and physical function has been well studied in the general population, the genetic and environmental nature of the correlation has been rarely investigated. We conducted a classical twin analysis on cognitive and physical function, including forced...

  17. Assessment of density-functional approximations: Long-range correlations and self-interaction effects

    International Nuclear Information System (INIS)

    Jung, J.; Alvarellos, J.E.; Garcia-Gonzalez, P.; Godby, R.W.

    2004-01-01

    The complex nature of electron-electron correlations is made manifest in the very simple but nontrivial problem of two electrons confined within a sphere. The description of highly nonlocal correlation and self-interaction effects by widely used local and semilocal exchange-correlation energy density functionals is shown to be unsatisfactory in most cases. Even the best such functionals exhibit significant errors in the Kohn-Sham potentials and density profiles

  18. Thermodynamics of anisotropic branes

    Energy Technology Data Exchange (ETDEWEB)

    Ávila, Daniel [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Fernández, Daniel [Max-Planck-Institut für Physik,Föhringer Ring 6, 80805 München (Germany); Patiño, Leonardo [Departamento de Física, Facultad de Ciencias, Universidad Nacional Autónoma de México, A.P. 70-542, México D.F. 04510 (Mexico); Trancanelli, Diego [Institute of Physics, University of São Paulo,05314-970 São Paulo (Brazil)

    2016-11-22

    We study the thermodynamics of flavor D7-branes embedded in an anisotropic black brane solution of type IIB supergravity. The flavor branes undergo a phase transition between a ‘Minkowski embedding’, in which they lie outside of the horizon, and a ‘black hole embedding’, in which they fall into the horizon. This transition depends on the black hole temperature, its degree of anisotropy, and the mass of the flavor degrees of freedom. It happens either at a critical temperature or at a critical anisotropy. A general lesson we learn from this analysis is that the anisotropy, in this particular realization, induces similar effects as the temperature. In particular, increasing the anisotropy bends the branes more and more into the horizon. Moreover, we observe that the transition becomes smoother for higher anisotropies.

  19. Anisotropic Rabi model

    Directory of Open Access Journals (Sweden)

    Qiong-Tao Xie

    2014-06-01

    Full Text Available We define the anisotropic Rabi model as the generalization of the spin-boson Rabi model: The Hamiltonian system breaks the parity symmetry; the rotating and counterrotating interactions are governed by two different coupling constants; a further parameter introduces a phase factor in the counterrotating terms. The exact energy spectrum and eigenstates of the generalized model are worked out. The solution is obtained as an elaboration of a recently proposed method for the isotropic limit of the model. In this way, we provide a long-sought solution of a cascade of models with immediate relevance in different physical fields, including (i quantum optics, a two-level atom in single-mode cross-electric and magnetic fields; (ii solid-state physics, electrons in semiconductors with Rashba and Dresselhaus spin-orbit coupling; and (iii mesoscopic physics, Josephson-junction flux-qubit quantum circuits.

  20. Functional and Anatomic Correlates of Neural Aging in Birds.

    Science.gov (United States)

    Ottinger, Mary Ann

    2018-01-01

    Avian species show variation in longevity, habitat, physiologic characteristics, and lifetime endocrine patterns. Lifetime reproductive and metabolic function vary. Much is known about the neurobiology of the song system in many altricial birds. Little is known about aging in neural systems in birds. Captive birds often survive beyond the age they would in the wild, providing an opportunity to gain an understanding of the physiologic and neural changes. This paper reviews the available information with the goal of capturing areas of potential investigation into gaps in our understanding of neural aging as reflected in physiologic, endocrine, and cognitive aging. Copyright © 2017 Elsevier Inc. All rights reserved.

  1. Correlation between videogame mechanics and executive functions through EEG analysis.

    Science.gov (United States)

    Mondéjar, Tania; Hervás, Ramón; Johnson, Esperanza; Gutierrez, Carlos; Latorre, José Miguel

    2016-10-01

    This paper addresses a different point of view of videogames, specifically serious games for health. This paper contributes to that area with a multidisciplinary perspective focus on neurosciences and computation. The experiment population has been pre-adolescents between the ages of 8 and 12 without any cognitive issues. The experiment consisted in users playing videogames as well as performing traditional psychological assessments; during these tasks the frontal brain activity was evaluated. The main goal was to analyse how the frontal lobe of the brain (executive function) works in terms of prominent cognitive skills during five types of game mechanics widely used in commercial videogames. The analysis was made by collecting brain signals during the two phases of the experiment, where the signals were analysed with an electroencephalogram neuroheadset. The validated hypotheses were whether videogames can develop executive functioning and if it was possible to identify which kind of cognitive skills are developed during each kind of typical videogame mechanic. The results contribute to the design of serious games for health purposes on a conceptual level, particularly in support of the diagnosis and treatment of cognitive-related pathologies. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Correlation function and electronic spectral line broadening in relativistic plasmas

    Directory of Open Access Journals (Sweden)

    Douis S.

    2013-01-01

    Full Text Available The electrons dynamics and the time autocorrelation function Cee(t for the total electric microfield of the electrons on positive charge impurity embedded in a plasma are considered when the relativistic dynamic of the electrons is taken into account. We have, at first, built the effective potential governing the electrons dynamics. This potential obeys a nonlinear integral equation that we have solved numerically. Regarding the electron broadening of the line in plasma, we have found that when the plasma parameters change, the amplitude of the collision operator changes in the same way as the time integral of Cee(t. The electron-impurity interaction is taken at first time as screened Deutsh interaction and at the second time as Kelbg interaction. Comparisons of all interesting quantities are made with respect to the previous interactions as well as between classical and relativistic dynamics of electrons.

  3. Equilibrium-Based Nonhomogeneous Anisotropic Beam Element

    DEFF Research Database (Denmark)

    Krenk, Steen; Couturier, Philippe

    2017-01-01

    The stiffness matrix and the nodal forces associated with distributed loads are obtained for a nonhomogeneous anisotropic elastic beam element by the use of complementary energy. The element flexibility matrix is obtained by integrating the complementary-energy density corresponding to six beam...... equilibrium states, and then inverted and expanded to provide the element-stiffness matrix. Distributed element loads are represented via corresponding internal-force distributions in local equilibrium with the loads. The element formulation does not depend on assumed shape functions and can, in principle......, include any variation of cross-sectional properties and load variation, provided that these are integrated with sufficient accuracy in the process. The ability to represent variable cross-sectional properties, coupling from anisotropic materials, and distributed element loads is illustrated by numerical...

  4. Dynamics of anisotropic particles under waves

    Science.gov (United States)

    Dibenedetto, Michelle; Ouellette, Nicholas; Koseff, Jeffrey

    2017-11-01

    We present results on anisotropic particles in wavy flows in order to gain insight into the transport and mixing of microplastic particles in the near-shore environment. From theory and numerical simulations, we find that the rate of alignment of the particles is not constant and depends strongly on their initial orientation; thus, variations in initial particle orientation result in dispersion of anisotropic-particle plumes. We find that this dispersion is a function of the particle's eccentricity and the ratio of the settling and wave time scales. Experiments in which non-spherical particles of various shapes are released under surface gravity waves were also performed. Our main goal is to explore the effects of particle shape under various wave scenarios. We vary the aspect ratio of the particle in our experiments while holding other variables constant. Our results demonstrate that particle shape can be important when predicting transport.

  5. Wireless energy transfer between anisotropic metamaterials shells

    Energy Technology Data Exchange (ETDEWEB)

    Díaz-Rubio, Ana; Carbonell, Jorge; Sánchez-Dehesa, José, E-mail: jsdehesa@upv.es

    2014-06-15

    The behavior of strongly coupled Radial Photonic Crystals shells is investigated as a potential alternative to transfer electromagnetic energy wirelessly. These sub-wavelength resonant microstructures, which are based on anisotropic metamaterials, can produce efficient coupling phenomena due to their high quality factor. A configuration of selected constitutive parameters (permittivity and permeability) is analyzed in terms of its resonant characteristics. The coupling to loss ratio between two coupled resonators is calculated as a function of distance, the maximum (in excess of 300) is obtained when the shells are separated by three times their radius. Under practical conditions an 83% of maximum power transfer has been also estimated. -- Highlights: •Anisotropic metamaterial shells exhibit high quality factors and sub-wavelength size. •Exchange of electromagnetic energy between shells with high efficiency is analyzed. •Strong coupling is supported with high wireless transfer efficiency. •End-to-end energy transfer efficiencies higher than 83% can be predicted.

  6. The shear viscosity in anisotropic phases

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Sachin [Department of Physics, Cornell University,Ithaca, New York 14853 (United States); Samanta, Rickmoy; Trivedi, Sandip P. [Department of Theoretical Physics, Tata Institute of Fundamental Research,Colaba, Mumbai 400005 (India)

    2015-10-06

    We construct anisotropic black brane solutions and analyse the behaviour of some of their metric perturbations. These solutions correspond to field theory duals in which rotational symmetry is broken due an externally applied, spatially constant, force. We find, in several examples, that when the anisotropy is sufficiently big compared to the temperature, some components of the viscosity tensor can become very small in units of the entropy density, parametrically violating the KSS bound. We obtain an expression relating these components of the viscosity, in units of the entropy density, to a ratio of metric components at the horizon of the black brane. This relation is generally valid, as long as the forcing function is translationally invariant, and it directly connects the parametric violation of the bound to the anisotropy in the metric at the horizon. Our results suggest the possibility that such small components of the viscosity tensor might also arise in anisotropic strongly coupled fluids found in nature.

  7. On the zero temperature limit of the Kubo-transformed quantum time correlation function

    Science.gov (United States)

    Hernández de la Peña, Lisandro

    2014-04-01

    The zero temperature limit of several quantum time correlation functions is analysed. It is shown that while the canonical quantum time correlation function retains the full dynamical information as temperature approaches zero, the Kubo-transformed and the thermally symmetrised quantum time correlation functions lose all dynamical information at this limit. This is shown to be a consequence of the projection onto the ground state, via the limiting process of the quantities ? and ?, either together as a product, or separately. Although these findings would seem to suggest that finite-temperature methods commonly used to estimate Kubo correlation functions would be incapable of retaining any ground state dynamics, we propose a route for recovering in principle all dynamical information at the ground state. It is first shown that the usual frequency space relation between canonical and Kubo correlation functions also holds for microcanonical time correlation functions. Since the Kubo-transformed microcanonical correlation function can be obtained from the usual finite-temperature function by including a projection onto the corresponding microcanonical ensemble, finite-temperature methods, properly modified to incorporate such a constraint, can be used to capture full quantum dynamics at any arbitrary energy state, including the ground state. This approach is illustrated with the application of centroid dynamics to the ground state dynamics of the harmonic oscillator.

  8. Socioeconomic status and cognitive functioning: moving from correlation to causation.

    Science.gov (United States)

    Duncan, Greg J; Magnuson, Katherine

    2012-05-01

    A growing body of cognitive research uses sophisticated behavioral and neuroimaging measurements to demonstrate associations between family socioeconomic status (SES) and specific cognitive functions. We argue for the value in these kinds of studies of increased sophistication in the measurement and modeling of SES. With regard to measurement, SES combines several components, each of which represents distinct resources that might benefit children's cognitive development in different ways. Policy implications of studies using omnibus SES composites are problematic because there are no 'treatments' for enhancing overall SES, although policies abound for enhancing specific components of SES such as family income. Past literature offers guidance regarding how best to measure each of the SES components. With regard to modeling, we point out that the manipulability of economic, educational, and occupational components of SES varies, which provides opportunities for generating experimental or quasi-experimental variation in some components but not others. Evidence on the causal connections between SES components and child outcomes is summarized. Both experimental and quasi-experimental studies involving manipulation of family income have demonstrated consistent associations with a number of cognitive measures. Quasi-experimental increases in maternal education have also shown associations with child achievement. We end with a discussion of useful directions in SES-related cognitive research. WIREs Cogn Sci 2012, 3:377-386. doi: 10.1002/wcs.1176 For further resources related to this article, please visit the WIREs website. Copyright © 2012 John Wiley & Sons, Ltd.

  9. Mechanics of anisotropic spring networks.

    Science.gov (United States)

    Zhang, T; Schwarz, J M; Das, Moumita

    2014-12-01

    We construct and analyze a model for a disordered linear spring network with anisotropy. The modeling is motivated by, for example, granular systems, nematic elastomers, and ultimately cytoskeletal networks exhibiting some underlying anisotropy. The model consists of a triangular lattice with two different bond occupation probabilities, p(x) and p(y), for the linear springs. We develop an effective medium theory (EMT) to describe the network elasticity as a function of p(x) and p(y). We find that the onset of rigidity in the EMT agrees with Maxwell constraint counting. We also find beyond linear behavior in the shear and bulk modulus as a function of occupation probability in the rigid phase for small strains, which differs from the isotropic case. We compare our EMT with numerical simulations to find rather good agreement. Finally, we discuss the implications of extending the reach of effective medium theory as well as draw connections with prior work on both anisotropic and isotropic spring networks.

  10. Nonlinearity of the forward-backward correlation function in the model with string fusion

    Science.gov (United States)

    Vechernin, Vladimir

    2017-12-01

    The behavior of the forward-backward correlation functions and the corresponding correlation coefficients between multiplicities and transverse momenta of particles produced in high energy hadronic interactions is analyzed by analytical and MC calculations in the models with and without string fusion. The string fusion is taking into account in simplified form by introducing the lattice in the transverse plane. The results obtained with two alternative definitions of the forward-backward correlation coefficient are compared. It is shown that the nonlinearity of correlation functions increases with the width of observation windows, leading at small string density to a strong dependence of correlation coefficient value on the definition. The results of the modeling enable qualitatively to explain the experimentally observed features in the behavior of the correlation functions between multiplicities and mean transverse momenta at small and large multiplicities.

  11. Covariance estimation for dInSAR surface deformation measurements in the presence of anisotropic atmospheric noise

    KAUST Repository

    Knospe, Steffen H G

    2010-04-01

    We study anisotropic spatial autocorrelation in differential synthetic aperture radar interferometric (dInSAR) measurements and its impact on geophysical parameter estimations. The dInSAR phase acquired by the satellite sensor is a superposition of different contributions, and when studying geophysical processes, we are usually only interested in the surface deformation part of the signal. Therefore, to obtain high-quality results, we would like to characterize and/or remove other phase components. A stochastic model has been found to be appropriate to describe atmospheric phase delay in dInSAR images. However, these phase delays are usually modeled as being isotropic, which is a simplification, because InSAR images often show directional atmospheric anomalies. Here, we analyze anisotropic structures and show validation results using both real and simulated data. We calculate experimental semivariograms of the dInSAR phase in several European Remote Sensing satellite-1/2 tandem interferograms. Based on the theory of random functions (RFs), we then fit anisotropic variogram models in the spatial domain, employing Matérn-and Bessel-family correlation functions in nested models to represent complex dInSAR covariance structures. The presented covariance function types, in the statistical framework of stationary RFs, are consistent with tropospheric delay models. We find that by using anisotropic data covariance information to weight dInSAR measurements, we can significantly improve both the precision and accuracy of geophysical parameter estimations. Furthermore, the improvement is dependent on how similar the deformation pattern is to the dominant structure of the anisotropic atmospheric signals. © 2009 IEEE.

  12. Correlations between motor and sensory functions in upper limb chronic hemiparetics after stroke

    Directory of Open Access Journals (Sweden)

    Thais Botossi Scalha

    2011-08-01

    Full Text Available OBJECTIVE: Describe the somatosensory function of the affected upper limb of hemiparetic stroke patients and investigate the correlations between measurements of motor and sensory functions in tasks with and without visual deprivation. METHOD: We applied the Fugl-Meyer Assessment (FMA, Nottingham Sensory Assessment (NSA, and several motor and sensory tests: Paper manipulation (PM, Motor Sequences (MS, Reaching and grasping (RG Tests Functional (TF, Tactile Discrimination (TD, Weight Discrimination (WD and Tactile Recognition of Objects (RO. RESULTS: We found moderate correlations between the FMA motor subscale and the tactile sensation score of the NSA. Additionally, the FMA sensitivity was correlated with the NSA total; and performance on the WD test items correlated with the NSA. CONCLUSION: There was a correlation between the sensory and motor functions of the upper limb in chronic hemiparetic stroke patients. Additionally, there was a greater reliance on visual information to compensate for lost sensory-motor skills.

  13. Correlation between functional disability and quality of life in patients with adhesive capsulitis

    Science.gov (United States)

    Fernandes, Marcos Rassi

    2015-01-01

    OBJECTIVE: To determine the correlation between functional disability and quality of life of patients with adhesive capsulitis. METHODS: Two instruments (WHOQOL-BREF and DASH) were applied to evaluate the quality of life and functional capacity of patients with adhesive capsulitis. Inclusion criteria were age between 35 and 75 years old and achievement of shoulder imaging. Each domain of the WHOQOL-BREF was correlated with DASH. Pearson's correlation coefficient was used for parametric variables and Spearman's correlation coefficient was used when at least one variable had a non-normal distribution. The level of significance was p adhesive capsulitis. Level of Evidence IV, Prospective Study. PMID:27069405

  14. Correlations of Egen Klassifikation and Barthel Index scores with pulmonary function parameters in Duchenne muscular dystrophy.

    Science.gov (United States)

    Brunherotti, Marisa Afonso; Sobreira, Claudia; Rodrigues-Júnior, Antônio Luiz; de Assis, Marcos Renato; Terra Filho, João; Baddini Martinez, José Antônio

    2007-01-01

    This study investigated the correlations obtained by using the Egen Klassifikation (EK) and Barthel Index (BI) functional scales and respiratory function parameters in patients with Duchenne muscular dystrophy. Spirometry, maximal respiratory pressures, and arterial blood gases were analyzed and graded according to the EK and BI scales in 26 patients. They were classified as high or low risk for introduction of noninvasive ventilation according to the respiratory function. The EK and BI scales significantly correlated with forced vital capacity, forced expiratory volume in 1 second, and maximal respiratory pressures. The worse the functional performance, the worse the respiratory measurements. The degree of correlation between the functional scales and each respiratory parameter was similar. An EK of 21 or higher predicted high risk for the introduction of noninvasive ventilation. EK and BI scales similarly correlated with the degree of respiratory involvement in Duchenne muscular dystrophy. The EK scale was superior in detecting subjects with a higher risk for introduction of noninvasive ventilation.

  15. Disadvantage factor for anisotropic scattering

    International Nuclear Information System (INIS)

    Saad, E.A.; Abdel Krim, M.S.; EL-Dimerdash, A.A.

    1990-01-01

    The invariant embedding method is used to solve the problem for a two region reactor with anisotropic scattering and to compute the disadvantage factor necessary for calculating some reactor parameters

  16. Photon states in anisotropic media

    Indian Academy of Sciences (India)

    Abstract. Quantum aspects of optical polarization are discussed for waves traveling in anisotropic dielectric media with a view to relate the dynamics of polarization with that of photon spin and its manipulation by classical polarizers.

  17. The correlation functions for the clustering of galaxies and Abell clusters

    International Nuclear Information System (INIS)

    Jones, B.J.T.; Jones, J.E.; Copenhagen Univ.

    1985-01-01

    The difference in amplitudes between the galaxy-galaxy correlation function and the correlation function between Abell clusters is a consequence of two facts. Firstly, most Abell clusters with z<0.08 lie in a relatively small volume of the sampled space, and secondly, the fraction of galaxies lying in Abell clusters differs considerably inside and outside of this volume. (The Abell clusters are confined to a smaller volume of space than are the galaxies.) We discuss the implications of this interpretation of the clustering correlation functions and present a simple model showing how such a situation may arise quite naturally in standard theories for galaxy formation. (orig.)

  18. Correlation functions of the energy-momentum tensor in SU(2) gauge theory at finite temperature

    DEFF Research Database (Denmark)

    Huebner, K.; Karsch, F.; Pica, Claudio

    2008-01-01

    We calculate correlation functions of the energy-momentum tensor in the vicinity of the deconfinement phase transition of (3+1)-dimensional SU(2) gauge theory and discuss their critical behavior in the vicinity of the second order deconfinement transition. We show that correlation functions...... of the trace of the energy momentum tensor diverge uniformly at the critical point in proportion to the specific heat singularity. Correlation functions of the pressure, on the other hand, stay finite at the critical point. We discuss the consequences of these findings for the analysis of transport...

  19. The Functional Architecture of Noise Correlation in fMRI Responses from Human Visual Cortex

    Directory of Open Access Journals (Sweden)

    Jungwon Ryu

    2011-05-01

    Full Text Available When an identical stimulus is presented repeatedly, the activity of sensory cortical neurons varies from trial to trial, dubbed ‘neuronal noise’. Recent electrophysiological and imaging studies reported that the ‘noise’ is not just a random and independent deviation from signal and reflects correlated activity among local cortical sites. Here we investigated the structure of correlated ‘noises’ in early human visual areas by monitoring moment-to-moment fluctuations in fMRI responses to visual stimuli. By defining receptive fields and stimulus preferences of individual voxels, we could reveal a reliable functional architecture of noise correlation: noise correlation was high in pairs of voxels whose stimulus preferences are similar and whose receptive fields are close to each other. The analysis of residual correlation confirmed that this functionally defined structure of noise correlation could not be explained by trivial correlations due to anatomical proximity. The spectral analysis of time series revealed that the stimulus-preference-dependent correlation was maximal at a low (<0.035Hz band of temporal frequency whereas the receptive field-dependent correlation was maximal at a medium (0.035∼0.082Hz band. Furthermore, the functional structure of noise correlation was held true for voxel pairs within and between different visual areas, regardless of the presence or types of visual stimulation.

  20. Bryan's effect and anisotropic nonlinear damping

    Science.gov (United States)

    Joubert, Stephan V.; Shatalov, Michael Y.; Fay, Temple H.; Manzhirov, Alexander V.

    2018-03-01

    In 1890, G. H. Bryan discovered the following: "The vibration pattern of a revolving cylinder or bell revolves at a rate proportional to the inertial rotation rate of the cylinder or bell." We call this phenomenon Bryan's law or Bryan's effect. It is well known that any imperfections in a vibratory gyroscope (VG) affect Bryan's law and this affects the accuracy of the VG. Consequently, in this paper, we assume that all such imperfections are either minimised or eliminated by some known control method and that only damping is present within the VG. If the damping is isotropic (linear or nonlinear), then it has been recently demonstrated in this journal, using symbolic analysis, that Bryan's law remains invariant. However, it is known that linear anisotropic damping does affect Bryan's law. In this paper, we generalise Rayleigh's dissipation function so that anisotropic nonlinear damping may be introduced into the equations of motion. Using a mixture of numeric and symbolic analysis on the ODEs of motion of the VG, for anisotropic light nonlinear damping, we demonstrate (up to an approximate average), that Bryan's law is affected by any form of such damping, causing pattern drift, compromising the accuracy of the VG.

  1. The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: theoretical systematics and Baryon Acoustic Oscillations in the galaxy correlation function

    Science.gov (United States)

    Vargas-Magaña, Mariana; Ho, Shirley; Cuesta, Antonio J.; O'Connell, Ross; Ross, Ashley J.; Eisenstein, Daniel J.; Percival, Will J.; Grieb, Jan Niklas; Sánchez, Ariel G.; Tinker, Jeremy L.; Tojeiro, Rita; Beutler, Florian; Chuang, Chia-Hsun; Kitaura, Francisco-Shu; Prada, Francisco; Rodríguez-Torres, Sergio A.; Rossi, Graziano; Seo, Hee-Jong; Brownstein, Joel R.; Olmstead, Matthew; Thomas, Daniel

    2018-03-01

    We investigate the potential sources of theoretical systematics in the anisotropic Baryon Acoustic Oscillation (BAO) distance scale measurements from the clustering of galaxies in configuration space using the final Data Release (DR12) of the Baryon Oscillation Spectroscopic Survey (BOSS). We perform a detailed study of the impact on BAO measurements from choices in the methodology such as fiducial cosmology, clustering estimators, random catalogues, fitting templates, and covariance matrices. The theoretical systematic uncertainties in BAO parameters are found to be 0.002 in the isotropic dilation α and 0.003 in the quadrupolar dilation ɛ. The leading source of systematic uncertainty is related to the reconstruction techniques. Theoretical uncertainties are sub-dominant compared with the statistical uncertainties for BOSS survey, accounting 0.2σstat for α and 0.25σstat for ɛ (σα, stat ˜0.010 and σɛ, stat ˜ 0.012 respectively). We also present BAO-only distance scale constraints from the anisotropic analysis of the correlation function. Our constraints on the angular diameter distance DA(z) and the Hubble parameter H(z), including both statistical and theoretical systematic uncertainties, are 1.5% and 2.8% at zeff = 0.38, 1.4% and 2.4% at zeff = 0.51, and 1.7% and 2.6% at zeff = 0.61. This paper is part of a set that analyzes the final galaxy clustering dataset from BOSS. The measurements and likelihoods presented here are cross-checked with other BAO analysis in Alam et al. (2016). The systematic error budget concerning the methodology on post-reconstruction BAO analysis presented here is used in Alam et al. (2016). to produce the final cosmological constraints from BOSS.

  2. Analysis of anisotropic shells containing flowing fluid

    International Nuclear Information System (INIS)

    Lakis, A.A.

    1983-01-01

    A general theory for the dynamic analysis of anisotropic thin cylindrical shells containing flowing fluid is presented. The shell may be uniform or non-uniform, provided it is geometrically axially symmetric. This is a finite- element theory, using cylindrical finite elements, but the displacement functions are determined by using classical shell theory. A new solution of the wave equation of the liquid finite element leads to an expression of the fluid pressure, p, as a function of the nodal displacements of the element and three operative forces (inertia, centrifugal and Coriolis) of the moving fluid. (Author) [pt

  3. Anisotropic nonequilibrium hydrodynamic attractor

    Science.gov (United States)

    Strickland, Michael; Noronha, Jorge; Denicol, Gabriel S.

    2018-02-01

    We determine the dynamical attractors associated with anisotropic hydrodynamics (aHydro) and the DNMR equations for a 0 +1 d conformal system using kinetic theory in the relaxation time approximation. We compare our results to the nonequilibrium attractor obtained from the exact solution of the 0 +1 d conformal Boltzmann equation, the Navier-Stokes theory, and the second-order Mueller-Israel-Stewart theory. We demonstrate that the aHydro attractor equation resums an infinite number of terms in the inverse Reynolds number. The resulting resummed aHydro attractor possesses a positive longitudinal-to-transverse pressure ratio and is virtually indistinguishable from the exact attractor. This suggests that an optimized hydrodynamic treatment of kinetic theory involves a resummation not only in gradients (Knudsen number) but also in the inverse Reynolds number. We also demonstrate that the DNMR result provides a better approximation of the exact kinetic theory attractor than the Mueller-Israel-Stewart theory. Finally, we introduce a new method for obtaining approximate aHydro equations which relies solely on an expansion in the inverse Reynolds number. We then carry this expansion out to the third order, and compare these third-order results to the exact kinetic theory solution.

  4. Acoustic anisotropic wavefields through perturbation theory

    KAUST Repository

    Alkhalifah, Tariq Ali

    2013-09-01

    Solving the anisotropic acoustic wave equation numerically using finite-difference methods introduces many problems and media restriction requirements, and it rarely contributes to the ability to resolve the anisotropy parameters. Among these restrictions are the inability to handle media with η<0 and the presence of shear-wave artifacts in the solution. Both limitations do not exist in the solution of the elliptical anisotropic acoustic wave equation. Using perturbation theory in developing the solution of the anisotropic acoustic wave equation allows direct access to the desired limitation-free solutions, that is, solutions perturbed from the elliptical anisotropic background medium. It also provides a platform for parameter estimation because of the ability to isolate the wavefield dependency on the perturbed anisotropy parameters. As a result, I derive partial differential equations that relate changes in the wavefield to perturbations in the anisotropy parameters. The solutions of the perturbation equations represented the coefficients of a Taylor-series-type expansion of the wavefield as a function of the perturbed parameter, which is in this case η or the tilt of the symmetry axis. The expansion with respect to the symmetry axis allows use of an acoustic transversely isotropic media with a vertical symmetry axis (VTI) kernel to estimate the background wavefield and the corresponding perturbation coefficients. The VTI extrapolation kernel is about one-fourth the cost of the transversely isotropic model with a tilt in the symmetry axis kernel. Thus, for a small symmetry axis tilt, the cost of migration using a first-order expansion can be reduced. The effectiveness of the approach was demonstrated on the Marmousi model.

  5. Correlation between Gross Motor Function Classification System and Communication Function Classification System in Children with Cerebral Palsy

    Directory of Open Access Journals (Sweden)

    Vindy Margaretha

    2017-06-01

    Full Text Available Background: Cerebral Palsy (CP is a group of movement and posture disorder commonly accompanied by comorbidities such as sensation, cognition, communication abnormalities and many more. This study aimed to identify the correlation between gross motor function(measured by Gross Motor Function Classification System, GMFCS and communication function (measured by Communication Function Classification System, CFCS in children with CP. Methods: Thirty six children with CP aged 0–12 years were examined. Samples were taken from Department of Physical Medicine and Rehabilitation Dr. Hasan Sadikin General Hospital Bandung on September to October 2015. Patients’ descriptive data, levels of GMFCS and CFCS were collected by the researcher and residents previously standardized. Kendall’s tau b correlation coefficient was used to analyze the inter-relationship between the GMFCS and CFCS. Results: Levels of GMFCS and CFCS in all samples were moderately correlated (r=0.405; p=0.004. In patients with spastic quadripledic type, correlation were found moderate(r=0.495; p=0.014. No significant correlation was found when CP spastic quadriplegic patients were excluded (r=0.048, p=0.829. Conclusions: Levels of GMFCS and CFCS should be described to provide the complete gross motor and communication picture of CP children.Gross motor function in a child with spastic quadriplegic CP might be correctly predicted from his/ her communication function and vice versa.   DOI: 10.15850/amj.v4n2.1092

  6. Gleaning structural and functional information from correlations in protein multiple sequence alignments.

    Science.gov (United States)

    Neuwald, Andrew F

    2016-06-01

    The availability of vast amounts of protein sequence data facilitates detection of subtle statistical correlations due to imposed structural and functional constraints. Recent breakthroughs using Direct Coupling Analysis (DCA) and related approaches have tapped into correlations believed to be due to compensatory mutations. This has yielded some remarkable results, including substantially improved prediction of protein intra- and inter-domain 3D contacts, of membrane and globular protein structures, of substrate binding sites, and of protein conformational heterogeneity. A complementary approach is Bayesian Partitioning with Pattern Selection (BPPS), which partitions related proteins into hierarchically-arranged subgroups based on correlated residue patterns. These correlated patterns are presumably due to structural and functional constraints associated with evolutionary divergence rather than to compensatory mutations. Hence joint application of DCA- and BPPS-based approaches should help sort out the structural and functional constraints contributing to sequence correlations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Performance of exchange-correlation functionals in density functional theory calculations for liquid metal: A benchmark test for sodium

    Science.gov (United States)

    Han, Jeong-Hwan; Oda, Takuji

    2018-04-01

    The performance of exchange-correlation functionals in density-functional theory (DFT) calculations for liquid metal has not been sufficiently examined. In the present study, benchmark tests of Perdew-Burke-Ernzerhof (PBE), Armiento-Mattsson 2005 (AM05), PBE re-parameterized for solids, and local density approximation (LDA) functionals are conducted for liquid sodium. The pair correlation function, equilibrium atomic volume, bulk modulus, and relative enthalpy are evaluated at 600 K and 1000 K. Compared with the available experimental data, the errors range from -11.2% to 0.0% for the atomic volume, from -5.2% to 22.0% for the bulk modulus, and from -3.5% to 2.5% for the relative enthalpy depending on the DFT functional. The generalized gradient approximation functionals are superior to the LDA functional, and the PBE and AM05 functionals exhibit the best performance. In addition, we assess whether the error tendency in liquid simulations is comparable to that in solid simulations, which would suggest that the atomic volume and relative enthalpy performances are comparable between solid and liquid states but that the bulk modulus performance is not. These benchmark test results indicate that the results of liquid simulations are significantly dependent on the exchange-correlation functional and that the DFT functional performance in solid simulations can be used to roughly estimate the performance in liquid simulations.

  8. Quantum spin correction scheme based on spin-correlation functional for Kohn-Sham spin density functional theory

    International Nuclear Information System (INIS)

    Yamanaka, Shusuke; Takeda, Ryo; Nakata, Kazuto; Takada, Toshikazu; Shoji, Mitsuo; Kitagawa, Yasutaka; Yamaguchi, Kizashi

    2007-01-01

    We present a simple quantum correction scheme for ab initio Kohn-Sham spin density functional theory (KS-SDFT). This scheme is based on a mapping from ab initio results to a Heisenberg model Hamiltonian. The effective exchange integral is estimated by using energies and spin correlation functionals calculated by ab initio KS-SDFT. The quantum-corrected spin-correlation functional is open to be designed to cover specific quantum spin fluctuations. In this article, we present a simple correction for dinuclear compounds having multiple bonds. The computational results are discussed in relation to multireference (MR) DFT, by which we treat the quantum many-body effects explicitly

  9. Studies in astronomical time series analysis. III - Fourier transforms, autocorrelation functions, and cross-correlation functions of unevenly spaced data

    Science.gov (United States)

    Scargle, Jeffrey D.

    1989-01-01

    This paper develops techniques to evaluate the discrete Fourier transform (DFT), the autocorrelation function (ACF), and the cross-correlation function (CCF) of time series which are not evenly sampled. The series may consist of quantized point data (e.g., yes/no processes such as photon arrival). The DFT, which can be inverted to recover the original data and the sampling, is used to compute correlation functions by means of a procedure which is effectively, but not explicitly, an interpolation. The CCF can be computed for two time series not even sampled at the same set of times. Techniques for removing the distortion of the correlation functions caused by the sampling, determining the value of a constant component to the data, and treating unequally weighted data are also discussed. FORTRAN code for the Fourier transform algorithm and numerical examples of the techniques are given.

  10. Four-point correlation function of stress-energy tensors in N=4 superconformal theories

    CERN Document Server

    Korchemsky, G P

    2015-01-01

    We derive the explicit expression for the four-point correlation function of stress-energy tensors in four-dimensional N=4 superconformal theory. We show that it has a remarkably simple and suggestive form allowing us to predict a large class of four-point correlation functions involving the stress-energy tensor and other conserved currents. We then apply the obtained results on the correlation functions to computing the energy-energy correlations, which measure the flow of energy in the final states created from the vacuum by a source. We demonstrate that they are given by a universal function independent of the choice of the source. Our analysis relies only on N=4 superconformal symmetry and does not use the dynamics of the theory.

  11. Correlation functions of the chiral stress-tensor multiplet in $ \\mathcal{N}=4 $ SYM

    CERN Document Server

    Chicherin, Dmitry; Eden, Burkhard; Heslop, Paul; Korchemsky, Gregory P.; Mason, Lionel; Sokatchev, Emery

    2015-01-01

    We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.

  12. Correlation functions of the chiral stress-tensor multiplet in N=4 SYM

    Energy Technology Data Exchange (ETDEWEB)

    Chicherin, Dmitry [LAPTH (Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108),Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France); Doobary, Reza [Science Laboratories, Mathematics Department, Durham University, South Rd, Durham DH1 3LE (United Kingdom); Eden, Burkhard [Institut für Mathematik und Physik, Humboldt-Universität,Zum großen Windkanal 6, 12489 Berlin (Germany); Heslop, Paul [Science Laboratories, Mathematics Department, Durham University, South Rd, Durham DH1 3LE (United Kingdom); Korchemsky, Gregory P. [Institut de Physique Théorique, Unité Mixte de Recherche du CNRS, UMR 3681,CEA Saclay, 91191 Gif-sur-Yvette Cedex (France); Mason, Lionel [Mathematics Department, Oxford University,Woodstock Road, OX2 6GG (United Kingdom); Sokatchev, Emery [LAPTH (Laboratoire d’Annecy-le-Vieux de Physique Théorique, UMR 5108),Université de Savoie, CNRS, B.P. 110, F-74941 Annecy-le-Vieux (France); Physics Department, Theory Unit, CERN,CH -1211, Geneva 23 (Switzerland); Institut Universitaire de France,103, bd Saint-Michel F-75005 Paris (France)

    2015-06-29

    We give a new method for computing the correlation functions of the chiral part of the stress-tensor supermultiplet that relies on the reformulation of N=4 SYM in twistor space. It yields the correlation functions in the Born approximation as a sum of Feynman diagrams on twistor space that involve only propagators and no integration vertices. We use this unusual feature of the twistor Feynman rules to compute the correlation functions in terms of simple building blocks which we identify as a new class of N=4 off-shell superconformal invariants. Making use of the duality between correlation functions and planar scattering amplitudes, we demonstrate that these invariants represent an off-shell generalisation of the on-shell invariants defining tree-level scattering amplitudes in N=4 SYM.

  13. Virtual reality functional capacity assessment in schizophrenia: Preliminary data regarding feasibility and correlations with cognitive and functional capacity performance

    OpenAIRE

    Stacy A. Ruse; Philip D. Harvey; Vicki G. Davis; Alexandra S. Atkins; Kolleen H. Fox; Richard S.E. Keefe

    2014-01-01

    Introduction: Assessment of functional capacity is an intrinsic part of determining the functional relevance of response to treatment of cognitive impairment in schizophrenia. Existing methods are highly and consistently correlated with performance on neuropsychological tests, but most current assessments of functional capacity are still paper and pencil simulations. We developed a computerized virtual reality assessment that contains all of the components of a shopping trip. Methods: We a...

  14. Application of the anisotropic phase-field crystal model to investigate the lattice systems of different anisotropic parameters and orientations

    Science.gov (United States)

    Kundin, Julia; Ajmal Choudhary, Muhammad

    2017-07-01

    In this article, we present the recent advances in the development of the anisotropic phase-field crystal (APFC) model. These advances are important in basic researches for multiferroic and thermoelectric materials with anisotropic crystal lattices and in thin-film applications. We start by providing a general description of the model derived in our previous studies based on the crystal symmetry and the microscopic dynamical density functional theory for anisotropic interactions and show that there exist only two possible degrees of freedom for the anisotropic lattices which are described by two independent parameters. New findings concerning the applications of the APFC model for the estimation of the elastic modules of anisotropic systems including sheared and stretched lattices as well as for the investigation of the heterogeneous thin film growth are described. The simulation results demonstrate the strong dependency of the misfit dislocation formation during the film growth on the anisotropy and reveal the asymmetric behavior in the cases of positive and negative misfits. We also present the development of the amplitude representation for the full APFC model of two orientation variants and show the relationship between the wave vectors and the base angles of the anisotropic lattices.

  15. The correlation of neurophysiological findings with clinical and functional status in patients following traumatic nerve injury.

    Science.gov (United States)

    Şahin, F; Atalay, N Ş; Akkaya, N; Ercidoğan, Ö; Başakçi, B; Kuran, B

    2014-02-01

    In this study, we aimed to determine whether there is a correlation between the electrodiagnostic findings and the functional status, muscle strength and sensibility in patients with traumatic nerve injury to the wrists. We assessed 50 patients at a mean of 11.6 months (SD 5.85) (range 6-25) after nerve injury. Sensibility was assessed by monofilament testing. Motor function was evaluated by assessing the manual muscle grade of the abductor pollicis brevis and abductor digiti minimi muscles. Function was evaluated by the Sollerman Hand Function Test. The amplitudes of the compound muscle action potential and the sensory nerve action potential were determined by electroneuromyography. While the compound muscle action potential and sensory nerve action potential amplitudes had significant correlation with muscle grade and Semmes Weinstein Monofilament tests, there was no correlation with the functional scores.

  16. Correlation Function Approach for Estimating Thermal Conductivity in Highly Porous Fibrous Materials

    Science.gov (United States)

    Martinez-Garcia, Jorge; Braginsky, Leonid; Shklover, Valery; Lawson, John W.

    2011-01-01

    Heat transport in highly porous fiber networks is analyzed via two-point correlation functions. Fibers are assumed to be long and thin to allow a large number of crossing points per fiber. The network is characterized by three parameters: the fiber aspect ratio, the porosity and the anisotropy of the structure. We show that the effective thermal conductivity of the system can be estimated from knowledge of the porosity and the correlation lengths of the correlation functions obtained from a fiber structure image. As an application, the effects of the fiber aspect ratio and the network anisotropy on the thermal conductivity is studied.

  17. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2001-01-01

    Based on the analysis of auto-correlation function, the notion of the distance between auto-correlation function was quoted, and the characterization of the noise and the signal with noise were discussed by using the distance. Then, the method of auto- adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low signal with noise ratio circumstance

  18. Generalized q-deformed correlation functions as spectral functions of hyperbolic geometry

    Energy Technology Data Exchange (ETDEWEB)

    Bonora, L. [International School for Advanced Studies (SISSA/ISAS), Trieste (Italy); INFN, Sezione di Trieste, Trieste (Italy); Bytsenko, A.A. [Universidade Estadual de Londrina, Departamento de Fisica, Caixa Postal 6001, Londrina, Parana (Brazil); Guimaraes, M.E.X. [Universidade Federal Fluminense, Instituto de Fisica, Niteroi-RJ CEP (Brazil)

    2014-08-15

    We analyze the role of vertex operator algebra and 2d amplitudes from the point of view of the representation theory of infinite-dimensional Lie algebras, MacMahon and Ruelle functions. By definition p-dimensional MacMahon function, with p ≤ 3, is the generating function of p-dimensional partitions of integers. These functions can be represented as amplitudes of a two-dimensional c = 1 CFT, and, as such, they can be generalized to p > 3. With some abuse of language we call the latter amplitudes generalized MacMahon functions. In this paper we show that generalized p-dimensional MacMahon functions can be rewritten in terms of Ruelle spectral functions, whose spectrum is encoded in the Patterson-Selberg function of three-dimensional hyperbolic geometry. (orig.)

  19. Inhomogeneity induced and appropriately parameterized semilocal exchange and correlation energy functionals in two-dimensions

    Science.gov (United States)

    Patra, Abhilash; Jana, Subrata; Samal, Prasanjit

    2018-04-01

    The construction of meta generalized gradient approximations based on the density matrix expansion (DME) is considered as one of the most accurate techniques to design semilocal exchange energy functionals in two-dimensional density functional formalism. The exchange holes modeled using DME possess unique features that make it a superior entity. Parameterized semilocal exchange energy functionals based on the DME are proposed. The use of different forms of the momentum and flexible parameters is to subsume the non-uniform effects of the density in the newly constructed semilocal functionals. In addition to the exchange functionals, a suitable correlation functional is also constructed by working upon the local correlation functional developed for 2D homogeneous electron gas. The non-local effects are induced into the correlation functional by a parametric form of one of the newly constructed exchange energy functionals. The proposed functionals are applied to the parabolic quantum dots with a varying number of confined electrons and the confinement strength. The results obtained with the aforementioned functionals are quite satisfactory, which indicates why these are suitable for two-dimensional quantum systems.

  20. Spatially heterogeneous dynamics investigated via a time-dependent four-point density correlation function

    DEFF Research Database (Denmark)

    Lacevic, N.; Starr, F. W.; Schrøder, Thomas

    2003-01-01

    Relaxation in supercooled liquids above their glass transition and below the onset temperature of "slow" dynamics involves the correlated motion of neighboring particles. This correlated motion results in the appearance of spatially heterogeneous dynamics or "dynamical heterogeneity." Traditional...... two-point time-dependent density correlation functions, while providing information about the transient "caging" of particles on cooling, are unable to provide sufficiently detailed information about correlated motion and dynamical heterogeneity. Here, we study a four-point, time-dependent density......-q behavior of S4(q,t) provides an estimate of the range of correlated particle motion. We find that xi4(t) has a maximum as a function of time t, and that the value of the maximum of xi4(t) increases steadily from less than one particle diameter to a value exceeding nine particle diameters in the temperature...

  1. Ion and impurity transport in turbulent, anisotropic magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Negrea, M; Petrisor, I [Department of Physics, Association Euratom-MEdC, Romania, University of Craiova, A.I. Cuza str. 13, Craiova (Romania); Isliker, H; Vogiannou, A; Vlahos, L [Section of Astrophysics, Astronomy and Mechanics, Department of Physics, University of Thessaloniki, Association Euratom-Hellenic Republic, 541 24 Thessaloniki (Greece); Weyssow, B [Physique Statistique-Plasmas, Association Euratom-Etat Belge, Universite Libre de Bruxelles, Campus Plaine, Bd. du Triomphe, 1050 Bruxelles (Belgium)

    2011-08-15

    We investigate ion and impurity transport in turbulent, possibly anisotropic, magnetic fields. The turbulent magnetic field is modeled as a correlated stochastic field, with Gaussian distribution function and prescribed spatial auto-correlation function, superimposed onto a strong background field. The (running) diffusion coefficients of ions are determined in the three-dimensional environment, using two alternative methods, the semi-analytical decorrelation trajectory (DCT) method, and test-particle simulations. In a first step, the results of the test-particle simulations are compared with and used to validate the results obtained from the DCT method. For this purpose, a drift approximation was made in slab geometry, and relatively good qualitative agreement between the DCT method and the test-particle simulations was found. In a second step, the ion species He, Be, Ne and W, all assumed to be fully ionized, are considered under ITER-like conditions, and the scaling of their diffusivities is determined with respect to varying levels of turbulence (varying Kubo number), varying degrees of anisotropy of the turbulent structures and atomic number. In a third step, the test-particle simulations are repeated without drift approximation, directly using the Lorentz force, first in slab geometry, in order to assess the finite Larmor radius effects, and second in toroidal geometry, to account for the geometric effects. It is found that both effects are important, most prominently the effects due to toroidal geometry and the diffusivities are overestimated in slab geometry by an order of magnitude.

  2. The role of correlation functions in the theory of optical wave fields

    NARCIS (Netherlands)

    Schouten, H.; Visser, T.D.

    2008-01-01

    We discuss the fundamental role of correlation functions in optical wave fields. These functions determine important properties such as the spectrum, the state of polarization, and the state of coherence of light. These properties generally change on propagation, even when the field travels through

  3. Neural Correlates of Visual Perceptual Expertise: Evidence from Cognitive Neuroscience Using Functional Neuroimaging

    Science.gov (United States)

    Gegenfurtner, Andreas; Kok, Ellen M.; van Geel, Koos; de Bruin, Anique B. H.; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically addressed in visual expertise research. Second,…

  4. The Geriatric Hand: Correlation of Hand-Muscle Function and Activity Restriction in Elderly

    Science.gov (United States)

    Incel, Nurgul Arinci; Sezgin, Melek; As, Ismet; Cimen, Ozlem Bolgen; Sahin, Gunsah

    2009-01-01

    On the basis of the importance of hand manipulation in activities of daily living (ADL), deterioration of hand function because of various factors reduces quality and independence of life of the geriatric population. The aim of this study was to identify age-induced changes in manual function and to quantify the correlations between hand-muscle…

  5. Functional Correlates of Cognitive Dysfunction in Multiple Sclerosis: A Multicenter fMRI Study

    NARCIS (Netherlands)

    Rocca, M.A.; Valsasina, P.; Hulst, H.E.; Abdel-Aziz, K.; Enzinger, C.; Gallo, A.; Pareto, D.; Riccitelli, G.; Muhlert, N.; Ciccarelli, O.; Barkhof, F.; Fazekas, F.; Tedeschi, G.; Arevalo, M.J.; Filippi, M.

    2014-01-01

    In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR)

  6. Neural correlates of visual perceptual expertise: Evidence from cognitive neuroscience using functional neuroimaging

    NARCIS (Netherlands)

    Gegenfurtner, Andreas; Kok, Ellen M; Van Geel, Koos; de Bruin, Anique B H; Sorger, Bettina

    2017-01-01

    Functional neuroimaging is a useful approach to study the neural correlates of visual perceptual expertise. The purpose of this paper is to review the functional-neuroimaging methods that have been implemented in previous research in this context. First, we will discuss research questions typically

  7. Towards nonlocal density functionals by explicit modeling of the exchange-correlation hole in inhomogeneous systems

    NARCIS (Netherlands)

    Giesbertz, K.J.H.; van Leeuwen, Robert; von Barth, Ulf

    We put forward an approach for the development of a nonlocal density functional by a direct modeling of the shape of exchange-correlation (xc) hole in inhomogeneous systems. The functional is aimed at giving an accurate xc energy and an accurate corresponding xc potential even in difficult

  8. Nonlinear, anisotropic, and giant photoconductivity in intrinsic and doped graphene

    Science.gov (United States)

    Singh, Ashutosh; Ghosh, Saikat; Agarwal, Amit

    2018-01-01

    We present a framework to calculate the anisotropic and nonlinear photoconductivity for two band systems with application to graphene. In contrast to the usual perturbative (second order in the optical field strength) techniques, we calculate photoconductivity to all orders in the optical field strength. In particular, for graphene, we find the photoresponse to be giant (at large optical field strengths) and anisotropic. The anisotropic photoresponse in graphene is correlated with polarization of the incident field, with the response being similar to that of a half-wave plate. We predict that the anisotropy in the simultaneous measurement of longitudinal (σx x) and transverse (σy x) photoconductivity, with four probes, offers a unique experimental signature of the photovoltaic response, distinguishing it from the thermal-Seebeck and bolometric effects in photoresponse.

  9. Signed zeros of Gaussian vector fields - density, correlation functions and curvature

    CERN Document Server

    Foltin, G

    2003-01-01

    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.

  10. Correlation functions of electronic and nuclear spins in a Heisenberg antiferromagnet semi-infinite media

    International Nuclear Information System (INIS)

    Sarmento, E.F.

    1980-01-01

    Results are found for the correlation dynamic functions (or the correspondent green functions) between any combination including pairs of electronic anel nuclear spin operators in an antiferromagnet semi-infinite media., at low temperature T N . These correlation functions, are used to investigate, at the same time, the properties of surface spin waves in volume and surface. The dispersion relatons of nuclear and electronic spin waves coupled modes, in surface are found, resolving a system of linearized equatons of spin operators a system of linearized equations of spin operators. (author) [pt

  11. Total and Direct Correlation Function Integrals from Molecular Simulation of Binary Systems

    DEFF Research Database (Denmark)

    Wedberg, Nils Hejle Rasmus Ingemar; O’Connell, John P.; Peters, Günther H.J.

    2011-01-01

    The possibility for obtaining derivative properties for mixtures from integrals of spatial total and direct correlation functions obtained from molecular dynamics simulations is explored. Theoretically well-supported methods are examined to extend simulation radial distribution functions to long...... are consistent with an excess Helmholtz energy model fitted to available simulations. In addition, simulations of water/methanol and water/t-butanol mixtures have been carried out. The method yields results for partial molar volumes, activity coefficient derivatives, and individual correlation function integrals...

  12. Defining the effective temperature of a quantum driven system from current-current correlation functions

    Science.gov (United States)

    Caso, A.; Arrachea, L.; Lozano, G. S.

    2012-08-01

    We calculate current-current correlation functions and find an expression for the zero-frequency noise of multiterminal systems driven by harmonically time-dependent voltages within the Keldysh non-equilibrium Green's functions formalism. We also propose a fluctuation-dissipation relation for current-current correlation functions to define an effective temperature. We discuss the behavior of this temperature and compare it with the local temperature determined by a thermometer and with the effective temperature defined from a single-particle fluctuation-dissipation relation. We show that for low frequencies all the definitions of the temperature coincide.

  13. Formulation of cross-anisotropic failure criterion for soils

    Directory of Open Access Journals (Sweden)

    Yi-fei Sun

    2013-10-01

    Full Text Available Inherently anisotropic soil fabric has a considerable influence on soil strength. To model this kind of inherent anisotropy, a three-dimensional anisotropic failure criterion was proposed, employing a scalar-valued anisotropic variable and a modified general threedimensional isotropic failure criterion. The scalar-valued anisotropic variable in all sectors of the deviatoric plane was defined by correlating a normalized stress tensor with a normalized fabric tensor. Detailed comparison between the available experimental data and the corresponding model predictions in the deviatoric plane was conducted. The proposed failure criterion was shown to well predict the failure behavior in all sectors, especially in sector II with the Lode angle ranging between 60° and 120°, where the prediction was almost in accordance with test data. However, it was also observed that the proposed criterion overestimated the strength of dense Santa Monica Beach sand in sector III where the intermediate principal stress ratio b varied from approximately 0.2 to 0.8, and slightly underestimated the strength when b was between approximately 0.8 and 1. The difference between the model predictions and experimental data was due to the occurrence of shear bending, which might reduce the measured strength. Therefore, the proposed anisotropic failure criterion has a strong ability to characterize the failure behavior of various soils and potentially allows a better description of the influence of the loading direction with respect to the soil fabric.

  14. Investigation of anisotropic scattering for optical tomography in biological tissues

    International Nuclear Information System (INIS)

    Mercimek, M.; Yildirim, H.; Geckinli, M.; Aydin, M.; Aydin, E. D.

    2009-01-01

    Photons with wavelengths in near infrared region are used in optical tomography. Radiation transport theory should be preferred instead of diffusion theory for numerical modelling of photon migration in biological tissues, where diffusion theory is invalid. For example, diffusion theory is not sufficient in the regions of close to boundaries, sources or sinks and highly absorbing or void-like media. Also anisotropic scattering must be considered in the numerical models since scattering is generally highly anisotropic in biological tissues. In addition to the absorption and scattering coefficients, a suitable phase function must be known in anisotropic scattering study. Here we have compared scattering phase functions for anisotropy. Then we have calculated Legendre moments which are necessary for the implementation of anisotropy factors into the transport code, PARTISN. Discrete ordinates method (SN) has been used in the transport calculations. We have obtained solutions first a homogeneous and then heterogeneous medium.

  15. Modeling of charged anisotropic compact stars in general relativity

    Energy Technology Data Exchange (ETDEWEB)

    Dayanandan, Baiju; Maurya, S.K.; T, Smitha T. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman)

    2017-06-15

    A charged compact star model has been determined for anisotropic fluid distribution. We have solved the Einstein-Maxwell field equations to construct the charged compact star model by using the radial pressure, the metric function e{sup λ} and the electric charge function. The generic charged anisotropic solution is verified by exploring different physical conditions like causality condition, mass-radius relation and stability of the solution (via the adiabatic index, TOV equations and the Herrera cracking concept). It is observed that the present charged anisotropic compact star model is compatible with the star PSR 1937+21. Moreover, we also presented the EOS ρ = f(p) for the present charged compact star model. (orig.)

  16. Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory.

    Science.gov (United States)

    Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra

    2017-12-29

    In a recent study, we have found that for a large number of systems the configurational entropy at the pair level S_{c2}, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature T_{c}. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to T_{c}. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.

  17. Role of the Pair Correlation Function in the Dynamical Transition Predicted by Mode Coupling Theory

    Science.gov (United States)

    Nandi, Manoj Kumar; Banerjee, Atreyee; Dasgupta, Chandan; Bhattacharyya, Sarika Maitra

    2017-12-01

    In a recent study, we have found that for a large number of systems the configurational entropy at the pair level Sc 2, which is primarily determined by the pair correlation function, vanishes at the dynamical transition temperature Tc. Thus, it appears that the information of the transition temperature is embedded in the structure of the liquid. In order to investigate this, we describe the dynamics of the system at the mean field level and, using the concepts of the dynamical density functional theory, show that the dynamical transition temperature depends only on the pair correlation function. Thus, this theory is similar in spirit to the microscopic mode coupling theory (MCT). However, unlike microscopic MCT, which predicts a very high transition temperature, the present theory predicts a transition temperature that is similar to Tc. This implies that the information of the dynamical transition temperature is embedded in the pair correlation function.

  18. Parental reflective functioning and the neural correlates of processing infant affective cues.

    Science.gov (United States)

    Rutherford, Helena J V; Maupin, Angela N; Landi, Nicole; Potenza, Marc N; Mayes, Linda C

    2017-10-01

    Parental reflective functioning refers to the capacity for a parent to understand their own and their infant's mental states, and how these mental states relate to behavior. Higher levels of parental reflective functioning may be associated with greater sensitivity to infant emotional signals in fostering adaptive and responsive caregiving. We investigated this hypothesis by examining associations between parental reflective functioning and neural correlates of infant face and cry perception using event-related potentials (ERPs) in a sample of recent mothers. We found both early and late ERPs were associated with different components of reflective functioning. These findings suggest that parental reflective functioning may be associated with the neural correlates of infant cue perception and further support the value of enhancing reflective functioning as a mechanism in parenting intervention programs.

  19. RELATIVISTIC CYCLOTRON INSTABILITY IN ANISOTROPIC PLASMAS

    Energy Technology Data Exchange (ETDEWEB)

    López, Rodrigo A.; Moya, Pablo S.; Muñoz, Víctor; Valdivia, J. Alejandro [Departamento de Física, Facultad de Ciencias, Universidad de Chile, Casilla 653, Santiago (Chile); Navarro, Roberto E.; Araneda, Jaime A. [Departamento de Física, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción (Chile); Viñas, Adolfo F., E-mail: rlopez186@gmail.com [NASA Goddard Space Flight Center, Heliophysics Science Division, Geospace Physics Laboratory, Mail Code 673, Greenbelt, MD 20771 (United States)

    2016-11-20

    A sufficiently large temperature anisotropy can sometimes drive various types of electromagnetic plasma micro-instabilities, which can play an important role in the dynamics of relativistic pair plasmas in space, astrophysics, and laboratory environments. Here, we provide a detailed description of the cyclotron instability of parallel propagating electromagnetic waves in relativistic pair plasmas on the basis of a relativistic anisotropic distribution function. Using plasma kinetic theory and particle-in-cell simulations, we study the influence of the relativistic temperature and the temperature anisotropy on the collective and noncollective modes of these plasmas. Growth rates and dispersion curves from the linear theory show a good agreement with simulations results.

  20. Angular correlations and high energy evolution

    International Nuclear Information System (INIS)

    Kovner, Alex; Lublinsky, Michael

    2011-01-01

    We address the question of to what extent JIMWLK evolution is capable of taking into account angular correlations in a high energy hadronic wave function. Our conclusion is that angular (and indeed other) correlations in the wave function cannot be reliably calculated without taking into account Pomeron loops in the evolution. As an example we study numerically the energy evolution of angular correlations between dipole scattering amplitudes in the framework of the large N c approximation to JIMWLK evolution (the 'projectile dipole model'). Target correlations are introduced via averaging over an (isotropic) ensemble of anisotropic initial conditions. We find that correlations disappear very quickly with rapidity even inside the saturation radius. This is in accordance with our physical picture of JIMWLK evolution. The actual correlations inside the saturation radius in the target QCD wave function, on the other hand, should remain sizable at any rapidity.

  1. Continuum mechanics of anisotropic materials

    CERN Document Server

    Cowin, Stephen C

    2013-01-01

    Continuum Mechanics of Anisotropic Materials(CMAM) presents an entirely new and unique development of material anisotropy in the context of an appropriate selection and organization of continuum mechanics topics. These features will distinguish this continuum mechanics book from other books on this subject. Textbooks on continuum mechanics are widely employed in engineering education, however, none of them deal specifically with anisotropy in materials. For the audience of Biomedical, Chemical and Civil Engineering students, these materials will be dealt with more frequently and greater accuracy in their analysis will be desired. Continuum Mechanics of Anisotropic Materials' author has been a leader in the field of developing new approaches for the understanding of anisotropic materials.

  2. Correlation between adolescents low back pain, trunk muscle functions and physical activity

    OpenAIRE

    Tuzikaitė, Gintarė

    2016-01-01

    Correlation Between Adolescents Low Back Pain, Trunk Muscle Functions and Physical Activity The aim of research work: The aim of this study was to evaluate the relationship between adolescents low back pain, trunk muscle functions and physical activity. Tasks of work: 1. To assess and compare the lumbar proprioception in subjects with and without low back pain. 2. To assess and compare the trunk muscle functions in subjects with and without low back pain. 3. To assess and compare the physical...

  3. On the spurious correlations among the ratio data induced by "the Law of Power Function"

    OpenAIRE

    Kusakabe, Shinichi

    2011-01-01

    Most of the statistical data have power functional relationships with the size of the population, and therefore these statistical data fall in the powerfunctional relationships each other. These relations were analyzed through the derivations based on the simple model, and the law underlying these relations was called as "the Law of Power Function". These power functional relationships necessarily cause the spurious correlations in the regression analyses. These analyses cast doubt the basic ...

  4. [Correlations Between Joint Proprioception, Muscle Strength, and Functional Ability in Patients with Knee Osteoarthritis].

    Science.gov (United States)

    Chen, Yoa; Yu, Yong; He, Cheng-qi

    2015-11-01

    To establish correlations between joint proprioception, muscle flexion and extension peak torque, and functional ability in patients with knee osteoarthritis (OA). Fifty-six patients with symptomatic knee OA were recruited in this study. Both proprioceptive acuity and muscle strength were measured using the isomed-2000 isokinetic dynamometer. Proprioceptive acuity was evaluated by establishing the joint motion detection threshold (JMDT). Muscle strength was evaluated by Max torque (Nm) and Max torque/weight (Nm/ kg). Functional ability was assessed by the Western Ontario and McMaster Universities Osteoarthritis Index physical function (WOMAC-PF) questionnaire. Correlational analyses were performed between proprioception, muscle strength, and functional ability. A multiple stepwise regression model was established, with WOMAC-PF as dependent variable and patient age, body mass index (BMI), visual analogue scale (VAS)-score, mean grade for Kellgren-Lawrance of both knees, mean strength for quadriceps and hamstring muscles of both knees, and mean JMDT of both knees as independent variables. Poor proprioception (high JMDT) was negatively correlated with muscle strength (Pproprioception (high JMDT) and joint pain (WOMAC pain score), and between knee proprioception (high JMDT) and joint stiffness (WOMAC stiffness score). Poor proprioception (high JMDT) was correlated with limitation in functional ability (WOMAC physical function score r=0.659, Pproprioception is associated with poor muscle strength and limitation in functional ability. Patients with symptomatic OA of knees commonly endure with moderate to considerable dysfunction, which is associated with poor proprioception (high JMDT) and high VAS-scale score.

  5. Correlation between mild hypoxaemia and limb skeletal muscle function in chronic obstructive pulmonary disease - pilot study.

    Science.gov (United States)

    Leite Rodrigues, Sérgio; Melo e Silva, César Augusto; Ferreira Amorim, César; Lima, Terezinha; Almeida Ribeiro, Fernanda; de Assis Viegas, Carlos Alberto

    2008-01-01

    Exercise capacity in COPD patients depends on the degree of airflow obstruction, the severity of the hypoxaemia and skeletal muscle function. Muscle atrophy and weakness are considered systemic consequences of COPD and are associated with reduced exercise capacity. To investigate the correlation between mild hypoxaemia and muscular strength, muscular fatigue and functional capacity in COPD patients. Ten patients enrolled on a PRP at the Hospital Universitário de Brasília - HUB were included in this study. Lung function was evaluated by spirometry and arterial blood gas analysis. Functional evaluation was made using the 6MWT and using isometric contraction of deltoid and quadriceps muscles. There were positive correlations between PaO2, quadriceps strength (r2 = 0.61 and p = 0.007) and PaO2 and the 6MWT (r2 = 0.96, p = 0.001). There were negative correlations between PaO2 and median frequency of quadriceps (r2 = -0.42 and p = 0.04). We observed significant correlation between quadriceps strength and the 6MWT (r2 = 0.67 and p = 0.001). There was negative correlation between median frequency of quadriceps and the 6MWT (r2 = -0.42 and p = 0.04). We did not observe any correlation between PaO2 and strength or median frequency of deltoid muscle. PaO2 has important correlations with muscular function variables. The main negative impact of mild hypoxaemia and precocious limb muscular disability on COPD patients is decreased functional capacity.

  6. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    Science.gov (United States)

    Jiang, Fan; Ding, Wei

    2010-10-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors.

  7. Anisotropic hydrodynamics: Motivation and methodology

    Energy Technology Data Exchange (ETDEWEB)

    Strickland, Michael

    2014-06-15

    In this proceedings contribution I review recent progress in our understanding of the bulk dynamics of relativistic systems that possess potentially large local rest frame momentum-space anisotropies. In order to deal with these momentum-space anisotropies, a reorganization of relativistic viscous hydrodynamics can be made around an anisotropic background, and the resulting dynamical framework has been dubbed “anisotropic hydrodynamics”. I also discuss expectations for the degree of momentum-space anisotropy of the quark–gluon plasma generated in relativistic heavy ion collisions at RHIC and LHC from second-order viscous hydrodynamics, strong-coupling approaches, and weak-coupling approaches.

  8. Correlation between quadriceps to hamstring ratio and functional outcomes in patellofemoral pain.

    Science.gov (United States)

    Guney, Hande; Yuksel, Inci; Kaya, Defne; Doral, Mahmut Nedim

    2016-08-01

    The aim of this study was to investigate the correlation between quadriceps to hamstring (Q:H) ratio and the functional outcomes in Patellofemoral Pain (PFP) patients. The study included forty-four women diagnosed with unilateral PFP. Eccentric and concentric quadriceps and hamstring strength were recorded. Conventional Q:H ratio was calculated as the concentric quadriceps to concentric hamstring peak torque (Ratio 1). Functional ratios were calculated as the eccentric quadriceps to concentric hamstring peak torque (Ratio 2) and as the concentric quadriceps to eccentric hamstring torque (Ratio 3). Functional levels of the patients were determined by using Kujala scores, hop test and step test. Pain levels during activities were recorded. The relationship among Ratio 1, Ratio 2 and Ratio 3 with functional outcomes and pain levels were evaluated using Spearman's correlation coefficient test. Eccentric and concentric quadriceps and hamstring strength were lower on involved side than uninvolved side. Ratio 2 correlated stronger with Kujala score (r=0.69) than Ratio 1 (r=0.49) and Ratio 3 (r=0.30). Step test (r=0.35) and hop test (r=0.38) only correlated with Ratio 2. Pain levels correlated more with Ratio 2 (r values ranged between 0.38 and 0.48). Eccentric quadriceps to concentric hamstring ratio was observed more related to the functional outcomes and painful activities in patients with PFP. Cross-sectional study. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Calculating the n-point correlation function with general and efficient python code

    Science.gov (United States)

    Genier, Fred; Bellis, Matthew

    2018-01-01

    There are multiple approaches to understanding the evolution of large-scale structure in our universe and with it the role of baryonic matter, dark matter, and dark energy at different points in history. One approach is to calculate the n-point correlation function estimator for galaxy distributions, sometimes choosing a particular type of galaxy, such as luminous red galaxies. The standard way to calculate these estimators is with pair counts (for the 2-point correlation function) and with triplet counts (for the 3-point correlation function). These are O(n2) and O(n3) problems, respectively and with the number of galaxies that will be characterized in future surveys, having efficient and general code will be of increasing importance. Here we show a proof-of-principle approach to the 2-point correlation function that relies on pre-calculating galaxy locations in coarse “voxels”, thereby reducing the total number of necessary calculations. The code is written in python, making it easily accessible and extensible and is open-sourced to the community. Basic results and performance tests using SDSS/BOSS data will be shown and we discuss the application of this approach to the 3-point correlation function.

  10. Nonseparable exchange-correlation functional for molecules, including homogeneous catalysis involving transition metals.

    Science.gov (United States)

    Yu, Haoyu S; Zhang, Wenjing; Verma, Pragya; He, Xiao; Truhlar, Donald G

    2015-05-14

    The goal of this work is to develop a gradient approximation to the exchange-correlation functional of Kohn-Sham density functional theory for treating molecular problems with a special emphasis on the prediction of quantities important for homogeneous catalysis and other molecular energetics. Our training and validation of exchange-correlation functionals is organized in terms of databases and subdatabases. The key properties required for homogeneous catalysis are main group bond energies (database MGBE137), transition metal bond energies (database TMBE32), reaction barrier heights (database BH76), and molecular structures (database MS10). We also consider 26 other databases, most of which are subdatabases of a newly extended broad database called Database 2015, which is presented in the present article and in its ESI. Based on the mathematical form of a nonseparable gradient approximation (NGA), as first employed in the N12 functional, we design a new functional by using Database 2015 and by adding smoothness constraints to the optimization of the functional. The resulting functional is called the gradient approximation for molecules, or GAM. The GAM functional gives better results for MGBE137, TMBE32, and BH76 than any available generalized gradient approximation (GGA) or than N12. The GAM functional also gives reasonable results for MS10 with an MUE of 0.018 Å. The GAM functional provides good results both within the training sets and outside the training sets. The convergence tests and the smooth curves of exchange-correlation enhancement factor as a function of the reduced density gradient show that the GAM functional is a smooth functional that should not lead to extra expense or instability in optimizations. NGAs, like GGAs, have the advantage over meta-GGAs and hybrid GGAs of respectively smaller grid-size requirements for integrations and lower costs for extended systems. These computational advantages combined with the relatively high accuracy for all

  11. Nonequilibrium current-carrying steady states in the anisotropic X Y spin chain

    Science.gov (United States)

    Lancaster, Jarrett L.

    2016-05-01

    Out-of-equilibrium behavior is explored in the one-dimensional anisotropic X Y model. Initially preparing the system in the isotropic X X model with a linearly varying magnetic field to create a domain-wall magnetization profile, dynamics is generated by rapidly changing the exchange interaction anisotropy and external magnetic field. Relaxation to a nonequilibrium steady state is studied analytically at the critical transverse Ising point, where correlation functions may be computed in closed form. For arbitrary values of anisotropy and external field, an effective generalized Gibbs' ensemble is shown to accurately describe observables in the long-time limit. Additionally, we find spatial oscillations in the exponentially decaying, transverse spin-spin correlation functions with wavelength set by the magnetization jump across the initial domain wall. This wavelength depends only weakly on anisotropy and magnetic field in contrast to the current, which is highly dependent on these parameters.

  12. Source-Free Exchange-Correlation Magnetic Fields in Density Functional Theory.

    Science.gov (United States)

    Sharma, S; Gross, E K U; Sanna, A; Dewhurst, J K

    2018-03-13

    Spin-dependent exchange-correlation energy functionals in use today depend on the charge density and the magnetization density: E xc [ρ, m]. However, it is also correct to define the functional in terms of the curl of m for physical external fields: E xc [ρ,∇ × m]. The exchange-correlation magnetic field, B xc , then becomes source-free. We study this variation of the theory by uniquely removing the source term from local and generalized gradient approximations to the functional. By doing so, the total Kohn-Sham moments are improved for a wide range of materials for both functionals. Significantly, the moments for the pnictides are now in good agreement with experiment. This source-free method is simple to implement in all existing density functional theory codes.

  13. Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors

    Science.gov (United States)

    Pundik, Svetlana; Falchook, Adam D.; McCabe, Jessica; Daly, Janis J.

    2014-01-01

    Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months) were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks). Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI) for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P = 0.001) and greater sensory deficits (P = 0.003). Second, rehabilitation produced improvement in upper limb spasticity and motor function (P spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho = 0.49, P = 0.03). Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r = −0.755, P = 0.003), premotor (r = −0.565, P = 0.04), primary sensory (r = −0.614, P = 0.03), and associative sensory (r = −0.597, P = 0.03) regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke. PMID:25101190

  14. Impairments in precision grip correlate with functional measures in adult hemiplegia.

    Science.gov (United States)

    McDonnell, Michelle N; Hillier, Susan L; Ridding, Michael C; Miles, Timothy S

    2006-07-01

    Analysis of a precision grip-lift task provides measures to assess functional disability of the hand, but the correlation between these measures and accepted tests of motor function in stroke patients has not been established. Seventeen subacute stroke patients were studied to compare parameters of a precision grip-lift task between the affected and unaffected side, and to correlate them with function. Functional impairment was assessed with the Action Research Arm Test and the Fugl-Meyer assessment, as well as grip strength and maximal finger-tapping speed. The grip force (GF) and load force (LF) were recorded as patients lifted a custom-built manipulandum. All measures were recorded on two separate occasions, at least 1 week apart. There was good reproducibility between testing sessions for the grip-lift and functional measures. The affected hand gripped the manipulandum for longer prior to lift-off than the unaffected hand, and the normal close temporal coupling between the rate of change of GF and LF during the lift was disrupted. These two measures correlated more highly with the ARAT than the FMA and, when combined with measures of grip strength and tapping speed, explained 71% of the variance of the ARAT. The grip-lift task is a sensitive measure of impaired dexterity following stroke and provides measures which correlate well with a commonly applied functional assessment scale. This task may be used clinically to detect changes in the hemiplegic upper limb during rehabilitation and recovery.

  15. Pulmonary function tests correlated with thoracic volumes in adolescent idiopathic scoliosis.

    Science.gov (United States)

    Ledonio, Charles Gerald T; Rosenstein, Benjamin E; Johnston, Charles E; Regelmann, Warren E; Nuckley, David J; Polly, David W

    2017-01-01

    Scoliosis deformity has been linked with deleterious changes in the thoracic cavity that affect pulmonary function. The causal relationship between spinal deformity and pulmonary function has yet to be fully defined. It has been hypothesized that deformity correction improves pulmonary function by restoring both respiratory muscle efficiency and increasing the space available to the lungs. This research aims to correlate pulmonary function and thoracic volume before and after scoliosis correction. Retrospective correlational analysis between thoracic volume modeling from plain x-rays and pulmonary function tests was conducted. Adolescent idiopathic scoliosis patients enrolled in a multicenter database were sorted by pre-operative Total Lung Capacities (TLC) % predicted values from their Pulmonary Function Tests (PFT). Ten patients with the best and ten patients with the worst TLC values were included. Modeled thoracic volume and TLC values were compared before and 2 years after surgery. Scoliosis correction resulted in an increase in the thoracic volume for patients with the worst initial TLCs (11.7%) and those with the best initial TLCs (12.5%). The adolescents with the most severe pulmonary restriction prior to surgery strongly correlated with post-operative change in total lung capacity and thoracic volume (r 2  = 0.839; p Scoliosis correction in adolescents was found to increase thoracic volume and is strongly correlated with improved TLC in cases with severe restrictive pulmonary function, but no correlation was found in cases with normal pulmonary function. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 35:175-182, 2017. © 2016 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.

  16. Rigorous proof for the nonlocal correlation function in the transverse Ising model with ring frustration

    Science.gov (United States)

    Dong, Jian-Jun; Zheng, Zhen-Yu; Li, Peng

    2018-01-01

    An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015), 10.1103/PhysRevE.91.042123] for the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit [J. Stat. Mech. (2016) 113102, 10.1088/1742-5468/2016/11/113102]. In this paper, we further prove that all the low excited energy states forming the gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.

  17. The role of three-gluon correlation functions in the single spin asymmetry

    Directory of Open Access Journals (Sweden)

    Beppu Hiroo

    2015-01-01

    Full Text Available We study the twist-3 three-gluon contribution to the single spin asymmetry in the light-hadron production in pp collision in the framework of the collinear factorization. We derive the corresponding cross section formula in the leading order with respect to the QCD coupling constant. We also present a numerical calculation of the asymmetry at the RHIC energy, using a model for the three-gluon correlation functions suggested by the asymmetry for the D-meson production at RHIC. We found that the asymmetries for the light-hadron and the jet productions are very useful to constrain the magnitude and form of the correlation functions. Since the three-gluon correlation functions shift the asymmetry for all kinds of hadrons in the same direction, it is unlikely that they become a main source of the asymmetry.

  18. Functional connectivity analysis of fMRI data based on regularized multiset canonical correlation analysis.

    Science.gov (United States)

    Deleus, Filip; Van Hulle, Marc M

    2011-04-15

    In this paper we describe a method for functional connectivity analysis of fMRI data between given brain regions-of-interest (ROIs). The method relies on nonnegativity constrained- and spatially regularized multiset canonical correlation analysis (CCA), and assigns weights to the fMRI signals of the ROIs so that their representative signals become simultaneously maximally correlated. The different pairwise correlations between the representative signals of the ROIs are combined using the maxvar approach for multiset CCA, which has been shown to be equivalent to the generalized eigenvector formulation of CCA. The eigenvector in the maxvar approach gives an indication of the relative importance of each ROI in obtaining a maximal overall correlation, and hence, can be interpreted as a functional connectivity pattern of the ROIs. The successive canonical correlations define subsequent functional connectivity patterns, in decreasing order of importance. We apply our method on synthetic data and real fMRI data and show its advantages compared to unconstrained CCA and to PCA. Furthermore, since the representative signals for the ROIs are optimized for maximal correlation they are also ideally suited for further effective connectivity analyses, to assess the information flows between the ROIs in the brain. Copyright © 2011 Elsevier B.V. All rights reserved.

  19. Description and reconstruction of the soil pore space using correlation functions

    Science.gov (United States)

    Gerke, K. M.; Karsanina, M. V.; Skvortsova, E. B.

    2012-09-01

    In this paper a method for the description and reconstruction of the soil pore space using correlation functions has been examined. The reconstruction procedure employed here is the best way of verification of the potential descriptor of the soil pore space. Thin sections representing eight major types of pore space in zonal loamy soils and parent materials of the Russian Plain with pores of different shapes and orientations have been chosen for this study. Comparison based on the morphological analysis of the original pore space images and their correlation function reconstructions obtained using simulated annealing technique indicates that this method of reconstruction adequately describes the isometric soil pore space with isometric dissected, isometric slightly dissected, and rounded pores. The two-point correlation functions calculated with the use of the orthogonal method proved to be different for the examined types of soil pore space; they reflect the soil porosity, specific surface, and pore structure correlations at different lengths. The results of this study allow us to conclude that the description of the soil pore space with the help of correlation functions is a promising approach, but requires more development. Further directions of the development of this method for describing the soil pore space and determining the soil physical processes are outlined.

  20. 2D seismic reflection tomography in strongly anisotropic media

    Science.gov (United States)

    Huang, Guangnan; Zhou, Bing; Li, Hongxi; Zhang, Hua; Li, Zelin

    2014-12-01

    Seismic traveltime tomography is an effective method to reconstruct underground anisotropic parameters. Currently, most anisotropic tomographic methods were developed under the assumption of weak anisotropy. The tomographic method proposed here can be implemented for imaging subsurface targets in strongly anisotropic media with a known tilted symmetry axis, since the adopted ray tracing method is suitable for anisotropic media with arbitrary degree. There are three kinds of reflection waves (qP, qSV and qSH waves) that were separately used to invert the blocky abnormal body model. The reflection traveltime tomographiy is developed here because a surface observation system is the most economical and practical way compared with crosswell and VSP. The numerical examples show that the traveltimes of qP reflection wave have inverted parameters {{c}11},{{c}13},{{c}33} \\text{and} {{c}44} successfully. Traveltimes of qSV reflection wave have inverted parameters {{c}11},{{c}33} \\text{and} {{c}44} successfully, with the exception of the {{c}13}, since it is less sensitive than other parameters. Traveltimes of qSH reflection wave also have inverted parameters {{c}44} \\text{and} {{c}66} successfully. In addition, we find that the velocity sensitivity functions (derivatives of phase velocity with respect to elastic moduli parameters) and raypath illuminating angles have a great influence on the qualities of tomograms according to the inversion of theoretical models. Finally, the numerical examples confirm that the reflection traveltime tomography can be applied to invert strongly anisotropic models.

  1. Failure in imperfect anisotropic materials

    DEFF Research Database (Denmark)

    Legarth, Brian Nyvang

    2005-01-01

    The fundamental cause of crack growth, namely nucleation and growth of voids, is investigated numerically for a two phase imperfect anisotropic material. A unit cell approach is adopted from which the overall stress strain is evaluated. Failure is observed as a sudden stress drop and depending...

  2. All spherically symmetric charged anisotropic solutions for compact stars

    Energy Technology Data Exchange (ETDEWEB)

    Maurya, S.K. [University of Nizwa, Department of Mathematical and Physical Sciences, College of Arts and Science, Nizwa (Oman); Gupta, Y.K. [Raj Kumar Goel Institute of Technology, Department of Mathematics, Ghaziabad, UP (India); Ray, Saibal [Government College of Engineering and Ceramic Technology, Department of Physics, Kolkata, West Bengal (India)

    2017-06-15

    In the present paper we develop an algorithm for all spherically symmetric anisotropic charged fluid distributions. Considering a new source function ν(r) we find a set of solutions which is physically well behaved and represents compact stellar models. A detailed study specifically shows that the models actually correspond to strange stars in terms of their mass and radius. In this connection we investigate several physical properties like energy conditions, stability, mass-radius ratio, electric charge content, anisotropic nature and surface redshift through graphical plots and mathematical calculations. All the features from these studies are in excellent agreement with the already available evidence in theory as well as observations. (orig.)

  3. Correlation between the body balance and functional capacity from elderly with chronic vestibular disorders.

    Science.gov (United States)

    Sousa, Raquel Ferreira de; Gazzola, Juliana Maria; Ganança, Maurício Malavasi; Paulino, Célia Aparecida

    2011-01-01

    Vestibular disorders are common among the elderly, mainly resulting in dizziness and imbalance--symptoms which can impact daily routine activities. To study the correlation between body balance and functional capacity and a comparison of risk of falls, actual falls and the functional capacity of the elderly with chronic vestibular dysfunctions. A cross-sectional, clinical and experimental study with 50 senior citizens--60 to 86 years, with chronic peripheral vestibular dysfunction. These participants underwent body balance assessment by the Dynamic Gait Index (DGI) and functional capacity assessment by the Functional Independence Measure (FIM). The data was tested using the Spearman correlation and comparison tests, Mann-Whitney and Kruskal-Wallis, being α=5% (0.05). There was a significant correlation between the total DGI score and all FIM scores, especially the total score (r=0.447; pbalance and functional capacity in elderly patients with peripheral vestibular disorders, that is: the better the balance, the better the individual's functional capacity. In addition, a worse functional capacity increases the individual's risk of falling.

  4. Anisotropic dark energy and CMB anomalies

    International Nuclear Information System (INIS)

    Battye, Richard; Moss, Adam

    2009-01-01

    We investigate the breaking of global statistical isotropy caused by a dark energy component with an energy-momentum tensor which has point symmetry, that could represent a cubic or hexagonal crystalline lattice. In such models Gaussian, adiabatic initial conditions created during inflation can lead to anisotropies in the cosmic microwave background whose spherical harmonic coefficients are correlated, contrary to the standard assumption. We develop an adaptation of the line of sight integration method that can be applied to models where the background energy-momentum tensor is isotropic, but whose linearized perturbations are anisotropic. We then show how this can be applied to the cases of cubic and hexagonal symmetry. We compute quantities which show that such models are indistinguishable from isotropic models even in the most extreme parameter choices, in stark contrast to models with anisotropic initial conditions based on inflation. The reason for this is that the dark energy based models contribute to the CMB anisotropy via the integrated Sachs-Wolfe effect, which is only relevant when the dark energy is dominant, that is, on the very largest scales. For inflationary models, however, the anisotropy is present on all scales.

  5. Performance of prioritized activities is not correlated with functional factors after grip reconstruction in tetraplegia.

    Science.gov (United States)

    Wangdell, Johanna; Fridén, Jan

    2011-06-01

    To investigate the correlation between perceived performance in prioritized activities and physical conditions related to grip reconstruction. Retrospective clinical outcome study. Forty-seven individuals with tetraplegia were included in the study. Each participant underwent tendon transfer surgery in the hand between November 2002 and April 2009 and had a complete 1-year follow-up. Functional characteristics and performance data were collected from our database and medical records. Patients' perceived performances in prioritized activities were recorded using the Canadian Occupational Performance Measurement. Preoperative data included age at surgery, time since injury, severity of injury, sensibility and hand dominance. At 1-year follow-up, grip strength, key pinch strength, finger pulp-to-palm distance, distance between thumb and index finger and wrist flexion were measured. Correlation rank coefficient was used to test the possible relationship between physical data and activity performance. There were improvements in both functional factors and in rated performance of prioritized activities after surgery. There was no correlation between performance change and any of the physical functions, the factors known before surgery, or the functional outcome factors. No correlation exists between a single functional outcome parameter and the patients' perceived performance of their prioritized goals in reconstructive hand surgery in tetraplegia.

  6. Density functional with full exact exchange, balanced nonlocality of correlations, and constraint satisfaction

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Jianmin [Los Alamos National Laboratory; Perdew, John P [TULANE UNIV; Staroverov, Viktor N [UNIV OF WESTERN ONTARIO; Scuseria, Gustavo E [RICE UNIV

    2008-01-01

    We construct a nonlocal density functional approximation with full exact exchange, while preserving the constraint-satisfaction approach and justified error cancellations of simpler semilocal functionals. This is achieved by interpolating between different approximations suitable for two extreme regions of the electron density. In a 'normal' region, the exact exchange-correlation hole density around an electron is semilocal because its spatial range is reduced by correlation and because it integrates over a narrow range to -1. These regions are well described by popular semilocal approximations (many of which have been constructed nonempirically), because of proper accuracy for a slowly-varying density or because of error cancellation between exchange and correlation. 'Abnormal' regions, where non locality is unveiled, include those in which exchange can dominate correlation (one-electron, nonuniform high-density, and rapidly-varying limits), and those open subsystems of fluctuating electron number over which the exact exchange-correlation hole integrates to a value greater than -1. Regions between these extremes are described by a hybrid functional mixing exact and semi local exchange energy densities locally (i.e., with a mixing fraction that is a function of position r and a functional of the density). Because our mixing fraction tends to 1 in the high-density limit, we employ full exact exchange according to the rigorous definition of the exchange component of any exchange-correlation energy functional. Use of full exact exchange permits the satisfaction of many exact constraints, but the nonlocality of exchange also requires balanced nonlocality of correlation. We find that this nonlocality can demand at least five empirical parameters (corresponding roughly to the four kinds of abnormal regions). Our local hybrid functional is perhaps the first accurate size-consistent density functional with full exact exchange. It satisfies other known

  7. Detection of the default mode network by an anisotropic analysis

    Science.gov (United States)

    Forero, Aura; Romero, Eduardo

    2017-11-01

    This document presents a proposal devoted to improve the detection of the default mode network (DMN) in resting state functional magnetic resonance imaging in noisy conditions caused by head movement. The proposed approach is inspired by the hierarchical treatment of information, in particular at the level of the brain basal ganglia. Essentially, the fact that information must be selected and reduced suggests propagation of information in the Central Nervous System (CNS) is anisotropic. Under this hypothesis, the reconstruction of information of activation should follow an anisotropic pattern. In this work, an anisotropic filter is used to recover the DMN that is perturbed by simulated motion artifacts. Results obtained show this approach outperforms the state-of-the-art methods by 5.93% PSNR.

  8. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials.

    Science.gov (United States)

    Dierking, Ingo; Al-Zangana, Shakhawan

    2017-10-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  9. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2017-10-01

    Full Text Available Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii novel functionalities can be added to the liquid crystal; and (iii the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide.

  10. Quantum electrodynamics of inhomogeneous anisotropic media

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, Adrian E.R.; Lombardo, Fernando C. [Ciudad Universitaria, Departamento de Fisica Juan Jose Giambiagi, Buenos Aires (Argentina); IFIBA CONICET-UBA, Facultad de Ciencias Exactas y Naturales, Buenos Aires (Argentina)

    2015-02-01

    In this work we calculate the closed time path generating functional for the electromagnetic (EM) field interacting with inhomogeneous anisotropic matter. For this purpose, we first find a general expression for the electromagnetic field's influence action from the interaction of the field with a composite environment consisting in the quantum polarization degrees of freedom in each point of space, at arbitrary temperatures, connected to thermal baths. Then we evaluate the generating functional for the gauge field, in the temporal gauge, by implementing the Faddeev-Popov procedure. Finally, through the point-splitting technique, we calculate closed expressions for the energy, the Poynting vector, and the Maxwell tensor in terms of the Hadamard propagator. We show that all the quantities have contributions from the field's initial conditions and also from the matter degrees of freedom. Throughout the whole work we discuss how the gauge invariance must be treated in the formalism when the EM-field is interacting with inhomogeneous anisotropic matter. We study the electrodynamics in the temporal gauge, obtaining the EM-field's equation and a residual condition. Finally we analyze the case of the EM-field in bulk material and also discuss several general implications of our results in relation with the Casimir physics in a non-equilibrium scenario. (orig.)

  11. Lyotropic Liquid Crystal Phases from Anisotropic Nanomaterials

    Science.gov (United States)

    Dierking, Ingo

    2017-01-01

    Liquid crystals are an integral part of a mature display technology, also establishing themselves in other applications, such as spatial light modulators, telecommunication technology, photonics, or sensors, just to name a few of the non-display applications. In recent years, there has been an increasing trend to add various nanomaterials to liquid crystals, which is motivated by several aspects of materials development. (i) addition of nanomaterials can change and thus tune the properties of the liquid crystal; (ii) novel functionalities can be added to the liquid crystal; and (iii) the self-organization of the liquid crystalline state can be exploited to template ordered structures or to transfer order onto dispersed nanomaterials. Much of the research effort has been concentrated on thermotropic systems, which change order as a function of temperature. Here we review the other side of the medal, the formation and properties of ordered, anisotropic fluid phases, liquid crystals, by addition of shape-anisotropic nanomaterials to isotropic liquids. Several classes of materials will be discussed, inorganic and mineral liquid crystals, viruses, nanotubes and nanorods, as well as graphene oxide. PMID:28974025

  12. Planar spatial correlations, anisotropy, and specific surface area of stationary random porous media

    International Nuclear Information System (INIS)

    Berryman, J.G.

    1998-01-01

    An earlier result of the author showed that an anisotropic spatial correlation function of a random porous medium could be used to compute the specific surface area when it is stationary as well as anisotropic by first performing a three-dimensional radial average and then taking the first derivative with respect to lag at the origin. This result generalized the earlier result for isotropic porous media of Debye et al. [J. Appl. Phys. 28, 679 (1957)]. The present article provides more detailed information about the use of spatial correlation functions for anisotropic porous media and in particular shows that, for stationary anisotropic media, the specific surface area can be related to the derivative of the two-dimensional radial average of the correlation function measured from cross sections taken through the anisotropic medium. The main concept is first illustrated using a simple pedagogical example for an anisotropic distribution of spherical voids. Then, a general derivation of formulas relating the derivative of the planar correlation functions to surface integrals is presented. When the surface normal is uniformly distributed (as is the case for any distribution of spherical voids), our formulas can be used to relate a specific surface area to easily measurable quantities from any single cross section. When the surface normal is not distributed uniformly (as would be the case for an oriented distribution of ellipsoidal voids), our results show how to obtain valid estimates of specific surface area by averaging measurements on three orthogonal cross sections. One important general observation for porous media is that the surface area from nearly flat cracks may be underestimated from measurements on orthogonal cross sections if any of the cross sections happen to lie in the plane of the cracks. This result is illustrated by taking the very small aspect ratio (penny-shaped crack) limit of an oblate spheroid, but holds for other types of flat surfaces as well

  13. Correlation function analysis of the COBE differential microwave radiometer sky maps

    Energy Technology Data Exchange (ETDEWEB)

    Lineweaver, Charles Howe [Univ. of California, Berkeley, CA (United States). Space Sciences Lab.

    1994-08-01

    The Differential Microwave Radiometer (DMR) aboard the COBE satellite has detected anisotropies in the cosmic microwave background (CMB) radiation. A two-point correlation function analysis which helped lead to this discovery is presented in detail. The results of a correlation function analysis of the two year DMR data set is presented. The first and second year data sets are compared and found to be reasonably consistent. The positive correlation for separation angles less than ~20° is robust to Galactic latitude cuts and is very stable from year to year. The Galactic latitude cut independence of the correlation function is strong evidence that the signal is not Galactic in origin. The statistical significance of the structure seen in the correlation function of the first, second and two year maps is respectively > 9σ, > 10σ and > 18σ above the noise. The noise in the DMR sky maps is correlated at a low level. The structure of the pixel temperature covariance matrix is given. The noise covariance matrix of a DMR sky map is diagonal to an accuracy of better than 1%. For a given sky pixel, the dominant noise covariance occurs with the ring of pixels at an angular separation of 60° due to the 60° separation of the DMR horns. The mean covariance of 60° is 0.45%$+0.18\\atop{-0.14}$ of the mean variance. The noise properties of the DMR maps are thus well approximated by the noise properties of maps made by a single-beam experiment. Previously published DMR results are not significantly affected by correlated noise.

  14. CORRELATION BETWEEN CERVICAL SAGITTAL ALIGNMENT AND FUNCTIONAL CAPACITY IN CERVICAL SPONDYLOSIS

    Directory of Open Access Journals (Sweden)

    Marcel Machado da Motta

    Full Text Available ABSTRACT Objective: To correlate the radiographic parameters of sagittal cervical alignment with quality of life and functional capacity in patients with cervical spondylosis under conservative treatment. Methods: This is an observational and prospective study in patients with cervical spondylosis under conservative treatment and without indication for surgery. The 52 patients included were divided into three groups: axial pain, radiculopathy, and cervical myelopathy. The radiographic parameters considered were cervical lordosis (CL, cervical sagittal vertical axis (CSVA, T1 slope (TS and the discrepancy between TS and CL (TS-CL. Quality of life and functional capacity were evaluated by the Neck Disability Index (NDI questionnaire. Pain was assessed by the Visual Analogue Scale (VAS. The correlation between the radiographic parameters and the clinical scores was evaluated by the Pearson correlations coefficient. Results: There was no difference in cervical radiographic parameters between the three groups. In the total of the sample, the mean value of the CSVA was 17.8o (±8.3o, CL, 22.4° (± 8.8°; TS, 29.3° (±6.6°, and TS-CL, 7.0° (±7.4°. Significant inverse correlation (r= -0.3, p=0.039 was observed between NDI and CL, but there was no significant correlation between CL and VAS. CSVA (p=0.541, TS (p=0.287 and TS-CL (p=0.287 had no significantly correlated with NDI or VAS. Conclusion: Considering patients with cervical spondylosis not candidates for surgery, the only sagittal parameter that correlated with functional capacity was LC. In these patients, the correlation between cervical alignment and quality of life needs to be better characterized.

  15. Some dynamical properties of anisotropic collisionless stellar systems

    International Nuclear Information System (INIS)

    Bertin, G.; Pegoraro, F.

    1989-01-01

    The linear stability analysis of collisionless anisotropic spherical stellar systems presents many unresolved issues. Planning to study the stability of a simple and astrophysically interesting equilibrium seuence ∞ for such stellar systems, we describe here some analytical characterizations of the ∞-distribution functions, formulate the linearized equations for stability, and discuss the relevant boundary conditions. (author). 19 refs.; 1 tab

  16. New exact models for anisotropic matter with electric field

    Indian Academy of Sciences (India)

    2017-09-05

    Sep 5, 2017 ... We can also obtain particular anisotropic models obtained by Maharaj, Sunzu, and Ray. The exact solutions corresponding to our models are found explicitly in terms of elementary functions. The graphical plots generated for the matter variables and the electric field are well behaved. We also generate ...

  17. Anisotropic properties of aligned SWNT modified poly (methyl ...

    Indian Academy of Sciences (India)

    The electrical and mechanical properties of PMMA/SWNT composite were studied as a function of SWNT orientation and concentration. The aligned SWNT modified PMMA/SWNT composite presented highly anisotropic properties. The experimental results showed that the electrical conductivity and mechanical properties of ...

  18. Reduced description of nonequilibrium processes and correlation functions. Divergences and non-analyticity

    Directory of Open Access Journals (Sweden)

    A.I.Sokolovsky

    2006-01-01

    Full Text Available A complete theory for investigation of time correlation functions is developed on the basis of the Bogolyubov reduced description method proceeding from his functional hypothesis. The problem of convergence in the theory of nonequilibrium processes and its relation to the non-analytic dependence of basic values of the theory on a small parameter of the perturbation theory are discussed. A natural regularization of integral equations of the theory is proposed. In the framework of a model of slow variables (hydrodynamics of a fluid, kinetics of a gas a generalized perturbation theory without divergencies is constructed corresponding to a partial summation in a usual perturbation theory. Properties of Green functions are discussed on the basis of resolvent formalism for the Liouville operator. A generalized Ernst and Dorfman theory is elaborated allowing to study the peculiarities of correlation and Green functions and to solve the convergence problem in the reduced description method.

  19. Bunches of random cross-correlated sequences

    International Nuclear Information System (INIS)

    Maystrenko, A A; Melnik, S S; Pritula, G M; Usatenko, O V

    2013-01-01

    The statistical properties of random cross-correlated sequences constructed by the convolution method (likewise referred to as the Rice or the inverse Fourier transformation) are examined. We clarify the meaning of the filtering function—the kernel of the convolution operator—and show that it is the value of the cross-correlation function which describes correlations between the initial white noise and constructed correlated sequences. The matrix generalization of this method for constructing a bunch of N cross-correlated sequences is presented. Algorithms for their generation are reduced to solving the problem of decomposition of the Fourier transform of the correlation matrix into a product of two mutually conjugate matrices. Different decompositions are considered. The limits of weak and strong correlations for the one-point probability and pair correlation functions of sequences generated by the method under consideration are studied. Special cases of heavy-tailed distributions of the generated sequences are analyzed. We show that, if the filtering function is rather smooth, the distribution function of generated variables has the Gaussian or Lévy form depending on the analytical properties of the distribution (or characteristic) functions of the initial white noise. Anisotropic properties of statistically homogeneous random sequences related to the asymmetry of a filtering function are revealed and studied. These asymmetry properties are expressed in terms of the third- or fourth-order correlation functions. Several examples of the construction of correlated chains with a predefined correlation matrix are given. (paper)

  20. Virtual Reality Functional Capacity Assessment In Schizophrenia: Preliminary Data Regarding Feasibility and Correlations with Cognitive and Functional Capacity Performance.

    Science.gov (United States)

    Ruse, Stacy A; Harvey, Philip D; Davis, Vicki G; Atkins, Alexandra S; Fox, Kolleen H; Keefe, Richard S E

    2014-03-01

    Assessment of functional capacity is an intrinsic part of determining the functional relevance of response to treatment of cognitive impairment in schizophrenia. Existing methods are highly and consistently correlated with performance on neuropsychological tests, but most current assessments of functional capacity are still paper and pencil simulations. We developed a computerized virtual reality assessment that contains all of the components of a shopping trip. We administered the Virtual Reality Functional Capacity Assessment Tool (VRFCAT) to 54 healthy controls and to 51 people with schizophrenia to test its feasibility. Dependent variables for the VRFCAT included time to completion and errors on 12 objectives and the number of times that an individual failed to complete an objective. The MATRICS Consensus Cognitive Battery (MCCB) and a standard functional capacity measure, the UCSD Performance-Based Skills Assessment-Brief (UPSA-B) were administered to the patients with schizophrenia. Patients with schizophrenia performed more poorly than healthy controls on 10/11 of the time variables, as well as 2/12 error scores and 2/12 failed objectives. Pearson correlations for 7 of 15 VRFCAT variables with MCCB composite scores were statistically significant. These results provide support for the possibility of computerized functional capacity assessment, but more substantial studies are required.

  1. Analytic methods for the Percus-Yevick hard sphere correlation functions

    Directory of Open Access Journals (Sweden)

    D. Henderson

    2009-01-01

    Full Text Available The Percus-Yevick theory for hard spheres provides simple accurate expressions for the correlation functions that have proven exceptionally useful. A summary of the author's lecture notes concerning three methods of obtaining these functions are presented. These notes are original only in part. However, they contain some helpful steps and simplifications. The purpose of this paper is to make these notes more widely available.

  2. Comparison of muscle/lean mass measurement methods: correlation with functional and biochemical testing.

    Science.gov (United States)

    Buehring, B; Siglinsky, E; Krueger, D; Evans, W; Hellerstein, M; Yamada, Y; Binkley, N

    2018-03-01

    DXA-measured lean mass is often used to assess muscle mass but has limitations. Thus, we compared DXA lean mass with two novel methods-bioelectric impedance spectroscopy and creatine (methyl-d3) dilution. The examined methodologies did not measure lean mass similarly and the correlation with muscle biomarkers/function varied. Muscle function tests predict adverse health outcomes better than lean mass measurement. This may reflect limitations of current mass measurement methods. Newer approaches, e.g., bioelectric impedance spectroscopy (BIS) and creatine (methyl-d3) dilution (D3-C), may more accurately assess muscle mass. We hypothesized that BIS and D3-C measured muscle mass would better correlate with function and bone/muscle biomarkers than DXA measured lean mass. Evaluations of muscle/lean mass, function, and serum biomarkers were obtained in older community-dwelling adults. Mass was assessed by DXA, BIS, and orally administered D3-C. Grip strength, timed up and go, and jump power were examined. Potential muscle/bone serum biomarkers were measured. Mass measurements were compared with functional and serum data using regression analyses; differences between techniques were determined by paired t tests. Mean (SD) age of the 112 (89F/23M) participants was 80.6 (6.0) years. The lean/muscle mass assessments were correlated (.57-.88) but differed (p Lean mass measures were unrelated to the serum biomarkers measured. These three methodologies do not similarly measure muscle/lean mass and should not be viewed as being equivalent. Functional tests assessing maximal muscle strength/power (grip strength and jump power) correlated with all mass measures whereas gait speed was not. None of the selected serum measures correlated with mass. Efforts to optimize muscle mass assessment and identify their relationships with health outcomes are needed.

  3. Core Noise Diagnostics of Turbofan Engine Noise Using Correlation and Coherence Functions

    Science.gov (United States)

    Miles, Jeffrey H.

    2009-01-01

    Cross-correlation and coherence functions are used to look for periodic acoustic components in turbofan engine combustor time histories, to investigate direct and indirect combustion noise source separation based on signal propagation time delays, and to provide information on combustor acoustics. Using the cross-correlation function, time delays were identified in all cases, clearly indicating the combustor is the source of the noise. In addition, unfiltered and low-pass filtered at 400 Hz signals had a cross-correlation time delay near 90 ms, while the low-pass filtered at less than 400 Hz signals had a cross-correlation time delay longer than 90 ms. Low-pass filtering at frequencies less than 400 Hz partially removes the direct combustion noise signals. The remainder includes the indirect combustion noise signal, which travels more slowly because of the dependence on the entropy convection velocity in the combustor. Source separation of direct and indirect combustion noise is demonstrated by proper use of low-pass filters with the cross-correlation function for a range of operating conditions. The results may lead to a better idea about the acoustics in the combustor and may help develop and validate improved reduced-order physics-based methods for predicting direct and indirect combustion noise.

  4. Spouse selection and environmental effects on spouse correlation in lung function measures.

    Science.gov (United States)

    Knuiman, Matthew W; Divitini, Mark L; Bartholomew, Helen C

    2005-01-01

    Concordance between spouses may be due to partner selection factors and/or the effects of marriage/environment. The extent to which partner selection factors contribute to spouse concordance has important implications for heritability studies. The aim of this study was to examine the magnitude of spouse correlation in lung function measures and its relationship to duration of marriage. Cross-sectional and longitudinal data collected over the period 1969 to 1995 for 2615 couples from the Busselton Health Study have been analyzed using the program FISHER. Unadjusted correlations were around 0.45 for forced expiratory volume in 1 second (FEV1) and 0.25 for FEV1/FVC (forced vital capacity) and were reduced to 0.05 and 0.10, respectively, after adjustment for age, height, and smoking. No trend with marriage duration was apparent in both cross-sectional and longitudinal analyses but there was a significant downward trend in the correlations with age at marriage. The findings indicate that observed correlations in lung function measures are mostly due to partner selection factors and that partner selection factors have greater influence for couples that marry at younger ages. Family studies that aim to identify and separate genetic from other influences on lung function measures should not regard the mother-father correlation as due to common environment effects.

  5. Fast Computation of the Two-Point Correlation Function in the Age of Big Data

    Science.gov (United States)

    Pellegrino, Andrew; Timlin, John

    2018-01-01

    We present a new code which quickly computes the two-point correlation function for large sets of astronomical data. This code combines the ease of use of Python with the speed of parallel shared libraries written in C. We include the capability to compute the auto- and cross-correlation statistics, and allow the user to calculate the three-dimensional and angular correlation functions. Additionally, the code automatically divides the user-provided sky masks into contiguous subsamples of similar size, using the HEALPix pixelization scheme, for the purpose of resampling. Errors are computed using jackknife and bootstrap resampling in a way that adds negligible extra runtime, even with many subsamples. We demonstrate comparable speed with other clustering codes, and code accuracy compared to known and analytic results.

  6. Correlation Between Computed Tomography Density and Functional Status of the Thyroid Gland.

    Science.gov (United States)

    Pandey, Vivek; Reis, Martin; Zhou, Yihua

    2016-01-01

    This study aimed to determine the correlation between thyroid computed tomography (CT) density and thyroid functional status. Thyroid CT densities were determined in patients who had a noncontrast CT of the cervical spine and a recent thyroid-stimulating hormone (TSH) measurement in a cohort of 157 patients. Thyroid CT densities of patients with abnormally low TSH and high TSH were compared to those with normal TSH. A correlation analysis was performed to determine the correlation between TSH levels and CT densities. Both low and high TSH groups demonstrated significantly decreased thyroid CT densities (P thyroid CT densities and TSH levels (r = 0.40; P thyroid CT density and serum TSH levels. A low thyroid CT density indicates abnormal thyroid function.

  7. Adaptive endpoint detection of seismic signal based on auto-correlated function

    International Nuclear Information System (INIS)

    Fan Wanchun; Shi Ren

    2000-01-01

    There are certain shortcomings for the endpoint detection by time-waveform envelope and/or by checking the travel table (both labelled as the artificial detection method). Based on the analysis of the auto-correlation function, the notion of the distance between auto-correlation functions was quoted, and the characterizations of the noise and the signal with noise were discussed by using the distance. Then, the method of auto-adaptable endpoint detection of seismic signal based on auto-correlated similarity was summed up. The steps of implementation and determining of the thresholds were presented in detail. The experimental results that were compared with the methods based on artificial detecting show that this method has higher sensitivity even in a low SNR circumstance

  8. Equilibrium properties of a multi-component ionic mixture I. Sum rules for correlation functions

    NARCIS (Netherlands)

    van Wonderen, A.J.; Suttorp, L.G.

    1987-01-01

    Equilibrium statistical methods are used to derive sum rules for two- and three-particle correlation functions of a multi-component ionic mixture. Some of these rules are general consequences of the electrostatic character of the interaction, whereas others depend on specific thermodynamic

  9. Molecular dynamics simulations of Gay-Berne nematic liquid crystal: Elastic properties from direct correlation functions

    International Nuclear Information System (INIS)

    Stelzer, J.; Trebin, H.R.; Longa, L.

    1994-08-01

    We report NVT and NPT molecular dynamics simulations of a Gay-Berne nematic liquid crystal using generalization of recently proposed algorithm by Toxvaerd [Phys. Rev. E47, 343, 1993]. On the basis of these simulations the Oseen-Zoher-Frank elastic constants K 11 , K 22 and K 33 as well as the surface constants K 13 and K 24 have been calculated within the framework of the direct correlation function approach of Lipkin et al. [J. Chem. Phys. 82, 472 (1985)]. The angular coefficients of the direct pair correlation function, which enter the final formulas, have been determined from the computer simulation data for the pair correlation function of the nematic by combining the Ornstein-Zernike relation and the Wienier-Hopf factorization scheme. The unoriented nematic approximation has been assumed when constructing the reference, isotropic state of Lipkin et al. By an extensive study of the model over a wide range of temperatures, densities and pressures a very detailed information has been provided about elastic behaviour of the Gay-Berne nematic. Interestingly, it is found that the results for the surface elastic constants are qualitatively different than those obtained with the help of analytical approximations for the isotropic, direct pair correlation function. For example, the values of the surface elastic constants are negative and an order of magnitude smaller than the bulk elasticity. (author). 30 refs, 9 figs

  10. Functional connectivity within and between intrinsic brain networks correlates with trait mind wandering.

    Science.gov (United States)

    Godwin, Christine A; Hunter, Michael A; Bezdek, Matthew A; Lieberman, Gregory; Elkin-Frankston, Seth; Romero, Victoria L; Witkiewitz, Katie; Clark, Vincent P; Schumacher, Eric H

    2017-08-01

    Individual differences across a variety of cognitive processes are functionally associated with individual differences in intrinsic networks such as the default mode network (DMN). The extent to which these networks correlate or anticorrelate has been associated with performance in a variety of circumstances. Despite the established role of the DMN in mind wandering processes, little research has investigated how large-scale brain networks at rest relate to mind wandering tendencies outside the laboratory. Here we examine the extent to which the DMN, along with the dorsal attention network (DAN) and frontoparietal control network (FPCN) correlate with the tendency to mind wander in daily life. Participants completed the Mind Wandering Questionnaire and a 5-min resting state fMRI scan. In addition, participants completed measures of executive function, fluid intelligence, and creativity. We observed significant positive correlations between trait mind wandering and 1) increased DMN connectivity at rest and 2) increased connectivity between the DMN and FPCN at rest. Lastly, we found significant positive correlations between trait mind wandering and fluid intelligence (Ravens) and creativity (Remote Associates Task). We interpret these findings within the context of current theories of mind wandering and executive function and discuss the possibility that certain instances of mind wandering may not be inherently harmful. Due to the controversial nature of global signal regression (GSReg) in functional connectivity analyses, we performed our analyses with and without GSReg and contrast the results from each set of analyses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Computer Simulation for Calculating the Second-Order Correlation Function of Classical and Quantum Light

    Science.gov (United States)

    Facao, M.; Lopes, A.; Silva, A. L.; Silva, P.

    2011-01-01

    We propose an undergraduate numerical project for simulating the results of the second-order correlation function as obtained by an intensity interference experiment for two kinds of light, namely bunched light with Gaussian or Lorentzian power density spectrum and antibunched light obtained from single-photon sources. While the algorithm for…

  12. Jastrow correlations in the α cluster model with symmetrized Fermi functions

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Rabie, A.; Ismail, E.H.

    1977-11-01

    The elastic scattering form factors of electrons on 12 C, 16 0 and 20 Ne nuclei are calculated using wave functions which have realistic asymptotic behaviour and introducing Jastrow correlations. Analysis of the parameters and comparison with experimental data is given

  13. Colour-dressed hexagon tessellations for correlation functions and non-planar corrections

    Science.gov (United States)

    Eden, Burkhard; Jiang, Yunfeng; le Plat, Dennis; Sfondrini, Alessandro

    2018-02-01

    We continue the study of four-point correlation functions by the hexagon tessellation approach initiated in [38] and [39]. We consider planar tree-level correlation functions in N=4 supersymmetric Yang-Mills theory involving two non-protected operators. We find that, in order to reproduce the field theory result, it is necessary to include SU( N) colour factors in the hexagon formalism; moreover, we find that the hexagon approach as it stands is naturally tailored to the single-trace part of correlation functions, and does not account for multi-trace admixtures. We discuss how to compute correlators involving double-trace operators, as well as more general 1 /N effects; in particular we compute the whole next-to-leading order in the large- N expansion of tree-level BMN two-point functions by tessellating a torus with punctures. Finally, we turn to the issue of "wrapping", Lüscher-like corrections. We show that SU( N) colour-dressing reproduces an earlier empirical rule for incorporating single-magnon wrapping, and we provide a direct interpretation of such wrapping processes in terms of N=2 supersymmetric Feynman diagrams.

  14. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Benjamin; Koyama, Kazuya, E-mail: benjamin.bose@port.ac.uk, E-mail: kazuya.koyama@port.ac.uk [Institute of Cosmology and Gravitation, University of Portsmouth, Burnaby Road, Portsmouth, Hampshire, PO1 3FX (United Kingdom)

    2017-08-01

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with ≤ 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpc h ≤ s ≤ 180Mpc/ h . Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.

  15. A perturbative approach to the redshift space correlation function: beyond the Standard Model

    Science.gov (United States)

    Bose, Benjamin; Koyama, Kazuya

    2017-08-01

    We extend our previous redshift space power spectrum code to the redshift space correlation function. Here we focus on the Gaussian Streaming Model (GSM). Again, the code accommodates a wide range of modified gravity and dark energy models. For the non-linear real space correlation function used in the GSM we use the Fourier transform of the RegPT 1-loop matter power spectrum. We compare predictions of the GSM for a Vainshtein screened and Chameleon screened model as well as GR. These predictions are compared to the Fourier transform of the Taruya, Nishimichi and Saito (TNS) redshift space power spectrum model which is fit to N-body data. We find very good agreement between the Fourier transform of the TNS model and the GSM predictions, with <= 6% deviations in the first two correlation function multipoles for all models for redshift space separations in 50Mpch <= s <= 180Mpc/h. Excellent agreement is found in the differences between the modified gravity and GR multipole predictions for both approaches to the redshift space correlation function, highlighting their matched ability in picking up deviations from GR. We elucidate the timeliness of such non-standard templates at the dawn of stage-IV surveys and discuss necessary preparations and extensions needed for upcoming high quality data.

  16. Correlation functions of integrable models: A description of the ABACUS algorithm

    NARCIS (Netherlands)

    Caux, J.S.

    2009-01-01

    Recent developments in the theory of integrable models have provided the means of calculating dynamical correlation functions of some important observables in systems such as Heisenberg spin chains and one-dimensional atomic gases. This article explicitly describes how such calculations are

  17. A Cumulant Expansion for the Time Correlation Functions of Solutions to Linear Stochastic Differential Equations

    NARCIS (Netherlands)

    Roerdink, J.B.T.M.

    1982-01-01

    It is shown that the cumulant expansion for linear stochastic differential equations, hitherto used to compute one-time averages of the solution process, is also capable of yielding the two-time correlation and probability density functions. The general case with a coefficient matrix, an

  18. System-bath correlation function probed by conventional and time-gated stimulated photon echo

    NARCIS (Netherlands)

    Boeij, Wim P. de; Pshenichnikov, Maxim S.; Wiersma, Douwe A.

    1996-01-01

    We show how in the framework of the multimode Brownian oscillator model the system-bath correlation function can be derived from conventional and time-gated stimulated photon echo experiments and consideration of the linear optical spectra. Experiments are performed on the infrared dye DTTCI in room

  19. Second-moment sum rules for correlation functions in a classical ionic mixture

    NARCIS (Netherlands)

    Suttorp, L.G.; Ebeling, W.

    1992-01-01

    The complete set of second-moment sum rules for the correlation functions of arbitrarily high order describing a classical multi-component ionic mixture in equilibrium is derived from the grand-canonical ensemble. The connection of these sum rules with the large-scale behaviour of fluctuations in an

  20. Density functionals for surface science: Exchange-correlation model development with Bayesian error estimation

    DEFF Research Database (Denmark)

    Wellendorff, Jess; Lundgård, Keld Troen; Møgelhøj, Andreas

    2012-01-01

    A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding the overfit......A methodology for semiempirical density functional optimization, using regularization and cross-validation methods from machine learning, is developed. We demonstrate that such methods enable well-behaved exchange-correlation approximations in very flexible model spaces, thus avoiding...... the energetics of intramolecular and intermolecular, bulk solid, and surface chemical bonding, and the developed optimization method explicitly handles making the compromise based on the directions in model space favored by different materials properties. The approach is applied to designing the Bayesian error...... estimation functional with van der Waals correlation (BEEF-vdW), a semilocal approximation with an additional nonlocal correlation term. Furthermore, an ensemble of functionals around BEEF-vdW comes out naturally, offering an estimate of the computational error. An extensive assessment on a range of data...

  1. Benchmarking exchange-correlation functionals for hydrogen at high pressures using quantum Monte Carlo

    Energy Technology Data Exchange (ETDEWEB)

    Clay, Raymond C. [Univ. of Illinois, Urbana, IL (United States); Mcminis, Jeremy [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); McMahon, Jeffrey M. [Univ. of Illinois, Urbana, IL (United States); Pierleoni, Carlo [Istituto Nazionale di Fisica Nucleare (INFN), L' aquila (Italy). Lab. Nazionali del Gran Sasso (INFN-LNGS); Ceperley, David M. [Univ. of Illinois, Urbana, IL (United States); Morales, Miguel A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-05-01

    The ab initio phase diagram of dense hydrogen is very sensitive to errors in the treatment of electronic correlation. Recently, it has been shown that the choice of the density functional has a large effect on the predicted location of both the liquid-liquid phase transition and the solid insulator-to-metal transition in dense hydrogen. To identify the most accurate functional for dense hydrogen applications, we systematically benchmark some of the most commonly used functionals using quantum Monte Carlo. By considering several measures of functional accuracy, we conclude that the van der Waals and hybrid functionals significantly outperform local density approximation and Perdew-Burke-Ernzerhof. We support these conclusions by analyzing the impact of functional choice on structural optimization in the molecular solid, and on the location of the liquid-liquid phase transition.

  2. Improvement of a new rotation function for molecular replacement by designing new scoring functions and dynamic correlation coefficient

    International Nuclear Information System (INIS)

    Fan, Jiang; Wei, Ding

    2010-01-01

    A previously published new rotation function has been improved by using a dynamic correlation coefficient as well as two new scoring functions of relative entropy and mean-square-residues to make the rotation function more robust and independent of a specific set of weights for scoring and ranking. The previously described new rotation function calculates the rotation function of molecular replacement by matching the search model directly with the Patterson vector map. The signal-to-noise ratio for the correct match was increased by averaging all the matching peaks. Several matching scores were employed to evaluate the goodness of matching. These matching scores were then combined into a single total score by optimizing a set of weights using the linear regression method. It was found that there exists an optimal set of weights that can be applied to the global rotation search and the correct solution can be ranked in the top 100 or less. However, this set of optimal weights in general is dependent on the search models and the crystal structures with different space groups and cell parameters. In this work, we try to solve this problem by designing a dynamic correlation coefficient. It is shown that the dynamic correlation coefficient works for a variety of space groups and cell parameters in the global search of rotation function. We also introduce two new matching scores: relative entropy and mean-square-residues. Last but not least, we discussed a valid method for the optimization of the adjustable parameters for matching vectors. (condensed matter: structure, thermal and mechanical properties)

  3. A Systematic and Meta-analytic Review of Neural Correlates of Functional Outcome in Schizophrenia.

    Science.gov (United States)

    Wojtalik, Jessica A; Smith, Matthew J; Keshavan, Matcheri S; Eack, Shaun M

    2017-10-21

    Individuals with schizophrenia are burdened with impairments in functional outcome, despite existing interventions. The lack of understanding of the neurobiological correlates supporting adaptive function in the disorder is a significant barrier to developing more effective treatments. This research conducted a systematic and meta-analytic review of all peer-reviewed studies examining brain-functional outcome relationships in schizophrenia. A total of 53 (37 structural and 16 functional) brain imaging studies examining the neural correlates of functional outcome across 1631 individuals with schizophrenia were identified from literature searches in relevant databases occurring between January, 1968 and December, 2016. Study characteristics and results representing brain-functional outcome relationships were systematically extracted, reviewed, and meta-analyzed. Results indicated that better functional outcome was associated with greater fronto-limbic and whole brain volumes, smaller ventricles, and greater activation, especially during social cognitive processing. Thematic observations revealed that the dorsolateral prefrontal cortex, anterior cingulate, posterior cingulate, parahippocampal gyrus, superior temporal sulcus, and cerebellum may have role in functioning. The neural basis of functional outcome and disability is infrequently studied in schizophrenia. While existing evidence is limited and heterogeneous, these findings suggest that the structural and functional integrity of fronto-limbic brain regions is consistently related to functional outcome in individuals with schizophrenia. Further research is needed to understand the mechanisms and directionality of these relationships, and the potential for identifying neural targets to support functional improvement. © The Author 2017. Published by Oxford University Press on behalf of the Maryland Psychiatric Research Center. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  4. Pulmonary thallium uptake: Correlation with systolic and diastolic left ventricular function at rest and during exercise

    International Nuclear Information System (INIS)

    Mannting, F.

    1990-01-01

    Quantified pulmonary 201-thallium uptake, assessed as pulmonary/myocardial ratios (PM) and body surface area-corrected absolute pulmonary uptake (Pc), was determined from single photon emission computed tomography studies in 22 normal subjects and 46 consecutive patients with coronary artery disease (CAD). By means of equilibrium radionuclide angiography (ERNA), ejection fraction (EF), peak ejection rate (PER) in end-diastolic volume (EDV/sec) and peak filling rate (PFR) in EDV/sec and stroke volume (SV/sec) units, PFR/PER ratio, and time to peak filling rate (TPFR) in milliseconds were computed at rest and during exercise (n = 35). Left ventricular response to exercise was assessed as delta EF, relative delta EF, delta EDV, and delta ESV. In normal subjects the PM ratios showed significant inverse correlation with PER at rest and with EF, PER, and PFRedv during exercise. For the left ventricular response to exercise, delta ESV showed significant correlation with the PM ratios. The body surface area-corrected pulmonary uptake values showed no correlation with any of the variables. In patients with CAD the PM ratios and Pc uptake showed significant inverse correlation with EF, PER, PFRedv and to exercise EF, exercise PER, and exercise PFRedv. For the left ventricular response to exercise, delta EF showed significant inverse correlation with the PM ratios but not with the Pc uptake. Neither in normal subjects nor in patients with CAD did any of the independent diastolic variables show significant correlation with the PM ratios or Pc values. Thus pulmonary thallium uptake is correlated with systolic left ventricular function at rest and during exercise in normal subjects and in patients with CAD but not with diastolic function. In normal subjects delta ESV and in patients with CAD, delta EF showed correlation with pulmonary thallium uptake

  5. Metabolic correlates of cognitive function in children with unilateral Sturge-Weber syndrome: Evidence for regional functional reorganization and crowding.

    Science.gov (United States)

    Kim, Jeong-A; Jeong, Jeong-Won; Behen, Michael E; Pilli, Vinod K; Luat, Aimee; Chugani, Harry T; Juhász, Csaba

    2018-04-01

    To evaluate metabolic changes in the ipsi- and contralateral hemisphere in children showing a cognitive profile consistent with early reorganization of cognitive function, we evaluated the regional glucose uptake, interhemispheric metabolic connectivity, and cognitive function in children with unilateral SWS. Interictal 2-deoxy-2[ 18 F]fluoro-D-glucose (FDG)-PET scans of 27 children with unilateral SWS and mild epilepsy and 27 age-matched control (non-SWS children with epilepsy and normal FDG-PET) were compared using statistical parametric mapping (SPM). Regional FDG-PET abnormalities calculated as SPM(t) scores in the SWS group were correlated with cognitive function (IQ) in left- and right-hemispheric subgroups. Interhemispheric metabolic connectivity between homotopic cortical regions was also calculated. Verbal IQ was substantially (≥10 points difference) higher than non-verbal IQ in 61% of the right- and 71% of the left-hemispheric SWS group. FDG SPM(t) scores in the affected hemisphere showed strong positive correlations with IQ in the left-hemispheric, but not in right-hemispheric SWS group in several frontal, parietal, and temporal cortical regions. Significant positive interhemispheric metabolic connectivity, present in controls, was diminished in the SWS group. In addition, the left-hemispheric SWS group showed inverse metabolic interhemispheric correlations in specific parietal, temporal, and occipital regions. FDG SPM(t) scores in the same regions of the right (unaffected) hemisphere showed inverse correlations with IQ. These findings suggest that left-hemispheric lesions in SWS often result in early reorganization of verbal functions while interfering with ("crowding") their non-verbal cognitive abilities. These cognitive changes are associated with specific metabolic abnormalities in the contralateral hemisphere not directly affected by SWS. © 2017 Wiley Periodicals, Inc.

  6. Double anisotropic electrically conductive flexible Janus-typed membranes.

    Science.gov (United States)

    Li, Xiaobing; Ma, Qianli; Tian, Jiao; Xi, Xue; Li, Dan; Dong, Xiangting; Yu, Wensheng; Wang, Xinlu; Wang, Jinxian; Liu, Guixia

    2017-12-07

    Novel type III anisotropic conductive films (ACFs), namely flexible Janus-typed membranes, were proposed, designed and fabricated for the first time. Flexible Janus-typed membranes composed of ordered Janus nanobelts were constructed by electrospinning, which simultaneously possess fluorescence and double electrically conductive anisotropy. For the fabrication of the Janus-typed membrane, Janus nanobelts comprising a conductive side and an insulative-fluorescent side were primarily fabricated, and then the Janus nanobelts are arranged into parallel arrays using an aluminum rotary drum as the collector to obtain a single anisotropically conductive film. Subsequently, a secondary electrospinning process was applied to the as-prepared single anisotropically conductive films to acquire the final Janus-typed membrane. For this Janus-typed membrane, namely its left-to-right structure, anisotropic electrical conduction synchronously exists on both sides, and furthermore, the two electrically conductive directions are perpendicular. By modulating the amount of Eu(BA) 3 phen complex and conducting polyaniline (PANI), the characteristics and intensity of the fluorescence-electricity dual-function in the membrane can be tuned. The high integration of this peculiar Janus-typed membrane with simultaneous double electrically conductive anisotropy-fluorescent dual-functionality is successfully realized in this study. This design philosophy and preparative technique will provide support for the design and construction of new types of special nanostructures with multi-functionality.

  7. Accurate correlation energies in one-dimensional systems from small system-adapted basis functions

    Science.gov (United States)

    Baker, Thomas E.; Burke, Kieron; White, Steven R.

    2018-02-01

    We propose a general method for constructing system-dependent basis functions for correlated quantum calculations. Our construction combines features from several traditional approaches: plane waves, localized basis functions, and wavelets. In a one-dimensional mimic of Coulomb systems, it requires only 2-3 basis functions per electron to achieve high accuracy, and reproduces the natural orbitals. We illustrate its effectiveness for molecular energy curves and chains of many one-dimensional atoms. We discuss the promise and challenges for realistic quantum chemical calculations.

  8. Spectral Intensity Variation by the Correlation Function of Refractive Index Fluctuations of the Liquid Medium

    Directory of Open Access Journals (Sweden)

    Nageshwar Singh

    2013-01-01

    Full Text Available It is proposed that a macroscopic theory of propagation and scattering of light through random media can be functional for the dye liquid flowing media in the microscopic levels too, with modest approximations. Maxwell’s equation for a random refractive index medium is approximated and solved for the electric field. An analytical expression for the spectral intensity of the field scattered by the refractive index fluctuations inside a medium has been derived which was valid within the first Born approximation. Far field spectral intensity variation of the radiation propagating through the liquid medium is a consequence of variation in correlation function of the refractive index inhomogeneities. The strength of radiation scattered in a particular direction depends on the spatial correlation function of the refractive index fluctuations of the medium. An attempt is made to explain some of the experimentally observed spectral intensity variations, particularly dye emission propagation through liquid flowing medium, in the presence of thermal and flow field.

  9. Large-N correlation functions in ${\\cal N} = 2$ superconformal QCD

    CERN Document Server

    Baggio, Marco; Papadodimas, Kyriakos; Vos, Gideon

    2017-01-24

    We study extremal correlation functions of chiral primary operators in the large-N SU(N) ${\\cal N} = 2$ superconformal QCD theory and present new results based on supersymmetric localization. We discuss extensively the basis-independent data that can be extracted from these correlators using the leading order large-N matrix model free energy given by the four-sphere partition function. Special emphasis is given to single-trace 2- and 3-point functions as well as a new class of observables that are scalars on the conformal manifold. These new observables are particular quadratic combinations of the structure constants of the chiral ring. At weak 't Hooft coupling we present perturbative results that, in principle, can be extended to arbitrarily high order. We obtain closed-form expressions up to the first subleading order. At strong coupling we provide analogous results based on an approximate Wiener-Hopf method.

  10. Harmonic-phase path-integral approximation of thermal quantum correlation functions

    Science.gov (United States)

    Robertson, Christopher; Habershon, Scott

    2018-03-01

    We present an approximation to the thermal symmetric form of the quantum time-correlation function in the standard position path-integral representation. By transforming to a sum-and-difference position representation and then Taylor-expanding the potential energy surface of the system to second order, the resulting expression provides a harmonic weighting function that approximately recovers the contribution of the phase to the time-correlation function. This method is readily implemented in a Monte Carlo sampling scheme and provides exact results for harmonic potentials (for both linear and non-linear operators) and near-quantitative results for anharmonic systems for low temperatures and times that are likely to be relevant to condensed phase experiments. This article focuses on one-dimensional examples to provide insights into convergence and sampling properties, and we also discuss how this approximation method may be extended to many-dimensional systems.

  11. Averages of ratios of the Riemann zeta-function and correlations of divisor sums

    Science.gov (United States)

    Conrey, Brian; Keating, Jonathan P.

    2017-10-01

    Nonlinearity has published articles containing a significant number-theoretic component since the journal was first established. We examine one thread, concerning the statistics of the zeros of the Riemann zeta function. We extend this by establishing a connection between the ratios conjecture for the Riemann zeta-function and a conjecture concerning correlations of convolutions of Möbius and divisor functions. Specifically, we prove that the ratios conjecture and an arithmetic correlations conjecture imply the same result. This provides new support for the ratios conjecture, which previously had been motivated by analogy with formulae in random matrix theory and by a heuristic recipe. Our main theorem generalises a recent calculation pertaining to the special case of two-over-two ratios.

  12. Estimation and Removing of Anisotropic Scattering for Multiaspect Polarimetric SAR Image

    Directory of Open Access Journals (Sweden)

    Li Yang

    2015-06-01

    Full Text Available Multiaspect Synthetic Aperture Radar (SAR can generate high resolution images and target scattering signatures in different azimuth angles from the coherent integration of all subaperture images. However, mixed anisotropic scatters limit the application of traditional imaging theory. Anisotropic scattering may introduce errors in polarimetric parameters by decreasing the reliability of terrain classification and detection of variability. Thus a method is proposed for estimating and removing anisotropic scattering in multiaspect polarimetric SAR images. The proposed algorithm is based on the maximum likelihood and likelihood-ratio tests for the two-class case, while considering the speckle effect, the mechanism of removing the anisotropic scattering, and the monotonicity of the Constant False Alarm Rate (CFAR detection function. We compare the polarimetric entropy before and after removing the anisotropic subapertures, and then validate the algorithm's potential in retrieving the target signature using a P-band quad-pol airborne SAR with circular trajectory.

  13. Reduced Rank Mixed Effects Models for Spatially Correlated Hierarchical Functional Data

    KAUST Repository

    Zhou, Lan

    2010-03-01

    Hierarchical functional data are widely seen in complex studies where sub-units are nested within units, which in turn are nested within treatment groups. We propose a general framework of functional mixed effects model for such data: within unit and within sub-unit variations are modeled through two separate sets of principal components; the sub-unit level functions are allowed to be correlated. Penalized splines are used to model both the mean functions and the principal components functions, where roughness penalties are used to regularize the spline fit. An EM algorithm is developed to fit the model, while the specific covariance structure of the model is utilized for computational efficiency to avoid storage and inversion of large matrices. Our dimension reduction with principal components provides an effective solution to the difficult tasks of modeling the covariance kernel of a random function and modeling the correlation between functions. The proposed methodology is illustrated using simulations and an empirical data set from a colon carcinogenesis study. Supplemental materials are available online.

  14. Muscle MRI Findings in Childhood/Adult Onset Pompe Disease Correlate with Muscle Function.

    Directory of Open Access Journals (Sweden)

    Sebastián Figueroa-Bonaparte

    Full Text Available Enzyme replacement therapy has shown to be effective for childhood/adult onset Pompe disease (AOPD. The discovery of biomarkers useful for monitoring disease progression is one of the priority research topics in Pompe disease. Muscle MRI could be one possible test but the correlation between muscle MRI and muscle strength and function has been only partially addressed so far.We studied 34 AOPD patients using functional scales (Manual Research Council scale, hand held myometry, 6 minutes walking test, timed to up and go test, time to climb up and down 4 steps, time to walk 10 meters and Motor Function Measure 20 Scale, respiratory tests (Forced Vital Capacity seated and lying, Maximun Inspiratory Pressure and Maximum Expiratory Pressure, daily live activities scales (Activlim and quality of life scales (Short Form-36 and Individualized Neuromuscular Quality of Life questionnaire. We performed a whole body muscle MRI using T1w and 3-point Dixon imaging centered on thighs and lower trunk region.T1w whole body muscle MRI showed a homogeneous pattern of muscle involvement that could also be found in pre-symptomatic individuals. We found a strong correlation between muscle strength, muscle functional scales and the degree of muscle fatty replacement in muscle MRI analyzed using T1w and 3-point Dixon imaging studies. Moreover, muscle MRI detected mild degree of fatty replacement in paraspinal muscles in pre-symptomatic patients.Based on our findings, we consider that muscle MRI correlates with muscle function in patients with AOPD and could be useful for diagnosis and follow-up in pre-symptomatic and symptomatic patients under treatment.Muscle MRI correlates with muscle function in patients with AOPD and could be useful to follow-up patients in daily clinic.

  15. Functional Brain Correlates of Upper Limb Spasticity and Its Mitigation following Rehabilitation in Chronic Stroke Survivors

    Directory of Open Access Journals (Sweden)

    Svetlana Pundik

    2014-01-01

    Full Text Available Background. Arm spasticity is a challenge in the care of chronic stroke survivors with motor deficits. In order to advance spasticity treatments, a better understanding of the mechanism of spasticity-related neuroplasticity is needed. Objective. To investigate brain function correlates of spasticity in chronic stroke and to identify specific regional functional brain changes related to rehabilitation-induced mitigation of spasticity. Methods. 23 stroke survivors (>6 months were treated with an arm motor learning and spasticity therapy (5 d/wk for 12 weeks. Outcome measures included Modified Ashworth scale, sensory tests, and functional magnetic resonance imaging (fMRI for wrist and hand movement. Results. First, at baseline, greater spasticity correlated with poorer motor function (P=0.001 and greater sensory deficits (P=0.003. Second, rehabilitation produced improvement in upper limb spasticity and motor function (P<0.0001. Third, at baseline, greater spasticity correlated with higher fMRI activation in the ipsilesional thalamus (rho=0.49, P=0.03. Fourth, following rehabilitation, greater mitigation of spasticity correlated with enhanced fMRI activation in the contralesional primary motor (r=-0.755, P=0.003, premotor (r=−0.565, P=0.04, primary sensory (r=−0.614, P=0.03, and associative sensory (r=−0.597, P=0.03 regions while controlling for changes in motor function. Conclusions. Contralesional motor regions may contribute to restoring control of muscle tone in chronic stroke.

  16. Correlation of tomographic findings with pulmonary function parameters in nonsmoking patients with idiopathic pulmonary fibrosis

    International Nuclear Information System (INIS)

    Lopes, Agnaldo Jose; Capone, Domenico; Mogami, Roberto; Jansen, Jose Manoel .E mail: phel.lop@uol.com.br; Cunha, Daniel Leme da; Melo, Pedro Lopes de

    2007-01-01

    Objective: To correlate tomographic findings with pulmonary function parameters in patients with idiopathic pulmonary fibrosis (IPF). Methods: A cross-sectional study was carried out, in which 30 nonsmoking patients with IPF were evaluated. Using a semiquantitative scoring system, the following high-resolution computerized tomography findings were quantified: total interstitial disease (TID), reticular abnormality/honeycombing, and ground-glass opacity (GGO). The functional variables were measured by spirometry, forced oscillation technique (FOT), helium dilution method, as well as the single-breath method of measuring diffusion capacity of the lung for carbon monoxide (DLCO). Results: Of the 30 patients studied, 18 were female, and 12 were male, with a mean age of 70.9 years. We found that TID and reticular abnormality and honeycombing correlated significantly (negative correlations) with the measurements of forced vital capacity (FVC), total lung capacity (TLC), DLCO, and dynamic respiratory compliance were found, as well as that GGO correlated significantly (and positively) with residual volume/TLC. The ratio of forced expiratory flow between 25 and 75% of FVC to FVC (FEF25-75%/FVC) correlated positively with TID, reticular abnormality/honeycombing, and GGO. Conclusion: In IPF patients, the measurements of volume, diffusion, and dynamic compliance are the physiological variables which best reflect the extent of the interstitial disease on HRCT scans. (author)

  17. Correlation of tomographic findings with pulmonary function parameters in nonsmoking patients with idiopathic pulmonary fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Agnaldo Jose; Capone, Domenico; Mogami, Roberto; Jansen, Jose Manoel [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). School of Medical Sciences].E mail: phel.lop@uol.com.br; Cunha, Daniel Leme da [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Pedro Ernesto University Hospital. Dept. of Radiology and Diagnostic Imaging; Melo, Pedro Lopes de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. of Biology

    2007-11-15

    Objective: To correlate tomographic findings with pulmonary function parameters in patients with idiopathic pulmonary fibrosis (IPF). Methods: A cross-sectional study was carried out, in which 30 nonsmoking patients with IPF were evaluated. Using a semiquantitative scoring system, the following high-resolution computerized tomography findings were quantified: total interstitial disease (TID), reticular abnormality/honeycombing, and ground-glass opacity (GGO). The functional variables were measured by spirometry, forced oscillation technique (FOT), helium dilution method, as well as the single-breath method of measuring diffusion capacity of the lung for carbon monoxide (DLCO). Results: Of the 30 patients studied, 18 were female, and 12 were male, with a mean age of 70.9 years. We found that TID and reticular abnormality and honeycombing correlated significantly (negative correlations) with the measurements of forced vital capacity (FVC), total lung capacity (TLC), DLCO, and dynamic respiratory compliance were found, as well as that GGO correlated significantly (and positively) with residual volume/TLC. The ratio of forced expiratory flow between 25 and 75% of FVC to FVC (FEF25-75%/FVC) correlated positively with TID, reticular abnormality/honeycombing, and GGO. Conclusion: In IPF patients, the measurements of volume, diffusion, and dynamic compliance are the physiological variables which best reflect the extent of the interstitial disease on HRCT scans. (author)

  18. Correlations between limbic white matter and cognitive function in temporal lobe epilepsy, preliminary findings

    Directory of Open Access Journals (Sweden)

    Ryan PD Alexander

    2014-06-01

    Full Text Available The limbic system is presumed to have a central role in cognitive performance, in particular memory. The purpose of this study was to investigate the relationship between limbic white matter microstructure and neuropsychological function in temporal lobe epilepsy (TLE patients using diffusion tensor imaging (DTI. Twenty-one adult TLE patients, including seven non-lesional (nlTLE and fourteen with unilateral mesial temporal sclerosis (uTLE, were studied with both DTI and hippocampal T2 relaxometry. Correlations were performed between fractional anisotropy (FA of the bilateral fornix and cingulum, hippocampal T2, neuropsychological tests. Positive correlations were observed in the whole group for the left fornix and Processing Speed Index. In contrast, memory tests did not show significant correlations with DTI findings. Subgroup analysis demonstrated an association between the left fornix and Processing Speed in nlTLE but not uTLE. No correlations were observed between hippocampal T2 and test scores in either the TLE group as a whole or after subgroup analysis. Our findings suggest that integrity of the left fornix specifically is an important anatomical correlate of cognitive function in TLE patients, in particular patients with nlTLE.

  19. Cognitive reserve moderates the association between functional network anti-correlations and memory in MCI.

    Science.gov (United States)

    Franzmeier, Nicolai; Buerger, Katharina; Teipel, Stefan; Stern, Yaakov; Dichgans, Martin; Ewers, Michael

    2017-02-01

    Cognitive reserve (CR) shows protective effects on cognitive function in older adults. Here, we focused on the effects of CR at the functional network level. We assessed in patients with amnestic mild cognitive impairment (aMCI) whether higher CR moderates the association between low internetwork cross-talk on memory performance. In 2 independent aMCI samples (n = 76 and 93) and healthy controls (HC, n = 36), CR was assessed via years of education and intelligence (IQ). We focused on the anti-correlation between the dorsal attention network (DAN) and an anterior and posterior default mode network (DMN), assessed via sliding time window analysis of resting-state functional magnetic resonance imaging (fMRI). The DMN-DAN anti-correlation was numerically but not significantly lower in aMCI compared to HC. However, in aMCI, lower anterior DMN-DAN anti-correlation was associated with lower memory performance. This association was moderated by CR proxies, where the association between the internetwork anti-correlation and memory performance was alleviated at higher levels of education or IQ. In conclusion, lower DAN-DMN cross-talk is associated with lower memory in aMCI, where such effects are buffered by higher CR. Copyright © 2016 Elsevier Inc. All rights reserved.

  20. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    Directory of Open Access Journals (Sweden)

    Andrew F Neuwald

    2016-12-01

    Full Text Available Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs, which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu.

  1. Inference of Functionally-Relevant N-acetyltransferase Residues Based on Statistical Correlations.

    Science.gov (United States)

    Neuwald, Andrew F; Altschul, Stephen F

    2016-12-01

    Over evolutionary time, members of a superfamily of homologous proteins sharing a common structural core diverge into subgroups filling various functional niches. At the sequence level, such divergence appears as correlations that arise from residue patterns distinct to each subgroup. Such a superfamily may be viewed as a population of sequences corresponding to a complex, high-dimensional probability distribution. Here we model this distribution as hierarchical interrelated hidden Markov models (hiHMMs), which describe these sequence correlations implicitly. By characterizing such correlations one may hope to obtain information regarding functionally-relevant properties that have thus far evaded detection. To do so, we infer a hiHMM distribution from sequence data using Bayes' theorem and Markov chain Monte Carlo (MCMC) sampling, which is widely recognized as the most effective approach for characterizing a complex, high dimensional distribution. Other routines then map correlated residue patterns to available structures with a view to hypothesis generation. When applied to N-acetyltransferases, this reveals sequence and structural features indicative of functionally important, yet generally unknown biochemical properties. Even for sets of proteins for which nothing is known beyond unannotated sequences and structures, this can lead to helpful insights. We describe, for example, a putative coenzyme-A-induced-fit substrate binding mechanism mediated by arginine residue switching between salt bridge and π-π stacking interactions. A suite of programs implementing this approach is available (psed.igs.umaryland.edu).

  2. Correlation Between Vision and Cognitive Function in the Elderly: A Cross-Sectional Study.

    Science.gov (United States)

    Spierer, Oriel; Fischer, Naomi; Barak, Adiel; Belkin, Michael

    2016-01-01

    The correlation between vision and cognition is not fully understood. Visual impairment in the elderly has been associated with impaired cognitive function, dementia, and Alzheimer disease. The aim was to study the correlation between near visual acuity (VA), refraction, and cognitive state in an elderly population.Subjects ≥75 years were enrolled in this cross-sectional study. Refraction and near VA was tested. Cognitive function was evaluated with a version of the mini-mental state examination for the visually impaired (MMSE-blind). The eye with better VA and no cataract or refractive surgery was analyzed.One-hundred ninety subjects (81.6 ± 5.1 years, 69.5% female) were included. Good VA (≤J3) was associated with high MMSE-blind (>17) (OR = 3.18, 95% CI = 1.57-6.43, P = 0.001). This remained significant adjusting for sex, age, and years of education. Wearing reading glasses correlated significantly with high MMSE-blind after adjustment for sex and age (OR = 2.14, 95% CI = 1.16-3.97, P = 0.016), but reached borderline significance after adjustment for education. There was a trend toward correlation between myopia and better MMSE-blind (r = -0.123, P = 0.09, Pearson correlation).Good VA and wearing glasses seem to correlate with better cognitive function. Reading glasses can serve as a protective factor against cognitive deterioration associated with sensory (visual) deprivation in old age. The association between myopia and cognition requires further investigation.

  3. Metafluid with anisotropic dynamic mass

    International Nuclear Information System (INIS)

    Gumen, L.N.; Arriaga, J.; Krokhin, A.A.

    2011-01-01

    We show that a fluid filling the space between metallic cylinders arranged in a two-dimensional lattice exhibits anisotropic dynamic mass for sound waves propagating through the lattice, if its unit cell is anisotropic. Using the plane-waves expansion method we derive (in the long wavelength limit) a formula for the effective mass tensor of the metafluid. The proposed formula is very general - it is valid for arbitrary Bravais lattices and arbitrary filling fractions of the cylinders. We apply our method to a periodic structure with very high anisotropy, when other known methods fail. In particular, we calculate the effective mass tensor for sound waves in air with embedded lattice of aluminum cylinders having rectangular cross sections, and obtain excellent agreement with experiment. The proposed method of calculation may find numerous applications for tailoring of metafluids with prescribed anisotropy.

  4. Anisotropic Ripple Deformation in Phosphorene.

    Science.gov (United States)

    Kou, Liangzhi; Ma, Yandong; Smith, Sean C; Chen, Changfeng

    2015-05-07

    Two-dimensional materials tend to become crumpled according to the Mermin-Wagner theorem, and the resulting ripple deformation may significantly influence electronic properties as observed in graphene and MoS2. Here, we unveil by first-principles calculations a new, highly anisotropic ripple pattern in phosphorene, a monolayer black phosphorus, where compression-induced ripple deformation occurs only along the zigzag direction in the strain range up to 10%, but not the armchair direction. This direction-selective ripple deformation mode in phosphorene stems from its puckered structure with coupled hinge-like bonding configurations and the resulting anisotropic Poisson ratio. We also construct an analytical model using classical elasticity theory for ripple deformation in phosphorene under arbitrary strain. The present results offer new insights into the mechanisms governing the structural and electronic properties of phosphorene crucial to its device applications.

  5. Are executive functions related to emotional intelligence? A correlational study in schizophrenia and borderline personality disorder.

    Science.gov (United States)

    Hurtado, M M; Triviño, M; Arnedo, M; Roldán, G; Tudela, P

    2016-12-30

    This research explored the relationship between executive functions (working memory and reasoning subtests of the Wechsler Adult Intelligence Scale, Trail Making and Stroop tests, fluency and planning tasks, and Wisconsin Card Sorting Test) and emotional intelligence measured by the Mayer-Salovey-Caruso Emotional Intelligence Test in patients with schizophrenia or borderline personality disorder compared to a control group. As expected, both clinical groups performed worse than the control group in executive functions and emotional intelligence, although the impairment was greater in the borderline personality disorder group. Executive functions significantly correlated with social functioning. Results are discussed in relation to the brain circuits that mediate executive functions and emotional intelligence and the findings obtained with other models of social cognition. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  6. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Science.gov (United States)

    Koelsch, Stefan; Skouras, Stavros; Jentschke, Sebastian

    2013-01-01

    Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram) which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM) and structural (voxel-based morphometry, VBM) neuroimaging data. Functional magnetic resonance imaging (fMRI) data were obtained from 22 individuals (12 females) while listening to music (joy, fear, or neutral music). ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens). Individuals with higher E κ values (indexing higher tender emotionality) showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females) showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ) correlates with both function (increased network centrality) and structure (grey matter volume) of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  7. Neural correlates of emotional personality: a structural and functional magnetic resonance imaging study.

    Directory of Open Access Journals (Sweden)

    Stefan Koelsch

    Full Text Available Studies addressing brain correlates of emotional personality have remained sparse, despite the involvement of emotional personality in health and well-being. This study investigates structural and functional brain correlates of psychological and physiological measures related to emotional personality. Psychological measures included neuroticism, extraversion, and agreeableness scores, as assessed using a standard personality questionnaire. As a physiological measure we used a cardiac amplitude signature, the so-called E κ value (computed from the electrocardiogram which has previously been related to tender emotionality. Questionnaire scores and E κ values were related to both functional (eigenvector centrality mapping, ECM and structural (voxel-based morphometry, VBM neuroimaging data. Functional magnetic resonance imaging (fMRI data were obtained from 22 individuals (12 females while listening to music (joy, fear, or neutral music. ECM results showed that agreeableness scores correlated with centrality values in the dorsolateral prefrontal cortex, the anterior cingulate cortex, and the ventral striatum (nucleus accumbens. Individuals with higher E κ values (indexing higher tender emotionality showed higher centrality values in the subiculum of the right hippocampal formation. Structural MRI data from an independent sample of 59 individuals (34 females showed that neuroticism scores correlated with volume of the left amygdaloid complex. In addition, individuals with higher E κ showed larger gray matter volume in the same portion of the subiculum in which individuals with higher E κ showed higher centrality values. Our results highlight a role of the amygdala in neuroticism. Moreover, they indicate that a cardiac signature related to emotionality (E κ correlates with both function (increased network centrality and structure (grey matter volume of the subiculum of the hippocampal formation, suggesting a role of the hippocampal formation for

  8. Application of Discrete Cross-Correlation Function for Observational-Comparative Navigation System

    Directory of Open Access Journals (Sweden)

    Matuszewski Jan

    2017-12-01

    Full Text Available The article presents navigation system project operating on the principle scene matching area correlation (SMAC, using a digital camera, an MEMS e-compass sensor and an ultrasonic ranging module. Systems of this type are used as a component of advanced integrated navigation systems in view of its autonomy and capability of localizing aircrafts with high accuracy and precision. Steering and display of information are implemented using a computer application designed in Matlab programming environment. The object’s location is fixed, using discrete cross-correlation function through matching of the registered terrain image to digital orthophotomap.

  9. A pilot study of functional magnetic resonance imaging brain correlates of deception in healthy young men.

    Science.gov (United States)

    Kozel, F Andrew; Revell, Letty J; Lorberbaum, Jeffrey P; Shastri, Ananda; Elhai, Jon D; Horner, Michael David; Smith, Adam; Nahas, Ziad; Bohning, Daryl E; George, Mark S

    2004-01-01

    We hypothesized that specific brain regions would activate during deception, and these areas would correlate with changes in electrodermal activity (EDA). Eight men were asked to find money hidden under various objects. While functional MRI images were acquired and EDA was recorded, the subjects gave both truthful and deceptive answers regarding the money's location. The group analysis revealed significant activation during deception in the orbitofrontal cortex (OFCx) and anterior cingulate (AC), but individual results were not consistent. Individually and as a group, EDA correlated with blood flow changes in the OFCx and AC. Specific brain regions were activated during deception, but the present technique lacks good predictive power for individuals.

  10. Second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence.

    Science.gov (United States)

    Zheng, Guo; Wang, Jue; Wang, Lin; Zhou, Muchun; Xin, Yu; Song, Minmin

    2017-11-15

    The general formulae for second-order moments of Schell-model beams with various correlation functions in atmospheric turbulence are derived and validated by the Bessel-Gaussian Schell-model beams and cosine-Gaussian-correlated Schell-model beams. Our finding shows that the second-order moments of partially coherent Schell-model beams are related to the second-order partial derivatives of source spectral degree of coherence at the origin. The formulae we provide are much more convenient to analyze and research propagation problems in turbulence.

  11. Detection of rheumatoid arthritis by evaluation of normalized variances of fluorescence time correlation functions

    Science.gov (United States)

    Dziekan, Thomas; Weissbach, Carmen; Voigt, Jan; Ebert, Bernd; MacDonald, Rainer; Bahner, Malte L.; Mahler, Marianne; Schirner, Michael; Berliner, Michael; Berliner, Birgitt; Osel, Jens; Osel, Ilka

    2011-07-01

    Fluorescence imaging using the dye indocyanine green as a contrast agent was investigated in a prospective clinical study for the detection of rheumatoid arthritis. Normalized variances of correlated time series of fluorescence intensities describing the bolus kinetics of the contrast agent in certain regions of interest were analyzed to differentiate healthy from inflamed finger joints. These values are determined using a robust, parameter-free algorithm. We found that the normalized variance of correlation functions improves the differentiation between healthy joints of volunteers and joints with rheumatoid arthritis of patients by about 10% compared to, e.g., ratios of areas under the curves of raw data.

  12. Using amino acid correlation and community detection algorithms to identify functional determinants in protein families.

    Directory of Open Access Journals (Sweden)

    Lucas Bleicher

    Full Text Available Correlated mutation analysis has a long history of interesting applications, mostly in the detection of contact pairs in protein structures. Based on previous observations that, if properly assessed, amino acid correlation data can also provide insights about functional sub-classes in a protein family, we provide a complete framework devoted to this purpose. An amino acid specific correlation measure is proposed, which can be used to build networks summarizing all correlation and anti-correlation patterns in a protein family. These networks can be submitted to community structure detection algorithms, resulting in subsets of correlated amino acids which can be further assessed by specific parameters and procedures that provide insight into the relationship between different communities, the individual importance of community members and the adherence of a given amino acid sequence to a given community. By applying this framework to three protein families with contrasting characteristics (the Fe/Mn-superoxide dismutases, the peroxidase-catalase family and the C-type lysozyme/α-lactalbumin family, we show how our method and the proposed parameters and procedures are related to biological characteristics observed in these protein families, highlighting their potential use in protein characterization and gene annotation.

  13. Intraoperative Frontal Alpha-Band Power Correlates with Preoperative Neurocognitive Function in Older Adults

    Directory of Open Access Journals (Sweden)

    Charles M. Giattino

    2017-05-01

    Full Text Available Each year over 16 million older Americans undergo general anesthesia for surgery, and up to 40% develop postoperative delirium and/or cognitive dysfunction (POCD. Delirium and POCD are each associated with decreased quality of life, early retirement, increased 1-year mortality, and long-term cognitive decline. Multiple investigators have thus suggested that anesthesia and surgery place severe stress on the aging brain, and that patients with less ability to withstand this stress will be at increased risk for developing postoperative delirium and POCD. Delirium and POCD risk are increased in patients with lower preoperative cognitive function, yet preoperative cognitive function is not routinely assessed, and no intraoperative physiological predictors have been found that correlate with lower preoperative cognitive function. Since general anesthesia causes alpha-band (8–12 Hz electroencephalogram (EEG power to decrease occipitally and increase frontally (known as “anteriorization”, and anesthetic-induced frontal alpha power is reduced in older adults, we hypothesized that lower intraoperative frontal alpha power might correlate with lower preoperative cognitive function. Here, we provide evidence that such a correlation exists, suggesting that lower intraoperative frontal alpha power could be used as a physiological marker to identify older adults with lower preoperative cognitive function. Lower intraoperative frontal alpha power could thus be used to target these at-risk patients for possible therapeutic interventions to help prevent postoperative delirium and POCD, or for increased postoperative monitoring and follow-up. More generally, these results suggest that understanding interindividual differences in how the brain responds to anesthetic drugs can be used as a probe of neurocognitive function (and dysfunction, and might be a useful measure of neurocognitive function in older adults.

  14. Latent profile analysis in frontotemporal lobar degeneration and related disorders: clinical presentation and SPECT functional correlates

    Directory of Open Access Journals (Sweden)

    Di Luca Monica

    2007-05-01

    Full Text Available Abstract Background Frontotemporal Lobar Degeneration (FTLD thus recently renamed, refers to a spectrum of heterogeneous conditions. This same heterogeneity of presentation represents the major methodological limit for the correct evaluation of clinical designation and brain functional correlates. At present, no study has investigated clinical clusters due to specific cognitive and behavioural disturbances beyond current clinical criteria. The aim of this study was to identify clinical FTLD presentation, based on cognitive and behavioural profile, and to define their SPECT functional correlations. Methods Ninety-seven FTLD patients entered the study. A clinical evaluation and standardised assessment were preformed, as well as a brain SPECT perfusion imaging study. Latent Profile Analysis on clinical, neuropsychological, and behavioural data was performed. Voxel-basis analysis of SPECT data was computed. Results Three specific clusters were identified and named "pseudomanic behaviour" (LC1, "cognitive" (LC2, and "pseudodepressed behaviour" (LC3 endophenotypes. These endophenotypes showed a comparable hypoperfusion in left temporal lobe, but a specific pattern involving: medial and orbitobasal frontal cortex in LC1, subcortical brain region in LC2, and right dorsolateral frontal cortex and insula in LC3. Conclusion These findings provide evidence that specific functional-cluster symptom relationship can be delineated in FTLD patients by a standardised assessment. The understanding of the different functional correlates of clinical presentations will hopefully lead to the possibility of individuating diagnostic and treatment algorithms.

  15. Derivative discontinuity and exchange-correlation potential of meta-GGAs in density-functional theory

    International Nuclear Information System (INIS)

    Eich, F. G.; Hellgren, Maria

    2014-01-01

    We investigate fundamental properties of meta-generalized-gradient approximations (meta-GGAs) to the exchange-correlation energy functional, which have an implicit density dependence via the Kohn-Sham kinetic-energy density. To this purpose, we construct the most simple meta-GGA by expressing the local exchange-correlation energy per particle as a function of a fictitious density, which is obtained by inverting the Thomas-Fermi kinetic-energy functional. This simple functional considerably improves the total energy of atoms as compared to the standard local density approximation. The corresponding exchange-correlation potentials are then determined exactly through a solution of the optimized effective potential equation. These potentials support an additional bound state and exhibit a derivative discontinuity at integer particle numbers. We further demonstrate that through the kinetic-energy density any meta-GGA incorporates a derivative discontinuity. However, we also find that for commonly used meta-GGAs the discontinuity is largely underestimated and in some cases even negative

  16. White-matter changes correlate with cognitive functioning in Parkinson's disease

    Directory of Open Access Journals (Sweden)

    Rebecca J Theilmann

    2013-04-01

    Full Text Available Diffusion tensor imaging (DTI findings from emerging studies of cortical white-matter integrity in Parkinson’s disease (PD without dementia are inconclusive. When white-matter changes have been found, their relationship to cognitive functioning in PD has not been carefully investigated. To better characterize changes in tissue diffusivity and to understand their functional significance, the present study conducted DTI in 25 PD patients without dementia and 26 controls of similar ages. An automated tract-based DTI method was used. Fractional anisotropy (FA, mean diffusivity (MD, axial diffusivity (AD, and radial diffusivity (RD were analyzed. Neuropsychological measures of executive functioning (working memory, verbal fluency, cognitive flexibility, inhibitory control and visuospatial ability were then correlated with regions of interest that showed abnormal diffusivity in the PD group. We found widespread reductions in FA and increases in MD in the PD group relative to controls. These changes were predominantly related to an increase in RD. Increased AD in the PD group was limited to specific frontal tracks of the right hemisphere, possibly signifying more significant tissue changes. Motor-symptom severity did not correlate with FA. However, different measures of executive functioning and visuospatial ability correlated with FA in different segments of tracts, which contain fiber pathways to cortical regions that are thought to support specific cognitive processes. The findings suggest that abnormal tissue diffusivity may be sensitive to subtle cognitive changes in PD, some of which may be prognostic of future cognitive decline.

  17. Correlation between upper limb function and oral health impact in stroke survivors.

    Science.gov (United States)

    da Silva, Fernanda C; da Silva, Daniela F T; Mesquita-Ferrari, Raquel A; Fernandes, Kristianne P S; Bussadori, Sandra K

    2015-07-01

    [Purpose] The aim of the present study was to evaluate the relationship between upper limb impairment and oral health impact in individuals with hemiparesis stemming from a stroke. [Subjects and Methods] The study subjects were conducted with a sample of 27 stroke survivors with complete or partial hemiparesis with brachial or crural predominance. The 14-item short version of the Oral Health Impact Profile was used to evaluate perceptions of oral health. The Brazilian version of the Stroke Specific Quality of Life Scale was used to evaluate perceptions regarding quality of life. [Results] A statistically significant association was found between the upper extremity function subscale of the SSQOL-Brazil and the impact of oral health evaluated using the OHIP-14, with a strong correlation found for the physical pain subscale, moderate correlations with the functional limitation, psychological discomfort, physical disability, social disability and social handicap subscales as well as a weak correlation with the psychological disability subscale. Analyzing the OHIP-14 scores with regard to the impact of oral health on quality of life, the most frequent classification was weak impact, with small rates of moderate and strong impact. [Conclusion] Compromised upper limb function and self-perceived poor oral health, whether due to cultural resignation or functional disability, exert a negative impact on the quality of life of individuals with hemiparesis stemming from a stroke.

  18. Two-point correlation functions to characterize microgeometry and estimate permeabilities of synthetic and natural sandstones

    Energy Technology Data Exchange (ETDEWEB)

    Blair, S.C.; Berge, P.A.; Berryman, J.G.

    1993-08-01

    We have developed an image-processing method for characterizing the microstructure of rock and other porous materials, and for providing a quantitative means for understanding the dependence of physical properties on the pore structure. This method is based upon the statistical properties of the microgeometry as observed in scanning electron micrograph (SEM) images of cross sections of porous materials. The method utilizes a simple statistical function, called the spatial correlation function, which can be used to predict bounds on permeability and other physical properties. We obtain estimates of the porosity and specific surface area of the material from the two-point correlation function. The specific surface area can be related to the permeability of porous materials using a Kozeny-Carman relation, and we show that the specific surface area measured on images of sandstones is consistent with the specific surface area used in a simple flow model for computation of permeability. In this paper, we discuss the two-point spatial correlation function and its use in characterizing microstructure features such as pore and grain sizes. We present estimates of permeabilities found using SEM images of several different synthetic and natural sandstones. Comparison of the estimates to laboratory measurements shows good agreement. Finally, we briefly discuss extension of this technique to two-phase flow.

  19. Anisotropic strain and phonon deformation potentials in GaN

    International Nuclear Information System (INIS)

    Darakchieva, V.; Arwin, H.; Paskov, P. P.; Monemar, B.; Paskova, T.; Hommel, D.; Schubert, M.; Heuken, M.; Off, J.; Scholz, F.; Haskell, B. A.; Fini, P. T.; Speck, J. S.; Nakamura, S.

    2007-01-01

    We report optical phonon frequency studies in anisotropically strained c-plane- and a-plane-oriented GaN films by generalized infrared spectroscopic ellipsometry and Raman scattering spectroscopy. The anisotropic strain in the films is obtained from high-resolution x-ray diffraction measurements. Experimental evidence for splitting of the GaN E 1 (TO), E 1 (LO), and E 2 phonons under anisotropic strain in the basal plane is presented, and their phonon deformation potentials c E 1 (TO) , c E 1 (LO) , and c E 2 are determined. A distinct correlation between anisotropic strain and the A 1 (TO) and E 1 (LO) frequencies of a-plane GaN films reveals the a A 1 (TO) , b A 1 (TO) , a E 1 (LO) , and b E 1 (LO) phonon deformation potentials. The a A 1 (TO) and b A 1 (TO) are found to be in very good agreement with previous results from Raman experiments [V. Yu. Davydov et al., J. Appl. Phys. 82, 5097 (1997)]. Our a A 1 (TO) and a E 1 (LO) phonon deformation potentials agree well with recently reported theoretical estimations [J.-M. Wagner and F. Bechstedt, Phys. Rev. B 66, 115202 (2002)], while b A 1 (TO) and b E 1 (LO) are found to be significantly larger than the theoretical values. A discussion of the observed differences is presented

  20. Correlation between functional independence and quality of life of patients with amyotrophic lateral sclerosis

    Directory of Open Access Journals (Sweden)

    Nathalia Priscilla Oliveira Silva

    2014-12-01

    Full Text Available Functional independence and quality of life are impacted by amyotrophic lateral sclerosis (ALS, a degenerative and progressive disease. The aim of this study was to investigate the functional independence and quality of life of patients with ALS in the municipality of Natal, Rio Grande do Norte state, Brazil. This is a cross-sectional observational study conducted with 24 patients. The Amyotrophic Lateral Sclerosis Assessment Questionnaire (ALSAQ-40/BR and the Functional Independence Measure (FIM were used as evaluation instruments. The data were analyzed through the Spearman’s correlation and Mann-Whitney tests. The individuals investigated presented modified functional dependence in the FIM, with mean of 64.9±20.5, and alteration in all areas of the ALSAQ-40/ BR. There was significant inverse correlation between FIM and the ALSAQ-40/BR areas of “Mobility” (p<0.01, “Activities of Daily Living (DLAs” (p<0.01, “Eating ability” (p=0.02, and “Communication” (p<0.01, but not in the domain of “Emotional Aspect”. Despite the reduced sample, all patients presented reduction in functional independence and quality of life. The use of these instruments may be a tool to assist the elaboration of intervention plans and interdisciplinary treatment, contributing to retard functional dependence and improve the quality of life of these patients.

  1. Microstructural degeneracy associated with a two-point correlation function and its information content

    Science.gov (United States)

    Gommes, C. J.; Jiao, Y.; Torquato, S.

    2012-05-01

    A two-point correlation function provides a crucial yet an incomplete characterization of a microstructure because distinctly different microstructures may have the same correlation function. In an earlier Letter [Gommes, Jiao, and Torquato, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.108.080601 108, 080601 (2012)], we addressed the microstructural degeneracy question: What is the number of microstructures compatible with a specified correlation function? We computed this degeneracy, i.e., configurational entropy, in the framework of reconstruction methods, which enabled us to map the problem to the determination of ground-state degeneracies. Here, we provide a more comprehensive presentation of the methodology and analyses, as well as additional results. Since the configuration space of a reconstruction problem is a hypercube on which a Hamming distance is defined, we can calculate analytically the energy profile of any reconstruction problem, corresponding to the average energy of all microstructures at a given Hamming distance from a ground state. The steepness of the energy profile is a measure of the roughness of the energy landscape associated with the reconstruction problem, which can be used as a proxy for the ground-state degeneracy. The relationship between this roughness metric and the ground-state degeneracy is calibrated using a Monte Carlo algorithm for determining the ground-state degeneracy of a variety of microstructures, including realizations of hard disks and Poisson point processes at various densities as well as those with known degeneracies (e.g., single disks of various sizes and a particular crystalline microstructure). We show that our results can be expressed in terms of the information content of the two-point correlation functions. From this perspective, the a priori condition for a reconstruction to be accurate is that the information content, expressed in bits, should be comparable to the number of pixels in the unknown

  2. Correlation Between Executive Function Behaviors and Educational Achievement of Children With Developmental Coordination Disorder

    Directory of Open Access Journals (Sweden)

    Maleki

    2016-06-01

    Full Text Available Background Developmental cordination disorder (DCD is a serious deficit in development of motor coordination, which affects educational achievements and daily life activities to a considerable extent. Objectives The present study aimed to investigate correlations between components of executive function and spelling and math performance of 7 - 11-year-old children with DCD. Materials and Methods A descriptive-analytic study was conducted on 53 primary school children with DCD. Persian version of motor observation questionnaire for teachers (PMOQ-T was used to detect DCD. Executive functions and educational achievements of these children were evaluated using behavior rating inventory of executive function (BRIEF and a researcher-made test, respectively. Results were analyzed through SPSS software (v. 21 and Pearson correlation coefficient. Results The findings showed that components of inhibition (r = -0.27, P < 0.05, working memory (r = -0.44, P < 0.01 and organization of material (r = -0.28, P < 0.05 were significantly correlated with the spelling test. And components of inhibition (r = -0.27, P < 0.05, shift (r = -0.38, P < 0. 01, working memory (r = -0.28, P < 0.05, and planning (r = -.29, P<0.05 were correlated with math test. Conclusions The results may help clinicians for early intervention and focus on related components of executive function to improve the educational performance of DCD children. Knowing that executive function skills are associated with these two achievement domains suggests potentiality of targeted math and spelling interventions for DCD children.

  3. Metabolic correlates of general cognitive function in nondemented elderly subjects: an FDG PET study

    International Nuclear Information System (INIS)

    Cho, Sang Soo; Kwak, Young Bin; Lee, Eun Ju; Ryu, Chang Hyung; Chey, Jean Yung; Kim, Sang Eun

    2004-01-01

    While many studies examined the neural correlates of individual cognitive functions, few made efforts to identify the neural networks associated with general cognitive function. General cognitive function decline in the elderly population is not infrequent. This study examined the brain areas associated with general cognitive function in the elderly subjects. Community-dwelling 116 elderly subjects without dementing illnesses (age, 71±5 y; 13 males and 103 females) participated. General cognitive ability was assessed with the Dementia Rating Scale (K-DRS), which is composed of five subtests of attention, initiation and perseveration, construction, conceptualization, and memory. The EVLT (Elderly Verbal Learning Test), a nine-word list learning test, was used for general memory assessment. Brain FDG PET scans were acquired in all subjects. Brain regions where metabolic levels are correlated with the total scores of K-DRS and EVLT were examined using SPM99. There was a significant positive correlation (P < 0.01 uncorrected, k=100) between the total score of K-DRS and glucose metabolism in the bilateral posterior cingulate gyri, bilateral inferior frontal gyri, left caudate, left inferior parietal lobule, right precuneus, bilateral unci, right parahippocampal gyrus, and right anterior cingulate gyrus. A significant positive correlation between the total score of EVLT and glucose metabolism was shown in the right precuneus, right posterior cingulate gyrus, left insula, bilateral inferior parietal lobules, left anterior cingulate gyrus, left caudate, right inferior frontal gyrus (P < 0.01 uncorrected, k=100). Our data showed the brain regions that are associated with general cognitive function in the elderly. Those regions may serve as the neural substrated of cognitive dysfunction associated with neurodegenerative and cerebrovascular diseases in elderly subjects

  4. Description and Reconstruction of Soil Structure Using Correlation Functions: Morphological and Pore-Scale Modeling Study

    Science.gov (United States)

    Karsanina, M.; Gerke, K.; Vasilyev, R.; Skvortsova, E. B.; Korost, D. V.; Mallants, D.

    2013-12-01

    It is now well-established that structure of porous or composite media (i.e., distribution of different materials or phases) defines all physical properties, including multi-phase flow and solute transport. To characterize soil structure conventional soil science uses such metrics as grain size distribution, morphology or numerous classifications. However, all these descriptors provide only limited and often qualitative information about structural properties, cannot be used to reconstruct real structure or predict physical properties. With the progress of modern non-destructive analysis tools we can obtain detailed 3D structure information and use it for calculation of any physical property. Such 3D data is a valuable verification dataset to check the usefulness of soil structure description using stochastic measures such as correlation functions. Any potential soil structure descriptor should possess two main features: 1) represent structure in some mathematical way, 2) reconstruction based on this mathematical function alone should be statistically equal to the original structure (e.g., have similar pore size distributions, physical properties, etc.). To check the applicability to soil science, we choose different 2D and 3D segmented soil images and calculated their correlation function. The modified Yeong-Torquato procedure was then used to reconstruct images based on calculated correlation functions. This method was applied to three different soil datasets: 1) a set of 2D thin-sections, 2) 3D images of soils with known hydraulic properties (Ksat and WRC), 3) 3D images of soils and aggregates from the same soil profile, but different genetic horizons. In the first case, we use conventional morphological descriptors in 2D original and reconstructed images (pore size, shapes and orientations) to quantify reconstructions quality. In the second case, we use pore-network models extracted from original and reconstructed 3D images to calculate Ksat, WRC and relative

  5. Anisotropic shift of the irreversibility line by neutron irradiation

    International Nuclear Information System (INIS)

    Sauerzopf, F.M.; Wiesinger, H.P.; Weber, H.W.; Crabtree, G.W.; Frischherz, M.C.; Kirk, M.A.

    1991-09-01

    The irreversibility line of high-T c superconductors is shifted considerably by irradiating the material with fast neutrons. The anisotropic and non-monotonous shift is qualitatively explained by a simple model based on an interaction between three pinning mechanisms, the intrinsic pinning by the ab-planes, the weak pinning by the pre-irradiation defect structure, and strong pinning by neutron induced defect cascades. A correlation between the cascade density and the position of the irreversibility line is observed

  6. Modeling fractal structure of city-size distributions using correlation functions.

    Science.gov (United States)

    Chen, Yanguang

    2011-01-01

    Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.

  7. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease

    Energy Technology Data Exchange (ETDEWEB)

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Rodriguez, Guido [University of Genoa, Clinical Neurophysiology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy); De Carli, Fabrizio [National Research Council, Institute of Molecular Bioimaging and Physiology, Genoa (Italy); Morbelli, Silvia; Sambuceti, Gianmario [University of Genoa, Nuclear Medicine, Department of Internal Medicine, Genoa (Italy); Abruzzese, Giovanni [University Hospital San. Martino, Clinical Neurology, Department of Neurosciences, Ophthalmology and Genetics, Genoa (Italy)

    2011-12-15

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naive, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD. (orig.)

  8. Elucidating dimensions of posttraumatic stress symptoms and their functional correlates in disaster-exposed adolescents.

    Science.gov (United States)

    Sumner, Jennifer A; Pietrzak, Robert H; Danielson, Carla Kmett; Adams, Zachary W; Ruggiero, Kenneth J

    2014-12-01

    The aim of this study was to elucidate the dimensional structure of posttraumatic stress disorder (PTSD) and potential moderators and functional correlates of this structure in disaster-affected adolescents. A population-based sample of 2000 adolescents aged 12-17 years (M = 14.5 years; 51% female) completed interviews on post-tornado PTSD symptoms, substance use, and parent-adolescent conflict between 4 and 13 months (M = 8.8, SD = 2.6) after tornado exposure. Confirmatory factor analyses revealed that all models fit well but a 5-factor dysphoric arousal model provided a statistically significantly better representation of adolescent PTSD symptoms compared to 4-factor dysphoria and emotional numbing models. There was evidence of measurement invariance of the dysphoric arousal model across gender and age, although girls and older adolescents aged 15-17 years had higher mean scores than boys and younger adolescents aged 12-14 years, respectively, on some PTSD dimensions. Differential magnitudes of association between PTSD symptom dimensions and functional correlates were observed, with emotional numbing symptoms most strongly positively associated with problematic substance use since the tornado, and dysphoric arousal symptoms most strongly positively associated with parent-adolescent conflict; both correlations were significantly larger than the corresponding correlations with anxious arousal. Taken together, these results suggest that the dimensional structure of tornado-related PTSD symptomatology in adolescents is optimally characterized by five separate clusters of re-experiencing, avoidance, numbing, dysphoric arousal, and anxious arousal symptoms, which showed unique associations with functional correlates. Findings emphasize that PTSD in disaster-exposed adolescents is not best conceptualized as a homogenous construct and highlight potential differential targets for post-disaster assessment and intervention. Copyright © 2014 Elsevier Ltd. All rights

  9. Brain perfusion correlates of cognitive and nigrostriatal functions in de novo Parkinson's disease

    International Nuclear Information System (INIS)

    Nobili, Flavio; Arnaldi, Dario; Campus, Claudio; Ferrara, Michela; Brugnolo, Andrea; Dessi, Barbara; Girtler, Nicola; Rodriguez, Guido; De Carli, Fabrizio; Morbelli, Silvia; Sambuceti, Gianmario; Abruzzese, Giovanni

    2011-01-01

    Subtle cognitive impairment is recognized in the first stages of Parkinson's disease (PD), including executive, memory and visuospatial dysfunction, but its pathophysiological basis is still debated. Twenty-six consecutive, drug-naive, de novo PD patients underwent an extended neuropsychological battery, dopamine transporter (DAT) and brain perfusion single photon emission computed tomography (SPECT). We previously reported that nigrocaudate impairment correlates with executive functions, and nigroputaminal impairment with visuospatial abilities. Here perfusion SPECT was first compared between the PD group and age-matched controls (CTR). Then, perfusion SPECT was correlated with both DAT SPECT and four neuropsychological factors by means of voxel-based analysis (SPM8) with a height threshold of p < 0.005 at peak level and p < 0.05 false discovery rate-corrected at cluster level. Both perfusion and DAT SPECT images were flipped in order to have the more affected hemisphere (MAH), defined clinically, on the same side. Significant hypoperfusion was found in an occipital area of the MAH in PD patients as compared to CTR. Executive functions directly correlated with brain perfusion in bilateral posterior cingulate cortex and precuneus in the less affected hemisphere (LAH), while verbal memory directly correlated with perfusion in the precuneus, inferior parietal lobule and superior temporal gyrus in the LAH. Furthermore, positive correlation was highlighted between nigrocaudate and nigroputaminal impairment and brain perfusion in the precuneus, posterior cingulate and parahippocampal gyri of the LAH. These data support the evidence showing an early involvement of the cholinergic system in the early cognitive dysfunction and point to a more relevant role of parietal lobes and posterior cingulate in executive functions in PD. (orig.)

  10. Correlation between pulmonary functions and respiratory muscle activity in patients with forward head posture.

    Science.gov (United States)

    Kang, Jeong-Il; Jeong, Dae-Keun; Choi, Hyun

    2018-01-01

    [Purpose] The purpose of this study is to determine the effect that secondary postural deformities and chronic postural abnormalities have on lung capacity, as well as correlate the activity of the respiratory muscles. The results provide basic objective data about the forward head posture and respiratory muscle activity that can be used in clinical situations. [Subjects and Methods] The subjects used in this study were 24 patients aged 25 to 35 years old who visited a hospital in Jeollanam-do Province, Korea, between September 2015 and January 2016. The patients were diagnosed with forward head posture because the vertical line between the acromion process and the external acoustic meatus was at least 5 cm. We measured the craniovertebral angle, pulmonary functions, and respiratory muscle activity of the subjects for correlation analysis. [Results] A positive correlation was found between the craniovertebral angle and the forced vital capacity (r=0.63), while a negative correlation was found between the craniovertebral angle and the sternocleidomastoid muscle (r=-0.77). The craniovertebral angle and the anterior scalene muscle showed a negative correlation (r=-0.65). There were positive correlations between the forced vital capacity and the sternocleidomastoid muscle (r=0.71), and between the forced vital capacity and the anterior scalene muscle (r=0.59). [Conclusion] Severe forward head posture increased the activities of the sternocleidomastoid muscles and the anterior scalene muscles, and decreased the forced vital capacity. Thus, it is necessary to develop more efficient interventions for managing forward head posture based on pulmonary function and the activity of the respiratory synergist muscles.

  11. Probing Real-Space and Time-Resolved Correlation Functions with Many-Body Ramsey Interferometry

    Science.gov (United States)

    Knap, Michael; Kantian, Adrian; Giamarchi, Thierry; Bloch, Immanuel; Lukin, Mikhail D.; Demler, Eugene

    2013-10-01

    We propose to use Ramsey interferometry and single-site addressability, available in synthetic matter such as cold atoms or trapped ions, to measure real-space and time-resolved spin correlation functions. These correlation functions directly probe the excitations of the system, which makes it possible to characterize the underlying many-body states. Moreover, they contain valuable information about phase transitions where they exhibit scale invariance. We also discuss experimental imperfections and show that a spin-echo protocol can be used to cancel slow fluctuations in the magnetic field. We explicitly consider examples of the two-dimensional, antiferromagnetic Heisenberg model and the one-dimensional, long-range transverse field Ising model to illustrate the technique.

  12. Towards 4-point correlation functions of any (1/2)-BPS operators from supergravity

    Energy Technology Data Exchange (ETDEWEB)

    Arutyunov, Gleb [II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, Hamburg, 22761 (Germany); Zentrum für Mathematische Physik, Universität Hamburg,Bundesstrasse 55, Hamburg, 20146 (Germany); Frolov, Sergey [Hamilton Mathematics Institute and School of Mathematics, Trinity College,Dublin 2 (Ireland); Klabbers, Rob; Savin, Sergei [II. Institut für Theoretische Physik, Universität Hamburg,Luruper Chaussee 149, Hamburg, 22761 (Germany); Zentrum für Mathematische Physik, Universität Hamburg,Bundesstrasse 55, Hamburg, 20146 (Germany)

    2017-04-03

    The quartic effective action for Kaluza-Klein modes that arises upon compactification of type IIB supergravity on the five-sphere S{sup 5} is a starting point for computing the four-point correlation functions of arbitrary weight (1/2)-BPS operators in N=4 super Yang-Mills theory in the supergravity approximation. The apparent structure of this action is rather involved, in particular it contains quartic terms with four derivatives which cannot be removed by field redefinitions. By exhibiting intricate identities between certain integrals involving spherical harmonics of S{sup 5} we show that the net contribution of these four-derivative terms to the effective action vanishes. Our result is in agreement with and provides further support to the recent conjecture on the Mellin space representation of the four-point correlation function of any (1/2)-BPS operators in the supergravity approximation.

  13. Correlated basis functions theory of light nuclei. Pt. 1. General description and ground states

    Energy Technology Data Exchange (ETDEWEB)

    Bosca, M.C.; Guardiola, R.

    1988-01-18

    The correlated basis functions theory is applied to the description of light (p-shell) nuclei. The interaction used is the Reid potential, in the V8 (central, spin, tensor and spin-orbit) and V6 (no spin-orbit term) forms. Our work includes state-dependent correlation functions, and their radial components are determined by solving the corresponding Euler-Lagrange equations with a healing condition at distance d and with a null derivative; in addition, we impose the sequential condition or the Pauli condition so as to insure convergence. We present results corresponding to the ground state of all nuclei in the p-shell. Our results present a good qualitative behaviour, but are in clear disagreement with experimental values.

  14. Energy-momentum tensor correlation function in Nf = 2 + 1 full QCD at finite temperature

    Directory of Open Access Journals (Sweden)

    Taniguchi Yusuke

    2018-01-01

    Full Text Available We measure correlation functions of the nonperturbatively renormalized energy-momentum tensor in Nf = 2 + 1 full QCD at finite temperature by applying the gradient flow method both to the gauge and quark fields. Our main interest is to study the conservation law of the energy-momentum tensor and to test whether the linear response relation is properly realized for the entropy density. By using the linear response relation we calculate the specific heat from the correlation function. We adopt the nonperturba-tively improved Wilson fermion and Iwasaki gauge action at a fine lattice spacing = 0:07 fm. In this paper the temperature is limited to a single value T ≃ 232 MeV. The u, d quark mass is rather heavy with mπ=mρ ≃ 0:63 while the s quark mass is set to approximately its physical value.

  15. Dynamical correlation functions and the related physical effects in three-dimensional Weyl/Dirac semimetals

    Science.gov (United States)

    Zhou, Jianhui; Chang, Hao-Ran

    2018-02-01

    We present a unified derivation of the dynamical correlation functions including density-density, density-current and current-current, of three-dimensional Weyl/Dirac semimetals by use of the Passarino-Veltman reduction scheme at zero temperature. The generalized Kramers-Kronig relations with arbitrary order of subtraction are established to verify these correlation functions. Our results lead to the exact chiral magnetic conductivity and directly recover the previous ones in several limits. We also investigate the magnetic susceptibilities, the orbital magnetization, and briefly discuss the impact of electron interactions on these physical quantities within the random phase approximation. Our work could provide a starting point for the investigation of the nonlocal transport and optical properties due to the higher-order spatial dispersion in three-dimensional Weyl/Dirac semimetals.

  16. Generalized MacMahon Gd(q) as q-deformed CFT2 correlation function

    International Nuclear Information System (INIS)

    Drissi, Lalla Btissam; Jehjouh, Houda; Saidi, El Hassan

    2008-01-01

    Using Γ ± (z) vertex operators of the c=1 two-dimensional conformal field theory, we give a 2d-quantum field theoretical derivation of the conjectured d-dimensional MacMahon function G d (q). We interpret this function G d (q) as a (d+1)-point correlation function G d+1 (z 0 ,...,z d ) of some local vertex operators O j (z j ). We determine these operators and show that they are particular composites of q-deformed hierarchical vertex operators Γ ± (p) , with a positive integer p. In agreement with literature's results, we find that G d (q), d≥4, cannot be the generating functional of all d-dimensional generalized Young diagrams

  17. Wavefront propagation in turbulence: an unified approach to the derivation of angular correlation functions.

    Science.gov (United States)

    Molodij, Guillaume

    2011-08-01

    A general expression of the spatial correlation functions of quantities related to the phase fluctuations of a wave that have propagated through the atmospheric turbulence are derived. A generalization of the method to integrand containing the product of an arbitrary number of hypergeometric functions is presented. The formalism is able to give the coefficients of phase-expansion functions orthogonal over an arbitrary circularly symmetric weighting function for an isotropic turbulence spectrum, as well as to describe the effect of the finite outer and inner scales of the turbulence and to describe the spherical propagation or to derive the effects of the analytical operators acting on the phase such as the derivatives of any order. The derivation of the generalized integrals with multiparameters is based on the Mellin transforms integration method.

  18. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    International Nuclear Information System (INIS)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo

    1997-01-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4±107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  19. Correlations of cerebral blood flow with language function in aphasic patients following cerebral infarction

    Energy Technology Data Exchange (ETDEWEB)

    Yokoyama, Eriko; Nagata, Ken; Uemura, Kazuo [Research Inst. for Brain and Blood Vessels, Akita (Japan)

    1997-04-01

    To elucidate the participation of the brain regions in language function, cerebral blood flow (CBF) which were measured with positron emission tomography (PET) were compared with the language scores based on the standard language test for aphasics in 97 right-handed patients with aphasia due to cerebral infarction. PET studies were performed on 71.4{+-}107.3 days after onset. By the linear regression analysis, the aphasic scores were correlated with the regional CBF from 55 brain regions. CBF from the left frontal, left temporal, and left parietal lobes significantly correlated with language scores of auditory comprehension, speaking, reading, writing, calculation, and repetition. Highly significant correlation was obtained from the left posterior inferior frontal, superior temporal, supramarginal and angular gyri. CBF from the right inferior frontal, right superior temporal, right parahippocampal and right anterior cingulate gyri also correlated with the auditory comprehension, speaking and reading. Accordingly, in addition to the classical language areas which play an essential roles in language function, the extensive areas in the left hemisphere and some part of the right hemisphere may be related to the language processing and recovery from aphasia. (author)

  20. Causal Correlation Functions and Fourier Transforms: Application in Calculating Pressure Induced Shifts

    Science.gov (United States)

    Ma, Q.; Tipping, R. H.; Lavrentieva, N. N.

    2012-01-01

    By adopting a concept from signal processing, instead of starting from the correlation functions which are even, one considers the causal correlation functions whose Fourier transforms become complex. Their real and imaginary parts multiplied by 2 are the Fourier transforms of the original correlations and the subsequent Hilbert transforms, respectively. Thus, by taking this step one can complete the two previously needed transforms. However, to obviate performing the Cauchy principal integrations required in the Hilbert transforms is the greatest advantage. Meanwhile, because the causal correlations are well-bounded within the time domain and band limited in the frequency domain, one can replace their Fourier transforms by the discrete Fourier transforms and the latter can be carried out with the FFT algorithm. This replacement is justified by sampling theory because the Fourier transforms can be derived from the discrete Fourier transforms with the Nyquis rate without any distortions. We apply this method in calculating pressure induced shifts of H2O lines and obtain more reliable values. By comparing the calculated shifts with those in HITRAN 2008 and by screening both of them with the pair identity and the smooth variation rules, one can conclude many of shift values in HITRAN are not correct.

  1. Structural predictions for Correlated Electron Materials Using the Functional Dynamical Mean Field Theory Approach

    Science.gov (United States)

    Haule, Kristjan

    2018-04-01

    The Dynamical Mean Field Theory (DMFT) in combination with the band structure methods has been able to address reach physics of correlated materials, such as the fluctuating local moments, spin and orbital fluctuations, atomic multiplet physics and band formation on equal footing. Recently it is getting increasingly recognized that more predictive ab-initio theory of correlated systems needs to also address the feedback effect of the correlated electronic structure on the ionic positions, as the metal-insulator transition is almost always accompanied with considerable structural distortions. We will review recently developed extension of merger between the Density Functional Theory (DFT) and DMFT method, dubbed DFT+ embedded DMFT (DFT+eDMFT), whichsuccessfully addresses this challenge. It is based on the stationary Luttinger-Ward functional to minimize the numerical error, it subtracts the exact double-counting of DFT and DMFT, and implements self-consistent forces on all atoms in the unit cell. In a few examples, we will also show how the method elucidated the important feedback effect of correlations on crystal structure in rare earth nickelates to explain the mechanism of the metal-insulator transition. The method showed that such feedback effect is also essential to understand the dynamic stability of the high-temperature body-centered cubic phase of elemental iron, and in particular it predicted strong enhancement of the electron-phonon coupling over DFT values in FeSe, which was very recently verified by pioneering time-domain experiment.

  2. Multiconfiguration Pair-Density Functional Theory: A New Way To Treat Strongly Correlated Systems.

    Science.gov (United States)

    Gagliardi, Laura; Truhlar, Donald G; Li Manni, Giovanni; Carlson, Rebecca K; Hoyer, Chad E; Bao, Junwei Lucas

    2017-01-17

    The electronic energy of a system provides the Born-Oppenheimer potential energy for internuclear motion and thus determines molecular structure and spectra, bond energies, conformational energies, reaction barrier heights, and vibrational frequencies. The development of more efficient and more accurate ways to calculate the electronic energy of systems with inherently multiconfigurational electronic structure is essential for many applications, including transition metal and actinide chemistry, systems with partially broken bonds, many transition states, and most electronically excited states. Inherently multiconfigurational systems are called strongly correlated systems or multireference systems, where the latter name refers to the need for using more than one ("multiple") configuration state function to provide a good zero-order reference wave function. This Account describes multiconfiguration pair-density functional theory (MC-PDFT), which was developed as a way to combine the advantages of wave function theory (WFT) and density functional theory (DFT) to provide a better treatment of strongly correlated systems. First we review background material: the widely used Kohn-Sham DFT (which uses only a single Slater determinant as reference wave function), multiconfiguration WFT methods that treat inherently multiconfigurational systems based on an active space, and previous attempts to combine multiconfiguration WFT with DFT. Then we review the formulation of MC-PDFT. It is a generalization of Kohn-Sham DFT in that the electron kinetic energy and classical electrostatic energy are calculated from a reference wave function, while the rest of the energy is obtained from a density functional. However, there are two main differences with respent to Kohn-Sham DFT: (i) The reference wave function is multiconfigurational rather than being a single Slater determinant. (ii) The density functional is a function of the total density and the on-top pair density rather than

  3. Three-point correlation functions of giant magnons with finite size

    International Nuclear Information System (INIS)

    Ahn, Changrim; Bozhilov, Plamen

    2011-01-01

    We compute holographic three-point correlation functions or structure constants of a zero-momentum dilaton operator and two (dyonic) giant magnon string states with a finite-size length in the semiclassical approximation. We show that the semiclassical structure constants match exactly with the three-point functions between two su(2) magnon single trace operators with finite size and the Lagrangian in the large 't Hooft coupling constant limit. A special limit J>>√(λ) of our result is compared with the relevant result based on the Luescher corrections.

  4. Statistics of time delay and scattering correlation functions in chaotic systems. I. Random matrix theory

    Energy Technology Data Exchange (ETDEWEB)

    Novaes, Marcel [Instituto de Física, Universidade Federal de Uberlândia, Ave. João Naves de Ávila, 2121, Uberlândia, MG 38408-100 (Brazil)

    2015-06-15

    We consider the statistics of time delay in a chaotic cavity having M open channels, in the absence of time-reversal invariance. In the random matrix theory approach, we compute the average value of polynomial functions of the time delay matrix Q = − iħS{sup †}dS/dE, where S is the scattering matrix. Our results do not assume M to be large. In a companion paper, we develop a semiclassical approximation to S-matrix correlation functions, from which the statistics of Q can also be derived. Together, these papers contribute to establishing the conjectured equivalence between the random matrix and the semiclassical approaches.

  5. Correlation functions between specific volume and stoichiometry for transition metal nitrides

    International Nuclear Information System (INIS)

    Soto, G.; Aparicio, E.; Avalos-Borja, M.

    2005-01-01

    A methodology is proposed to correlate the structural aspects of transition metal nitrides (TMN) to the stoichiometric ratio: x = [N]/[M]. The method is based on a numeric figure, υ, given by the difference between the atomic concentrations of nitride and parent metal normalized to the atomic concentration of parent metal. Numerical regression is used to construct interpolating functions for υ(x) using as input the available data for TMN in two well-recognized databases (ICDD and ICSD). In summary we obtain functions of x that describe the deformation caused in the parent metal lattice by the nitrogen assimilation. The results are attractive, since TMN show remarkable trends

  6. Electron-hydrogen atom inelastic scattering through a correlated wave function

    International Nuclear Information System (INIS)

    Serpa Vieira, A.E. de.

    1984-01-01

    The inelastic collision between an electron and a hydrogen atom is studied. A correlated function, used previously to the same system in elastic collisions in which there are two parameters fitted in the energy range studied, is utilized. With this functions an equation is developed for the direct and exchange transition matrix elements to the 15-25 and 15-2 p transitions. The obtained results are compared with Willians experimental measurements, as well the results given by the theoretical treatments of Kingston, Fon and Burke. (L.C.) [pt

  7. Size matters to function: Brain volume correlates with intrinsic brain activity across healthy individuals.

    Science.gov (United States)

    Qing, Zhao; Gong, Gaolang

    2016-10-01

    A fundamental issue in neuroscience is to understand the structural substrates of neural activities. Intrinsic brain activity has been increasingly recognized as an important functional activity mode and is tightly linked with various cognitive functions. Structurally, cognitive functions have also shown a relation with brain volume/size. Therefore, an association between intrinsic brain activities and brain volume/size can be hypothesized, and brain volume/size may impact intrinsic brain activity in human brains. The present study aimed to explicitly investigate this brain structure-function relationship using two large independent cohorts of 176 and 236 young adults. Structural-MRI was performed to estimate the brain volume, and resting-state functional-MRI was applied to extract the amplitude of low-frequency fluctuations (ALFF), an imaging measure of intrinsic brain activity. Intriguingly, our results revealed a robust linear correlation between whole-brain size and ALFF. Moreover, specific brain lobes/regions, including the frontal lobe, the left middle frontal gyrus, anterior cingulate gyrus, Rolandic operculum, and insula, also showed a reliable, positive volume-ALFF correlation in the two cohorts. These findings offer direct, empirical evidence of a strong association between brain size/volume and intrinsic brain activity, as well as provide novel insight into the structural substrates of the intrinsic brain activity of the human brain. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Correlation of spine deformity, lung function, and seat pressure in spina bifida.

    Science.gov (United States)

    Patel, Jayesh; Walker, Janet L; Talwalkar, Vishwas R; Iwinski, Henry J; Milbrandt, Todd A

    2011-05-01

    Spinal deformity, a common problem in children with myelodysplasia, is associated with alterations in pulmonary function and sitting balance. Sitting imbalance causes areas of high pressure in patients already at high risk for developing pressure ulcers due to insensate skin. We asked: Does spinal deformity affect pulmonary function tests in children with myelodysplasia? Does the magnitude of spinal curvatures and pelvic obliquity affect seating pressures? Does spinal deformity and seated pressures correlate with a history of pressure ulcers? We retrospectively reviewed 32 patients with myelodysplasia and scoliosis (mean age, 14 years). The mean thoracic scoliosis was 64° with a mean pelvic obliquity of 15°. The mean forced vital capacity was 59% of predicted. The mean of the average and peak seated pressures were 24 and 137 mm Hg, respectively. We examined spinal radiographs, pulmonary function tests, and seated pressure maps and evaluated correlations of spinal deformity measures, pulmonary function, and seated pressures. The thoracic scoliosis inversely correlated with lung volume and weakly related with only the forced midexpiratory volume parameter (R(2) = 31%). The curve magnitude was associated with % seated area with pressures of 38 to 70 mm Hg while lesser degrees of pelvic obliquity were associated with % seating area with pressures of less than 38 mm Hg (R(2) = 25% and 24%, respectively). A history of pressure ulcers did not correlate with any spinal deformity or seated pressure measures. All patients displayed a reduced forced vital capacity, but this reduction was not related to increasing scoliosis. The smaller scoliosis curves and lesser degrees of pelvic obliquity were associated with larger areas of low seated pressures.

  9. Brain functional networks. Correlation analysis with clinical indexes in patients with diabetic retinopathy

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Hui; Zhang, Yu; Hu, Su; Wang, Ximing; Li, Yonggang; Hu, Chunhong [The First Affiliated Hospital of Soochow University, Department of Radiology, Suzhou, Jiangsu (China); Lai, Lillian [LAC+USC Medical Center, Department of Neuroradiology, Los Angeles, CA (United States); Shen, Hailin [Suzhou Kowloon Hospital, Shanghai Jiao Tong University Medical School, Department of Radiology, Suzhou, Jiangsu (China)

    2017-11-15

    The relationship between parameters of brain functional networks and clinical indexes is unclear so far in patients with diabetic retinopathy (DR). This paper is to investigate this. Twenty-one patients with different grades of DR and 21 age- and sex-matched healthy controls were enrolled from August 2012 to September 2014. The clinical indexes recorded included DR grade, duration of diabetes, HbA1c, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, insulin sensitive index (ISI), Mini-Mental State Examination (MMSE), and patient sex and age. Subjects were scanned using 3-T MR with blood-oxygen-level-dependent and 3D-FSPGR sequences. MR data was analyzed via preprocessing and functional network construction, and quantified indexes of network (clustering coefficient, characteristic path length, global efficiency, degree distribution, and small worldness) were evaluated. Statistics consisted of ANOVA and correlation. There were significant differences between patients and controls among clustering coefficient, characteristic path length, degree distribution, and small worldness parameters (P < 0.05). MMSE scores negatively correlated with characteristic path length, and Hb1Ac negatively correlated with small worldness. MMSE, duration of diabetes, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, ISI, DR grade, and patient age, except from Hb1Ac, correlated with degree distribution in certain brain areas. Brain functional networks are altered, specifically in the areas of visual function and cognition, and these alterations may reflect the severity of visual weakness and cognitive decline in DR patients. Moreover, the brain networks may be affected both by long-standing and instant clinical factors. (orig.)

  10. Correlation functions of integrable models: A description of the ABACUS algorithm

    Science.gov (United States)

    Caux, Jean-Sébastien

    2009-09-01

    Recent developments in the theory of integrable models have provided the means of calculating dynamical correlation functions of some important observables in systems such as Heisenberg spin chains and one-dimensional atomic gases. This article explicitly describes how such calculations are generally implemented in the ABACUS C++ library, emphasizing the universality in treatment of different cases coming as a consequence of unifying features within the Bethe ansatz.

  11. Brain functional networks. Correlation analysis with clinical indexes in patients with diabetic retinopathy

    International Nuclear Information System (INIS)

    Dai, Hui; Zhang, Yu; Hu, Su; Wang, Ximing; Li, Yonggang; Hu, Chunhong; Lai, Lillian; Shen, Hailin

    2017-01-01

    The relationship between parameters of brain functional networks and clinical indexes is unclear so far in patients with diabetic retinopathy (DR). This paper is to investigate this. Twenty-one patients with different grades of DR and 21 age- and sex-matched healthy controls were enrolled from August 2012 to September 2014. The clinical indexes recorded included DR grade, duration of diabetes, HbA1c, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, insulin sensitive index (ISI), Mini-Mental State Examination (MMSE), and patient sex and age. Subjects were scanned using 3-T MR with blood-oxygen-level-dependent and 3D-FSPGR sequences. MR data was analyzed via preprocessing and functional network construction, and quantified indexes of network (clustering coefficient, characteristic path length, global efficiency, degree distribution, and small worldness) were evaluated. Statistics consisted of ANOVA and correlation. There were significant differences between patients and controls among clustering coefficient, characteristic path length, degree distribution, and small worldness parameters (P < 0.05). MMSE scores negatively correlated with characteristic path length, and Hb1Ac negatively correlated with small worldness. MMSE, duration of diabetes, diabetic foot screen, fasting plasma glucose, insulin, Homa-β, Homa-IR, ISI, DR grade, and patient age, except from Hb1Ac, correlated with degree distribution in certain brain areas. Brain functional networks are altered, specifically in the areas of visual function and cognition, and these alterations may reflect the severity of visual weakness and cognitive decline in DR patients. Moreover, the brain networks may be affected both by long-standing and instant clinical factors. (orig.)

  12. Functional connectivity in resting-state fMRI: Is linear correlation sufficient?

    Czech Academy of Sciences Publication Activity Database

    Hlinka, Jaroslav; Paluš, Milan; Vejmelka, Martin; Mantini, D.; Corbetta, M.

    2011-01-01

    Roč. 54, č. 3 (2011), s. 2218-2225 ISSN 1053-8119 R&D Projects: GA MŠk 7E08027 EU Projects: European Commission(XE) 200728 - BRAINSYNC Institutional research plan: CEZ:AV0Z10300504 Keywords : fMRI * functional connectivity * Gaussianity * nonlinearity * correlation * mutual information Subject RIV: FH - Neurology Impact factor: 5.895, year: 2011

  13. An integral constraint for the evolution of the galaxy two-point correlation function

    International Nuclear Information System (INIS)

    Peebles, P.J.E.; Groth, E.J.

    1976-01-01

    Under some conditions an integral over the galaxy two-point correlation function, xi(x,t), evolves with the expansion of the universe in a simple manner easily computed from linear perturbation theory.This provides a useful constraint on the possible evolution of xi(x,t) itself. We test the integral constraint with both an analytic model and numerical N-body simulations for the evolution of irregularities in an expanding universe. Some applications are discussed. (orig.) [de

  14. Family Functioning and Soldier PTSD: Correlates of Treatment Engagement and Military Job Satisfaction

    Science.gov (United States)

    2015-10-01

    AWARD NUMBER: W81XWH-08-1-0726 TITLE: Family Functioning and Soldier PTSD: Correlates of Treatment Engagement and Military Job Satisfaction ...and Military Job Satisfaction 5b. GRANT NUMBER W81XWH-08-1-0726 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Leyla Stambaugh, Ph.D.; Dawn Ohse, Ph.D. 5d...engagement, and Soldier job satisfaction in active duty Soldiers with PTSD. The specific aim was to identify facilitators of Soldier treatment

  15. Interaction of Variational Localised Correlation Functions for Atomic Properties of Be I

    International Nuclear Information System (INIS)

    Verdebout, S; Godefroid, M; Rynkun, P; Gaigalast, G; Jönsson, P; Froese Fischer, C

    2012-01-01

    We present some progress associated to the localised correlation function interaction (LCFI) method. In this report, the LCFI method is tested not only for total energy but also for the specific mass shift operator, the hyperfine structure parameters and the transition probabilities. These properties are computed for the three lowest electronic states of the beryllium atom. These calculations illustrate the importance of the contraction effects.

  16. Azimuthal correlation functions and the energy of vanishing flow in nucleus-nucleus collisions

    International Nuclear Information System (INIS)

    Angelique, J.C.; Bizard, G.; Brou, R.; Cussol, D.; Kerambrun, A.; Patry, J.P.; Peter, J.; Regimbart, R.; Steckmeyer, J.C.; Tamain, B.; Vient, E.; Cassagnou, Y.; Legrain, R.; Eudes, P.; Lebrun, C.; He, Z.Y.; Crema, E.; Sao Paulo Univ., SP

    1994-06-01

    A novel method is proposed for studying the evolution of flow phenomena with the incident energy, and for quantitatively estimating the energy of vanishing flow (also called balance energy, E bal ) without reconstructing the reaction plane. We used a method based on the shapes of experimental particle-particle azimuthal correlation functions to determine E bal for three systems: Ar + Al, Zn + Ti, Zn + Ni. We compare the results with estimations using flow parameter analysis and also with theoretical expectations. (authors)

  17. Correlation between serum neuron specific enolase and functional neurological outcome in patients of acute ischemic stroke.

    Science.gov (United States)

    Zaheer, Sana; Beg, Mujahid; Rizvi, Imran; Islam, Najmul; Ullah, Ekram; Akhtar, Nishat

    2013-10-01

    The use of biomarkers to predict stroke prognosis is gaining particular attention nowadays. Neuron specific enolase (NSE), which is a dimeric isoenzyme of the glycolytic enzyme enolase and is found mainly in the neurons is one such biomarker. This study was carried out on patients of acute ischemic stroke with the aims to determine the correlation between NSE levels on the day of admission with infarct volume, stroke severity, and functional neurological outcome on day 30. Seventy five patients of acute ischemic stroke admitted in the Department of Medicine were included in the study. Levels of NSE were determined on day 1 using the human NSE ELISA kit (Alpha Diagnostic International Texas 78244, USA). Volume of infarct was measured by computed tomography (CT) scan using the preinstalled software Syngo (version A40A) of Siemen's medical solutions (Forchheim, Germany). Stroke severity at admission was assessed using Glasgow coma scale (GCS) and functional neurological outcome was assessed using modified Rankin scale (mRS) on day 30. Statistical analysis was performed using the SPSS software for windows version 15.0 (SPSS). A positive correlation was found between concentration of NSE on day 1 and infarct volume determined by CT scan (r = 0.955, P < 0.001). A strong negative correlation was found between GCS at presentation and concentration of NSE on day 1 (r = -0.806, P < 0.001). There was a positive correlation between NSE levels at day 1 and functional neurological outcome assessed by mRS at day 30 (r = 0.744, P < 0.001). Serum levels of NSE in first few days of ischemic stroke can serve as a useful marker to predict stroke severity and early functional outcome. However, larger studies with serial estimation of NSE are needed to establish these observations more firmly.

  18. Studies on eletron scattering by hydrogen atoms through of a correlationed wave function

    International Nuclear Information System (INIS)

    Jacchieri, S.G.

    1982-01-01

    A correlationed wave function dependent of two adjustable parameters ( α e β), aiming describe a system formed by an electron and a hydrogen atom is studied. Some elastic differential cross-sections for several values of α and β parameters, scattering angle of 2 0 to 140 0 and energies of 50 eV and 680 eV are presented. (M.J.C.) [pt

  19. Functional and morphologic evaluation of kidney proximal tubuli and correlation with renal allograft prognosis.

    Science.gov (United States)

    de Matos, Ana Cristina Carvalho; Câmara, Niels Olsen Saraiva; de Oliveira, Ana Francisca Franco; Franco, Marcello F; Moura, Luiz Antonio Ribeiro; Nishida, Sonia; Pereira, Aparecido Bernardo; Pacheco-Silva, Alvaro

    2010-05-01

    Renal transplant patients with stable graft function and proximal tubular dysfunction (PTD) have an increased risk for chronic allograft nephropathy (CAN). In this study, we investigated the histologic pattern associated with PTD and its correlation with graft outcome. Forty-nine transplant patients with stable graft function were submitted to a biopsy. Simultaneously, urinary retinol-binding protein (uRBP) was measured and creatinine clearance was also determined. Banff's score and semi-quantitative histologic analyses were performed to assess tubulointerstitial alterations. Patients were followed for 24.0 + or - 7.8 months. At biopsy time, mean serum creatinine was 1.43 + or - 0.33 mg/dl. Twelve patients (24.5%) had uRBP > or = 1 mg/l, indicating PTD and 67% of biopsies had some degree of tubulointerstitial injury. At the end of the study period, 18 (36.7%) patients had lost renal function. uRBP levels were not associated with morphologic findings of interstitial fibrosis and tubular atrophy (IF/TA), interstitial fibrosis measured by Sirius red or tubulointerstitial damage. However, in multivariate analysis, the only variable associated with the loss of renal function was uRBP level > or = 1 mg/l, determining a risk of 5.290 of loss of renal function (P = 0.003). Renal transplant patients who present PTD have functional alteration, which is not associated with morphologic alteration. This functional alteration is associated to progressive decrease in renal function.

  20. Correlation between middle-ear pressure-regulation functions and outcome of type-I tympanoplasty.

    Science.gov (United States)

    Takahashi, Haruo; Sato, Hiroaki; Nakamura, Hajime; Naito, Yasushi; Umeki, Hiroshi

    2007-06-01

    To examine the correlation between the middle-ear pressure-regulation functions including active eustachian tube (ET) functions and transmucosal gas exchange function, and outcome of tympanoplasty. Seventy five patients (78 ears) with non-cholesteatomatous chronic otitis media with eardrum perforation but without ossicular damage or middle-ear anomaly participated in this study. Before surgery, patency of the ET was examined by applying positive pressure to the middle ear through the eardrum perforation, and then the ET pressure-regulation functions were examined using the inflation-deflation test. Also their transmucosal gas exchange function was evaluated by examining the presence or absence of aeration in the mastoid on the CT before surgery or through the microscope during the surgery. All of them underwent type-I tympanoplasty, and their postoperative conditions including the hearing were followed for more than 6 months. The outcome of the surgery was judged as poor outcome when they had any of the following conditions; more than 20 dB of mean air-bone gap, spontaneous perforation within 6 months, or persistent wet condition including recurrent otorrhea. First, the outcome of all the four ears of which ETs were considered mechanically obstructed was poor. Next, among the remaining 74 ears, none of the three individual parameters, including positive and negative middle-ear pressure-equalizing functions and mastoid aeration, showed significantly positive correlation with the outcome of the surgery, but significantly higher incidence of poor outcome was seen only when all the three parameters were poor. These results indicated that impairment of all the middle-ear pressure-regulation functions was likely to cause poor outcome of tympanoplasty, and also allowed us reconfirm that ears with mechanically obstructed ETs were contraindicated for tympanoplasty. Therefore, assessment of mastoid condition is important as well as the ET function before tympanoplasty.

  1. Spin-charge separation and anomalous correlation functions in the edge states of quantum hall liquids

    CERN Document Server

    Lee, H C

    1998-01-01

    First, we have investigated chiral edges of a quantum Hall liquids at filling factor nu=2. The separation of spin and charge degrees of freedom becomes manifest in the presence of long- range Coulomb interaction. Due to the spin-charge separation the tunneling density of states takes the form D(omega) approx ( -lnl omega l) sup 1 sup / sup 2. Experimentally, the spin-charge separation can be revealed in the temperature and voltage dependence of the tunneling current into Fermi liquid reservoir. Second, the charge and spin correlation functions of partially spin-polarized edge electrons of a quantum Hall bar are studied using effective Hamiltonian and bosonization techniques. In the presence of the Coulomb interaction between the edges with opposite chirality we find a different crossover behavior in spin and charge correlation functions. The crossover of the spin correlation function in the Coulomb dominated regime is characterized by an anomalous exponent, which originates from the finite value of the effect...

  2. Profiling Online Poker Players: Are Executive Functions Correlated with Poker Ability and Problem Gambling?

    Science.gov (United States)

    Schiavella, Mauro; Pelagatti, Matteo; Westin, Jerker; Lepore, Gabriele; Cherubini, Paolo

    2018-01-12

    Poker playing and responsible gambling both entail the use of the executive functions (EF), which are higher-level cognitive abilities. This study investigated if online poker players of different ability showed different performances in their EF and if so, which functions were the most discriminating for their playing ability. Furthermore, it assessed if the EF performance was correlated to the quality of gambling, according to self-reported questionnaires (PGSI, SOGS, GRCS). Three poker experts evaluated anonymized poker hand history files and, then, a trained professional administered an extensive neuropsychological test battery. Data analysis determined which variables of the tests correlated with poker ability and gambling quality scores. The highest correlations between EF test results and poker ability and between EF test results and gambling quality assessment showed that mostly different clusters of executive functions characterize the profile of the strong(er) poker player and those ones of the problem gamblers (PGSI and SOGS) and the one of the cognitions related to gambling (GRCS). Taking into consideration only the variables overlapping between PGSI and SOGS, we found some key predictive factors for a more risky and harmful online poker playing: a lower performance in the emotional intelligence competences (Emotional Quotient inventory Short) and, in particular, those grouped in the Intrapersonal scale (emotional self-awareness, assertiveness, self-regard, independence and self-actualization).

  3. Mirage in temporal correlation functions for baryon-baryon interactions in lattice QCD

    International Nuclear Information System (INIS)

    Iritani, T.; Doi, T.; Aoki, S.; Gongyo, S.; Hatsuda, T.; Ikeda, Y.; Inoue, T.; Ishii, N.; Murano, K.; Nemura, H.; Sasaki, K.

    2016-01-01

    Single state saturation of the temporal correlation function is a key condition to extract physical observables such as energies and matrix elements of hadrons from lattice QCD simulations. A method commonly employed to check the saturation is to seek for a plateau of the observables for large Euclidean time. Identifying the plateau in the cases having nearby states, however, is non-trivial and one may even be misled by a fake plateau. Such a situation takes place typically for a system with two or more baryons. In this study, we demonstrate explicitly the danger from a possible fake plateau in the temporal correlation functions mainly for two baryons (ΞΞ and NN), and three and four baryons ( 3 He and 4 He) as well, employing (2+1)-flavor lattice QCD at m π =0.51 GeV on four lattice volumes with L= 2.9, 3.6, 4.3 and 5.8 fm. Caution is required when drawing conclusions about the bound NN, 3N and 4N systems based only on the standard plateau fitting of the temporal correlation functions.

  4. General solution of an exact correlation function factorization in conformal field theory

    International Nuclear Information System (INIS)

    Simmons, Jacob J H; Kleban, Peter

    2009-01-01

    The correlation function factorization with K a boundary operator product expansion coefficient, is known to hold for certain scaling operators at the two-dimensional percolation point and in a few other cases. Here the correlation functions are evaluated in the upper half-plane (or any conformally equivalent region) with x 1 and x 2 arbitrary points on the real axis, and z an arbitrary point in the interior. This type of result is of interest because it is both exact and universal, relates higher-order correlation functions to lower-order ones and has a simple interpretation in terms of cluster or loop probabilities in several statistical models. This motivated us to use the techniques of conformal field theory to determine the general conditions for its validity. Here, we discover that either (see display) factorizes in this way for any central charge c, generalizing previous results. In particular, the factorization holds for either FK (Fortuin–Kasteleyn) or spin clusters in the Q-state Potts models; it also applies to either the dense or dilute phases of the O(n) loop models. Further, only one other non-trivial set of highest-weight operators (in an irreducible Verma module) factorizes in this way. In this case the operators have negative dimension (for c<1) and do not seem to have a physical realization

  5. Spectral correlation functions of the sum of two independent complex Wishart matrices with unequal covariances

    International Nuclear Information System (INIS)

    Akemann, Gernot; Checinski, Tomasz; Kieburg, Mario

    2016-01-01

    We compute the spectral statistics of the sum H of two independent complex Wishart matrices, each of which is correlated with a different covariance matrix. Random matrix theory enjoys many applications including sums and products of random matrices. Typically ensembles with correlations among the matrix elements are much more difficult to solve. Using a combination of supersymmetry, superbosonisation and bi-orthogonal functions we are able to determine all spectral k -point density correlation functions of H for arbitrary matrix size N . In the half-degenerate case, when one of the covariance matrices is proportional to the identity, the recent results by Kumar for the joint eigenvalue distribution of H serve as our starting point. In this case the ensemble has a bi-orthogonal structure and we explicitly determine its kernel, providing its exact solution for finite N . The kernel follows from computing the expectation value of a single characteristic polynomial. In the general non-degenerate case the generating function for the k -point resolvent is determined from a supersymmetric evaluation of the expectation value of k ratios of characteristic polynomials. Numerical simulations illustrate our findings for the spectral density at finite N and we also give indications how to do the asymptotic large- N analysis. (paper)

  6. Small-angle neutron scattering correlation functions of bulk magnetic materials.

    Science.gov (United States)

    Mettus, Denis; Michels, Andreas

    2015-10-01

    On the basis of the continuum theory of micromagnetics, the correlation function of the spin-misalignment small-angle neutron scattering cross section of bulk ferromagnets ( e.g. elemental polycrystalline ferromagnets, soft and hard magnetic nanocomposites, nanoporous ferromagnets, or magnetic steels) is computed. For such materials, the spin disorder which is related to spatial variations in the saturation magnetization and magnetic anisotropy field results in strong spin-misalignment scattering dΣ M /dΩ along the forward direction. When the applied magnetic field is perpendicular to the incoming neutron beam, the characteristics of dΣ M /dΩ ( e.g. the angular anisotropy on a two-dimensional detector or the asymptotic power-law exponent) are determined by the ratio of magnetic anisotropy field strength H p to the jump Δ M in the saturation magnetization at internal interfaces. Here, the corresponding one- and two-dimensional real-space correlations are analyzed as a function of applied magnetic field, the ratio H p /Δ M , the single-particle form factor and the particle volume fraction. Finally, the theoretical results for the correlation function are compared with experimental data on nanocrystalline cobalt and nickel.

  7. Functional analyses of NSF1 in wine yeast using interconnected correlation clustering and molecular analyses.

    Directory of Open Access Journals (Sweden)

    Kyrylo Bessonov

    Full Text Available Analyzing time-course expression data captured in microarray datasets is a complex undertaking as the vast and complex data space is represented by a relatively low number of samples as compared to thousands of available genes. Here, we developed the Interdependent Correlation Clustering (ICC method to analyze relationships that exist among genes conditioned on the expression of a specific target gene in microarray data. Based on Correlation Clustering, the ICC method analyzes a large set of correlation values related to gene expression profiles extracted from given microarray datasets. ICC can be applied to any microarray dataset and any target gene. We applied this method to microarray data generated from wine fermentations and selected NSF1, which encodes a C2H2 zinc finger-type transcription factor, as the target gene. The validity of the method was verified by accurate identifications of the previously known functional roles of NSF1. In addition, we identified and verified potential new functions for this gene; specifically, NSF1 is a negative regulator for the expression of sulfur metabolism genes, the nuclear localization of Nsf1 protein (Nsf1p is controlled in a sulfur-dependent manner, and the transcription of NSF1 is regulated by Met4p, an important transcriptional activator of sulfur metabolism genes. The inter-disciplinary approach adopted here highlighted the accuracy and relevancy of the ICC method in mining for novel gene functions using complex microarray datasets with a limited number of samples.

  8. Joint modeling of genetically correlated diseases and functional annotations increases accuracy of polygenic risk prediction.

    Directory of Open Access Journals (Sweden)

    Yiming Hu

    2017-06-01

    Full Text Available Accurate prediction of disease risk based on genetic factors is an important goal in human genetics research and precision medicine. Advanced prediction models will lead to more effective disease prevention and treatment strategies. Despite the identification of thousands of disease-associated genetic variants through genome-wide association studies (GWAS in the past decade, accuracy of genetic risk prediction remains moderate for most diseases, which is largely due to the challenges in both identifying all the functionally relevant variants and accurately estimating their effect sizes. In this work, we introduce PleioPred, a principled framework that leverages pleiotropy and functional annotations in genetic risk prediction for complex diseases. PleioPred uses GWAS summary statistics as its input, and jointly models multiple genetically correlated diseases and a variety of external information including linkage disequilibrium and diverse functional annotations to increase the accuracy of risk prediction. Through comprehensive simulations and real data analyses on Crohn's disease, celiac disease and type-II diabetes, we demonstrate that our approach can substantially increase the accuracy of polygenic risk prediction and risk population stratification, i.e. PleioPred can significantly better separate type-II diabetes patients with early and late onset ages, illustrating its potential clinical application. Furthermore, we show that the increment in prediction accuracy is significantly correlated with the genetic correlation between the predicted and jointly modeled diseases.

  9. Correlation of Papillomacular Nerve Fiber Bundle Thickness with Central Visual Function in Open-Angle Glaucoma

    Directory of Open Access Journals (Sweden)

    Wataru Kobayashi

    2015-01-01

    Full Text Available Purpose. To determine the correlation of reduced retinal thickness in the central papillomacular bundle (CPB to central visual function, including central retinal sensitivity and visual acuity, in glaucoma patients. Methods. This study enrolled 50 eyes of 50 patients with open-angle glaucoma who were carefully screened for comorbid conditions that can cause decreased central visual function, such as cataracts or macular diseases. We used a novel CPB analysis comprising a program for optical coherence tomography that measured RNFL thickness and GCC thickness in the CPB and divided lengthwise into three parts (upper, middle, and lower CPB. The relationship of these parameters, including conventional macular thickness, to visual field sensitivity in four central standard automated perimetry points (the central four thresholds and BCVA was analyzed. Results. The two parameters most highly correlated with central four thresholds were macular GCCT and macular RNFLT. The two parameters most highly correlated with BCVA were middle CPB (mid-CPB GCCT and mid-CPB RNFLT. A multiple regression analysis revealed that mid-CPB GCCT was an independent factor impacting central retinal thresholds and BCVA. Conclusions. Our results suggest that mid-CPB RNFLT and GCCT, parameters of a novel papillomacular bundle analysis, are candidate biomarkers of decreased central visual function in glaucomatous eyes.

  10. Gauge-fixing parameter dependence of two-point gauge-variant correlation functions

    International Nuclear Information System (INIS)

    Zhai, C.

    1996-01-01

    The gauge-fixing parameter ξ dependence of two-point gauge-variant correlation functions is studied for QED and QCD. We show that, in three Euclidean dimensions, or for four-dimensional thermal gauge theories, the usual procedure of getting a general covariant gauge-fixing term by averaging over a class of covariant gauge-fixing conditions leads to a nontrivial gauge-fixing parameter dependence in gauge-variant two-point correlation functions (e.g., fermion propagators). This nontrivial gauge-fixing parameter dependence modifies the large-distance behavior of the two-point correlation functions by introducing additional exponentially decaying factors. These factors are the origin of the gauge dependence encountered in some perturbative evaluations of the damping rates and the static chromoelectric screening length in a general covariant gauge. To avoid this modification of the long-distance behavior introduced by performing the average over a class of covariant gauge-fixing conditions, one can either choose a vanishing gauge-fixing parameter or apply an unphysical infrared cutoff. copyright 1996 The American Physical Society

  11. Approximate but accurate quantum dynamics from the Mori formalism. II. Equilibrium time correlation functions

    Science.gov (United States)

    Montoya-Castillo, Andrés; Reichman, David R.

    2017-02-01

    The ability to efficiently and accurately calculate equilibrium time correlation functions of many-body condensed phase quantum systems is one of the outstanding problems in theoretical chemistry. The Nakajima-Zwanzig-Mori formalism coupled to the self-consistent solution of the memory kernel has recently proven to be highly successful for the computation of nonequilibrium dynamical averages. Here, we extend this formalism to treat symmetrized equilibrium time correlation functions for the spin-boson model. Following the first paper in this series [A. Montoya-Castillo and D. R. Reichman, J. Chem. Phys. 144, 184104 (2016)], we use a Dyson-type expansion of the projected propagator to obtain a self-consistent solution for the memory kernel that requires only the calculation of normally evolved auxiliary kernels. We employ the approximate mean-field Ehrenfest method to demonstrate the feasibility of this approach. Via comparison with numerically exact results for the correlation function Cz z(t ) =Re ⟨σz(0 ) σz(t ) ⟩ , we show that the current scheme affords remarkable boosts in accuracy and efficiency over bare Ehrenfest dynamics. We further explore the sensitivity of the resulting dynamics to the choice of kernel closures and the accuracy of the initial canonical density operator.

  12. Frequency domain analysis of electrooculogram and its correlation with cardiac sympathetic function.

    Science.gov (United States)

    Kuo, Terry B J; Yang, Cheryl C H

    2009-05-01

    To test the hypothesis that electrooculogram contains information on autonomic functions, correlation analyses of electrooculogram and heart rate variability (HRV) parameters during night sleep and over 24 h were performed on 24 healthy young volunteers (12 women and 12 men). Continuous frequency-domain analysis revealed repeated emergence of electrooculogram low-frequency power (PEOG, 0.05-0.5 Hz) during night sleep. The change in the PEOG, when natural log transformed, was graded rather than all or nothing. The PEOG was not correlated with high-frequency power (HF, 0.15-0.4 Hz) of HRV. In contrast, the PEOG was significantly correlated with R-R interval (r=-0.46+/-0.15; mean+/-SD, PHz) to HF ratio (LF/HF) of HRV (r=0.49+/-0.10, P<0.05). The correlation coefficient between PEOG and R-R interval and between PEOG and LF/HF became even larger (r=-0.68+/-0.08 and 0.58+/-0.09, respectively) when 24-h recordings were analyzed. There was no significant difference in the correlation between women and men. We concluded that the electrooculogram, as analyzed in the frequency domain, contains information on sympathetic activity not only during night sleep but also throughout day and night in healthy young people.

  13. Evidence of a truncated spectrum in the angular correlation function of the cosmic microwave background

    Science.gov (United States)

    Melia, F.; López-Corredoira, M.

    2018-03-01

    Aim. The lack of large-angle correlations in the fluctuations of the cosmic microwave background (CMB) conflicts with predictions of slow-roll inflation. But while probabilities (≲0.24%) for the missing correlations disfavour the conventional picture at ≳3σ, factors not associated with the model itself may be contributing to the tension. Here we aim to show that the absence of large-angle correlations is best explained with the introduction of a non-zero minimum wave number kmin for the fluctuation power spectrum P(k). Methods: We assumed that quantum fluctuations were generated in the early Universe with a well-defined power spectrum P(k), although with a cut-off kmin ≠ 0. We then re-calculated the angular correlation function of the CMB and compared it with Planck observations. Results: The Planck 2013 data rule out a zero kmin at a confidence level exceeding 8σ. Whereas purely slow-roll inflation would have stretched all fluctuations beyond the horizon, producing a P(k) with kmin = 0 - and therefore strong correlations at all angles - a kmin ≠ 0 would signal the presence of a maximum wavelength at the time (tdec) of decoupling. This argues against the basic inflationary paradigm, and perhaps even suggests non-inflationary alternatives, for the origin and growth of perturbations in the early Universe. In at least one competing cosmology, the Rh = ct universe, the inferred kmin corresponds to the gravitational radius at tdec.

  14. Fabrication of anisotropic multifunctional colloidal carriers

    Science.gov (United States)

    Jerri, Huda A.

    The field of colloidal assembly has grown tremendously in recent years, although the direct or template-assisted methods used to fabricate complex colloidal constructions from monodisperse micro- and nanoparticles have been generally demonstrated on model materials. In this work, novel core particle syntheses, particle functionalizations and bottom-up assembly techniques are presented to create functional colloidal devices. Using particle lithography, high-information colloidal vectors have been developed and modified with imaging and targeting agents. Localized nanoscale patches have been reliably positioned on microparticles to serve as foundations for further chemical or physical modifications. Site-specific placement of RGD targeting ligands has been achieved in these lithographed patches. Preferential uptake of these targeted vectors by RGD-specific 3T3 fibroblasts was verified using confocal laser scanning microscopy. A transition was made from the functionalization of model imaging core particles to the lithography of colloidal cartridges, in an effort to construct colloidal syringes with specialized, programmable release profiles. A variety of functional, pH-sensitive fluorescent cores were engineered to respond to solution conditions. When triggered, the diverse composite core microparticles and reservoir microcapsules released embedded fluorescent moieties such as dye molecules, and fluorophore-conjugated nanoparticles. The microcapsules, created using layer-by-layer polyelectrolyte deposition on sacrificial templates, were selectively modified with a robust coating. The pH-responsive anisotropic reservoir microcapsules were extremely stable in solution, and exhibited a "Lazarus" functionality of rehydrating to their original state following desiccation. A snapshot of focused-release of core constituents through the lone opening in colloidal monotremes has been obtained by anisotropically-functionalizing degradable cores with barrier shells. Additionally

  15. Effect of chromium and aluminum addition on anisotropic and microstructural characteristics of ball milled nanocrystalline iron

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Rajiv, E-mail: rajiv06484met@gmail.com [IITB-Monash Research Academy, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800 Australia (Australia); Joardar, Joydip [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad (India); Singh Raman, R.K. [Department of Mechanical and Aerospace Engineering, Monash University, VIC 3800 Australia (Australia); Department of Chemical Engineering, Monash University, VIC 3800 Australia (Australia); Raja, V.S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India); Joshi, S.V. [International Advanced Research Centre for Powder Metallurgy and New Materials, Hyderabad (India); Parida, S. [Department of Metallurgical Engineering and Materials Science, Indian Institute of Technology Bombay, Powai, Mumbai 400076 (India)

    2016-06-25

    Prior studies on synthesis of nanocrystalline elements have discussed the effect of ball milling on lattice parameter, crystallite size, and micro-strain. For elemental milled powders, the anisotropic peak broadening does not change with increasing milling time. However, the effect of alloying addition on the anisotropic behavior of ball milled nanocrystalline powders remains an unexplored area. Here we report the effect of chromium and aluminum addition on the anisotropic behavior of iron in nanocrystalline Fe–20Cr–5Al (wt%) alloy powders synthesized by ball milling. The experimental results show that the anisotropic behavior of iron changes towards isotropic with milling. This change was also correlated to the theoretically calculated anisotropic factor from the change in elastic constant of iron due to milling. Addition of alloying elements exhibited a monotonic rise in the lattice parameter with crystallite size, which was attributed to the excess grain boundary interfacial energy and excess free volume at grain boundaries. Transmission electron microscopy image confirmed the crystallite size and nature of dislocation obtained using modified Williamson-Hall method. - Highlights: • Structural evolution in Fe–20Cr–5Al alloy during ball milling is reported. • Effect of alloying addition on the anisotropic behavior of iron was studied. • Agreement in anisotropic factor calculated theoretically and experimentally.

  16. Correlation of pain relief with physical function in hand osteoarthritis: randomized controlled trial post hoc analysis.

    Science.gov (United States)

    Barthel, H Richard; Peniston, John H; Clark, Michael B; Gold, Morris S; Altman, Roy D

    2010-01-01

    Nonsteroidal anti-inflammatory drugs are recommended for the relief of pain associated with hand osteoarthritis (OA) but do not alter the underlying structural changes that contribute to impaired physical function. The current analysis examined the relationship of pain relief with measures of function and global rating of disease in patients with hand OA. This was a combined analysis of 2 prospective, randomized, double-blind, 8-week, multicenter, parallel-group studies comparing diclofenac sodium 1% gel with placebo gel (vehicle) in patients with radiographically confirmed mild to moderate hand OA. Patients (n = 783) aged > or = 40 years applied diclofenac sodium 1% gel (2 g) or vehicle to each hand 4 times daily for 8 weeks. Outcome measures included pain intensity assessed on a 100-mm Visual Analog Scale (VAS); the Australian/Canadian Osteoarthritis Hand Index (AUSCAN) subscales for pain, stiffness, and physical function (100-mm VAS); and a global rating of disease (100-mm VAS). Change in VAS pain intensity from baseline to week 8 was categorized ( or = 70%) without regard to treatment and compared in each category with the mean change from baseline in each AUSCAN subindex and the global rating of disease. Pearson correlations between changes in outcome measures from baseline to week 8 were calculated. Changes in VAS pain intensity were accompanied by similar changes in AUSCAN scores and global rating of disease. Pearson correlations confirmed significant associations (P < 0.001) between change in VAS pain intensity and changes in AUSCAN pain (correlation coefficient [r] = 0.81), AUSCAN function (r = 0.75), AUSCAN stiffness (r = 0.66), and global rating of disease (r = 0.76). Pain relief correlated with improvements in physical function, stiffness, and global rating of disease in patients with hand OA, irrespective of treatment. This suggests that pain or anticipation of pain inhibits physical function and influences patient perception of disease severity in

  17. Analytical study of anisotropic compact star models

    Science.gov (United States)

    Ivanov, B. V.

    2017-11-01

    A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method.

  18. Analytical study of anisotropic compact star models

    Energy Technology Data Exchange (ETDEWEB)

    Ivanov, B.V. [Bulgarian Academy of Science, Institute for Nuclear Research and Nuclear Energy, Sofia (Bulgaria)

    2017-11-15

    A simple classification is given of the anisotropic relativistic star models, resembling the one of charged isotropic solutions. On the ground of this database, and taking into account the conditions for physically realistic star models, a method is proposed for generating all such solutions. It is based on the energy density and the radial pressure as seeding functions. Numerous relations between the realistic conditions are found and the need for a graphic proof is reduced just to one pair of inequalities. This general formalism is illustrated with an example of a class of solutions with linear equation of state and simple energy density. It is found that the solutions depend on three free constants and concrete examples are given. Some other popular models are studied with the same method. (orig.)

  19. Long-range interaction of anisotropic systems

    KAUST Repository

    Zhang, Junyi

    2015-02-01

    The first-order electrostatic interaction energy between two far-apart anisotropic atoms depends not only on the distance between them but also on their relative orientation, according to Rayleigh-Schrödinger perturbation theory. Using the first-order interaction energy and the continuum model, we study the long-range interaction between a pair of parallel pristine graphene sheets at zero temperature. The asymptotic form of the obtained potential density, &epsi:(D) &prop: ?D ?3 ?O(D?4), is consistent with the random phase approximation and Lifshitz theory. Accordingly, neglectance of the anisotropy, especially the nonzero first-order interaction energy, is the reason why the widely used Lennard-Jones potential approach and dispersion corrections in density functional theory give a wrong asymptotic form ε(D) &prop: ?D?4. © EPLA, 2015.

  20. Patterning of Structurally Anisotropic Composite Hydrogel Sheets.

    Science.gov (United States)

    Prince, Elisabeth; Alizadehgiashi, Moien; Campbell, Melissa; Khuu, Nancy; Albulescu, Alexandra; De France, Kevin; Ratkov, Dimitrije; Li, Yunfeng; Hoare, Todd; Kumacheva, Eugenia

    2018-04-09

    Compositional and structural patterns play a crucial role in the function of many biological tissues. In the present work, for nanofibrillar hydrogels formed by chemically cross-linked cellulose nanocrystals (CNC) and gelatin, we report a microextrusion-based 3D printing method to generate structurally anisotropic hydrogel sheets with CNCs aligned in the direction of extrusion. We prepared hydrogels with a uniform composition, as well as hydrogels with two different types of compositional gradients. In the first type of gradient hydrogel, the composition of the sheet varied parallel to the direction of CNC alignment. In the second hydrogel type, the composition of the sheet changed orthogonally to the direction of CNC alignment. The hydrogels exhibited gradients in structure, mechanical properties, and permeability, all governed by the compositional patterns, as well as cytocompatibility. These hydrogels have promising applications for both fundamental research and for tissue engineering and regenerative medicine.

  1. Anisotropic thermal expansion in flexible materials

    Science.gov (United States)

    Romao, Carl P.

    2017-10-01

    A definition of the Grüneisen parameters for anisotropic materials is derived based on the response of phonon frequencies to uniaxial stress perturbations. This Grüneisen model relates the thermal expansion in a given direction (αi i) to one element of the elastic compliance tensor, which corresponds to the Young's modulus in that direction (Yi i). The model is tested through ab initio prediction of thermal expansion in zinc, graphite, and calcite using density functional perturbation theory, indicating that it could lead to increased accuracy for structurally complex systems. The direct dependence of αi i on Yi i suggests that materials which are flexible along their principal axes but rigid in other directions will generally display both positive and negative thermal expansion.

  2. Turbulent Output-Based Anisotropic Adaptation

    Science.gov (United States)

    Park, Michael A.; Carlson, Jan-Renee

    2010-01-01

    Controlling discretization error is a remaining challenge for computational fluid dynamics simulation. Grid adaptation is applied to reduce estimated discretization error in drag or pressure integral output functions. To enable application to high O(10(exp 7)) Reynolds number turbulent flows, a hybrid approach is utilized that freezes the near-wall boundary layer grids and adapts the grid away from the no slip boundaries. The hybrid approach is not applicable to problems with under resolved initial boundary layer grids, but is a powerful technique for problems with important off-body anisotropic features. Supersonic nozzle plume, turbulent flat plate, and shock-boundary layer interaction examples are presented with comparisons to experimental measurements of pressure and velocity. Adapted grids are produced that resolve off-body features in locations that are not known a priori.

  3. Sexual dysfunction in male stroke patients: correlation between brain lesions and sexual function.

    Science.gov (United States)

    Jung, Jea-Hun; Kam, Sung-Chul; Choi, Sae-Min; Jae, Sung-Uk; Lee, Seung-Hyun; Hyun, Jae-Seog

    2008-01-01

    To identify the sexual function of, and effect of the location of brain lesions on sexual function in, stroke patients. We conducted a survey on 109 stroke patients (64.93 +/- 8.81 years) and 109 age-matched controls (64.69 +/- 8.85 years). We used a questionnaire that included the five-item version of the International Index of Erectile Function (IIEF-5) and questions about changes in sexual desire, ejaculatory function, and sexual satisfaction after a stroke. We analyzed the correlation between the results of the questionnaire and the locations of brain lesions. Erectile function was significantly decreased in the stroke patient group (IIEF-5, 5.89 +/- 7.08) compared with the control group (IIEF-5, 10.67 +/- 7.10). In most patients, the frequency of intercourse and sexual desire decreased after stroke, and an ejaculation disorder accompanied intercourse, but fear regarding intercourse was not severe. A lack of sexual desire was the largest cause (59.4%) of an absence of sexual intercourse. In cases with lesions in the right cerebellum and the left basal ganglia, a significant ejaculation disorder and decrease of sexual desire were more likely to occur, respectively. The sexual desire, erectile function, and ejaculatory function were impaired after stroke. A lack of sexual desire was the major cause of an absence of sexual intercourse. The specific locations of the stroke lesions, such as the left basal ganglia and right cerebellum, might be associated with sexual desire and ejaculation disorder, respectively.

  4. Estimating anisotropic diffusion of neutrons near the boundary of a pebble bed random system

    Energy Technology Data Exchange (ETDEWEB)

    Vasques, R. [Department of Mathematics, Center for Computational Engineering Science, RWTH Aachen University, Schinkel Strasse 2, D-52062 Aachen (Germany)

    2013-07-01

    Due to the arrangement of the pebbles in a Pebble Bed Reactor (PBR) core, if a neutron is located close to a boundary wall, its path length probability distribution function in directions of flight parallel to the wall is significantly different than in other directions. Hence, anisotropic diffusion of neutrons near the boundaries arises. We describe an analysis of neutron transport in a simplified 3-D pebble bed random system, in which we investigate the anisotropic diffusion of neutrons born near one of the system's boundary walls. While this simplified system does not model the actual physical process that takes place near the boundaries of a PBR core, the present work paves the road to a formulation that may enable more accurate diffusion simulations of such problems to be performed in the future. Monte Carlo codes have been developed for (i) deriving realizations of the 3-D random system, and (ii) performing 3-D neutron transport inside the heterogeneous model; numerical results are presented for three different choices of parameters. These numerical results are used to assess the accuracy of estimates for the mean-squared displacement of neutrons obtained with the diffusion approximations of the Atomic Mix Model and of the recently introduced [1] Non-Classical Theory with angular-dependent path length distribution. The Non-Classical Theory makes use of a Generalized Linear Boltzmann Equation in which the locations of the scattering centers in the system are correlated and the distance to collision is not exponentially distributed. We show that the results predicted using the Non-Classical Theory successfully model the anisotropic behavior of the neutrons in the random system, and more closely agree with experiment than the results predicted by the Atomic Mix Model. (authors)

  5. An anisotropic diffusion approximation to thermal radiative transfer

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, Seth R.; Larsen, Edward W., E-mail: sethrj@umich.edu, E-mail: edlarsen@umich.edu [Department of Nuclear Engineering and Radiological Sciences, University of Michigan, Ann Arbor, MI (United States)

    2011-07-01

    This paper describes an anisotropic diffusion (AD) method that uses transport-calculated AD coefficients to efficiently and accurately solve the thermal radiative transfer (TRT) equations. By assuming weak gradients and angular moments in the radiation intensity, we derive an expression for the radiation energy density that depends on a non-local function of the opacity. This nonlocal function is the solution of a transport equation that can be solved with a single steady-state transport sweep once per time step, and the function's second angular moment is the anisotropic diffusion tensor. To demonstrate the AD method's efficacy, we model radiation flow down a channel in 'flatland' geometry. (author)

  6. Correlation functions and power spectra of Doppler response signals in ultrasonic medical applications.

    Science.gov (United States)

    Skresanova, Iryna V; Barannik, Evgen A

    2012-07-01

    Ultrasound Doppler methods are widely used in clinical practice as prospective investigational tool to study the vascular system and soft biological tissues. Meanwhile, the most general relationship between the power Doppler spectra, spectral characteristics of the scattering fluctuations and the probing ultrasound field parameters for some clinical implementations are still unexplored. Based upon the continuum model of scattering inhomogeneities, a set of the closed-form expressions for the correlation functions and the spectra of Doppler response of soft tissues and blood have been derived. The influence of the correlation among inhomogeneities and the diffusion processes on the Doppler power spectra formed by stationary flows have been examined. Computer simulations of Doppler spectra were performed for different values of correlation radius and diffusion coefficient. With simulation results the effects of the correlation among inhomogeneities and the diffusion processes on the spectral width and mean frequency are established and discussed in respect to turbulent flows. Closed-form expressions for correlation functions and Doppler spectra for the vibrational sonoelastography technique for visualizing malignant tumors in tissues have been derived. Based on the peculiarities of the obtained Doppler spectra, it is shown that the differentiation of soft tissues with respect to the amplitude value of constrained oscillations is feasible. The expressions were derived for the cases of non-stationary accelerated blood movement. It has been found that the frequency dependence reveals solely at a finite time of observation and depends on the initial phase of the accelerated movement. Copyright © 2012 Elsevier B.V. All rights reserved.

  7. Correlation of lumbar-hip kinematics between trunk flexion and other functional tasks.

    Science.gov (United States)

    Alqhtani, Raee S; Jones, Michael D; Theobald, Peter S; Williams, Jonathan M

    2015-01-01

    The purpose of this study was to explore the relationship between the kinematic profiles of flexion of the upper lumbar and lower lumbar (LL) spine and hip and 3 sagittally dominant functional tasks (lifting, stand-to-sit, and sit-to-stand). Fifty-three participants were recruited for this study. Four sensors were attached to the skin over the S1, L3, T12, and lateral thigh. Relative angles between adjacent sensors were used to quantify the motion for the hip, LL, and upper lumbar spine. Pearson correlation coefficients were used to explore the relationship between the movements and more functional tasks. One-way analysis of variance was used to determine the significance of differences between the variables. Flexion resulted in a greater or similar range of motion (ROM) to the other tasks investigated for both spinal regions but less ROM for the hip. Strong correlations for ROM are reported between forward flexion tasks and lifting for the LL spine (r = 0.83) and all regions during stand-to-sit and sit-to-stand (r = 0.70-0.73). No tasks were strongly correlated for velocity (r = 0.03-0.55). Strong correlations were only evident for the LL spine ROM between lifting and flexion; all other tasks afforded moderate or weak correlations. This study suggests that sagittal tasks use different lumbar-hip kinematics and place different demands on the lumbar spine and hip. Copyright © 2015 National University of Health Sciences. Published by Elsevier Inc. All rights reserved.

  8. Treatment of proximal humeral fractures using anatomical locking plate: correlation of functional and radiographic results

    Directory of Open Access Journals (Sweden)

    Antonio Carlos Tenor Junior

    2016-06-01

    Full Text Available ABSTRACT OBJECTIVE: To correlate the functional outcomes and radiographic indices of proximal humerus fractures treated using an anatomical locking plate for the proximal humerus. METHODS: Thirty-nine patients with fractures of the proximal humerus who had been treated using an anatomical locking plate were assessed after a mean follow-up of 27 months. These patients were assessed using the University of California Los Angeles (UCLA score and their range of motion was evaluated using the method of the American Academy of Orthopedic Surgeons on the operated shoulder and comparative radiographs on both shoulders. The correlation between radiographic measurements and functional outcomes was established. RESULTS: We found that 64% of the results were good or excellent, according to the UCLA score, with the following means: elevation of 124°; lateral rotation of 44°; and medial rotation of thumb to T9. The type of fracture according to Neer's classification and the patient's age had significant correlations with the range of motion, such that the greater the number of parts in the fracture and the greater the patient's age were, the worse the results also were. Elevation and UCLA score were found to present associations with the anatomical neck-shaft angle in anteroposterior view; fractures fixed with varus deviations greater than 15° showed the worst results (p < 0.001. CONCLUSION: The variation in the neck-shaft angle measurements in anteroposterior view showed a significant correlation with the range of motion; varus deviations greater than 15° were not well tolerated. This parameter may be one of the predictors of functional results from proximal humerus fractures treated using a locking plate.

  9. Operator theory of angular momentum nad orientational auto-correlation functions

    International Nuclear Information System (INIS)

    Evans, M.W.

    1982-01-01

    The rigorous relation between the orientational auto-correlation function and the angular momentum autocorrelation function is described in two cases of interest. First when description of the complete zero THz- spectrum is required from the Mori continued fraction expansion for the angular momentum autocorrelation function and second when rotation/translation effects are important. The Mori-Evans theory of 1976, relying on the simple Shimizu relation is found to be essentially unaffected by the higher order corrections recently worked out by Ford and co-workers in the Markov limit. The mutual interaction of rotation and translation is important in determining the details of both the orientational and angular momentum auto-correlation function's (a.c.f.'s) in the presence of sample anisotropy or a symmetry breaking field. In this case it is essential to regard the angular momentum a.c.f. as non-Markovian and methods are developed to relate this to the orientational a.c.f. in the presence of rotation/translation coupling. (author)

  10. Correlation functions with fusion-channel multiplicity in W{sub 3} Toda field theory

    Energy Technology Data Exchange (ETDEWEB)

    Belavin, Vladimir [I.E. Tamm Department of Theoretical Physics, P.N. Lebedev Physical Institute,Leninsky Avenue 53, 119991 Moscow (Russian Federation); Department of Quantum Physics, Institute for Information Transmission Problems,Bolshoy Karetny per. 19, 127994 Moscow (Russian Federation); Estienne, Benoit [LPTHE, CNRS and Université Pierre et Marie Curie,Sorbonne Universités, 4 Place Jussieu, 75252 Paris Cedex 05 (France); Foda, Omar [School of Mathematics and Statistics, University of Melbourne,Parkville, Victoria 3010 (Australia); Santachiara, Raoul [LPTMS, CNRS (UMR 8626), Université Paris-Saclay,15 rue Georges Clémenceau, 91405 Orsay (France)

    2016-06-22

    Current studies of W{sub N} Toda field theory focus on correlation functions such that the W{sub N} highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W{sub 3} Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl{sub 3}, and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl{sub 3}. We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W{sub N} theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  11. Correlation functions with fusion-channel multiplicity in W3 Toda field theory

    International Nuclear Information System (INIS)

    Belavin, Vladimir; Estienne, Benoit; Foda, Omar; Santachiara, Raoul

    2016-01-01

    Current studies of W N Toda field theory focus on correlation functions such that the W N highest-weight representations in the fusion channels are multiplicity-free. In this work, we study W 3 Toda 4-point functions with multiplicity in the fusion channel. The conformal blocks of these 4-point functions involve matrix elements of a fully-degenerate primary field with a highest-weight in the adjoint representation of sl 3 , and a fully-degenerate primary field with a highest-weight in the fundamental representation of sl 3 . We show that, when the fusion rules do not involve multiplicities, the matrix elements of the fully-degenerate adjoint field, between two arbitrary descendant states, can be computed explicitly, on equal footing with the matrix elements of the semi-degenerate fundamental field. Using null-state conditions, we obtain a fourth-order Fuchsian differential equation for the conformal blocks. Using Okubo theory, we show that, due to the presence of multiplicities, this differential equation belongs to a class of Fuchsian equations that is different from those that have appeared so far in W N theories. We solve this equation, compute its monodromy group, and construct the monodromy-invariant correlation functions. This computation shows in detail how the ambiguities that are caused by the presence of multiplicities are fixed by requiring monodromy-invariance.

  12. Alternative separation of exchange and correlation energies in range-separated density-functional perturbation theory

    DEFF Research Database (Denmark)

    Cornaton, Y.; Stoyanova, A.; Jensen, Hans Jørgen Aagaard

    2013-01-01

    An alternative separation of short-range exchange and correlation energies is used in the framework of second-order range-separated density-functional perturbation theory. This alternative separation was initially proposed by Toulouse and relies on a long-range-interacting wave function instead...... of the noninteracting Kohn-Sham one. When second-order corrections to the density are neglected, the energy expression reduces to a range-separated double-hybrid (RSDH) type of functional, RSDHf, where "f" stands for "full-range integrals" as the regular full-range interaction appears explicitly in the energy...... on the potential energy curves in the equilibrium region, improving the accuracy of binding energies and equilibrium bond distances when second-order perturbation theory is appropriate....

  13. Anisotropic and nonlinear optical waveguides

    CERN Document Server

    Someda, CG

    1992-01-01

    Dielectric optical waveguides have been investigated for more than two decades. In the last ten years they have had the unique position of being simultaneously the backbone of a very practical and fully developed technology, as well as an extremely exciting area of basic, forefront research. Existing waveguides can be divided into two sets: one consisting of waveguides which are already in practical use, and the second of those which are still at the laboratory stage of their evolution. This book is divided into two separate parts: the first dealing with anisotropic waveguides, an

  14. TiO{sub 2} nanoparticle-induced ROS correlates with modulated immune cell function

    Energy Technology Data Exchange (ETDEWEB)

    Maurer-Jones, Melissa A.; Christenson, Jenna R.; Haynes, Christy L., E-mail: chaynes@umn.edu [University of Minnesota, Department of Chemistry (United States)

    2012-12-15

    Design of non-toxic nanoparticles will be greatly facilitated by understanding the nanoparticle-cell interaction mechanism on a cell function level. Mast cells are important cells for the immune system's first line of defense, and we can utilize their exocytotic behavior as a model cellular function as it is a conserved process across cell types and species. Perturbations in exocytosis can also have implications for whole organism health. One proposed mode of toxicity is nanoparticle-induced reactive oxygen species (ROS), particularly for titanium dioxide (TiO{sub 2}) nanoparticles. Herein, we have correlated changes in ROS with the perturbation of the critical cell function of exocytosis, using UV light to induce greater levels of ROS in TiO{sub 2} exposed cells. The primary culture mouse peritoneal mast cells (MPMCs) were exposed to varying concentrations of TiO{sub 2} nanoparticles for 24 h. ROS content was determined using 2,7-dihydrodichlorofluorescein diacetate (DCFDA). Cellular viability was determined with the MTT and Trypan blue assays, and exocytosis was measured by the analytical electrochemistry technique of carbon-fiber microelectrode amperometry. MPMCs exposed to TiO{sub 2} nanoparticles experienced a dose-dependent increase in total ROS content. While there was minimal impact of ROS on cellular viability, there is a correlation between ROS amount and exocytosis perturbation. As nanoparticle-induced ROS increases, there is a significant decrease (45 %) in the number of serotonin molecules being released during exocytosis, increase (26 %) in the amount of time for each exocytotic granule to release, and decrease (28 %) in the efficiency of granule trafficking and docking. This is the first evidence that nanoparticle-induced ROS correlates with chemical messenger molecule secretion, possibly making a critical connection between functional impairment and mechanisms contributing to that impairment.

  15. Air trapping on HRCT in asthmatics: correlation with pulmonary function test

    International Nuclear Information System (INIS)

    Hwang, Jung Hwa; Cha, Chull Hee; Park, Jai Soung; Kim, Young Beom; Lee, Hae Kyung; Choi, Deuk Lin; Kim, Kyung Ho; Park, Choon Sik

    1997-01-01

    To evaluate on the basis of the pulmonary function test the correlation between the extent of air trapping on HRCT with the severity of airway obstruction and also to identify the prognostic effect of the extent of air trapping after treatment of asthma. Thirty five patients with clinically diagnosed bronchial asthma and air trapping, as seen on HRCT, were included in this study. We quantitatively analysed on HRCT the extent of air trapping and then statistically compared this with the clinical parameters of the pulmonary function test. We classified the patients into two groups on the basis of the pulmonary function test and clinical status : Group 1 (N=35), the total number of asthmatic patients; Group 2 (N=18), relatively stable asthmatics without acute asthmatic attack who showed FEV1 of more than 80% of the predicted value. Using the functional paramenters of PEFR, one of the obijective indicators of improvement in airway obstruction, we also classified the patients into three groups on the basis of interval between treatment and clinical improvement. The result of this was as follows : group 1, asymptomatic group (initial PEFR within normal limit, N=7); group 2, early responder (improvement of PEFR within three hospital days, N=18); group 3, late responder (improvement of PEFR within fourteen hospital days should there be a number here). Using HRCT, we then statistically analysed the differences between the three groups in the extent of air trapping. Among the total of 35 asthmatics, the extent of air trapping on HRCT showed significant correlation with FEV1 (r= -0.6161, p < 0.001) and MEFR (r= -0.6012, p < 0.001). Among the relatively stable asthmatics who showed FEV1 more than 80% of the predicted value, MEFR (r= -0.7553, p < 0.001) and FEF75 (r= -0.7529, p=0.012) showed statistically significant correlation with the extent of air trapping on HRCT, but there was no significant correlation between air trapping on HRCT and FEV1. In the three groups of

  16. High-resolution computed tomography in silicosis: correlation with chest radiography and pulmonary function tests

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, Agnaldo Jose [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Pedro Ernesto Univ. Hospital. Dept. of Respiratory Function]. E-mail: phel.lop@uol.com.br; Mogami, Roberto; Capone, Domenico; Jansen, Jose Manoel [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). School of Medical Sciences; Tessarollo, Bernardo [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Dept. of Radiology and Diagnostic Image; Melo, Pedro Lopes de [Universidade do Estado do Rio de Janeiro (UERJ), RJ (Brazil). Inst. of Biology

    2008-05-15

    Objective: To correlate tomographic findings with pulmonary function findings, as well as to compare chest X-ray findings with high-resolution computed tomography (HRCT) findings, in patients with silicosis. Methods: A cross-sectional study was conducted in 44 non-smoking patients without a history of tuberculosis. Chest X-ray findings were classified according to the International Labour Organization recommendations. Using a semiquantitative system, the following HRCT findings were measured: the full extent of pulmonary involvement; parenchymal opacities; and emphysema. Spirometry and forced oscillation were performed. Pulmonary volumes were evaluated using the helium dilution method, and diffusing capacity of the lung for carbon monoxide was assessed. Results: Of the 44 patients studied, 41 were male. The mean age was 48.4 years. There were 4 patients who were classified as category 0 based on X-ray findings and as category 1 based on HRCT findings. Using HRCT scans, we identified progressive massive fibrosis in 33 patients, compared with only 23 patients when X-rays were used. Opacity score was found to correlate most closely with airflow, DLCO and compliance. Emphysema score correlated inversely with volume, DLCO and airflow. In this sample of patients presenting a predominance of large opacities (75% of the individuals), the deterioration of pulmonary function was associated with the extent of structural changes. Conclusions: In the early detection of silicosis and the identification of progressive massive fibrosis, HRCT scans are superior to X-rays. (author)

  17. High-resolution computed tomography in silicosis: correlation with chest radiography and pulmonary function tests

    International Nuclear Information System (INIS)

    Lopes, Agnaldo Jose; Mogami, Roberto; Capone, Domenico; Jansen, Jose Manoel; Tessarollo, Bernardo; Melo, Pedro Lopes de

    2008-01-01

    Objective: To correlate tomographic findings with pulmonary function findings, as well as to compare chest X-ray findings with high-resolution computed tomography (HRCT) findings, in patients with silicosis. Methods: A cross-sectional study was conducted in 44 non-smoking patients without a history of tuberculosis. Chest X-ray findings were classified according to the International Labour Organization recommendations. Using a semiquantitative system, the following HRCT findings were measured: the full extent of pulmonary involvement; parenchymal opacities; and emphysema. Spirometry and forced oscillation were performed. Pulmonary volumes were evaluated using the helium dilution method, and diffusing capacity of the lung for carbon monoxide was assessed. Results: Of the 44 patients studied, 41 were male. The mean age was 48.4 years. There were 4 patients who were classified as category 0 based on X-ray findings and as category 1 based on HRCT findings. Using HRCT scans, we identified progressive massive fibrosis in 33 patients, compared with only 23 patients when X-rays were used. Opacity score was found to correlate most closely with airflow, DLCO and compliance. Emphysema score correlated inversely with volume, DLCO and airflow. In this sample of patients presenting a predominance of large opacities (75% of the individuals), the deterioration of pulmonary function was associated with the extent of structural changes. Conclusions: In the early detection of silicosis and the identification of progressive massive fibrosis, HRCT scans are superior to X-rays. (author)

  18. Exclusive many-particle diffusion in disordered media and correlation functions for random vertex models

    International Nuclear Information System (INIS)

    Schuetz, G.; Sandow, S.

    1993-05-01

    We consider systems of particles hopping stochastically on d-dimensional lattices with space-dependent probabilities. We map the master equation in a Fock space where the dynamics are given by a quantum Hamiltonian (continuous time) or a transfer matrix resp. (discrete time). We show that under certain conditions the time-dependent two-point density correlation function in N-particle steady state can be computed from the probability distribution of a single particle moving in the same environment. Focussing on exclusion models where the lattice site can be occupied by at most one particle we discuss as an example for such a stochastic process a generalized Heisenberg antiferromagnet where the strength of the spin-spin coupling in space-dependent. In discrete time one obtains for one dimensional systems the diagonal-to-diagonal transfer matrix of the two dimensional six vertex model with space dependent vertex weights. For a random distribution of the vertex weights one obtains a version of the random barrier model describing diffusion of particles in disordered media. We derive exact expressions for the average two-point density correlation function in the presence of weak, correlated disorder. (authors)

  19. Reduced density matrix embedding. General formalism and inter-domain correlation functional.

    Science.gov (United States)

    Pernal, Katarzyna

    2016-08-03

    An embedding method for a one-electron reduced density matrix (1-RDM) is proposed. It is based on partitioning of 1-RDM into domains and describing each domain in the effective potential of the other ones. To assure N-representability of the total 1-RDM N-representability and strong-orthogonality conditions are imposed on the domains. The total energy is given as a sum of single-domain energies and domain-domain electron interaction contributions. Higher than two-body inter-domain interaction terms are neglected. The two-body correlation terms are approximated by deriving inter-domain correlation from couplings of density fluctuations of two domains at a time. Unlike in most density embedding methods kinetic energy is treated exactly and it is not required that densities pertaining to the domains are only weakly overlapping. We propose to treat each domain by a corrected perfect-pairing functional. On a few examples it is shown that the embedding reduced density matrix functional method (ERDMF) yields excellent results for molecules that are well described by a single Lewis structure even if strong static intra-domain or dynamic inter-domain correlation effects must be accounted for.

  20. Correlation between white matter alterations and cognitive function decline in early Alzheimer's disease

    International Nuclear Information System (INIS)

    Ni Hongyan; Qi Ji; Wang Mingshi

    2008-01-01

    Objective: To investigate the effects of early stage Alzheimer's disease (AD) on white matter (WM) integrity using diffusion tensor imaging (DTI) and its relationship with cognitive function decline. Methods: DTI was performed in 32 subjects, including 14 early AD patients and 18 elder controls (ON) with a 1.5 T MR scanner. Fractional anisotropy (FA) and mean diffusivity (b) values were computed and compared for 9 regions of interest (ROI). Eight standard neuropsychological tests were performed and compared between AD and ON to evaluate basic cognitive capacities of AD. Correlation analysis was applied between FA, D values and scores of neuropsychological tests for all subjects. Results: FA significantly decreased in splenium of the corpus callosum and the posterior parietal-temporal region (S2), and (D)-bar significantly increased in the splenium in AD patients (P<0.05). AD patients showed lower scores compared with ON in all neuropsychological tests (P<0.05). FA of the splenium and S2 positively correlated with several tests scores, while D of multiple ROIs negatively correlated with several tests scores (P<0.05). Conclusions: In the early stage of AD, neuropathology has effect not only on cognitive function, but also on white matter structure, and they have strong relationship. AD patients show white matter changes in specific regions, which reflect loss in cortico-cortical connections. (authors)

  1. Correlates of physical function among stroke survivors: an examination of the 2015 BRFSS.

    Science.gov (United States)

    Ilunga Tshiswaka, D; Seals, S R; Raghavan, P

    2018-02-01

    To identify the characteristics of stroke survivors with poor physical function. Cross-sectional. Secondary data analyses were performed with the 2015 Behavioral Risk Factor Surveillance System data set. Unadjusted and adjusted logistic regressions were employed to determine the correlates of poor physical function in stroke survivors. Self-reported difficulty with walking and stairs was used as a proxy for physical function. Characteristics such as age, race, sex, difficulty doing errands alone, difficult dressing or bathing alone, health care coverage, time since last routine checkup, and reported financial difficulty with regard to health care access were examined as contributing factors to physical function. Approximately half of all stroke survivors reported having difficulty with walking and stairs (50.3%). As expected, the odds of reporting difficulty with walking and stairs were higher among stroke survivors aged 40 years and above (p physical function was preserved (p physical function. Specifically, blacks/ African Americans had a 5.6% increase in the odds of reporting difficulty with walking and stairs than whites. Moreover, Hispanics reported significantly fewer problems than whites. Overall, similar sociocultural patterns in non-stroke and stroke populations were observed in this study. Copyright © 2017 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  2. Functional and nutritional status correlation in elderly patients with hip fracture

    Directory of Open Access Journals (Sweden)

    Gonzalo Ramón González González

    2012-06-01

    Full Text Available Introduction: Hip fractures in elderly patients are related to several factors, among which nutrition and functionality stand out. The presence of alterations in the nutritional state has been related directly with the functional state. Objective: To determine the previous functional state of the patient with a hip fracture, the nutritional state at the moment of admittance and the correlation between both parameters as risk factors for the fracture. Materials and methods: 78 elderly patients with a hip fractured were studied from February 1st, 2009 to December 31st of 2009. The functional and nutritional stated were analyzed. Descriptive statistics and inferential analysis were used with contingency tables to test association with c2. Results: 46.1% were functionally independent and 53.9% had functional impairment. 14.1% presented malnourishment, 48.7% were at risk of malnutrition and 37.2% had normal nutrition. Only the 36.7% with the “nutritional problem” (MNA24 who were independent.

  3. Neural correlates underlying mental calculation in abacus experts: a functional magnetic resonance imaging study.

    Science.gov (United States)

    Hanakawa, Takashi; Honda, Manabu; Okada, Tomohisa; Fukuyama, Hidenao; Shibasaki, Hiroshi

    2003-06-01

    Experts of abacus operation demonstrate extraordinary ability in mental calculation. There is psychological evidence that abacus experts utilize a mental image of an abacus to remember and manipulate large numbers in solving problems; however, the neural correlates underlying this expertise are unknown. Using functional magnetic resonance imaging, we compared the neural correlates associated with three mental-operation tasks (numeral, spatial, verbal) among six experts in abacus operations and eight nonexperts. In general, there was more involvement of neural correlates for visuospatial processing (e.g., right premotor and parietal areas) for abacus experts during the numeral mental-operation task. Activity of these areas and the fusiform cortex was correlated with the size of numerals used in the numeral mental-operation task. Particularly, the posterior superior parietal cortex revealed significantly enhanced activity for experts compared with controls during the numeral mental-operation task. Comparison with the other mental-operation tasks indicated that activity in the posterior superior parietal cortex was relatively specific to computation in 2-dimensional space. In conclusion, mental calculation of abacus experts is likely associated with enhanced involvement of the neural resources for visuospatial information processing in 2-dimensional space.

  4. Correlation of structure and function of the macula in patients with retinitis pigmentosa.

    Science.gov (United States)

    Battu, R; Khanna, A; Hegde, B; Berendschot, T T J M; Grover, S; Schouten, J S A G

    2015-07-01

    To correlate the structure of the macula, as measured by spectral-domain optical coherence tomography (SD-OCT) and function, as measured by microperimetry (MAIA) in patients with retinitis pigmentosa (RP) and relatively good visual acuity. Prospective, cross-sectional, non-intervention study. Patients with RP. Thirty patients with RP and good central visual acuity were identified. Each patient underwent SD-OCT of the macula and microperimetry. The images were overlaid using the custom-designed software. The retinal sensitivity by microperimetry was correlated with corresponding retinal thickness, as measured by the SD-OCT. ELM, COST, and IS/OS junction were scored as intact, disrupted, or absent. Comparing the retinal sensitivity on the MAIA with various measurements on the SD-OCT. The retinal sensitivity on the MAIA showed a significant correlation with total retinal thickness and outer retinal thickness on the SD-OCT. There was no association with either the inner retinal thickness or the choroidal thickness. ORT showed a statistically significant correlation with the anatomical classification of ELM (r=-0.76, Pmacula in patients with RP. These studies are important to establish surrogate markers that can be used as end points for various tests in future therapeutic clinical trials.

  5. Efficient Modeling and Migration in Anisotropic Media Based on Prestack Exploding Reflector Model and Effective Anisotropy

    KAUST Repository

    Wang, Hui

    2014-05-01

    This thesis addresses the efficiency improvement of seismic wave modeling and migration in anisotropic media. This improvement becomes crucial in practice as the process of imaging complex geological structures of the Earth\\'s subsurface requires modeling and migration as building blocks. The challenge comes from two aspects. First, the underlying governing equations for seismic wave propagation in anisotropic media are far more complicated than that in isotropic media which demand higher computational costs to solve. Second, the usage of whole prestack seismic data still remains a burden considering its storage volume and the existing wave equation solvers. In this thesis, I develop two approaches to tackle the challenges. In the first part, I adopt the concept of prestack exploding reflector model to handle the whole prestack data and bridge the data space directly to image space in a single kernel. I formulate the extrapolation operator in a two-way fashion to remove he restriction on directions that waves propagate. I also develop a generic method for phase velocity evaluation within anisotropic media used in this extrapolation kernel. The proposed method provides a tool for generating prestack images without wavefield cross correlations. In the second part of this thesis, I approximate the anisotropic models using effective isotropic models. The wave phenomena in these effective models match that in anisotropic models both kinematically and dynamically. I obtain the effective models through equating eikonal equations and transport equations of anisotropic and isotropic models, thereby in the high frequency asymptotic approximation sense. The wavefields extrapolation costs are thus reduced using isotropic wave equation solvers while the anisotropic effects are maintained through this approach. I benchmark the two proposed methods using synthetic datasets. Tests on anisotropic Marmousi model and anisotropic BP2007 model demonstrate the applicability of my

  6. The fluctuation-dissipation relation: how does one compare correlation functions and responses?

    International Nuclear Information System (INIS)

    Villamaina, D; Baldassarri, A; Puglisi, A; Vulpiani, A

    2009-01-01

    We discuss the well known Einstein and the Kubo fluctuation-dissipation relations (FDRs) in the wider framework of a generalized FDR for systems with a stationary probability distribution. A multivariate linear Langevin model, which includes dynamics with memory, is used as a treatable example to show how the usual relations are recovered only in particular cases. This study brings to the fore the ambiguities of a check of the FDR done without knowing the significant degrees of freedom and their coupling. An analogous scenario emerges in the dynamics of diluted shaken granular media. There, the correlation between position and velocity of particles, due to spatial inhomogeneities, induces violation of usual FDRs. The search for the appropriate correlation function which could restore the FDR can be more insightful than a definition of 'non-equilibrium' or 'effective temperatures'

  7. Estimating genetic covariance functions assuming a parametric correlation structure for environmental effects

    Directory of Open Access Journals (Sweden)

    Meyer Karin

    2001-11-01

    Full Text Available Abstract A random regression model for the analysis of "repeated" records in animal breeding is described which combines a random regression approach for additive genetic and other random effects with the assumption of a parametric correlation structure for within animal covariances. Both stationary and non-stationary correlation models involving a small number of parameters are considered. Heterogeneity in within animal variances is modelled through polynomial variance functions. Estimation of parameters describing the dispersion structure of such model by restricted maximum likelihood via an "average information" algorithm is outlined. An application to mature weight records of beef cow is given, and results are contrasted to those from analyses fitting sets of random regression coefficients for permanent environmental effects.

  8. A method of Moessbauer Fourier spectroscopy for determination of the biopolimer coordinate correlation functions

    International Nuclear Information System (INIS)

    Basovets, S.K.; Krupyanskij, Yu.F.; Kurinov, I.V.; Suzdalev, I.P.; Goldanskij, V.I.; Uporov, I.V.; Shaitan, K.V.; Rubin, A.B.

    1988-01-01

    A method of Moessbauer Fourier spectroscopy is developed to determine the correlation function of coordinates of a macromolecular system. The method does not require the use of an a priori dynamic model. The application of the method to the analysis of RSMR data for human serum albumin has demonstrated considerable changes in the dynamic behavior of the protein globule when the temperature is changed from 270 to 310 K. The main conclusions of the present work is the simultaneous observation of low-frequency (τ≥10 -9 sec) and high-frequency (τ -9 sec) large-scaled motions, that is the two-humped distribution of correlation times of protein motions. (orig.)

  9. Sexual Function Is Correlated With Body Image and Partnership Quality in Female University Students.

    Science.gov (United States)

    Wallwiener, Stephanie; Strohmaier, Jana; Wallwiener, Lisa-Maria; Schönfisch, Birgitt; Zipfel, Stephan; Brucker, Sara Y; Rietschel, Marcella; Wallwiener, Christian W

    2016-10-01

    According to the World Health Organization definition, sexual health is more than mere physical sexual function; it also encompasses emotional, mental, and social well-being in relation to sexuality and is not merely the absence of dysfunction or disease. In line with this definition, various studies have reported that female sexual function is associated with partnership quality, body image, and body self-acceptance. To investigate whether female sexual function is influenced by (i) body self-acceptance and (ii) partnership quality, as important factors in psychosocial well-being, and (iii) whether the effects of body self-acceptance are moderated by partnership quality. In total, 2,685 female medical students no older than 35 years from Germany, Austria, and Switzerland completed an anonymous online questionnaire comprising the Female Sexual Function Index (FSFI) and the Self-Acceptance of the Body Scale. Respondents were asked to state whether they had been in a steady partnership in the preceding 6 months. When present, the quality of the partnership status was rated (enamoredness, love, friendship, or conflicted). To determine correlations, group differences, and moderating effects among body self-acceptance, partnership quality, and sexual function, the data were analyzed using Spearman correlations, Kruskal-Wallis tests, and analyses of variance. Female sexual function (FSFI total score). (i) In sexually active women, higher FSFI scores were significantly associated with greater body self-acceptance and a steady partnership during the preceding 6 months. (ii) Total FSFI scores were highest in women who described their partnership as enamored (29.45) or loving (28.55). Lower scores were observed in single women (26.71) and in women who described their partnerships as friendship (25.76) or as emotionally conflicted (23.41). (iii) Total FSFI score was affected by an interaction between body self-acceptance and partnership quality. Body self- acceptance was

  10. Correlating novel variable and conserved motifs in the Hemagglutinin protein with significant biological functions

    Directory of Open Access Journals (Sweden)

    Werner Mark

    2008-08-01

    Full Text Available Abstract Background Variations in the influenza Hemagglutinin protein contributes to antigenic drift resulting in decreased efficiency of seasonal influenza vaccines and escape from host immune response. We performed an in silico study to determine characteristics of novel variable and conserved motifs in the Hemagglutinin protein from previously reported H3N2 strains isolated from Hong Kong from 1968–1999 to predict viral motifs involved in significant biological functions. Results 14 MEME blocks were generated and comparative analysis of the MEME blocks identified blocks 1, 2, 3 and 7 to correlate with several biological functions. Analysis of the different Hemagglutinin sequences elucidated that the single block 7 has the highest frequency of amino acid substitution and the highest number of co-mutating pairs. MEME 2 showed intermediate variability and MEME 1 was the most conserved. Interestingly, MEME blocks 2 and 7 had the highest incidence of potential post-translational modifications sites including phosphorylation sites, ASN glycosylation motifs and N-myristylation sites. Similarly, these 2 blocks overlap with previously identified antigenic sites and receptor binding sites. Conclusion Our study identifies motifs in the Hemagglutinin protein with different amino acid substitution frequencies over a 31 years period, and derives relevant functional characteristics by correlation of these motifs with potential post-translational modifications sites, antigenic and receptor binding sites.

  11. Assessment of Musculoskeletal Function and its Correlation with Radiological Joint Score in Children with Hemophilia A.

    Science.gov (United States)

    Gupta, Samriti; Garg, Kapil; Singh, Jagdish

    2015-12-01

    To evaluate the functional independence of children with hemophilia A and its correlation to radiological joint score. The present cross sectional study was conducted at SPMCHI, SMS Medical College, Jaipur, India. Children in the age group of 4-18 y affected with severe, moderate and mild hemophilia A and with a history of hemarthrosis who attended the OPD, emergency or got admitted in wards of SPMCHI, SMS Medical College were examined. Musculoskeletal function was measured in 98 patients using Functional Independence Score in Hemophilia (FISH) and index joints (joints most commonly affected with repeated bleeding) were assessed radiologically with plain X rays using Pettersson score. The mean FISH score was 28.07 ± 3.90 (range 17-32) with squatting, running and step climbing as most affected tasks. The mean Pettersson score was 3.8 ± 3.2. A significant correlation was found between mean Pettersson score and FISH (r = -0.875, P hemophilia A.

  12. Functional correlates of cognitive dysfunction in multiple sclerosis: A multicenter fMRI Study.

    Science.gov (United States)

    Rocca, Maria A; Valsasina, Paola; Hulst, Hanneke E; Abdel-Aziz, Khaled; Enzinger, Christian; Gallo, Antonio; Pareto, Debora; Riccitelli, Gianna; Muhlert, Nils; Ciccarelli, Olga; Barkhof, Frederik; Fazekas, Franz; Tedeschi, Gioacchino; Arévalo, Maria J; Filippi, Massimo

    2014-12-01

    In this multicenter study, we applied functional magnetic resonance imaging (fMRI) to define the functional correlates of cognitive dysfunction in patients with multiple sclerosis (MS). fMRI scans during the performance of the N-back task were acquired from 42 right-handed relapsing remitting (RR) MS patients and 52 sex-matched right-handed healthy controls, studied at six European sites using 3.0 Tesla scanners. Patients with at least two abnormal (function of increasing task difficulty, CI MS patients had reduced activations of several areas located in the fronto-parieto-temporal lobes as well as reduced deactivations of regions which are part of the default mode network compared to the other two groups. Significant correlations were found between abnormal fMRI patterns of activations and deactivations and behavioral measures, cognitive performance, and brain T2 and T1 lesion volumes. This multicenter study supports the theory that a preserved fMRI activity of the frontal lobe is associated with a better cognitive profile in MS patients. It also indicates the feasibility of fMRI to monitor disease evolution and treatment effects in future studies. © 2014 Wiley Periodicals, Inc.

  13. Working memory assessment in schizophrenia and its correlation with executive functions ability.

    Science.gov (United States)

    Berberian, Arthur A; Trevisan, Bruna T; Moriyama, Tais S; Montiel, José M; Oliveira, José Ari C; Seabra, Alessandra G

    2009-09-01

    Working memory impairment is common in schizophrenia and is possibly a cause of multiple features of the disorder. However few studies have replicated such findings of impairment patterns in Brazilian samples. The main target of this study was to assess auditory and visual working memory in patients with schizophrenia, to assess if they work as separate systems, and to correlate working memory deficits with executive functions. Twenty subjects with schizophrenia and twenty healthy subjects matched by gender, age, and schooling have participated. The abilities assessed were auditory and visual working memory, selective attention, inhibitory control, cognitive flexibility, and planning. Patients showed declines in all measures evaluated, except for a measure reaction time of inhibitory control. Auditory working memory was correlated to selective attention, inhibition, flexibility and planning while Visual working memory to planning and flexibility. The present study suggests that working memory and executive functions deficits are present in patients with schizophrenia in the Brazilian sample evaluated. Alterations in executive functions may lead to incapacity of operation of processes of working memory. These findings may contribute to delineate and develop new strategies of schizophrenia treatment in the Brazilian population.

  14. Structural and functional MRI correlates of Stroop control in benign MS.

    Science.gov (United States)

    Rocca, Maria A; Valsasina, Paola; Ceccarelli, Antonia; Absinta, Martina; Ghezzi, Angelo; Riccitelli, Gianna; Pagani, Elisabetta; Falini, Andrea; Comi, Giancarlo; Scotti, Giuseppe; Filippi, Massimo

    2009-01-01

    The objective of this study was to assess the functional and structural substrates of cognitive network changes in patients with benign multiple sclerosis (BMS), using an analysis of effective connectivity and MR tractography. Using a 3-Tesla scanner, we acquired dual-echo, diffusion tensor (DT) and functional MRI during the performance of the Stroop task from 15 BMS patients and 19 healthy controls. DT MRI tractography was used to calculate DT derived metrics from several white matter (WM) fiber bundles, thought to be involved in cognitive performance. DT MRI metrics from WM fiber bundles not directly related with cognitive performance were also derived. Effective connectivity analysis was performed using statistical parametric mapping. MS patients had significantly abnormal DT MRI metrics in all the structures analyzed. Compared with controls, MS patients had more significant activations of several areas of the cognitive network involved in Stroop performance, bilaterally. Compared with controls, BMS patients also had increased connectivity strengths between several cortical areas of the sensorimotor network and the right (R) inferior frontal gyrus and the R cerebellum, as well as decreased connectivity strengths with the anterior cingulate cortex. Coefficients of altered connectivity were moderately correlated with structural MRI metrics of tissue damage within intra- and inter-hemispheric cognitive-related WM fiber bundles, while no correlations were found with the remaining fiber bundles studied, suggesting that functional cortical changes in patients with BMS might represent an adaptive response driven by damage of specific WM structures. (c) 2007 Wiley-Liss, Inc.

  15. Complete conformal field theory solution of a chiral six-point correlation function

    Science.gov (United States)

    Simmons, Jacob J. H.; Kleban, Peter

    2011-08-01

    Using conformal field theory, we perform a complete analysis of the chiral six-point correlation function C(z)=\\langle \\phi _{1,2}\\phi _{1,2} \\Phi _{1/2,0}(z, \\bar{z}) \\phi _{1,2}\\phi _{1,2} \\rangle, with the four phi1, 2 operators at the corners of an arbitrary rectangle, and the point z = x + iy in the interior. We calculate this for arbitrary central charge (equivalently, SLE parameter κ > 0). C is of physical interest because for percolation (κ = 6) and many other two-dimensional critical points, it specifies the density at z of critical clusters conditioned to touch either or both vertical ends of the rectangle, with these ends 'wired', i.e. constrained to be in a single cluster, and the horizontal ends free. The correlation function may be written as the product of an algebraic prefactor f and a conformal block G, where f = f(x, y, m), with m a cross-ratio specified by the corners (m determines the aspect ratio of the rectangle). By appropriate choice of f and using coordinates that respect the symmetry of the problem, the conformal block G is found to be independent of either y or x, and given by an Appell function.

  16. A cross-correlation objective function for least-squares migration and visco-acoustic imaging

    KAUST Repository

    Dutta, Gaurav

    2014-08-05

    Conventional acoustic least-squares migration inverts for a reflectivity image that best matches the amplitudes of the observed data. However, for field data applications, it is not easy to match the recorded amplitudes because of the visco-elastic nature of the earth and inaccuracies in the estimation of source signature and strength at different shot locations. To relax the requirement for strong amplitude matching of least-squares migration, we use a normalized cross-correlation objective function that is only sensitive to the similarity between the predicted and the observed data. Such a normalized cross-correlation objective function is also equivalent to a time-domain phase inversion method where the main emphasis is only on matching the phase of the data rather than the amplitude. Numerical tests on synthetic and field data show that such an objective function can be used as an alternative to visco-acoustic least-squares reverse time migration (Qp-LSRTM) when there is strong attenuation in the subsurface and the estimation of the attenuation parameter Qp is insufficiently accurate.

  17. Bronchial asthma: correlation of quantitative CT and the pulmonary function test

    Energy Technology Data Exchange (ETDEWEB)

    Park, Gun; Jin, Gong Yong; Jeon, Su Bin; Han, Young Min [Chonbuk National University Hospital, Research Institute of Clinical Medicine, Jeonju (Korea, Republic of)

    2007-02-15

    The purpose of this study was to assess the availability of quantitative computed tomography (QCT) in the evaluation asthma patients and to correlate its use with the pulmonary function test (PFT). Thirty asthmatic patients and thirty normal volunteers were prospectively evaluated by the use of HRCT and the PFT. By using 16 slice MDCT, HRCT was performed from the apex to the base of both lungs at the end inspiration and end expiration periods in all patients and images were reconstructed to a thickness of 1 mm (window level: -750 HU, window width: 1,500 HU). We analyzed each image for the whole lung using the Pulmo CT program. PFTs including FVC and FEV1 were performed one week prior and one week after the completion of a HRCT. The Difference of QCT (the mean lung density and subrange ratio) between volunteers and asthmatic patients was analyzed by using the Student's t-test. Spearman's correlation test was used to determine the association between PFT and QCT. The mean lung density (MLD) and subrange ratio were lower in asthmatic patients than in volunteers for and expiration and no difference was seen between asthmatic patients and volunteers for end inspiration. FVC and FEV1 were lower in asthmatic patients than in volunteers. A decrease in FVC and FEV1 correlated with changes in the MLD and subrange ratio for end expiration. QCT such as MLD and the subrange ratio using HRCT can be used to indirectly assess the pulmonary function of the asthma patient. The PFT seems to correlate better with the MLD and subrange ratio for expiratory QCT of the asthma patient than with inspiratory QCT.

  18. Correlation between Postural Stability and Functional Mobility in Patients with Knee Osteoarthritis

    Directory of Open Access Journals (Sweden)

    Arlinda De Hafsari

    2015-12-01

    Full Text Available Background: Osteoarthritis (OA is a degenerative joint disorder caused by progressive erosion of articular cartilage. The joint which is commonly affected is theknee joint. Patient with knee OA has increasing pain with decreasing postural stability, and may cause decrease infunctional mobility of the body. The aim of this study was to analyze the correlation between stability and mobility in patients with knee OA. Methods: A cross sectional study was performed to 43 patients from the Rheumatology Clinic of Dr. Hasan Sadikin General Hospital, Bandung, during September−October 2013. The ‘Timed Up and Go’ (TUG test and stabillometric platform examination were performed to analyze the mobility and stability in subjects. The data were analyzed with Spearman’s Correlation. Results: Four subjects (9.30% had normal functional mobility, 31 subjects (72.09% had good mobility and need no help of others in their activities, and 8 subjects (18.60% had problems and could not stand and walk without help. This study also found 39 subjects (90.69% had high risk of fall. The p value were 0.005 for correlation between knee OA and lateral static postural stability, 0.138 with anteroposterior static stability, 0.067 with dynamic to position of top right stability, 0.344 with dynamic to position of top left stability, 0.384 with dynamic to position of bottom left stability and 0.357 with dynamic to position of bottom right stability. Conclusions: There is a strong correlation between functional mobility with static postural stability, especially to the lateral position.

  19. Using galaxy pairs to investigate the three-point correlation function in the squeezed limit

    Science.gov (United States)

    Yuan, Sihan; Eisenstein, Daniel J.; Garrison, Lehman H.

    2017-11-01

    We investigate the three-point correlation function (3PCF) in the squeezed limit by considering galaxy pairs as discrete objects and cross-correlating them with the galaxy field. We develop an efficient algorithm using fast Fourier transforms to compute such cross-correlations and their associated pair-galaxy bias bp, g and the squeezed 3PCF coefficient Qeff. We implement our method using N-body cosmological simulations and a fiducial halo occupation distribution (HOD) and present the results in both the real space and redshift space. In real space, we observe a peak in bp, g and Qeff at pair separation of ∼2 Mpc, attributed to the fact that galaxy pairs at 2 Mpc separation trace the most massive dark matter haloes. We also see strong anisotropy in the bp, g and Qeff signals that track the large-scale filamentary structure. In redshift space, both the 2 Mpc peak and the anisotropy are significantly smeared out along the line of sight due to finger-of-God effect. In both the real space and redshift space, the squeezed 3PCF shows a factor of 2 variation, contradicting the hierarchical ansatz, but offering rich information on the galaxy-halo connection. Thus, we explore the possibility of using the squeezed 3PCF to constrain the HOD. When we compare two simple HOD models that are closely matched in their projected two-point correlation function (2PCF), we do not yet see a strong variation in the 3PCF that is clearly disentangled from variations in the projected 2PCF. Nevertheless, we propose that more complicated HOD models, e.g. those incorporating assembly bias, can break degeneracies in the 2PCF and show a distinguishable squeezed 3PCF signal.

  20. Measurement of the dipole in the cross-correlation function of galaxies

    International Nuclear Information System (INIS)

    Gaztanaga, Enrique; Bonvin, Camille; Hui, Lam

    2017-01-01

    It is usually assumed that in the linear regime the two-point correlation function of galaxies contains only a monopole, quadrupole and hexadecapole. Looking at cross-correlations between different populations of galaxies, this turns out not to be the case. In particular, the cross-correlations between a bright and a faint population of galaxies contain also a dipole. In this paper we present the first attempt to measure this dipole. We discuss the four types of effects that contribute to the dipole: relativistic distortions, evolution effect, wide-angle effect and large-angle effect. We show that the first three contributions are intrinsic anti-symmetric contributions that do not depend on the choice of angle used to measure the dipole. On the other hand the large-angle effect appears only if the angle chosen to extract the dipole breaks the symmetry of the problem. We show that the relativistic distortions, the evolution effect and the wide-angle effect are too small to be detected in the LOWz and CMASS sample of the BOSS survey. On the other hand with a specific combination of angles we are able to measure the large-angle effect with high significance. We emphasise that this large-angle dipole does not contain new physical information, since it is just a geometrical combination of the monopole and the quadrupole. However this measurement, which is in excellent agreement with theoretical predictions, validates our method for extracting the dipole from the two-point correlation function and it opens the way to the detection of relativistic effects in future surveys like e.g. DESI.